1
|
Zhang YF, Cui N, Yang T, Wang JX, Chen JH, Yang X, Wu YX, Hu LF, Zhang XA, Lu QB, Su X, Li H, Liu W. Endothelial cell-released mitochondrial DNA promotes B cell differentiation and virus replication during severe fever with thrombocytopenia syndrome virus infection. J Virol 2025; 99:e0132324. [PMID: 40366175 DOI: 10.1128/jvi.01323-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Accepted: 04/15/2025] [Indexed: 05/15/2025] Open
Abstract
Severe fever with thrombocytopenia syndrome (SFTS) is an emerging infectious disease acquired through tick bites. We have previously demonstrated the correlation between SFTSV-induced mitochondrial dysfunction and inflammation induction, disease progression, and fatal outcome. In the current study, our clinical observation study establishes a strong correlation between elevated levels of circulating cell-free mtDNA and poor prognosis. In vivo studies further reveal endothelial cells as an important source responsible for releasing mtDNA into circulation, which promotes B cell activation, migration, and differentiation via Toll-like receptor 9 (TLR9). Notably, TLR9 activation enhances B-cell susceptibility to SFTSV infection. These findings suggest that mtDNA released by injured endothelial cells facilitates B cell differentiation and virus replication, emphasizing the significant role of mitochondrial damage within endothelial cells in contributing to the severity of SFTS outcomes.IMPORTANCESevere fever with thrombocytopenia syndrome (SFTS) is a new acute tick-borne infectious disease with a high fatality rate of 10%-50%. There is a strong correlation between SFTSV-induced mitochondrial dysfunction and inflammation induction, disease progression, and fatal outcome. Our research has revealed the crucial role of mtDNA in predicting the prognosis of SFTS and its impact on vascular endothelial injuries as well as B cell differentiation, two previously unexplored features of SFTSV infection. Moreover, mtDNA could activate the TLR9 signal to induce plasmablast differentiation in B cells and promote SFTSV infection. This study provides valuable mechanistic and clinical insights into the adverse outcomes associated with SFTSV infection.
Collapse
Affiliation(s)
- Yun-Fa Zhang
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, China
| | - Ning Cui
- The 154th Hospital, China RongTong Medical Healthcare Group Co.Ltd, Xinyang, China
| | - Tong Yang
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, China
| | - Jin-Xia Wang
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, China
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Jia-Hao Chen
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, China
| | - Xin Yang
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, China
| | - Yong-Xiang Wu
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, China
| | - Li-Fen Hu
- Department of Infectious Diseases, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Xiao-Ai Zhang
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, China
| | - Qing-Bin Lu
- Department of Laboratorial Science and Technology, School of Public Health, Peking University, Beijing, China
| | - Xin Su
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Hao Li
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, China
| | - Wei Liu
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, China
- Department of Infectious Diseases, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| |
Collapse
|
2
|
Westhus B, Thon P, Palmowski L, Rump K, Koos B, Wiebel F, Dyck B, Eisenacher M, Sitek B, Pfaender S, Babel N, Anft M, Putensen C, Ehrentraut SF, Weisheit C, Zarbock A, von Groote T, Witowski A, Unterberg M, Nowak H, Wolf A, Bergmann L, Adamzik M, Ziehe D, Rahmel T. The protein interaction of mitochondrial transcription factors A and B2 is associated with 30-day survival in critical COVID-19. Front Immunol 2025; 16:1445403. [PMID: 40458415 PMCID: PMC12128609 DOI: 10.3389/fimmu.2025.1445403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 03/31/2025] [Indexed: 06/18/2025] Open
Abstract
Introduction Repair of mitochondrial damage seems pivotal for clinical recovery and determining outcome in patients with critical COVID-19. However, reliable biomarkers for non-invasively assessing mitochondrial repair in peripheral blood of critically ill COVID-19 patients are currently lacking. Accordingly, we sought to assess different surrogates of mitochondrial repair in peripheral blood and correlate these measurements with clinical outcome in patients with critical COVID-19. Methods In this prospective multicentric cohort study, 88 critically ill COVID-19 patients were enrolled across three German intensive care units. Gene products of mitochondrial quality control (MFN2, PINK, TFAM, TFB2M) and the mtDNA copy number were measured in peripheral blood mononuclear cells. Furthermore, the protein interactions between TFAM and TFB2M were quantified. Patients were stratified regarding 30-day mortality. Results Transcript levels of the assessed mRNA markers of mitochondrial quality control were not associated with clinical outcome. In contrast, more than 10.7 protein interactions per cell were associated with a 74% 30-day survival (37 out of 50), while 10.7 or fewer protein interactions per cell were associated with a 32% 30-day survival (12 out of 38; p < 0.001). Furthermore, multivariable Cox regression analysis revealed TFAM-TFB2M protein interaction as an independent predictor for 30-day survival (HR: 3.2; 95% CI: 1.6 to 6.5; p < 0.001). Discussion Our findings indicate that TFAM-TFB2M protein interactions, identified as a novel biomarker, are strongly and independently associated with 30-day survival in critical COVID-19. Therefore, our data suggest a significant impact of mitochondrial repair and quality control on clinical outcome in critical COVID-19.
Collapse
Affiliation(s)
- Britta Westhus
- Klinik für Anästhesiologie, Intensivmedizin und Schmerztherapie, Universitätsklinikum Knappschaftskrankenhaus Bochum, Bochum, Germany
| | - Patrick Thon
- Klinik für Anästhesiologie, Intensivmedizin und Schmerztherapie, Universitätsklinikum Knappschaftskrankenhaus Bochum, Bochum, Germany
| | - Lars Palmowski
- Klinik für Anästhesiologie, Intensivmedizin und Schmerztherapie, Universitätsklinikum Knappschaftskrankenhaus Bochum, Bochum, Germany
| | - Katharina Rump
- Klinik für Anästhesiologie, Intensivmedizin und Schmerztherapie, Universitätsklinikum Knappschaftskrankenhaus Bochum, Bochum, Germany
| | - Björn Koos
- Klinik für Anästhesiologie, Intensivmedizin und Schmerztherapie, Universitätsklinikum Knappschaftskrankenhaus Bochum, Bochum, Germany
| | - Frederik Wiebel
- Klinik für Anästhesiologie, Intensivmedizin und Schmerztherapie, Universitätsklinikum Knappschaftskrankenhaus Bochum, Bochum, Germany
| | - Birte Dyck
- Klinik für Anästhesiologie, Intensivmedizin und Schmerztherapie, Universitätsklinikum Knappschaftskrankenhaus Bochum, Bochum, Germany
| | - Martin Eisenacher
- Medical Proteome Analysis, Center for Proteindiagnostics (PRODI), Ruhr-University Bochum, Bochum, Germany
- Medizinisches Proteom-Center, Ruhr-University Bochum, Bochum, Germany
| | - Barbara Sitek
- Klinik für Anästhesiologie, Intensivmedizin und Schmerztherapie, Universitätsklinikum Knappschaftskrankenhaus Bochum, Bochum, Germany
- Medizinisches Proteom-Center, Ruhr-University Bochum, Bochum, Germany
| | - Stephanie Pfaender
- Department of Molecular and Medical Virology, Ruhr-University Bochum, Bochum, Germany
- Leibniz-Institut für Virologie, Hamburg, Germany
| | - Nina Babel
- Center for Translational Medicine, Medical Clinic I, Marien Hospital Herne, University Hospital of the Ruhr-University Bochum, Herne, Germany
| | - Moritz Anft
- Center for Translational Medicine, Medical Clinic I, Marien Hospital Herne, University Hospital of the Ruhr-University Bochum, Herne, Germany
| | - Christian Putensen
- Klinik für Anästhesiologie und Operative Intensivstation, Universitätsklinikum Bonn, Bonn, Germany
| | - Stefan Felix Ehrentraut
- Klinik für Anästhesiologie und Operative Intensivstation, Universitätsklinikum Bonn, Bonn, Germany
| | - Christina Weisheit
- Klinik für Anästhesiologie und Operative Intensivstation, Universitätsklinikum Bonn, Bonn, Germany
| | - Alexander Zarbock
- Klinik für Anästhesiologie, operative Intensivmedizin und Schmerztherapie, Universitätsklinikum Münster, Münster, Germany
| | - Thilo von Groote
- Klinik für Anästhesiologie, operative Intensivmedizin und Schmerztherapie, Universitätsklinikum Münster, Münster, Germany
| | - Andrea Witowski
- Klinik für Anästhesiologie, Intensivmedizin und Schmerztherapie, Universitätsklinikum Knappschaftskrankenhaus Bochum, Bochum, Germany
| | - Matthias Unterberg
- Klinik für Anästhesiologie, Intensivmedizin und Schmerztherapie, Universitätsklinikum Knappschaftskrankenhaus Bochum, Bochum, Germany
| | - Hartmuth Nowak
- Klinik für Anästhesiologie, Intensivmedizin und Schmerztherapie, Universitätsklinikum Knappschaftskrankenhaus Bochum, Bochum, Germany
- Zentrum für Künstliche Intelligenz, Medizininformatik und Datenwissenschaften, Bochum, Germany
| | - Alexander Wolf
- Klinik für Anästhesiologie, Intensivmedizin und Schmerztherapie, Universitätsklinikum Knappschaftskrankenhaus Bochum, Bochum, Germany
| | - Lars Bergmann
- Klinik für Anästhesiologie, Intensivmedizin und Schmerztherapie, Universitätsklinikum Knappschaftskrankenhaus Bochum, Bochum, Germany
| | - Michael Adamzik
- Klinik für Anästhesiologie, Intensivmedizin und Schmerztherapie, Universitätsklinikum Knappschaftskrankenhaus Bochum, Bochum, Germany
| | - Dominik Ziehe
- Klinik für Anästhesiologie, Intensivmedizin und Schmerztherapie, Universitätsklinikum Knappschaftskrankenhaus Bochum, Bochum, Germany
| | - Tim Rahmel
- Klinik für Anästhesiologie, Intensivmedizin und Schmerztherapie, Universitätsklinikum Knappschaftskrankenhaus Bochum, Bochum, Germany
| |
Collapse
|
3
|
Giordano L, Ware SA, Lagranha CJ, Kaufman BA. Mitochondrial DNA signals driving immune responses: Why, How, Where? Cell Commun Signal 2025; 23:192. [PMID: 40264103 PMCID: PMC12012978 DOI: 10.1186/s12964-025-02042-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 01/14/2025] [Indexed: 04/24/2025] Open
Abstract
There has been a recent expansion in our understanding of DNA-sensing mechanisms. Mitochondrial dysfunction, oxidative and proteostatic stresses, instability and impaired disposal of nucleoids cause the release of mitochondrial DNA (mtDNA) from the mitochondria in several human diseases, as well as in cell culture and animal models. Mitochondrial DNA mislocalized to the cytosol and/or the extracellular compartments can trigger innate immune and inflammation responses by binding DNA-sensing receptors (DSRs). Here, we define the features that make mtDNA highly immunogenic and the mechanisms of its release from the mitochondria into the cytosol and the extracellular compartments. We describe the major DSRs that bind mtDNA such as cyclic guanosine-monophosphate-adenosine-monophosphate synthase (cGAS), Z-DNA-binding protein 1 (ZBP1), NOD-, LRR-, and PYD- domain-containing protein 3 receptor (NLRP3), absent in melanoma 2 (AIM2) and toll-like receptor 9 (TLR9), and their downstream signaling cascades. We summarize the key findings, novelties, and gaps of mislocalized mtDNA as a driving signal of immune responses in vascular, metabolic, kidney, lung, and neurodegenerative diseases, as well as viral and bacterial infections. Finally, we define common strategies to induce or inhibit mtDNA release and propose challenges to advance the field.
Collapse
Affiliation(s)
- Luca Giordano
- Center for Metabolism and Mitochondrial Medicine, Division of Cardiology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
- Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA.
- Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Cardio-Pulmonary Institute (CPI), Justus-Liebig-University, Giessen, Germany.
| | - Sarah A Ware
- Center for Metabolism and Mitochondrial Medicine, Division of Cardiology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Claudia J Lagranha
- Center for Metabolism and Mitochondrial Medicine, Division of Cardiology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Brett A Kaufman
- Center for Metabolism and Mitochondrial Medicine, Division of Cardiology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
- Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
4
|
Szögi T, Borsos BN, Masic D, Radics B, Bella Z, Bánfi A, Ördög N, Zsiros C, Kiricsi Á, Pankotai-Bodó G, Kovács Á, Paróczai D, Botkáné AL, Kajtár B, Sükösd F, Lehoczki A, Polgár T, Letoha A, Pankotai T, Tiszlavicz L. Novel biomarkers of mitochondrial dysfunction in Long COVID patients. GeroScience 2025; 47:2245-2261. [PMID: 39495479 PMCID: PMC11979091 DOI: 10.1007/s11357-024-01398-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 10/14/2024] [Indexed: 11/05/2024] Open
Abstract
Coronavirus disease 2019 (COVID-19) can lead to severe acute respiratory syndrome, and while most individuals recover within weeks, approximately 30-40% experience persistent symptoms collectively known as Long COVID, post-COVID-19 syndrome, or post-acute sequelae of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection (PASC). These enduring symptoms, including fatigue, respiratory difficulties, body pain, short-term memory loss, concentration issues, and sleep disturbances, can persist for months. According to recent studies, SARS-CoV-2 infection causes prolonged disruptions in mitochondrial function, significantly altering cellular energy metabolism. Our research employed transmission electron microscopy to reveal distinct mitochondrial structural abnormalities in Long COVID patients, notably including significant swelling, disrupted cristae, and an overall irregular morphology, which collectively indicates severe mitochondrial distress. We noted increased levels of superoxide dismutase 1 which signals oxidative stress and elevated autophagy-related 4B cysteine peptidase levels, indicating disruptions in mitophagy. Importantly, our analysis also identified reduced levels of circulating cell-free mitochondrial DNA (ccf-mtDNA) in these patients, serving as a novel biomarker for the condition. These findings underscore the crucial role of persistent mitochondrial dysfunction in the pathogenesis of Long COVID. Further exploration of the cellular and molecular mechanisms underlying post-viral mitochondrial dysfunction is critical, particularly to understand the roles of autoimmune reactions and the reactivation of latent viruses in perpetuating these conditions. This comprehensive understanding could pave the way for targeted therapeutic interventions designed to alleviate the chronic impacts of Long COVID. By utilizing circulating ccf-mtDNA and other novel mitochondrial biomarkers, we can enhance our diagnostic capabilities and improve the management of this complex syndrome.
Collapse
Affiliation(s)
- Titanilla Szögi
- Department of Pathology, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - Barbara N Borsos
- Department of Pathology, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
- Competence Centre of the Life Sciences Cluster of the Centre of Excellence for Interdisciplinary Research, Development and Innovation, University of Szeged, Szeged, Hungary
| | - Dejana Masic
- Department of Pathology, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - Bence Radics
- Department of Pathology, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - Zsolt Bella
- Department of Oto-Rhino- Laryngology and Head-Neck Surgery, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - Andrea Bánfi
- Department of Pediatrics and Pediatric Health Center, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - Nóra Ördög
- Department of Pathology, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - Csenge Zsiros
- Department of Oto-Rhino- Laryngology and Head-Neck Surgery, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - Ágnes Kiricsi
- Department of Oto-Rhino- Laryngology and Head-Neck Surgery, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - Gabriella Pankotai-Bodó
- Department of Pathology, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - Ágnes Kovács
- Pulmonology Clinic, Albert Szent-Györgyi Medical and Pharmaceutical Centre, University of Szeged, Szeged, Hungary
| | - Dóra Paróczai
- Department of Internal Medicine, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - Andrea Lugosi Botkáné
- Pulmonology Clinic, Albert Szent-Györgyi Medical and Pharmaceutical Centre, University of Szeged, Szeged, Hungary
| | - Béla Kajtár
- Department of Pathology, University of Pécs Medical School, Pécs, Hungary
| | - Farkas Sükösd
- Department of Pathology, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - Andrea Lehoczki
- Doctoral College, Health Sciences Program, Semmelweis University, Budapest, Hungary
- Institute of Preventive Medicine and Public Health, Semmelweis University, Budapest, Hungary
| | - Tamás Polgár
- Institute of Biophysics, HUN-REN Biological Research Centre, Szeged, Hungary
- Theoretical Medicine Doctoral School, University of Szeged, Szeged, Hungary
| | - Annamária Letoha
- Department of Internal Medicine, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - Tibor Pankotai
- Department of Pathology, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary.
- Competence Centre of the Life Sciences Cluster of the Centre of Excellence for Interdisciplinary Research, Development and Innovation, University of Szeged, Szeged, Hungary.
- Genome Integrity and DNA Repair Core Group, Hungarian Centre of Excellence for Molecular Medicine (HCEMM), Hungarian Centre of Excellence for Molecular Medicine, Szeged, Hungary.
| | - László Tiszlavicz
- Department of Pathology, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| |
Collapse
|
5
|
Chen Z, Behrendt R, Wild L, Schlee M, Bode C. Cytosolic nucleic acid sensing as driver of critical illness: mechanisms and advances in therapy. Signal Transduct Target Ther 2025; 10:90. [PMID: 40102400 PMCID: PMC11920230 DOI: 10.1038/s41392-025-02174-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 01/14/2025] [Accepted: 02/11/2025] [Indexed: 03/20/2025] Open
Abstract
Nucleic acids from both self- and non-self-sources act as vital danger signals that trigger immune responses. Critical illnesses such as acute respiratory distress syndrome, sepsis, trauma and ischemia lead to the aberrant cytosolic accumulation and massive release of nucleic acids that are detected by antiviral innate immune receptors in the endosome or cytosol. Activation of receptors for deoxyribonucleic acids and ribonucleic acids triggers inflammation, a major contributor to morbidity and mortality in critically ill patients. In the past decade, there has been growing recognition of the therapeutic potential of targeting nucleic acid sensing in critical care. This review summarizes current knowledge of nucleic acid sensing in acute respiratory distress syndrome, sepsis, trauma and ischemia. Given the extensive research on nucleic acid sensing in common pathological conditions like cancer, autoimmune disorders, metabolic disorders and aging, we provide a comprehensive summary of nucleic acid sensing beyond critical illness to offer insights that may inform its role in critical conditions. Additionally, we discuss potential therapeutic strategies that specifically target nucleic acid sensing. By examining nucleic acid sources, sensor activation and function, as well as the impact of regulating these pathways across various acute diseases, we highlight the driving role of nucleic acid sensing in critical illness.
Collapse
Affiliation(s)
- Zhaorong Chen
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Bonn, 53127, Bonn, Germany
| | - Rayk Behrendt
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, 53127, Bonn, Germany
| | - Lennart Wild
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Bonn, 53127, Bonn, Germany
| | - Martin Schlee
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, 53127, Bonn, Germany
| | - Christian Bode
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Bonn, 53127, Bonn, Germany.
| |
Collapse
|
6
|
Risi B, Imarisio A, Cuconato G, Padovani A, Valente EM, Filosto M. Mitochondrial DNA (mtDNA) as fluid biomarker in neurodegenerative disorders: A systematic review. Eur J Neurol 2025; 32:e70014. [PMID: 39831374 PMCID: PMC11744304 DOI: 10.1111/ene.70014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 12/09/2024] [Indexed: 01/22/2025]
Abstract
BACKGROUND Several studies evaluated peripheral and cerebrospinal fluid (CSF) mtDNA as a putative biomarker in neurodegenerative diseases, often yielding inconsistent findings. We systematically reviewed the current evidence assessing blood and CSF mtDNA levels and variant burden in Parkinson's disease (PD), Alzheimer's disease (AD) and amyotrophic lateral sclerosis (ALS). Multiple sclerosis (MS) was also included as a paradigm of chronic neuroinflammation-driven neurodegeneration. METHODS Medline, Embase, Scopus and Web of Science were searched for articles published from inception until October 2023. Studies focused on mtDNA haplogroups or hereditary pathogenic variants were excluded. Critical appraisal was performed using the Quality Assessment for Diagnostic Accuracy Studies criteria. RESULTS Fifty-nine original studies met our a priori-defined inclusion criteria. The majority of CSF-focused studies showed (i) decreased mtDNA levels in PD and AD; (ii) increased levels in MS compared to controls. No studies evaluated CSF mtDNA in ALS. Results focused on blood cell-free and intracellular mtDNA were contradictory, even within studies evaluating the same disease. This poor reproducibility is likely due to the lack of consideration of the many factors known to affect mtDNA levels. mtDNA damage and methylation levels were increased and reduced in patients compared to controls, respectively. A few studies investigated the correlation between mtDNA and disease severity, with conflicting results. CONCLUSIONS Additional well-designed studies are needed to evaluate CSF and blood mtDNA profiles as putative biomarkers in neurodegenerative diseases. The identification of "mitochondrial subtypes" of disease may enable novel precision medicine strategies to counteract neurodegeneration.
Collapse
Affiliation(s)
- Barbara Risi
- NeMO‐Brescia Clinical Center for Neuromuscular DiseasesBresciaItaly
- Department of Molecular and Translational MedicineUniversity of BresciaBresciaItaly
| | - Alberto Imarisio
- Department of Molecular MedicineUniversity of PaviaPaviaItaly
- Neurogenetics Research CentreIRCCS Mondino FoundationPaviaItaly
| | - Giada Cuconato
- Department of Molecular MedicineUniversity of PaviaPaviaItaly
- Neurogenetics Research CentreIRCCS Mondino FoundationPaviaItaly
| | - Alessandro Padovani
- Department of Clinical and Experimental SciencesUniversity of BresciaBresciaItaly
- Unit of NeurologyASST Spedali CiviliBresciaItaly
| | - Enza Maria Valente
- Department of Molecular MedicineUniversity of PaviaPaviaItaly
- Neurogenetics Research CentreIRCCS Mondino FoundationPaviaItaly
| | - Massimiliano Filosto
- NeMO‐Brescia Clinical Center for Neuromuscular DiseasesBresciaItaly
- Department of Clinical and Experimental SciencesUniversity of BresciaBresciaItaly
| |
Collapse
|
7
|
Shteinfer-Kuzmine A, Verma A, Bornshten R, Ben Chetrit E, Ben-Ya'acov A, Pahima H, Rubin E, Mograbi Y, Shteyer E, Shoshan-Barmatz V. Elevated serum mtDNA in COVID-19 patients is linked to SARS-CoV-2 envelope protein targeting mitochondrial VDAC1, inducing apoptosis and mtDNA release. Apoptosis 2024; 29:2025-2046. [PMID: 39375263 PMCID: PMC11550248 DOI: 10.1007/s10495-024-02025-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/23/2024] [Indexed: 10/09/2024]
Abstract
Mitochondria dysfunction is implicated in cell death, inflammation, and autoimmunity. During viral infections, some viruses employ different strategies to disrupt mitochondria-dependent apoptosis, while others, including SARS-CoV-2, induce host cell apoptosis to facilitate replication and immune system modulation. Given mitochondrial DNAs (mtDNA) role as a pro-inflammatory damage-associated molecular pattern in inflammatory diseases, we examined its levels in the serum of COVID-19 patients and found it to be high relative to levels in healthy donors. Furthermore, comparison of serum protein profiles between healthy individuals and SARS-CoV-2-infected patients revealed unique bands in the COVID-19 patients. Using mass spectroscopy, we identified over 15 proteins, whose levels in the serum of COVID-19 patients were 4- to 780-fold higher. As mtDNA release from the mitochondria is mediated by the oligomeric form of the mitochondrial-gatekeeper-the voltage-dependent anion-selective channel 1 (VDAC1)-we investigated whether SARS-CoV-2 protein alters VDAC1 expression. Among the three selected SARS-CoV-2 proteins, small envelope (E), nucleocapsid (N), and accessory 3b proteins, the E-protein induced VDAC1 overexpression, VDAC1 oligomerization, cell death, and mtDNA release. Additionally, this protein led to mitochondrial dysfunction, as evidenced by increased mitochondrial ROS production and cytosolic Ca2+ levels. These findings suggest that SARS-CoV-2 E-protein induces mitochondrial dysfunction, apoptosis, and mtDNA release via VDAC1 modulation. mtDNA that accumulates in the blood activates the cGAS-STING pathway, triggering inflammatory cytokine and chemokine expression that contribute to the cytokine storm and tissue damage seen in cases of severe COVID-19.
Collapse
Affiliation(s)
| | - Ankit Verma
- National Institute for Biotechnology in the Negev, Beer-Sheva, Israel
- Department of Life Sciences, Ben-Gurion University of the Negev, 84105, Beer-Sheva, Israel
| | - Rut Bornshten
- The Shraga Segal Dept. of Microbiology, Immunology and Genetics, Ben-Gurion University of the Negev, 84105, Beer-Sheva, Israel
| | - Eli Ben Chetrit
- Infectious Diseases Unit, Shaare Zedek Medical Center, Hebrew University School of Medicine, Jerusalem, Israel
| | - Ami Ben-Ya'acov
- Shaare Zedek Medical Center, The Juliet Keidan Institute of Paediatric Gastroenterology, Jerusalem, Israel
| | - Hadas Pahima
- Department of Life Sciences, Ben-Gurion University of the Negev, 84105, Beer-Sheva, Israel
| | - Ethan Rubin
- The Shraga Segal Dept. of Microbiology, Immunology and Genetics, Ben-Gurion University of the Negev, 84105, Beer-Sheva, Israel
- Shaare Zedek Medical Center, The Juliet Keidan Institute of Paediatric Gastroenterology, Jerusalem, Israel
| | | | - Eyal Shteyer
- Shaare Zedek Medical Center, The Juliet Keidan Institute of Paediatric Gastroenterology, Jerusalem, Israel
| | - Varda Shoshan-Barmatz
- National Institute for Biotechnology in the Negev, Beer-Sheva, Israel.
- Department of Life Sciences, Ben-Gurion University of the Negev, 84105, Beer-Sheva, Israel.
| |
Collapse
|
8
|
Dubey S, Yu Z, Stephens EM, Lazrak A, Ahmad I, Aggarwal S, Andrabi S, Hossain MI, Jilling T, Fernadez SR, Bartels JL, Lapi SE, Mobley J, Pastukh VM, Gillespie M, Matalon S. Oxidative Injury to Lung Mitochondrial DNA is a Key Contributor for the Development of Chemical Lung Injury. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.22.624949. [PMID: 39651262 PMCID: PMC11623505 DOI: 10.1101/2024.11.22.624949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
The mechanisms and extent to which inhalation of oxidant gases damage the mitochondrial genome contributing to the development of acute and chronic lung injury have not been investigated. C57BL/6 mice exposed to chlorine (Cl 2 ) gas and returned to room air, developed progressive loss of lung DNA glycosylase OGG1, significant oxidative injury to mtDNA, decreased intact lung mitochondrial (mt) DNA, generation of inflammatory pathway by DAMPs causing airway and alveolar injury with significant mortality. Global proteomics identified over 1400 lung proteins with alteration of key mitochondrial proteins at 24 h post Cl 2 exposure. Intranasal instillation of a recombinant protein containing mitochondrial targeted OGG1 (mitoOGG1) post exposure, decreased oxidative injury to mtDNA, lung mitochondrial proteome, severity of the acute and chronic lung injury and increased survival. These data show that injury to the mt-genome is a key contributor to the development of acute and chronic lung injury.
Collapse
|
9
|
Yang M, Li Q, Huang M, Liu X, Wang B. T Lymphocyte Mitochondrial Markers as Independent Risk Factors for Poor Prognosis of COVID-19. Infect Drug Resist 2024; 17:4887-4898. [PMID: 39524978 PMCID: PMC11550917 DOI: 10.2147/idr.s470530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024] Open
Abstract
Background Severe Acute Respiratory Syndrome Virus 2 (SARS-CoV-2) primarily targets mitochondria. However, the description of mitochondrial signaling in immune cells remains limited in COVID-19. This study aimed to elucidate the pivotal roles played by immune cells and mitochondria in the pathogenesis of COVID-19 and the resulting clinical outcomes. Methods We obtained epidemiological characteristics, laboratory parameters and T cell mitochondrial damage indicators in 296 COVID-19 patients. And we further evaluated the predictive value of novel T lymphocyte mitochondrial markers and conventional immune inflammatory markers as clinical outcomes in COVID-19 patients. Finally, Binary logistic regression analysis was conducted to identify the independent risk factors associated with the prognosis of patients with COVID-19. Results The severe group exhibited lower counts of Mito+CD3+, Mito+CD4+, and Mito+CD8+ cells compared to the non-severe group. Significantly higher positive rates of CD3+, CD3+CD4+, and CD3+CD8+T cell mitochondrial damage were observed in the severe group compared to the non-severe group. The CD3+CD8+T cells MMP-low% had the highest AUC value of 0.864 (95% CI =0.794-0.934) to evaluate COVID-19 outcome. Binary logistic regression analysis showed that CD3+T cells MMP-low%, CD3+CD4+T cells MMP-low% and CD3+CD8+T cells MMP-low% were independent risk factors for adverse outcomes in COVID-19 patients. Conclusion Our research suggests that a substantial proportion of COVID-19 patients exhibited mitochondrial impairment with T-lymphocyte. T cells mitochondrial markers can serve as predictive factors and independent risk factors for predicting adverse outcomes in COVID-19 patients.
Collapse
Affiliation(s)
- Mengying Yang
- Department of Infectious Disease, Fuyang People’s Hospital, Fuyang, Anhui, People’s Republic of China
| | - Qianqian Li
- Department of Infectious Disease, Fuyang People’s Hospital, Fuyang, Anhui, People’s Republic of China
| | - Mengxin Huang
- Department of Infectious Disease, Fuyang People’s Hospital, Fuyang, Anhui, People’s Republic of China
| | - Xiaoman Liu
- Department of Infectious Disease, Fuyang People’s Hospital, Fuyang, Anhui, People’s Republic of China
| | - Baogui Wang
- Department of Infectious Disease, Fuyang People’s Hospital, Fuyang, Anhui, People’s Republic of China
| |
Collapse
|
10
|
Matviichuk A, Yerokhovych V, Ilkiv Y, Krasnienkov D, Korcheva V, Gurbych O, Shcherbakova A, Botsun P, Falalyeyeva T, Sulaieva O, Kobyliak N. HbA1c and leukocyte mtDNA levels as major factors associated with post-COVID-19 syndrome in type 2 diabetes patients. Sci Rep 2024; 14:25533. [PMID: 39462048 PMCID: PMC11513135 DOI: 10.1038/s41598-024-77496-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 10/22/2024] [Indexed: 10/28/2024] Open
Abstract
Post-COVID-19 syndrome (PCS) is an emerging health problem in people recovering from COVID-19 infection within the past 3-6 months. The current study aimed to define the predictive factors of PCS development by assessing the mitochondrial DNA (mtDNA) levels in blood leukocytes, inflammatory markers and HbA1c in type 2 diabetes patients (T2D) with regard to clinical phenotype, gender, and biological age. In this case-control study, 65 T2D patients were selected. Patients were divided into 2 groups depending on PCS presence: the PCS group (n = 44) and patients who did not develop PCS (n = 21) for up to 6 months after COVID-19 infection. HbA1c and mtDNA levels were the primary factors linked to PCS in different models. We observed significantly lower mtDNA content in T2D patients with PCS compared to those without PCS (1.26 ± 0.25 vs. 1.44 ± 0.24; p = 0.011). In gender-specific and age-related analyses, the mt-DNA amount did not differ significantly between the subgroups. According to the stepwise multivariate logistic regression analysis, low mtDNA content and HbA1c were independent variables associated with PCS development, regardless of oxygen, glucocorticoid therapy and COVID-19 severity. The top-performing model for PCS prediction was the gradient boosting machine (GBM). HbA1c and mtDNA had a notably greater influence than the other variables, indicating their potential as prognostic biomarkers.
Collapse
Affiliation(s)
- Anton Matviichuk
- Endocrinology Department, Bogomolets National Medical University, Kyiv, Ukraine
| | | | - Yeva Ilkiv
- Endocrinology Department, Bogomolets National Medical University, Kyiv, Ukraine
| | - Dmytro Krasnienkov
- Laboratory of Epigenetics, Institute of Gerontology Academy of Medical Sciences of Ukraine, Kyiv, Ukraine
- Blackthorn AI, Ltd, London, UK
| | - Veronika Korcheva
- Laboratory of Epigenetics, Institute of Gerontology Academy of Medical Sciences of Ukraine, Kyiv, Ukraine
- Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
| | - Oleksandr Gurbych
- Blackthorn AI, Ltd, London, UK
- Lviv Polytechnic National University, Lviv, Ukraine
| | | | | | - Tetyana Falalyeyeva
- Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
- Medical Laboratory CSD, Kyiv, Ukraine
| | - Oksana Sulaieva
- Medical Laboratory CSD, Kyiv, Ukraine
- Kyiv Medical University, Kyiv, Ukraine
| | - Nazarii Kobyliak
- Endocrinology Department, Bogomolets National Medical University, Kyiv, Ukraine.
- Medical Laboratory CSD, Kyiv, Ukraine.
- Doctor of Medicine, Endocrinology Department, Bogomolets National Medical University, Ievgena Chykalenka 22a str, Kyiv, 01601, Ukraine.
| |
Collapse
|
11
|
Wang Z, Li L, Yang S, Li Z, Zhang P, Shi R, Zhou X, Tang X, Li Q. Possible mechanisms of SARS-CoV-2-associated myocardial fibrosis: reflections in the post-pandemic era. Front Microbiol 2024; 15:1470953. [PMID: 39444690 PMCID: PMC11497467 DOI: 10.3389/fmicb.2024.1470953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 09/25/2024] [Indexed: 10/25/2024] Open
Abstract
Since December 2019, coronavirus disease 2019 (COVID-19) has been spreading worldwide with devastating immediate or long-term effects on people's health. Although the lungs are the primary organ affected by COVID-19, individuals infected with SARS-CoV-2 also develop systemic lesions involving multiple organs throughout the body, such as the cardiovascular system. Emerging evidence reveals that COVID-19 could generate myocardial fibrosis, termed "COVID-19-associated myocardial fibrosis." It can result from the activation of fibroblasts via the renin-angiotensin-aldosterone system (RAAS), transforming growth factor-β1 (TGF-β1), microRNAs, and other pathways, and can also occur in other cellular interactions with SARS-CoV-2, such as immunocytes, endothelial cells. Nonetheless, to gain a more profound insight into the natural progression of COVID-19-related myocardial fibrosis, additional investigations are necessary. This review delves into the underlying mechanisms contributing to COVID-19-associated myocardial fibrosis while also examining the antifibrotic potential of current COVID-19 treatments, thereby offering guidance for future clinical trials of these medications. Ultimately, we propose future research directions for COVID-19-associated myocardial fibrosis in the post-COVID-19 era, such as artificial intelligence (AI) telemedicine. We also recommend that relevant tests be added to the follow-up of COVID-19 patients to detect myocardial fibrosis promptly.
Collapse
Affiliation(s)
- Zhan Wang
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Luwei Li
- Department of Pediatric Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- The Third Clinical Medical College of Zhengzhou University, Zhengzhou, China
| | - Shuai Yang
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhengrui Li
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Pengpeng Zhang
- Department of Lung Cancer, Tianjin Lung Cancer Center, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Run Shi
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xing Zhou
- Department of Pediatric Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiaojuan Tang
- Department of Plastic and Reconstructive Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Qi Li
- Department of Pediatric Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
12
|
Molnar T, Lehoczki A, Fekete M, Varnai R, Zavori L, Erdo-Bonyar S, Simon D, Berki T, Csecsei P, Ezer E. Mitochondrial dysfunction in long COVID: mechanisms, consequences, and potential therapeutic approaches. GeroScience 2024; 46:5267-5286. [PMID: 38668888 PMCID: PMC11336094 DOI: 10.1007/s11357-024-01165-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 04/15/2024] [Indexed: 08/22/2024] Open
Abstract
The COVID-19 pandemic, caused by the SARS-CoV-2 virus, has introduced the medical community to the phenomenon of long COVID, a condition characterized by persistent symptoms following the resolution of the acute phase of infection. Among the myriad of symptoms reported by long COVID sufferers, chronic fatigue, cognitive disturbances, and exercise intolerance are predominant, suggesting systemic alterations beyond the initial viral pathology. Emerging evidence has pointed to mitochondrial dysfunction as a potential underpinning mechanism contributing to the persistence and diversity of long COVID symptoms. This review aims to synthesize current findings related to mitochondrial dysfunction in long COVID, exploring its implications for cellular energy deficits, oxidative stress, immune dysregulation, metabolic disturbances, and endothelial dysfunction. Through a comprehensive analysis of the literature, we highlight the significance of mitochondrial health in the pathophysiology of long COVID, drawing parallels with similar clinical syndromes linked to post-infectious states in other diseases where mitochondrial impairment has been implicated. We discuss potential therapeutic strategies targeting mitochondrial function, including pharmacological interventions, lifestyle modifications, exercise, and dietary approaches, and emphasize the need for further research and collaborative efforts to advance our understanding and management of long COVID. This review underscores the critical role of mitochondrial dysfunction in long COVID and calls for a multidisciplinary approach to address the gaps in our knowledge and treatment options for those affected by this condition.
Collapse
Affiliation(s)
- Tihamer Molnar
- Department of Anaesthesiology and Intensive Care, Medical School, University of Pecs, Pecs, Hungary
| | - Andrea Lehoczki
- Doctoral College, Health Sciences Program, Semmelweis University, Budapest, Hungary
- Department of Haematology and Stem Cell Transplantation, National Institute for Haematology and Infectious Diseases, South Pest Central Hospital, 1097, Budapest, Hungary
- Department of Public Health, Semmelweis University, Budapest, Hungary
| | - Monika Fekete
- Department of Public Health, Semmelweis University, Budapest, Hungary
| | - Reka Varnai
- Department of Primary Health Care, Medical School University of Pecs, Pecs, Hungary
| | | | - Szabina Erdo-Bonyar
- Department of Immunology and Biotechnology, Medical School, University of Pecs, Pecs, Hungary
| | - Diana Simon
- Department of Immunology and Biotechnology, Medical School, University of Pecs, Pecs, Hungary
| | - Tímea Berki
- Department of Immunology and Biotechnology, Medical School, University of Pecs, Pecs, Hungary
| | - Peter Csecsei
- Department of Neurosurgery, Medical School, University of Pecs, Ret U 2, 7624, Pecs, Hungary.
| | - Erzsebet Ezer
- Department of Anaesthesiology and Intensive Care, Medical School, University of Pecs, Pecs, Hungary
| |
Collapse
|
13
|
Delpino MV, Quarleri J. Aging mitochondria in the context of SARS-CoV-2: exploring interactions and implications. FRONTIERS IN AGING 2024; 5:1442323. [PMID: 39380657 PMCID: PMC11458564 DOI: 10.3389/fragi.2024.1442323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Accepted: 09/16/2024] [Indexed: 10/10/2024]
Abstract
The coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has presented global challenges with a diverse clinical spectrum, including severe respiratory complications and systemic effects. This review explores the intricate relationship between mitochondrial dysfunction, aging, and obesity in COVID-19. Mitochondria are vital for cellular energy provision and resilience against age-related macromolecule damage accumulation. They manage energy allocation in cells, activating adaptive responses and stress signals such as redox imbalance and innate immunity activation. As organisms age, mitochondrial function diminishes. Aging and obesity, linked to mitochondrial dysfunction, compromise the antiviral response, affecting the release of interferons, and worsening COVID-19 severity. Furthermore, the development of post-acute sequelae of SARS-CoV-2 infection (PASC), also known as long COVID has been associated with altered energy metabolism, and chronic immune dysregulation derived from mitochondrial dysfunction. Understanding the interplay between mitochondria, aging, obesity, and viral infections provides insights into COVID-19 pathogenesis. Targeting mitochondrial health may offer potential therapeutic strategies to mitigate severe outcomes and address long-term consequences in infected individuals.
Collapse
|
14
|
Tanaka A, Wakayama K, Fukuda Y, Ohta S, Homma T, Ando K, Nishihara Y, Nakano R, Zhao J, Suzuki Y, Kyotani Y, Yano H, Kasahara K, Chung KP, Sagara H, Yoshizumi M, Nakahira K. Increased levels of circulating cell-free DNA in COVID-19 patients with respiratory failure. Sci Rep 2024; 14:17399. [PMID: 39075117 PMCID: PMC11286760 DOI: 10.1038/s41598-024-68433-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 07/23/2024] [Indexed: 07/31/2024] Open
Abstract
Cell-free DNA (cfDNA) is released from injured cells and aggravates inflammation. Patients with coronavirus disease (COVID-19) often develop pneumonia and respiratory failure, and require oxygen therapy (OT), including mechanical ventilation (MV). It remains unclear whether cfDNA predicts the risk of receiving OT or MV in COVID-19 patients. Therefore, we hypothesized that circulating cfDNA levels could reflect the severity of respiratory failure and determine a therapeutic approach for oxygenation in patients with COVID-19. We analyzed cfDNA levels in serum samples from 95 hospitalized patients with COVID-19 at Showa University Hospital (Tokyo, Japan). cfDNA levels were assessed by measuring the copy numbers of mitochondrial DNA (mtDNA) and nuclear DNA (nDNA) using quantitative real-time PCR (qPCR). Both cf-nDNA and cf-mtDNA levels were negatively correlated with adjusted SpO2 for FiO2 (SpO2/FiO2 ratio). Elevated cf-nDNA and cf-mtDNA levels were associated with the requirement for OT or MV during patient admission. Multivariate logistic regression analysis revealed that cf-nDNA and cf-mtDNA levels were independent risk factors for OT and MV. These results suggest that both serum cf-nDNA and cf-mtDNA could serve as useful early biomarkers to indicate the necessity of OT or MV in patients with COVID-19.
Collapse
Affiliation(s)
- Akihiko Tanaka
- Division of Respiratory Medicine and Allergology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| | - Katsuki Wakayama
- Department of Pharmacology, Nara Medical University, 840 Shijo-cho, Kashihara, Nara, 634-8521, Japan
| | - Yosuke Fukuda
- Division of Respiratory Medicine and Allergology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| | - Shin Ohta
- Division of Respiratory Medicine and Allergology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| | - Tetsuya Homma
- Division of Respiratory Medicine and Allergology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| | - Koichi Ando
- Division of Respiratory Medicine and Allergology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
- Division of Internal Medicine, Showa University Dental Hospital Medical Clinic, Tokyo, Japan
| | - Yuji Nishihara
- Department of Infectious Diseases, Nara Medical University, Kashihara, Nara, Japan
| | - Ryuichi Nakano
- Department of Microbiology and Infectious Diseases, Nara Medical University, Kashihara, Nara, Japan
| | - Jing Zhao
- Department of Pharmacology, Nara Medical University, 840 Shijo-cho, Kashihara, Nara, 634-8521, Japan
| | - Yuki Suzuki
- Department of Microbiology and Infectious Diseases, Nara Medical University, Kashihara, Nara, Japan
| | - Yoji Kyotani
- Department of Pharmacology, Nara Medical University, 840 Shijo-cho, Kashihara, Nara, 634-8521, Japan
| | - Hisakazu Yano
- Department of Microbiology and Infectious Diseases, Nara Medical University, Kashihara, Nara, Japan
| | - Kei Kasahara
- Department of Infectious Diseases, Nara Medical University, Kashihara, Nara, Japan
| | - Kuei-Pin Chung
- Department of Laboratory Medicine, College of Medicine, National Taiwan University, Taipei, 10051, Taiwan
- Department of Laboratory Medicine, National Taiwan University Hospital, Taipei, 100225, Taiwan
| | - Hironori Sagara
- Division of Respiratory Medicine and Allergology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| | - Masanori Yoshizumi
- Department of Pharmacology, Nara Medical University, 840 Shijo-cho, Kashihara, Nara, 634-8521, Japan
| | - Kiichi Nakahira
- Department of Pharmacology, Nara Medical University, 840 Shijo-cho, Kashihara, Nara, 634-8521, Japan.
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
15
|
Bezemer GFG, Diks MAP, Mortaz E, van Ark I, van Bergenhenegouwen J, Kraneveld AD, Folkerts G, Garssen J. A synbiotic mixture of Bifidobacterium breve M16-V, oligosaccharides and pectin, enhances Short Chain Fatty Acid production and improves lung health in a preclinical model for pulmonary neutrophilia. Front Nutr 2024; 11:1371064. [PMID: 39006103 PMCID: PMC11239554 DOI: 10.3389/fnut.2024.1371064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 05/15/2024] [Indexed: 07/16/2024] Open
Abstract
Introduction Pulmonary neutrophilia is a hallmark of numerous airway diseases including Chronic Obstructive Pulmonary Disease (COPD), Neutrophilic asthma, Acute Lung Injury (ALI), Acute Respiratory Distress Syndrome (ARDS) and COVID-19. The aim of the current study was to investigate the effect of dietary interventions on lung health in context of pulmonary neutrophilia. Methods Male BALB/cByJ mice received 7 intra-nasal doses of either a vehicle or lipopolysaccharides (LPS). To study the effect of nutritional interventions they received 16 intra-gastric doses of either a vehicle (PBS) or the following supplements (1) probiotic Bifidobacterium breve (B. breve) M16-V; (2) a prebiotic fiber mixture of short-chain galacto-oligosaccharides, long-chain fructo-oligosaccharides, and low-viscosity pectin in a 9:1:2 ratio (scGOS/lcFOS/lvPectin); and (3) A synbiotic combination B. breve M16-V and scGOS/lcFOS/lvPectin. Parameters for lung health included lung function, lung morphology and lung inflammation. Parameters for systemic immunomodulation included levels of fecal short chain fatty acids and regulatory T cells. Results The synbiotic supplement protected against the LPS induced decline in lung function (35% improved lung resistance at baseline p = 0.0002 and 25% at peak challenge, p = 0.0002), provided a significant relief from pulmonary neutrophilia (40.7% less neutrophils, p < 0.01) and improved the pulmonary neutrophil-to-lymphocyte ratio (NLR) by 55.3% (p = 0.0033). Supplements did not impact lung morphology in this specific experiment. LPS applied to the upper airways induced less fecal SCFAs production compared to mice that received PBS. The production of acetic acid between day -5 and day 16 was increased in all unchallenged mice (PBS-PBS p = 0.0003; PBS-Pro p < 0.0001; PBS-Pre, p = 0.0045; PBS-Syn, p = 0.0005) which upon LPS challenge was only observed in mice that received the synbiotic mixture of B. breve M16-V and GOS:FOS:lvPectin (p = 0.0003). A moderate correlation was found for butyric acid and lung function parameters and a weak correlation was found between acetic acid, butyric acid and propionic acid concentrations and NLR. Conclusion This study suggests bidirectional gut lung cross-talk in a mouse model for pulmonary neutrophilia. Neutrophilic lung inflammation coexisted with attenuated levels of fecal SCFA. The beneficial effects of the synbiotic mixture of B. breve M16-V and GOS:FOS:lvPectin on lung health associated with enhanced levels of SCFAs.
Collapse
Affiliation(s)
- Gillina F G Bezemer
- Division of Pharmacology, Department of Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, Netherlands
- Impact Station, Hilversum, Netherlands
| | - Mara A P Diks
- Division of Pharmacology, Department of Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, Netherlands
| | - Esmaeil Mortaz
- Department of Microbiology & Immunology, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Respiratory Immunology Research Center, NRITLD, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ingrid van Ark
- Division of Pharmacology, Department of Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, Netherlands
| | - Jeroen van Bergenhenegouwen
- Division of Pharmacology, Department of Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, Netherlands
- Danone, Nutricia Research BV, Immunology, Utrecht, Netherlands
| | - Aletta D Kraneveld
- Division of Pharmacology, Department of Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, Netherlands
| | - Gert Folkerts
- Division of Pharmacology, Department of Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, Netherlands
| | - Johan Garssen
- Division of Pharmacology, Department of Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, Netherlands
- Danone, Nutricia Research BV, Immunology, Utrecht, Netherlands
| |
Collapse
|
16
|
Rurek M. Mitochondria in COVID-19: from cellular and molecular perspective. Front Physiol 2024; 15:1406635. [PMID: 38974521 PMCID: PMC11224649 DOI: 10.3389/fphys.2024.1406635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 05/27/2024] [Indexed: 07/09/2024] Open
Abstract
The rapid development of the COVID-19 pandemic resulted in a closer analysis of cell functioning during β-coronavirus infection. This review will describe evidence for COVID-19 as a syndrome with a strong, albeit still underestimated, mitochondrial component. Due to the sensitivity of host mitochondria to coronavirus infection, SARS-CoV-2 affects mitochondrial signaling, modulates the immune response, modifies cellular energy metabolism, induces apoptosis and ageing, worsening COVID-19 symptoms which can sometimes be fatal. Various aberrations across human systems and tissues and their relationships with mitochondria were reported. In this review, particular attention is given to characterization of multiple alterations in gene expression pattern and mitochondrial metabolism in COVID-19; the complexity of interactions between SARS-CoV-2 and mitochondrial proteins is presented. The participation of mitogenome fragments in cell signaling and the occurrence of SARS-CoV-2 subgenomic RNA within membranous compartments, including mitochondria is widely discussed. As SARS-CoV-2 severely affects the quality system of mitochondria, the cellular background for aberrations in mitochondrial dynamics in COVID-19 is additionally characterized. Finally, perspectives on the mitigation of COVID-19 symptoms by affecting mitochondrial biogenesis by numerous compounds and therapeutic treatments are briefly outlined.
Collapse
Affiliation(s)
- Michał Rurek
- Department of Molecular and Cellular Biology, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| |
Collapse
|
17
|
Golden TN, Mani S, Linn RL, Leite R, Trigg NA, Wilson A, Anton L, Mainigi M, Conine CC, Kaufman BA, Strauss JF, Parry S, Simmons RA. Extracellular vesicles alter trophoblast function in pregnancies complicated by COVID-19. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.17.580824. [PMID: 38464046 PMCID: PMC10925147 DOI: 10.1101/2024.02.17.580824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and resulting coronavirus disease (COVID-19) causes placental dysfunction, which increases the risk of adverse pregnancy outcomes. While abnormal placental pathology resulting from COVID-19 is common, direct infection of the placenta is rare. This suggests that pathophysiology associated with maternal COVID-19, rather than direct placental infection, is responsible for placental dysfunction and alteration of the placental transcriptome. We hypothesized that maternal circulating extracellular vesicles (EVs), altered by COVID-19 during pregnancy, contribute to placental dysfunction. To examine this hypothesis, we characterized maternal circulating EVs from pregnancies complicated by COVID-19 and tested their effects on trophoblast cell physiology in vitro . We found that the gestational timing of COVID-19 is a major determinant of circulating EV function and cargo. In vitro trophoblast exposure to EVs isolated from patients with an active infection at the time of delivery, but not EVs isolated from Controls, altered key trophoblast functions including hormone production and invasion. Thus, circulating EVs from participants with an active infection, both symptomatic and asymptomatic cases, can disrupt vital trophoblast functions. EV cargo differed between participants with COVID-19 and Controls, which may contribute to the disruption of the placental transcriptome and morphology. Our findings show that COVID-19 can have effects throughout pregnancy on circulating EVs and circulating EVs are likely to participate in placental dysfunction induced by COVID-19.
Collapse
|
18
|
Avraham M, Sinkovits G, Hurler L, Prohászka Z, Fishelson Z. Circulating mortalin in blood and activation of the alternative complement pathway as risk indicators in COVID-19 infection. Front Immunol 2024; 15:1337215. [PMID: 38715618 PMCID: PMC11074377 DOI: 10.3389/fimmu.2024.1337215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 04/04/2024] [Indexed: 06/04/2024] Open
Abstract
Background Mortalin/GRP75 is a ubiquitous mitochondrial chaperone related to the cytosolic heat shock protein 70. It protects cells from various types of damages and from senescence. Our goal was to determine whether COVID-19 patients have circulating mortalin in their blood and to assess its prognostic value in anticipating disease severity. Methods Mortalin was determined by ELISA in the sera of 83 COVID-19 patients enrolled in the study. Patients were categorized into 4 groups: critical patients who died (FATAL) or required intensive care and survived (ICU), patients of mild severity (hospitalized but not critical) who required nasal oxygen support (HOSP+O2), and patients who did not need oxygen therapy (HOSP). Results The mortalin concentration in the serum of all COVID-19 patients in the cohort was 194-2324 pg/mL. A comparison of the mortalin levels by peak severity among the various patient groups showed a highly significant difference between the HOSP and FATAL groups and a significant difference between the HOSP and the ICU groups. COVID-19 patients who eventually failed to survive had at hospitalization a markedly higher level of mortalin in their sera. Cox regression analysis revealed a high mortality hazard (HR=3.96, p<0.01) in patients with high mortalin circulating levels (above the median, ≥651 pg/mL). This was confirmed in survival curve analysis (Kaplan-Meier; p=0.0032, log-rank test). Mortalin remained an independent predictor of mortality even after adjusting for age and sex or various complement activation products. Complement activation data collected in an earlier study in the same cohort was compared regarding the mortalin levels. Patients with higher circulating mortalin levels also had higher levels of complement C3a but reduced levels of properdin. Discussion This is the first report on circulating mortalin in COVID-19 patients. Higher mortalin levels were associated with more severe illnesses and a higher risk of death. We claim that quantifying the blood levels of mortalin and activated complement proteins will provide important information on the prognosis of COVID-19 patients and will serve as a useful tool for guiding their clinical management and treatment.
Collapse
Affiliation(s)
- Maya Avraham
- Department of Cell and Developmental Biology, The Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
| | - György Sinkovits
- Department of Internal Medicine and Hematology and Research Group for Immunology and Hematology, Semmelweis University - Eötvös Loránd Research Network (Office for Supported Research Groups), Budapest, Hungary
| | - Lisa Hurler
- Department of Internal Medicine and Hematology and Research Group for Immunology and Hematology, Semmelweis University - Eötvös Loránd Research Network (Office for Supported Research Groups), Budapest, Hungary
| | - Zoltán Prohászka
- Department of Internal Medicine and Hematology and Research Group for Immunology and Hematology, Semmelweis University - Eötvös Loránd Research Network (Office for Supported Research Groups), Budapest, Hungary
| | - Zvi Fishelson
- Department of Cell and Developmental Biology, The Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
19
|
Li C, Wu K, Yang R, Liao M, Li J, Zhu Q, Zhang J, Zhang X. Comprehensive analysis of immunogenic cell death-related gene and construction of prediction model based on WGCNA and multiple machine learning in severe COVID-19. Sci Rep 2024; 14:8450. [PMID: 38600309 PMCID: PMC11006847 DOI: 10.1038/s41598-024-59117-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 04/08/2024] [Indexed: 04/12/2024] Open
Abstract
The death of coronavirus disease 2019 (COVID-19) is primarily due to from critically ill patients, especially from ARDS complications caused by SARS-CoV-2. Therefore, it is essential to contribute an in-depth understanding of the pathogenesis of the disease and to identify biomarkers for predicting critically ill patients at the molecular level. Immunogenic cell death (ICD), as a specific variant of regulatory cell death driven by stress, can induce adaptive immune responses against cell death antigens in the host. Studies have confirmed that both innate and adaptive immune pathways are involved in the pathogenesis of SARS-CoV-2 infection. However, the role of ICD in the pathogenesis of severe COVID-19 has rarely been explored. In this study, we systematically evaluated the role of ICD-related genes in COVID-19. We conducted consensus clustering, immune infiltration analysis, and functional enrichment analysis based on ICD differentially expressed genes. The results showed that immune infiltration characteristics were altered in severe and non-severe COVID-19. In addition, we used multiple machine learning methods to screen for five risk genes (KLF5, NSUN7, APH1B, GRB10 and CD4), which are used to predict COVID-19 severity. Finally, we constructed a nomogram to predict the risk of severe COVID-19 based on the classification and recognition model, and validated the model with external data sets. This study provides a valuable direction for the exploration of the pathogenesis and progress of COVID-19, and helps in the early identification of severe cases of COVID-19 to reduce mortality.
Collapse
Affiliation(s)
- Chunyu Li
- Department of Respiratory and Critical Medicine, the Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, Guizhou, China
- School of Clinical Medicine, Guizhou Medical University, Guiyang, 550004, Guizhou, China
| | - Ke Wu
- Department of Respiratory and Critical Medicine, the Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, Guizhou, China
- School of Clinical Medicine, Guizhou Medical University, Guiyang, 550004, Guizhou, China
| | - Rui Yang
- Department of Internal Medicine, Guiyang First People's Hospital, Guiyang, 550004, Guizhou, China
| | - Minghua Liao
- Department of Respiratory and Critical Medicine, the Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, Guizhou, China
- School of Clinical Medicine, Guizhou Medical University, Guiyang, 550004, Guizhou, China
| | - Jun Li
- Department of Respiratory and Critical Medicine, the Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, Guizhou, China
| | - Qian Zhu
- Department of Respiratory and Critical Medicine, the Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, Guizhou, China
- School of Clinical Medicine, Guizhou Medical University, Guiyang, 550004, Guizhou, China
| | - Jiayi Zhang
- Department of Respiratory and Critical Medicine, the Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, Guizhou, China
- School of Clinical Medicine, Guizhou Medical University, Guiyang, 550004, Guizhou, China
| | - Xianming Zhang
- Department of Respiratory and Critical Medicine, the Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, Guizhou, China.
| |
Collapse
|
20
|
Jalili S, Hashemi SMA, Sarvari J. SARS-COV-2 ORF9b Dysregulate Fibrinogen and Albumin Genes in a Liver Cell Line. Rep Biochem Mol Biol 2024; 13:51-58. [PMID: 39582820 PMCID: PMC11580134 DOI: 10.61186/rbmb.13.1.51] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 06/02/2024] [Indexed: 11/26/2024]
Abstract
Background Individuals experiencing severe cases of Coronavirus Disease 2019 (COVID-19) exhibited elevated fibrinogen levels and decreased albumin levels, potentially linked to the presence of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) proteins. Consequently, our study endeavors to examine the impact of SARS-CoV-2 ORF9b on the expression of fibrinogen and albumin genes within the Hep-G2 cell line. Methods In this study, the Hep-G2 liver cell line was utilized alongside the plasmid pcDNA3.1 hyg+ containing ORF9b from the SARS-CoV-2 strain originating in Wuhan. Transfection procedures were executed, and the transfected cells were selected utilizing hygromycin B. Validation of ORF9b expression was conducted through SYBR green-based real-time PCR, and the expression of the Fibrinogen α (FGA), Fibrinogen β (FGB), Fibrinogen γ (FGG), and Albumin (ALB) genes was quantified using the same method. Results The real-time PCR analysis revealed a significant upregulation of fibrinogen genes-α (P=0.03), β (P=0.02), and γ (P=0.029) in Hep-G2 cells containing ORF9b compared to control cells. Furthermore, the findings indicated a markedly lower expression level of albumin in Hep-G2 cells harboring ORF9b compared to the control cells (P=0.028). Conclusions The findings suggest that SARS-CoV-2 ORF9b could potentially influence the course of SARS-CoV-2 infection by triggering the expression of α, β, and γ fibrinogen gene chains while suppressing the albumin gene. Further investigations are warranted to validate these observations across various SARS-CoV-2 strains exhibiting differing levels of pathogenicity.
Collapse
Affiliation(s)
- Shirin Jalili
- Institute of police equipment and technologies, policing sciences and social studies research institute, Tehran, Iran.
| | - Seyed Mohammad Ali Hashemi
- Department of Bacteriology and Virology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Jamal Sarvari
- Department of Bacteriology and Virology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
- Gastroenterohepatology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
21
|
Lu RXZ, Rafatian N, Zhao Y, Wagner KT, Beroncal EL, Li B, Lee C, Chen J, Churcher E, Vosoughi D, Liu C, Wang Y, Baker A, Trahtemberg U, Li B, Pierro A, Andreazza AC, dos Santos CC, Radisic M. Cardiac tissue model of immune-induced dysfunction reveals the role of free mitochondrial DNA and the therapeutic effects of exosomes. SCIENCE ADVANCES 2024; 10:eadk0164. [PMID: 38536913 PMCID: PMC10971762 DOI: 10.1126/sciadv.adk0164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 02/22/2024] [Indexed: 04/04/2024]
Abstract
Despite tremendous progress in the development of mature heart-on-a-chip models, human cell-based models of myocardial inflammation are lacking. Here, we bioengineered a vascularized heart-on-a-chip with circulating immune cells to model severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-induced acute myocarditis. We observed hallmarks of coronavirus disease (COVID-19)-induced myocardial inflammation, as the presence of immune cells augmented the secretion of proinflammatory cytokines, triggered progressive impairment of contractile function, and altered intracellular calcium transients. An elevation of circulating cell-free mitochondrial DNA (ccf-mtDNA) was measured first in the heart-on-a-chip and then validated in COVID-19 patients with low left ventricular ejection fraction, demonstrating that mitochondrial damage is an important pathophysiological hallmark of inflammation-induced cardiac dysfunction. Leveraging this platform in the context of SARS-CoV-2-induced myocardial inflammation, we established that administration of endothelial cell-derived exosomes effectively rescued the contractile deficit, normalized calcium handling, elevated the contraction force, and reduced the ccf-mtDNA and cytokine release via Toll-like receptor-nuclear factor κB signaling axis.
Collapse
Affiliation(s)
- Rick Xing Ze Lu
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada
- Mitochondrial Innovation Initiative, MITO2i, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Naimeh Rafatian
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada
| | - Yimu Zhao
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON M5G 2C4, Canada
| | - Karl T. Wagner
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada
| | - Erika L. Beroncal
- Mitochondrial Innovation Initiative, MITO2i, University of Toronto, Toronto, ON M5S 1A8, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Bo Li
- Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
| | - Carol Lee
- Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
| | - Jingan Chen
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada
| | - Eryn Churcher
- Interdepartmental Division of Critical Care, Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Unity Health Toronto, Toronto, ON M5B 1W8, Canada
| | - Daniel Vosoughi
- Latner Thoracic Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, ON M5G 2C4, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Chuan Liu
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada
| | - Ying Wang
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON M5G 2C4, Canada
| | - Andrew Baker
- Interdepartmental Division of Critical Care, Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Unity Health Toronto, Toronto, ON M5B 1W8, Canada
| | - Uriel Trahtemberg
- Interdepartmental Division of Critical Care, Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Unity Health Toronto, Toronto, ON M5B 1W8, Canada
- Galilee Medical Center, Nahariya, Israel
| | - Bowen Li
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON M5S 3M2, Canada
| | - Agostino Pierro
- Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
- Department of Surgery, University of Toronto, Toronto, ON M5T 1P5, Canada
| | - Ana C. Andreazza
- Mitochondrial Innovation Initiative, MITO2i, University of Toronto, Toronto, ON M5S 1A8, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON M5S 1A8, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Claudia C. dos Santos
- Interdepartmental Division of Critical Care, Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Unity Health Toronto, Toronto, ON M5B 1W8, Canada
| | - Milica Radisic
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada
- Mitochondrial Innovation Initiative, MITO2i, University of Toronto, Toronto, ON M5S 1A8, Canada
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON M5G 2C4, Canada
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON M5S 3D5, Canada
- Terrence Donnelly Centre for Cellular & Biomolecular Research, University of Toronto, Toronto, ON, M5S 3E1
| |
Collapse
|
22
|
Heil M. Self-DNA driven inflammation in COVID-19 and after mRNA-based vaccination: lessons for non-COVID-19 pathologies. Front Immunol 2024; 14:1259879. [PMID: 38439942 PMCID: PMC10910434 DOI: 10.3389/fimmu.2023.1259879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 12/26/2023] [Indexed: 03/06/2024] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic triggered an unprecedented concentration of economic and research efforts to generate knowledge at unequalled speed on deregulated interferon type I signalling and nuclear factor kappa light chain enhancer in B-cells (NF-κB)-driven interleukin (IL)-1β, IL-6, IL-18 secretion causing cytokine storms. The translation of the knowledge on how the resulting systemic inflammation can lead to life-threatening complications into novel treatments and vaccine technologies is underway. Nevertheless, previously existing knowledge on the role of cytoplasmatic or circulating self-DNA as a pro-inflammatory damage-associated molecular pattern (DAMP) was largely ignored. Pathologies reported 'de novo' for patients infected with Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV)-2 to be outcomes of self-DNA-driven inflammation in fact had been linked earlier to self-DNA in different contexts, e.g., the infection with Human Immunodeficiency Virus (HIV)-1, sterile inflammation, and autoimmune diseases. I highlight particularly how synergies with other DAMPs can render immunogenic properties to normally non-immunogenic extracellular self-DNA, and I discuss the shared features of the gp41 unit of the HIV-1 envelope protein and the SARS-CoV 2 Spike protein that enable HIV-1 and SARS-CoV-2 to interact with cell or nuclear membranes, trigger syncytia formation, inflict damage to their host's DNA, and trigger inflammation - likely for their own benefit. These similarities motivate speculations that similar mechanisms to those driven by gp41 can explain how inflammatory self-DNA contributes to some of most frequent adverse events after vaccination with the BNT162b2 mRNA (Pfizer/BioNTech) or the mRNA-1273 (Moderna) vaccine, i.e., myocarditis, herpes zoster, rheumatoid arthritis, autoimmune nephritis or hepatitis, new-onset systemic lupus erythematosus, and flare-ups of psoriasis or lupus. The hope is to motivate a wider application of the lessons learned from the experiences with COVID-19 and the new mRNA vaccines to combat future non-COVID-19 diseases.
Collapse
Affiliation(s)
- Martin Heil
- Departamento de Ingeniería Genética, Laboratorio de Ecología de Plantas, Centro de Investigación y de Estudios Avanzados (CINVESTAV)-Unidad Irapuato, Irapuato, Mexico
| |
Collapse
|
23
|
Ma L, Han T, Zhan YA. Mechanism and role of mitophagy in the development of severe infection. Cell Death Discov 2024; 10:88. [PMID: 38374038 PMCID: PMC10876966 DOI: 10.1038/s41420-024-01844-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 01/31/2024] [Accepted: 02/01/2024] [Indexed: 02/21/2024] Open
Abstract
Mitochondria produce adenosine triphosphate and potentially contribute to proinflammatory responses and cell death. Mitophagy, as a conservative phenomenon, scavenges waste mitochondria and their components in the cell. Recent studies suggest that severe infections develop alongside mitochondrial dysfunction and mitophagy abnormalities. Restoring mitophagy protects against excessive inflammation and multiple organ failure in sepsis. Here, we review the normal mitophagy process, its interaction with invading microorganisms and the immune system, and summarize the mechanism of mitophagy dysfunction during severe infection. We highlight critical role of normal mitophagy in preventing severe infection.
Collapse
Affiliation(s)
- Lixiu Ma
- Department of Respiratory and Critical Care Medicine, the 1st Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Tianyu Han
- Jiangxi Institute of Respiratory Disease, the 1st Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Yi-An Zhan
- Department of Respiratory and Critical Care Medicine, the 1st Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi, China.
| |
Collapse
|
24
|
Ashok D, Liu T, Criscione J, Prakash M, Kim B, Chow J, Craney M, Papanicolaou KN, Sidor A, Brian Foster D, Pekosz A, Villano J, Kim DH, O'Rourke B. Innate Immune Activation and Mitochondrial ROS Invoke Persistent Cardiac Conduction System Dysfunction after COVID-19. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.05.574280. [PMID: 38260287 PMCID: PMC10802485 DOI: 10.1101/2024.01.05.574280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Background Cardiac risk rises during acute SARS-CoV-2 infection and in long COVID syndrome in humans, but the mechanisms behind COVID-19-linked arrhythmias are unknown. This study explores the acute and long term effects of SARS-CoV-2 on the cardiac conduction system (CCS) in a hamster model of COVID-19. Methods Radiotelemetry in conscious animals was used to non-invasively record electrocardiograms and subpleural pressures after intranasal SARS-CoV-2 infection. Cardiac cytokines, interferon-stimulated gene expression, and macrophage infiltration of the CCS, were assessed at 4 days and 4 weeks post-infection. A double-stranded RNA mimetic, polyinosinic:polycytidylic acid (PIC), was used in vivo and in vitro to activate viral pattern recognition receptors in the absence of SARS-CoV-2 infection. Results COVID-19 induced pronounced tachypnea and severe cardiac conduction system (CCS) dysfunction, spanning from bradycardia to persistent atrioventricular block, although no viral protein expression was detected in the heart. Arrhythmias developed rapidly, partially reversed, and then redeveloped after the pulmonary infection was resolved, indicating persistent CCS injury. Increased cardiac cytokines, interferon-stimulated gene expression, and macrophage remodeling in the CCS accompanied the electrophysiological abnormalities. Interestingly, the arrhythmia phenotype was reproduced by cardiac injection of PIC in the absence of virus, indicating that innate immune activation was sufficient to drive the response. PIC also strongly induced cytokine secretion and robust interferon signaling in hearts, human iPSC-derived cardiomyocytes (hiPSC-CMs), and engineered heart tissues, accompanied by alterations in electrical and Ca 2+ handling properties. Importantly, the pulmonary and cardiac effects of COVID-19 were blunted by in vivo inhibition of JAK/STAT signaling or by a mitochondrially-targeted antioxidant. Conclusions The findings indicate that long term dysfunction and immune cell remodeling of the CCS is induced by COVID-19, arising indirectly from oxidative stress and excessive activation of cardiac innate immune responses during infection, with implications for long COVID Syndrome.
Collapse
|
25
|
Mahmoodpoor A, Mohammadzadeh M, Asghari R, Tagizadeh M, Iranpour A, Rezayi M, Pahnvar AJ, Emamalizadeh B, Sohrabifar N, Kazeminasab S. Prognostic potential of circulating cell free mitochondrial DNA levels in COVID-19 patients. Mol Biol Rep 2023; 50:10249-10255. [PMID: 37934373 DOI: 10.1007/s11033-023-08841-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 09/25/2023] [Indexed: 11/08/2023]
Abstract
BACKGROUND In viral infections, mitochondria act as one of the main hubs of the pathogenesis. Recent findings present new insights into the potential role of circulating cell-free mitochondrial DNA (ccf-mtDNA) in COVID-19 pathogenesis by the induction of immune response and aggressive cytokine storm in SARS-CoV-2 infection. METHODS AND RESULTS The levels of ccf-mtDNA were investigated in 102 hospitalized patients with COVID-19 using the quantitative PCR (q-PCR) method. Statistical analysis confirmed a strong association between the levels of ccf-mtDNA and and mortality, ICU admission, and intubation. Also, our findings highlighted the pivotal role of comorbidities as a risk factor for COVID-19 mortality and severity. CONCLUSION Higher levels of ccf-mtDNA can serve as a potential early indicator for progress and poor prognosis of COVID-19.
Collapse
Affiliation(s)
- Ata Mahmoodpoor
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mojtaba Mohammadzadeh
- Department of Anesthesiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Rogayyeh Asghari
- Department of Anesthesiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Majid Tagizadeh
- Department of Anesthesiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Mansour Rezayi
- Department of Anesthesiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Aynour Jalali Pahnvar
- Department of Biological Sciences, Faculty of Basic Sciences, Higher Education Institute of Rab-Rashid, Tabriz, Iran
| | - Babak Emamalizadeh
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nasim Sohrabifar
- Cardiovascular Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Somayeh Kazeminasab
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
- Sadr Laboratories Group, Medical Genetics Laboratory, Tabriz, Iran.
| |
Collapse
|
26
|
Ruggeri T, De Wit Y, Schärz N, van Mierlo G, Angelillo-Scherrer A, Brodard J, Schefold JC, Hirzel C, Jongerius I, Zeerleder S. Immunothrombosis and Complement Activation Contribute to Disease Severity and Adverse Outcome in COVID-19. J Innate Immun 2023; 15:850-864. [PMID: 37939687 PMCID: PMC10699833 DOI: 10.1159/000533339] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 07/24/2023] [Indexed: 11/10/2023] Open
Abstract
Severe COVID-19 is characterized by systemic inflammation and multiple organ dysfunction syndrome (MODS). Arterial and venous thrombosis are involved in the pathogenesis of MODS and fatality in COVID-19. There is evidence that complement and neutrophil activation in the form of neutrophil extracellular traps are main drivers for development of microvascular complications in COVID-19. Plasma and serum samples were collected from 83 patients infected by SARS-CoV-2 during the two first waves of COVID-19, before the availability of SARS-CoV-2 vaccination. Samples were collected at enrollment, day 11, and day 28; and patients had differing severity of disease. In this comprehensive study, we measured cell-free DNA, neutrophil activation, deoxyribonuclease I activity, complement activation, and D-dimers in longitudinal samples of COVID-19 patients. We show that all the above markers, except deoxyribonuclease I activity, increased with disease severity. Moreover, we provide evidence that in severe disease there is continued neutrophil and complement activation, as well as D-dimer formation and nucleosome release, whereas in mild and moderate disease all these markers decrease over time. These findings suggest that neutrophil and complement activation are important drivers of microvascular complications and that they reflect immunothrombosis in these patients. Neutrophil activation, complement activation, cell-free DNA, and D-dimer levels have the potential to serve as reliable biomarkers for disease severity and fatality in COVID-19. They might also serve as suitable markers with which to monitor the efficacy of therapeutic interventions in COVID-19.
Collapse
Affiliation(s)
- Tiphaine Ruggeri
- Department of Hematology and Central Hematology Laboratory, Inselspital, Bern University Hospital, Bern, Switzerland
- Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - Yasmin De Wit
- Department of Immunopathology, Sanquin Research, Amsterdam, The Netherlands
| | - Noëlia Schärz
- Department of Hematology and Central Hematology Laboratory, Inselspital, Bern University Hospital, Bern, Switzerland
- Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - Gerard van Mierlo
- Department of Immunopathology, Sanquin Research, Amsterdam, The Netherlands
| | - Anne Angelillo-Scherrer
- Department of Hematology and Central Hematology Laboratory, Inselspital, Bern University Hospital, Bern, Switzerland
- Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - Justine Brodard
- Department of Hematology and Central Hematology Laboratory, Inselspital, Bern University Hospital, Bern, Switzerland
| | - Joerg C Schefold
- Department of Intensive Care Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Cédric Hirzel
- Department of Infectious Diseases, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland,
| | - Ilse Jongerius
- Department of Immunopathology, Sanquin Research, Amsterdam, The Netherlands
| | - Sacha Zeerleder
- Department of Hematology, Kantonsspital Luzern, Lucerne and University of Bern, Bern, Switzerland
| |
Collapse
|
27
|
Ezzat GM, Nageb SM, Haredi MAA, El-Masry MA. Mitochondrial DNA Copy Number, a Damage-Associated Molecular Pattern Molecule, Can Predict Pancreatic Necrosis and Is Correlated with the Severity of Acute Pancreatitis. Dig Dis Sci 2023; 68:4175-4185. [PMID: 37676630 PMCID: PMC10570179 DOI: 10.1007/s10620-023-08049-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 07/18/2023] [Indexed: 09/08/2023]
Abstract
BACKGROUND Mitochondrial DNA (mtDNA) is a damage-associated molecular pattern molecule that can trigger an immune-inflammatory response during pancreatic necrosis (PN). AIM To evaluate the role of mtDNA in the detection of PN and severe acute pancreatitis (SAP). METHODS The present study included 40 AP patients and 30 controls. AP patients were grouped into mild AP (MAP, n = 15), moderately severe AP (MSAP, n = 17), and SAP (n = 8). Also, the SAP + MSAP group, n = 25, was compared to MAP. AP patients were divided into NAP (n = 7) and non-necrotizing AP (n = 33). The mtDNA copy number, IL-6, and STAT3 expression levels were measured using quantitative real-time PCR. RESULTS The mtDNA, IL-6, and STAT3 levels were significantly higher in AP patients than in controls and in the SAP + MSAP than in the MAP. However, the SAP had non-significantly higher levels of mtDNA, STAT3, and IL-6 levels than the MSAP and statistically significant mtDNA, STAT3, and IL-6 when compared to the MAP. mtDNA, IL-6, and STAT3 showed significantly higher levels in NAP compared with non-necrotizing AP. mtDNA was positively correlated with STAT3, IL-6, CRP, APACHE, and CT severity index (CTSI) and negatively correlated with albumin. In the receiver operating curve (ROC), mtDNA was the most significant independent predictor of PN and MAP vs. SAP + MSAP. IL-6 and mtDNA + CRP had higher diagnostic abilities for SIRS and high CTSI. CONCLUSIONS mtDNA could enhance the prediction of NAP; however, its diagnostic ability of SAP needs further study.
Collapse
Affiliation(s)
- Ghada M. Ezzat
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Assiut University, Assiut, 71515 Egypt
| | - Soha M. Nageb
- Department of Internal Medicine, Faculty of Medicine, Assiut University, Assiut, Egypt
| | | | | |
Collapse
|
28
|
Andargie TE, Roznik K, Redekar N, Hill T, Zhou W, Apalara Z, Kong H, Gordon O, Meda R, Park W, Johnston TS, Wang Y, Brady S, Ji H, Yanovski JA, Jang MK, Lee CM, Karaba AH, Cox AL, Agbor-Enoh S. Cell-free DNA reveals distinct pathology of multisystem inflammatory syndrome in children. J Clin Invest 2023; 133:e171729. [PMID: 37651206 PMCID: PMC10617770 DOI: 10.1172/jci171729] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 08/29/2023] [Indexed: 09/02/2023] Open
Abstract
Multisystem inflammatory syndrome in children (MIS-C) is a rare but life-threatening hyperinflammatory condition induced by infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that causes pediatric COVID-19 (pCOVID-19). The relationship of the systemic tissue injury to the pathophysiology of MIS-C is poorly defined. We leveraged the high sensitivity of epigenomics analyses of plasma cell-free DNA (cfDNA) and plasma cytokine measurements to identify the spectrum of tissue injury and glean mechanistic insights. Compared with pediatric healthy controls (pHCs) and patients with pCOVID-19, patients with MIS-C had higher levels of cfDNA primarily derived from innate immune cells, megakaryocyte-erythroid precursor cells, and nonhematopoietic tissues such as hepatocytes, cardiac myocytes, and kidney cells. Nonhematopoietic tissue cfDNA levels demonstrated significant interindividual variability, consistent with the heterogenous clinical presentation of MIS-C. In contrast, adaptive immune cell-derived cfDNA levels were comparable in MIS-C and pCOVID-19 patients. Indeed, the cfDNA of innate immune cells in patients with MIS-C correlated with the levels of innate immune inflammatory cytokines and nonhematopoietic tissue-derived cfDNA, suggesting a primarily innate immunity-mediated response to account for the multisystem pathology. These data provide insight into the pathogenesis of MIS-C and support the value of cfDNA as a sensitive biomarker to map tissue injury in MIS-C and likely other multiorgan inflammatory conditions.
Collapse
Affiliation(s)
- Temesgen E. Andargie
- Genomic Research Alliance for Transplantation (GRAfT) and Laboratory of Applied Precision Omics, National Heart, Lung, and Blood Institute (NHLBI), NIH, Bethesda, Maryland, USA. GFAfT is detailed in Supplemental Acknowledgments
- Department of Biology, Howard University, Washington DC, USA
| | - Katerina Roznik
- Department of Medicine, Johns Hopkins University, School of Medicine, Baltimore, Maryland, USA
| | - Neelam Redekar
- Integrated Data Sciences Section, Research Technologies Branch, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, Maryland, USA
| | - Tom Hill
- Integrated Data Sciences Section, Research Technologies Branch, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, Maryland, USA
| | - Weiqiang Zhou
- Department of Biostatistics, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
| | - Zainab Apalara
- Genomic Research Alliance for Transplantation (GRAfT) and Laboratory of Applied Precision Omics, National Heart, Lung, and Blood Institute (NHLBI), NIH, Bethesda, Maryland, USA. GFAfT is detailed in Supplemental Acknowledgments
| | - Hyesik Kong
- Genomic Research Alliance for Transplantation (GRAfT) and Laboratory of Applied Precision Omics, National Heart, Lung, and Blood Institute (NHLBI), NIH, Bethesda, Maryland, USA. GFAfT is detailed in Supplemental Acknowledgments
| | - Oren Gordon
- Infectious Diseases Unit, Department of Pediatrics, Hadassah Medical Center, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Rohan Meda
- Genomic Research Alliance for Transplantation (GRAfT) and Laboratory of Applied Precision Omics, National Heart, Lung, and Blood Institute (NHLBI), NIH, Bethesda, Maryland, USA. GFAfT is detailed in Supplemental Acknowledgments
| | - Woojin Park
- Genomic Research Alliance for Transplantation (GRAfT) and Laboratory of Applied Precision Omics, National Heart, Lung, and Blood Institute (NHLBI), NIH, Bethesda, Maryland, USA. GFAfT is detailed in Supplemental Acknowledgments
| | - Trevor S. Johnston
- Department of Medicine, Johns Hopkins University, School of Medicine, Baltimore, Maryland, USA
| | - Yi Wang
- Department of Biostatistics, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
| | - Sheila Brady
- Section on Growth and Obesity, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), NIH, Bethesda, Maryland, USA
| | - Hongkai Ji
- Department of Biostatistics, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
| | - Jack A. Yanovski
- Section on Growth and Obesity, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), NIH, Bethesda, Maryland, USA
| | - Moon K. Jang
- Genomic Research Alliance for Transplantation (GRAfT) and Laboratory of Applied Precision Omics, National Heart, Lung, and Blood Institute (NHLBI), NIH, Bethesda, Maryland, USA. GFAfT is detailed in Supplemental Acknowledgments
| | - Clarence M. Lee
- Department of Biology, Howard University, Washington DC, USA
| | - Andrew H. Karaba
- Department of Medicine, Johns Hopkins University, School of Medicine, Baltimore, Maryland, USA
| | - Andrea L. Cox
- Department of Medicine, Johns Hopkins University, School of Medicine, Baltimore, Maryland, USA
| | - Sean Agbor-Enoh
- Genomic Research Alliance for Transplantation (GRAfT) and Laboratory of Applied Precision Omics, National Heart, Lung, and Blood Institute (NHLBI), NIH, Bethesda, Maryland, USA. GFAfT is detailed in Supplemental Acknowledgments
- Department of Medicine, Johns Hopkins University, School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
29
|
Shoraka S, Mohebbi SR, Hosseini SM, Zali MR. Comparison of plasma mitochondrial DNA copy number in asymptomatic and symptomatic COVID-19 patients. Front Microbiol 2023; 14:1256042. [PMID: 37869674 PMCID: PMC10587688 DOI: 10.3389/fmicb.2023.1256042] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 09/11/2023] [Indexed: 10/24/2023] Open
Abstract
Introduction Since the beginning of the COVID-19 pandemic, a wide clinical spectrum, from asymptomatic infection to mild or severe disease and death, have been reported in COVID-19 patients. Studies have suggested several possible factors, which may affect the clinical outcome of COVID-19. A pro-inflammatory state and impaired antiviral response have been suggested as major contributing factors in severe COVID-19. Considering that mitochondria have an important role in regulating the immune responses to pathogens, pro-inflammatory signaling, and cell death, it has received much attention in SARS-CoV-2 infection. Recent studies have demonstrated that high levels of cell-free mitochondrial DNA (cf-mtDNA) are associated with an increased risk of COVID-19 intensive care unit (ICU) admission and mortality. However, there have been few studies on cf-mtDNA in SARS-CoV-2 infection, mainly focusing on critically ill COVID-19 cases. In the present study, we investigated cf-mtDNA copy number in COVID-19 patients and compared between asymptomatic and symptomatic cases, and assessed the clinical values. We also determined the cf-nuclear DNA (cf-nDNA) copy number and mitochondrial transcription factor A (TFAM) mRNA level in the studied groups. Materials and methods Plasma and buffy coat samples were collected from 37 COVID-19 patients and 33 controls. Briefly, after total DNA extraction, plasma cf-mtDNA, and cf-nDNA copy numbers were measured by absolute qPCR using a standard curve method. Furthermore, after total RNA extraction from buffy coat and cDNA synthesis, TFAM mRNA levels were evaluated by qPCR. Results The results showed that cf-mtDNA levels in asymptomatic COVID-19 patients were statistically significantly higher than in symptomatic cases (p value = 0.01). However, cf-nDNA levels were higher in symptomatic patients than in asymptomatic cases (p value = 0.00). There was no significant difference between TFAM levels in the buffy coat of these two groups (p value > 0.05). Also, cf-mtDNA levels showed good diagnostic potential in COVID-19 subgroups. Conclusion cf-mtDNA is probably important in the outcome of SARS-CoV-2 infection due to its role in inflammation and immune response. It can also be a promising candidate biomarker for the diagnosis of COVID-19 subgroups. Further investigation will help understanding the COVID-19 pathophysiology and effective diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Shahrzad Shoraka
- Department of Microbiology and Microbial Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Seyed Reza Mohebbi
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed Masoud Hosseini
- Department of Microbiology and Microbial Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Mohammad Reza Zali
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
30
|
Hoeter K, Neuberger E, Fischer S, Herbst M, Juškevičiūtė E, Enders K, Rossmann H, Sprinzl MF, Simon P, Bodenstein M, Schaefer M. Evidence for the utility of cfDNA plasma concentrations to predict disease severity in COVID-19: a retrospective pilot study. PeerJ 2023; 11:e16072. [PMID: 37744227 PMCID: PMC10512938 DOI: 10.7717/peerj.16072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 08/20/2023] [Indexed: 09/26/2023] Open
Abstract
Background COVID-19 is a worldwide pandemic caused by the highly infective SARS-CoV-2. There is a need for biomarkers not only for overall prognosis but also for predicting the response to treatments and thus for improvements in the clinical management of patients with COVID-19. Circulating cell-free DNA (cfDNA) has emerged as a promising biomarker in the assessment of various pathological conditions. The aim of this retrospective and observational pilot study was to investigate the range of cfDNA plasma concentrations in hospitalized COVID-19 patients during the first wave of SARS-CoV-2 infection, to relate them to established inflammatory parameters as a correlative biomarker for disease severity, and to compare them with plasma levels in a healthy control group. Methods Lithium-Heparin plasma samples were obtained from COVID-19 patients (n = 21) during hospitalization in the University Medical Centre of Mainz, Germany between March and June 2020, and the cfDNA concentrations were determined by quantitative PCR yielding amplicons of long interspersed nuclear elements (LINE-1). The cfDNA levels were compared with those of an uninfected control group (n = 19). Results Plasma cfDNA levels in COVID-19 patients ranged from 247.5 to 6,346.25 ng/ml and the mean concentration was 1,831 ± 1,388 ng/ml (± standard deviation), which was significantly different from the levels of the uninfected control group (p < 0.001). Regarding clinical complications, the highest correlation was found between cfDNA levels and the myositis (p = 0.049). In addition, cfDNA levels correlated with the "WHO clinical progression scale". D-Dimer and C-reactive protein (CRP) were the clinical laboratory parameters with the highest correlations with cfDNA levels. Conclusion The results of this observational pilot study show a wide range in cfDNA plasma concentrations in patients with COVID-19 during the first wave of infection and confirm that cfDNA plasma concentrations serve as a predictive biomarker of disease severity in COVID-19.
Collapse
Affiliation(s)
- Katharina Hoeter
- Department of Anaesthesiology, University Medical Centre of the Johannes Gutenberg-University, Mainz, Germany
| | - Elmo Neuberger
- Department of Sports Medicine, Disease Prevention and Rehabilitation, Johannes-Gutenberg Universität Mainz, Mainz, Germany
| | - Susanne Fischer
- Department of Anaesthesiology, University Medical Centre of the Johannes Gutenberg-University, Mainz, Germany
| | - Manuel Herbst
- Institute of Medical Biostatistics, Epidemiology and Informatics, University Medical Centre of the Johannes Gutenberg-University, Mainz, Germany
| | - Ema Juškevičiūtė
- Department of Sports Medicine, Disease Prevention and Rehabilitation, Johannes-Gutenberg Universität Mainz, Mainz, Germany
- Institute of Sport Science and Innovations, Lithuanian Sports University, Kaunas, Lithuania
| | - Kira Enders
- Department of Sports Medicine, Disease Prevention and Rehabilitation, Johannes-Gutenberg Universität Mainz, Mainz, Germany
| | - Heidi Rossmann
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Centre of the Johannes Gutenberg-University, Mainz, Germany
| | - Martin F. Sprinzl
- Department of Internal Medicine I, University Medical Centre of the Johannes Gutenberg-University, Mainz, Germany
| | - Perikles Simon
- Department of Sports Medicine, Disease Prevention and Rehabilitation, Johannes-Gutenberg Universität Mainz, Mainz, Germany
| | - Marc Bodenstein
- Department of Anaesthesiology, University Medical Centre of the Johannes Gutenberg-University, Mainz, Germany
| | - Michael Schaefer
- Department of Anaesthesiology, University Medical Centre of the Johannes Gutenberg-University, Mainz, Germany
- Focus Program Translational Neurosciences (FTN), Johannes Gutenberg-University, Mainz, Germany
- Research Center for Immunotherapy, University Medical Centre of the Johannes Gutenberg-University, Mainz, Germany
| |
Collapse
|
31
|
Shoraka S, Samarasinghe AE, Ghaemi A, Mohebbi SR. Host mitochondria: more than an organelle in SARS-CoV-2 infection. Front Cell Infect Microbiol 2023; 13:1228275. [PMID: 37692170 PMCID: PMC10485703 DOI: 10.3389/fcimb.2023.1228275] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 08/07/2023] [Indexed: 09/12/2023] Open
Abstract
Since December 2019, the world has been facing viral pandemic called COVID-19 (Coronavirus disease 2019) caused by a new beta-coronavirus named severe acute respiratory syndrome coronavirus-2, or SARS-CoV-2. COVID-19 patients may present with a wide range of symptoms, from asymptomatic to requiring intensive care support. The severe form of COVID-19 is often marked by an altered immune response and cytokine storm. Advanced age, age-related and underlying diseases, including metabolic syndromes, appear to contribute to increased COVID-19 severity and mortality suggesting a role for mitochondria in disease pathogenesis. Furthermore, since the immune system is associated with mitochondria and its damage-related molecular patterns (mtDAMPs), the host mitochondrial system may play an important role during viral infections. Viruses have evolved to modulate the immune system and mitochondrial function for survival and proliferation, which in turn could lead to cellular stress and contribute to disease progression. Recent studies have focused on the possible roles of mitochondria in SARS-CoV-2 infection. It has been suggested that mitochondrial hijacking by SARS-CoV-2 could be a key factor in COVID-19 pathogenesis. In this review, we discuss the roles of mitochondria in viral infections including SARS-CoV-2 infection based on past and present knowledge. Paying attention to the role of mitochondria in SARS-CoV-2 infection will help to better understand the pathophysiology of COVID-19 and to achieve effective methods of prevention, diagnosis, and treatment.
Collapse
Affiliation(s)
- Shahrzad Shoraka
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Microbiology and Microbial Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Amali E. Samarasinghe
- Division of Pulmonology, Allergy and Immunology, Department of Pediatrics, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, United States
- Children’s Foundation Research Institute, Memphis, TN, United States
| | - Amir Ghaemi
- Department of Virology, Pasteur Institute of Iran, Tehran, Iran
| | - Seyed Reza Mohebbi
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
32
|
Rios L, Pokhrel S, Li SJ, Heo G, Haileselassie B, Mochly-Rosen D. Targeting an allosteric site in dynamin-related protein 1 to inhibit Fis1-mediated mitochondrial dysfunction. Nat Commun 2023; 14:4356. [PMID: 37468472 PMCID: PMC10356917 DOI: 10.1038/s41467-023-40043-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 07/07/2023] [Indexed: 07/21/2023] Open
Abstract
The large cytosolic GTPase, dynamin-related protein 1 (Drp1), mediates both physiological and pathological mitochondrial fission. Cell stress triggers Drp1 binding to mitochondrial Fis1 and subsequently, mitochondrial fragmentation, ROS production, metabolic collapse, and cell death. Because Drp1 also mediates physiological fission by binding to mitochondrial Mff, therapeutics that inhibit pathological fission should spare physiological mitochondrial fission. P110, a peptide inhibitor of Drp1-Fis1 interaction, reduces pathology in numerous models of neurodegeneration, ischemia, and sepsis without blocking the physiological functions of Drp1. Since peptides have pharmacokinetic limitations, we set out to identify small molecules that mimic P110's benefit. We map the P110-binding site to a switch I-adjacent grove (SWAG) on Drp1. Screening for SWAG-binding small molecules identifies SC9, which mimics P110's benefits in cells and a mouse model of endotoxemia. We suggest that the SWAG-binding small molecules discovered in this study may reduce the burden of Drp1-mediated pathologies and potentially pathologies associated with other members of the GTPase family.
Collapse
Affiliation(s)
- Luis Rios
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Suman Pokhrel
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Sin-Jin Li
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
- Bachelor Program of Biotechnology and Food Nutrition, National Taiwan University, Taipei City, Taiwan
| | - Gwangbeom Heo
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, USA
| | | | - Daria Mochly-Rosen
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
33
|
Zhou XY, Yang YZ, Zhang J, Zhang XF, Liu YD, Wang Z, Chen SL. Elevated cell-free mitochondria DNA level of patients with premature ovarian insufficiency. BMC Pregnancy Childbirth 2023; 23:462. [PMID: 37349693 DOI: 10.1186/s12884-023-05769-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Accepted: 06/09/2023] [Indexed: 06/24/2023] Open
Abstract
BACKGROUND Premature ovarian insufficiency (POI) patients present with a chronic inflammatory state. Cell-free mitochondria DNA (cf-mtDNA) has been explored as a reliable biomarker for estimating the inflammation-related disorders, however, the cf-mtDNA levels in POI patients have never been measured. Therefore, in the presenting study, we aimed to evaluate the levels of cf-mtDNA in plasma and follicular fluid (FF) of POI patients and to determine a potential role of cf-mtDNA in predicting the disease progress and pregnancy outcomes. METHODS We collected plasma and FF samples from POI patients, biochemical POI (bPOI) patients and control women. Quantitative real-time PCR was used to measure the ratio of mitochondrial genome to nuclear genome of cf-DNAs extracted from the plasma and FF samples. RESULTS The plasma cf-mtDNA levels, including COX3, CYB, ND1 and mtDNA79, were significantly higher in overt POI patients than those in bPOI patients or control women. The plasma cf-mtDNA levels were weakly correlated with ovarian reserve, and could not be improved by regular hormone replacement therapy. The levels of cf-mtDNA in FF, rather than those in plasma, exhibited the potential to predict the pregnancy outcomes, although they were comparable among overt POI, bPOI and control groups. CONCLUSIONS The increased plasma cf-mtDNA levels in overt POI patients indicated its role in the progress of POI and the FF cf-mtDNA content may hold the value in predicting pregnancy outcomes of POI patients.
Collapse
Affiliation(s)
- Xing-Yu Zhou
- Center for Reproductive Medicine, Department of Gynecology and Obstetrics, Nanfang Hospital, Southern Medical University, No. 1838 Guangzhou Northern Road, Guangzhou, 510515, Guangdong, China
| | - Yi-Zhen Yang
- Center for Reproductive Medicine, Department of Gynecology and Obstetrics, Nanfang Hospital, Southern Medical University, No. 1838 Guangzhou Northern Road, Guangzhou, 510515, Guangdong, China
| | - Jun Zhang
- Center for Reproductive Medicine, Department of Gynecology and Obstetrics, Nanfang Hospital, Southern Medical University, No. 1838 Guangzhou Northern Road, Guangzhou, 510515, Guangdong, China
| | - Xiao-Fei Zhang
- Center for Reproductive Medicine, Department of Gynecology and Obstetrics, Nanfang Hospital, Southern Medical University, No. 1838 Guangzhou Northern Road, Guangzhou, 510515, Guangdong, China
| | - Yu-Dong Liu
- Center for Reproductive Medicine, Department of Gynecology and Obstetrics, Nanfang Hospital, Southern Medical University, No. 1838 Guangzhou Northern Road, Guangzhou, 510515, Guangdong, China
| | - Zhe Wang
- Center for Reproductive Medicine, Department of Gynecology and Obstetrics, Nanfang Hospital, Southern Medical University, No. 1838 Guangzhou Northern Road, Guangzhou, 510515, Guangdong, China
| | - Shi-Ling Chen
- Center for Reproductive Medicine, Department of Gynecology and Obstetrics, Nanfang Hospital, Southern Medical University, No. 1838 Guangzhou Northern Road, Guangzhou, 510515, Guangdong, China.
| |
Collapse
|
34
|
Bhowal C, Ghosh S, Ghatak D, De R. Pathophysiological involvement of host mitochondria in SARS-CoV-2 infection that causes COVID-19: a comprehensive evidential insight. Mol Cell Biochem 2023; 478:1325-1343. [PMID: 36308668 PMCID: PMC9617539 DOI: 10.1007/s11010-022-04593-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 10/13/2022] [Indexed: 10/31/2022]
Abstract
SARS-CoV-2 is a positive-strand RNA virus that infects humans through the nasopharyngeal and oral route causing COVID-19. Scientists left no stone unturned to explore a targetable key player in COVID-19 pathogenesis against which therapeutic interventions can be initiated. This article has attempted to review, coordinate and accumulate the most recent observations in support of the hypothesis predicting the altered state of mitochondria concerning mitochondrial redox homeostasis, inflammatory regulations, morphology, bioenergetics and antiviral signalling in SARS-CoV-2 infection. Mitochondria is extremely susceptible to physiological as well as pathological stimuli, including viral infections. Recent studies suggest that SARS-CoV-2 pathogeneses alter mitochondrial integrity, in turn mitochondria modulate cellular response against the infection. SARS-CoV-2 M protein inhibited mitochondrial antiviral signalling (MAVS) protein aggregation in turn hinders innate antiviral response. Viral open reading frames (ORFs) also play an instrumental role in altering mitochondrial regulation of immune response. Notably, ORF-9b and ORF-6 impair MAVS activation. In aged persons, the NLRP3 inflammasome is over-activated due to impaired mitochondrial function, increased mitochondrial reactive oxygen species (mtROS), and/or circulating free mitochondrial DNA, resulting in a hyper-response of classically activated macrophages. This article also tries to understand how mitochondrial fission-fusion dynamics is affected by the virus. This review comprehends the overall mitochondrial attribute in pathogenesis as well as prognosis in patients infected with COVID-19 taking into account pertinent in vitro, pre-clinical and clinical data encompassing subjects with a broad range of severity and morbidity. This endeavour may help in exploring novel non-canonical therapeutic strategies to COVID-19 disease and associated complications.
Collapse
Affiliation(s)
- Chandan Bhowal
- Amity Institute of Biotechnology, Amity University, Plot No: 36, 37 & 38, Major Arterial Road, Action Area II, Kadampukur Village, Newtown, Kolkata, 700135, West Bengal, India
| | - Sayak Ghosh
- Amity Institute of Biotechnology, Amity University, Plot No: 36, 37 & 38, Major Arterial Road, Action Area II, Kadampukur Village, Newtown, Kolkata, 700135, West Bengal, India
| | - Debapriya Ghatak
- Indian Association for the Cultivation of Science, Jadavpur, 700032, Kolkata, India
| | - Rudranil De
- Amity Institute of Biotechnology, Amity University, Plot No: 36, 37 & 38, Major Arterial Road, Action Area II, Kadampukur Village, Newtown, Kolkata, 700135, West Bengal, India.
| |
Collapse
|
35
|
Nidadavolu LS, Feger D, Chen D, Wu Y, Grodstein F, Gross AL, Bennett DA, Walston JD, Oh ES, Abadir PM. Associations between circulating cell-free mitochondrial DNA, inflammatory markers, and cognitive and physical outcomes in community dwelling older adults. Immun Ageing 2023; 20:24. [PMID: 37221566 PMCID: PMC10204157 DOI: 10.1186/s12979-023-00342-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 04/21/2023] [Indexed: 05/25/2023]
Abstract
BACKGROUND Dementia and frailty are common age-related syndromes often linked to chronic inflammation. Identifying the biological factors and pathways that contribute to chronic inflammation is crucial for developing new therapeutic targets. Circulating cell-free mitochondrial DNA (ccf-mtDNA) has been proposed as an immune stimulator and potential predictor of mortality in acute illnesses. Dementia and frailty are both associated with mitochondrial dysfunction, impaired cellular energetics, and cell death. The size and abundance of ccf-mtDNA fragments may indicate the mechanism of cell death: long fragments typically result from necrosis, while short fragments arise from apoptosis. We hypothesize that increased levels of necrosis-associated long ccf-mtDNA fragments and inflammatory markers in serum are linked to declines in cognitive and physical function, as well as increased mortality risk. RESULTS Our study of 672 community-dwelling older adults revealed that inflammatory markers (C-Reactive Protein, soluble tumor necrosis factor alpha, tumor necrosis factor alpha receptor 1 [sTNFR1], and interleukin-6 [IL-6]) positively correlated with ccf-mtDNA levels in serum. Although cross-sectional analysis revealed no significant associations between short and long ccf-mtDNA fragments, longitudinal analysis demonstrated a connection between higher long ccf-mtDNA fragments (necrosis-associated) and worsening composite gait scores over time. Additionally, increased mortality risk was observed only in individuals with elevated sTNFR1 levels. CONCLUSION In a community dwelling cohort of older adults, there are cross-sectional and longitudinal associations between ccf-mtDNA and sTNFR1 with impaired physical and cognitive function and increased hazard of death. This work suggests a role for long ccf-mtDNA as a blood-based marker predictive of future physical decline.
Collapse
Affiliation(s)
- Lolita S Nidadavolu
- Division of Geriatric Medicine and Gerontology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Danielle Feger
- Johns Hopkins University Center on Aging and Health, Baltimore, MD, USA
| | - Diefei Chen
- Johns Hopkins University Center on Aging and Health, Baltimore, MD, USA
| | - Yuqiong Wu
- Division of Geriatric Medicine and Gerontology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Francine Grodstein
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA
| | - Alden L Gross
- Division of Geriatric Medicine and Gerontology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Johns Hopkins University Center on Aging and Health, Baltimore, MD, USA
| | - David A Bennett
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA
| | - Jeremy D Walston
- Division of Geriatric Medicine and Gerontology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Esther S Oh
- Division of Geriatric Medicine and Gerontology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Division of Geriatric Medicine and Gerontology, Johns Hopkins Asthma and Allergy Center, Johns Hopkins University School of Medicine, 5501 Hopkins Bayview Circle, Baltimore, MD, 21224, USA.
| | - Peter M Abadir
- Division of Geriatric Medicine and Gerontology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Division of Geriatric Medicine and Gerontology, Johns Hopkins Asthma and Allergy Center, Johns Hopkins University School of Medicine, 5501 Hopkins Bayview Circle, Baltimore, MD, 21224, USA.
| |
Collapse
|
36
|
Kakavandi S, Zare I, VaezJalali M, Dadashi M, Azarian M, Akbari A, Ramezani Farani M, Zalpoor H, Hajikhani B. Structural and non-structural proteins in SARS-CoV-2: potential aspects to COVID-19 treatment or prevention of progression of related diseases. Cell Commun Signal 2023; 21:110. [PMID: 37189112 PMCID: PMC10183699 DOI: 10.1186/s12964-023-01104-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 03/15/2023] [Indexed: 05/17/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) is caused by a new member of the Coronaviridae family known as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). There are structural and non-structural proteins (NSPs) in the genome of this virus. S, M, H, and E proteins are structural proteins, and NSPs include accessory and replicase proteins. The structural and NSP components of SARS-CoV-2 play an important role in its infectivity, and some of them may be important in the pathogenesis of chronic diseases, including cancer, coagulation disorders, neurodegenerative disorders, and cardiovascular diseases. The SARS-CoV-2 proteins interact with targets such as angiotensin-converting enzyme 2 (ACE2) receptor. In addition, SARS-CoV-2 can stimulate pathological intracellular signaling pathways by triggering transcription factor hypoxia-inducible factor-1 (HIF-1), neuropilin-1 (NRP-1), CD147, and Eph receptors, which play important roles in the progression of neurodegenerative diseases like Alzheimer's disease, epilepsy, and multiple sclerosis, and multiple cancers such as glioblastoma, lung malignancies, and leukemias. Several compounds such as polyphenols, doxazosin, baricitinib, and ruxolitinib could inhibit these interactions. It has been demonstrated that the SARS-CoV-2 spike protein has a stronger affinity for human ACE2 than the spike protein of SARS-CoV, leading the current study to hypothesize that the newly produced variant Omicron receptor-binding domain (RBD) binds to human ACE2 more strongly than the primary strain. SARS and Middle East respiratory syndrome (MERS) viruses against structural and NSPs have become resistant to previous vaccines. Therefore, the review of recent studies and the performance of current vaccines and their effects on COVID-19 and related diseases has become a vital need to deal with the current conditions. This review examines the potential role of these SARS-CoV-2 proteins in the initiation of chronic diseases, and it is anticipated that these proteins could serve as components of an effective vaccine or treatment for COVID-19 and related diseases. Video Abstract.
Collapse
Affiliation(s)
- Sareh Kakavandi
- Department of Bacteriology and Virology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Iman Zare
- Research and Development Department, Sina Medical Biochemistry Technologies Co. Ltd., Shiraz, 7178795844, Iran
| | - Maryam VaezJalali
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Masoud Dadashi
- Department of Microbiology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
- Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Maryam Azarian
- Department of Radiology, Charité - Universitätsmedizin Berlin, 10117, Berlin, Germany
| | - Abdullatif Akbari
- Shiraz Neuroscience Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Marzieh Ramezani Farani
- Department of Biological Sciences and Bioengineering, Nano Bio High-Tech Materials Research Center, Inha University, Incheon, 22212, Republic of Korea
| | - Hamidreza Zalpoor
- Shiraz Neuroscience Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| | - Bahareh Hajikhani
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
37
|
Bello S, Lasierra AB, López-Vergara L, de Diego C, Torralba L, de Gopegui PR, Lahoz R, Abadía C, Godino J, Cebollada A, Jimeno B, Bello C, Tejada A, Torres A. IL-6 and cfDNA monitoring throughout COVID-19 hospitalization are accurate markers of its outcomes. Respir Res 2023; 24:125. [PMID: 37147677 PMCID: PMC10161166 DOI: 10.1186/s12931-023-02426-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 04/18/2023] [Indexed: 05/07/2023] Open
Abstract
BACKGROUND Severe COVID-19 entails a dysregulated immune response, most likely inflammation related to a lack of virus control. A better understanding of immune toxicity, immunosuppression balance, and COVID-19 assessments could help determine whether different clinical presentations are driven by specific types of immune responses. The progression of the immune response and tissular damage could predict outcomes and may help in the management of patients. METHODS We collected 201 serum samples from 93 hospitalised patients classified as moderately, severely, and critically ill. We differentiated the viral, early inflammatory, and late inflammatory phases and included 72 patients with 180 samples in separate stages for longitudinal study and 55 controls. We studied selected cytokines, P-selectin, and the tissue damage markers lactate dehydrogenase (LDH) and cell-free DNA (cfDNA). RESULTS TNF-α, IL-6, IL-8, and G-CSF were associated with severity and mortality, but only IL-6 increased since admission in the critical patients and non-survivors, correlating with damage markers. The lack of a significant decrease in IL-6 levels in the critical patients and non-survivors in the early inflammatory phase (a decreased presence in the other patients) suggests that these patients did not achieve viral control on days 10-16. For all patients, lactate dehydrogenase and cfDNA levels increased with severity, and cfDNA levels increased in the non-survivors from the first sample (p = 0.002) to the late inflammatory phase (p = 0.031). In the multivariate study, cfDNA was an independent risk factor for mortality and ICU admission. CONCLUSIONS The distinct progression of IL-6 levels in the course of the disease, especially on days 10-16, was a good marker of progression to critical status and mortality and could guide the start of IL-6 blockade. cfDNA was an accurate marker of severity and mortality from admission and throughout COVID-19 progression.
Collapse
Affiliation(s)
- Salvador Bello
- Department of Pulmonary Medicine, Miguel Servet University Hospital, CIBERES, Instituto de Investigación Sanitaria (ISS) Aragón, Avenida Isabel La Católica 1-9, 50009, Zaragoza, Spain.
| | | | - Lucía López-Vergara
- Department of Pulmonary Medicine, Miguel Servet University Hospital, CIBERES, Instituto de Investigación Sanitaria (ISS) Aragón, Avenida Isabel La Católica 1-9, 50009, Zaragoza, Spain
| | - Cristina de Diego
- Department of Pulmonary Medicine, Miguel Servet University Hospital, CIBERES, Instituto de Investigación Sanitaria (ISS) Aragón, Avenida Isabel La Católica 1-9, 50009, Zaragoza, Spain
| | - Laura Torralba
- Department of Pulmonary Medicine, Miguel Servet University Hospital, CIBERES, Instituto de Investigación Sanitaria (ISS) Aragón, Avenida Isabel La Católica 1-9, 50009, Zaragoza, Spain
| | | | - Raquel Lahoz
- Department of Biochemistry, Miguel Servet University Hospital, Zaragoza, Spain
| | - Claudia Abadía
- Department of Biochemistry, Miguel Servet University Hospital, Zaragoza, Spain
| | - Javier Godino
- Department of Cytometry and Cell Separation, Aragon Institute of Health Sciences (IACS), Zaragoza, Spain
| | - Alberto Cebollada
- Biocomputing Technical Scientific Service, Aragon Institute of Health Sciences (IACS), Zaragoza, Spain
| | - Beatriz Jimeno
- Department of Cytometry and Cell Separation, Aragon Institute of Health Sciences (IACS), Zaragoza, Spain
| | - Carlota Bello
- Department of Radiology, Hospital Clínico Lozano Blesa, Zaragoza, Spain
| | - Antonio Tejada
- Intensive Care Unit, Miguel Servet University Hospital, Zaragoza, Spain
| | - Antoni Torres
- Servei de Pneumologia, Hospital Clinic, Universitat de Barcelona, IDIBAPS, ICREA, CIBERESUCICOVID, Barcelona, Spain
| |
Collapse
|
38
|
Ishikawa G, Peng X, McGovern J, Woo S, Perry C, Liu A, Yu S, Ghincea A, Kishchanka A, Fiorini V, Hu B, Sun Y, Sun H, Ryu C, Herzog EL. α1 Adrenoreceptor antagonism mitigates extracellular mitochondrial DNA accumulation in lung fibrosis models and in patients with idiopathic pulmonary fibrosis. Am J Physiol Lung Cell Mol Physiol 2023; 324:L639-L651. [PMID: 36648147 PMCID: PMC10110730 DOI: 10.1152/ajplung.00119.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 12/14/2022] [Accepted: 01/04/2023] [Indexed: 01/18/2023] Open
Abstract
Idiopathic pulmonary fibrosis is increasingly associated with nerve-driven processes and endogenous innate immune ligands such as mitochondrial DNA (mtDNA). Interestingly, a connection between these entities has not been explored. Here, we report that noradrenaline (NA) derived from the lung's adrenergic nerve supply drives α-smooth muscle actin (αSMA)-expressing fibroblast accumulation via mechanisms involving α1 adrenoreceptors and mtDNA. Using the bleomycin model, we compared ablation of the lung's adrenergic nerve supply with surgical adrenal resection and found that NA derived from local but not adrenal sources contributes to experimentally induced lung fibrosis and the emergence of an αSMA+ve fibroblast population expressing adrenoreceptor α-1D (ADRA1D). Therapeutic delivery of the α1 adrenoreceptor antagonist terazosin reversed these changes and suppressed extracellular mtDNA accumulation. Cultured normal human lung fibroblasts displayed α1 adrenoreceptors and in response to costimulation with TGFβ1 and NA adopted ACTA2 expression and extracellular mtDNA release. These findings were opposed by terazosin. Evaluation of a previously studied IPF cohort revealed that patients prescribed α1 adrenoreceptor antagonists for nonpulmonary indications demonstrated improved survival and reduced concentrations of plasma mtDNA. Our observations link nerve-derived NA, α1 adrenoreceptors, extracellular mtDNA, and lung fibrogenesis in mouse models, cultured cells, and humans with IPF. Further study of this neuroinnate connection may yield new avenues for investigation in the clinical and basic science realms.
Collapse
Affiliation(s)
- Genta Ishikawa
- Department of Internal Medicine, Section of Pulmonary, Critical Care, and Sleep Medicine, Yale School of Medicine, New Haven, Connecticut, United States
| | - Xueyan Peng
- Department of Internal Medicine, Section of Pulmonary, Critical Care, and Sleep Medicine, Yale School of Medicine, New Haven, Connecticut, United States
| | - John McGovern
- Department of Internal Medicine, Section of Pulmonary, Critical Care, and Sleep Medicine, Yale School of Medicine, New Haven, Connecticut, United States
| | - Sam Woo
- Department of Internal Medicine, Section of Pulmonary, Critical Care, and Sleep Medicine, Yale School of Medicine, New Haven, Connecticut, United States
| | - Carrighan Perry
- Department of Internal Medicine, Section of Pulmonary, Critical Care, and Sleep Medicine, Yale School of Medicine, New Haven, Connecticut, United States
| | - Angela Liu
- Department of Internal Medicine, Section of Pulmonary, Critical Care, and Sleep Medicine, Yale School of Medicine, New Haven, Connecticut, United States
| | - Sheeline Yu
- Department of Internal Medicine, Section of Pulmonary, Critical Care, and Sleep Medicine, Yale School of Medicine, New Haven, Connecticut, United States
| | - Alexander Ghincea
- Department of Internal Medicine, Section of Pulmonary, Critical Care, and Sleep Medicine, Yale School of Medicine, New Haven, Connecticut, United States
| | - Aliaksandr Kishchanka
- Department of Internal Medicine, Section of Pulmonary, Critical Care, and Sleep Medicine, Yale School of Medicine, New Haven, Connecticut, United States
| | - Vitória Fiorini
- Department of Internal Medicine, Section of Pulmonary, Critical Care, and Sleep Medicine, Yale School of Medicine, New Haven, Connecticut, United States
| | - Buqu Hu
- Department of Internal Medicine, Section of Pulmonary, Critical Care, and Sleep Medicine, Yale School of Medicine, New Haven, Connecticut, United States
| | - Ying Sun
- Department of Internal Medicine, Section of Pulmonary, Critical Care, and Sleep Medicine, Yale School of Medicine, New Haven, Connecticut, United States
| | - Huanxing Sun
- Department of Internal Medicine, Section of Pulmonary, Critical Care, and Sleep Medicine, Yale School of Medicine, New Haven, Connecticut, United States
| | - Changwan Ryu
- Department of Internal Medicine, Section of Pulmonary, Critical Care, and Sleep Medicine, Yale School of Medicine, New Haven, Connecticut, United States
| | - Erica L Herzog
- Department of Internal Medicine, Section of Pulmonary, Critical Care, and Sleep Medicine, Yale School of Medicine, New Haven, Connecticut, United States
- Department of Pathology, Yale School of Medicine, New Haven, Connecticut, United States
| |
Collapse
|
39
|
The methylome and cell-free DNA: current applications in medicine and pediatric disease. Pediatr Res 2023:10.1038/s41390-022-02448-3. [PMID: 36646885 PMCID: PMC9842217 DOI: 10.1038/s41390-022-02448-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 11/21/2022] [Accepted: 12/18/2022] [Indexed: 01/18/2023]
Abstract
DNA methylation is an epigenetic mechanism that contributes to cell regulation and development, and different methylation patterns allow for the identification of cell and tissue type. Cell-free DNA (cfDNA) is composed of small circulating fragments of DNA found in plasma and urine. Total cfDNA levels correlate with the presence of inflammation and tissue injury in a variety of disease states. Unfortunately, the utility of cfDNA is limited by its lack of tissue or cell-type specificity. However, methylome analysis of cfDNA allows the identification of the tissue or cell type from which cfDNA originated. Thus, methylation patterns in cfDNA from tissues isolated from direct study may provide windows into health and disease states, thereby serving as a "liquid biopsy". This review will discuss methylation and its role in establishing cellular identity, cfDNA as a biomarker and its pathophysiologic role in the inflammatory process, and the ways cfDNA and methylomics can be jointly applied in medicine. IMPACT: Cell-free DNA (cfDNA) is increasingly being used as a noninvasive diagnostic and disease-monitoring tool in pediatric medicine. However, the lack of specificity of cfDNA limits its utility. Identification of cell type-specific methylation signatures can help overcome the limited specificity of cfDNA. As knowledge of the cfDNA methylome improves, cfDNA will be more broadly applied in medicine, such that clinicians will need to understand the methods and applications of its use.
Collapse
|
40
|
Beimdiek J, Janciauskiene S, Wrenger S, Volland S, Rozy A, Fuge J, Olejnicka B, Pink I, Illig T, Popov A, Chorostowska J, Buettner FFR, Welte T. Plasma markers of COVID-19 severity: a pilot study. Respir Res 2022; 23:343. [PMID: 36514048 PMCID: PMC9745704 DOI: 10.1186/s12931-022-02272-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 12/01/2022] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND SARS-CoV-2 infected patients show heterogeneous clinical presentations ranging from mild symptoms to severe respiratory failure and death. Consequently, various markers reflect this wide spectrum of disease presentations. METHODS Our pilot cohort included moderate (n = 10) and severe (n = 10) COVID-19 patients, and 10 healthy controls. We determined plasma levels of nine acute phase proteins (APPs) by nephelometry, and full-length (M65), caspase-cleaved (M30) cytokeratin 18, and ADAMTS13 (a disintegrin-like and metalloprotease with thrombospondin type-1 motif 13) by ELISA. In addition, we examined whole plasma N-glycosylation by capillary gel electrophoresis coupled to laser-induced fluorescence detection (CGE-LIF). RESULTS When compared to controls, COVID-19 patients had significantly lower concentrations of ADAMTS13 and albumin (ALB) but higher M30, M65, α1-acid glycoprotein (AGP), α1-antitrypsin (AAT), ceruloplasmin (CP), haptoglobin (HP), and high-sensitivity C-reactive protein (hs-CRP). The concentrations of α1-antichymotrypsin (ACT), α2-macroglobulin (A2MG) and serum amyloid A (SAA) proteins did not differ. We found significantly higher levels of AAT and M65 but lower ALB in severe compared to moderate COVID-19 patients. N-glycan analysis of the serum proteome revealed increased levels of oligomannose- and sialylated di-antennary glycans and decreased non-sialylated di-antennary glycan A2G2 in COVID-19 patients compared to controls. CONCLUSIONS COVID-19-associated changes in levels and N-glycosylation of specific plasma proteins highlight complexity of inflammatory process and grant further investigations.
Collapse
Affiliation(s)
- Julia Beimdiek
- Institute of Clinical Biochemistry, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Sabina Janciauskiene
- Department of Pulmonary and Infectious Diseases, Hannover Medical School, BREATH German Center for Lung Research (DZL) Hannover University School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Sabine Wrenger
- Department of Pulmonary and Infectious Diseases, Hannover Medical School, BREATH German Center for Lung Research (DZL) Hannover University School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Sonja Volland
- Hannover Unified Biobank, Hannover Medical School, Feodor-Lynen-Str. 15, 30625 Hannover, Germany
| | - Adriana Rozy
- Department of Genetics and Clinical Immunology, National Institute of Tuberculosis and Lung Diseases, 26 Plocka St., 01138 Warsaw, Poland
| | - Jan Fuge
- Department of Pulmonary and Infectious Diseases, Hannover Medical School, BREATH German Center for Lung Research (DZL) Hannover University School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Beata Olejnicka
- Department of Pulmonary and Infectious Diseases, Hannover Medical School, BREATH German Center for Lung Research (DZL) Hannover University School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Isabell Pink
- Department of Pulmonary and Infectious Diseases, Hannover Medical School, BREATH German Center for Lung Research (DZL) Hannover University School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Thomas Illig
- Hannover Unified Biobank, Hannover Medical School, Feodor-Lynen-Str. 15, 30625 Hannover, Germany
| | - Alexander Popov
- Hannover Unified Biobank, Hannover Medical School, Feodor-Lynen-Str. 15, 30625 Hannover, Germany
| | - Joanna Chorostowska
- Department of Genetics and Clinical Immunology, National Institute of Tuberculosis and Lung Diseases, 26 Plocka St., 01138 Warsaw, Poland
| | - Falk F. R. Buettner
- Institute of Clinical Biochemistry, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Tobias Welte
- Department of Pulmonary and Infectious Diseases, Hannover Medical School, BREATH German Center for Lung Research (DZL) Hannover University School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| |
Collapse
|
41
|
Tojo K, Yamamoto N, Tamada N, Mihara T, Abe M, Nishii M, Takeuchi I, Goto T. Early alveolar epithelial cell necrosis is a potential driver of COVID-19-induced acute respiratory distress syndrome. iScience 2022; 26:105748. [PMID: 36507222 PMCID: PMC9722615 DOI: 10.1016/j.isci.2022.105748] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 10/30/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
Acute respiratory distress syndrome (ARDS) with COVID-19 is aggravated by hyperinflammatory responses even after the peak of the viral load has passed; however, its underlying mechanisms remain unclear. In the present study, analysis of the alveolar tissue injury markers and epithelial cell death markers in patients with COVID-19 revealed that COVID-19-induced ARDS was characterized by alveolar epithelial necrosis at an early disease stage. Serum levels of HMGB-1, one of the DAMPs released from necrotic cells, were also significantly elevated in these patients. Further analysis using a mouse model mimicking COVID-19-induced ARDS showed that the alveolar epithelial cell necrosis involved two forms of programmed necrosis, namely necroptosis, and pyroptosis. Finally, the neutralization of HMGB-1 attenuated alveolar tissue injury in the mouse model. Collectively, necrosis, including necroptosis and pyroptosis, is the predominant form of alveolar epithelial cell death at an early disease stage and subsequent release of DAMPs is a potential driver of COVID-19-induced ARDS.
Collapse
Affiliation(s)
- Kentaro Tojo
- Department of Anesthesiology and Critical Care Medicine, Yokohama City University School of Medicine, Yokohama, Kanagawa, Japan,Corresponding author
| | - Natsuhiro Yamamoto
- Department of Anesthesiology and Critical Care Medicine, Yokohama City University School of Medicine, Yokohama, Kanagawa, Japan
| | - Nao Tamada
- Department of Anesthesiology and Critical Care Medicine, Yokohama City University School of Medicine, Yokohama, Kanagawa, Japan,Department of Paramedic, Kyorin University Faculty of Health Sciences, Mitaka, Tokyo, Japan
| | - Takahiro Mihara
- Department of Health Data Science, Yokohama City University Graduate School of Data Science, Yokohama, Kanagawa, Japan
| | - Miyo Abe
- Department of Anesthesiology and Critical Care Medicine, Yokohama City University School of Medicine, Yokohama, Kanagawa, Japan
| | - Mototsugu Nishii
- Department of Emergency Medicine, Yokohama City University School of Medicine, Yokohama, Kanagawa, Japan
| | - Ichiro Takeuchi
- Department of Emergency Medicine, Yokohama City University School of Medicine, Yokohama, Kanagawa, Japan
| | - Takahisa Goto
- Department of Anesthesiology and Critical Care Medicine, Yokohama City University School of Medicine, Yokohama, Kanagawa, Japan
| |
Collapse
|
42
|
Peak Plasma Levels of mtDNA Serve as a Predictive Biomarker for COVID-19 in-Hospital Mortality. J Clin Med 2022; 11:jcm11237161. [PMID: 36498735 PMCID: PMC9740249 DOI: 10.3390/jcm11237161] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/27/2022] [Accepted: 11/28/2022] [Indexed: 12/03/2022] Open
Abstract
Several predictive biomarkers for coronavirus disease (COVID-19)-associated mortality in critically ill patients have been described. Although mitochondrial DNA (mtDNA) is elevated in patients with COVID-19, the association with coagulation function and its predictive power for mortality is unclear. Accordingly, this study investigates the predictive power of mtDNA for in-hospital mortality in critically ill patients with COVID-19, and whether combining it with thromboelastographic parameters can increase its predictive performance. This prospective explorative study included 29 patients with COVID-19 and 29 healthy matched controls. mtDNA encoding for NADH dehydrogenase 1 (ND1) was quantified using a quantitative polymerase chain reaction analysis, while coagulation function was evaluated using thromboelastometry and impedance aggregometry. Receiver operating characteristic (ROC) curves were used for the prediction of in-hospital mortality. Within the first 24 h, the plasma levels of mtDNA peaked significantly (controls: 65 (28-119) copies/µL; patients: 281 (110-805) at t0, 403 (168-1937) at t24, and 467 (188-952) copies/µL at t72; controls vs. patients: p = 0.02 at t0, p = 0.03 at t24, and p = 0.44 at t72). The mtDNA levels at t24 showed an excellent predictive performance for in-hospital mortality (area under the ROC curve: 0.90 (0.75-0.90)), which could not be improved by the combination with thromboelastometric or aggregometric parameters. Critically ill patients with COVID-19 present an early increase in the plasma levels of ND1 mtDNA, lasting over 24 h. They also show impairments in platelet function and fibrinolysis, as well as hypercoagulability, but these do not correlate with the plasma levels of fibrinogen. The peak plasma levels of mtDNA can be used as a predictive biomarker for in-hospital mortality; however, the combination with coagulation parameters does not improve the predictive validity.
Collapse
|
43
|
Pan SW, Syed RR, Catanzaro DG, Ho ML, Shu CC, Tsai TY, Tseng YH, Feng JY, Chen YM, Su WJ, Catanzaro A, Rodwell TC. Circulating mitochondrial cell-free DNA dynamics in patients with mycobacterial pulmonary infections: Potential for a novel biomarker of disease. Front Immunol 2022; 13:1040947. [PMID: 36466831 PMCID: PMC9709461 DOI: 10.3389/fimmu.2022.1040947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 10/31/2022] [Indexed: 11/17/2022] Open
Abstract
ObjectivesHuman mitochondrial cell-free DNA (Mt-cfDNA) may serve as a useful biomarker for infectious processes. We investigated Mt-cfDNA dynamics in patients with pulmonary mycobacterial infections to determine if this novel biomarker could be used to differentiate disease states and severity.MethodsPatients with pulmonary tuberculosis (PTB), latent tuberculosis infection (LTBI), and nontuberculous mycobacterial-lung disease (NTM-LD) were enrolled at a tertiary care hospital in Taiwan between June 2018 and August 2021. Human Mt-cfDNA and nuclear-cfDNA (Nu-cfDNA) copy numbers were estimated by quantitative polymerase chain reaction. Variables associated with PTB and 2-month sputum culture-positivity, indicating poor treatment response, were assessed using logistic regression.ResultsAmong 97 patients with PTB, 64 with LTBI, and 51 with NTM-LD, Mt-cfDNA levels were higher in patients with PTB than in LTBI (p=0.001) or NTM-LD (p=0.006). In the Mycobacterium tuberculosis-infected population, Mt-cfDNA levels were highest in smear-positive PTB patients, followed by smear-negative PTB (p<0.001), and were lowest in LTBI persons (p=0.009). A Mt-cfDNA, but not Nu-cfDNA, level higher than the median helped differentiate culture-positive PTB from culture-negative PTB and LTBI (adjusted OR 2.430 [95% CI 1.139–5.186], p=0.022) and differentiate PTB from NTM-LD (adjusted OR 4.007 [1.382–12.031], p=0.011). Mt-cfDNA levels decreased after 2 months of treatment in PTB patients (p=0.010). A cutoff Mt-cfDNA level greater than 62.62 x 106 copies/μL-plasma was associated with a 10-fold risk of 2-month culture-positivity (adjusted OR 9.691 [1.046–89.813], p=0.046).ConclusionElevated Mt-cfDNA levels were associated with PTB disease and failed sputum conversion at 2 months in PTB patients, and decreased after treatment.
Collapse
Affiliation(s)
- Sheng-Wei Pan
- Department of Chest Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of California San Diego, La Jolla, CA, United States
| | - Rehan R. Syed
- Division of Infectious Diseases and Global Public Health, University of California San Diego, La Jolla, CA, United States
| | - Donald G. Catanzaro
- Department of Biological Sciences, University of Arkansas, Fayetteville, AR, United States
| | - Mei-Lin Ho
- Department of Chemistry, Soochow University, Taipei, Taiwan
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA, United States
| | - Chin-Chung Shu
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
- College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Tsung-Yeh Tsai
- Department of Chest Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yen-Han Tseng
- Department of Chest Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Jia-Yih Feng
- Department of Chest Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- *Correspondence: Jia-Yih Feng,
| | - Yuh-Min Chen
- Department of Chest Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Wei-Juin Su
- Division of Chest Medicine, China Medical University Hospital, Taipei Branch, Taipei, Taiwan
| | - Antonino Catanzaro
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of California San Diego, La Jolla, CA, United States
| | - Timothy C. Rodwell
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of California San Diego, La Jolla, CA, United States
| |
Collapse
|
44
|
Denaro CA, Haloush YI, Hsiao SY, Orgera JJ, Osorio T, Riggs LM, Sassaman JW, Williams SA, Monte Carlo A, Da Costa RT, Grigoriev A, Solesio ME. COVID-19 and neurodegeneration: The mitochondrial connection. Aging Cell 2022; 21:e13727. [PMID: 36219531 PMCID: PMC9649608 DOI: 10.1111/acel.13727] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 09/16/2022] [Accepted: 09/25/2022] [Indexed: 01/25/2023] Open
Abstract
There is still a significant lack of knowledge regarding many aspects of the etiopathology and consequences of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection in humans. For example, the variety of molecular mechanisms mediating this infection, and the long-term consequences of the disease remain poorly understood. It first seemed like the SARS-CoV-2 infection primarily caused a serious respiratory syndrome. However, over the last years, an increasing number of studies also pointed towards the damaging effects of this infection has on the central nervous system (CNS). In fact, evidence suggests a possible disruption of the blood-brain barrier and deleterious effects on the CNS, especially in patients who already suffer from other pathologies, such as neurodegenerative disorders. The molecular mechanisms behind these effects on the CNS could involve the dysregulation of mitochondrial physiology, a well-known early marker of neurodegeneration and a hallmark of aging. Moreover, mitochondria are involved in the activation of the inflammatory response, which has also been broadly described in the CNS in COVID-19. Here, we critically review the current bibliography regarding the presence of neurodegenerative symptoms in COVID-19 patients, with a special emphasis on the mitochondrial mechanisms of these disorders.
Collapse
Affiliation(s)
- Christopher A. Denaro
- Department of Biology and Center for Computational and Integrative BiologyRutgers UniversityCamdenNew JerseyUSA
| | - Yara I. Haloush
- Department of Biology and Center for Computational and Integrative BiologyRutgers UniversityCamdenNew JerseyUSA
| | - Samuel Y. Hsiao
- Department of Biology and Center for Computational and Integrative BiologyRutgers UniversityCamdenNew JerseyUSA
| | - John J. Orgera
- Department of Biology and Center for Computational and Integrative BiologyRutgers UniversityCamdenNew JerseyUSA
| | - Teresa Osorio
- Department of Biology and Center for Computational and Integrative BiologyRutgers UniversityCamdenNew JerseyUSA
| | - Lindsey M. Riggs
- Department of Biology and Center for Computational and Integrative BiologyRutgers UniversityCamdenNew JerseyUSA
| | - Joshua W. Sassaman
- Department of Biology and Center for Computational and Integrative BiologyRutgers UniversityCamdenNew JerseyUSA
| | - Sarah A. Williams
- Department of Biology and Center for Computational and Integrative BiologyRutgers UniversityCamdenNew JerseyUSA
| | - Anthony R. Monte Carlo
- Department of Biology and Center for Computational and Integrative BiologyRutgers UniversityCamdenNew JerseyUSA
| | - Renata T. Da Costa
- Department of Biology and Center for Computational and Integrative BiologyRutgers UniversityCamdenNew JerseyUSA
| | - Andrey Grigoriev
- Department of Biology and Center for Computational and Integrative BiologyRutgers UniversityCamdenNew JerseyUSA
| | - Maria E. Solesio
- Department of Biology and Center for Computational and Integrative BiologyRutgers UniversityCamdenNew JerseyUSA
| |
Collapse
|
45
|
Delshad M, Sanaei MJ, Pourbagheri-Sigaroodi A, Bashash D. Host genetic diversity and genetic variations of SARS-CoV-2 in COVID-19 pathogenesis and the effectiveness of vaccination. Int Immunopharmacol 2022; 111:109128. [PMID: 35963158 PMCID: PMC9359488 DOI: 10.1016/j.intimp.2022.109128] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 07/15/2022] [Accepted: 08/03/2022] [Indexed: 12/14/2022]
Abstract
The severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), responsible for the outbreak of coronavirus disease 2019 (COVID-19), has shown a vast range of clinical manifestations from asymptomatic to life-threatening symptoms. To figure out the cause of this heterogeneity, studies demonstrated the trace of genetic diversities whether in the hosts or the virus itself. With this regard, this review provides a comprehensive overview of how host genetic such as those related to the entry of the virus, the immune-related genes, gender-related genes, disease-related genes, and also host epigenetic could influence the severity of COVID-19. Besides, the mutations in the genome of SARS-CoV-2 __leading to emerging of new variants__ per se affect the affinity of the virus to the host cells and enhance the immune escape capacity. The current review discusses these variants and also the latest data about vaccination effectiveness facing the most important variants.
Collapse
Affiliation(s)
- Mahda Delshad
- Department of Laboratory Sciences, School of Allied Medical Sciences, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Mohammad-Javad Sanaei
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Atieh Pourbagheri-Sigaroodi
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Davood Bashash
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
46
|
Kumar R, Kumar V, Arya R, Anand U, Priyadarshi RN. Association of COVID-19 with hepatic metabolic dysfunction. World J Virol 2022; 11:237-251. [PMID: 36188741 PMCID: PMC9523326 DOI: 10.5501/wjv.v11.i5.237] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 04/25/2022] [Accepted: 06/20/2022] [Indexed: 02/05/2023] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic continues to be a global problem with over 438 million cases reported so far. Although it mostly affects the respiratory system, the involvement of extrapulmonary organs, including the liver, is not uncommon. Since the beginning of the pandemic, metabolic com-orbidities, such as obesity, diabetes, hypertension, and dyslipidemia, have been identified as poor prognostic indicators. Subsequent metabolic and lipidomic studies have identified several metabolic dysfunctions in patients with COVID-19. The metabolic alterations appear to be linked to the course of the disease and inflammatory reaction in the body. The liver is an important organ with high metabolic activity, and a significant proportion of COVID-19 patients have metabolic comorbidities; thus, this factor could play a key role in orchestrating systemic metabolic changes during infection. Evidence suggests that metabolic dysregulation in COVID-19 has both short- and long-term metabolic implications. Furthermore, COVID-19 has adverse associations with metabolic-associated fatty liver disease. Due to the ensuing effects on the renin-angiotensin-aldosterone system and ammonia metabolism, COVID-19 can have significant implications in patients with advanced chronic liver disease. A thorough understanding of COVID-19-associated metabolic dysfunction could lead to the identification of important plasma biomarkers and novel treatment targets. In this review, we discuss the current understanding of metabolic dysfunction in COVID-19, focusing on the liver and exploring the underlying mechanistic pathogenesis and clinical implications.
Collapse
Affiliation(s)
- Ramesh Kumar
- Department of Gastroenterology, All India Institute of Medical Sciences, Patna, Patna 801507, Bihar, India
| | - Vijay Kumar
- Department of Medicine, All India Institute of Medical Sciences, Patna, Patna 801507, Bihar, India
| | - Rahul Arya
- Department of Gastroenterology, All India Institute of Medical Sciences, Patna, Patna 801507, Bihar, India
| | - Utpal Anand
- Department of Surgical Gastroenterology, All India Institute of Medical Sciences, Patna, Patna 801507, Bihar, India
| | - Rajeev Nayan Priyadarshi
- Department of Radiodiagnosis, All India Institute of Medical Sciences, Patna, Patna 801507, Bihar, India
| |
Collapse
|
47
|
Faizan MI, Chaudhuri R, Sagar S, Albogami S, Chaudhary N, Azmi I, Akhtar A, Ali SM, Kumar R, Iqbal J, Joshi MC, Kharya G, Seth P, Roy SS, Ahmad T. NSP4 and ORF9b of SARS-CoV-2 Induce Pro-Inflammatory Mitochondrial DNA Release in Inner Membrane-Derived Vesicles. Cells 2022; 11:cells11192969. [PMID: 36230930 PMCID: PMC9561960 DOI: 10.3390/cells11192969] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/13/2022] [Accepted: 09/13/2022] [Indexed: 12/05/2022] Open
Abstract
Circulating cell-free mitochondrial DNA (cf-mtDNA) has been found in the plasma of severely ill COVID-19 patients and is now known as a strong predictor of mortality. However, the underlying mechanism of mtDNA release is unexplored. Here, we show a novel mechanism of SARS-CoV-2-mediated pro-inflammatory/pro-apoptotic mtDNA release and a rational therapeutic stem cell-based approach to mitigate these effects. We systematically screened the effects of 29 SARS-CoV-2 proteins on mitochondrial damage and cell death and found that NSP4 and ORF9b caused extensive mitochondrial structural changes, outer membrane macropore formation, and the release of inner membrane vesicles loaded with mtDNA. The macropore-forming ability of NSP4 was mediated through its interaction with BCL2 antagonist/killer (BAK), whereas ORF9b was found to inhibit the anti-apoptotic member of the BCL2 family protein myeloid cell leukemia-1 (MCL1) and induce inner membrane vesicle formation containing mtDNA. Knockdown of BAK and/or overexpression of MCL1 significantly reversed SARS-CoV-2-mediated mitochondrial damage. Therapeutically, we engineered human mesenchymal stem cells (MSCs) with a simultaneous knockdown of BAK and overexpression of MCL1 (MSCshBAK+MCL1) and named these cells IMAT-MSCs (intercellular mitochondrial transfer-assisted therapeutic MSCs). Upon co-culture with SARS-CoV-2-infected or NSP4/ORF9b-transduced airway epithelial cells, IMAT-MSCs displayed functional intercellular mitochondrial transfer (IMT) via tunneling nanotubes (TNTs). The mitochondrial donation by IMAT-MSCs attenuated the pro-inflammatory and pro-apoptotic mtDNA release from co-cultured epithelial cells. Our findings thus provide a new mechanistic basis for SARS-CoV-2-induced cell death and a novel therapeutic approach to engineering MSCs for the treatment of COVID-19.
Collapse
Affiliation(s)
- Md Imam Faizan
- Multidisciplinary Centre for Advanced Research & Studies (MCARS), Jamia Millia Islamia, New Delhi 110025, India
| | - Rituparna Chaudhuri
- Molecular and Cellular Neuroscience, Neurovirology Section, National Brain Research Centre (NBRC), Gurugram 122052, India
| | - Shakti Sagar
- CSIR-Institute of Genomics and Integrative Biology, New Delhi 110007, India
| | - Sarah Albogami
- Department of Biotechnology, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Nisha Chaudhary
- Multidisciplinary Centre for Advanced Research & Studies (MCARS), Jamia Millia Islamia, New Delhi 110025, India
| | - Iqbal Azmi
- Multidisciplinary Centre for Advanced Research & Studies (MCARS), Jamia Millia Islamia, New Delhi 110025, India
| | - Areej Akhtar
- Multidisciplinary Centre for Advanced Research & Studies (MCARS), Jamia Millia Islamia, New Delhi 110025, India
| | - Syed Mansoor Ali
- Department of Biotechnology, Jamia Millia Islamia, New Delhi 110025, India
| | - Rohit Kumar
- Department of Pulmonary Medicine and Sleep Disorders, Vardhman Mahavir Medical College, Safdarjung Hospital, New Delhi 10029, India
| | - Jawed Iqbal
- Multidisciplinary Centre for Advanced Research & Studies (MCARS), Jamia Millia Islamia, New Delhi 110025, India
| | - Mohan C. Joshi
- Multidisciplinary Centre for Advanced Research & Studies (MCARS), Jamia Millia Islamia, New Delhi 110025, India
| | - Gaurav Kharya
- Center for Bone Marrow Transplantation & Cellular Therapy Indraprastha Apollo Hospital, New Delhi 110076, India
| | - Pankaj Seth
- Molecular and Cellular Neuroscience, Neurovirology Section, National Brain Research Centre (NBRC), Gurugram 122052, India
| | - Soumya Sinha Roy
- CSIR-Institute of Genomics and Integrative Biology, New Delhi 110007, India
| | - Tanveer Ahmad
- Multidisciplinary Centre for Advanced Research & Studies (MCARS), Jamia Millia Islamia, New Delhi 110025, India
- Correspondence: ; Tel.: +91-9971525411
| |
Collapse
|
48
|
Sampson C, Liang SY. The Tip of the Spear: Emergency Medicine and Missouri's Response to the COVID-19 Pandemic. MISSOURI MEDICINE 2022; 119:432-436. [PMID: 36337989 PMCID: PMC9616458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The COVID-19 pandemic provided the specialty of emergency medicine the opportunity to showcase what many knew all along: emergency physicians (EP) are well suited to deal with the unknown and can quickly adapt even with incomplete or limited information and resources. Emergency physicians in Missouri served in integral positions locally, nationally and internationally. Missouri EPs published numerous manuscripts on topics from basic science to clinical care. Device innovation also occurred with the development of protective devices for health care workers. As we approach the three-year mark of the COVID-19 pandemic, the burden of clinical care still weighs heavily on EPs. Each wave of the pandemic has brought challenges and spurred EPs to innovate in new ways. As Michigan EP Brian Zink, MD once said "Anyone, Anything, Anytime". These words correctly sum up emergency medicine. When others hesitated to care for COVID-19 patients, EPs stepped up despite uncertainty and risks to their own health. Emergency medicine has led the way and continues to innovate and push the envelope of emergency care.
Collapse
Affiliation(s)
- Christopher Sampson
- Department of Emergency Medicine, University of Missouri - Columbia School of Medicine, Columbia, Missouri
| | - Stephen Y Liang
- Department of Emergency Medicine and the Division of Infectious Diseases, Department of Medicine at Washington University School of Medicine, St. Louis, Missouri
| |
Collapse
|
49
|
Long G, Gong R, Wang Q, Zhang D, Huang C. Role of released mitochondrial DNA in acute lung injury. Front Immunol 2022; 13:973089. [PMID: 36059472 PMCID: PMC9433898 DOI: 10.3389/fimmu.2022.973089] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 08/01/2022] [Indexed: 12/02/2022] Open
Abstract
Acute lung injury(ALI)/acute respiratory distress syndrome(ARDS) is a form of acute-onset hypoxemic respiratory failure characterised by an acute, diffuse, inflammatory lung injury, and increased alveolar-capillary permeability, which is caused by a variety of pulmonary or nonpulmonary insults. Recently, aberrant mitochondria and mitochondrial DNA(mtDNA) level are associated with the development of ALI/ARDS, and plasma mtDNA level shows the potential to be a promising biomarker for clinical diagnosis and evaluation of lung injury severity. In mechanism, the mtDNA and its oxidised form, which are released from impaired mitochondria, play a crucial role in the inflammatory response and histopathological changes in the lung. In this review, we discuss mitochondrial outer membrane permeabilisation (MOMP), mitochondrial permeability transition pore(mPTP), extracellular vesicles (EVs), extracellular traps (ETs), and passive release as the principal mechanisms for the release of mitochondrial DNA into the cytoplasm and extracellular compartments respectively. Further, we explain how the released mtDNA and its oxidised form can induce inflammatory cytokine production and aggravate lung injury through the Toll-like receptor 9(TLR9) signalling, cytosolic cGAS-stimulator of interferon genes (STING) signalling (cGAS-STING) pathway, and inflammasomes activation. Additionally, we propose targeting mtDNA-mediated inflammatory pathways as a novel therapeutic approach for treating ALI/ARDS.
Collapse
Affiliation(s)
- Gangyu Long
- Wuhan Jinyintan Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Rui Gong
- The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Qian Wang
- Wuhan Jinyintan Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Dingyu Zhang
- Wuhan Jinyintan Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
- The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Hubei Clinical Research Center for Infectious Diseases, Wuhan, China
- Wuhan Research Center for Communicable Disease Diagnosis and Treatment, Chinese Academy of Medical Sciences, Wuhan, China
- Joint Laboratory of Infectious Diseases and Health, Wuhan Institute of Virology and Wuhan Jinyintan Hospital, Chinese Academy of Sciences, Wuhan, China
- *Correspondence: Dingyu Zhang, ; Chaolin Huang,
| | - Chaolin Huang
- Wuhan Jinyintan Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
- Hubei Clinical Research Center for Infectious Diseases, Wuhan, China
- Wuhan Research Center for Communicable Disease Diagnosis and Treatment, Chinese Academy of Medical Sciences, Wuhan, China
- Joint Laboratory of Infectious Diseases and Health, Wuhan Institute of Virology and Wuhan Jinyintan Hospital, Chinese Academy of Sciences, Wuhan, China
- *Correspondence: Dingyu Zhang, ; Chaolin Huang,
| |
Collapse
|
50
|
Hoque MN, Sarkar MMH, Khan MA, Hossain MA, Hasan MI, Rahman MH, Habib MA, Akter S, Banu TA, Goswami B, Jahan I, Nafisa T, Molla MMA, Soliman ME, Araf Y, Khan MS, Zheng C, Islam T. Differential gene expression profiling reveals potential biomarkers and pharmacological compounds against SARS-CoV-2: Insights from machine learning and bioinformatics approaches. Front Immunol 2022; 13:918692. [PMID: 36059456 PMCID: PMC9429819 DOI: 10.3389/fimmu.2022.918692] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 06/27/2022] [Indexed: 12/02/2022] Open
Abstract
The COVID-19 pandemic, caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), has created an urgent global situation. Therefore, it is necessary to identify the differentially expressed genes (DEGs) in COVID-19 patients to understand disease pathogenesis and the genetic factor(s) responsible for inter-individual variability and disease comorbidities. The pandemic continues to spread worldwide, despite intense efforts to develop multiple vaccines and therapeutic options against COVID-19. However, the precise role of SARS-CoV-2 in the pathophysiology of the nasopharyngeal tract (NT) is still unfathomable. This study utilized machine learning approaches to analyze 22 RNA-seq data from COVID-19 patients (n = 8), recovered individuals (n = 7), and healthy individuals (n = 7) to find disease-related differentially expressed genes (DEGs). We compared dysregulated DEGs to detect critical pathways and gene ontology (GO) connected to COVID-19 comorbidities. We found 1960 and 153 DEG signatures in COVID-19 patients and recovered individuals compared to healthy controls. In COVID-19 patients, the DEG–miRNA, and DEG–transcription factors (TFs) interactions network analysis revealed that E2F1, MAX, EGR1, YY1, and SRF were the highly expressed TFs, whereas hsa-miR-19b, hsa-miR-495, hsa-miR-340, hsa-miR-101, and hsa-miR-19a were the overexpressed miRNAs. Three chemical agents (Valproic Acid, Alfatoxin B1, and Cyclosporine) were abundant in COVID-19 patients and recovered individuals. Mental retardation, mental deficit, intellectual disability, muscle hypotonia, micrognathism, and cleft palate were the significant diseases associated with COVID-19 by sharing DEGs. Finally, the detected DEGs mediated by TFs and miRNA expression indicated that SARS-CoV-2 infection might contribute to various comorbidities. Our results provide the common DEGs between COVID-19 patients and recovered humans, which suggests some crucial insights into the complex interplay between COVID-19 progression and the recovery stage, and offer some suggestions on therapeutic target identification in COVID-19 caused by the SARS-CoV-2.
Collapse
Affiliation(s)
- M. Nazmul Hoque
- Department of Gynecology, Obstetrics and Reproductive Health, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, Bangladesh
| | | | - Md. Arif Khan
- Department of Biotechnology and Genetic Engineering, University of Development Alternative, Dhaka, Bangladesh
- Department of Biotechnology and Genetic Engineering, Mawlana Bhashani Science and Technology University, Tangail, Bangladesh
| | - Md. Arju Hossain
- Department of Biotechnology and Genetic Engineering, Mawlana Bhashani Science and Technology University, Tangail, Bangladesh
| | - Md. Imran Hasan
- Department of Computer Science and Engineering, Islamic University, Kushtia, Bangladesh
| | - Md. Habibur Rahman
- Department of Computer Science and Engineering, Islamic University, Kushtia, Bangladesh
| | - Md. Ahashan Habib
- Bangladesh Council of Scientific & Industrial Research (BCSIR), Dhaka, Bangladesh
| | - Shahina Akter
- Bangladesh Council of Scientific & Industrial Research (BCSIR), Dhaka, Bangladesh
| | - Tanjina Akhtar Banu
- Bangladesh Council of Scientific & Industrial Research (BCSIR), Dhaka, Bangladesh
| | - Barna Goswami
- Bangladesh Council of Scientific & Industrial Research (BCSIR), Dhaka, Bangladesh
| | - Iffat Jahan
- Bangladesh Council of Scientific & Industrial Research (BCSIR), Dhaka, Bangladesh
| | - Tasnim Nafisa
- National Institute of Laboratory Medicine and Referral Center, Dhaka, Bangladesh
| | | | - Mahmoud E. Soliman
- Molecular Bio-computation and Drug Design Laboratory, School of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Yusha Araf
- Department of Genetic Engineering and Biotechnology, School of Life Sciences, Shahjalal University of Science and Technology, Sylhet, Bangladesh
- Department of Immunology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - M. Salim Khan
- Bangladesh Council of Scientific & Industrial Research (BCSIR), Dhaka, Bangladesh
- *Correspondence: Tofazzal Islam, ; Chunfu Zheng, ; Md. Salim Khan,
| | - Chunfu Zheng
- Department of Immunology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, AB, Canada
- *Correspondence: Tofazzal Islam, ; Chunfu Zheng, ; Md. Salim Khan,
| | - Tofazzal Islam
- Institute of Biotechnology and Genetic Engineering (IBGE), Bangabandhu Sheikh Mujibur Rahman Agricultural University (BSMRAU), Gazipur, Bangladesh
- *Correspondence: Tofazzal Islam, ; Chunfu Zheng, ; Md. Salim Khan,
| |
Collapse
|