1
|
Biojout T, Bergot E, Bernay B, Levallet G, Levallet J. NDR2 kinase: A review of its physiological role and involvement in carcinogenesis. Int J Biol Macromol 2025; 311:143656. [PMID: 40311964 DOI: 10.1016/j.ijbiomac.2025.143656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 04/04/2025] [Accepted: 04/28/2025] [Indexed: 05/03/2025]
Abstract
The Hippo kinase, NDR2, plays a key role in the natural history of several human cancers, particularly lung cancer, by regulating processes such as proliferation, apoptosis, migration, invasion, vesicular trafficking, autophagy, ciliogenesis and immune response. To examine the specificity of NDR2's action, interaction and function in physiological or tumoral contexts, we first focus on the structural differences in the amino-acid sequence between NDR1 and NDR2. We then establish a correlation between these NDR1/2 differences and specific post-translational regulation, as well as the distinct action, interactions, and functions of NDR2 in physiological or tumoral paradigms, such as lung cancer. Furthermore, the full set of NDR2 partners and/or substrates remains to be identified. Given that it is hypothesized that NDR2 and its partners may offer new perspectives for anticancer therapies, we emphasize potential clustering or functional enrichment networks among the NDR2-specific interactants. Additionally, we provide an unpublished proteomic comparison of the NDR1 versus NDR2 interactome, focusing on human bronchial epithelial cells (HBEC-3), lung adenocarcinoma cells (H2030), and their brain metastasis-derived counterparts (H2030-BrM3). In conclusion, this study underscores the pivotal role of NDR2 in cancer progression, particularly lung cancer, and helps to better understand their specific functions and interactions in both normal and tumor contexts. The identification of NDR2 partners and substrates remains essential, with the potential to open new avenues for anticancer therapies.
Collapse
Affiliation(s)
- Tiphaine Biojout
- Université de Caen Normandie, CNRS, Normandie Université, ISTCT UMR6030, GIP CYCERON, F-14000 Caen, France
| | - Emmanuel Bergot
- Université de Caen Normandie, CNRS, Normandie Université, ISTCT UMR6030, GIP CYCERON, F-14000 Caen, France; Centre Hospitalier Universitaire de Caen Normandie, Département de Pneumologie et d'Oncologie thoracique, F-14000 Caen, France
| | - Benoit Bernay
- Université de Caen Normandie - Plateforme PROTEOGEN, US EMerode, 14032 Caen, cedex 5, France
| | - Guénaëlle Levallet
- Université de Caen Normandie, CNRS, Normandie Université, ISTCT UMR6030, GIP CYCERON, F-14000 Caen, France; Centre Hospitalier Universitaire de Caen Normandie, Département de Pathologie, F-14000 Caen, France.
| | - Jérôme Levallet
- Université de Caen Normandie, CNRS, Normandie Université, ISTCT UMR6030, GIP CYCERON, F-14000 Caen, France
| |
Collapse
|
2
|
Zhao Z, Wu W, Zhang Q, Xing T, Bai Y, Li S, Zhang D, Che H, Guo X. Mechanism and therapeutic potential of hippo signaling pathway in type 2 diabetes and its complications. Biomed Pharmacother 2025; 183:117817. [PMID: 39842269 DOI: 10.1016/j.biopha.2025.117817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 12/22/2024] [Accepted: 01/09/2025] [Indexed: 01/24/2025] Open
Abstract
Loss of pancreatic islet cell mass and function is one of the most important factors in the development of type 2 diabetes mellitus, and hyperglycemia-induced lesions in other organs are also associated with apoptosis or hyperproliferation of the corresponding tissue cells. The Hippo signaling pathway is a key signal in the regulation of cell growth, proliferation and apoptosis, which has been shown to play an important role in the regulation of diabetes mellitus and its complications. Excessive activation of the Hippo signaling pathway under high glucose conditions triggered apoptosis and decreased insulin secretion in pancreatic islet cells, while dysregulation of the Hippo signaling pathway in the cells of other organ tissues led to proliferation or apoptosis and promoted tissue fibrosis, which aggravated the progression of diabetes mellitus and its complications. This article reviews the mechanisms of Hippo signaling, its individual and reciprocal regulation in diabetic pancreatic pathology, and its emerging role in the pathophysiology of diabetic complications. Potential therapeutics for diabetes mellitus that have been shown to target the Hippo signaling pathway are also summarized to provide information for the clinical management of type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Ziqi Zhao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Weijie Wu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Qianyi Zhang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Tiancheng Xing
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Yiling Bai
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Shuoqi Li
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Dandan Zhang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Huilian Che
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| | - Xiaohui Guo
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| |
Collapse
|
3
|
Lu X, Xie Q, Pan X, Zhang R, Zhang X, Peng G, Zhang Y, Shen S, Tong N. Type 2 diabetes mellitus in adults: pathogenesis, prevention and therapy. Signal Transduct Target Ther 2024; 9:262. [PMID: 39353925 PMCID: PMC11445387 DOI: 10.1038/s41392-024-01951-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/21/2024] [Accepted: 08/06/2024] [Indexed: 10/03/2024] Open
Abstract
Type 2 diabetes (T2D) is a disease characterized by heterogeneously progressive loss of islet β cell insulin secretion usually occurring after the presence of insulin resistance (IR) and it is one component of metabolic syndrome (MS), and we named it metabolic dysfunction syndrome (MDS). The pathogenesis of T2D is not fully understood, with IR and β cell dysfunction playing central roles in its pathophysiology. Dyslipidemia, hyperglycemia, along with other metabolic disorders, results in IR and/or islet β cell dysfunction via some shared pathways, such as inflammation, endoplasmic reticulum stress (ERS), oxidative stress, and ectopic lipid deposition. There is currently no cure for T2D, but it can be prevented or in remission by lifestyle intervention and/or some medication. If prevention fails, holistic and personalized management should be taken as soon as possible through timely detection and diagnosis, considering target organ protection, comorbidities, treatment goals, and other factors in reality. T2D is often accompanied by other components of MDS, such as preobesity/obesity, metabolic dysfunction associated steatotic liver disease, dyslipidemia, which usually occurs before it, and they are considered as the upstream diseases of T2D. It is more appropriate to call "diabetic complications" as "MDS-related target organ damage (TOD)", since their development involves not only hyperglycemia but also other metabolic disorders of MDS, promoting an up-to-date management philosophy. In this review, we aim to summarize the underlying mechanism, screening, diagnosis, prevention, and treatment of T2D, especially regarding the personalized selection of hypoglycemic agents and holistic management based on the concept of "MDS-related TOD".
Collapse
Affiliation(s)
- Xi Lu
- Department of Endocrinology and Metabolism, Research Centre for Diabetes and Metabolism, West China Hospital, Sichuan University, Chengdu, China
| | - Qingxing Xie
- Department of Endocrinology and Metabolism, Research Centre for Diabetes and Metabolism, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaohui Pan
- Department of Endocrinology and Metabolism, Research Centre for Diabetes and Metabolism, West China Hospital, Sichuan University, Chengdu, China
| | - Ruining Zhang
- Department of Endocrinology and Metabolism, Research Centre for Diabetes and Metabolism, West China Hospital, Sichuan University, Chengdu, China
| | - Xinyi Zhang
- Department of Endocrinology and Metabolism, Research Centre for Diabetes and Metabolism, West China Hospital, Sichuan University, Chengdu, China
| | - Ge Peng
- Department of Endocrinology and Metabolism, Research Centre for Diabetes and Metabolism, West China Hospital, Sichuan University, Chengdu, China
| | - Yuwei Zhang
- Department of Endocrinology and Metabolism, Research Centre for Diabetes and Metabolism, West China Hospital, Sichuan University, Chengdu, China
| | - Sumin Shen
- Department of Endocrinology and Metabolism, Research Centre for Diabetes and Metabolism, West China Hospital, Sichuan University, Chengdu, China
| | - Nanwei Tong
- Department of Endocrinology and Metabolism, Research Centre for Diabetes and Metabolism, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
4
|
Hong Y, Sun Y, Ainiwaer M, Xiao B, Zhang S, Ning L, Zhu X, Ji Y. A role for YAP/FOXM1/Nrf2 axis in oxidative stress and apoptosis of cataract induced by UVB irradiation. FASEB J 2024; 38:e23832. [PMID: 39046354 DOI: 10.1096/fj.202400848r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 06/24/2024] [Accepted: 07/09/2024] [Indexed: 07/25/2024]
Abstract
This study aims to investigate the hypothesis that Yes-associated protein (YAP) significantly regulates antioxidant potential and anti-apoptosis in UVB-induced cataract by exploring the underlying molecular mechanisms. To investigate the association between YAP and cataract, various experimental techniques were employed, including cell viability assessment, Annexin V FITC/PI assay, measurement of ROS production, RT-PCR, Western blot assay, and Immunoprecipitation. UVB exposure on human lens epithelium cells (HLECs) reduced total and nuclear YAP protein expression, increased cleaved/pro-caspase 3 ratios, decreased cell viability, and elevated ROS levels compared to controls. Similar Western blot results were observed in in vivo experiments involving UVB-treated mice. YAP knockdown in vitro demonstrated a decrease in the protein expression of FOXM1, Nrf2, and HO-1, which correlated with the mRNA expression, accompanied by an increase in cell apoptosis, caspase 3 activation, and the release of ROS. Conversely, YAP overexpression mitigated these effects induced by UVB irradiation. Immunoprecipitation revealed a FOXM1-YAP interaction. Notably, inhibiting FOXM1 decreased Nrf2 and HO-1, activating caspase 3. Additionally, administering the ROS inhibitor N-acetyl-L-cysteine (NAC) effectively mitigated the apoptotic effects induced by oxidative stress from UVB irradiation, rescuing the protein expression levels of YAP, FOXM1, Nrf2, and HO-1. The initial findings of our study demonstrate the existence of a feedback loop involving YAP, FOXM1, Nrf2, and ROS that significantly influences the cell apoptosis in HLECs under UVB-induced oxidative stress.
Collapse
Affiliation(s)
- Yingying Hong
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China
- Key laboratory of Myopia and Related Eye Diseases, NHC, Shanghai, China
- Key laboratory of Myopia and Related Eye Diseases, Chinese Academy of Medical Sciences, Shanghai, China
| | - Yang Sun
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China
- Key laboratory of Myopia and Related Eye Diseases, NHC, Shanghai, China
- Key laboratory of Myopia and Related Eye Diseases, Chinese Academy of Medical Sciences, Shanghai, China
| | - Maierdanjiang Ainiwaer
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China
- Key laboratory of Myopia and Related Eye Diseases, NHC, Shanghai, China
- Key laboratory of Myopia and Related Eye Diseases, Chinese Academy of Medical Sciences, Shanghai, China
| | - Binghe Xiao
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China
- Key laboratory of Myopia and Related Eye Diseases, NHC, Shanghai, China
- Key laboratory of Myopia and Related Eye Diseases, Chinese Academy of Medical Sciences, Shanghai, China
| | - Shaohua Zhang
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China
- Key laboratory of Myopia and Related Eye Diseases, NHC, Shanghai, China
- Key laboratory of Myopia and Related Eye Diseases, Chinese Academy of Medical Sciences, Shanghai, China
| | - Li Ning
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China
- Key laboratory of Myopia and Related Eye Diseases, NHC, Shanghai, China
- Key laboratory of Myopia and Related Eye Diseases, Chinese Academy of Medical Sciences, Shanghai, China
| | - Xiangjia Zhu
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China
- Key laboratory of Myopia and Related Eye Diseases, NHC, Shanghai, China
- Key laboratory of Myopia and Related Eye Diseases, Chinese Academy of Medical Sciences, Shanghai, China
| | - Yinghong Ji
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China
- Key laboratory of Myopia and Related Eye Diseases, NHC, Shanghai, China
- Key laboratory of Myopia and Related Eye Diseases, Chinese Academy of Medical Sciences, Shanghai, China
| |
Collapse
|
5
|
Wei L, Gao J, Wang L, Tao Q, Tu C. Hippo/YAP signaling pathway: a new therapeutic target for diabetes mellitus and vascular complications. Ther Adv Endocrinol Metab 2023; 14:20420188231220134. [PMID: 38152659 PMCID: PMC10752099 DOI: 10.1177/20420188231220134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 11/11/2023] [Indexed: 12/29/2023] Open
Abstract
Diabetic angiopathy, which includes diabetic kidney disease (DKD), cardio-cerebrovascular disease, and diabetic retinopathy (DR) among other diseases, is one of the most common complications affecting diabetic patients. Among these, DKD, which is a major cause of morbidity and mortality, affects about 40% of diabetic patients. Similarly, DR involves retinal neovascularization and neurodegeneration as a result of chronic hyperglycemia and is the main cause of visual impairment and blindness. In addition, inflammation also promotes atherosclerosis and diabetes, with atherosclerosis-related cardiovascular diseases being often a main cause of disability or death in diabetic patients. Given that vascular diseases caused by diabetes negatively impact human health, it is therefore important to identify appropriate treatments. In this context, some studies have found that the Hippo/Yes-associated protein (YAP) pathway is a highly evolutionarily conserved protein kinase signal pathway that regulates organ growth and size through its effector signaling pathway Transcriptional co-Activator with PDZ-binding motif (TAZ) and its YAP. YAP is a key factor in the Hippo pathway. The activation of YAP regulates gluconeogenesis, thereby regulating glucose tolerance levels; silencing the YAP gene thereby prevents the formation of glomerular fibrosis. YAP can combine with TEA domain family members to regulate the proliferation and migration of retinal vascular endothelial cells (ECs), so YAP plays a prominent role in the formation and pathology of retinal vessels. In addition, YAP/TAZ activation and translocation to the nucleus promote endothelial inflammation and monocyte-EC attachment, which can increase diabetes-induced cardiovascular atherosclerosis. Hippo/YAP signaling pathway provides a potential therapeutic target for diabetic angiopathy, which can prevent the progression of diabetes to DR and improve renal fibrosis and cardio-vascular atherosclerosis.
Collapse
Affiliation(s)
- Lan Wei
- Department of Internal Medicine, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| | - Jingjing Gao
- Zhonglou District Center for Disease Control and Prevention, Changzhou, Jiangsu, China
| | - Liangzhi Wang
- Department of Internal Medicine, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| | - Qianru Tao
- Department of Nephrology, The Third Affiliated Hospital of Soochow University, 185 Juqian Road, Changzhou, 213000, Jiangsu, China
| | - Chao Tu
- Department of Internal Medicine, The Third Affiliated Hospital of Soochow University, 185 Juqian Road, Changzhou, 213000, Jiangsu, China
| |
Collapse
|
6
|
Zhang Z, Li M, Sun T, Zhang Z, Liu C. FOXM1: Functional Roles of FOXM1 in Non-Malignant Diseases. Biomolecules 2023; 13:biom13050857. [PMID: 37238726 DOI: 10.3390/biom13050857] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 05/13/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023] Open
Abstract
Forkhead box (FOX) proteins are a wing-like helix family of transcription factors in the DNA-binding region. By mediating the activation and inhibition of transcription and interactions with all kinds of transcriptional co-regulators (MuvB complexes, STAT3, β-catenin, etc.), they play significant roles in carbohydrate and fat metabolism, biological aging and immune regulation, development, and diseases in mammals. Recent studies have focused on translating these essential findings into clinical applications in order to improve quality of life, investigating areas such as diabetes, inflammation, and pulmonary fibrosis, and increase human lifespan. Early studies have shown that forkhead box M1 (FOXM1) functions as a key gene in pathological processes in multiple diseases by regulating genes related to proliferation, the cell cycle, migration, and apoptosis and genes related to diagnosis, therapy, and injury repair. Although FOXM1 has long been studied in relation to human diseases, its role needs to be elaborated on. FOXM1 expression is involved in the development or repair of multiple diseases, including pulmonary fibrosis, pneumonia, diabetes, liver injury repair, adrenal lesions, vascular diseases, brain diseases, arthritis, myasthenia gravis, and psoriasis. The complex mechanisms involve multiple signaling pathways, such as WNT/β-catenin, STAT3/FOXM1/GLUT1, c-Myc/FOXM1, FOXM1/SIRT4/NF-κB, and FOXM1/SEMA3C/NRP2/Hedgehog. This paper reviews the key roles and functions of FOXM1 in kidney, vascular, lung, brain, bone, heart, skin, and blood vessel diseases to elucidate the role of FOXM1 in the development and progression of human non-malignant diseases and makes suggestions for further research.
Collapse
Affiliation(s)
- Zhenwang Zhang
- Hubei Key Laboratory of Diabetes and Angiopathy, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China
| | - Mengxi Li
- School of Nuclear Technology and Chemistry & Biology, Hubei University of Science and Technology, Xianning 437100, China
| | - Tian Sun
- Hubei Key Laboratory of Diabetes and Angiopathy, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China
- Medical Research Institute, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China
| | - Zhengrong Zhang
- Hubei Key Laboratory of Diabetes and Angiopathy, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China
- Medical Research Institute, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China
| | - Chao Liu
- Hubei Key Laboratory of Diabetes and Angiopathy, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China
- Medical Research Institute, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China
| |
Collapse
|
7
|
Gao J, Yao Y, Liu C, Xie X, Li D, Liu P, Wang Z, Zhang B, Ren R. Synergism of FAK and ROS1 inhibitors in the treatment of CDH1-deficient cancers mediated by FAK-YAP signaling. Int J Biol Sci 2023; 19:2711-2724. [PMID: 37324948 PMCID: PMC10266074 DOI: 10.7150/ijbs.81918] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 05/05/2023] [Indexed: 06/17/2023] Open
Abstract
CDH1 deficiency is common in diffuse gastric cancer and triple negative breast cancer patients, both of which still lack effective therapeutics. ROS1 inhibition results in synthetic lethality in CDH1-deficient cancers, but often leads to adaptive resistance. Here, we demonstrate that upregulation of the FAK activity accompanies the emergence of resistance to ROS1 inhibitor therapy in gastric and breast CDH1-deficient cancers. FAK inhibition, either by FAK inhibitors or by knocking down its expression, resulted in higher cytotoxicity potency of the ROS1 inhibitor in CDH1-deficient cancer cell lines. Co-treatment of mice with the FAK inhibitor and ROS1 inhibitors also showed synergistic effects against CDH1-deficient cancers. Mechanistically, ROS1 inhibitors induce the FAK-YAP-TRX signaling, decreasing oxidative stress-related DNA damage and consequently reducing their anti-cancer effects. The FAK inhibitor suppresses the aberrant FAK-YAP-TRX signaling, reinforcing ROS1 inhibitor's cytotoxicity towards cancer cells. These findings support the use of FAK and ROS1 inhibitors as a combination therapeutic strategy in CDH1-deficient triple negative breast cancer and diffuse gastric cancer patients.
Collapse
Affiliation(s)
- Jiaming Gao
- Shanghai Institute of Hematology, State Key Laboratory for Medical Genomics, National Research Center for Translational Medicine at Shanghai, International Center for Aging and Cancer, Collaborative Innovation Center of Hematology, Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yunying Yao
- Shanghai Institute of Hematology, State Key Laboratory for Medical Genomics, National Research Center for Translational Medicine at Shanghai, International Center for Aging and Cancer, Collaborative Innovation Center of Hematology, Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chenxuan Liu
- Shanghai Institute of Hematology, State Key Laboratory for Medical Genomics, National Research Center for Translational Medicine at Shanghai, International Center for Aging and Cancer, Collaborative Innovation Center of Hematology, Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xi Xie
- Shanghai Institute of Hematology, State Key Laboratory for Medical Genomics, National Research Center for Translational Medicine at Shanghai, International Center for Aging and Cancer, Collaborative Innovation Center of Hematology, Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Donghe Li
- Shanghai Institute of Hematology, State Key Laboratory for Medical Genomics, National Research Center for Translational Medicine at Shanghai, International Center for Aging and Cancer, Collaborative Innovation Center of Hematology, Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ping Liu
- Shanghai Institute of Hematology, State Key Laboratory for Medical Genomics, National Research Center for Translational Medicine at Shanghai, International Center for Aging and Cancer, Collaborative Innovation Center of Hematology, Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zaiqi Wang
- InxMed (Shanghai) Co., Ltd, Shanghai, China
| | - Baoyuan Zhang
- Shanghai Institute of Hematology, State Key Laboratory for Medical Genomics, National Research Center for Translational Medicine at Shanghai, International Center for Aging and Cancer, Collaborative Innovation Center of Hematology, Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ruibao Ren
- Shanghai Institute of Hematology, State Key Laboratory for Medical Genomics, National Research Center for Translational Medicine at Shanghai, International Center for Aging and Cancer, Collaborative Innovation Center of Hematology, Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- International Center for Aging and Cancer, Hainan Medical University, Haikou, Hainan Province, China
| |
Collapse
|
8
|
Nonalcoholic Fatty Liver Hepatocyte-Derived lncRNA MALAT1 Aggravates Pancreatic Cell Inflammation via the Inhibition of Autophagy by Upregulating YAP. COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE 2022; 2022:2930960. [PMID: 36093484 PMCID: PMC9452936 DOI: 10.1155/2022/2930960] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 08/05/2022] [Accepted: 08/08/2022] [Indexed: 12/14/2022]
Abstract
Background Acute pancreatitis (AP) is one of the most common gastrointestinal disorders, which causes death with a high mortality rate of about 30%. The study aims to identify whether the nonalcoholic fatty liver disease (NAFLD)-derived lncRNA MALAT1 participates in the inflammation of pancreatic cell and its potential mechanism. Methods The NAFLD cell model was constructed by treating HepG2 cells with FFA. The in vitro model of acute pancreatitis (AP) was established by the administration of caerulein on AR42J cells. MALAT1 and si-MALAT1 were transfected into pancreatic cells, and then exosomes were collected from the NAFLD cell model and then were cocultured with AR42J cells. Transmission electron microscopy was used to observe the morphology of exosomes. Oil Red O staining was applied to reveal the lipid deposition. The triglyceride, IL-6, and TNF-α levels were detected using ELISA. The MALAT1 level in exosomes was detected by qRT-PCR. The CD9, CD63, CD81, and CYP2E1, LC3II, and LC3I levels were detected by western blot. Results MALAT1 was upregulated in NAFLD-derived exosomes and increased the levels of IL-6 and TNF-α in pancreatic cells. NAFLD-derived exosomes inhibited YAP phosphorylation, decreased the levels of IL-6 and TNF-α, and reduced the ratio of LC3II/LC3I protein in pancreatic cells. Silencing MALAT1 significantly returned the inhibitory effect of NAFLD on hippo-YAP pathway. YAP1 signal transduction inhibitor CA3 reversed the decrease of LC3II/LC3I expression and the increase of IL-6 and TNF-α levels induced by MALAT1 in the AP cell model. Conclusions NAFLD-derived MALAT1 exacerbates pancreatic cell inflammation via inhibiting autophagy by upregulating YAP.
Collapse
|
9
|
Jeong MG, Kim HK, Lee G, Won HY, Yoon DH, Hwang ES. TAZ promotes PDX1-mediated insulinogenesis. Cell Mol Life Sci 2022; 79:186. [PMID: 35279781 PMCID: PMC11071806 DOI: 10.1007/s00018-022-04216-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 02/20/2022] [Accepted: 02/21/2022] [Indexed: 11/30/2022]
Abstract
Transcriptional co-activator with PDZ-binding motif (TAZ) is a key mediator of the Hippo signaling pathway and regulates structural and functional homeostasis in various tissues. TAZ activation is associated with the development of pancreatic cancer in humans, but it is unclear whether TAZ directly affects the structure and function of the pancreas. So we sought to identify the TAZ function in the normal pancreas. TAZ defect caused structural changes in the pancreas, particularly islet cell shrinkage and decreased insulin production and β-cell markers expression, leading to hyperglycemia. Interestingly, TAZ physically interacted with the pancreatic and duodenal homeobox 1 (PDX1), a key insulin transcription factor, through the N-terminal domain of TAZ and the homeodomain of PDX1. TAZ deficiency decreased the DNA-binding and transcriptional activity of PDX1, whereas TAZ overexpression promoted PDX1 activity and increased insulin production even in a low glucose environment. Indeed, high glucose increased insulin production by turning off the Hippo pathway and inducing TAZ activation in pancreatic β-cells. Ectopic TAZ overexpression along with PDX1 activation was sufficient to produce insulin in non-β-cells. TAZ deficiency impaired the mesenchymal stem cell differentiation into insulin-producing cells (IPCs), whereas TAZ recovery restored normal IPCs differentiation. Compared to WT control, body weight increased in TAZ-deficient mice with age and even more with a high-fat diet (HFD). TAZ deficiency significantly exacerbated HFD-induced glucose intolerance and insulin resistance. Therefore, TAZ deficiency impaired pancreatic insulin production, causing hyperglycemia and exacerbating HFD-induced insulin resistance, indicating that TAZ may have a beneficial effect in treating insulin deficiency in diabetes.
Collapse
Affiliation(s)
- Mi Gyeong Jeong
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, C206 Science Building, 52 Ewhayeodae-Gil, Seodaemun-Gu, Seoul, 03760, South Korea
| | - Hyo Kyeong Kim
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, C206 Science Building, 52 Ewhayeodae-Gil, Seodaemun-Gu, Seoul, 03760, South Korea
| | - Gibbeum Lee
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, C206 Science Building, 52 Ewhayeodae-Gil, Seodaemun-Gu, Seoul, 03760, South Korea
| | - Hee Yeon Won
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, C206 Science Building, 52 Ewhayeodae-Gil, Seodaemun-Gu, Seoul, 03760, South Korea
| | - Da Hye Yoon
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, C206 Science Building, 52 Ewhayeodae-Gil, Seodaemun-Gu, Seoul, 03760, South Korea
| | - Eun Sook Hwang
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, C206 Science Building, 52 Ewhayeodae-Gil, Seodaemun-Gu, Seoul, 03760, South Korea.
| |
Collapse
|
10
|
Kilanowska A, Ziółkowska A. Apoptosis in Type 2 Diabetes: Can It Be Prevented? Hippo Pathway Prospects. Int J Mol Sci 2022; 23:636. [PMID: 35054822 PMCID: PMC8775644 DOI: 10.3390/ijms23020636] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/20/2021] [Accepted: 01/05/2022] [Indexed: 02/04/2023] Open
Abstract
Diabetes mellitus is a heterogeneous disease of complex etiology and pathogenesis. Hyperglycemia leads to many serious complications, but also directly initiates the process of β cell apoptosis. A potential strategy for the preservation of pancreatic β cells in diabetes may be to inhibit the implementation of pro-apoptotic pathways or to enhance the action of pancreatic protective factors. The Hippo signaling pathway is proposed and selected as a target to manipulate the activity of its core proteins in therapy-basic research. MST1 and LATS2, as major upstream signaling kinases of the Hippo pathway, are considered as target candidates for pharmacologically induced tissue regeneration and inhibition of apoptosis. Manipulating the activity of components of the Hippo pathway offers a wide range of possibilities, and thus is a potential tool in the treatment of diabetes and the regeneration of β cells. Therefore, it is important to fully understand the processes involved in apoptosis in diabetic states and completely characterize the role of this pathway in diabetes. Therapy consisting of slowing down or stopping the mechanisms of apoptosis may be an important direction of diabetes treatment in the future.
Collapse
Affiliation(s)
- Agnieszka Kilanowska
- Department of Anatomy and Histology, Collegium Medicum, University of Zielona Gora, Zyty 28, 65-001 Zielona Gora, Poland;
| | | |
Collapse
|
11
|
Zheng Y, Bian Y, Wu R, Chen W, Fu L, Li P, Wang Y, Yang X, Zhao S, Shi Y. High-Throughput Sequencing Profiles About lncRNAs and mRNAs of Ovarian Granulosa Cells in Polycystic Ovary Syndrome. Front Med (Lausanne) 2021; 8:741803. [PMID: 34881258 PMCID: PMC8645594 DOI: 10.3389/fmed.2021.741803] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 10/26/2021] [Indexed: 02/01/2023] Open
Abstract
Polycystic ovary syndrome (PCOS) is one of the most common endocrine disorders in women of reproductive age, which is characterized by ovulatory dysfunction, clinical and/or biochemical androgen excess, polycystic ovaries on ultrasound and genetic heterogeneity. It was well-accepted that many lncRNAs and mRNAs were associated with PCOS, however, remain unclear. Therefore, the purpose of our study was to examine different expression profiles of lncRNAs and mRNAs in ovarian granulosa cells (GCs) in PCOS and Controls, and identify the correlation between lncRNAs, mRNAs and clinical parameters. Sixty five PCOS patients and 65 Controls were enrolled in this study and adopted standard long agonist protocols or GnRH antagonist protocols. Then 6 GCs samples in each group were subjected to high-thoughput sequencing and the remaining samples were used for the further verification by quantitative real-time PCR (qRT-PCR). Gene Oncology (GO), Kyoto Encyclopedia Genes and Genomes (KEGG) enrichment analysis were performed. We predicted the relationship between lncRNAs and mRNAs by Cytoscape software. According to the expression level of lncRNAs, mRNAs and the clinical parameters, we also explored their relationship and evaluate their predictive values for embryos quality and PCOS. We identified 1,049 differential expressed lncRNAs and 3,246 mRNAs (fold-change ≥2, p-value < 0.05). Seven lncRNAs (NONHSAT101926.2, NONHSAT136825.2, NONHSAT227177.1, NONHSAT010538.2, NONHSAT191377.1, NONHSAT230904.1, ENST00000607307) and 3 mRNAs (EREG, ENTPD6, YAP1) were validated consistent with sequence profile. Seven lncRNAs were related to hormone level and follicle counts, 3 mRNAs had connections with lipid metabolism. The area under curve (AUC) of 7 lncRNAs were valuable in distinguishing patients with PCOS from Controls. The AUC of NONHSAT230904.1 and NONHSAT227177.1 were 0.6807 and 0.6410, respectively, for distinguishing whether the rate of high-quality embryos exceeds 50%. Our study showed that the GCs lncRNAs and mRNAs were involved in the occurrence and development of PCOS, which contribute to clarify the pathogenesis mechanism of PCOS.
Collapse
Affiliation(s)
- Yanjun Zheng
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, China.,Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, China.,Shandong Key Laboratory of Reproductive Medicine, Jinan, China.,Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, China.,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, China
| | - Yuehong Bian
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, China.,Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, China.,Shandong Key Laboratory of Reproductive Medicine, Jinan, China.,Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, China.,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, China
| | - Richao Wu
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, China.,Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, China.,Shandong Key Laboratory of Reproductive Medicine, Jinan, China.,Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, China.,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, China
| | - Wei Chen
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, China.,Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, China.,Shandong Key Laboratory of Reproductive Medicine, Jinan, China.,Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, China.,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, China
| | - Linlin Fu
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, China.,Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, China.,Shandong Key Laboratory of Reproductive Medicine, Jinan, China.,Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, China.,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, China
| | - Ping Li
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, China.,Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, China.,Shandong Key Laboratory of Reproductive Medicine, Jinan, China.,Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, China.,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, China
| | - Ying Wang
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, China.,Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, China.,Shandong Key Laboratory of Reproductive Medicine, Jinan, China.,Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, China.,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, China
| | - Xiao Yang
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, China.,Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, China.,Shandong Key Laboratory of Reproductive Medicine, Jinan, China.,Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, China.,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, China
| | - Shigang Zhao
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, China.,Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, China.,Shandong Key Laboratory of Reproductive Medicine, Jinan, China.,Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, China.,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, China
| | - Yuhua Shi
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, China.,Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, China.,Shandong Key Laboratory of Reproductive Medicine, Jinan, China.,Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, China.,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, China
| |
Collapse
|
12
|
Yuan T, Annamalai K, Naik S, Lupse B, Geravandi S, Pal A, Dobrowolski A, Ghawali J, Ruhlandt M, Gorrepati KDD, Azizi Z, Lim DS, Maedler K, Ardestani A. The Hippo kinase LATS2 impairs pancreatic β-cell survival in diabetes through the mTORC1-autophagy axis. Nat Commun 2021; 12:4928. [PMID: 34389720 PMCID: PMC8363615 DOI: 10.1038/s41467-021-25145-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 07/20/2021] [Indexed: 02/07/2023] Open
Abstract
Diabetes results from a decline in functional pancreatic β-cells, but the molecular mechanisms underlying the pathological β-cell failure are poorly understood. Here we report that large-tumor suppressor 2 (LATS2), a core component of the Hippo signaling pathway, is activated under diabetic conditions and induces β-cell apoptosis and impaired function. LATS2 deficiency in β-cells and primary isolated human islets as well as β-cell specific LATS2 ablation in mice improves β-cell viability, insulin secretion and β-cell mass and ameliorates diabetes development. LATS2 activates mechanistic target of rapamycin complex 1 (mTORC1), a physiological suppressor of autophagy, in β-cells and genetic and pharmacological inhibition of mTORC1 counteracts the pro-apoptotic action of activated LATS2. We further show a direct interplay between Hippo and autophagy, in which LATS2 is an autophagy substrate. On the other hand, LATS2 regulates β-cell apoptosis triggered by impaired autophagy suggesting an existence of a stress-sensitive multicomponent cellular loop coordinating β-cell compensation and survival. Our data reveal an important role for LATS2 in pancreatic β-cell turnover and suggest LATS2 as a potential therapeutic target to improve pancreatic β-cell survival and function in diabetes.
Collapse
Affiliation(s)
- Ting Yuan
- Centre for Biomolecular Interactions Bremen, University of Bremen, Bremen, Germany
- Institute of Cardiovascular Regeneration, Centre for Molecular Medicine, Goethe University Frankfurt, Frankfurt, Germany
| | - Karthika Annamalai
- Centre for Biomolecular Interactions Bremen, University of Bremen, Bremen, Germany
| | - Shruti Naik
- Centre for Biomolecular Interactions Bremen, University of Bremen, Bremen, Germany
| | - Blaz Lupse
- Centre for Biomolecular Interactions Bremen, University of Bremen, Bremen, Germany
| | - Shirin Geravandi
- Centre for Biomolecular Interactions Bremen, University of Bremen, Bremen, Germany
| | - Anasua Pal
- Centre for Biomolecular Interactions Bremen, University of Bremen, Bremen, Germany
| | | | - Jaee Ghawali
- Centre for Biomolecular Interactions Bremen, University of Bremen, Bremen, Germany
| | - Marina Ruhlandt
- Centre for Biomolecular Interactions Bremen, University of Bremen, Bremen, Germany
| | | | - Zahra Azizi
- Centre for Biomolecular Interactions Bremen, University of Bremen, Bremen, Germany
- Department of Molecular Medicine, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Dae-Sik Lim
- Department of Biological Sciences, KAIST 291 Daehak-ro, Yuseong-gu, Daejeon, Republic of Korea
| | - Kathrin Maedler
- Centre for Biomolecular Interactions Bremen, University of Bremen, Bremen, Germany.
| | - Amin Ardestani
- Centre for Biomolecular Interactions Bremen, University of Bremen, Bremen, Germany.
- Department of Molecular Medicine, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
13
|
Wu Y, Aegerter P, Nipper M, Ramjit L, Liu J, Wang P. Hippo Signaling Pathway in Pancreas Development. Front Cell Dev Biol 2021; 9:663906. [PMID: 34079799 PMCID: PMC8165189 DOI: 10.3389/fcell.2021.663906] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 04/12/2021] [Indexed: 12/17/2022] Open
Abstract
The Hippo signaling pathway is a vital regulator of pancreatic development and homeostasis, directing cell fate decisions, morphogenesis, and adult pancreatic cellular plasticity. Through loss-of-function research, Hippo signaling has been found to play key roles in maintaining the proper balance between progenitor cell renewal, proliferation, and differentiation in pancreatic organogenesis. Other studies suggest that overactivation of YAP, a downstream effector of the pathway, promotes ductal cell development and suppresses endocrine cell fate specification via repression of Ngn3. After birth, disruptions in Hippo signaling have been found to lead to de-differentiation of acinar cells and pancreatitis-like phenotype. Further, Hippo signaling directs pancreatic morphogenesis by ensuring proper cell polarization and branching. Despite these findings, the mechanisms through which Hippo governs cell differentiation and pancreatic architecture are yet to be fully understood. Here, we review recent studies of Hippo functions in pancreatic development, including its crosstalk with NOTCH, WNT/β-catenin, and PI3K/Akt/mTOR signaling pathways.
Collapse
Affiliation(s)
- Yifan Wu
- Department of Cell Systems and Anatomy, The University of Texas Health San Antonio, San Antonio, TX, United States.,Department of Obstetrics, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Pauline Aegerter
- Department of Cell Systems and Anatomy, The University of Texas Health San Antonio, San Antonio, TX, United States
| | - Michael Nipper
- Department of Cell Systems and Anatomy, The University of Texas Health San Antonio, San Antonio, TX, United States
| | - Logan Ramjit
- Department of Cell Systems and Anatomy, The University of Texas Health San Antonio, San Antonio, TX, United States
| | - Jun Liu
- Department of Cell Systems and Anatomy, The University of Texas Health San Antonio, San Antonio, TX, United States
| | - Pei Wang
- Department of Cell Systems and Anatomy, The University of Texas Health San Antonio, San Antonio, TX, United States
| |
Collapse
|
14
|
Zheng J, Yu H, Zhou A, Wu B, Liu J, Jia Y, Xiang L. It takes two to tango: coupling of Hippo pathway and redox signaling in biological process. Cell Cycle 2020; 19:2760-2775. [PMID: 33016196 DOI: 10.1080/15384101.2020.1824448] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Hippo pathway is a chain of kinases consists of a series of protein kinases and transcription factors. Meanwhile, oxidative stress is a condition of elevated concentrations of reactive oxygen species (ROS) that cause molecular damage to vital structures and functions. Both of them are key regulators in cell proliferation, survival, and development. These processes are strictly regulated by highly coordinated mechanisms, including c-Jun n-terminal kinase (JNK) pathway, mTOR pathway and a number of extrinsic and intrinsic factors. Recently, emerging evidence suggests that Hippo pathway is involved in the responses to cellular stresses, including mechanic stress, DNA damage, and oxidative stress, to mediate biological process, such as apoptosis, pyroptosis, and metastasis. But the exact mechanism remains to be further explored. Therefore, the purpose of this review is to summarize recent findings and discuss how Hippo pathway, oxidative stress, and the crosstalk between them regulate some biological process which determines cell fate.
Collapse
Affiliation(s)
- Jianan Zheng
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University , Chengdu, China
| | - Hui Yu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University , Chengdu, China.,Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University , Chengdu, China
| | - Anqi Zhou
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University , Chengdu, China
| | - Bingfeng Wu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University , Chengdu, China
| | - Jiayi Liu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University , Chengdu, China
| | - Yinan Jia
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University , Chengdu, China
| | - Lin Xiang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University , Chengdu, China.,Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University , Chengdu, China
| |
Collapse
|
15
|
Enteroviruses and T1D: Is It the Virus, the Genes or Both which Cause T1D. Microorganisms 2020; 8:microorganisms8071017. [PMID: 32650582 PMCID: PMC7409303 DOI: 10.3390/microorganisms8071017] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/04/2020] [Accepted: 07/06/2020] [Indexed: 02/07/2023] Open
Abstract
Type 1 diabetes (T1D) is a chronic autoimmune disorder that results from the selective destruction of insulin-producing β-cells in the pancreas. Up to now, the mechanisms triggering the initiation and progression of the disease are, in their complexity, not fully understood and imply the disruption of several tolerance networks. Viral infection is one of the environmental factors triggering diabetes, which is initially based on the observation that the disease’s incidence follows a periodic pattern within the population. Moreover, the strong correlation of genetic susceptibility is a prerequisite for enteroviral infection associated islet autoimmunity. Epidemiological data and clinical findings indicate enteroviral infections, mainly of the coxsackie B virus family, as potential pathogenic mechanisms to trigger the autoimmune reaction towards β-cells, resulting in the boost of inflammation following β-cell destruction and the onset of T1D. This review discusses previously identified virus-associated genetics and pathways of β-cell destruction. Is it the virus itself which leads to β-cell destruction and T1D progression? Or is it genetic, so that the virus may activate auto-immunity and β-cell destruction only in genetically predisposed individuals?
Collapse
|
16
|
Zhang W, Jiang H, Kong Y. Exosomes derived from platelet-rich plasma activate YAP and promote the fibrogenic activity of Müller cells via the PI3K/Akt pathway. Exp Eye Res 2020; 193:107973. [PMID: 32059976 DOI: 10.1016/j.exer.2020.107973] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Revised: 02/09/2020] [Accepted: 02/11/2020] [Indexed: 12/16/2022]
Abstract
The purpose of this study was to investigate the role of exosomes derived from platelet-rich plasma (PRP-Exos) in the regulation of the fibrogenic activity of Müller cells and the underlying mechanism. We studied the effects of PRP-Exos on the fibrogenic activity of human retinal Müller cells (hMCs) in vitro. PRP-Exos were isolated from the plasma of diabetic rats (DM-PRP-Exos) and normal control rats (Nor-PRP-Exos) and then observed by transmission electron microscopy. After treatment with DM-PRP-Exos or Nor-PRP-Exos, the proliferation and migration of hMCs were measured in vitro. Western blotting was conducted to assess the levels of fibrogenic molecules and activation of Yes-associated protein (YAP) and the PI3K-Akt signalling pathway. In cultured hMCs, DM-PRP-Exos but not Nor-PRP-Exos effectively increased the proliferative and migratory activities and improved connective tissue growth factor (CTGF) and fibronectin expression. Genetic and pharmacological suppression of YAP could reduce the proliferative and migratory activities of hMCs induced by DM-PRP-Exo. Additionally, YAP knockdown inhibited the DM-PRP-Exo-induced up-regulation of CTGF and fibronectin. Furthermore, DM-PRP-Exo-induced PI3K-Akt signalling mediated YAP activation and the expression of CTGF and fibronectin. In summary, DM-PRP-Exos, through YAP activation, enhance both the proliferation and fibrogenic activity of Müller cells via the PI3K/Akt pathway.
Collapse
Affiliation(s)
- Wei Zhang
- Tianjin Eye Hospital, Tianjin Key Lab of Ophthalmology and Visual Science, Tianjin Eye Institute, Clinical College of Ophthalmology Tianjin Medical University, Tianjin, 300020, China
| | - Hao Jiang
- Tianjin Eye Hospital, Tianjin Key Lab of Ophthalmology and Visual Science, Tianjin Eye Institute, Clinical College of Ophthalmology Tianjin Medical University, Tianjin, 300020, China
| | - Yichun Kong
- Tianjin Eye Hospital, Tianjin Key Lab of Ophthalmology and Visual Science, Tianjin Eye Institute, Clinical College of Ophthalmology Tianjin Medical University, Tianjin, 300020, China.
| |
Collapse
|
17
|
Rosado-Olivieri EA, Aigha II, Kenty JH, Melton DA. Identification of a LIF-Responsive, Replication-Competent Subpopulation of Human β Cells. Cell Metab 2020; 31:327-338.e6. [PMID: 31928884 DOI: 10.1016/j.cmet.2019.12.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 10/03/2019] [Accepted: 12/16/2019] [Indexed: 10/25/2022]
Abstract
The beta (β)-cell mass formed during embryogenesis is amplified by cell replication during fetal and early postnatal development. Thereafter, β cells become functionally mature, and their mass is maintained by a low rate of replication. For those few β cells that replicate in adult life, it is not known how replication is initiated nor whether this occurs in a specialized subset of β cells. We capitalized on a YAP overexpression system to induce replication of stem-cell-derived β cells and, by single-cell RNA sequencing, identified an upregulation of the leukemia inhibitory factor (LIF) pathway. Activation of the LIF pathway induces replication of human β cells in vitro and in vivo. The expression of the LIF receptor is restricted to a subset of transcriptionally distinct human β cells with increased proliferative capacity. This study delineates novel genetic networks that control the replication of LIF-responsive, replication-competent human β cells.
Collapse
Affiliation(s)
- Edwin A Rosado-Olivieri
- Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
| | - Idil I Aigha
- Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA; College of Health & Life Sciences, Hamad Bin Khalifa University, Qatar Foundation, Education City, Doha, Qatar; Diabetes Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Qatar Foundation, Education City, Doha, Qatar
| | - Jennifer H Kenty
- Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
| | - Douglas A Melton
- Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA.
| |
Collapse
|
18
|
Ardestani A, Li S, Annamalai K, Lupse B, Geravandi S, Dobrowolski A, Yu S, Zhu S, Baguley TD, Surakattula M, Oetjen J, Hauberg-Lotte L, Herranz R, Awal S, Altenhofen D, Nguyen-Tran V, Joseph S, Schultz PG, Chatterjee AK, Rogers N, Tremblay MS, Shen W, Maedler K. Neratinib protects pancreatic beta cells in diabetes. Nat Commun 2019; 10:5015. [PMID: 31676778 PMCID: PMC6825211 DOI: 10.1038/s41467-019-12880-5] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Accepted: 10/02/2019] [Indexed: 02/06/2023] Open
Abstract
The loss of functional insulin-producing β-cells is a hallmark of diabetes. Mammalian sterile 20-like kinase 1 (MST1) is a key regulator of pancreatic β-cell death and dysfunction; its deficiency restores functional β-cells and normoglycemia. The identification of MST1 inhibitors represents a promising approach for a β-cell-protective diabetes therapy. Here, we identify neratinib, an FDA-approved drug targeting HER2/EGFR dual kinases, as a potent MST1 inhibitor, which improves β-cell survival under multiple diabetogenic conditions in human islets and INS-1E cells. In a pre-clinical study, neratinib attenuates hyperglycemia and improves β-cell function, survival and β-cell mass in type 1 (streptozotocin) and type 2 (obese Leprdb/db) diabetic mouse models. In summary, neratinib is a previously unrecognized inhibitor of MST1 and represents a potential β-cell-protective drug with proof-of-concept in vitro in human islets and in vivo in rodent models of both type 1 and type 2 diabetes. Type 1 as well as type 2 diabetes are characterized by a loss of insulin-producing β-cells. Here the authors show that the FDA-approved drug neratinib has beneficial effects on β-cell survival, insulin secretion, and glycemic control in mouse models of diabetes.
Collapse
Affiliation(s)
- Amin Ardestani
- Centre for Biomolecular Interactions Bremen, University of Bremen, Bremen, Germany.
| | - Sijia Li
- Calibr at Scripps Research, La Jolla, CA, USA
| | - Karthika Annamalai
- Centre for Biomolecular Interactions Bremen, University of Bremen, Bremen, Germany
| | - Blaz Lupse
- Centre for Biomolecular Interactions Bremen, University of Bremen, Bremen, Germany
| | - Shirin Geravandi
- Centre for Biomolecular Interactions Bremen, University of Bremen, Bremen, Germany
| | | | - Shan Yu
- Calibr at Scripps Research, La Jolla, CA, USA
| | - Siying Zhu
- Calibr at Scripps Research, La Jolla, CA, USA
| | | | | | - Janina Oetjen
- Centre for Biomolecular Interactions Bremen, University of Bremen, Bremen, Germany.,Center for Industrial Mathematics, University of Bremen, Bremen, Germany.,MALDI Imaging Lab, University of Bremen, Bremen, Germany
| | - Lena Hauberg-Lotte
- Center for Industrial Mathematics, University of Bremen, Bremen, Germany
| | - Raquel Herranz
- Centre for Biomolecular Interactions Bremen, University of Bremen, Bremen, Germany
| | - Sushil Awal
- Centre for Biomolecular Interactions Bremen, University of Bremen, Bremen, Germany
| | - Delsi Altenhofen
- Centre for Biomolecular Interactions Bremen, University of Bremen, Bremen, Germany
| | | | - Sean Joseph
- Calibr at Scripps Research, La Jolla, CA, USA
| | | | | | | | | | - Weijun Shen
- Calibr at Scripps Research, La Jolla, CA, USA.
| | - Kathrin Maedler
- Centre for Biomolecular Interactions Bremen, University of Bremen, Bremen, Germany.
| |
Collapse
|
19
|
YAP inhibition enhances the differentiation of functional stem cell-derived insulin-producing β cells. Nat Commun 2019; 10:1464. [PMID: 30931946 PMCID: PMC6443737 DOI: 10.1038/s41467-019-09404-6] [Citation(s) in RCA: 111] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 03/07/2019] [Indexed: 01/27/2023] Open
Abstract
Stem cell-derived insulin-producing beta cells (SC-β) offer an inexhaustible supply of functional β cells for cell replacement therapies and disease modeling for diabetes. While successful directed differentiation protocols for this cell type have been described, the mechanisms controlling its differentiation and function are not fully understood. Here we report that the Hippo pathway controls the proliferation and specification of pancreatic progenitors into the endocrine lineage. Downregulation of YAP, an effector of the pathway, enhances endocrine progenitor differentiation and the generation of SC-β cells with improved insulin secretion. A chemical inhibitor of YAP acts as an inducer of endocrine differentiation and reduces the presence of proliferative progenitor cells. Conversely, sustained activation of YAP results in impaired differentiation, blunted glucose-stimulated insulin secretion, and increased proliferation of SC-β cells. Together these results support a role for YAP in controlling the self-renewal and differentiation balance of pancreatic progenitors and limiting endocrine differentiation in vitro. Pluripotent stem cells can be directed into insulin-producing beta cells in vitro. Here, the authors show that downregulation of YAP, an effector of the Hippo pathway, enhances endocrine progenitor differentiation and the generation of beta-cells with improved insulin secretion.
Collapse
|
20
|
Ardestani A, Lupse B, Maedler K. Hippo Signaling: Key Emerging Pathway in Cellular and Whole-Body Metabolism. Trends Endocrinol Metab 2018; 29:492-509. [PMID: 29739703 DOI: 10.1016/j.tem.2018.04.006] [Citation(s) in RCA: 116] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 04/06/2018] [Accepted: 04/13/2018] [Indexed: 12/14/2022]
Abstract
The evolutionarily conserved Hippo pathway is a key regulator of organ size and tissue homeostasis. Its dysregulation is linked to multiple pathological disorders. In addition to regulating development and growth, recent studies show that Hippo pathway components such as MST1/2 and LATS1/2 kinases, as well as YAP/TAZ transcriptional coactivators, are regulated by metabolic pathways and that the Hippo pathway controls metabolic processes at the cellular and organismal levels in physiological and metabolic disease states such as obesity, type 2 diabetes (T2D), nonalcoholic fatty liver disease (NAFLD), cardiovascular disorders, and cancer. In this review we summarize the connection between key Hippo components and metabolism, and how this interplay regulates cellular metabolism and metabolic pathways. The emerging function of Hippo in the regulation of metabolic homeostasis under physiological and pathological conditions is highlighted.
Collapse
Affiliation(s)
- Amin Ardestani
- University of Bremen, Centre for Biomolecular Interactions Bremen, Bremen 28359, Germany.
| | - Blaz Lupse
- University of Bremen, Centre for Biomolecular Interactions Bremen, Bremen 28359, Germany
| | - Kathrin Maedler
- University of Bremen, Centre for Biomolecular Interactions Bremen, Bremen 28359, Germany.
| |
Collapse
|
21
|
Lee M, Goraya N, Kim S, Cho SH. Hippo-yap signaling in ocular development and disease. Dev Dyn 2018; 247:794-806. [PMID: 29532607 PMCID: PMC5980750 DOI: 10.1002/dvdy.24628] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 03/01/2018] [Accepted: 03/02/2018] [Indexed: 12/17/2022] Open
Abstract
The Hippo-Yes associated protein (Yap) pathway plays an important role in organ size control by regulating cell proliferation, apoptosis, and stem cell renewal. Hippo-Yap signaling also functions at the level of cellular development in a variety of organs through its effects on cell cycle control, cell survival, cell polarity, and cell fate. Because of its important roles in normal development and homeostasis, abnormal regulation of this pathway has been shown to lead to pathological outcomes such as tissue overgrowth, tumor formation, and abnormal organogenesis, including ocular-specific disorders. In this review, we summarize how normal and perturbed control of Yap signaling is implicated in ocular development and disease Developmental Dynamics 247:794-806, 2018. © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Matthew Lee
- Temple University Lewis Katz School of Medicine, Temple University Lewis Katz School of Medicine 3500 N. Broad Street, Philadelphia, PA 19140
| | - Navneet Goraya
- Temple University Lewis Katz School of Medicine, Temple University Lewis Katz School of Medicine 3500 N. Broad Street, Philadelphia, PA 19140
| | - Seonhee Kim
- Shriners Hospitals Pediatric Research Center and Department of Anatomy and Cell Biology, Temple University Lewis Katz School of Medicine 3500 N. Broad Street, Philadelphia, PA 19140
| | - Seo-Hee Cho
- Shriners Hospitals Pediatric Research Center and Department of Anatomy and Cell Biology, Temple University Lewis Katz School of Medicine 3500 N. Broad Street, Philadelphia, PA 19140
| |
Collapse
|
22
|
Gorrepati KDD, Lupse B, Annamalai K, Yuan T, Maedler K, Ardestani A. Loss of Deubiquitinase USP1 Blocks Pancreatic β-Cell Apoptosis by Inhibiting DNA Damage Response. iScience 2018; 1:72-86. [PMID: 30227958 PMCID: PMC6135944 DOI: 10.1016/j.isci.2018.02.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 01/31/2018] [Accepted: 02/01/2018] [Indexed: 01/09/2023] Open
Abstract
Impaired pancreatic β-cell survival contributes to the reduced β-cell mass in diabetes, but underlying regulatory mechanisms and key players in this process remain incompletely understood. Here, we identified the deubiquitinase ubiquitin-specific protease 1 (USP1) as an important player in the regulation of β-cell apoptosis under diabetic conditions. Genetic silencing and pharmacological suppression of USP1 blocked β-cell death in several experimental models of diabetes in vitro and ex vivo without compromising insulin content and secretion and without impairing β-cell maturation/identity genes in human islets. Our further analyses showed that USP1 inhibition attenuated DNA damage response (DDR) signals, which were highly elevated in diabetic β-cells, suggesting a USP1-dependent regulation of DDR in stressed β-cells. Our findings highlight a novel function of USP1 in the control of β-cell survival, and its inhibition may have a potential therapeutic relevance for the suppression of β-cell death in diabetes. Genetic and chemical inhibition of USP1 promoted β-cell survival USP1 inhibitors blocked β-cell death in human islets without affecting β-cell function USP1 inhibition reduced DDR signals in stressed β-cells
Collapse
Affiliation(s)
- Kanaka Durga Devi Gorrepati
- Islet Biology Laboratory, University of Bremen, Centre for Biomolecular Interactions Bremen, Leobener Straße NW2, Room B2080, 28359 Bremen, Germany
| | - Blaz Lupse
- Islet Biology Laboratory, University of Bremen, Centre for Biomolecular Interactions Bremen, Leobener Straße NW2, Room B2080, 28359 Bremen, Germany
| | - Karthika Annamalai
- Islet Biology Laboratory, University of Bremen, Centre for Biomolecular Interactions Bremen, Leobener Straße NW2, Room B2080, 28359 Bremen, Germany
| | - Ting Yuan
- Islet Biology Laboratory, University of Bremen, Centre for Biomolecular Interactions Bremen, Leobener Straße NW2, Room B2080, 28359 Bremen, Germany
| | - Kathrin Maedler
- Islet Biology Laboratory, University of Bremen, Centre for Biomolecular Interactions Bremen, Leobener Straße NW2, Room B2080, 28359 Bremen, Germany.
| | - Amin Ardestani
- Islet Biology Laboratory, University of Bremen, Centre for Biomolecular Interactions Bremen, Leobener Straße NW2, Room B2080, 28359 Bremen, Germany.
| |
Collapse
|
23
|
mTORC2 Signaling: A Path for Pancreatic β Cell's Growth and Function. J Mol Biol 2018; 430:904-918. [PMID: 29481838 DOI: 10.1016/j.jmb.2018.02.013] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 02/14/2018] [Accepted: 02/14/2018] [Indexed: 12/16/2022]
Abstract
The mechanistic target of rapamycin (mTOR) signaling pathway is an evolutionary conserved pathway that senses signals from nutrients and growth factors to regulate cell growth, metabolism and survival. mTOR acts in two biochemically and functionally distinct complexes, mTOR complex 1 (mTORC1) and 2 (mTORC2), which differ in terms of regulatory mechanisms, substrate specificity and functional outputs. While mTORC1 signaling has been extensively studied in islet/β-cell biology, recent findings demonstrate a distinct role for mTORC2 in the regulation of pancreatic β-cell function and mass. mTORC2, a key component of the growth factor receptor signaling, is declined in β cells under diabetogenic conditions and in pancreatic islets from patients with type 2 diabetes. β cell-selective mTORC2 inactivation leads to glucose intolerance and acceleration of diabetes as a result of reduced β-cell mass, proliferation and impaired glucose-stimulated insulin secretion. Thereby, many mTORC2 targets, such as AKT, PKC, FOXO1, MST1 and cell cycle regulators, play an important role in β-cell survival and function. This indicates mTORC2 as important pathway for the maintenance of β-cell homeostasis, particularly to sustain proper β-cell compensatory response in the presence of nutrient overload and metabolic demand. This review summarizes recent emerging advances on the contribution of mTORC2 and its associated signaling on the regulation of glucose metabolism and functional β-cell mass under physiological and pathophysiological conditions in type 2 diabetes.
Collapse
|
24
|
Ardestani A, Maedler K. The Hippo Signaling Pathway in Pancreatic β-Cells: Functions and Regulations. Endocr Rev 2018; 39:21-35. [PMID: 29053790 DOI: 10.1210/er.2017-00167] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 10/12/2017] [Indexed: 12/17/2022]
Abstract
Hippo signaling is an evolutionarily conserved pathway that critically regulates development and homeostasis of various tissues in response to a wide range of extracellular and intracellular signals. As an emerging important player in many diseases, the Hippo pathway is also involved in the pathophysiology of diabetes on the level of the pancreatic islets. Multiple lines of evidence uncover the importance of Hippo signaling in pancreas development as well as in the regulation of β-cell survival, proliferation, and regeneration. Hippo therefore represents a potential target for therapeutic agents designed to improve β-cell function and survival in diabetes. In this review, we summarize recent data on the regulation of the Hippo signaling pathway in the pancreas/in pancreatic islets, its functions on β-cell homeostasis in physiology and pathophysiology, and its contribution toward diabetes progression. The current knowledge related to general mechanisms of action and the possibility of exploiting the Hippo pathway for therapeutic approaches to block β-cell failure in diabetes is highlighted.
Collapse
Affiliation(s)
- Amin Ardestani
- Centre for Biomolecular Interactions Bremen, University of Bremen, Bremen, Germany
| | - Kathrin Maedler
- Centre for Biomolecular Interactions Bremen, University of Bremen, Bremen, Germany
| |
Collapse
|
25
|
Venkataramani V, Küffer S, Cheung KCP, Jiang X, Trümper L, Wulf GG, Ströbel P. CD31 Expression Determines Redox Status and Chemoresistance in Human Angiosarcomas. Clin Cancer Res 2017; 24:460-473. [PMID: 29084920 DOI: 10.1158/1078-0432.ccr-17-1778] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 09/14/2017] [Accepted: 10/23/2017] [Indexed: 12/28/2022]
Abstract
Purpose: Angiosarcomas are soft tissue sarcomas with endothelial differentiation and vasoformative capacity. Most angiosarcomas show strong constitutive expression of the endothelial adhesion receptor CD31/PECAM-1 pointing to an important role of this molecule. However, the biological function of CD31 in angiosarcomas is unknown.Experimental Design: The expression levels of CD31 in angiosarcoma cells and its effects on cell viability, colony formation, and chemoresistance were evaluated in human angiosarcoma clinical samples and in cell lines through isolation of CD31high and CD31low cell subsets. The redox-regulatory CD31 function linked to YAP signaling was determined using a CD31-blocking antibody and siRNA approach and was further validated in CD31-knockout endothelial cells.Results: We found that most angiosarcomas contain a small CD31low cell population. CD31low cells had lost part of their endothelial properties and were more tumorigenic and chemoresistant than CD31high cells due to more efficient reactive oxygen species (ROS) detoxification. Active downregulation of CD31 resulted in loss of endothelial tube formation, nuclear accumulation of YAP, and YAP-dependent induction of antioxidative enzymes. Addition of pazopanib, a known enhancer of proteasomal YAP degradation resensitized CD31low cells for doxorubicin resulting in growth suppression and induction of apoptosis.Conclusions: Human angiosarcomas contain a small aggressive CD31low population that have lost part of their endothelial differentiation programs and are more resistant against oxidative stress and DNA damage due to intensified YAP signaling. Our finding that the addition of YAP inhibitors can resensitize CD31low cells toward doxorubicin may aid in the rational development of novel combination therapies to treat angiosarcomas. Clin Cancer Res; 24(2); 460-73. ©2017 AACR.
Collapse
Affiliation(s)
- Vivek Venkataramani
- Department of Hematology and Medical Oncology, University Medical Center Göttingen (UMG), Göttingen, Germany. .,Cell Biology Program, Memorial Sloan Kettering Cancer Center, Göttingen, Germany
| | - Stefan Küffer
- Institute of Pathology, University Medical Center Göttingen (UMG), Göttingen, Germany
| | - Kenneth C P Cheung
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Xuejun Jiang
- Cell Biology Program, Memorial Sloan Kettering Cancer Center, Göttingen, Germany
| | - Lorenz Trümper
- Department of Hematology and Medical Oncology, University Medical Center Göttingen (UMG), Göttingen, Germany
| | - Gerald G Wulf
- Department of Hematology and Medical Oncology, University Medical Center Göttingen (UMG), Göttingen, Germany
| | - Philipp Ströbel
- Institute of Pathology, University Medical Center Göttingen (UMG), Göttingen, Germany
| |
Collapse
|
26
|
Affiliation(s)
- Ting Yuan
- a Centre for Biomolecular Interactions Bremen , University of Bremen , Bremen , Germany
| | - Kathrin Maedler
- a Centre for Biomolecular Interactions Bremen , University of Bremen , Bremen , Germany
| | - Amin Ardestani
- a Centre for Biomolecular Interactions Bremen , University of Bremen , Bremen , Germany
| |
Collapse
|
27
|
Sharma A, Yerra VG, Kumar A. Emerging role of Hippo signalling in pancreatic biology: YAP re-expression and plausible link to islet cell apoptosis and replication. Biochimie 2017; 133:56-65. [DOI: 10.1016/j.biochi.2016.12.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 12/12/2016] [Indexed: 02/07/2023]
|