1
|
Davalos OA, Sebastian A, Leon NF, Rangel MV, Miranda N, Murugesh DK, Phillips AM, Hoyer KK, Hum NR, Loots GG, Weilhammer DR. Spatiotemporal analysis of lung immune dynamics in lethal Coccidioides posadasii infection. mBio 2025; 16:e0256224. [PMID: 39611685 PMCID: PMC12077212 DOI: 10.1128/mbio.02562-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 10/28/2024] [Indexed: 11/30/2024] Open
Abstract
Coccidioidomycosis, or Valley fever, is a lung disease caused by inhalation of Coccidioides fungi, prevalent in the Southwestern United States, Mexico, and parts of Central and South America. Annually, the United States reports 10,000-20,000 cases, although those numbers are expected to increase as climate change expands the fungal geographic range. While 60% of infections are asymptomatic, 40% symptomatic infections are often misdiagnosed due to similarities with bronchitis or pneumonia. A small subset of infection progress to severe illness, necessitating a better understanding of immune responses during lethal infection. Using single-cell RNA sequencing and spatial transcriptomics, we characterized lung responses during Coccidioides infection. We identified monocyte-derived Spp1-expressing macrophages as potential mediators of tissue remodeling and fibrosis, marked by high expression of profibrotic and proinflammatory transcripts. These macrophages showed elevated TGF-β and IL-6 signaling, pathways involved in fibrosis pathogenesis. Additionally, we observed significant neutrophil infiltration and defective lymphocyte responses, indicating severe adaptive immunity dysregulation in lethal, acute infection. These findings enhance our understanding of Coccidioides infection and suggest new therapeutic targets.IMPORTANCECoccidioidomycosis, commonly known as Valley fever, is a lung disease caused by the inhalation of Coccidioides fungi, which is prevalent in the Southwestern United States, Mexico, and parts of Central and South America. With climate change potentially expanding the geographic range of this fungus, understanding the immune responses during severe infections is crucial. Our study used advanced techniques to analyze lung responses during Coccidioides infection, identifying specific immune cells that may contribute to tissue damage and fibrosis. These findings provide new insights into the disease mechanisms and suggest potential targets for therapeutic intervention, which could improve outcomes for patients suffering from severe Valley fever.
Collapse
Affiliation(s)
- Oscar A. Davalos
- Physical and Life Sciences Directorate, Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, California, USA
| | - Aimy Sebastian
- Physical and Life Sciences Directorate, Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, California, USA
| | - Nicole F. Leon
- Physical and Life Sciences Directorate, Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, California, USA
| | - Margarita V. Rangel
- Physical and Life Sciences Directorate, Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, California, USA
| | - Nadia Miranda
- Physical and Life Sciences Directorate, Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, California, USA
- Department of Molecular and Cell Biology, School of Natural Sciences, Health Sciences Research Institute, University of California Merced, Merced, California, USA
| | - Deepa K. Murugesh
- Physical and Life Sciences Directorate, Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, California, USA
| | - Ashlee M. Phillips
- Physical and Life Sciences Directorate, Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, California, USA
| | - Katrina K. Hoyer
- Physical and Life Sciences Directorate, Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, California, USA
- Department of Molecular and Cell Biology, School of Natural Sciences, Health Sciences Research Institute, University of California Merced, Merced, California, USA
| | - Nicholas R. Hum
- Physical and Life Sciences Directorate, Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, California, USA
| | - Gabriela G. Loots
- Physical and Life Sciences Directorate, Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, California, USA
- Department of Orthopaedic Surgery, University of California Davis Health, Sacramento, California, USA
| | - Dina R. Weilhammer
- Physical and Life Sciences Directorate, Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, California, USA
| |
Collapse
|
2
|
Dolna-Michno J, Kopiński P, Przybylski G, Wypasek E, Szymańska M, Wędrowska E, Mikołajczyk K, Senderek T, Gagat M. Cytoimmunological Profile of Lower Airways in Post-COVID-19 Syndrome (PCS): Predictive Value of Bronchoalveolar Lavage. J Clin Med 2025; 14:3361. [PMID: 40429360 PMCID: PMC12112653 DOI: 10.3390/jcm14103361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2025] [Revised: 04/24/2025] [Accepted: 04/30/2025] [Indexed: 05/29/2025] Open
Abstract
Background: It has yet to be determined whether the immunocytological profile of the bronchoalveolar lavage (BAL) in respiratory post-COVID syndrome (PCS) reflects the risk of persistent interstitial lung disease (ILD), including pulmonary fibrosis. In this study, we aimed to assess the prognostic value of the BAL cytoimmunologic profile in PCS-related ILD. Materials and Methods: We enrolled 58 non-smoking patients with a history of COVID-19 and new-onset ILD, divided into PCS remission and PCS persistence groups based on clinical data, including repeated computed tomography and pulmonary function tests. We phenotyped BAL major T cell subsets, immune checkpoints (including programmed cell death-1, PD1), and markers of Th1/Th2/Th17 polarization. Results: The PCS groups compared to the control showed increased total cell, lymphocyte, and neutrophil counts and a high BAL neutrophil:lymphocyte ratio (NLR). PCS persistence compared to the controls presented an increased neutrophil count (26 [17-36] vs. 2.6 [1.9-5.4] 103/mL, median [Q1-Q3], p < 0.001) and percentage, BAL NLR (0.77 [0.26-1.63] vs. 0.21 [0.17-0.31], p < 0.0001), CD8+PD1+ cell percentage (43.5 [34-60.5] vs. 24.5 [22-44]%, p = 0.045), and a decreased CD4:CD8 ratio. A high percentage of CD4+CD196+CD183 cells (relevant to Th17 activity, 6.2 [2.0-9.4] vs. 1.2 [0.7-2.7]%, p = 0.02) and increased BAL supernatant elevated IL-8 levels (62.5 [16-243] vs. 10.9 [3.44-32] pg/mL, p = 0.002) were found in the PCS persistence vs. control groups. In the total PCS group, predicted values of Vital Capacity (VC) [16-243] and Diffusing Lung Capacity for CO (DLCO) correlated negatively with BAL NLR; VC correlated negatively with BAL CD8+PD1+; and DLCO correlated positively with the CD4:CD8 ratio. Conclusions: Worse prognosis in PCS is associated with higher BAL NLR, BAL neutrophilia, an elevated percentage of CD8+PD1+ lymphocytes, and a decline in the CD4:CD8 ratio. Th17 cells and IL-8 participate in lung PCS persistence.
Collapse
Affiliation(s)
- Justyna Dolna-Michno
- Department of Molecular Biology, John Paul II Hospital, 31-202 Kraków, Poland; (P.K.); (E.W.); (M.S.)
- Department of Physiology and Pathophysiology, Medical College, Andrzej Frycz Modrzewski Krakow University, 31-216 Kraków, Poland;
| | - Piotr Kopiński
- Department of Molecular Biology, John Paul II Hospital, 31-202 Kraków, Poland; (P.K.); (E.W.); (M.S.)
- Department of Lung Diseases, Cancer and Tuberculosis, Collegium Medicum, Nicolaus Copernicus University, 85-067 Bydgoszcz, Poland; (G.P.); (E.W.)
| | - Grzegorz Przybylski
- Department of Lung Diseases, Cancer and Tuberculosis, Collegium Medicum, Nicolaus Copernicus University, 85-067 Bydgoszcz, Poland; (G.P.); (E.W.)
| | - Ewa Wypasek
- Department of Molecular Biology, John Paul II Hospital, 31-202 Kraków, Poland; (P.K.); (E.W.); (M.S.)
- Department of Physiology and Pathophysiology, Medical College, Andrzej Frycz Modrzewski Krakow University, 31-216 Kraków, Poland;
| | - Magdalena Szymańska
- Department of Molecular Biology, John Paul II Hospital, 31-202 Kraków, Poland; (P.K.); (E.W.); (M.S.)
| | - Ewelina Wędrowska
- Department of Lung Diseases, Cancer and Tuberculosis, Collegium Medicum, Nicolaus Copernicus University, 85-067 Bydgoszcz, Poland; (G.P.); (E.W.)
| | - Klaudia Mikołajczyk
- Department of Histology and Embryology, Collegium Medicum, Nicolaus Copernicus University, 85-067 Bydgoszcz, Poland; (K.M.); (M.G.)
| | - Tomasz Senderek
- Department of Physiology and Pathophysiology, Medical College, Andrzej Frycz Modrzewski Krakow University, 31-216 Kraków, Poland;
| | - Maciej Gagat
- Department of Histology and Embryology, Collegium Medicum, Nicolaus Copernicus University, 85-067 Bydgoszcz, Poland; (K.M.); (M.G.)
| |
Collapse
|
3
|
Ojha T, Schaefer GJ, Mihyar R, Pathak V, Ehling J, Rama E, De Lorenzi F, Elshafei AS, Moeckel D, Elsafy S, Theek B, Wagner M, Ceccarini P, Consolino L, Weiler M, Peisker F, Caspers T, Peña Q, Barmin R, Gremse F, Pola R, Pechar M, Etrych T, Meurer S, Weiskirchen R, Kramann R, Kiessling F, Storm G, Metselaar J, Lammers T. Desmoplastic tumor priming using clinical-stage corticosteroid liposomes. CELL BIOMATERIALS 2025; 1:None. [PMID: 40276304 PMCID: PMC12014906 DOI: 10.1016/j.celbio.2025.100051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Revised: 02/11/2025] [Accepted: 03/12/2025] [Indexed: 04/26/2025]
Abstract
Inflammation is a hallmark of cancer. It contributes to a heterogeneous, hyperpermeable, and poorly perfused tumor vasculature, as well as to a dense and disorganized extracellular matrix, which together negatively affect drug delivery. Reasoning that glucocorticoids have pleiotropic effects, we use clinical-stage dexamethasone liposomes (LipoDex) to prime the tumor microenvironment for improved drug delivery and enhanced treatment efficacy. We show that LipoDex priming improves tumor vascular function and reduces extracellular matrix deposition. Single-cell sequencing corroborates LipoDex-mediated inhibition of pro-inflammatory, pro-angiogenic, and pro-fibrogenic gene expression in mononuclear cells, tumor-associated macrophages, and cancer-associated fibroblasts. Multimodal optical imaging illustrates that LipoDex pre-treatment increases the tumor accumulation and intratumoral distribution of subsequently administered polymeric and liposomal drug delivery systems. Using Doxil as a prototypic nanodrug, we finally show that LipoDex priming promotes antitumor treatment efficacy. Altogether, our findings demonstrate that desmoplastic tumors can be primed for improved drug targeting and therapy using clinical-stage glucocorticoid liposomes.
Collapse
Affiliation(s)
- Tarun Ojha
- Institute for Experimental Molecular Imaging (ExMI), RWTH Aachen University Clinic, 52074 Aachen, Germany
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, 3584 CG Utrecht, the Netherlands
| | - Gideon J.L. Schaefer
- Department of Nephrology and Clinical Immunology, RWTH Aachen University Clinic, 52074 Aachen, Germany
| | - Rahaf Mihyar
- Institute for Experimental Molecular Imaging (ExMI), RWTH Aachen University Clinic, 52074 Aachen, Germany
| | - Vertika Pathak
- Institute for Experimental Molecular Imaging (ExMI), RWTH Aachen University Clinic, 52074 Aachen, Germany
| | - Josef Ehling
- Institute for Experimental Molecular Imaging (ExMI), RWTH Aachen University Clinic, 52074 Aachen, Germany
| | - Elena Rama
- Institute for Experimental Molecular Imaging (ExMI), RWTH Aachen University Clinic, 52074 Aachen, Germany
| | - Federica De Lorenzi
- Institute for Experimental Molecular Imaging (ExMI), RWTH Aachen University Clinic, 52074 Aachen, Germany
| | - Asmaa Said Elshafei
- Institute for Experimental Molecular Imaging (ExMI), RWTH Aachen University Clinic, 52074 Aachen, Germany
| | - Diana Moeckel
- Institute for Experimental Molecular Imaging (ExMI), RWTH Aachen University Clinic, 52074 Aachen, Germany
| | - Sara Elsafy
- Institute for Experimental Molecular Imaging (ExMI), RWTH Aachen University Clinic, 52074 Aachen, Germany
| | - Benjamin Theek
- Institute for Experimental Molecular Imaging (ExMI), RWTH Aachen University Clinic, 52074 Aachen, Germany
| | - Maike Wagner
- Institute for Experimental Molecular Imaging (ExMI), RWTH Aachen University Clinic, 52074 Aachen, Germany
| | - Paolo Ceccarini
- Institute for Experimental Molecular Imaging (ExMI), RWTH Aachen University Clinic, 52074 Aachen, Germany
| | - Lorena Consolino
- Institute for Experimental Molecular Imaging (ExMI), RWTH Aachen University Clinic, 52074 Aachen, Germany
| | - Marek Weiler
- Institute for Experimental Molecular Imaging (ExMI), RWTH Aachen University Clinic, 52074 Aachen, Germany
| | - Fabian Peisker
- Department of Nephrology and Clinical Immunology, RWTH Aachen University Clinic, 52074 Aachen, Germany
| | - Tim Caspers
- Institute for Pathology, RWTH Aachen University Clinic, 52074 Aachen, Germany
| | - Quim Peña
- Institute for Experimental Molecular Imaging (ExMI), RWTH Aachen University Clinic, 52074 Aachen, Germany
| | - Roman Barmin
- Institute for Experimental Molecular Imaging (ExMI), RWTH Aachen University Clinic, 52074 Aachen, Germany
| | | | - Robert Pola
- Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, 16200 Prague, Czech Republic
| | - Michal Pechar
- Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, 16200 Prague, Czech Republic
| | - Tomáš Etrych
- Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, 16200 Prague, Czech Republic
| | - Steffen Meurer
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), RWTH Aachen University Clinic, 52074 Aachen, Germany
| | - Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), RWTH Aachen University Clinic, 52074 Aachen, Germany
| | - Rafael Kramann
- Department of Nephrology and Clinical Immunology, RWTH Aachen University Clinic, 52074 Aachen, Germany
| | - Fabian Kiessling
- Institute for Experimental Molecular Imaging (ExMI), RWTH Aachen University Clinic, 52074 Aachen, Germany
| | - Gert Storm
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, 3584 CG Utrecht, the Netherlands
- Department of Targeted Therapeutics, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, 7500 AE Enschede, the Netherlands
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
| | - Josbert Metselaar
- Institute for Experimental Molecular Imaging (ExMI), RWTH Aachen University Clinic, 52074 Aachen, Germany
| | - Twan Lammers
- Institute for Experimental Molecular Imaging (ExMI), RWTH Aachen University Clinic, 52074 Aachen, Germany
| |
Collapse
|
4
|
Zhang G, Wang N, Ma S, Zhang Y, Tao P, Cai H. Comprehensive Analysis of Potential Common Pathogenic Mechanisms for COVID-19 Infection and Gastric Cancer. Anal Cell Pathol (Amst) 2025; 2025:5106674. [PMID: 40224213 PMCID: PMC11991771 DOI: 10.1155/ancp/5106674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/16/2024] [Accepted: 01/25/2025] [Indexed: 04/15/2025] Open
Abstract
A growing body of data suggests that the prevalence of COVID-19 pneumonia in patients with stomach cancer is much higher than in the general population. However, these mechanisms are still not fully understood. After a thorough examination of shared differentially expressed genes (DEGs) for gastric cancer (GC) and COVID-19 pneumonia, we performed functional annotation, protein-protein interaction (PPI) networks, module design, and pivot gene identification. qPCR was used to verify the expression of hub genes in GC. Finally, a pivotal gene transcription factor-gene regulatory network was created and validated. According to functional enrichment analysis, common genes are mainly enriched in biological processes such as extracellular matrix tissue and extracellular structural tissue. Finally, five genes were found to be pivotal genes in the pathogenesis of GC and COVID-19 pneumonia: BGN (biglycan), UBE2C (ubiquitin-conjugating enzymes 2C), SPP1 (secreted phosphoprotein 1), THBS2 (thrombospondin 2), and COL1A1 (type I collagen alpha 1). These shared pathways and pivotal genes could provide new insights for more mechanistic studies.
Collapse
Affiliation(s)
- Guiqian Zhang
- Otorhinolaryngology Head and Neck Surgery, The 940th Hospital of Joint Logistics Support Force of People's Liberation Army, Lanzhou, China
| | - Ning Wang
- The First Clinical Medical College of Gansu University of Chinese Medicine (Gansu Provincial Hospital), Lanzhou, China
| | - Shixun Ma
- Key Laboratory of Molecular Diagnostics and Precision Medicine for Surgical Oncology in Gansu Province, Gansu Provincial Hospital, Lanzhou, China
- General Surgery Clinical Medical Center, Gansu Provincial Hospital, Lanzhou, China
- NHC Key Laboratory of Diagnosis and Therapy of Gastrointestinal Tumor, Gansu Provincial Hospital, Lanzhou, China
| | - Yan Zhang
- Key Laboratory of Molecular Diagnostics and Precision Medicine for Surgical Oncology in Gansu Province, Gansu Provincial Hospital, Lanzhou, China
- General Surgery Clinical Medical Center, Gansu Provincial Hospital, Lanzhou, China
- NHC Key Laboratory of Diagnosis and Therapy of Gastrointestinal Tumor, Gansu Provincial Hospital, Lanzhou, China
| | - Pengxian Tao
- Key Laboratory of Molecular Diagnostics and Precision Medicine for Surgical Oncology in Gansu Province, Gansu Provincial Hospital, Lanzhou, China
- General Surgery Clinical Medical Center, Gansu Provincial Hospital, Lanzhou, China
- Cadre Ward of General Surgery Department, Gansu Provincial Hospital, Lanzhou, China
| | - Hui Cai
- Key Laboratory of Molecular Diagnostics and Precision Medicine for Surgical Oncology in Gansu Province, Gansu Provincial Hospital, Lanzhou, China
- General Surgery Clinical Medical Center, Gansu Provincial Hospital, Lanzhou, China
- NHC Key Laboratory of Diagnosis and Therapy of Gastrointestinal Tumor, Gansu Provincial Hospital, Lanzhou, China
| |
Collapse
|
5
|
Tang S, Hu H, Liu X, Liao Y, Zhang K, Wang Z, Zhou F, Shi X, Chen X. Osteopontin promotes keratinocyte proliferation by G0/G1 cell cycle arrest in psoriasis. Arch Dermatol Res 2025; 317:519. [PMID: 40035859 DOI: 10.1007/s00403-025-04008-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 01/31/2025] [Accepted: 02/12/2025] [Indexed: 03/06/2025]
Abstract
Psoriasis is a chronic inflammatory dermatological disorder that is featured by the abnormal activation of epidermal keratinocytes. Osteopontin (OPN) is a multifunctional phosphoprotein upregulated in psoriasis. OPN levels in the skin of psoriasis patients and healthy subjects were assessed by immunohistochemistry. To evaluate the potential role of OPN in keratinocyte proliferation, the knockdown model of OPN was constructed using OPN siRNA. The proliferative activity of HaCaT cells was assessed via the CCK-8 and EdU cell proliferation assays. The cell cycle and apoptosis were analyzed using flow cytometry. Western blot assay was conducted in order to investigate the expression levels of cyclins, CDKs, and apoptosis-associated proteins. OPN expression was increased in the epidermis of psoriasis lesions and OPN knockdown inhibited the proliferation of keratinocytes. OPN affected keratinocyte proliferation by G0/G1 cell cycle arrest and promoted their apoptosis, which involved the regulation of cyclins (Cyclin D1 and Cyclin A2), cyclin-dependent kinases (CDK2 and CDK4), and apoptosis proteins (Bim, Bcl-2, and Caspase-3) in keratinocytes. OPN expression was significantly higher in keratinocytes of psoriasis lesions. OPN knockdown inhibited the keratinocyte proliferation, arrested the G0/G1 cell cycle, and promoted apoptosis. This suggests that OPN may provide a new mechanism for the proliferation of keratinocytes in psoriasis.
Collapse
Affiliation(s)
- Siyi Tang
- Shenzhen Key Laboratory for Translational Medicine of Dermatology, Biomedical Research Institute, Shenzhen Peking University - the Hong Kong University of Science and Technology Medical Center, Shenzhen, 518036, China
| | - Hao Hu
- Shenzhen Key Laboratory for Translational Medicine of Dermatology, Biomedical Research Institute, Shenzhen Peking University - the Hong Kong University of Science and Technology Medical Center, Shenzhen, 518036, China
| | - Xiaojuan Liu
- Shenzhen Key Laboratory for Translational Medicine of Dermatology, Biomedical Research Institute, Shenzhen Peking University - the Hong Kong University of Science and Technology Medical Center, Shenzhen, 518036, China
| | - Yan Liao
- Department of Dermatology, Peking University Shenzhen Hospital, Shenzhen, 518036, China
| | - Kaoyuan Zhang
- Department of Dermatology, Peking University Shenzhen Hospital, Shenzhen, 518036, China
| | - Zhifu Wang
- Yunnan Lucheng Judicial Appraisal Center, Chuxiong Xizhi Testing Technology Company Limited, Chuxiong, 675000, Yunnan, China
| | - Fenli Zhou
- Department of Neurology, Peking University Shenzhen Hospital, Shenzhen, 518036, China
| | - Xin Shi
- Department of Neurology, Peking University Shenzhen Hospital, Shenzhen, 518036, China
| | - Xiaofan Chen
- Shenzhen Key Laboratory for Translational Medicine of Dermatology, Biomedical Research Institute, Shenzhen Peking University - the Hong Kong University of Science and Technology Medical Center, Shenzhen, 518036, China.
| |
Collapse
|
6
|
Xia X, He C, Xue Z, Wang Y, Qin Y, Ren Z, Huang Y, Luo H, Chen HN, Zhang WH, Huang LB, Shi Y, Bai Y, Cai B, Wang L, Zhang F, Qian M, Zhang W, Shu Y, Yin G, Xu H, Xie Q. Single cell immunoprofile of synovial fluid in rheumatoid arthritis with TNF/JAK inhibitor treatment. Nat Commun 2025; 16:2152. [PMID: 40038288 PMCID: PMC11880340 DOI: 10.1038/s41467-025-57361-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 02/20/2025] [Indexed: 03/06/2025] Open
Abstract
Numerous patients with rheumatoid arthritis (RA) manifest severe syndromes, including elevated synovial fluid volumes (SF) with abundant immune cells, which can be controlled by TNF/JAK inhibitors. Here, we apply single-cell RNA sequencing (scRNA-seq) and subsequent validations in SF from RA patients. These analyses of synovial tissue show reduced density of SF-derived pathogenic cells (e.g., SPP1+ macrophages and CXCL13+CD4+ T cells), altered gene expression (e.g., SPP1 and STAT1), molecular pathway changes (e.g., JAK/STAT), and cell-cell communications in drug-specific manners in samples from patients pre-/post-treated with adalimumab/tofacitinib. Particularly, SPP1+ macrophages exhibit pronounced communication with CXCL13+CD4+ T cells, which are abolished after treatment and correlate with treatment efficacy. These pathogenic cell types alone or in combination can augment inflammation of fibroblast-like synoviocytes in vitro, while conditional Spp1 knocking-out reduces RA-related cytokine expression in collagen-induced arthritis mice models. Our study shows the functional role of SF-derived pathogenic cells in progression and drug-specific treatment outcomes in RA.
Collapse
Affiliation(s)
- Xuyang Xia
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Laboratory Medicine/Research Centre of Clinical Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Division of Gastrointestinal Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Chenjia He
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Zhinan Xue
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yuelan Wang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yun Qin
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Zhixiang Ren
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yupeng Huang
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Han Luo
- Division of Thyroid Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Hai-Ning Chen
- Colorectal Cancer Center, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Institute of General Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Wei-Han Zhang
- Institute of General Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Gastric Cancer Center, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Li-Bin Huang
- Division of Gastrointestinal Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Institute of General Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yunying Shi
- Department of Nephrology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yangjuan Bai
- Department of Laboratory Medicine/Research Centre of Clinical Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Bei Cai
- Department of Laboratory Medicine/Research Centre of Clinical Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Lanlan Wang
- Department of Laboratory Medicine/Research Centre of Clinical Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Feng Zhang
- Center for Precision Medicine, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, Zhejiang, China
| | - Maoxiang Qian
- Institute of Pediatrics and Department of Hematology and Oncology, National Children's Medical Center, Children's Hospital of Fudan University, Shanghai, China
- Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Wei Zhang
- Department of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yang Shu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Institute of General Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Gastric Cancer Center, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Geng Yin
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
- Department of General Practice, General Practice Medical Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| | - Heng Xu
- Department of Laboratory Medicine/Research Centre of Clinical Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
- Institute of General Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
- Tianfu Jincheng Laboratory, Chengdu, Sichuan, China.
| | - Qibing Xie
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
7
|
De Ponti FF, Bujko A, Liu Z, Collins PJ, Schuermans S, Maueroder C, Amstelveen S, Thoné T, Martens L, McKendrick JG, Louwe PA, Sànchez Cruz A, Saelens W, Matchett KP, Waller KJ, Zwicker C, Buglar-Lamb A, Vanneste B, Parmentier F, Binte Abdul Latib M, Remmerie A, Kertesz L, Kremer A, Verbeke J, Ipsen DH, Pfister DR, Liu Z, Guilliams M, Henderson NC, Ravichandran K, Marques PE, Scott CL. Spatially restricted and ontogenically distinct hepatic macrophages are required for tissue repair. Immunity 2025; 58:362-380.e10. [PMID: 39862865 DOI: 10.1016/j.immuni.2025.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 09/05/2024] [Accepted: 01/02/2025] [Indexed: 01/27/2025]
Abstract
Our understanding of the functional heterogeneity of resident versus recruited macrophages in the diseased liver is limited. A population of recruited lipid-associated macrophages (LAMs) has been reported to populate the diseased liver alongside resident Kupffer cells (KCs). However, the precise roles of these distinct macrophage subsets remain elusive. Here, using proteogenomics, we have identified LAMs in multiple models of liver injury. Moreover, we found that this phenotype is not specific to recruited macrophages, as a subset of resident KCs can also adopt a LAM-like phenotype in the mouse and human liver. By combining genetic mouse models targeting the distinct populations, we determined that both recruited LAMs and resident LAM-like KCs play crucial roles in tissue repair. Specifically, triggering receptor expressed on myeloid cells 2 (TREM2) expression on either resident or recruited macrophages is required for the efficient clearance of dying cells, enhancing repair and preventing exacerbated fibrosis.
Collapse
Affiliation(s)
- Federico F De Ponti
- Laboratory of Myeloid Cell Biology in Tissue Damage and Inflammation, VIB-UGent Center for Inflammation Research, Technologiepark-Zwijnaarde 71, Ghent 9052, Belgium; Department of Biomedical Molecular Biology, Faculty of Science, Ghent University, Ghent, Belgium
| | - Anna Bujko
- Laboratory of Myeloid Cell Biology in Tissue Damage and Inflammation, VIB-UGent Center for Inflammation Research, Technologiepark-Zwijnaarde 71, Ghent 9052, Belgium; Department of Biomedical Molecular Biology, Faculty of Science, Ghent University, Ghent, Belgium
| | - Zhuangzhuang Liu
- Laboratory of Myeloid Cell Biology in Tissue Damage and Inflammation, VIB-UGent Center for Inflammation Research, Technologiepark-Zwijnaarde 71, Ghent 9052, Belgium; Department of Biomedical Molecular Biology, Faculty of Science, Ghent University, Ghent, Belgium
| | - Paul J Collins
- Laboratory of Myeloid Cell Biology in Tissue Damage and Inflammation, VIB-UGent Center for Inflammation Research, Technologiepark-Zwijnaarde 71, Ghent 9052, Belgium; Department of Biomedical Molecular Biology, Faculty of Science, Ghent University, Ghent, Belgium
| | - Sara Schuermans
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Christian Maueroder
- Department of Biomedical Molecular Biology, Faculty of Science, Ghent University, Ghent, Belgium; Cell Clearance in Health and Disease lab, VIB-UGent Center for Inflammation Research, Technologiepark-Zwijnaarde 71, Ghent 9052, Belgium
| | - Seraja Amstelveen
- Department of Biomedical Molecular Biology, Faculty of Science, Ghent University, Ghent, Belgium; Cell Clearance in Health and Disease lab, VIB-UGent Center for Inflammation Research, Technologiepark-Zwijnaarde 71, Ghent 9052, Belgium
| | - Tinne Thoné
- Laboratory of Myeloid Cell Biology in Tissue Damage and Inflammation, VIB-UGent Center for Inflammation Research, Technologiepark-Zwijnaarde 71, Ghent 9052, Belgium; Department of Biomedical Molecular Biology, Faculty of Science, Ghent University, Ghent, Belgium; Laboratory of Myeloid Cell Biology in Tissue Homeostasis and Regeneration, VIB-UGent Center for Inflammation Research, Technologiepark-Zwijnaarde 71, Ghent 9052, Belgium
| | - Liesbet Martens
- Laboratory of Myeloid Cell Biology in Tissue Damage and Inflammation, VIB-UGent Center for Inflammation Research, Technologiepark-Zwijnaarde 71, Ghent 9052, Belgium; Department of Biomedical Molecular Biology, Faculty of Science, Ghent University, Ghent, Belgium; Laboratory of Myeloid Cell Biology in Tissue Homeostasis and Regeneration, VIB-UGent Center for Inflammation Research, Technologiepark-Zwijnaarde 71, Ghent 9052, Belgium
| | - John G McKendrick
- Laboratory of Myeloid Cell Biology in Tissue Damage and Inflammation, VIB-UGent Center for Inflammation Research, Technologiepark-Zwijnaarde 71, Ghent 9052, Belgium; Department of Biomedical Molecular Biology, Faculty of Science, Ghent University, Ghent, Belgium
| | - Pieter A Louwe
- Laboratory of Myeloid Cell Biology in Tissue Damage and Inflammation, VIB-UGent Center for Inflammation Research, Technologiepark-Zwijnaarde 71, Ghent 9052, Belgium; Department of Biomedical Molecular Biology, Faculty of Science, Ghent University, Ghent, Belgium; Laboratory of Myeloid Cell Biology in Tissue Homeostasis and Regeneration, VIB-UGent Center for Inflammation Research, Technologiepark-Zwijnaarde 71, Ghent 9052, Belgium
| | - Ana Sànchez Cruz
- Laboratory of Myeloid Cell Biology in Tissue Damage and Inflammation, VIB-UGent Center for Inflammation Research, Technologiepark-Zwijnaarde 71, Ghent 9052, Belgium; Department of Biomedical Molecular Biology, Faculty of Science, Ghent University, Ghent, Belgium
| | - Wouter Saelens
- Department of Biomedical Molecular Biology, Faculty of Science, Ghent University, Ghent, Belgium; Laboratory of Myeloid Cell Biology in Tissue Homeostasis and Regeneration, VIB-UGent Center for Inflammation Research, Technologiepark-Zwijnaarde 71, Ghent 9052, Belgium
| | - Kylie P Matchett
- Centre for Inflammation Research, Institute for Regeneration and Repair, Edinburgh BioQuarter, University of Edinburgh, Edinburgh, UK; MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Crewe Road South, Edinburgh, UK
| | - Kathryn J Waller
- Laboratory of Myeloid Cell Biology in Tissue Damage and Inflammation, VIB-UGent Center for Inflammation Research, Technologiepark-Zwijnaarde 71, Ghent 9052, Belgium; Department of Biomedical Molecular Biology, Faculty of Science, Ghent University, Ghent, Belgium
| | - Christian Zwicker
- Laboratory of Myeloid Cell Biology in Tissue Damage and Inflammation, VIB-UGent Center for Inflammation Research, Technologiepark-Zwijnaarde 71, Ghent 9052, Belgium; Department of Biomedical Molecular Biology, Faculty of Science, Ghent University, Ghent, Belgium
| | - Aimée Buglar-Lamb
- Department of Biomedical Molecular Biology, Faculty of Science, Ghent University, Ghent, Belgium; Laboratory of Myeloid Cell Biology in Tissue Homeostasis and Regeneration, VIB-UGent Center for Inflammation Research, Technologiepark-Zwijnaarde 71, Ghent 9052, Belgium
| | - Bavo Vanneste
- Laboratory of Myeloid Cell Biology in Tissue Damage and Inflammation, VIB-UGent Center for Inflammation Research, Technologiepark-Zwijnaarde 71, Ghent 9052, Belgium; Department of Biomedical Molecular Biology, Faculty of Science, Ghent University, Ghent, Belgium; Laboratory of Myeloid Cell Biology in Tissue Homeostasis and Regeneration, VIB-UGent Center for Inflammation Research, Technologiepark-Zwijnaarde 71, Ghent 9052, Belgium
| | - Fleur Parmentier
- Laboratory of Myeloid Cell Biology in Tissue Damage and Inflammation, VIB-UGent Center for Inflammation Research, Technologiepark-Zwijnaarde 71, Ghent 9052, Belgium; Department of Biomedical Molecular Biology, Faculty of Science, Ghent University, Ghent, Belgium; Laboratory of Myeloid Cell Biology in Tissue Homeostasis and Regeneration, VIB-UGent Center for Inflammation Research, Technologiepark-Zwijnaarde 71, Ghent 9052, Belgium
| | - Mushida Binte Abdul Latib
- Laboratory of Myeloid Cell Biology in Tissue Damage and Inflammation, VIB-UGent Center for Inflammation Research, Technologiepark-Zwijnaarde 71, Ghent 9052, Belgium; Department of Biomedical Molecular Biology, Faculty of Science, Ghent University, Ghent, Belgium; Laboratory of Myeloid Cell Biology in Tissue Homeostasis and Regeneration, VIB-UGent Center for Inflammation Research, Technologiepark-Zwijnaarde 71, Ghent 9052, Belgium
| | - Anneleen Remmerie
- Laboratory of Myeloid Cell Biology in Tissue Damage and Inflammation, VIB-UGent Center for Inflammation Research, Technologiepark-Zwijnaarde 71, Ghent 9052, Belgium; Department of Biomedical Molecular Biology, Faculty of Science, Ghent University, Ghent, Belgium
| | - Lenard Kertesz
- Laboratory of Myeloid Cell Biology in Tissue Damage and Inflammation, VIB-UGent Center for Inflammation Research, Technologiepark-Zwijnaarde 71, Ghent 9052, Belgium; Department of Biomedical Molecular Biology, Faculty of Science, Ghent University, Ghent, Belgium
| | - Anneke Kremer
- VIB Bioimaging Core, VIB-UGent Center for Inflammation Research, Technologiepark-Zwijnaarde 71, Ghent 9052, Belgium
| | - Jérémy Verbeke
- VIB Bioimaging Core, VIB-UGent Center for Inflammation Research, Technologiepark-Zwijnaarde 71, Ghent 9052, Belgium
| | | | | | - Zhaoyuan Liu
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Martin Guilliams
- Department of Biomedical Molecular Biology, Faculty of Science, Ghent University, Ghent, Belgium; Laboratory of Myeloid Cell Biology in Tissue Homeostasis and Regeneration, VIB-UGent Center for Inflammation Research, Technologiepark-Zwijnaarde 71, Ghent 9052, Belgium
| | - Neil C Henderson
- Centre for Inflammation Research, Institute for Regeneration and Repair, Edinburgh BioQuarter, University of Edinburgh, Edinburgh, UK; MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Crewe Road South, Edinburgh, UK
| | - Kodi Ravichandran
- Department of Biomedical Molecular Biology, Faculty of Science, Ghent University, Ghent, Belgium; Laboratory of Myeloid Cell Biology in Tissue Homeostasis and Regeneration, VIB-UGent Center for Inflammation Research, Technologiepark-Zwijnaarde 71, Ghent 9052, Belgium
| | - Pedro E Marques
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Charlotte L Scott
- Laboratory of Myeloid Cell Biology in Tissue Damage and Inflammation, VIB-UGent Center for Inflammation Research, Technologiepark-Zwijnaarde 71, Ghent 9052, Belgium; Department of Biomedical Molecular Biology, Faculty of Science, Ghent University, Ghent, Belgium.
| |
Collapse
|
8
|
Korzeniowska A, Bryl E. Infectious agents in the pathogenesis of autoimmune rheumatic diseases. Transl Res 2025; 276:39-45. [PMID: 39742962 DOI: 10.1016/j.trsl.2024.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 12/23/2024] [Accepted: 12/27/2024] [Indexed: 01/04/2025]
Abstract
Autoimmune rheumatic diseases (AIRDs) are diseases with complex outset and courses, in which both genetic and environmental factors participate. Many environmental factors can be committed to AIRDs outset and development. The most popular of them, with confirmed impact, are smoking, age, gender, and microorganisms. In light of recent research an assumption about the importance of various microorganisms in the pathogenesis of AIRDs is growing in popularity. The human immune system has various protective mechanisms against infectious antigens which in normal cases let organism manage potential infection faster and more effectively. Unfortunately in some situations, specific errors in those mechanisms can cause an autoreactive response despite mitigation of infection. Viruses including EBV, CMV, and even SARS-CoV2 can cause these errors. This in combination with genetic factors can lead to rheumatic disease development. This research aims to provide a brief review of the role of viruses in the outset and development of AIRDs.
Collapse
Affiliation(s)
| | - Ewa Bryl
- Department of Physiopathology, Faculty of Medicine, Medical University of Gdansk, Poland.
| |
Collapse
|
9
|
McCool JL, Sebastian A, Hum NR, Wilson SP, Davalos OA, Murugesh DK, Amiri B, Morfin C, Christiansen BA, Loots GG. CD206+ Trem2+ macrophage accumulation in the murine knee joint after injury is associated with protection against post-traumatic osteoarthritis in MRL/MpJ mice. PLoS One 2025; 20:e0312587. [PMID: 39752388 PMCID: PMC11698337 DOI: 10.1371/journal.pone.0312587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 10/09/2024] [Indexed: 01/06/2025] Open
Abstract
Post-traumatic osteoarthritis (PTOA) is a painful joint disease characterized by the degradation of bone, cartilage, and other connective tissues in the joint. PTOA is initiated by trauma to joint-stabilizing tissues, such as the anterior cruciate ligament, medial meniscus, or by intra-articular fractures. In humans, ~50% of joint injuries progress to PTOA, while the rest spontaneously resolve. To better understand molecular programs contributing to PTOA development or resolution, we examined injury-induced fluctuations in immune cell populations and transcriptional shifts by single-cell RNA sequencing of synovial joints in PTOA-susceptible C57BL/6J (B6) and PTOA-resistant MRL/MpJ (MRL) mice. We identified significant differences in monocyte and macrophage subpopulations between MRL and B6 joints. A potent myeloid-driven anti-inflammatory response was observed in MRL injured joints that significantly contrasted the pro-inflammatory signaling seen in B6 joints. Multiple CD206+ macrophage populations classically described as M2 were found enriched in MRL injured joints. These CD206+ macrophages also robustly expressed Trem2, a receptor involved in inflammation and myeloid cell activation. These data suggest that the PTOA resistant MRL mouse strain displays an enhanced capacity of clearing debris and apoptotic cells induced by inflammation after injury due to an increase in activated M2 macrophages within the synovial tissue and joint space.
Collapse
Affiliation(s)
- Jillian L. McCool
- Lawrence Livermore National Laboratory, Physical and Life Science Directorate, Livermore, CA, United States of America
- School of Natural Sciences, University of California Merced, Merced, CA, United States of America
| | - Aimy Sebastian
- Lawrence Livermore National Laboratory, Physical and Life Science Directorate, Livermore, CA, United States of America
| | - Nicholas R. Hum
- Lawrence Livermore National Laboratory, Physical and Life Science Directorate, Livermore, CA, United States of America
| | - Stephen P. Wilson
- Lawrence Livermore National Laboratory, Physical and Life Science Directorate, Livermore, CA, United States of America
| | - Oscar A. Davalos
- Lawrence Livermore National Laboratory, Physical and Life Science Directorate, Livermore, CA, United States of America
| | - Deepa K. Murugesh
- Lawrence Livermore National Laboratory, Physical and Life Science Directorate, Livermore, CA, United States of America
| | - Beheshta Amiri
- Lawrence Livermore National Laboratory, Physical and Life Science Directorate, Livermore, CA, United States of America
| | - Cesar Morfin
- Lawrence Livermore National Laboratory, Physical and Life Science Directorate, Livermore, CA, United States of America
- Department of Orthopaedic Surgery, University of California Davis Health, Sacramento, CA, United States of America
| | - Blaine A. Christiansen
- Department of Orthopaedic Surgery, University of California Davis Health, Sacramento, CA, United States of America
| | - Gabriela G. Loots
- Lawrence Livermore National Laboratory, Physical and Life Science Directorate, Livermore, CA, United States of America
- School of Natural Sciences, University of California Merced, Merced, CA, United States of America
- Department of Orthopaedic Surgery, University of California Davis Health, Sacramento, CA, United States of America
| |
Collapse
|
10
|
Nyirenda J, Hardy OM, Silva Filho JD, Herder V, Attipa C, Ndovi C, Siwombo M, Namalima TR, Suwedi L, Ilia G, Nyasulu W, Ngulube T, Nyirenda D, Mvaya L, Phiri J, Chasweka D, Eneya C, Makwinja C, Phiri C, Ziwoya F, Tembo A, Makwangwala K, Khoswe S, Banda P, Morton B, Hilton O, Lawrence S, Dos Reis MF, Melo GC, de Lacerda MVG, Trindade Maranhão Costa F, Monteiro WM, Ferreira LCDL, Johnson C, McGuinness D, Jambo K, Haley M, Kumwenda B, Palmarini M, Denno DM, Voskuijl W, Kamiza SB, Barnes KG, Couper K, Marti M, Otto TD, Moxon CA. Spatially resolved single-cell atlas unveils a distinct cellular signature of fatal lung COVID-19 in a Malawian population. Nat Med 2024; 30:3765-3777. [PMID: 39567718 PMCID: PMC11645280 DOI: 10.1038/s41591-024-03354-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 10/14/2024] [Indexed: 11/22/2024]
Abstract
Postmortem single-cell studies have transformed understanding of lower respiratory tract diseases (LRTDs), including coronavirus disease 2019 (COVID-19), but there are minimal data from African settings where HIV, malaria and other environmental exposures may affect disease pathobiology and treatment targets. In this study, we used histology and high-dimensional imaging to characterize fatal lung disease in Malawian adults with (n = 9) and without (n = 7) COVID-19, and we generated single-cell transcriptomics data from lung, blood and nasal cells. Data integration with other cohorts showed a conserved COVID-19 histopathological signature, driven by contrasting immune and inflammatory mechanisms: in US, European and Asian cohorts, by type I/III interferon (IFN) responses, particularly in blood-derived monocytes, and in the Malawian cohort, by response to IFN-γ in lung-resident macrophages. HIV status had minimal impact on histology or immunopathology. Our study provides a data resource and highlights the importance of studying the cellular mechanisms of disease in underrepresented populations, indicating shared and distinct targets for treatment.
Collapse
Affiliation(s)
- James Nyirenda
- School of Infection and Immunity, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
- Blantyre Malaria Project, Kamuzu University of Health Sciences, Blantyre, Malawi
- Malawi-Liverpool-Wellcome Programme, Kamuzu University of Health Sciences, Blantyre, Malawi
| | - Olympia M Hardy
- School of Infection and Immunity, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - João Da Silva Filho
- School of Infection and Immunity, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
- Universität Zürich, Institut für Parasitologie, Zurich, Switzerland
| | - Vanessa Herder
- MRC-University of Glasgow Centre for Virus Research, Glasgow, UK
| | - Charalampos Attipa
- School of Infection and Immunity, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
- Malawi-Liverpool-Wellcome Programme, Kamuzu University of Health Sciences, Blantyre, Malawi
- The Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, UK
- The Roslin Institute, University of Edinburgh, Edinburgh, UK
| | - Charles Ndovi
- School of Infection and Immunity, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
- Blantyre Malaria Project, Kamuzu University of Health Sciences, Blantyre, Malawi
- Malawi-Liverpool-Wellcome Programme, Kamuzu University of Health Sciences, Blantyre, Malawi
| | - Memory Siwombo
- Queen Elizabeth Central Hospital, Blantyre, Malawi
- Kamuzu University of Science of Health Sciences, Blantyre, Malawi
| | | | - Leticia Suwedi
- Malawi-Liverpool-Wellcome Programme, Kamuzu University of Health Sciences, Blantyre, Malawi
- International Public Health, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Georgios Ilia
- MRC-University of Glasgow Centre for Virus Research, Glasgow, UK
| | - Watipenge Nyasulu
- School of Infection and Immunity, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
- Blantyre Malaria Project, Kamuzu University of Health Sciences, Blantyre, Malawi
- Malawi-Liverpool-Wellcome Programme, Kamuzu University of Health Sciences, Blantyre, Malawi
| | - Thokozile Ngulube
- School of Infection and Immunity, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
- Malawi-Liverpool-Wellcome Programme, Kamuzu University of Health Sciences, Blantyre, Malawi
| | - Deborah Nyirenda
- Malawi-Liverpool-Wellcome Programme, Kamuzu University of Health Sciences, Blantyre, Malawi
- International Public Health, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Leonard Mvaya
- Malawi-Liverpool-Wellcome Programme, Kamuzu University of Health Sciences, Blantyre, Malawi
| | - Joseph Phiri
- Malawi-Liverpool-Wellcome Programme, Kamuzu University of Health Sciences, Blantyre, Malawi
| | - Dennis Chasweka
- Kamuzu University of Science of Health Sciences, Blantyre, Malawi
| | - Chisomo Eneya
- Kamuzu University of Science of Health Sciences, Blantyre, Malawi
| | | | - Chisomo Phiri
- Kamuzu University of Science of Health Sciences, Blantyre, Malawi
| | - Frank Ziwoya
- Kamuzu University of Science of Health Sciences, Blantyre, Malawi
| | - Abel Tembo
- Kamuzu University of Science of Health Sciences, Blantyre, Malawi
| | | | - Stanley Khoswe
- Kamuzu University of Science of Health Sciences, Blantyre, Malawi
| | - Peter Banda
- Queen Elizabeth Central Hospital, Blantyre, Malawi
- Kamuzu University of Science of Health Sciences, Blantyre, Malawi
| | - Ben Morton
- Malawi-Liverpool-Wellcome Programme, Kamuzu University of Health Sciences, Blantyre, Malawi
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Orla Hilton
- Department of Infectious Diseases, Imperial College London, London, UK
| | - Sarah Lawrence
- Department of Global Health and Pediatrics, University of Washington, Seattle, WA, USA
| | - Monique Freire Dos Reis
- Department of Education and Research, Oncology Control Centre of Amazonas State (FCECON), Manaus, Brazil
- Postgraduate Program in Tropical Medicine, University of Amazonas State, Manaus, Brazil
| | | | - Marcus Vinicius Guimaraes de Lacerda
- Tropical Medicine Foundation Dr. Heitor Vieira Dourado, Manaus, Brazil
- Institute Leônidas & Maria Deane, Fiocruz, Manaus, Brazil
- The University of Texas Medical Branch, Galveston, TX, USA
| | | | - Wuelton Marcelo Monteiro
- Postgraduate Program in Tropical Medicine, University of Amazonas State, Manaus, Brazil
- Tropical Medicine Foundation Dr. Heitor Vieira Dourado, Manaus, Brazil
| | - Luiz Carlos de Lima Ferreira
- Postgraduate Program in Tropical Medicine, University of Amazonas State, Manaus, Brazil
- Tropical Medicine Foundation Dr. Heitor Vieira Dourado, Manaus, Brazil
| | - Carla Johnson
- School of Infection and Immunity, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Dagmara McGuinness
- School of Infection and Immunity, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Kondwani Jambo
- Malawi-Liverpool-Wellcome Programme, Kamuzu University of Health Sciences, Blantyre, Malawi
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Michael Haley
- Division of Immunology, Immunity to Infection & Respiratory Medicine, Faculty of Biology, University of Manchester, Manchester, UK
| | | | | | - Donna M Denno
- Department of Global Health and Pediatrics, University of Washington, Seattle, WA, USA
| | - Wieger Voskuijl
- Queen Elizabeth Central Hospital, Blantyre, Malawi
- Kamuzu University of Science of Health Sciences, Blantyre, Malawi
- Department of Global Health, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | | | - Kayla G Barnes
- Malawi-Liverpool-Wellcome Programme, Kamuzu University of Health Sciences, Blantyre, Malawi
- Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool, UK
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Kevin Couper
- Division of Immunology, Immunity to Infection & Respiratory Medicine, Faculty of Biology, University of Manchester, Manchester, UK
| | - Matthias Marti
- School of Infection and Immunity, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, UK.
- Universität Zürich, Institut für Parasitologie, Zurich, Switzerland.
| | - Thomas D Otto
- School of Infection and Immunity, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, UK.
| | - Christopher A Moxon
- School of Infection and Immunity, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, UK.
- Blantyre Malaria Project, Kamuzu University of Health Sciences, Blantyre, Malawi.
- Malawi-Liverpool-Wellcome Programme, Kamuzu University of Health Sciences, Blantyre, Malawi.
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK.
- Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool, UK.
| |
Collapse
|
11
|
De Ponti FF, Liu Z, Scott CL. Understanding the complex macrophage landscape in MASLD. JHEP Rep 2024; 6:101196. [PMID: 39524202 PMCID: PMC11550213 DOI: 10.1016/j.jhepr.2024.101196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/07/2024] [Accepted: 08/14/2024] [Indexed: 11/16/2024] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) represents a spectrum of disease states ranging from simple steatosis to metabolic dysfunction-associated steatohepatitis (MASH), which can eventually lead to the development of cirrhosis and hepatocellular carcinoma. Macrophages have long been implicated in driving the progression from steatosis to end-stage disease, yet we still know relatively little about the precise involvement of these cells in MASLD progression and/or regression. Rather, there are a considerable number of conflicting reports regarding the precise roles of these cells. This confusion stems from the fact that, until recently, macrophages in the liver were considered a homogenous population. However, thanks to recent technological advances including multi-parameter flow cytometry, single-cell RNA sequencing and spatial proteogenomics, we now know that this is not the case. Rather hepatic macrophages, even in the healthy liver, are heterogenous, existing in multiple subsets with distinct transcriptional profiles and hence likely functions. This heterogeneity is even more prominent in MASLD, where the macrophage pool consists of multiple different subsets of resident and recruited cells. To probe the unique functions of these cells and determine if targeting macrophages may be a viable therapeutic strategy in MASLD, we first need to unravel this complexity and decipher which populations and/or activation states are present and what functions each of these may play in driving MASLD progression. In this review, we summarise recent advances in the field, highlighting what is currently known about the hepatic macrophage landscape in MASLD and the questions that remain to be tackled.
Collapse
Affiliation(s)
- Federico F. De Ponti
- Laboratory of Myeloid Cell Biology in Tissue Damage and Inflammation, VIB-UGent Center for Inflammation Research, Technologiepark-Zwijnaarde 71, Ghent 9052, Belgium
- Department of Biomedical Molecular Biology, Faculty of Science, Ghent University, Belgium
| | - Zhuangzhuang Liu
- Laboratory of Myeloid Cell Biology in Tissue Damage and Inflammation, VIB-UGent Center for Inflammation Research, Technologiepark-Zwijnaarde 71, Ghent 9052, Belgium
- Department of Biomedical Molecular Biology, Faculty of Science, Ghent University, Belgium
| | - Charlotte L. Scott
- Laboratory of Myeloid Cell Biology in Tissue Damage and Inflammation, VIB-UGent Center for Inflammation Research, Technologiepark-Zwijnaarde 71, Ghent 9052, Belgium
- Department of Biomedical Molecular Biology, Faculty of Science, Ghent University, Belgium
- Department of Chemical Sciences, Bernal Institute, University of Limerick, Castletroy, Co. Limerick, Ireland
| |
Collapse
|
12
|
Bonine N, Zanzani V, Van Hemelryk A, Vanneste B, Zwicker C, Thoné T, Roelandt S, Bekaert SL, Koster J, Janoueix-Lerosey I, Thirant C, Van Haver S, Roberts SS, Mus LM, De Wilde B, Van Roy N, Everaert C, Speleman F, Vermeirssen V, Scott CL, De Preter K. NBAtlas: A harmonized single-cell transcriptomic reference atlas of human neuroblastoma tumors. Cell Rep 2024; 43:114804. [PMID: 39368085 DOI: 10.1016/j.celrep.2024.114804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 06/11/2024] [Accepted: 09/12/2024] [Indexed: 10/07/2024] Open
Abstract
Neuroblastoma, a rare embryonic tumor arising from neural crest development, is responsible for 15% of pediatric cancer-related deaths. Recently, several single-cell transcriptome studies were performed on neuroblastoma patient samples to investigate the cell of origin and tumor heterogeneity. However, these individual studies involved a small number of tumors and cells, limiting the conclusions that could be drawn. To overcome this limitation, we integrated seven single-cell or single-nucleus datasets into a harmonized cell atlas covering 362,991 cells across 61 patients. We use this atlas to decipher the transcriptional landscape of neuroblastoma at single-cell resolution, revealing associations between transcriptomic profiles and clinical outcomes within the tumor compartment. In addition, we characterize the complex immune-cell landscape and uncover considerable heterogeneity among tumor-associated macrophages. Finally, we showcase the utility of our atlas as a resource by expanding it with additional data and using it as a reference for data-driven cell-type annotation.
Collapse
Affiliation(s)
- Noah Bonine
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium; VIB-UGent Center for Medical Biotechnology, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Vittorio Zanzani
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium; VIB-UGent Center for Medical Biotechnology, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium; Laboratory for Computational Biology, Integromics and Gene Regulation (CBIGR), Ghent University, Ghent, Belgium
| | - Annelies Van Hemelryk
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium; Laboratory of Myeloid Cell Biology in Tissue Damage and Inflammation, VIB-UGent Center for Inflammation Research, Technologiepark-Zwijnaarde 71, 9052 Ghent, Belgium
| | - Bavo Vanneste
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium; Laboratory of Myeloid Cell Biology in Tissue Damage and Inflammation, VIB-UGent Center for Inflammation Research, Technologiepark-Zwijnaarde 71, 9052 Ghent, Belgium
| | - Christian Zwicker
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium; Laboratory of Myeloid Cell Biology in Tissue Damage and Inflammation, VIB-UGent Center for Inflammation Research, Technologiepark-Zwijnaarde 71, 9052 Ghent, Belgium
| | - Tinne Thoné
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium; Laboratory of Myeloid Cell Biology in Tissue Damage and Inflammation, VIB-UGent Center for Inflammation Research, Technologiepark-Zwijnaarde 71, 9052 Ghent, Belgium
| | - Sofie Roelandt
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium; VIB-UGent Center for Medical Biotechnology, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Sarah-Lee Bekaert
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Jan Koster
- Amsterdam UMC Location University of Amsterdam, Center for Experimental and Molecular Medicine, Cancer Center Amsterdam, Amsterdam, the Netherlands
| | - Isabelle Janoueix-Lerosey
- Inserm U830, Diversity and Plasticity of Childhood Tumors Lab, PSL Research University, Institut Curie Research Center, Paris, France
| | - Cécile Thirant
- Inserm U830, Diversity and Plasticity of Childhood Tumors Lab, PSL Research University, Institut Curie Research Center, Paris, France
| | - Stéphane Van Haver
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent, Belgium; Tow Center for Developmental Oncology, Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Stephen S Roberts
- Department of Pediatrics, Oregon Health & Science University, Portland, OR, USA
| | - Liselot M Mus
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Bram De Wilde
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Nadine Van Roy
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Celine Everaert
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium; VIB-UGent Center for Medical Biotechnology, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Frank Speleman
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Vanessa Vermeirssen
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium; Laboratory for Computational Biology, Integromics and Gene Regulation (CBIGR), Ghent University, Ghent, Belgium
| | - Charlotte L Scott
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium; Laboratory of Myeloid Cell Biology in Tissue Damage and Inflammation, VIB-UGent Center for Inflammation Research, Technologiepark-Zwijnaarde 71, 9052 Ghent, Belgium.
| | - Katleen De Preter
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium; VIB-UGent Center for Medical Biotechnology, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent, Belgium.
| |
Collapse
|
13
|
Zhong F, Song L, li H, Liu J, Liu C, Guo Q, Liu W. Multi-omics evaluation of the prognostic value and immune signature of FCN1 in pan-cancer and its relationship with proliferation and apoptosis in acute myeloid leukemia. Front Genet 2024; 15:1425075. [PMID: 39139822 PMCID: PMC11320419 DOI: 10.3389/fgene.2024.1425075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 07/19/2024] [Indexed: 08/15/2024] Open
Abstract
Background The FCN1 gene encodes the ficolin-1 protein, implicated in the pathogenesis of various diseases, though its precise role in tumorigenesis remains elusive. This study aims to elucidate the prognostic significance, immune signature, and treatment response associated with FCN1 across diverse cancer types. Methods Employing multi-omics data, we conducted a comprehensive assessment, encompassing tissue-specific and single-cell-specific expression disparities, pan-cancer expression patterns, epigenetic modifications affecting FCN1 expression, and the immune microenvironment. Our investigation primarily focused on the clinical prognostic attributes, immune profiles, potential molecular mechanisms, and candidate therapeutic agents concerning FCN1 and acute myeloid leukemia (AML). Additionally, in vitro experiments were performed to scrutinize the impact of FCN1 knockdown on cell proliferation, apoptosis, and cell cycle dynamics within the AML cell line U937 and NB4. Results FCN1 expression exhibits widespread dysregulation across various cancers. Through both univariate and multivariate Cox regression analyses, FCN1 has been identified as an independent prognostic indicator for AML. Immunological investigations elucidate FCN1's involvement in modulating inflammatory responses within the tumor microenvironment and its correlation with treatment efficacy. Remarkably, the deletion of FCN1 influences the proliferation, apoptosis, and cell cycle dynamics of U937 cells and NB4 cells. Conclusion These findings underscore FCN1 as a promising pan-cancer biomarker indicative of macrophage infiltration, intimately linked with the tumor microenvironment and treatment responsiveness, and pivotal for cellular mechanisms within AML cell lines.
Collapse
Affiliation(s)
- Fangfang Zhong
- Department of Pediatrics, Children Hematological Oncology and Birth Defects Laboratory, The Affiliated Hospital of Southwest Medical University, Sichuan Clinical Research Center for Birth Defects, Luzhou, Sichuan, China
| | - Lijun Song
- Department of Pediatrics, Children Hematological Oncology and Birth Defects Laboratory, The Affiliated Hospital of Southwest Medical University, Sichuan Clinical Research Center for Birth Defects, Luzhou, Sichuan, China
| | - Hao li
- Department of Pediatrics, Hejiang County People’s Hospital, Luzhou, Sichuan, China
| | - Jing Liu
- Department of Pediatrics, Children Hematological Oncology and Birth Defects Laboratory, The Affiliated Hospital of Southwest Medical University, Sichuan Clinical Research Center for Birth Defects, Luzhou, Sichuan, China
| | - Chunyan Liu
- Department of Pediatrics, Children Hematological Oncology and Birth Defects Laboratory, The Affiliated Hospital of Southwest Medical University, Sichuan Clinical Research Center for Birth Defects, Luzhou, Sichuan, China
| | - Qulian Guo
- Department of Pediatrics, Children Hematological Oncology and Birth Defects Laboratory, The Affiliated Hospital of Southwest Medical University, Sichuan Clinical Research Center for Birth Defects, Luzhou, Sichuan, China
| | - Wenjun Liu
- Department of Pediatrics, Children Hematological Oncology and Birth Defects Laboratory, The Affiliated Hospital of Southwest Medical University, Sichuan Clinical Research Center for Birth Defects, Luzhou, Sichuan, China
| |
Collapse
|
14
|
Martin CS, Crastin A, Sagmeister MS, Kalirai MS, Turner JD, MacDonald L, Kurowska-Stolarska M, Scheel-Toellner D, Taylor AE, Gilligan LC, Storbeck K, Price M, Gorvin CM, A F, Mahida R, Clark AR, Jones SW, Raza K, Hewison M, Hardy RS. Inflammation dynamically regulates steroid hormone metabolism and action within macrophages in rheumatoid arthritis. J Autoimmun 2024; 147:103263. [PMID: 38851089 DOI: 10.1016/j.jaut.2024.103263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/08/2024] [Accepted: 05/21/2024] [Indexed: 06/10/2024]
Abstract
RATIONALE In inflammatory diseases such as rheumatoid arthritis (RA), steroid metabolism is a central component mediating the actions of immuno-modulatory glucocorticoids and sex steroids. However, the regulation and function of cellular steroid metabolism within key leukocyte populations such as macrophages remain poorly defined. In this study, the inflammatory regulation of global steroid metabolism was assessed in RA macrophages. METHODS Bulk RNA-seq data from RA synovial macrophages was used to assess transcripts encoding key enzymes in steroid metabolism and signalling. Changes in metabolism were assessed in synovial fluids, correlated to measures of disease activity and functionally validated in primary macrophage cultures. RESULTS RNA-seq revealed a unique pattern of differentially expressed genes, including changes in genes encoding the enzymes 11β-HSD1, SRD5A1, AKR1C2 and AKR1C3. These correlated with disease activity, favouring increased glucocorticoid and androgen levels. Synovial fluid 11β-HSD1 activity correlated with local inflammatory mediators (TNFα, IL-6, IL-17), whilst 11β-HSD1, SRD5A1 and AKR1C3 activity correlated with systemic measures of disease and patient pain (ESR, DAS28 ESR, global disease activity). Changes in enzyme activity were evident in inflammatory activated macrophages in vitro and revealed a novel androgen activating role for 11β-HSD1. Together, increased glucocorticoids and androgens were able to suppress inflammation in macrophages and fibroblast-like-synoviocytes. CONCLUSIONS This study underscores the significant increase in androgen and glucocorticoid activation within inflammatory polarized macrophages of the synovium, contributing to local suppression of inflammation. The diminished profile of inactive steroid precursors in postmenopausal women may contribute to disturbances in this process, leading to increased disease incidence and severity.
Collapse
Affiliation(s)
- C S Martin
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK; Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, UK
| | - A Crastin
- School of Biomedical Sciences. Institute of Clinical Sciences, University of Birmingham, Birmingham, UK
| | - M S Sagmeister
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, UK
| | - M S Kalirai
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, UK
| | - J D Turner
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
| | - L MacDonald
- Centre of Immunobiology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, UK
| | - M Kurowska-Stolarska
- Centre of Immunobiology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, UK
| | - D Scheel-Toellner
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
| | - A E Taylor
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, UK
| | - L C Gilligan
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, UK
| | - K Storbeck
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, UK; Department of Biochemistry, Stellenbosch University, Stellenbosch, South Africa
| | - M Price
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, UK
| | - C M Gorvin
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, UK
| | - Filer A
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
| | - R Mahida
- University of Birmingham, Birmingham, West Midlands Uk
| | - A R Clark
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
| | - S W Jones
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK; School of Biomedical Sciences. Institute of Clinical Sciences, University of Birmingham, Birmingham, UK
| | - K Raza
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK; MRC Arthritis Research UK Centre for Musculoskeletal Ageing Research, University of Birmingham, Birmingham, UK; Sandwell and West Birmingham Hospitals NHS Trust, Birmingham, UK
| | - M Hewison
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, UK
| | - R S Hardy
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK; Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, UK; School of Biomedical Sciences. Institute of Clinical Sciences, University of Birmingham, Birmingham, UK; MRC Arthritis Research UK Centre for Musculoskeletal Ageing Research, University of Birmingham, Birmingham, UK.
| |
Collapse
|
15
|
Vajdi M, Karimi A, Hassanizadeh S, Farhangi MA, Bagherniya M, Askari G, Roufogalis BD, Davies NM, Sahebkar A. Effect of polyphenols against complications of COVID-19: current evidence and potential efficacy. Pharmacol Rep 2024; 76:307-327. [PMID: 38498260 DOI: 10.1007/s43440-024-00585-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 03/01/2024] [Accepted: 03/03/2024] [Indexed: 03/20/2024]
Abstract
The COVID-19 pandemic that started in 2019 and resulted in significant morbidity and mortality continues to be a significant global health challenge, characterized by inflammation, oxidative stress, and immune system dysfunction.. Developing therapies for preventing or treating COVID-19 remains an important goal for pharmacology and drug development research. Polyphenols are effective against various viral infections and can be extracted and isolated from plants without losing their therapeutic potential. Researchers have developed methods for separating and isolating polyphenols from complex matrices. Polyphenols are effective in treating common viral infections, including COVID-19, and can also boost immunity. Polyphenolic-based antiviral medications can mitigate SARS-CoV-2 enzymes vital to virus replication and infection. Individual polyphenolic triterpenoids, flavonoids, anthraquinonoids, and tannins may also inhibit the SARS-CoV-2 protease. Polyphenol pharmacophore structures identified to date can explain their action and lead to the design of novel anti-COVID-19 compounds. Polyphenol-containing mixtures offer the advantages of a well-recognized safety profile with few known severe side effects. However, studies to date are limited, and further animal studies and randomized controlled trials are needed in future studies. The purpose of this study was to review and present the latest findings on the therapeutic impact of plant-derived polyphenols on COVID-19 infection and its complications. Exploring alternative approaches to traditional therapies could aid in developing novel drugs and remedies against coronavirus infection.
Collapse
Affiliation(s)
- Mahdi Vajdi
- Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Arash Karimi
- Traditional Medicine and Hydrotherapy Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Shirin Hassanizadeh
- Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mahdieh Abbasalizad Farhangi
- Department of Community Nutrition, Faculty of Nutrition and Food Science, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Bagherniya
- Department of Community Nutrition, Food Security Research Center, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
- Anesthesia and Critical Care Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Gholamreza Askari
- Department of Community Nutrition, Food Security Research Center, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
- Anesthesia and Critical Care Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Basil D Roufogalis
- Discipline of Pharmacology, School of Medical Sciences, University of Sydney, Sydney, NSW, Australia
- NICM Health Research Institute, Western Sydney University, Penrith, NSW, Australia
| | - Neal M Davies
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, T6G 2P5, Canada
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
16
|
Hu X, Zhang Z, Long L, Gu M, Chen W, Pan B, Wu X, Wang C, Li C, Zheng L, Sheng P. Deconvolution of synovial myeloid cell subsets across pathotypes and role of COL3A1+ macrophages in rheumatoid arthritis remission. Front Immunol 2024; 15:1307748. [PMID: 38601143 PMCID: PMC11005452 DOI: 10.3389/fimmu.2024.1307748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 03/08/2024] [Indexed: 04/12/2024] Open
Abstract
Background Monocyte/macrophage (Mo/Mp) is a critical cell population involved in immune modulation of rheumatoid synovitis (RA) across different pathotypes. This study aims to investigate the contribution of Mo/Mp clusters to RA activity, and the biological function of particular subtypes in RA remission. Methods We integrated single-cell RNA sequencing datasets from 4 published and 1 in-house studies using Liger selected by comparison. We estimated the abundance of Mo/Mp subtypes in bulk RNA-seq data from the 81 patients of the Pathobiology of Early Arthritis Cohort (PEAC) using deconvolution analysis. Correlations between Mo/Mp subtypes and RA clinical metrics were assessed. A particular cell type was identified using multicolor immunofluorescence and flow cytometry in vivo and successfully induced from a cell line in vitro. Potential immune modulation function of it was performed using immunohistochemical staining, adhesion assay, and RT-qPCR. Results We identified 8 Mo/Mp clusters. As a particular subtype among them, COL3A1+ Mp (CD68+, COL3A1+, ACTA2-) enriched in myeloid pathotype and negatively correlated with RA severity metrics in all pathotypes. Flow cytometry and multicolor immunofluorescence evidenced the enrichment and M2-like phenotype of COL3A1+ Mp in the myeloid pathotype. Further assays suggested that COL3A1+ Mp potentially attenuates RA severity via expressing anti-inflammatory cytokines, enhancing Mp adhesion, and forming a physical barrier at the synovial lining. Conclusion This study reported unexplored associations between different pathologies and myeloid cell subtypes. We also identified a fibroblast-and-M2-like cluster named COL3A1+ Mp, which potentially contributes to synovial immune homeostasis. Targeting the development of COL3A1+ Mp may hold promise for inducing RA remission.
Collapse
Affiliation(s)
- Xuantao Hu
- Department of Joint Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Ziji Zhang
- Department of Joint Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Lingli Long
- Research Center of Translational Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Minghu Gu
- Department of Joint Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Weishen Chen
- Department of Joint Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Baiqi Pan
- Department of Joint Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xiaoyu Wu
- Department of Joint Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Chao Wang
- Department of Joint Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Chengxin Li
- Department of Joint Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Linli Zheng
- Department of Joint Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Puyi Sheng
- Department of Joint Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
17
|
Rizo-Téllez SA, Filep JG. Beyond host defense and tissue injury: the emerging role of neutrophils in tissue repair. Am J Physiol Cell Physiol 2024; 326:C661-C683. [PMID: 38189129 PMCID: PMC11193466 DOI: 10.1152/ajpcell.00652.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/31/2023] [Accepted: 12/31/2023] [Indexed: 01/09/2024]
Abstract
Neutrophils, the most abundant immune cells in human blood, play a fundamental role in host defense against invading pathogens and tissue injury. Neutrophils carry potentially lethal weaponry to the affected site. Inadvertent and perpetual neutrophil activation could lead to nonresolving inflammation and tissue damage, a unifying mechanism of many common diseases. The prevailing view emphasizes the dichotomy of their function, host defense versus tissue damage. However, tissue injury may also persist during neutropenia, which is associated with disease severity and poor outcome. Numerous studies highlight neutrophil phenotypic heterogeneity and functional versatility, indicating that neutrophils play more complex roles than previously thought. Emerging evidence indicates that neutrophils actively orchestrate resolution of inflammation and tissue repair and facilitate return to homeostasis. Thus, neutrophils mobilize multiple mechanisms to limit the inflammatory reaction, assure debris removal, matrix remodeling, cytokine scavenging, macrophage reprogramming, and angiogenesis. In this review, we will summarize the homeostatic and tissue-reparative functions and mechanisms of neutrophils across organs. We will also discuss how the healing power of neutrophils might be harnessed to develop novel resolution and repair-promoting therapies while maintaining their defense functions.
Collapse
Affiliation(s)
- Salma A Rizo-Téllez
- Department of Pathology and Cell Biology, University of Montreal and Research Center, Maisonneuve-Rosemont Hospital, Montreal, Quebec, Canada
| | - János G Filep
- Department of Pathology and Cell Biology, University of Montreal and Research Center, Maisonneuve-Rosemont Hospital, Montreal, Quebec, Canada
| |
Collapse
|
18
|
Jiang Y, Yu W, Hu T, Peng H, Hu F, Yuan Y, Liu X, Lai S, Zhou J, Dong X. Unveiling macrophage diversity in myocardial ischemia-reperfusion injury: identification of a distinct lipid-associated macrophage subset. Front Immunol 2024; 15:1335333. [PMID: 38449872 PMCID: PMC10915075 DOI: 10.3389/fimmu.2024.1335333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 01/30/2024] [Indexed: 03/08/2024] Open
Abstract
Background and objective Macrophages play a crucial and dichotomous role cardiac repair following myocardial ischemia-reperfusion, as they can both facilitate tissue healing and contribute to injury. This duality is intricately linked to environmental factors, and the identification of macrophage subtypes within the context of myocardial ischemia-reperfusion injury (MIRI) may offer insights for the development of more precise intervention strategies. Methods Specific marker genes were used to identify macrophage subtypes in GSE227088 (mouse single-cell RNA sequencing dataset). Genome Set Enrichment Analysis (GSEA) was further employed to validate the identified LAM subtypes. Trajectory analysis and single-cell regulatory network inference were executed using the R packages Monocle2 and SCENIC, respectively. The conservation of LAM was verified using human ischemic cardiomyopathy heart failure samples from the GSE145154 (human single-cell RNA sequencing dataset). Fluorescent homologous double-labeling experiments were performed to determine the spatial localization of LAM-tagged gene expression in the MIRI mouse model. Results In this study, single-cell RNA sequencing (scRNA-seq) was employed to investigate the cellular landscape in ischemia-reperfusion injury (IRI). Macrophage subtypes, including a novel Lipid-Associated Macrophage (LAM) subtype characterized by high expression of Spp1, Trem2, and other genes, were identified. Enrichment and Progeny pathway analyses highlighted the distinctive functional role of the SPP1+ LAM subtype, particularly in lipid metabolism and the regulation of the MAPK pathway. Pseudotime analysis revealed the dynamic differentiation of macrophage subtypes during IRI, with the activation of pro-inflammatory pathways in specific clusters. Transcription factor analysis using SCENIC identified key regulators associated with macrophage differentiation. Furthermore, validation in human samples confirmed the presence of SPP1+ LAM. Co-staining experiments provided definitive evidence of LAM marker expression in the infarct zone. These findings shed light on the role of LAM in IRI and its potential as a therapeutic target. Conclusion In conclusion, the study identifies SPP1+ LAM macrophages in ischemia-reperfusion injury and highlights their potential in cardiac remodeling.
Collapse
Affiliation(s)
- Ying Jiang
- Department of Cardiovascular Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Wenpeng Yu
- Department of Cardiovascular Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Tie Hu
- Department of Cardiovascular Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Hanzhi Peng
- Department of Cardiovascular Surgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Fajia Hu
- Department of Cardiovascular Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Yong Yuan
- Department of Cardiovascular Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Xufeng Liu
- Department of Haematology, Ganzhou People’s Hospital, Ganzhou, China
| | - Songqing Lai
- Department of Cardiovascular Surgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Jianliang Zhou
- Department of Cardiovascular Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xiao Dong
- Department of Cardiovascular Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| |
Collapse
|
19
|
Ng MTH, Borst R, Gacaferi H, Davidson S, Ackerman JE, Johnson PA, Machado CC, Reekie I, Attar M, Windell D, Kurowska-Stolarska M, MacDonald L, Alivernini S, Garvilles M, Jansen K, Bhalla A, Lee A, Charlesworth J, Chowdhury R, Klenerman P, Powell K, Hackstein CP, Furniss D, Rees J, Gilroy D, Coles M, Carr AJ, Sansom SN, Buckley CD, Dakin SG. A single cell atlas of frozen shoulder capsule identifies features associated with inflammatory fibrosis resolution. Nat Commun 2024; 15:1394. [PMID: 38374174 PMCID: PMC10876649 DOI: 10.1038/s41467-024-45341-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 01/19/2024] [Indexed: 02/21/2024] Open
Abstract
Frozen shoulder is a spontaneously self-resolving chronic inflammatory fibrotic human disease, which distinguishes the condition from most fibrotic diseases that are progressive and irreversible. Using single-cell analysis, we identify pro-inflammatory MERTKlowCD48+ macrophages and MERTK + LYVE1 + MRC1+ macrophages enriched for negative regulators of inflammation which co-exist in frozen shoulder capsule tissues. Micro-cultures of patient-derived cells identify integrin-mediated cell-matrix interactions between MERTK+ macrophages and pro-resolving DKK3+ and POSTN+ fibroblasts, suggesting that matrix remodelling plays a role in frozen shoulder resolution. Cross-tissue analysis reveals a shared gene expression cassette between shoulder capsule MERTK+ macrophages and a respective population enriched in synovial tissues of rheumatoid arthritis patients in disease remission, supporting the concept that MERTK+ macrophages mediate resolution of inflammation and fibrosis. Single-cell transcriptomic profiling and spatial analysis of human foetal shoulder tissues identify MERTK + LYVE1 + MRC1+ macrophages and DKK3+ and POSTN+ fibroblast populations analogous to those in frozen shoulder, suggesting that the template to resolve fibrosis is established during shoulder development. Crosstalk between MerTK+ macrophages and pro-resolving DKK3+ and POSTN+ fibroblasts could facilitate resolution of frozen shoulder, providing a basis for potential therapeutic resolution of persistent fibrotic diseases.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Caio C Machado
- University of Oxford, Oxford, UK
- University of Sao Paulo, Sao Paulo, Brazil
| | | | | | | | | | - Lucy MacDonald
- Research into Inflammatory Arthritis Centre Versus Arthritis (RACE), University of Glasgow, Glasgow, UK
| | - Stefano Alivernini
- Fondazione Policlinico Universitario Agostino Gemelli - IRCCS, Rome, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Luo L, Jiang M, Xiong Y, Xiong A, Zhang L, Wu D, Liu Y, Ran Q, Liu J, Zhang Y, Li J, He X, Wang J, Li G. Fine particulate matter 2.5 induces susceptibility to Pseudomonas aeruginosa infection via expansion of PD-L1 high neutrophils in mice. Respir Res 2024; 25:90. [PMID: 38355515 PMCID: PMC10865610 DOI: 10.1186/s12931-023-02640-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 12/15/2023] [Indexed: 02/16/2024] Open
Abstract
BACKGROUND Exposure to PM2.5 has been implicated in a range of detrimental health effects, particularly affecting the respiratory system. However, the precise underlying mechanisms remain elusive. METHODS To address this objective, we collected ambient PM2.5 and administered intranasal challenges to mice, followed by single-cell RNA sequencing (scRNA-seq) to unravel the heterogeneity of neutrophils and unveil their gene expression profiles. Flow cytometry and immunofluorescence staining were subsequently conducted to validate the obtained results. Furthermore, we assessed the phagocytic potential of neutrophils upon PM2.5 exposure using gene analysis of phagocytosis signatures and bacterial uptake assays. Additionally, we utilized a mouse pneumonia model to evaluate the susceptibility of PM2.5-exposed mice to Pseudomonas aeruginosa infection. RESULTS Our study revealed a significant increase in neutrophil recruitment within the lungs of PM2.5-exposed mice, with subclustering of neutrophils uncovering subsets with distinct gene expression profiles. Notably, exposure to PM2.5 was associated with an expansion of PD-L1high neutrophils, which exhibited impaired phagocytic function dependent upon PD-L1 expression. Furthermore, PM2.5 exposure was found to increase the susceptibility of mice to Pseudomonas aeruginosa, due in part to increased PD-L1 expression on neutrophils. Importantly, monoclonal antibody targeting of PD-L1 significantly reduced bacterial burden, dissemination, and lung inflammation in PM2.5-exposed mice upon Pseudomonas aeruginosa infection. CONCLUSIONS Our study suggests that PM2.5 exposure promotes expansion of PD-L1high neutrophils with impaired phagocytic function in mouse lungs, contributing to increased vulnerability to bacterial infection, and therefore targeting PD-L1 may be a therapeutic strategy for reducing the harmful effects of PM2.5 exposure on the immune system.
Collapse
Affiliation(s)
- Li Luo
- Laboratory of Allergy and Precision Medicine, Department of Pulmonary and Critical Care Medicine, Chengdu Institute of Respiratory Health, The Third People's Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chengdu, 610031, China
| | - Manling Jiang
- Laboratory of Allergy and Precision Medicine, Department of Pulmonary and Critical Care Medicine, Chengdu Institute of Respiratory Health, The Third People's Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chengdu, 610031, China
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science & Technology, Macao Special Administrative Region, Taipa, China
| | - Ying Xiong
- Department of Pulmonary and Critical Care Medicine, Sichuan Friendship Hospital, Chengdu, China
| | - Anying Xiong
- Laboratory of Allergy and Precision Medicine, Department of Pulmonary and Critical Care Medicine, Chengdu Institute of Respiratory Health, The Third People's Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chengdu, 610031, China
| | - Lei Zhang
- Laboratory of Allergy and Precision Medicine, Department of Pulmonary and Critical Care Medicine, Chengdu Institute of Respiratory Health, The Third People's Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chengdu, 610031, China
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science & Technology, Macao Special Administrative Region, Taipa, China
| | - Dehong Wu
- Laboratory of Allergy and Precision Medicine, Department of Pulmonary and Critical Care Medicine, Chengdu Institute of Respiratory Health, The Third People's Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chengdu, 610031, China
| | - Yao Liu
- Laboratory of Allergy and Precision Medicine, Department of Pulmonary and Critical Care Medicine, Chengdu Institute of Respiratory Health, The Third People's Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chengdu, 610031, China
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science & Technology, Macao Special Administrative Region, Taipa, China
| | - Qin Ran
- Laboratory of Allergy and Precision Medicine, Department of Pulmonary and Critical Care Medicine, Chengdu Institute of Respiratory Health, The Third People's Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chengdu, 610031, China
| | - Jiliu Liu
- Laboratory of Allergy and Precision Medicine, Department of Pulmonary and Critical Care Medicine, Chengdu Institute of Respiratory Health, The Third People's Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chengdu, 610031, China
| | - Yi Zhang
- Laboratory of Allergy and Precision Medicine, Department of Pulmonary and Critical Care Medicine, Chengdu Institute of Respiratory Health, The Third People's Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chengdu, 610031, China
| | - Jiahuan Li
- Laboratory of Allergy and Precision Medicine, Department of Pulmonary and Critical Care Medicine, Chengdu Institute of Respiratory Health, The Third People's Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chengdu, 610031, China
- North Sichuan Medical College, Nanchong, China
| | - Xiang He
- Laboratory of Allergy and Precision Medicine, Department of Pulmonary and Critical Care Medicine, Chengdu Institute of Respiratory Health, The Third People's Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chengdu, 610031, China.
| | - Junyi Wang
- Laboratory of Allergy and Precision Medicine, Department of Pulmonary and Critical Care Medicine, Chengdu Institute of Respiratory Health, The Third People's Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chengdu, 610031, China.
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science & Technology, Macao Special Administrative Region, Taipa, China.
| | - Guoping Li
- Laboratory of Allergy and Precision Medicine, Department of Pulmonary and Critical Care Medicine, Chengdu Institute of Respiratory Health, The Third People's Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chengdu, 610031, China.
| |
Collapse
|
21
|
Jia Q, Ouyang Y, Yang Y, Yao S, Chen X, Hu Z. Osteopontin: A Novel Therapeutic Target for Respiratory Diseases. Lung 2024; 202:25-39. [PMID: 38060060 DOI: 10.1007/s00408-023-00665-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 11/22/2023] [Indexed: 12/08/2023]
Abstract
Osteopontin (OPN) is a multifunctional phosphorylated protein that is involved in physiological and pathological events. Emerging evidence suggests that OPN also plays a critical role in the pathogenesis of respiratory diseases. OPN can be produced and secreted by various cell types in lungs and overexpression of OPN has been found in acute lung injury/acute respiratory distress syndrome (ALI/ARDS), pulmonary hypertension (PH), pulmonary fibrosis diseases, lung cancer, lung infection, chronic obstructive pulmonary disease (COPD), and asthma. OPN exerts diverse effects on the inflammatory response, immune cell activation, fibrosis and tissue remodeling, and tumorigenesis of these respiratory diseases, and genetic and pharmacological moudulation of OPN exerts therapeutic effects in the treatment of respiratory diseases. In this review, we summarize the recent evidence of multifaceted roles and underlying mechanisms of OPN in these respiratory diseases, and targeting OPN appears to be a potential therapeutic intervention for these diseases.
Collapse
Affiliation(s)
- Qi Jia
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Key Laboratory of Anesthesiology and Resuscitation, Huazhong University of Science and Technology, Ministry of Education, Wuhan, 430022, China
| | - Yeling Ouyang
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Key Laboratory of Anesthesiology and Resuscitation, Huazhong University of Science and Technology, Ministry of Education, Wuhan, 430022, China
| | - Yiyi Yang
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Key Laboratory of Anesthesiology and Resuscitation, Huazhong University of Science and Technology, Ministry of Education, Wuhan, 430022, China
| | - Shanglong Yao
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Key Laboratory of Anesthesiology and Resuscitation, Huazhong University of Science and Technology, Ministry of Education, Wuhan, 430022, China
| | - Xiangdong Chen
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Key Laboratory of Anesthesiology and Resuscitation, Huazhong University of Science and Technology, Ministry of Education, Wuhan, 430022, China
| | - Zhiqiang Hu
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Key Laboratory of Anesthesiology and Resuscitation, Huazhong University of Science and Technology, Ministry of Education, Wuhan, 430022, China.
| |
Collapse
|
22
|
Pavelić E, Glavaš Weinberger D, Čemerin M, Rod E, Primorac D. Diagnostic considerations in the clinical management of sudden swelling of the knee: a case report and review of the literature. J Med Case Rep 2024; 18:35. [PMID: 38281947 PMCID: PMC10823606 DOI: 10.1186/s13256-023-04336-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 12/24/2023] [Indexed: 01/30/2024] Open
Abstract
BACKGROUND Reactive arthritis and septic arthritis rarely present concomitantly in the same joint and patient. Reactive arthritis presenting after coronavirus disease 2019 is also exceedingly rare, with less than 30 cases reported thus far. Less common pathogens such as Clostridium difficile have been reported to cause reactive arthritis, especially in patients with a positive human leukocyte antigen B27, and therefore should be considered in diagnostic algorithms. The aim of this case report is to highlight the difficulties and precautions in discerning and diagnosing patients presenting with sudden swelling of the knee. CASE PRESENTATION We report the case of a 70-year-old Caucasian male with a recent history of coronavirus disease 2019 upper respiratory infection and diarrhea and negating trauma, who presented with a swollen and painful knee. Pain and swelling worsened and inflammatory parameters increased after an intraarticular corticosteroid injection. The patient was therefore treated with arthroscopic lavage and intravenous antibiotics for suspected septic arthritis. Synovial fluid and synovium samples were taken and sent for microbiological analysis. Synovial fluid cytology showed increased leukocytes at 10,980 × 106/L, while polymerase chain reaction and cultures came back sterile. Clostridium difficile toxin was later detected from a stool sample and the patient was treated with oral vancomycin. The patient was tested for the presence of human leukocyte antigen B27, which was positive. We present a review of the literature about the challenges of distinguishing septic from reactive arthritis, and about the mechanisms that predispose certain patients to this rheumatological disease. CONCLUSIONS It is still a challenge to differentiate between septic and reactive arthritis of the knee, and it is even more challenging to identify the exact cause of reactive arthritis. This case report of a human leukocyte antigen-B27-positive patient highlights the necessity of contemplating different, less common causes of a swollen knee joint as a differential diagnosis of an apparent septic infection, especially in the coronavirus disease 2019 era. Treating the patient for septic arthritis prevented any possible complications of such a condition, while treating the C. difficile infection contributed to the substantial relief of symptoms.
Collapse
Affiliation(s)
- Eduard Pavelić
- St. Catherine Specialty Hospital, Ulica Kneza Branimira 71E, Zagreb, Croatia.
- Department of Orthopedics and Traumatology, St. Catherine Specialty Hospital, Ulica Kneza Branimira 71E, 10000, Zagreb, Croatia.
| | | | - Martin Čemerin
- St. Catherine Specialty Hospital, Ulica Kneza Branimira 71E, Zagreb, Croatia
| | - Eduard Rod
- St. Catherine Specialty Hospital, Ulica Kneza Branimira 71E, Zagreb, Croatia
- Department of Orthopedics and Traumatology, St. Catherine Specialty Hospital, Ulica Kneza Branimira 71E, 10000, Zagreb, Croatia
| | - Dragan Primorac
- St. Catherine Specialty Hospital, Ulica Kneza Branimira 71E, Zagreb, Croatia
- Medical School, University of Split, Šoltanska Ulica 2, Split, Croatia
- Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, Ulica Josipa Huttlera 4, Osijek, Croatia
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, Crkvena Ulica 21, Osijek, Croatia
- Medical School, University of Rijeka, Ulica braće Branchetta 20/1, Rijeka, Croatia
- Medical School REGIOMED, Gustav-Hirschfeld-Ring 3, Coburg, Germany
- Eberly College of Science, The Pennsylvania State University, 517 Thomas Building, University Park, PA, USA
- The Henry C. Lee College of Criminal Justice and Forensic Sciences, University of New Haven, 300 Boston Post Road, West Haven, CT, USA
| |
Collapse
|
23
|
Choi S, Lee J, Kim S, Lee YW, Kim GC, Hong SM, An SH, Noh H, Kim KE, On D, Lee SG, Jang HJ, Kim SH, Kim J, Seo JS, Kim JJ, Park IH, Oh J, Kim DJ, Yoon JH, Seok SH, Lee YJ, Kim SY, Kim YB, Hwang JY, Lee HJ, Kim HB, Park JW, Yun JW, Shin JS, Seo JY, Nam KT, Choi KS, Kwon HK, Lee HY, Kim JK, Seong JK. A longitudinal molecular and cellular lung atlas of lethal SARS-CoV-2 infection in K18-hACE2 transgenic mice. EBioMedicine 2024; 99:104932. [PMID: 38118400 PMCID: PMC10772566 DOI: 10.1016/j.ebiom.2023.104932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/05/2023] [Accepted: 12/06/2023] [Indexed: 12/22/2023] Open
Abstract
BACKGROUND The global pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has led to approximately 500 million cases and 6 million deaths worldwide. Previous investigations into the pathophysiology of SARS-CoV-2 primarily focused on peripheral blood mononuclear cells from patients, lacking detailed mechanistic insights into the virus's impact on inflamed tissue. Existing animal models, such as hamster and ferret, do not faithfully replicate the severe SARS-CoV-2 infection seen in patients, underscoring the need for more relevant animal system-based research. METHODS In this study, we employed single-cell RNA sequencing (scRNA-seq) with lung tissues from K18-hACE2 transgenic (TG) mice during SARS-CoV-2 infection. This approach allowed for a comprehensive examination of the molecular and cellular responses to the virus in lung tissue. FINDINGS Upon SARS-CoV-2 infection, K18-hACE2 TG mice exhibited severe lung pathologies, including acute pneumonia, alveolar collapse, and immune cell infiltration. Through scRNA-seq, we identified 36 different types of cells dynamically orchestrating SARS-CoV-2-induced pathologies. Notably, SPP1+ macrophages in the myeloid compartment emerged as key drivers of severe lung inflammation and fibrosis in K18-hACE2 TG mice. Dynamic receptor-ligand interactions, involving various cell types such as immunological and bronchial cells, defined an enhanced TGFβ signaling pathway linked to delayed tissue regeneration, severe lung injury, and fibrotic processes. INTERPRETATION Our study provides a comprehensive understanding of SARS-CoV-2 pathogenesis in lung tissue, surpassing previous limitations in investigating inflamed tissues. The identified SPP1+ macrophages and the dysregulated TGFβ signaling pathway offer potential targets for therapeutic intervention. Insights from this research may contribute to the development of innovative diagnostics and therapies for COVID-19. FUNDING This research was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (2020M3A9I2109027, 2021R1A2C2004501).
Collapse
Affiliation(s)
- Seunghoon Choi
- Laboratory of Developmental Biology and Genomics, Research Institute for Veterinary Science, and BK21 Project for Creative Veterinary Science Research, College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea; Korea Mouse Phenotyping Center, Seoul National University, Seoul 08826, Republic of Korea
| | - Jusung Lee
- Department of New Biology, DGIST, Daegu 42988, Republic of Korea
| | - Suhyeon Kim
- Korea Mouse Phenotyping Center, Seoul National University, Seoul 08826, Republic of Korea; BIO-MAX Institute, Seoul National University, Seoul 08826, Republic of Korea
| | - Youn Woo Lee
- Department of Nuclear Medicine, Seoul National University Bundang Hospital, Seongnam 23488, Republic of Korea
| | - Gi-Cheon Kim
- Institute of Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea; Department of Microbiology, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Seung-Min Hong
- Laboratory of Avian Diseases, BK21 Project for Veterinary Science and Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea
| | - Se-Hee An
- Laboratory of Avian Diseases, BK21 Project for Veterinary Science and Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea
| | - Hyuna Noh
- Korea Mouse Phenotyping Center, Seoul National University, Seoul 08826, Republic of Korea
| | - Kyung Eun Kim
- Laboratory of Developmental Biology and Genomics, Research Institute for Veterinary Science, and BK21 Project for Creative Veterinary Science Research, College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea; Korea Mouse Phenotyping Center, Seoul National University, Seoul 08826, Republic of Korea
| | - Dain On
- Laboratory of Developmental Biology and Genomics, Research Institute for Veterinary Science, and BK21 Project for Creative Veterinary Science Research, College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea; Korea Mouse Phenotyping Center, Seoul National University, Seoul 08826, Republic of Korea
| | - Sang Gyu Lee
- Korea Mouse Phenotyping Center, Seoul National University, Seoul 08826, Republic of Korea; Interdisciplinary Program for Bioinformatics, Seoul National University, Seoul 08826, Republic of Korea
| | - Hui Jeong Jang
- Department of Nuclear Medicine, Seoul National University Bundang Hospital, Seongnam 23488, Republic of Korea
| | - Sung-Hee Kim
- Department of Biomedical Sciences, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; Graduate School of Medical Science, BK21 Project, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Jiseon Kim
- Department of Biomedical Sciences, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; Graduate School of Medical Science, BK21 Project, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Jung Seon Seo
- Department of Biomedical Sciences, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; Graduate School of Medical Science, BK21 Project, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Jeong Jin Kim
- Department of Biomedical Sciences, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; Graduate School of Medical Science, BK21 Project, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - In Ho Park
- Department of Biomedical Sciences, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; Institute of Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Jooyeon Oh
- Graduate School of Medical Science, BK21 Project, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; Institute of Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea; Department of Microbiology, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Da-Jung Kim
- Graduate School of Medical Science, BK21 Project, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; Institute of Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea; Department of Microbiology, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Jong-Hwi Yoon
- Institute of Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea; Department of Microbiology, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Sang-Hyuk Seok
- Division of Biomedical Convergence, College of Biomedical Science, Kangwon National University, Chuncheon 24342, Republic of Korea
| | - Yu Jin Lee
- Division of Biomedical Convergence, College of Biomedical Science, Kangwon National University, Chuncheon 24342, Republic of Korea
| | - Seo Yeon Kim
- Preclinical Research Center, Seoul National University Bundang Hospital, Seongnam 23488, Republic of Korea
| | - Young Been Kim
- Preclinical Research Center, Seoul National University Bundang Hospital, Seongnam 23488, Republic of Korea
| | - Ji-Yeon Hwang
- Preclinical Research Center, Seoul National University Bundang Hospital, Seongnam 23488, Republic of Korea
| | - Hyo-Jung Lee
- Department of Periodontology, Section of Dentistry, Seoul National University Bundang Hospital, Seongnam 23620, Republic of Korea
| | - Hong Bin Kim
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam 23620, Republic of Korea
| | - Jun Won Park
- Division of Biomedical Convergence, College of Biomedical Science, Kangwon National University, Chuncheon 24342, Republic of Korea
| | - Jun-Won Yun
- Laboratory of Veterinary Toxicology, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul 08826, Republic of Korea
| | - Jeon-Soo Shin
- Department of Biomedical Sciences, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; Graduate School of Medical Science, BK21 Project, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; Institute of Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea; Department of Microbiology, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Jun-Young Seo
- Department of Biomedical Sciences, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; Graduate School of Medical Science, BK21 Project, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Ki Taek Nam
- Department of Biomedical Sciences, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; Graduate School of Medical Science, BK21 Project, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Kang-Seuk Choi
- Laboratory of Avian Diseases, BK21 Project for Veterinary Science and Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea.
| | - Ho-Keun Kwon
- Graduate School of Medical Science, BK21 Project, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; Institute of Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea; Department of Microbiology, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea.
| | - Ho-Young Lee
- Department of Nuclear Medicine, Seoul National University Bundang Hospital, Seongnam 23488, Republic of Korea; Department of Nuclear Medicine, Seoul National University, College of Medicine, Seoul 03080, South Korea.
| | - Jong Kyoung Kim
- Department of New Biology, DGIST, Daegu 42988, Republic of Korea; Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea.
| | - Je Kyung Seong
- Laboratory of Developmental Biology and Genomics, Research Institute for Veterinary Science, and BK21 Project for Creative Veterinary Science Research, College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea; Korea Mouse Phenotyping Center, Seoul National University, Seoul 08826, Republic of Korea; BIO-MAX Institute, Seoul National University, Seoul 08826, Republic of Korea; Interdisciplinary Program for Bioinformatics, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
24
|
Simón-Fuentes M, Ríos I, Herrero C, Lasala F, Labiod N, Luczkowiak J, Roy-Vallejo E, Fernández de Córdoba-Oñate S, Delgado-Wicke P, Bustos M, Fernández-Ruiz E, Colmenares M, Puig-Kröger A, Delgado R, Vega MA, Corbí ÁL, Domínguez-Soto Á. MAFB shapes human monocyte-derived macrophage response to SARS-CoV-2 and controls severe COVID-19 biomarker expression. JCI Insight 2023; 8:e172862. [PMID: 37917179 PMCID: PMC10807725 DOI: 10.1172/jci.insight.172862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 10/31/2023] [Indexed: 11/04/2023] Open
Abstract
Monocyte-derived macrophages, the major source of pathogenic macrophages in COVID-19, are oppositely instructed by macrophage CSF (M-CSF) or granulocyte macrophage CSF (GM-CSF), which promote the generation of antiinflammatory/immunosuppressive MAFB+ (M-MØ) or proinflammatory macrophages (GM-MØ), respectively. The transcriptional profile of prevailing macrophage subsets in severe COVID-19 led us to hypothesize that MAFB shapes the transcriptome of pulmonary macrophages driving severe COVID-19 pathogenesis. We have now assessed the role of MAFB in the response of monocyte-derived macrophages to SARS-CoV-2 through genetic and pharmacological approaches, and we demonstrate that MAFB regulated the expression of the genes that define pulmonary pathogenic macrophages in severe COVID-19. Indeed, SARS-CoV-2 potentiated the expression of MAFB and MAFB-regulated genes in M-MØ and GM-MØ, where MAFB upregulated the expression of profibrotic and neutrophil-attracting factors. Thus, MAFB determines the transcriptome and functions of the monocyte-derived macrophage subsets that underlie pulmonary pathogenesis in severe COVID-19 and controls the expression of potentially useful biomarkers for COVID-19 severity.
Collapse
Affiliation(s)
- Miriam Simón-Fuentes
- Myeloid Cell Laboratory, Centro de Investigaciones Biológicas, CSIC, Madrid, Spain
| | - Israel Ríos
- Immunometabolism and Inflammation Unit, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
| | - Cristina Herrero
- Myeloid Cell Laboratory, Centro de Investigaciones Biológicas, CSIC, Madrid, Spain
| | - Fátima Lasala
- Instituto de Investigación Hospital Universitario 12 de Octubre (imas12), Universidad Complutense School of Medicine, Madrid, Spain
| | - Nuria Labiod
- Instituto de Investigación Hospital Universitario 12 de Octubre (imas12), Universidad Complutense School of Medicine, Madrid, Spain
| | - Joanna Luczkowiak
- Instituto de Investigación Hospital Universitario 12 de Octubre (imas12), Universidad Complutense School of Medicine, Madrid, Spain
| | - Emilia Roy-Vallejo
- Rheumatology Department, University Hospital La Princesa and Research Institute, Madrid, Spain
| | | | - Pablo Delgado-Wicke
- Molecular Biology Unit, University Hospital La Princesa and Research Institute, Universidad Autónoma de Madrid, Madrid, Spain
| | - Matilde Bustos
- Institute of Biomedicine of Seville (IBiS), Spanish National Research Council (CSIC), University of Seville, Virgen del Rocio University Hospital (HUVR), Seville, Spain
| | - Elena Fernández-Ruiz
- Molecular Biology Unit, University Hospital La Princesa and Research Institute, Universidad Autónoma de Madrid, Madrid, Spain
| | - Maria Colmenares
- Myeloid Cell Laboratory, Centro de Investigaciones Biológicas, CSIC, Madrid, Spain
| | - Amaya Puig-Kröger
- Immunometabolism and Inflammation Unit, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
| | - Rafael Delgado
- Instituto de Investigación Hospital Universitario 12 de Octubre (imas12), Universidad Complutense School of Medicine, Madrid, Spain
| | - Miguel A. Vega
- Myeloid Cell Laboratory, Centro de Investigaciones Biológicas, CSIC, Madrid, Spain
| | - Ángel L. Corbí
- Myeloid Cell Laboratory, Centro de Investigaciones Biológicas, CSIC, Madrid, Spain
| | | |
Collapse
|
25
|
Gremese E, Tolusso B, Bruno D, Paglionico AM, Perniola S, Ferraccioli G, Alivernini S. COVID-19 illness: Different comorbidities may require different immunological therapeutic targets. Eur J Clin Invest 2023; 53:e14096. [PMID: 37724937 DOI: 10.1111/eci.14096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 07/02/2023] [Accepted: 07/26/2023] [Indexed: 09/21/2023]
Abstract
BACKGROUND The SARS-CoV-2 pandemic has led to more than 6,870.000 deaths worldwide. Despite recent therapeutic advances, deaths in Intensive Care Units still range between 34 and 72%, comprising substantial unmet need as we move to an endemic phase. The general agreement is that in the first few days of infection, antiviral drugs and neutralizing monoclonal antibodies should be adopted. When the patient is hospitalized and develops severe pneumonia, progressing to a systemic disease, immune modifying therapy with corticosteroids is indicated. Such interventions, however, are less effective in the context of comorbidities (e.g., diabetes, hypertension, heart failure, atrial fibrillation, obesity and central nervous system-CNS diseases) which are by themselves associated with poor outcomes. Such comorbidities comprise common and some distinct underlying inflammatory pathobiology regulated by differential cytokine taxonomy. METHODS Searching in the PubMed database, literature pertaining to the biology underlying the different comorbidities, and the data from the studies related to various immunological treatments for the Covid-19 disease were carefully analyzed. RESULTS Several experimental and clinical data have demonstrated that hypertension and atrial fibrillation present an IL-6 dependent signature, whereas diabetes, obesity, heart failure and CNS diseases may exhibit an IL-1a/b predominant signature. Distinct selective cytokine targeting may offer advantage in treating severe COVID-19 illness based on single or multiple associated comorbidities. When the patient does not immediately respond, a broader target range through JAKs pathway inhibitors may be indicated. CONCLUSIONS Herein, we discuss the biological background associated with distinct comorbidities which might impact the SARS-CoV-2 infection course and how these should to be addressed to improve the current therapeutic outcome.
Collapse
Affiliation(s)
- Elisa Gremese
- Clinical Immunology Unit, Fondazione Policlinico Universitario A. Gemelli-IRCCS, Rome, Italy
- Catholic University of the Sacred Heart, Rome, Italy
- Immunology Core Facility, GSTEP, Fondazione Policlinico Universitario A. Gemelli-IRCCS, Rome, Italy
| | - Barbara Tolusso
- Immunology Core Facility, GSTEP, Fondazione Policlinico Universitario A. Gemelli-IRCCS, Rome, Italy
| | - Dario Bruno
- Clinical Immunology Unit, Fondazione Policlinico Universitario A. Gemelli-IRCCS, Rome, Italy
| | - Anna Maria Paglionico
- Clinical Immunology Unit, Fondazione Policlinico Universitario A. Gemelli-IRCCS, Rome, Italy
| | - Simone Perniola
- Clinical Immunology Unit, Fondazione Policlinico Universitario A. Gemelli-IRCCS, Rome, Italy
| | | | - Stefano Alivernini
- Catholic University of the Sacred Heart, Rome, Italy
- Immunology Core Facility, GSTEP, Fondazione Policlinico Universitario A. Gemelli-IRCCS, Rome, Italy
- Rheumatology Unit, Fondazione Policlinico Universitario A. Gemelli-IRCCS, Rome, Italy
| |
Collapse
|
26
|
Stakišaitis D, Kapočius L, Kilimaitė E, Gečys D, Šlekienė L, Balnytė I, Palubinskienė J, Lesauskaitė V. Preclinical Study in Mouse Thymus and Thymocytes: Effects of Treatment with a Combination of Sodium Dichloroacetate and Sodium Valproate on Infectious Inflammation Pathways. Pharmaceutics 2023; 15:2715. [PMID: 38140056 PMCID: PMC10747708 DOI: 10.3390/pharmaceutics15122715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 11/17/2023] [Accepted: 11/29/2023] [Indexed: 12/24/2023] Open
Abstract
The research presents data from a preclinical study on the anti-inflammatory effects of a sodium dichloroacetate and sodium valproate combination (DCA-VPA). The 2-week treatment with a DCA 100 mg/kg/day and VPA 150 mg/kg/day combination solution in drinking water's effects on the thymus weight, its cortex/medulla ratio, Hassall's corpuscles (HCs) number in the thymus medulla, and the expression of inflammatory and immune-response-related genes in thymocytes of male Balb/c mice were studied. Two groups of mice aged 6-7 weeks were investigated: a control (n = 12) and a DCA-VPA-treated group (n = 12). The treatment did not affect the body weight gain (p > 0.05), the thymus weight (p > 0.05), the cortical/medulla ratio (p > 0.05), or the number of HCs (p > 0.05). Treatment significantly increased the Slc5a8 gene expression by 2.1-fold (p < 0.05). Gene sequence analysis revealed a significant effect on the expression of inflammation-related genes in thymocytes by significantly altering the expression of several genes related to the cytokine activity pathway, the inflammatory response pathway, and the Il17 signaling pathway in thymocytes. Data suggest that DCA-VPA exerts an anti-inflammatory effect by inhibiting the inflammatory mechanisms in the mouse thymocytes.
Collapse
Affiliation(s)
- Donatas Stakišaitis
- Department of Histology and Embryology, Medical Academy, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania; (L.K.); (L.Š.); (I.B.); (J.P.)
- Laboratory of Molecular Oncology, National Cancer Institute, 08660 Vilnius, Lithuania
| | - Linas Kapočius
- Department of Histology and Embryology, Medical Academy, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania; (L.K.); (L.Š.); (I.B.); (J.P.)
| | - Evelina Kilimaitė
- Department of Histology and Embryology, Medical Academy, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania; (L.K.); (L.Š.); (I.B.); (J.P.)
| | - Dovydas Gečys
- Laboratory of Molecular Cardiology, Institute of Cardiology, Lithuanian University of Health Sciences, Sukileliu Ave., 50161 Kaunas, Lithuania;
| | - Lina Šlekienė
- Department of Histology and Embryology, Medical Academy, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania; (L.K.); (L.Š.); (I.B.); (J.P.)
| | - Ingrida Balnytė
- Department of Histology and Embryology, Medical Academy, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania; (L.K.); (L.Š.); (I.B.); (J.P.)
| | - Jolita Palubinskienė
- Department of Histology and Embryology, Medical Academy, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania; (L.K.); (L.Š.); (I.B.); (J.P.)
| | - Vaiva Lesauskaitė
- Laboratory of Molecular Cardiology, Institute of Cardiology, Lithuanian University of Health Sciences, Sukileliu Ave., 50161 Kaunas, Lithuania;
| |
Collapse
|
27
|
Hackney JA, Shivram H, Vander Heiden J, Overall C, Orozco L, Gao X, Kim E, West N, Qamra A, Chang D, Chakrabarti A, Choy DF, Combes AJ, Courau T, Fragiadakis GK, Rao AA, Ray A, Tsui J, Hu K, Kuhn NF, Krummel MF, Erle DJ, Kangelaris K, Sarma A, Lyon Z, Calfee CS, Woodruff PG, Ghale R, Mick E, Byrne A, Zha BS, Langelier C, Hendrickson CM, van der Wijst MG, Hartoularos GC, Grant T, Bueno R, Lee DS, Greenland JR, Sun Y, Perez R, Ogorodnikov A, Ward A, Ye CJ, Ramalingam T, McBride JM, Cai F, Teterina A, Bao M, Tsai L, Rosas IO, Regev A, Kapadia SB, Bauer RN, Rosenberger CM. A myeloid program associated with COVID-19 severity is decreased by therapeutic blockade of IL-6 signaling. iScience 2023; 26:107813. [PMID: 37810211 PMCID: PMC10551843 DOI: 10.1016/j.isci.2023.107813] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 07/12/2023] [Accepted: 08/30/2023] [Indexed: 10/10/2023] Open
Abstract
Altered myeloid inflammation and lymphopenia are hallmarks of severe infections. We identified the upregulated EN-RAGE gene program in airway and blood myeloid cells from patients with acute lung injury from SARS-CoV-2 or other causes across 7 cohorts. This program was associated with greater clinical severity and predicted future mechanical ventilation and death. EN-RAGEhi myeloid cells express features consistent with suppressor cell functionality, including low HLA-DR and high PD-L1. Sustained EN-RAGE program expression in airway and blood myeloid cells correlated with clinical severity and increasing expression of T cell dysfunction markers. IL-6 upregulated many EN-RAGE program genes in monocytes in vitro. IL-6 signaling blockade by tocilizumab in a placebo-controlled clinical trial led to rapid normalization of EN-RAGE and T cell gene expression. This identifies IL-6 as a key driver of myeloid dysregulation associated with worse clinical outcomes in COVID-19 patients and provides insights into shared pathophysiological mechanisms in non-COVID-19 ARDS.
Collapse
Affiliation(s)
| | - Haridha Shivram
- Genentech, Inc, 1 DNA Way, South San Francisco, CA 94080, USA
| | | | - Chris Overall
- Genentech, Inc, 1 DNA Way, South San Francisco, CA 94080, USA
| | - Luz Orozco
- Genentech, Inc, 1 DNA Way, South San Francisco, CA 94080, USA
| | - Xia Gao
- Genentech, Inc, 1 DNA Way, South San Francisco, CA 94080, USA
| | - Eugene Kim
- Genentech, Inc, 1 DNA Way, South San Francisco, CA 94080, USA
| | - Nathan West
- Genentech, Inc, 1 DNA Way, South San Francisco, CA 94080, USA
| | - Aditi Qamra
- Hoffman-La Roche Limited, 7070 Mississauga Road, Mississauga, ON L5N 5M8, Canada
| | - Diana Chang
- Genentech, Inc, 1 DNA Way, South San Francisco, CA 94080, USA
| | | | - David F. Choy
- Genentech, Inc, 1 DNA Way, South San Francisco, CA 94080, USA
| | | | - Tristan Courau
- University of California San Francisco, San Francisco, CA, USA
| | | | - Arjun Arkal Rao
- University of California San Francisco, San Francisco, CA, USA
| | - Arja Ray
- University of California San Francisco, San Francisco, CA, USA
| | - Jessica Tsui
- University of California San Francisco, San Francisco, CA, USA
| | - Kenneth Hu
- University of California San Francisco, San Francisco, CA, USA
| | | | | | - David J. Erle
- University of California San Francisco, San Francisco, CA, USA
| | | | - Aartik Sarma
- University of California San Francisco, San Francisco, CA, USA
| | - Zoe Lyon
- University of California San Francisco, San Francisco, CA, USA
| | | | | | - Rajani Ghale
- University of California San Francisco, San Francisco, CA, USA
| | - Eran Mick
- University of California San Francisco, San Francisco, CA, USA
| | - Ashley Byrne
- University of California San Francisco, San Francisco, CA, USA
| | | | | | | | - Monique G.P. van der Wijst
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | | | - Tianna Grant
- University of California San Francisco, San Francisco, CA, USA
| | - Raymund Bueno
- University of California San Francisco, San Francisco, CA, USA
| | - David S. Lee
- University of California San Francisco, San Francisco, CA, USA
| | | | - Yang Sun
- University of California San Francisco, San Francisco, CA, USA
| | - Richard Perez
- University of California San Francisco, San Francisco, CA, USA
| | | | - Alyssa Ward
- University of California San Francisco, San Francisco, CA, USA
| | - Chun Jimmie Ye
- University of California San Francisco, San Francisco, CA, USA
| | | | | | - Fang Cai
- Genentech, Inc, 1 DNA Way, South San Francisco, CA 94080, USA
| | - Anastasia Teterina
- Hoffman-La Roche Limited, 7070 Mississauga Road, Mississauga, ON L5N 5M8, Canada
| | - Min Bao
- Genentech, Inc, 1 DNA Way, South San Francisco, CA 94080, USA
| | - Larry Tsai
- Genentech, Inc, 1 DNA Way, South San Francisco, CA 94080, USA
| | - Ivan O. Rosas
- Baylor College of Medicine, 7200 Cambridge St, Houston, TX 77030, USA
| | - Aviv Regev
- Genentech, Inc, 1 DNA Way, South San Francisco, CA 94080, USA
| | | | | | | |
Collapse
|
28
|
Lucarelli N, Yun D, Han D, Ginley B, Moon KC, Rosenberg AZ, Tomaszewski JE, Zee J, Jen KY, Han SS, Sarder P. Discovery of Novel Digital Biomarkers for Type 2 Diabetic Nephropathy Classification via Integration of Urinary Proteomics and Pathology. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.04.28.23289272. [PMID: 37205413 PMCID: PMC10187347 DOI: 10.1101/2023.04.28.23289272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Background The heterogeneous phenotype of diabetic nephropathy (DN) from type 2 diabetes complicates appropriate treatment approaches and outcome prediction. Kidney histology helps diagnose DN and predict its outcomes, and an artificial intelligence (AI)-based approach will maximize clinical utility of histopathological evaluation. Herein, we addressed whether AI-based integration of urine proteomics and image features improves DN classification and its outcome prediction, altogether augmenting and advancing pathology practice. Methods We studied whole slide images (WSIs) of periodic acid-Schiff-stained kidney biopsies from 56 DN patients with associated urinary proteomics data. We identified urinary proteins differentially expressed in patients who developed end-stage kidney disease (ESKD) within two years of biopsy. Extending our previously published human-AI-loop pipeline, six renal sub-compartments were computationally segmented from each WSI. Hand-engineered image features for glomeruli and tubules, and urinary protein measurements, were used as inputs to deep-learning frameworks to predict ESKD outcome. Differential expression was correlated with digital image features using the Spearman rank sum coefficient. Results A total of 45 urinary proteins were differentially detected in progressors, which was most predictive of ESKD (AUC=0.95), while tubular and glomerular features were less predictive (AUC=0.71 and AUC=0.63, respectively). Accordingly, a correlation map between canonical cell-type proteins, such as epidermal growth factor and secreted phosphoprotein 1, and AI-based image features was obtained, which supports previous pathobiological results. Conclusions Computational method-based integration of urinary and image biomarkers may improve the pathophysiological understanding of DN progression as well as carry clinical implications in histopathological evaluation.
Collapse
Affiliation(s)
- Nicholas Lucarelli
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
| | - Donghwan Yun
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Dohyun Han
- Proteomics Core Facility, Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
| | - Brandon Ginley
- The Janssen Pharmaceutical Companies of Johnson & Johnson, Raritan NJ, USA
| | - Kyung Chul Moon
- Department of Pathology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Avi Z. Rosenberg
- Department of Pathology, Johns Hopkins University, Baltimore, MD, USA
| | - John E. Tomaszewski
- Department of Pathology and Anatomical Sciences, University at Buffalo – The State University of New York
| | - Jarcy Zee
- Department of Biostatistics, Epidemiology, and Informatics, University of Pennsylvania and Children’s Hospital of Philadelphia, PA, USA
| | - Kuang-Yu Jen
- Department of Pathology and Laboratory Medicine, University of California, Davis Medical Center, CA, USA
| | - Seung Seok Han
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Pinaki Sarder
- Department of Medicine-Quantitative Health, University of Florida College of Medicine, Gainesville, FL, USA
- Department of Electrical and Computer Engineering, University of Florida College of Engineering, Gainesville, FL, USA
| |
Collapse
|
29
|
Mahida RY, Lax S, Bassford CR, Scott A, Parekh D, Hardy RS, Naidu B, Matthay MA, Stewart PM, Cooper MC, Perkins GD, Thickett DR. Impaired alveolar macrophage 11β-hydroxysteroid dehydrogenase type 1 reductase activity contributes to increased pulmonary inflammation and mortality in sepsis-related ARDS. Front Immunol 2023; 14:1159831. [PMID: 37180160 PMCID: PMC10172463 DOI: 10.3389/fimmu.2023.1159831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 04/17/2023] [Indexed: 05/15/2023] Open
Abstract
Background Acute Respiratory Distress Syndrome (ARDS) is a devastating pulmonary inflammatory disorder, commonly precipitated by sepsis. Glucocorticoids are immunomodulatory steroids that can suppress inflammation. Their anti-inflammatory properties within tissues are influenced by their pre-receptor metabolism and amplification from inactive precursors by 11β-hydroxysteroid dehydrogenase type-1 (HSD-1). We hypothesised that in sepsis-related ARDS, alveolar macrophage (AM) HSD-1 activity and glucocorticoid activation are impaired, and associated with greater inflammatory injury and worse outcomes. Methods We analysed broncho-alveolar lavage (BAL) and circulating glucocorticoid levels, AM HSD-1 reductase activity and Receptor for Advanced Glycation End-products (RAGE) levels in two cohorts of critically ill sepsis patients, with and without ARDS. AM HSD-1 reductase activity was also measured in lobectomy patients. We assessed inflammatory injury parameters in models of lung injury and sepsis in HSD-1 knockout (KO) and wild type (WT) mice. Results No difference in serum and BAL cortisol: cortisone ratios are shown between sepsis patients with and without ARDS. Across all sepsis patients, there is no association between BAL cortisol: cortisone ratio and 30-day mortality. However, AM HSD-1 reductase activity is impaired in patients with sepsis-related ARDS, compared to sepsis patients without ARDS and lobectomy patients (0.075 v 0.882 v 0.967 pM/hr/106 AMs, p=0.004). Across all sepsis patients (with and without ARDS), impaired AM HSD-1 reductase activity is associated with defective efferocytosis (r=0.804, p=0.008) and increased 30-day mortality. AM HSD-1 reductase activity negatively correlates with BAL RAGE in sepsis patients with ARDS (r=-0.427, p=0.017). Following intra-tracheal lipopolysaccharide (IT-LPS) injury, HSD-1 KO mice demonstrate increased alveolar neutrophil infiltration, apoptotic neutrophil accumulation, alveolar protein permeability and BAL RAGE concentrations compared to WT mice. Caecal Ligation and Puncture (CLP) injury in HSD-1 KO mice results in greater peritoneal apoptotic neutrophil accumulation compared to WT mice. Conclusions AM HSD-1 reductase activity does not shape total BAL and serum cortisol: cortisone ratios, however impaired HSD-1 autocrine signalling renders AMs insensitive to the anti-inflammatory effects of local glucocorticoids. This contributes to the decreased efferocytosis, increased BAL RAGE concentrations and mortality seen in sepsis-related ARDS. Upregulation of alveolar HSD-1 activity could restore AM function and improve clinical outcomes in these patients.
Collapse
Affiliation(s)
- Rahul Y. Mahida
- Birmingham Acute Care Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
| | - Siân Lax
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Christopher R. Bassford
- Department of General Critical Care, University Hospitals Coventry and Warwickshire NHS Trust, Coventry, United Kingdom
| | - Aaron Scott
- Birmingham Acute Care Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
| | - Dhruv Parekh
- Birmingham Acute Care Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
| | - Rowan S. Hardy
- Institute of Clinical Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Babu Naidu
- Birmingham Acute Care Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
| | - Michael A. Matthay
- Cardiovascular Research Institute, Department of Medicine, and Department of Anaesthesia, University of California San Francisco, San Francisco, California, CA, United States
| | - Paul M. Stewart
- School of Medicine, University of Leeds, Leeds, United Kingdom
| | - Mark C. Cooper
- Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Gavin D. Perkins
- Warwick Medical School, University of Warwick, Warwick, United Kingdom
| | - David R. Thickett
- Birmingham Acute Care Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
30
|
Deng X, Luo Y, Guan T, Guo X. Identification of the Genetic Influence of SARS-CoV-2 Infections on IgA Nephropathy Based on Bioinformatics Method. Kidney Blood Press Res 2023; 48:367-384. [PMID: 37040729 PMCID: PMC10308545 DOI: 10.1159/000529687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 02/09/2023] [Indexed: 04/13/2023] Open
Abstract
INTRODUCTION Coronavirus disease-2019 (COVID-19) is caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection. It was initially detected in Wuhan, China, in December 2019. In March 2020, the World Health Organization (WHO) declared COVID-19 a global pandemic. Compared to healthy individuals, patients with IgA nephropathy (IgAN) are at a higher risk of SARS-CoV-2 infection. However, the potential mechanisms remain unclear. This study explores the underlying molecular mechanisms and therapeutic agents for the management of IgAN and COVID-19 using the bioinformatics and system biology way. METHODS We first downloaded GSE73953 and GSE164805 from the Gene Expression Omnibus (GEO) database to obtain common differentially expressed genes (DEGs). Then, we performed the functional enrichment analysis, pathway analysis, protein-protein interaction (PPI) analysis, gene regulatory networks analysis, and potential drug analysis on these common DEGs. RESULTS We acquired 312 common DEGs from the IgAN and COVID-19 datasets and used various bioinformatics tools and statistical analyses to construct the PPI network to extract hub genes. Besides, we performed gene ontology (GO) and pathway analyses to reveal the common correlation between IgAN and COVID-19. Finally, on the basis of common DEGs, we determined the interactions between DEGs-miRNAs, the transcription factor-genes (TFs-genes), protein-drug, and gene-disease networks. CONCLUSION We successfully identified hub genes that may act as biomarkers of COVID-19 and IgAN and also screened out some potential drugs to provide new ideas for COVID-19 and IgAN treatment.
Collapse
Affiliation(s)
- Xiaoqi Deng
- Department of Nephrology, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Yu Luo
- School of Medicine, Xiamen University, Xiamen, China
| | - Tianjun Guan
- Department of Nephrology, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Xiaodan Guo
- Department of Nephrology, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| |
Collapse
|
31
|
Arifa RDN, Gonçalves-Pereira MH, Santiago L, Ravetti CG, Vassallo PF, de Fátima Souza Oliveira F, de Paula Sabino A, Teixeira MM, Nobre V, da Costa Santiago H, Souza DG. Reduction in the number of neutrophils in the broncho-alveolar aspirate is associated with worse prognosis in elderly patients with severe COVID-19. Inflamm Res 2023; 72:929-932. [PMID: 36988640 PMCID: PMC10052312 DOI: 10.1007/s00011-023-01726-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/20/2023] [Accepted: 03/24/2023] [Indexed: 03/30/2023] Open
Abstract
The blood levels of neutrophils are associated with the severity of COVID -19. However, their role in the pulmonary environment during COVID -19 severity is not clear. Here, we found a decrease in the neutrophil count in BAL (bronchoalveolar lavage) in non-survivors and in older patients (> 60 years). In addition, we have shown that older patients have higher serum concentration of CXCL8 and increased IL-10 expression by neutrophils.
Collapse
Affiliation(s)
- Raquel Duque Nascimento Arifa
- Department of Microbiology, Laboratory of Microorganism-Host Interaction, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Marcela Helena Gonçalves-Pereira
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Luciana Santiago
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
- Clinical Hospital, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
- Interdisciplinary Center for Research in Intensive Medicine, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Cecilia Gómez Ravetti
- Interdisciplinary Center for Research in Intensive Medicine, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
- Faculty of Medicine, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Paula Frizera Vassallo
- Clinical Hospital, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
- Interdisciplinary Center for Research in Intensive Medicine, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Fernanda de Fátima Souza Oliveira
- Department of Clinical and Toxicological Analysis, College of Pharmacy, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Adriano de Paula Sabino
- Department of Clinical and Toxicological Analysis, College of Pharmacy, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Mauro Martins Teixeira
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
- Center for Drug Research and Development of Pharmaceuticals, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Vandack Nobre
- Interdisciplinary Center for Research in Intensive Medicine, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
- Faculty of Medicine, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Helton da Costa Santiago
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil.
| | - Daniele G Souza
- Department of Microbiology, Laboratory of Microorganism-Host Interaction, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil.
| |
Collapse
|
32
|
Konishi K, Kuwahara H, Fujimoto Y, Nagata K, Takeda J. Severe COVID-19 as a Possible Mediator of Autoimmunity and Sjögren’s Syndrome. Cureus 2023; 15:e35290. [PMID: 36974237 PMCID: PMC10039762 DOI: 10.7759/cureus.35290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/21/2023] [Indexed: 02/25/2023] Open
Abstract
We treated a 65-year-old man for COVID-19 who was hospitalized urgently due to life-threatening respiratory decompensation and later developed cardiac arrest, both of which were successfully treated. Three days prior to the patient's urgent hospitalization, he had a high fever of over 38.0°C. Viral infection was diagnosed by polymerase chain reaction (PCR) on the day of admission, which was negative on the 11th day. Blood analysis on the second day was strongly positive for COVID-19 IgG antibodies, which continued for one year. Because of the acute increase in viral IgG antibodies, we performed other immunological analyses; Sjögren's syndrome antigen A (SS-A) and Sjögren's syndrome antigen B (SS-B) antibodies were positive, although he had no history of autoimmune diseases. Subsequent salivary-gland biopsy and pathological analysis confirmed the diagnosis of Sjögren's syndrome. The severe clinical manifestations and early antibody seroconversion in this case suggest COVID-19 as a mediator of autoimmunity and Sjögren's syndrome.
Collapse
|
33
|
Roseti L, Grigolo B. COVID-19 and rheumatic diseases: A mini-review. Front Med (Lausanne) 2022; 9:997876. [PMID: 36226148 PMCID: PMC9548696 DOI: 10.3389/fmed.2022.997876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 09/12/2022] [Indexed: 11/13/2022] Open
Abstract
Joint pain and arthralgia can be manifestations of COVID-19, and studies evaluating long COVID symptoms identified the persistence of these disorders. Moreover, some case reports highlighted the development of new inflammatory arthritis in patients with COVID-19, suggesting a possible relation. Viral infections and rheumatic diseases share a documented relationship; they have been associated with genetic and environmental risk factors responsible for some of them. There is crosstalk between viruses and the immune system during the development of several rheumatic diseases. Moreover, infections may participate in the pathogenesis of autoimmune rheumatic diseases and contribute to patient mortality. Therefore, it is crucial to provide a clearer insight into the interaction between viral infections and rheumatic diseases. Here, we provide a mini-review of the current literature with the aim of shedding light on the relationship between COVID-19 and rheumatic or musculoskeletal diseases, which is still unclear. Specifically, we examined several aspects: risk for the rheumatic population of acquiring the virus or developing severe symptoms, similarities of COVID-19 and arthritis, the possible rheumatic consequence of COVID-19, of rheumatic drugs and vaccines, and COVID-19 prevention in rheumatic patients through vaccination.
Collapse
|
34
|
Kuppe C, Ramirez Flores RO, Li Z, Hayat S, Levinson RT, Liao X, Hannani MT, Tanevski J, Wünnemann F, Nagai JS, Halder M, Schumacher D, Menzel S, Schäfer G, Hoeft K, Cheng M, Ziegler S, Zhang X, Peisker F, Kaesler N, Saritas T, Xu Y, Kassner A, Gummert J, Morshuis M, Amrute J, Veltrop RJA, Boor P, Klingel K, Van Laake LW, Vink A, Hoogenboezem RM, Bindels EMJ, Schurgers L, Sattler S, Schapiro D, Schneider RK, Lavine K, Milting H, Costa IG, Saez-Rodriguez J, Kramann R. Spatial multi-omic map of human myocardial infarction. Nature 2022; 608:766-777. [PMID: 35948637 PMCID: PMC9364862 DOI: 10.1038/s41586-022-05060-x] [Citation(s) in RCA: 319] [Impact Index Per Article: 106.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 06/29/2022] [Indexed: 02/01/2023]
Abstract
Myocardial infarction is a leading cause of death worldwide1. Although advances have been made in acute treatment, an incomplete understanding of remodelling processes has limited the effectiveness of therapies to reduce late-stage mortality2. Here we generate an integrative high-resolution map of human cardiac remodelling after myocardial infarction using single-cell gene expression, chromatin accessibility and spatial transcriptomic profiling of multiple physiological zones at distinct time points in myocardium from patients with myocardial infarction and controls. Multi-modal data integration enabled us to evaluate cardiac cell-type compositions at increased resolution, yielding insights into changes of the cardiac transcriptome and epigenome through the identification of distinct tissue structures of injury, repair and remodelling. We identified and validated disease-specific cardiac cell states of major cell types and analysed them in their spatial context, evaluating their dependency on other cell types. Our data elucidate the molecular principles of human myocardial tissue organization, recapitulating a gradual cardiomyocyte and myeloid continuum following ischaemic injury. In sum, our study provides an integrative molecular map of human myocardial infarction, represents an essential reference for the field and paves the way for advanced mechanistic and therapeutic studies of cardiac disease.
Collapse
Affiliation(s)
- Christoph Kuppe
- Institute of Experimental Medicine and Systems Biology, RWTH Aachen University, Medical Faculty, Aachen, Germany
- Division of Nephrology and Clinical Immunology, RWTH Aachen University, Medical Faculty, Aachen, Germany
| | - Ricardo O Ramirez Flores
- Institute for Computational Biomedicine, Heidelberg University, Faculty of Medicine, Heidelberg University Hospital, Bioquant, Heidelberg, Germany
- Informatics for Life, Heidelberg, Germany
| | - Zhijian Li
- Institute for Computational Genomics, RWTH Aachen University, Medical Faculty, Aachen, Germany
- Joint Research Center for Computational Biomedicine, RWTH Aachen University Hospital, Aachen, Germany
| | - Sikander Hayat
- Institute of Experimental Medicine and Systems Biology, RWTH Aachen University, Medical Faculty, Aachen, Germany
| | - Rebecca T Levinson
- Institute for Computational Biomedicine, Heidelberg University, Faculty of Medicine, Heidelberg University Hospital, Bioquant, Heidelberg, Germany
- Informatics for Life, Heidelberg, Germany
- Department of General Internal Medicine and Psychosomatics, Heidelberg University Hospital, Heidelberg, Germany
| | - Xian Liao
- Institute of Experimental Medicine and Systems Biology, RWTH Aachen University, Medical Faculty, Aachen, Germany
| | - Monica T Hannani
- Institute of Experimental Medicine and Systems Biology, RWTH Aachen University, Medical Faculty, Aachen, Germany
- Institute for Computational Biomedicine, Heidelberg University, Faculty of Medicine, Heidelberg University Hospital, Bioquant, Heidelberg, Germany
| | - Jovan Tanevski
- Institute for Computational Biomedicine, Heidelberg University, Faculty of Medicine, Heidelberg University Hospital, Bioquant, Heidelberg, Germany
- Department of Knowledge Technologies, Jožef Stefan Institute, Ljubljana, Slovenia
| | - Florian Wünnemann
- Institute for Computational Biomedicine, Heidelberg University, Faculty of Medicine, Heidelberg University Hospital, Bioquant, Heidelberg, Germany
| | - James S Nagai
- Institute for Computational Genomics, RWTH Aachen University, Medical Faculty, Aachen, Germany
- Joint Research Center for Computational Biomedicine, RWTH Aachen University Hospital, Aachen, Germany
| | - Maurice Halder
- Institute of Experimental Medicine and Systems Biology, RWTH Aachen University, Medical Faculty, Aachen, Germany
| | - David Schumacher
- Institute of Experimental Medicine and Systems Biology, RWTH Aachen University, Medical Faculty, Aachen, Germany
| | - Sylvia Menzel
- Institute of Experimental Medicine and Systems Biology, RWTH Aachen University, Medical Faculty, Aachen, Germany
| | - Gideon Schäfer
- Institute of Experimental Medicine and Systems Biology, RWTH Aachen University, Medical Faculty, Aachen, Germany
| | - Konrad Hoeft
- Institute of Experimental Medicine and Systems Biology, RWTH Aachen University, Medical Faculty, Aachen, Germany
| | - Mingbo Cheng
- Institute for Computational Genomics, RWTH Aachen University, Medical Faculty, Aachen, Germany
- Joint Research Center for Computational Biomedicine, RWTH Aachen University Hospital, Aachen, Germany
| | - Susanne Ziegler
- Institute of Experimental Medicine and Systems Biology, RWTH Aachen University, Medical Faculty, Aachen, Germany
| | - Xiaoting Zhang
- Institute of Experimental Medicine and Systems Biology, RWTH Aachen University, Medical Faculty, Aachen, Germany
| | - Fabian Peisker
- Institute of Experimental Medicine and Systems Biology, RWTH Aachen University, Medical Faculty, Aachen, Germany
| | - Nadine Kaesler
- Institute of Experimental Medicine and Systems Biology, RWTH Aachen University, Medical Faculty, Aachen, Germany
- Division of Nephrology and Clinical Immunology, RWTH Aachen University, Medical Faculty, Aachen, Germany
| | - Turgay Saritas
- Institute of Experimental Medicine and Systems Biology, RWTH Aachen University, Medical Faculty, Aachen, Germany
- Division of Nephrology and Clinical Immunology, RWTH Aachen University, Medical Faculty, Aachen, Germany
| | - Yaoxian Xu
- Institute of Experimental Medicine and Systems Biology, RWTH Aachen University, Medical Faculty, Aachen, Germany
| | - Astrid Kassner
- Erich and Hanna Klessmann Institute for Cardiovascular Research and Development, Clinic for Thoracic and Cardiovascular Surgery, Heart and Diabetes Center NRW, Bad Oeynhausen, Germany
| | - Jan Gummert
- Heart and Diabetes Center, North Rhine-Westphalia, Bad Oeynhausen, Germany
| | - Michiel Morshuis
- Heart and Diabetes Center, North Rhine-Westphalia, Bad Oeynhausen, Germany
| | - Junedh Amrute
- Department of Medicine, Washington University School of Medicine, St Louis, MO, USA
| | - Rogier J A Veltrop
- Institute for Molecular Cardiovascular Research IMCAR, RWTH Aachen University, Medical Faculty, Aachen, Germany
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands
| | - Peter Boor
- Division of Nephrology and Clinical Immunology, RWTH Aachen University, Medical Faculty, Aachen, Germany
- Department of Pathology, RWTH Aachen University, Aachen, Germany
| | - Karin Klingel
- Cardiopathology, Institute for Pathology and Neuropathology, University Hospital Tübingen, Tübingen, Germany
| | - Linda W Van Laake
- Department of Cardiology, Regenerative Medicine Center and Circulatory Health Lab, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Aryan Vink
- Department of Pathology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Remco M Hoogenboezem
- Department of Hematology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Eric M J Bindels
- Department of Hematology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Leon Schurgers
- Institute of Experimental Medicine and Systems Biology, RWTH Aachen University, Medical Faculty, Aachen, Germany
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands
| | - Susanne Sattler
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Denis Schapiro
- Institute for Computational Biomedicine, Heidelberg University, Faculty of Medicine, Heidelberg University Hospital, Bioquant, Heidelberg, Germany
- Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Rebekka K Schneider
- Institute of Cell and Tumor Biology, RWTH Aachen University, Medical Faculty, Aachen, Germany
- Oncode Institute, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Kory Lavine
- Department of Medicine, Washington University School of Medicine, St Louis, MO, USA
| | - Hendrik Milting
- Erich and Hanna Klessmann Institute for Cardiovascular Research and Development, Clinic for Thoracic and Cardiovascular Surgery, Heart and Diabetes Center NRW, Bad Oeynhausen, Germany
| | - Ivan G Costa
- Institute for Computational Genomics, RWTH Aachen University, Medical Faculty, Aachen, Germany
- Joint Research Center for Computational Biomedicine, RWTH Aachen University Hospital, Aachen, Germany
| | - Julio Saez-Rodriguez
- Institute for Computational Biomedicine, Heidelberg University, Faculty of Medicine, Heidelberg University Hospital, Bioquant, Heidelberg, Germany.
- Informatics for Life, Heidelberg, Germany.
| | - Rafael Kramann
- Institute of Experimental Medicine and Systems Biology, RWTH Aachen University, Medical Faculty, Aachen, Germany.
- Division of Nephrology and Clinical Immunology, RWTH Aachen University, Medical Faculty, Aachen, Germany.
- Department of Internal Medicine, Nephrology and Transplantation, Erasmus Medical Center, Rotterdam, The Netherlands.
| |
Collapse
|
35
|
Yan K, Dumenil T, Tang B, Le TT, Bishop CR, Suhrbier A, Rawle DJ. Evolution of ACE2-independent SARS-CoV-2 infection and mouse adaption after passage in cells expressing human and mouse ACE2. Virus Evol 2022; 8:veac063. [PMID: 35919871 PMCID: PMC9338707 DOI: 10.1093/ve/veac063] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 07/11/2022] [Accepted: 07/20/2022] [Indexed: 11/28/2022] Open
Abstract
Human ACE2 Human angiotensin converting enzyme 2 (hACE2) is the key cell attachment and entry receptor for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), with the original SARS-CoV-2 isolates unable to use mouse ACE2 (mACE2). Herein we describe the emergence of a SARS-CoV-2 strain capable of ACE2-independent infection and the evolution of mouse-adapted (MA) SARS-CoV-2 by in vitro serial passaging of virus in co-cultures of cell lines expressing hACE2 and mACE2. MA viruses evolved with up to five amino acid changes in the spike protein, all of which have been seen in human isolates. MA viruses replicated to high titers in C57BL/6J mouse lungs and nasal turbinates and caused characteristic lung histopathology. One MA virus also evolved to replicate efficiently in several ACE2-negative cell lines across several species, including clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9 (CRISPR/Cas9) ACE2 knockout cells. An E484D substitution is likely involved in ACE2-independent entry and has appeared in only ≈0.003 per cent of human isolates globally, suggesting that it provided no significant selection advantage in humans. ACE2-independent entry reveals a SARS-CoV-2 infection mechanism that has potential implications for disease pathogenesis, evolution, tropism, and perhaps also intervention development.
Collapse
Affiliation(s)
- Kexin Yan
- Infection and Inflammation Department, QIMR Berghofer Medical Research Institute, 300 Herston Road, Herston, 4029, Queensland, Australia
| | - Troy Dumenil
- Infection and Inflammation Department, QIMR Berghofer Medical Research Institute, 300 Herston Road, Herston, 4029, Queensland, Australia
| | - Bing Tang
- Infection and Inflammation Department, QIMR Berghofer Medical Research Institute, 300 Herston Road, Herston, 4029, Queensland, Australia
| | - Thuy T Le
- Infection and Inflammation Department, QIMR Berghofer Medical Research Institute, 300 Herston Road, Herston, 4029, Queensland, Australia
| | - Cameron R Bishop
- Infection and Inflammation Department, QIMR Berghofer Medical Research Institute, 300 Herston Road, Herston, 4029, Queensland, Australia
| | - Andreas Suhrbier
- Infection and Inflammation Department, QIMR Berghofer Medical Research Institute, 300 Herston Road, Herston, 4029, Queensland, Australia
- Australian Infectious Disease Research Centre, GVN Center of Excellence, Brisbane, 300 Herston Road, Herston, 4029 and The University of Queensland, St Lucia, 4072, Australia
| | - Daniel J Rawle
- Infection and Inflammation Department, QIMR Berghofer Medical Research Institute, 300 Herston Road, Herston, 4029, Queensland, Australia
| |
Collapse
|
36
|
Kurowska-Stolarska M, Alivernini S. Synovial tissue macrophages in joint homeostasis, rheumatoid arthritis and disease remission. Nat Rev Rheumatol 2022; 18:384-397. [PMID: 35672464 DOI: 10.1038/s41584-022-00790-8] [Citation(s) in RCA: 102] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/04/2022] [Indexed: 02/07/2023]
Abstract
Synovial tissue macrophages (STMs) were principally recognized as having a pro-inflammatory role in rheumatoid arthritis (RA), serving as the main producers of pathogenic tumour necrosis factor (TNF). Recent advances in single-cell omics have facilitated the discovery of distinct STM populations, providing an atlas of discrete phenotypic clusters in the context of healthy and inflamed joints. Interrogation of the functions of distinct STM populations, via ex vivo and experimental mouse models, has re-defined our understanding of STM biology, opening up new opportunities to better understand the pathology of the arthritic joint. These works have identified STM subpopulations that form a protective lining barrier within the synovial membrane and actively participate in the remission of RA. We discuss how distinct functions of STM clusters shape the synovial tissue environment in health, during inflammation and in disease remission, as well as how an increased understanding of STM heterogeneity might aid the prediction of clinical outcomes and inform novel treatments for RA.
Collapse
Affiliation(s)
- Mariola Kurowska-Stolarska
- Research into Inflammatory Arthritis Centre Versus Arthritis (RACE), Glasgow, UK.
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK.
| | - Stefano Alivernini
- Research into Inflammatory Arthritis Centre Versus Arthritis (RACE), Glasgow, UK.
- Division of Rheumatology, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy.
- Division of Rheumatology, Università Cattolica del Sacro Cuore, Rome, Italy.
- Immunology Research Core Facility, Gemelli Science and Technology Park (GSTeP), Rome, Italy.
| |
Collapse
|
37
|
Margraf A, Perretti M. Immune Cell Plasticity in Inflammation: Insights into Description and Regulation of Immune Cell Phenotypes. Cells 2022; 11:cells11111824. [PMID: 35681519 PMCID: PMC9180515 DOI: 10.3390/cells11111824] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 05/28/2022] [Accepted: 05/30/2022] [Indexed: 02/01/2023] Open
Abstract
Inflammation is a life-saving immune reaction occurring in response to invading pathogens. Nonetheless, inflammation can also occur in an uncontrolled, unrestricted manner, leading to chronic disease and organ damage. Mechanisms triggering an inflammatory response, hindering such a response, or leading to its resolution are well-studied but so far insufficiently elucidated with regard to precise therapeutic interventions. Notably, as an immune reaction evolves, requirements and environments for immune cells change, and thus cellular phenotypes adapt and shift, leading to the appearance of distinct cellular subpopulations with new functional features. In this article, we aim to highlight properties of, and overarching regulatory factors involved in, the occurrence of immune cell phenotypes with a special focus on neutrophils, macrophages and platelets. Additionally, we point out implications for both diagnostics and therapeutics in inflammation research.
Collapse
|
38
|
Bekaryssova D, Yessirkepov M, Zimba O, Gasparyan AY, Ahmed S. Reactive arthritis before and after the onset of the COVID-19 pandemic. Clin Rheumatol 2022; 41:1641-1652. [PMID: 35247132 PMCID: PMC8898028 DOI: 10.1007/s10067-022-06120-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/26/2022] [Accepted: 02/28/2022] [Indexed: 12/19/2022]
Abstract
Most accepted definitions of reactive arthritis (ReA) consider it a type of spondyloarthritis (SpA) precipitated by a gut or urogenital infection. A wider definition considers any arthritis that occurs after a mucosal surface infection as ReA. There is limited consensus regarding a working definition, status of HLA-B27, or even classification criteria for ReA. This may also contribute to a lack of systemic studies or clinical trials for ReA, thereby reducing further treatment recommendations to expert opinions only. The emergence of post-COVID-19 ReA has brought the focus back on this enigmatic entity. Post-COVID-19 ReA can present at extremes of age, appears to affect both sexes equally and can have different presentations. Some present with small joint arthritis, others with SpA phenotype-either with peripheral or axial involvement, while a few have only tenosynovitis or dactylitis. The emergence of post-vaccination inflammatory arthritis hints at similar pathophysiology involved. There needs to be a global consensus on whether or not to include all such conditions under the umbrella of ReA. Doing so will enable studies on uniform groups on how infections precipitate arthritis and what predicts chronicity. These have implications beyond ReA and might be extrapolated to other inflammatory arthritides. Key Points | • Classical reactive arthritis (ReA) has a spondyloarthritis phenotype and is preceded by symptomatic gut or urogenital infection | • The demonstration of antigen and nucleic acid sequences of pathogens in synovium has blurred the difference between invasive arthritis and reactive arthritis | • Post-COVID-19 ReA has a transient phenotype and can have different presentations. All reported cases are self-limiting | • The large amount of literature reporting post-COVID-19 ReA calls for introspection if the existing definitions of ReA need to be updated. |
Collapse
Affiliation(s)
- Dana Bekaryssova
- Department of Biology and Biochemistry, South Kazakhstan Medical Academy, Shymkent, Kazakhstan
| | - Marlen Yessirkepov
- Department of Biology and Biochemistry, South Kazakhstan Medical Academy, Shymkent, Kazakhstan
| | - Olena Zimba
- Department of Internal Medicine #2, Danylo Halytsky Lviv National Medical University, Lviv, Ukraine
| | - Armen Yuri Gasparyan
- Departments of Rheumatology and Research and Development, Dudley Group NHS Foundation Trust (Teaching Trust of the University of Birmingham, UK), Russells Hall Hospital, Dudley, West Midlands, UK
| | - Sakir Ahmed
- Department of Clinical Immunology and Rheumatology, Kalinga Institute of Medical Sciences (KIMS), KIIT University, Bhubaneswar, 751024, India.
| |
Collapse
|
39
|
Simmons DP, Nguyen HN, Gomez-Rivas E, Jeong Y, Jonsson AH, Chen AF, Lange JK, Dyer GS, Blazar P, Earp BE, Coblyn JS, Massarotti EM, Sparks JA, Todd DJ, Accelerating Medicines Partnership ® (AMP ®) RA/SLE Network, Rao DA, Kim EY, Brenner MB. SLAMF7 engagement superactivates macrophages in acute and chronic inflammation. Sci Immunol 2022; 7:eabf2846. [PMID: 35148199 PMCID: PMC8991457 DOI: 10.1126/sciimmunol.abf2846] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Macrophages regulate protective immune responses to infectious microbes, but aberrant macrophage activation frequently drives pathological inflammation. To identify regulators of vigorous macrophage activation, we analyzed RNA-seq data from synovial macrophages and identified SLAMF7 as a receptor associated with a superactivated macrophage state in rheumatoid arthritis. We implicated IFN-γ as a key regulator of SLAMF7 expression and engaging SLAMF7 drove a strong wave of inflammatory cytokine expression. Induction of TNF-α after SLAMF7 engagement amplified inflammation through an autocrine signaling loop. We observed SLAMF7-induced gene programs not only in macrophages from rheumatoid arthritis patients but also in gut macrophages from patients with active Crohn's disease and in lung macrophages from patients with severe COVID-19. This suggests a central role for SLAMF7 in macrophage superactivation with broad implications in human disease pathology.
Collapse
Affiliation(s)
- Daimon P. Simmons
- Department of Pathology, Brigham and Women’s Hospital, Boston, MA
- Harvard Medical School, Boston, MA
| | - Hung N. Nguyen
- Harvard Medical School, Boston, MA
- Division of Rheumatology, Inflammation and Immunity, Department of Medicine, Brigham and Women’s Hospital, Boston, MA
| | - Emma Gomez-Rivas
- Division of Rheumatology, Inflammation and Immunity, Department of Medicine, Brigham and Women’s Hospital, Boston, MA
| | - Yunju Jeong
- Harvard Medical School, Boston, MA
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women’s Hospital, Boston, MA
| | - A. Helena Jonsson
- Harvard Medical School, Boston, MA
- Division of Rheumatology, Inflammation and Immunity, Department of Medicine, Brigham and Women’s Hospital, Boston, MA
| | - Antonia F. Chen
- Harvard Medical School, Boston, MA
- Department of Orthopedic Surgery, Brigham and Women’s Hospital, Boston, MA
| | - Jeffrey K. Lange
- Harvard Medical School, Boston, MA
- Department of Orthopedic Surgery, Brigham and Women’s Hospital, Boston, MA
| | - George S. Dyer
- Harvard Medical School, Boston, MA
- Department of Orthopedic Surgery, Brigham and Women’s Hospital, Boston, MA
| | - Philip Blazar
- Harvard Medical School, Boston, MA
- Department of Orthopedic Surgery, Brigham and Women’s Hospital, Boston, MA
| | - Brandon E. Earp
- Harvard Medical School, Boston, MA
- Department of Orthopedic Surgery, Brigham and Women’s Hospital, Boston, MA
| | - Jonathan S. Coblyn
- Harvard Medical School, Boston, MA
- Division of Rheumatology, Inflammation and Immunity, Department of Medicine, Brigham and Women’s Hospital, Boston, MA
| | - Elena M. Massarotti
- Harvard Medical School, Boston, MA
- Division of Rheumatology, Inflammation and Immunity, Department of Medicine, Brigham and Women’s Hospital, Boston, MA
| | - Jeffrey A. Sparks
- Harvard Medical School, Boston, MA
- Division of Rheumatology, Inflammation and Immunity, Department of Medicine, Brigham and Women’s Hospital, Boston, MA
| | - Derrick J. Todd
- Harvard Medical School, Boston, MA
- Division of Rheumatology, Inflammation and Immunity, Department of Medicine, Brigham and Women’s Hospital, Boston, MA
| | | | - Deepak A. Rao
- Harvard Medical School, Boston, MA
- Division of Rheumatology, Inflammation and Immunity, Department of Medicine, Brigham and Women’s Hospital, Boston, MA
| | - Edy Y. Kim
- Harvard Medical School, Boston, MA
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women’s Hospital, Boston, MA
| | - Michael B. Brenner
- Harvard Medical School, Boston, MA
- Division of Rheumatology, Inflammation and Immunity, Department of Medicine, Brigham and Women’s Hospital, Boston, MA
| |
Collapse
|
40
|
Ferraccioli G, Gremese E, Goletti D, Petrone L, Cantini F, Ugel S, Canè S, Bronte V. Immune-guided therapy of COVID-19. Cancer Immunol Res 2022; 10:384-402. [PMID: 35074758 DOI: 10.1158/2326-6066.cir-21-0675] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 11/04/2021] [Accepted: 01/20/2022] [Indexed: 01/08/2023]
|
41
|
Danger signal extracellular calcium initiates differentiation of monocytes into SPP1/osteopontin-producing macrophages. Cell Death Dis 2022; 13:53. [PMID: 35022393 PMCID: PMC8755842 DOI: 10.1038/s41419-022-04507-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 12/08/2021] [Accepted: 01/04/2022] [Indexed: 12/18/2022]
Abstract
The danger signal extracellular calcium is pathophysiologically increased in the synovial fluid of patients with rheumatoid arthritis (RA). Calcium activates the NLRP3-inflammasome via the calcium-sensing receptor in monocytes/macrophages primed by lipopolysaccharide, and this effect is mediated by the uptake of calciprotein particles (CPPs) formed out of calcium, phosphate, and fetuin-A. Aim of the study was to unravel the influence of calcium on monocytes when the priming signal is not present. Monocytes were isolated from the blood of healthy controls and RA patients. Macrophages were characterized using scRNA-seq, DNA microarray, and proteomics. Imaging flow cytometry was utilized to study intracellular events. Here we show that extracellular calcium and CPPs lead to the differentiation of monocytes into calcium-macrophages when the priming signal is absent. Additional growth factors are not needed, and differentiation is triggered by calcium-dependent CPP-uptake, lysosomal alkalization due to CPP overload, and TFEB- and STAT3-dependent increased transcription of the lysosomal gene network. Calcium-macrophages have a needle-like shape, are characterized by excessive, constitutive SPP1/osteopontin production and a strong pro-inflammatory cytokine response. Calcium-macrophages differentiated out of RA monocytes show a stronger manifestation of this phenotype, suggesting the differentiation process might lead to the pro-inflammatory macrophage response seen in the RA synovial membrane.
Collapse
|
42
|
Clayton SA, Daley KK, MacDonald L, Fernandez-Vizarra E, Bottegoni G, O’Neil JD, Major T, Griffin D, Zhuang Q, Adewoye AB, Woolcock K, Jones SW, Goodyear C, Elmesmari A, Filer A, Tennant DA, Alivernini S, Buckley CD, Pitceathly RDS, Kurowska-Stolarska M, Clark AR. Inflammation causes remodeling of mitochondrial cytochrome c oxidase mediated by the bifunctional gene C15orf48. SCIENCE ADVANCES 2021; 7:eabl5182. [PMID: 34878835 PMCID: PMC8654286 DOI: 10.1126/sciadv.abl5182] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 10/18/2021] [Indexed: 05/10/2023]
Abstract
Dysregulated mitochondrial function is a hallmark of immune-mediated inflammatory diseases. Cytochrome c oxidase (CcO), which mediates the rate-limiting step in mitochondrial respiration, is remodeled during development and in response to changes of oxygen availability, but there has been little study of CcO remodeling during inflammation. Here, we describe an elegant molecular switch mediated by the bifunctional transcript C15orf48, which orchestrates the substitution of the CcO subunit NDUFA4 by its paralog C15ORF48 in primary macrophages. Expression of C15orf48 is a conserved response to inflammatory signals and occurs in many immune-related pathologies. In rheumatoid arthritis, C15orf48 mRNA is elevated in peripheral monocytes and proinflammatory synovial tissue macrophages, and its expression positively correlates with disease severity and declines in remission. C15orf48 is also expressed by pathogenic macrophages in severe coronavirus disease 2019 (COVID-19). Study of a rare metabolic disease syndrome provides evidence that loss of the NDUFA4 subunit supports proinflammatory macrophage functions.
Collapse
Affiliation(s)
- Sally A. Clayton
- Research into Inflammatory Arthritis Centre Versus Arthritis (RACE), Universities of Glasgow, Birmingham, Newcastle, Oxford, UK
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, UK
| | - Kalbinder K. Daley
- Research into Inflammatory Arthritis Centre Versus Arthritis (RACE), Universities of Glasgow, Birmingham, Newcastle, Oxford, UK
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
| | - Lucy MacDonald
- Research into Inflammatory Arthritis Centre Versus Arthritis (RACE), Universities of Glasgow, Birmingham, Newcastle, Oxford, UK
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK
| | | | - Giovanni Bottegoni
- Dipartimento di Scienze Biomolecolari, University of Urbino, Urbino, Italy
- School of Pharmacy, Institute of Clinical Sciences, University of Birmingham, Birmingham, UK
| | - John D. O’Neil
- Research into Inflammatory Arthritis Centre Versus Arthritis (RACE), Universities of Glasgow, Birmingham, Newcastle, Oxford, UK
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
| | - Triin Major
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
| | - Daniel Griffin
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
| | - Qinqin Zhuang
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
| | - Adeolu B. Adewoye
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
| | - Kieran Woolcock
- Research into Inflammatory Arthritis Centre Versus Arthritis (RACE), Universities of Glasgow, Birmingham, Newcastle, Oxford, UK
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK
| | - Simon W. Jones
- Research into Inflammatory Arthritis Centre Versus Arthritis (RACE), Universities of Glasgow, Birmingham, Newcastle, Oxford, UK
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
| | - Carl Goodyear
- Research into Inflammatory Arthritis Centre Versus Arthritis (RACE), Universities of Glasgow, Birmingham, Newcastle, Oxford, UK
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK
| | - Aziza Elmesmari
- Research into Inflammatory Arthritis Centre Versus Arthritis (RACE), Universities of Glasgow, Birmingham, Newcastle, Oxford, UK
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK
| | - Andrew Filer
- Research into Inflammatory Arthritis Centre Versus Arthritis (RACE), Universities of Glasgow, Birmingham, Newcastle, Oxford, UK
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
| | - Daniel A. Tennant
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, UK
| | - Stefano Alivernini
- Research into Inflammatory Arthritis Centre Versus Arthritis (RACE), Universities of Glasgow, Birmingham, Newcastle, Oxford, UK
- Division of Rheumatology, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Christopher D. Buckley
- Research into Inflammatory Arthritis Centre Versus Arthritis (RACE), Universities of Glasgow, Birmingham, Newcastle, Oxford, UK
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Robert D. S. Pitceathly
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology and The National Hospital for Neurology and Neurosurgery, London, UK
| | - Mariola Kurowska-Stolarska
- Research into Inflammatory Arthritis Centre Versus Arthritis (RACE), Universities of Glasgow, Birmingham, Newcastle, Oxford, UK
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK
| | - Andrew R. Clark
- Research into Inflammatory Arthritis Centre Versus Arthritis (RACE), Universities of Glasgow, Birmingham, Newcastle, Oxford, UK
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
| |
Collapse
|
43
|
Dewanjee S, Kandimalla R, Kalra RS, Valupadas C, Vallamkondu J, Kolli V, Dey Ray S, Reddy AP, Reddy PH. COVID-19 and Rheumatoid Arthritis Crosstalk: Emerging Association, Therapeutic Options and Challenges. Cells 2021; 10:3291. [PMID: 34943795 PMCID: PMC8699554 DOI: 10.3390/cells10123291] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/17/2021] [Accepted: 11/19/2021] [Indexed: 02/07/2023] Open
Abstract
Hyperactivation of immune responses resulting in excessive release of pro-inflammatory mediators in alveoli/lung structures is the principal pathological feature of coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The cytokine hyperactivation in COVID-19 appears to be similar to those seen in rheumatoid arthritis (RA), an autoimmune disease. Emerging evidence conferred the severity and risk of COVID-19 to RA patients. Amid the evidence of musculoskeletal manifestations involving immune-inflammation-dependent mechanisms and cases of arthralgia and/or myalgia in COVID-19, crosstalk between COVID-19 and RA is often debated. The present article sheds light on the pathological crosstalk between COVID-19 and RA, the risk of RA patients in acquiring SARS-CoV-2 infection, and the aspects of SARS-CoV-2 infection in RA development. We also conferred whether RA can exacerbate COVID-19 outcomes based on available clinical readouts. The mechanistic overlapping in immune-inflammatory features in both COVID-19 and RA was discussed. We showed the emerging links of angiotensin-converting enzyme (ACE)-dependent and macrophage-mediated pathways in both diseases. Moreover, a detailed review of immediate challenges and key recommendations for anti-rheumatic drugs in the COVID-19 setting was presented for better clinical monitoring and management of RA patients. Taken together, the present article summarizes available knowledge on the emerging COVID-19 and RA crosstalk and their mechanistic overlaps, challenges, and therapeutic options.
Collapse
Affiliation(s)
- Saikat Dewanjee
- Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur Unversity, Kolkata 700032, India;
| | - Ramesh Kandimalla
- Applied Biology, CSIR-Indian Institute of Technology, Uppal Road, Tarnaka, Hyderabad 50000, India;
- Department of Biochemistry, Kakatiya Medical College, Warangal 506007, India
| | - Rajkumar Singh Kalra
- AIST-INDIA DAILAB, National Institute of Advanced Industrial Science & Technology (AIST), Higashi 1-1-1, Tsukuba 305-8565, Japan;
| | - Chandrasekhar Valupadas
- Department of Medicine, Mahatma Gandhi Memorial Hospital, Warangal 506007, India;
- Department of Medicine, Kakatiya Medical College Superspeciality Hospital, Warangal 506007, India
| | | | - Viswakalyan Kolli
- Department of Biochemistry, GITAM Institute of Medical Sciences and Research, Visakhapatnam 530045, India;
| | - Sarbani Dey Ray
- Department of Pharmaceutical Sciences, Assam University, Silchar 788011, India;
| | - Arubala P. Reddy
- Nutritional Sciences Department, College of Human Sciences, Texas Tech University, 1301 Akron Ave, Lubbock, TX 79409, USA;
| | - P. Hemachandra Reddy
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Departments of Neurology, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Public Health Department of Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Department of Speech, Language and Hearing Sciences, School Health Professions, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| |
Collapse
|
44
|
Dreno B, Chavda R, Julia V, Khammari A, Blanchet-Réthoré S, Krishnaswamy JK. Transcriptomics Analysis Indicates Trifarotene Reverses Acne-Related Gene Expression Changes. Front Med (Lausanne) 2021; 8:745822. [PMID: 34746181 PMCID: PMC8569320 DOI: 10.3389/fmed.2021.745822] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Accepted: 09/21/2021] [Indexed: 11/13/2022] Open
Abstract
Background and Objectives: Trifarotene is a topical retinoid selective for retinoic acid receptor gamma that was recently approved for treatment of acne vulgaris. We performed a gene expression analysis to identify the molecular and cellular impact of trifarotene treatment on acne papules. Methods: In this open-label prospective study, subjects with moderate inflammatory acne of the back were treated with trifarotene 0.005% or vehicle cream on dedicated areas for 27 days, and 4 biopsies were collected from each subject (1 from skin without a visible acne lesion and three at the site of an acne papule: one baseline, one after vehicle treatment, and one after trifarotene treatment). Large scale gene expression profiling of the biopsies was performed using Affymetrix technology, treatment-specific gene expression profiles were generated using statistical modeling, and pathway analysis was performed. Using single-cell RNAseq data, in silico deconvolution of transcriptomics data was performed to identify cellular signatures. Results: We discovered a unique set of 67 genes modulated by trifarotene that are primarily involved in cellular migration, inflammation, and extracellular matrix reorganization. Changes in cellular expression were similar in both trifarotene-treated and spontaneously-resolving lesions. However, only trifarotene treatment impacted SPP1+ macrophages, a subset of highly proliferative macrophages recently identified in fibrotic tissue. Conclusions: These results show that trifarotene has a novel action in acne treatment by affecting epidermal and immune components of acne pathogenesis.
Collapse
|