1
|
Chen Y, Bian S, Le J. Molecular Landscape and Diagnostic Model of MASH: Transcriptomic, Proteomic, Metabolomic, and Lipidomic Perspectives. Genes (Basel) 2025; 16:399. [PMID: 40282358 PMCID: PMC12026639 DOI: 10.3390/genes16040399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 03/26/2025] [Accepted: 03/28/2025] [Indexed: 04/29/2025] Open
Abstract
Metabolic dysfunction-associated steatohepatitis (MASH), a progressive form of fatty liver disease, presents a significant global health challenge. Despite extensive research, fully elucidating its complex pathogenesis and developing accurate non-invasive diagnostic tools remain key goals. Multi-omics approaches, integrating data from transcriptomics, proteomics, metabolomics, and lipidomics, offer a powerful strategy to achieve these aims. This review summarizes key findings from multi-omics studies in MASH, highlighting their contributions to our understanding of disease mechanisms and the development of improved diagnostic models. Transcriptomic studies have revealed widespread gene dysregulation affecting lipid metabolism, inflammation, and fibrosis, while proteomics has identified altered protein expression patterns and potential biomarkers. Metabolomic and lipidomic analyses have further uncovered significant changes in various metabolites and lipid species, including ceramides, sphingomyelins, phospholipids, and bile acids, underscoring the central role of lipid dysregulation in MASH. These multi-omics findings have been leveraged to develop novel diagnostic models, some incorporating machine learning algorithms, with improved accuracy compared to traditional methods. Further research is needed to validate these findings, explore the complex interplay between different omics layers, and translate these discoveries into clinically useful tools for improved MASH diagnosis and prognosis.
Collapse
Affiliation(s)
- Yilong Chen
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China; (Y.C.); (S.B.)
- Shanghai Key Laboratory of Molecular Imaging, Zhoupu Hospital, Shanghai University of Medicine and Health Sciences, Shanghai 201318, China
| | - Shuixiu Bian
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China; (Y.C.); (S.B.)
- Shanghai Key Laboratory of Molecular Imaging, Zhoupu Hospital, Shanghai University of Medicine and Health Sciences, Shanghai 201318, China
| | - Jiamei Le
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China; (Y.C.); (S.B.)
- Shanghai Key Laboratory of Molecular Imaging, Zhoupu Hospital, Shanghai University of Medicine and Health Sciences, Shanghai 201318, China
| |
Collapse
|
2
|
Du K, Umbaugh DS, Wang L, Jun JH, Dutta RK, Oh SH, Ren N, Zhang Q, Ko DC, Ferreira A, Hill J, Gao G, Pullen SS, Jain V, Gregory S, Abdelmalek MF, Diehl AM. Targeting senescent hepatocytes for treatment of metabolic dysfunction-associated steatotic liver disease and multi-organ dysfunction. Nat Commun 2025; 16:3038. [PMID: 40155379 PMCID: PMC11953480 DOI: 10.1038/s41467-025-57616-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Accepted: 02/23/2025] [Indexed: 04/01/2025] Open
Abstract
Senescent hepatocytes accumulate in metabolic dysfunction-associated steatotic liver disease (MASLD) and are linked to worse clinical outcomes. However, their heterogeneity and lack of specific markers have made them difficult to target therapeutically. Here, we define a senescent hepatocyte gene signature (SHGS) using in vitro and in vivo models and show that it tracks with MASLD progression/regression across mouse models and large human cohorts. Single-nucleus RNA-sequencing and functional studies reveal that SHGS+ hepatocytes originate from p21+ cells, lose key liver functions and release factors that drive disease progression. One such factor, GDF15, increases in circulation alongside SHGS+ burden and disease progression. Through chemical screening, we identify senolytics that selectively eliminate SHGS+ hepatocytes and improve MASLD in male mice. Notably, SHGS enrichment also correlates with dysfunction in other organs. These findings establish SHGS+ hepatocytes as key drivers of MASLD and highlight a potential therapeutic strategy for targeting senescent cells in liver disease and beyond.
Collapse
Affiliation(s)
- Kuo Du
- Department of Medicine, Duke University, Durham, NC, USA.
| | | | - Liuyang Wang
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC, USA
| | - Ji Hye Jun
- Department of Medicine, Duke University, Durham, NC, USA
| | - Rajesh K Dutta
- Department of Medicine, Duke University, Durham, NC, USA
| | - Seh Hoon Oh
- Department of Medicine, Duke University, Durham, NC, USA
| | - Niansheng Ren
- Department of Medicine, Duke University, Durham, NC, USA
| | - Qiaojuan Zhang
- Department of Neurology, Duke University, Durham, NC, USA
| | - Dennis C Ko
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC, USA
| | - Ana Ferreira
- Boehringer Ingelheim Pharmaceuticals Inc, Ridgefield, CT, USA
| | - Jon Hill
- Boehringer Ingelheim Pharmaceuticals Inc, Ridgefield, CT, USA
| | - Guannan Gao
- Boehringer Ingelheim Pharmaceuticals Inc, Ridgefield, CT, USA
| | - Steven S Pullen
- Boehringer Ingelheim Pharmaceuticals Inc, Ridgefield, CT, USA
| | - Vaibhav Jain
- Duke Molecular Physiology Institute, Duke University, Durham, NC, USA
| | - Simon Gregory
- Duke Molecular Physiology Institute, Duke University, Durham, NC, USA
| | | | - Anna Mae Diehl
- Department of Medicine, Duke University, Durham, NC, USA.
| |
Collapse
|
3
|
Li Z, Wang L, Tian C, Wang Z, Zhao H, Qi Y, Chen W, Wuyun Q, Amin B, Lian D, Zhu J, Zhang N, Zheng L, Xu G. Identification of hub biomarkers in liver post-metabolic and bariatric surgery using comprehensive machine learning (experimental studies). Int J Surg 2025; 111:1814-1824. [PMID: 39728595 DOI: 10.1097/js9.0000000000002179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 10/16/2024] [Indexed: 12/28/2024]
Abstract
BACKGROUND The global prevalence of non-alcoholic fatty liver disease (NAFLD) is approximately 30%, and the condition can progress to non-alcoholic steatohepatitis, cirrhosis, and hepatocellular carcinoma. Metabolic and bariatric surgery (MBS) has been shown to be effective in treating obesity and related disorders, including NAFLD. OBJECTIVE In this study, comprehensive machine learning was used to identify biomarkers for precise treatment of NAFLD from the perspective of MBS. METHODS Differential expression and univariate logistic regression analyses were performed on lipid metabolism-related genes in a training dataset (GSE83452) and two validation datasets (GSE106737 and GSE48452) to identify consensus-predicted genes (CPGs). Subsequently, 13 machine learning algorithms were integrated into 99 combinations; among which the optimal combination was selected based on the total score of the area under the curve, accuracy, F-score, and recall in the two validation datasets. Hub genes were selected based on their importance ranking in the algorithms and the frequency of their occurrence. Finally, a mouse model of MBS was established, and the mRNA expression of the hub genes was validated via quantitative PCR. RESULTS A total of 12 CPGs were identified after intersecting the results of differential expression and logistic regression analyses on a Venn diagram. Four machine learning algorithms with the highest total scores were identified as optimal models. Additionally, PPARA, PLIN2, MED13, INSIG1, CPT1A, and ALOX5AP were identified as hub genes. The mRNA expression patterns of these genes in mice subjected to MBS were consistent with those observed in the three datasets. CONCLUSION Altogether, the six hub genes identified in this study are important for the treatment of NAFLD via MBS and hold substantial promise in guiding personalized treatment of NAFLD in clinical settings.
Collapse
Affiliation(s)
- Zhehong Li
- Surgery Centre of Diabetes Mellitus, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- Department of General Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Liang Wang
- Surgery Centre of Diabetes Mellitus, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- Department of General Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Chenxu Tian
- Surgery Centre of Diabetes Mellitus, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- Department of General Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Zheng Wang
- Surgery Centre of Diabetes Mellitus, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- Department of General Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Hao Zhao
- Surgery Centre of Diabetes Mellitus, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- Department of General Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Yao Qi
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Weijian Chen
- Surgery Centre of Diabetes Mellitus, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- Department of General Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Qiqige Wuyun
- Surgery Centre of Diabetes Mellitus, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- Department of General Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Buhe Amin
- Surgery Centre of Diabetes Mellitus, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- Department of General Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Dongbo Lian
- Surgery Centre of Diabetes Mellitus, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- Department of General Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Jinxia Zhu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Nengwei Zhang
- Surgery Centre of Diabetes Mellitus, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- Department of General Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Lifei Zheng
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Guangzhong Xu
- Surgery Centre of Diabetes Mellitus, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- Department of General Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
4
|
Teo JMN, Chen Z, Chen W, Tan RJY, Cao Q, Chu Y, Ma D, Chen L, Yu H, Lam KH, Lee TKW, Chakarov S, Becher B, Zhang N, Li Z, Ma S, Xue R, Ling GS. Tumor-associated neutrophils attenuate the immunosensitivity of hepatocellular carcinoma. J Exp Med 2025; 222:e20241442. [PMID: 39636298 PMCID: PMC11619716 DOI: 10.1084/jem.20241442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/11/2024] [Accepted: 11/01/2024] [Indexed: 12/07/2024] Open
Abstract
Tumor-associated neutrophils (TANs) are heterogeneous; thus, their roles in tumor development could vary depending on the cancer type. Here, we showed that TANs affect metabolic dysfunction-associated steatohepatitis hepatocellular carcinoma (MASH-related HCC) more than viral-associated HCC. We attributed this difference to the predominance of SiglecFhi TANs in MASH-related HCC tumors. Linoleic acid and GM-CSF, which are commonly elevated in the MASH-related HCC microenvironment, fostered the development of this c-Myc-driven TAN subset. Through TGFβ secretion, SiglecFhi TANs promoted HCC stemness, proliferation, and migration. Importantly, SiglecFhi TANs supported immune evasion by directly suppressing the antigen presentation machinery of tumor cells. SiglecFhi TAN removal increased the immunogenicity of a MASH-related HCC model and sensitized it to immunotherapy. Likewise, a high SiglecFhi TAN signature was associated with poor prognosis and immunotherapy resistance in HCC patients. Overall, our study highlights the importance of understanding TAN heterogeneity in cancer to improve therapeutic development.
Collapse
Affiliation(s)
- Jia Ming Nickolas Teo
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Zhulin Chen
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Weixin Chen
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Rachael Julia Yuenyinn Tan
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Qi Cao
- Yunnan Baiyao International Medical Research Center, Peking University, Beijing, China
- Translational Cancer Research Center, Peking University First Hospital, Beijing, China
| | - Yingming Chu
- Yunnan Baiyao International Medical Research Center, Peking University, Beijing, China
- Translational Cancer Research Center, Peking University First Hospital, Beijing, China
| | - Delin Ma
- Department of Hepatobiliary Surgery, Peking University People’s Hospital, Beijing Key Surgical Basic Research Laboratory of Liver Cirrhosis and Liver Cancer, Beijing, China
| | - Liting Chen
- Yunnan Baiyao International Medical Research Center, Peking University, Beijing, China
- Translational Cancer Research Center, Peking University First Hospital, Beijing, China
| | - Huajian Yu
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Ka-Hei Lam
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Terence Kin Wah Lee
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, China
- State Key Laboratory of Chemical Biology and Drug Discovery, The Hong Kong Polytechnic University, Hong Kong, China
| | - Svetoslav Chakarov
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Burkhard Becher
- Institue of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Ning Zhang
- Yunnan Baiyao International Medical Research Center, Peking University, Beijing, China
- Translational Cancer Research Center, Peking University First Hospital, Beijing, China
| | - Zhao Li
- Department of Hepatobiliary Surgery, Peking University People’s Hospital, Beijing Key Surgical Basic Research Laboratory of Liver Cirrhosis and Liver Cancer, Beijing, China
| | - Stephanie Ma
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong, China
- The University of Hong Kong – Shenzhen Hospital, Shenzhen, China
| | - Ruidong Xue
- Yunnan Baiyao International Medical Research Center, Peking University, Beijing, China
- Translational Cancer Research Center, Peking University First Hospital, Beijing, China
- International Cancer Institute and State Key Laboratory of Molecular Oncology, Peking University, Beijing, China
- MOE Frontiers Science Center for Cancer Integrative Omics, Peking University, Beijing, China
| | - Guang Sheng Ling
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong, China
- The University of Hong Kong – Shenzhen Hospital, Shenzhen, China
- Department of Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
5
|
Raverdy V, Tavaglione F, Chatelain E, Lassailly G, De Vincentis A, Vespasiani-Gentilucci U, Qadri SF, Caiazzo R, Verkindt H, Saponaro C, Kerr-Conte J, Baud G, Marciniak C, Chetboun M, Oukhouya-Daoud N, Blanck S, Vandel J, Olsson L, Chakaroun R, Gnemmi V, Leteurtre E, Lefebvre P, Haas JT, Yki-Järvinen H, Francque S, Staels B, Le Roux CW, Tremaroli V, Mathurin P, Marot G, Romeo S, Pattou F. Data-driven cluster analysis identifies distinct types of metabolic dysfunction-associated steatotic liver disease. Nat Med 2024; 30:3624-3633. [PMID: 39653777 PMCID: PMC11645276 DOI: 10.1038/s41591-024-03283-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 08/30/2024] [Indexed: 12/15/2024]
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) exhibits considerable variability in clinical outcomes. Identifying specific phenotypic profiles within MASLD is essential for developing targeted therapeutic strategies. Here we investigated the heterogeneity of MASLD using partitioning around medoids clustering based on six simple clinical variables in a cohort of 1,389 individuals living with obesity. The identified clusters were applied across three independent MASLD cohorts with liver biopsy (totaling 1,099 participants), and in the UK Biobank to assess the incidence of chronic liver disease, cardiovascular disease and type 2 diabetes. Results unveiled two distinct types of MASLD associated with steatohepatitis on histology and liver imaging. The first cluster, liver-specific, was genetically linked and showed rapid progression of chronic liver disease but limited risk of cardiovascular disease. The second cluster, cardiometabolic, was primarily associated with dysglycemia and high levels of triglycerides, leading to a similar incidence of chronic liver disease but a higher risk of cardiovascular disease and type 2 diabetes. Analyses of samples from 831 individuals with available liver transcriptomics and 1,322 with available plasma metabolomics highlighted that these two types of MASLD exhibited distinct liver transcriptomic profiles and plasma metabolomic signatures, respectively. In conclusion, these data provide preliminary evidence of the existence of two distinct types of clinically relevant MASLD with similar liver phenotypes at baseline, but each with specific underlying biological profiles and different clinical trajectories, suggesting the need for tailored therapeutic strategies.
Collapse
Affiliation(s)
- Violeta Raverdy
- Translational Research for Diabetes UMR 1190, University of Lille, Inserm, Institut Pasteur Lille, CHU Lille, Lille, France
- Department of General and Endocrine Surgery, Centre Hospitalier et Universitaire de Lille, Lille, France
| | - Federica Tavaglione
- Operative Unit of Clinical Medicine and Hepatology, Fondazione Policlinico Universitario Campus Bio-Medico, Rome, Italy
- Research Unit of Clinical Medicine and Hepatology, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Rome, Italy
| | - Estelle Chatelain
- US 41 - UAR 2014 - PLBS Bilille, University of Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, F-59000, Lille, France
| | - Guillaume Lassailly
- Department of Hepato-Gastroenterology CHU Lille, University of Lille, Inserm INFINITE-U1286, Lille, France
| | - Antonio De Vincentis
- Operative Unit of Internal Medicine, Fondazione Policlinico Universitario Campus Bio-Medico, Rome, Italy
- Research Unit of Internal Medicine, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Rome, Italy
| | - Umberto Vespasiani-Gentilucci
- Operative Unit of Clinical Medicine and Hepatology, Fondazione Policlinico Universitario Campus Bio-Medico, Rome, Italy
- Research Unit of Clinical Medicine and Hepatology, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Rome, Italy
| | - Sami F Qadri
- Department of Medicine, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Minerva Foundation Institute for Medical Research, Helsinki, Finland
| | - Robert Caiazzo
- Translational Research for Diabetes UMR 1190, University of Lille, Inserm, Institut Pasteur Lille, CHU Lille, Lille, France
- Department of General and Endocrine Surgery, Centre Hospitalier et Universitaire de Lille, Lille, France
| | - Helene Verkindt
- Translational Research for Diabetes UMR 1190, University of Lille, Inserm, Institut Pasteur Lille, CHU Lille, Lille, France
- Department of General and Endocrine Surgery, Centre Hospitalier et Universitaire de Lille, Lille, France
| | - Chiara Saponaro
- Translational Research for Diabetes UMR 1190, University of Lille, Inserm, Institut Pasteur Lille, CHU Lille, Lille, France
| | - Julie Kerr-Conte
- Translational Research for Diabetes UMR 1190, University of Lille, Inserm, Institut Pasteur Lille, CHU Lille, Lille, France
| | - Gregory Baud
- Translational Research for Diabetes UMR 1190, University of Lille, Inserm, Institut Pasteur Lille, CHU Lille, Lille, France
- Department of General and Endocrine Surgery, Centre Hospitalier et Universitaire de Lille, Lille, France
| | - Camille Marciniak
- Translational Research for Diabetes UMR 1190, University of Lille, Inserm, Institut Pasteur Lille, CHU Lille, Lille, France
- Department of General and Endocrine Surgery, Centre Hospitalier et Universitaire de Lille, Lille, France
| | - Mikael Chetboun
- Translational Research for Diabetes UMR 1190, University of Lille, Inserm, Institut Pasteur Lille, CHU Lille, Lille, France
- Department of General and Endocrine Surgery, Centre Hospitalier et Universitaire de Lille, Lille, France
| | - Naima Oukhouya-Daoud
- Translational Research for Diabetes UMR 1190, University of Lille, Inserm, Institut Pasteur Lille, CHU Lille, Lille, France
- Department of General and Endocrine Surgery, Centre Hospitalier et Universitaire de Lille, Lille, France
| | - Samuel Blanck
- ULR 2694 METRICS: Évaluation des technologies de santé et des pratiques médicales, University of Lille, CHU Lille, F-59000, Lille, France
| | - Jimmy Vandel
- US 41 - UAR 2014 - PLBS Bilille, University of Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, F-59000, Lille, France
| | - Lisa Olsson
- Wallenberg Laboratory, Department of Molecular and Clinical Medicine, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Rima Chakaroun
- Wallenberg Laboratory, Department of Molecular and Clinical Medicine, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Viviane Gnemmi
- Cancer Heterogeneity Plasticity and Resistance to Therapies, CANTHER-UMR9020-U1277 - CNRS, Inserm, CHU Lille, University of Lille, Lille, France
- Department of Pathology, CHU Lille, University of Lille, Lille, France
| | - Emmanuelle Leteurtre
- Cancer Heterogeneity Plasticity and Resistance to Therapies, CANTHER-UMR9020-U1277 - CNRS, Inserm, CHU Lille, University of Lille, Lille, France
- Department of Pathology, CHU Lille, University of Lille, Lille, France
| | - Philippe Lefebvre
- Nuclear Receptors, Metabolic and Cardiovascular Diseases - U1011, University of Lille, Inserm, CHU Lille, Institut Pasteur Lille, Lille, France
| | - Joel T Haas
- Nuclear Receptors, Metabolic and Cardiovascular Diseases - U1011, University of Lille, Inserm, CHU Lille, Institut Pasteur Lille, Lille, France
| | - Hannele Yki-Järvinen
- Department of Medicine, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Minerva Foundation Institute for Medical Research, Helsinki, Finland
| | - Sven Francque
- Department of Gastroenterology Hepatology, Antwerp University Hospital, Edegem, Belgium
- InflaMed Centre of Excellence, Laboratory for Experimental Medicine and Paediatrics, Translational Sciences in Inflammation and Immunology, Faculty of Medicine and Health Sciences, University of Antwerp, Wilrijk, Belgium
| | - Bart Staels
- Nuclear Receptors, Metabolic and Cardiovascular Diseases - U1011, University of Lille, Inserm, CHU Lille, Institut Pasteur Lille, Lille, France
| | - Carel W Le Roux
- Diabetes Complications Research Centre, University College Dublin, Dublin, Ireland
| | - Valentina Tremaroli
- Wallenberg Laboratory, Department of Molecular and Clinical Medicine, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Philippe Mathurin
- Department of Hepato-Gastroenterology CHU Lille, University of Lille, Inserm INFINITE-U1286, Lille, France
| | - Guillemette Marot
- ULR 2694 METRICS: Évaluation des technologies de santé et des pratiques médicales, University of Lille, CHU Lille, F-59000, Lille, France
- MODAL: Models for Data Analysis and Learning, Inria, F-59000, Lille, France
| | - Stefano Romeo
- Wallenberg Laboratory, Department of Molecular and Clinical Medicine, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden.
- Clinical Nutrition Unit, Department of Medical and Surgical Sciences, University Magna Graecia, Catanzaro, Italy.
- Department of Cardiology, Sahlgrenska University Hospital, Gothenburg, Sweden.
- Department of Medicine Huddinge (H7), Karolinska Institutet and University Hospital, Stockholm, Sweden.
- Department of Molecular and Clinical Medicine, Institute of Medicine, Gothenburg University, Gothenburg, Sweden.
| | - François Pattou
- Translational Research for Diabetes UMR 1190, University of Lille, Inserm, Institut Pasteur Lille, CHU Lille, Lille, France.
- Department of General and Endocrine Surgery, Centre Hospitalier et Universitaire de Lille, Lille, France.
| |
Collapse
|
6
|
Arconzo M, Piccinin E, Pasculli E, Cariello M, Loiseau N, Bertrand-Michel J, Guillou H, Matrella ML, Villani G, Moschetta A. Hepatic-specific Pgc-1α ablation drives fibrosis in a MASH model. Liver Int 2024; 44:2738-2752. [PMID: 39046166 DOI: 10.1111/liv.16052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 07/01/2024] [Accepted: 07/10/2024] [Indexed: 07/25/2024]
Abstract
BACKGROUND & AIMS Metabolic dysfunction-associated steatohepatitis (MASH) is a growing cause of chronic liver disease, characterized by fat accumulation, inflammation and fibrosis, which development depends on mitochondrial dysfunction and oxidative stress. Highly expressed in the liver during fasting, peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α) regulates mitochondrial and oxidative metabolism. Given the relevant role of mitochondrial function in MASH, we investigated the relationship between PGC-1α and steatohepatitis. METHODS We measured the hepatic expression of Pgc-1α in both MASH patients and wild-type mice fed a western diet (WD) inducing steatosis and fibrosis. We then generated a pure C57BL6/J strain loss of function mouse model in which Pgc-1α is selectively deleted in the liver and we fed these mice with a WD supplemented with sugar water that accurately mimics human MASH. RESULTS We observed that the hepatic expression of Pgc-1α is strongly reduced in MASH, in both humans and mice. Moreover, the hepatic ablation of Pgc-1α promotes a considerable reduction of the hepatic mitochondrial respiratory capacity, setting up a bioenergetic harmful environment for liver diseases. Indeed, the lack of Pgc-1α decreases mitochondrial function and increases inflammation, fibrosis and oxidative stress in the scenario of MASH. Intriguingly, this profibrotic phenotype is not linked with obesity, insulin resistance and lipid disbalance. CONCLUSIONS In a MASH model the hepatic ablation of Pgc-1α drives fibrosis independently from lipid and glucose metabolism. These results add a novel mechanistic piece to the puzzle of the specific and crucial role of mitochondrial function in MASH development.
Collapse
Affiliation(s)
- Maria Arconzo
- Department of Interdisciplinary Medicine (DIM), University of Bari "Aldo Moro", Bari, Italy
| | - Elena Piccinin
- Department of Interdisciplinary Medicine (DIM), University of Bari "Aldo Moro", Bari, Italy
- Department of Translational Biomedicine and Neuroscience (DiBraiN), University of Bari "Aldo Moro", Bari, Italy
| | - Emanuela Pasculli
- Department of Interdisciplinary Medicine (DIM), University of Bari "Aldo Moro", Bari, Italy
| | - Marica Cariello
- Department of Interdisciplinary Medicine (DIM), University of Bari "Aldo Moro", Bari, Italy
| | - Nicolas Loiseau
- Toxalim (Research Center in Food Toxicology), INRAE, ENVT, INP-PURPAN, UMR 1331, UPS, Université de Toulouse, Toulouse, France
| | | | - Hervé Guillou
- Toxalim (Research Center in Food Toxicology), INRAE, ENVT, INP-PURPAN, UMR 1331, UPS, Université de Toulouse, Toulouse, France
| | - Maria L Matrella
- Department of Translational Biomedicine and Neuroscience (DiBraiN), University of Bari "Aldo Moro", Bari, Italy
| | - Gaetano Villani
- Department of Translational Biomedicine and Neuroscience (DiBraiN), University of Bari "Aldo Moro", Bari, Italy
| | - Antonio Moschetta
- Department of Interdisciplinary Medicine (DIM), University of Bari "Aldo Moro", Bari, Italy
- INBB, National Institute for Biostructures and Biosystems, Rome, Italy
| |
Collapse
|
7
|
Das S, Finney AC, Anand SK, Rohilla S, Liu Y, Pandey N, Ghrayeb A, Kumar D, Nunez K, Liu Z, Arias F, Zhao Y, Pearson-Gallion BH, McKinney MP, Richard KSE, Gomez-Vidal JA, Abdullah CS, Cockerham ED, Eniafe J, Yurochko AD, Magdy T, Pattillo CB, Kevil CG, Razani B, Bhuiyan MS, Seeley EH, Galliano GE, Wei B, Tan L, Mahmud I, Surakka I, Garcia-Barrio MT, Lorenzi PL, Gottlieb E, Salido E, Zhang J, Orr AW, Liu W, Diaz-Gavilan M, Chen YE, Dhanesha N, Thevenot PT, Cohen AJ, Yurdagul A, Rom O. Inhibition of hepatic oxalate overproduction ameliorates metabolic dysfunction-associated steatohepatitis. Nat Metab 2024; 6:1939-1962. [PMID: 39333384 PMCID: PMC11495999 DOI: 10.1038/s42255-024-01134-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 08/28/2024] [Indexed: 09/29/2024]
Abstract
The incidence of metabolic dysfunction-associated steatohepatitis (MASH) is on the rise, and with limited pharmacological therapy available, identification of new metabolic targets is urgently needed. Oxalate is a terminal metabolite produced from glyoxylate by hepatic lactate dehydrogenase (LDHA). The liver-specific alanine-glyoxylate aminotransferase (AGXT) detoxifies glyoxylate, preventing oxalate accumulation. Here we show that AGXT is suppressed and LDHA is activated in livers from patients and mice with MASH, leading to oxalate overproduction. In turn, oxalate promotes steatosis in hepatocytes by inhibiting peroxisome proliferator-activated receptor-α (PPARα) transcription and fatty acid β-oxidation and induces monocyte chemotaxis via C-C motif chemokine ligand 2. In male mice with diet-induced MASH, targeting oxalate overproduction through hepatocyte-specific AGXT overexpression or pharmacological inhibition of LDHA potently lowers steatohepatitis and fibrosis by inducing PPARα-driven fatty acid β-oxidation and suppressing monocyte chemotaxis, nuclear factor-κB and transforming growth factor-β targets. These findings highlight hepatic oxalate overproduction as a target for the treatment of MASH.
Collapse
Grants
- R01 HL162294 NHLBI NIH HHS
- R00 HL150233 NHLBI NIH HHS
- R01 DK134011 NIDDK NIH HHS
- HL138139 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- HL145753 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R01 HL141155 NHLBI NIH HHS
- HL159871 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R01 HL134569 NHLBI NIH HHS
- R01 DK136685 NIDDK NIH HHS
- HL134569 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R01 HL153710 NHLBI NIH HHS
- HL139755 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- HL153710 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R01 HL159871 NHLBI NIH HHS
- P01 AI127335 NIAID NIH HHS
- DK136685 U.S. Department of Health & Human Services | NIH | National Institute of Diabetes and Digestive and Kidney Diseases (National Institute of Diabetes & Digestive & Kidney Diseases)
- HL133497 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R01 HL138139 NHLBI NIH HHS
- 24POST1196650 American Heart Association (American Heart Association, Inc.)
- HL141155 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R01 HL109946 NHLBI NIH HHS
- P20 GM134974 NIGMS NIH HHS
- K99 HL150233 NHLBI NIH HHS
- HL109946 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- 19POST34380224 American Heart Association (American Heart Association, Inc.)
- 24POST1199805 American Heart Association (American Heart Association, Inc.)
- DK134011 U.S. Department of Health & Human Services | NIH | National Institute of Diabetes and Digestive and Kidney Diseases (National Institute of Diabetes & Digestive & Kidney Diseases)
- R01 AI056077 NIAID NIH HHS
- 23POST1026505 American Heart Association (American Heart Association, Inc.)
- R01 HL158546 NHLBI NIH HHS
- HL145131 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- 20CDA3560123 American Heart Association (American Heart Association, Inc.)
- AI127335 U.S. Department of Health & Human Services | NIH | National Institute of Allergy and Infectious Diseases (NIAID)
- R00 HL145131 NHLBI NIH HHS
- R01 HL145753 NHLBI NIH HHS
- R01 HL139755 NHLBI NIH HHS
- HL145753-01S1 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- HL162294 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- HL150233 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R01 HL167758 NHLBI NIH HHS
- K99 HL145131 NHLBI NIH HHS
- HL145753-03S1 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- HL167758 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R01 HL172970 NHLBI NIH HHS
- P20GM134974 U.S. Department of Health & Human Services | NIH | National Institute of General Medical Sciences (NIGMS)
- R01 HL173972 NHLBI NIH HHS
- T32 HL155022 NHLBI NIH HHS
- R56 AI159672 NIAID NIH HHS
- R56-AI159672 U.S. Department of Health & Human Services | NIH | National Institute of Allergy and Infectious Diseases (NIAID)
- DK131859 U.S. Department of Health & Human Services | NIH | National Institute of Diabetes and Digestive and Kidney Diseases (National Institute of Diabetes & Digestive & Kidney Diseases)
- F31 DK131859 NIDDK NIH HHS
- R01 HL133497 NHLBI NIH HHS
- HL158546 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- RP190617 Cancer Prevention and Research Institute of Texas (Cancer Prevention Research Institute of Texas)
- U.S. Department of Health & Human Services | NIH | National Institute of Diabetes and Digestive and Kidney Diseases (National Institute of Diabetes & Digestive & Kidney Diseases)
- U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- U.S. Department of Health & Human Services | NIH | National Institute of Allergy and Infectious Diseases (NIAID)
- U.S. Department of Health & Human Services | NIH | National Institute of General Medical Sciences (NIGMS)
Collapse
Affiliation(s)
- Sandeep Das
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, USA
| | - Alexandra C Finney
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, USA
| | - Sumit Kumar Anand
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, USA
| | - Sumati Rohilla
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, USA
| | - Yuhao Liu
- Department of Internal Medicine, Frankel Cardiovascular Center, University of Michigan, Ann Arbor, MI, USA
| | - Nilesh Pandey
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, USA
| | - Alia Ghrayeb
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, USA
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Dhananjay Kumar
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, USA
| | - Kelley Nunez
- Institute of Translational Research, Ochsner Clinic Foundation, New Orleans, LA, USA
| | - Zhipeng Liu
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, IN, USA
| | - Fabio Arias
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, USA
- Departamento de Química Farmacéutica y Orgánica, Facultad de Farmacia, Unidad de Excelencia de Química Aplicada a Biomedicina y Medioambiente, Granada, Spain
| | - Ying Zhao
- Department of Internal Medicine, Frankel Cardiovascular Center, University of Michigan, Ann Arbor, MI, USA
| | - Brenna H Pearson-Gallion
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, USA
| | - M Peyton McKinney
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, USA
| | - Koral S E Richard
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, USA
| | - Jose A Gomez-Vidal
- Departamento de Química Farmacéutica y Orgánica, Facultad de Farmacia, Unidad de Excelencia de Química Aplicada a Biomedicina y Medioambiente, Granada, Spain
| | - Chowdhury S Abdullah
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, USA
| | - Elizabeth D Cockerham
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, USA
| | - Joseph Eniafe
- Department of Microbiology and Immunology, Center of Applied Immunology and Pathological Processes, Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, USA
| | - Andrew D Yurochko
- Department of Microbiology and Immunology, Center of Applied Immunology and Pathological Processes, Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, USA
| | - Tarek Magdy
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, USA
| | - Christopher B Pattillo
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, USA
| | - Christopher G Kevil
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, USA
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, USA
| | - Babak Razani
- Division of Cardiology and Vascular Medicine Institute, Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Md Shenuarin Bhuiyan
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, USA
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, USA
| | - Erin H Seeley
- Department of Chemistry, University of Texas at Austin, Austin, TX, USA
| | | | - Bo Wei
- Metabolomics Core Facility, Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Lin Tan
- Metabolomics Core Facility, Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Iqbal Mahmud
- Metabolomics Core Facility, Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ida Surakka
- Department of Internal Medicine, Frankel Cardiovascular Center, University of Michigan, Ann Arbor, MI, USA
| | - Minerva T Garcia-Barrio
- Department of Internal Medicine, Frankel Cardiovascular Center, University of Michigan, Ann Arbor, MI, USA
| | - Philip L Lorenzi
- Metabolomics Core Facility, Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Eyal Gottlieb
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Eduardo Salido
- Department of Pathology, Hospital Universitario de Canarias, Universidad de La Laguna, Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Tenerife, Spain
| | - Jifeng Zhang
- Department of Internal Medicine, Frankel Cardiovascular Center, University of Michigan, Ann Arbor, MI, USA
| | - A Wayne Orr
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, USA
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, USA
| | - Wanqing Liu
- Department of Pharmaceutical Sciences and Department of Pharmacology, Wayne State University, Detroit, MI, USA
| | - Monica Diaz-Gavilan
- Departamento de Química Farmacéutica y Orgánica, Facultad de Farmacia, Unidad de Excelencia de Química Aplicada a Biomedicina y Medioambiente, Granada, Spain
| | - Y Eugene Chen
- Department of Internal Medicine, Frankel Cardiovascular Center, University of Michigan, Ann Arbor, MI, USA
| | - Nirav Dhanesha
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, USA
| | - Paul T Thevenot
- Institute of Translational Research, Ochsner Clinic Foundation, New Orleans, LA, USA
| | - Ari J Cohen
- Institute of Translational Research, Ochsner Clinic Foundation, New Orleans, LA, USA
- Multi-Organ Transplant Institute, Ochsner Clinic Foundation, New Orleans, LA, USA
| | - Arif Yurdagul
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, USA
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, USA
| | - Oren Rom
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, USA.
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, USA.
| |
Collapse
|
8
|
Chen S, Zeng Q, Cai X, Xue J, Yin G, Song P, Tang L, Klein C, Tacke F, Guillot A, Liu H. Multiomics analyses decipher intricate changes in the cellular and metabolic landscape of steatotic livers upon dietary restriction and sleeve gastrectomy. Int J Biol Sci 2024; 20:4438-4457. [PMID: 39247824 PMCID: PMC11380448 DOI: 10.7150/ijbs.98362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Accepted: 08/04/2024] [Indexed: 09/10/2024] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is a chronic, progressive liver disease that encompasses a spectrum of steatosis, steatohepatitis (or MASH), and fibrosis. Evidence suggests that dietary restriction (DR) and sleeve gastrectomy (SG) can lead to remission of hepatic steatosis and inflammation through weight loss, but it is unclear whether these procedures induce distinct metabolic or immunological changes in MASLD livers. This study aims to elucidate the intricate hepatic changes following DR, SG or sham surgery in rats fed a high-fat diet as a model of obesity-related MASLD, in comparison to a clinical cohort of patients undergoing SG. Single-cell and single-nuclei transcriptome analysis, spatial metabolomics, and immunohistochemistry revealed the liver landscape, while circulating biomarkers were measured in serum samples. Artificial intelligence (AI)-assisted image analysis characterized the spatial distribution of hepatocytes, myeloid cells and lymphocytes. In patients and experimental MASLD rats, SG improved body mass index, circulating liver injury biomarkers and triglyceride levels. Both DR and SG attenuated liver steatosis and fibrosis in rats. Metabolism-related genes (Ppara, Cyp2e1 and Cyp7a1) were upregulated in hepatocytes upon DR and SG, while SG broadly upregulated lipid metabolism on cholangiocytes, monocytes, macrophages, and neutrophils. Furthermore, SG promoted restorative myeloid cell accumulation in the liver not only ameliorating inflammation but activating liver repair processes. Regions with potent myeloid infiltration were marked with enhanced metabolic capacities upon SG. Additionally, a disruption of periportal hepatocyte functions was observed upon DR. In conclusion, this study indicates a dynamic cellular crosstalk in steatotic livers of patients undergoing SG. Notably, PPARα- and gut-liver axis-related processes, and metabolically active myeloid cell infiltration indicate intervention-related mechanisms supporting the indication of SG for the treatment of MASLD.
Collapse
Affiliation(s)
- Shuai Chen
- Department of General Surgery, The Third Affiliated Hospital of Nanjing Medical University, Changzhou Medical Center, Nanjing Medical University, Changzhou 213000, China
| | - Qinghe Zeng
- Laboratoire d'Informatique Paris Descartes (LIPADE), Université Paris Cité, Paris 75014, France
- Centre d'Histologie, d'Imagerie et de Cytométrie (CHIC), Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, Paris 75014, France
| | | | - Jiaming Xue
- Department of General Surgery, The Third Affiliated Hospital of Nanjing Medical University, Changzhou Medical Center, Nanjing Medical University, Changzhou 213000, China
| | - Guo Yin
- Department of Hepatology and Gastroenterology, Charité Universitätsmedizin Berlin, Campus Virchow-Klinikum and Campus Charité Mitte, Berlin 13353, Germany
| | - Peng Song
- Department of General Surgery, The Third Affiliated Hospital of Nanjing Medical University, Changzhou Medical Center, Nanjing Medical University, Changzhou 213000, China
| | - Liming Tang
- Department of General Surgery, The Third Affiliated Hospital of Nanjing Medical University, Changzhou Medical Center, Nanjing Medical University, Changzhou 213000, China
| | - Christophe Klein
- Centre d'Histologie, d'Imagerie et de Cytométrie (CHIC), Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, Paris 75014, France
| | - Frank Tacke
- Department of Hepatology and Gastroenterology, Charité Universitätsmedizin Berlin, Campus Virchow-Klinikum and Campus Charité Mitte, Berlin 13353, Germany
| | - Adrien Guillot
- Department of Hepatology and Gastroenterology, Charité Universitätsmedizin Berlin, Campus Virchow-Klinikum and Campus Charité Mitte, Berlin 13353, Germany
| | - Hanyang Liu
- Department of General Surgery, The Third Affiliated Hospital of Nanjing Medical University, Changzhou Medical Center, Nanjing Medical University, Changzhou 213000, China
- Department of Hepatology and Gastroenterology, Charité Universitätsmedizin Berlin, Campus Virchow-Klinikum and Campus Charité Mitte, Berlin 13353, Germany
| |
Collapse
|
9
|
Sun Y, Yang H, Guo J, Du J, Han S, Yang X. Identification of HTRA1, DPT and MXRA5 as potential biomarkers associated with osteoarthritis progression and immune infiltration. BMC Musculoskelet Disord 2024; 25:647. [PMID: 39148085 PMCID: PMC11325630 DOI: 10.1186/s12891-024-07758-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 08/05/2024] [Indexed: 08/17/2024] Open
Abstract
BACKGROUND Our study aimed to identify potential specific biomarkers for osteoarthritis (OA) and assess their relationship with immune infiltration. METHODS We utilized data from GSE117999, GSE51588, and GSE57218 as training sets, while GSE114007 served as a validation set, all obtained from the GEO database. First, weighted gene co-expression network analysis (WGCNA) and functional enrichment analysis were performed to identify hub modules and potential functions of genes. We subsequently screened for potential OA biomarkers within the differentially expressed genes (DEGs) of the hub module using machine learning methods. The diagnostic accuracy of the candidate genes was validated. Additionally, single gene analysis and ssGSEA was performed. Then, we explored the relationship between biomarkers and immune cells. Lastly, we employed RT-PCR to validate our results. RESULTS WGCNA results suggested that the blue module was the most associated with OA and was functionally associated with extracellular matrix (ECM)-related terms. Our analysis identified ALB, HTRA1, DPT, MXRA5, CILP, MPO, and PLAT as potential biomarkers. Notably, HTRA1, DPT, and MXRA5 consistently exhibited increased expression in OA across both training and validation cohorts, demonstrating robust diagnostic potential. The ssGSEA results revealed that abnormal infiltration of DCs, NK cells, Tfh, Th2, and Treg cells might contribute to OA progression. HTRA1, DPT, and MXRA5 showed significant correlation with immune cell infiltration. The RT-PCR results also confirmed these findings. CONCLUSIONS HTRA1, DPT, and MXRA5 are promising biomarkers for OA. Their overexpression strongly correlates with OA progression and immune cell infiltration.
Collapse
Affiliation(s)
- Yunchao Sun
- Hebei North University, Zhangjiakou, Hebei, 075000, China
- Department of orthopaedic surgery, Huabeiyiliao Jiankangjituan Fengfeng Zongyiyuan, Handan, Hebei, 056000, China
| | - Hui Yang
- Department of orthopaedic surgery, Huabeiyiliao Jiankangjituan Fengfeng Zongyiyuan, Handan, Hebei, 056000, China
| | - Jiaquan Guo
- Department of orthopaedic surgery, Huabeiyiliao Jiankangjituan Fengfeng Zongyiyuan, Handan, Hebei, 056000, China
| | - Jian Du
- Hebei North University, Zhangjiakou, Hebei, 075000, China
| | - Shoujiang Han
- Department of orthopaedic surgery, Huabeiyiliao Jiankangjituan Fengfeng Zongyiyuan, Handan, Hebei, 056000, China.
| | - Xinming Yang
- Hebei North University, Zhangjiakou, Hebei, 075000, China.
- Department of orthopaedic surgery, The first affiliated hospital of Hebei North University, Zhangjiakou, Hebei, 075000, China.
| |
Collapse
|
10
|
Shan Z, Zhang H, He C, An Y, Huang Y, Fu W, Wang M, Du Y, Xie J, Yang Y, Zhao B. High-Protein Mulberry Leaves Improve Glucose and Lipid Metabolism via Activation of the PI3K/Akt/PPARα/CPT-1 Pathway. Int J Mol Sci 2024; 25:8726. [PMID: 39201413 PMCID: PMC11354309 DOI: 10.3390/ijms25168726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 07/29/2024] [Accepted: 07/29/2024] [Indexed: 09/02/2024] Open
Abstract
High-Protein Mulberry is a novel strain of mulberry. High-Protein Mulberry leaves (HPM) were the subject of this study, which aimed to investigate its efficacy and underlying mechanisms in modulating glucose and lipid metabolism. A six-week intervention using db/db mice was carried out to assess the effects of HPM on serum lipid levels, liver function, and insulin (INS) levels. qRT-PCR and Western Blotting were employed to measure key RNA and protein expressions in the PI3K/Akt and PPARα/CPT-1 pathways. UHPLC-MS and the Kjeldahl method were utilized to analyze the component content and total protein. Additionally, network pharmacology was employed to predict regulatory mechanism differences between HPM and Traditional Mulberry leaves. The results of the study revealed significant improvements in fasting blood glucose, glucose tolerance, and insulin resistance in mice treated with HPM. HPM notably reduced serum levels of total cholesterol (TC), triglycerides (TG), low-density lipoprotein cholesterol (LDL-C), aspartate aminotransferase (AST), alanine aminotransferase (ALT), and INS, while increasing high-density lipoprotein cholesterol (HDL-C) levels. The treatment also effectively mitigated liver fatty lesions, inflammatory infiltration, and islet atrophy. HPM activation of the PI3K/Akt/PPARα/CPT-1 pathway suggested its pivotal role in the regulation of glucose and lipid metabolism. With its rich composition and pharmacodynamic material basis, HPM displayed a greater number of targets associated with glucose and lipid metabolism pathways, underscoring the need for further research into its potential therapeutic applications.
Collapse
Affiliation(s)
- Ziyi Shan
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Huilin Zhang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Changhao He
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yongcheng An
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yan Huang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Wanxin Fu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Menglu Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yuhang Du
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Jiamei Xie
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yang Yang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Baosheng Zhao
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| |
Collapse
|
11
|
Dubois V, Lefebvre P, Staels B, Eeckhoute J. Nuclear receptors: pathophysiological mechanisms and drug targets in liver disease. Gut 2024; 73:1562-1569. [PMID: 38862216 DOI: 10.1136/gutjnl-2023-331741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 05/18/2024] [Indexed: 06/13/2024]
Abstract
Nuclear receptors (NRs) are ligand-dependent transcription factors required for liver development and function. As a consequence, NRs have emerged as attractive drug targets in a wide range of liver diseases. However, liver dysfunction and failure are linked to loss of hepatocyte identity characterised by deficient NR expression and activities. This might at least partly explain why several pharmacological NR modulators have proven insufficiently efficient to improve liver functionality in advanced stages of diseases such as metabolic dysfunction-associated steatotic liver disease (MASLD). In this perspective, we review the most recent advances in the hepatic NR field and discuss the contribution of multiomic approaches to our understanding of their role in the molecular organisation of an intricated transcriptional regulatory network, as well as in liver intercellular dialogues and interorgan cross-talks. We discuss the potential benefit of novel therapeutic approaches simultaneously targeting multiple NRs, which would not only reactivate the hepatic NR network and restore hepatocyte identity but also impact intercellular and interorgan interplays whose importance to control liver functions is further defined. Finally, we highlight the need of considering individual parameters such as sex and disease stage in the development of NR-based clinical strategies.
Collapse
Affiliation(s)
- Vanessa Dubois
- Basic and Translational Endocrinology (BaTE), Department of Basic and Applied Medical Sciences, Ghent University, Gent, Belgium
| | - Philippe Lefebvre
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, Lille, France
| | - Bart Staels
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, Lille, France
| | - Jerome Eeckhoute
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, Lille, France
| |
Collapse
|
12
|
Piras IS, DiStefano JK. Comprehensive meta-analysis reveals distinct gene expression signatures of MASLD progression. Life Sci Alliance 2024; 7:e202302517. [PMID: 38565287 PMCID: PMC10987979 DOI: 10.26508/lsa.202302517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 03/25/2024] [Accepted: 03/26/2024] [Indexed: 04/04/2024] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) and its progressive form, metabolic dysfunction-associated steatohepatitis (MASH), pose significant risks of severe fibrosis, cirrhosis, and hepatocellular carcinoma. Despite their widespread prevalence, the molecular mechanisms underlying the development and progression of these common chronic hepatic conditions are not fully understood. Here, we conducted the most extensive meta-analysis of hepatic gene expression datasets from liver biopsy samples to date, integrating 10 RNA-sequencing and microarray datasets (1,058 samples). Using a random-effects meta-analysis model, we compared over 12,000 shared genes across datasets. We identified 685 genes differentially expressed in MASLD versus normal liver, 1,870 in MASH versus normal liver, and 3,284 in MASLD versus MASH. Integrating these results with genome-wide association studies and coexpression networks, we identified two functionally relevant, validated coexpression modules mainly driven by SMOC2, ITGBL1, LOXL1, MGP, SOD3, and TAT, HGD, SLC25A15, respectively, the latter not previously associated with MASLD and MASH. Our findings provide a comprehensive and robust analysis of hepatic gene expression alterations associated with MASLD and MASH and identify novel key drivers of MASLD progression.
Collapse
Affiliation(s)
- Ignazio S Piras
- Neurogenomics Division, Translational Genomics Research Institute, Phoenix, AZ, USA
| | - Johanna K DiStefano
- Diabetes and Metabolic Disease Research Unit, Translational Genomics Research Institute, Phoenix, AZ, USA
| |
Collapse
|
13
|
Cooreman MP, Vonghia L, Francque SM. MASLD/MASH and type 2 diabetes: Two sides of the same coin? From single PPAR to pan-PPAR agonists. Diabetes Res Clin Pract 2024; 212:111688. [PMID: 38697298 DOI: 10.1016/j.diabres.2024.111688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/24/2024] [Indexed: 05/04/2024]
Abstract
Type 2 diabetes (T2D) and metabolic dysfunction-associated steatotic liver disease (MASLD), mainly related to nutrition and lack of physical activity, are both very common conditions, share several disease pathways and clinical manifestations, and increasingly co-occur with disease progression. Insulin resistance is an upstream node in the biology of both conditions and triggers liver parenchymal injury, inflammation and fibrosis. Peroxisome proliferator-activated receptor (PPAR) nuclear transcription factors are master regulators of energy homeostasis - insulin signaling in liver, adipose and skeletal muscle tissue - and affect immune and fibrogenesis pathways. Among distinct yet overlapping effects, PPARα regulates lipid metabolism and energy expenditure, PPARβ/δ has anti-inflammatory effects and increases glucose uptake by skeletal muscle, while PPARγ improves insulin sensitivity and exerts direct antifibrotic effects on hepatic stellate cells. Together PPARs thus represent pharmacological targets across the entire biology of MASH. Single PPAR agonists are approved for hypertriglyceridemia (PPARα) and T2D (PPARγ), but these, as well as dual PPAR agonists, have shown mixed results as anti-MASH treatments in clinical trials. Agonists of all three PPAR isoforms have the potential to improve the full disease spectrum from insulin resistance to fibrosis, and correspondingly to improve cardiometabolic and hepatic health, as has been shown (phase II data) with the pan-PPAR agonist lanifibranor.
Collapse
Affiliation(s)
- Michael P Cooreman
- Research and Development, Inventiva, Daix, France; Research and Development, Inventiva, New York, NY, USA.
| | - Luisa Vonghia
- Department of Gastroenterology and Hepatology, Antwerp University Hospital, Edegem, Belgium; InflaMed Centre of Excellence, Laboratory for Experimental Medicine and Paediatrics, Translational Sciences in Inflammation and Immunology, Faculty of Medicine and Health Sciences, University of Antwerp, Wilrijk, Belgium
| | - Sven M Francque
- Department of Gastroenterology and Hepatology, Antwerp University Hospital, Edegem, Belgium; InflaMed Centre of Excellence, Laboratory for Experimental Medicine and Paediatrics, Translational Sciences in Inflammation and Immunology, Faculty of Medicine and Health Sciences, University of Antwerp, Wilrijk, Belgium.
| |
Collapse
|
14
|
Kostadinova R, Ströbel S, Chen L, Fiaschetti-Egli K, Gadient J, Pawlowska A, Petitjean L, Bieri M, Thoma E, Petitjean M. Digital pathology with artificial intelligence analysis provides insight to the efficacy of anti-fibrotic compounds in human 3D MASH model. Sci Rep 2024; 14:5885. [PMID: 38467661 PMCID: PMC10928082 DOI: 10.1038/s41598-024-55438-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 02/23/2024] [Indexed: 03/13/2024] Open
Abstract
Metabolic dysfunction-associated steatohepatitis (MASH) is a severe liver disease characterized by lipid accumulation, inflammation and fibrosis. The development of MASH therapies has been hindered by the lack of human translational models and limitations of analysis techniques for fibrosis. The MASH three-dimensional (3D) InSight™ human liver microtissue (hLiMT) model recapitulates pathophysiological features of the disease. We established an algorithm for automated phenotypic quantification of fibrosis of Sirius Red stained histology sections of MASH hLiMTs model using a digital pathology quantitative single-fiber artificial intelligence (AI) FibroNest™ image analysis platform. The FibroNest™ algorithm for MASH hLiMTs was validated using anti-fibrotic reference compounds with different therapeutic modalities-ALK5i and anti-TGF-β antibody. The phenotypic quantification of fibrosis demonstrated that both reference compounds decreased the deposition of fibrillated collagens in alignment with effects on the secretion of pro-collagen type I/III, tissue inhibitor of metalloproteinase-1 and matrix metalloproteinase-3 and pro-fibrotic gene expression. In contrast, clinical compounds, Firsocostat and Selonsertib, alone and in combination showed strong anti-fibrotic effects on the deposition of collagen fibers, however less pronounced on the secretion of pro-fibrotic biomarkers. In summary, the phenotypic quantification of fibrosis of MASH hLiMTs combined with secretion of pro-fibrotic biomarkers and transcriptomics represents a promising drug discovery tool for assessing anti-fibrotic compounds.
Collapse
Affiliation(s)
| | - Simon Ströbel
- InSphero AG, Wagistrasse 27A, Schlieren, Switzerland
| | - Li Chen
- PharmaNest, Princeton, NJ, USA
| | | | - Jana Gadient
- InSphero AG, Wagistrasse 27A, Schlieren, Switzerland
| | | | | | - Manuela Bieri
- InSphero AG, Wagistrasse 27A, Schlieren, Switzerland
| | - Eva Thoma
- InSphero AG, Wagistrasse 27A, Schlieren, Switzerland
| | | |
Collapse
|
15
|
Chen Y, Cai WK, Yu J, Shen M, Zhou JH, Yang SY, Liu W, Lu S, Shi YK, Yang LX. Integrated analysis of differentially expressed genes and miRNA expression profiles in dilated cardiomyopathy. Heliyon 2024; 10:e25569. [PMID: 38384527 PMCID: PMC10878877 DOI: 10.1016/j.heliyon.2024.e25569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 01/12/2024] [Accepted: 01/29/2024] [Indexed: 02/23/2024] Open
Abstract
Background Although dilated cardiomyopathy (DCM) is a prevalent form of cardiomyopathy, the molecular mechanisms underlying its pathogenesis and progression remain poorly understood. It is possible to identify and validate DCM-associated genes, pathways, and miRNAs using bioinformatics analysis coupled with clinical validation methods. Methods Our analysis was performed using 3 mRNA datasets and 1 miRNA database. We employed several approaches, including gene ontology (GO) analysis, KEGG pathway enrichment analysis, protein-protein interaction networks analysis, and analysis of hub genes to identify critical genes and pathways linked to DCM. We constructed a regulatory network for DCM that involves interactions between miRNAs and mRNAs. We also validated the differently expressed miRNAs in clinical samples (87 DCM ,83 Normal) using qRT-PCR.The miRNAs' clinical value was evaluated by receiver operating characteristic curves (ROCs). Results 78 differentially expressed genes (DEGs) and 170 differentially expressed miRNAs (DEMs) were associated with DCM. The top five GO annotations were collagen-containing extracellular matrix, cell substrate adhesion, negative regulation of cell differentiation, and inflammatory response. The most enriched KEGG pathways were the Neurotrophin signaling pathway, Thyroid hormone signaling pathway, Wnt signaling pathway, and Axon guidance. In the PPI network, we identified 10 hub genes, and in the miRNA-mRNA regulatory network, we identified 8 hub genes and 15 miRNAs. In the clinical validation, we found 13 miRNAs with an AUC value greater than 0.9. Conclusion Our research offers novel insights into the underlying mechanisms of DCM and has implications for identifying potential targets for diagnosis and treatment of this condition.
Collapse
Affiliation(s)
- Yu Chen
- Department of Cardiology, 920th Hospital of Joint Logistics Support Force, PLA, Kunming, China
| | - Wen-Ke Cai
- Department of Thoracocardiac Surgery, 920th Hospital of Joint Logistics Support Force, PLA, Kunming, China
| | - Jie Yu
- Department of Thoracocardiac Surgery, 920th Hospital of Joint Logistics Support Force, PLA, Kunming, China
| | - Ming Shen
- Department of Cardiology, 920th Hospital of Joint Logistics Support Force, PLA, Kunming, China
| | - Jin-Huan Zhou
- Department of Cardiology, 920th Hospital of Joint Logistics Support Force, PLA, Kunming, China
| | - Sheng-Yu Yang
- Department of Urology Surgery, 920th Hospital of Joint Logistics Support Force, PLA, Kunming, China
| | - Wei Liu
- Department of Cardiology, 920th Hospital of Joint Logistics Support Force, PLA, Kunming, China
| | - Si Lu
- Department of Clinical Medical College, Dali University, Dali, China
| | - Yan-Kun Shi
- Department of Cardiology, 920th Hospital of Joint Logistics Support Force, PLA, Kunming, China
| | - Li-Xia Yang
- Department of Cardiology, 920th Hospital of Joint Logistics Support Force, PLA, Kunming, China
| |
Collapse
|
16
|
Cano L, Desquilles L, Ghukasyan G, Angenard G, Landreau C, Corlu A, Clément B, Turlin B, Le Ferrec E, Aninat C, Massart J, Musso O. SARS-CoV-2 receptor ACE2 is upregulated by fatty acids in human MASH. JHEP Rep 2024; 6:100936. [PMID: 38074511 PMCID: PMC10698276 DOI: 10.1016/j.jhepr.2023.100936] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 09/08/2023] [Accepted: 09/15/2023] [Indexed: 01/10/2025] Open
Abstract
BACKGROUND & AIMS Metabolic dysfunction-associated steatotic liver disease (MASLD) results in steatosis, inflammation (steatohepatitis), and fibrosis. Patients with MASLD more likely develop liver injury in coronavirus disease 2019 (COVID-19), caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). As viral RNA has been identified in liver tissues, we studied expression levels and cellular sources of the viral receptor angiotensin-converting enzyme 2 (ACE2) and coreceptors in MASLD and fibroinflammatory liver diseases. METHODS We built a transcriptomic MASLD meta-dataset (N = 243) to study SARS-CoV-2 receptor expression and verified results in 161 additional cases of fibroinflammatory liver diseases. We assessed the fibroinflammatory microenvironment by deconvoluting immune cell populations. We studied the cellular sources of ACE2 by multiplex immunohistochemistry followed by high-resolution confocal microscopy (N = 9 fatty livers; N = 7 controls), meta-analysis of two single-cell RNA sequencing datasets (N = 5 cirrhotic livers; N = 14 normal livers), and bulk transcriptomics from 745 primary cell samples. In vitro, we tested ACE2 mRNA expression in primary human hepatocytes treated with inflammatory cytokines, bacterial lipopolysaccharides, or long-chain fatty acids. RESULTS We detected ACE2 at the apical and basal poles of hepatocyte chords, in CLEC4M+ liver sinusoidal endothelial cells, the lumen of ABCC2+ bile canaliculi, HepPar-1+-TMPRSS2+ hepatocytes, cholangiocytes, and CD34+ capillary vessels. ACE2 steeply increased between 30 and 50 years of age; was related to liver fat area, inflammation, high immune reactivity, and fibrogenesis; and was upregulated in steatohepatitis. Although ACE2 mRNA was unmodified in alcoholic or viral hepatitis, it was upregulated in fibroinflammatory livers from overweight patients. In vitro, treatment of primary human hepatocytes with inflammatory cytokines alone downregulated but long chain fatty acids upregulated ACE2 mRNA expression. CONCLUSIONS Lipid overload in fatty liver disease leads to an increased availability of ACE2 receptors. IMPACT AND IMPLICATIONS COVID-19 can be a deadly disease in vulnerable individuals. Patients with fatty liver disease are at a higher risk of experiencing severe COVID-19 and liver injury. Recent studies have indicated that one of the reasons for this vulnerability is the presence of a key cell surface protein called ACE2, which serves as the main SARS-CoV-2 virus receptor. We describe the cellular sources of ACE2 in the liver. In patients with fatty liver disease, ACE2 levels increase with age, liver fat content, fibroinflammatory changes, enhanced positive immune checkpoint levels, and innate immune reactivity. Moreover, we show that long chain fatty acids can induce ACE2 expression in primary human hepatocytes. Understanding the cellular sources of ACE2 in the liver and the factors that influence its availability is crucial. This knowledge will guide further research and help protect potentially vulnerable patients through timely vaccination boosters, dietary adjustments, and improved hygiene practices.
Collapse
Affiliation(s)
- Luis Cano
- INSERM, INRAE, Univ Rennes 1, Nutrition Metabolisms and Cancer, Rennes, France
| | - Lise Desquilles
- INSERM, INRAE, Univ Rennes 1, Nutrition Metabolisms and Cancer, Rennes, France
| | - Gevorg Ghukasyan
- Univ Rennes 1, CNRS, INSERM, UMS Biosit, Core Facility H2P2, Rennes, France
| | - Gaëlle Angenard
- INSERM, INRAE, Univ Rennes 1, Nutrition Metabolisms and Cancer, Rennes, France
| | - Clémence Landreau
- INSERM, INRAE, Univ Rennes 1, Nutrition Metabolisms and Cancer, Rennes, France
| | - Anne Corlu
- INSERM, INRAE, Univ Rennes 1, Nutrition Metabolisms and Cancer, Rennes, France
| | - Bruno Clément
- INSERM, INRAE, Univ Rennes 1, Nutrition Metabolisms and Cancer, Rennes, France
| | - Bruno Turlin
- INSERM, INRAE, Univ Rennes 1, Nutrition Metabolisms and Cancer, Rennes, France
| | - Eric Le Ferrec
- Univ Rennes 1, INSERM, EHESP, IRSET (Institut de Recherche en Santé Environnement et Travail) UMR_S 1085, Rennes, France
| | - Caroline Aninat
- INSERM, INRAE, Univ Rennes 1, Nutrition Metabolisms and Cancer, Rennes, France
| | - Julie Massart
- INSERM, INRAE, Univ Rennes 1, Nutrition Metabolisms and Cancer, Rennes, France
| | - Orlando Musso
- INSERM, INRAE, Univ Rennes 1, Nutrition Metabolisms and Cancer, Rennes, France
| |
Collapse
|
17
|
Kwanten W(WJ, Francque SM. The liver sinusoid in chronic liver disease: NAFLD and NASH. SINUSOIDAL CELLS IN LIVER DISEASES 2024:263-284. [DOI: 10.1016/b978-0-323-95262-0.00012-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
18
|
Johanns M, Haas JT, Raverdy V, Vandel J, Chevalier-Dubois J, Guille L, Derudas B, Legendre B, Caiazzo R, Verkindt H, Gnemmi V, Leteurtre E, Derhourhi M, Bonnefond A, Froguel P, Eeckhoute J, Lassailly G, Mathurin P, Pattou F, Staels B, Lefebvre P. Time-of-day-dependent variation of the human liver transcriptome and metabolome is disrupted in MASLD. JHEP Rep 2024; 6:100948. [PMID: 38125300 PMCID: PMC10730870 DOI: 10.1016/j.jhepr.2023.100948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 10/12/2023] [Accepted: 10/14/2023] [Indexed: 12/23/2023] Open
Abstract
Background & Aims Liver homeostasis is ensured in part by time-of-day-dependent processes, many of them being paced by the molecular circadian clock. Liver functions are compromised in metabolic dysfunction-associated steatotic liver disease (MASLD) and metabolic dysfunction-associated steatohepatitis (MASH), and clock disruption increases susceptibility to MASLD progression in rodent models. We therefore investigated whether the time-of-day-dependent transcriptome and metabolome are significantly altered in human steatotic and MASH livers. Methods Liver biopsies, collected within an 8 h-window from a carefully phenotyped cohort of 290 patients and histologically diagnosed to be either normal, steatotic or MASH hepatic tissues, were analyzed by RNA sequencing and unbiased metabolomic approaches. Time-of-day-dependent gene expression patterns and metabolomes were identified and compared between histologically normal, steatotic and MASH livers. Results Herein, we provide a first-of-its-kind report of a daytime-resolved human liver transcriptome-metabolome and associated alterations in MASLD. Transcriptomic analysis showed a robustness of core molecular clock components in steatotic and MASH livers. It also revealed stage-specific, time-of-day-dependent alterations of hundreds of transcripts involved in cell-to-cell communication, intracellular signaling and metabolism. Similarly, rhythmic amino acid and lipid metabolomes were affected in pathological livers. Both TNFα and PPARγ signaling were predicted as important contributors to altered rhythmicity. Conclusion MASLD progression to MASH perturbs time-of-day-dependent processes in human livers, while the differential expression of core molecular clock components is maintained. Impact and implications This work characterizes the rhythmic patterns of the transcriptome and metabolome in the human liver. Using a cohort of well-phenotyped patients (n = 290) for whom the time-of-day at biopsy collection was known, we show that time-of-day variations observed in histologically normal livers are gradually perturbed in liver steatosis and metabolic dysfunction-associated steatohepatitis. Importantly, these observations, albeit obtained across a restricted time window, provide further support for preclinical studies demonstrating alterations of rhythmic patterns in diseased livers. On a practical note, this study indicates the importance of considering time-of-day as a critical biological variable which may significantly affect data interpretation in animal and human studies of liver diseases.
Collapse
Affiliation(s)
- Manuel Johanns
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, UMR1011-EGID, F-59000 Lille, France
| | - Joel T. Haas
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, UMR1011-EGID, F-59000 Lille, France
| | - Violetta Raverdy
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, UMR1190-EGID, F-59000 Lille, France
| | - Jimmy Vandel
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, UMR1011-EGID, F-59000 Lille, France
| | - Julie Chevalier-Dubois
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, UMR1011-EGID, F-59000 Lille, France
| | - Loic Guille
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, UMR1011-EGID, F-59000 Lille, France
| | - Bruno Derudas
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, UMR1011-EGID, F-59000 Lille, France
| | - Benjamin Legendre
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, UMR1190-EGID, F-59000 Lille, France
| | - Robert Caiazzo
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, UMR1190-EGID, F-59000 Lille, France
| | - Helene Verkindt
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, UMR1190-EGID, F-59000 Lille, France
| | | | | | - Mehdi Derhourhi
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, UMR 1283/8199-EGID, F-59000 Lille, France
| | - Amélie Bonnefond
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, UMR 1283/8199-EGID, F-59000 Lille, France
- Department of Metabolism, Imperial College London; London, United Kingdom
| | - Philippe Froguel
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, UMR 1283/8199-EGID, F-59000 Lille, France
- Department of Metabolism, Imperial College London; London, United Kingdom
| | - Jérôme Eeckhoute
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, UMR1011-EGID, F-59000 Lille, France
| | | | | | - François Pattou
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, UMR1190-EGID, F-59000 Lille, France
| | - Bart Staels
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, UMR1011-EGID, F-59000 Lille, France
| | - Philippe Lefebvre
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, UMR1011-EGID, F-59000 Lille, France
| |
Collapse
|
19
|
Tzouanas CN, Sherman MS, Shay JE, Rubin AJ, Mead BE, Dao TT, Butzlaff T, Mana MD, Kolb KE, Walesky C, Pepe-Mooney BJ, Smith CJ, Prakadan SM, Ramseier ML, Tong EY, Joung J, Chi F, McMahon-Skates T, Winston CL, Jeong WJ, Aney KJ, Chen E, Nissim S, Zhang F, Deshpande V, Lauer GM, Yilmaz ÖH, Goessling W, Shalek AK. Chronic metabolic stress drives developmental programs and loss of tissue functions in non-transformed liver that mirror tumor states and stratify survival. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.30.569407. [PMID: 38077056 PMCID: PMC10705501 DOI: 10.1101/2023.11.30.569407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
Under chronic stress, cells must balance competing demands between cellular survival and tissue function. In metabolic dysfunction-associated steatotic liver disease (MASLD, formerly NAFLD/NASH), hepatocytes cooperate with structural and immune cells to perform crucial metabolic, synthetic, and detoxification functions despite nutrient imbalances. While prior work has emphasized stress-induced drivers of cell death, the dynamic adaptations of surviving cells and their functional repercussions remain unclear. Namely, we do not know which pathways and programs define cellular responses, what regulatory factors mediate (mal)adaptations, and how this aberrant activity connects to tissue-scale dysfunction and long-term disease outcomes. Here, by applying longitudinal single-cell multi -omics to a mouse model of chronic metabolic stress and extending to human cohorts, we show that stress drives survival-linked tradeoffs and metabolic rewiring, manifesting as shifts towards development-associated states in non-transformed hepatocytes with accompanying decreases in their professional functionality. Diet-induced adaptations occur significantly prior to tumorigenesis but parallel tumorigenesis-induced phenotypes and predict worsened human cancer survival. Through the development of a multi -omic computational gene regulatory inference framework and human in vitro and mouse in vivo genetic perturbations, we validate transcriptional (RELB, SOX4) and metabolic (HMGCS2) mediators that co-regulate and couple the balance between developmental state and hepatocyte functional identity programming. Our work defines cellular features of liver adaptation to chronic stress as well as their links to long-term disease outcomes and cancer hallmarks, unifying diverse axes of cellular dysfunction around core causal mechanisms.
Collapse
Affiliation(s)
- Constantine N. Tzouanas
- Institute for Medical Engineering & Science, Massachusetts Institute of Technology, Cambridge, MA, USA
- Harvard-MIT Program in Health Sciences and Technology, Harvard Medical School, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
- David H. Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA, USA
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
- These authors contributed equally
| | - Marc S. Sherman
- Genetics Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Division of Gastroenterology, Massachusetts General Hospital, Boston, Massachusetts, USA
- These authors contributed equally
| | - Jessica E.S. Shay
- David H. Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA, USA
- Alcohol Liver Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Gastrointestinal Unit, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- These authors contributed equally
| | - Adam J. Rubin
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
- David H. Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA, USA
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Benjamin E. Mead
- Institute for Medical Engineering & Science, Massachusetts Institute of Technology, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
- David H. Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA, USA
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Tyler T. Dao
- Institute for Medical Engineering & Science, Massachusetts Institute of Technology, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
- David H. Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA, USA
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Titus Butzlaff
- Genetics Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Miyeko D. Mana
- David H. Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Kellie E. Kolb
- Institute for Medical Engineering & Science, Massachusetts Institute of Technology, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
- David H. Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA, USA
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Chad Walesky
- Genetics Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Brian J. Pepe-Mooney
- Harvard-MIT Program in Health Sciences and Technology, Harvard Medical School, Cambridge, MA, USA
- Genetics Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Division of Gastroenterology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Colton J. Smith
- Genetics Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Sanjay M. Prakadan
- Institute for Medical Engineering & Science, Massachusetts Institute of Technology, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
- David H. Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA, USA
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Michelle L. Ramseier
- Institute for Medical Engineering & Science, Massachusetts Institute of Technology, Cambridge, MA, USA
- Harvard-MIT Program in Health Sciences and Technology, Harvard Medical School, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
- David H. Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA, USA
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Evelyn Y. Tong
- Institute for Medical Engineering & Science, Massachusetts Institute of Technology, Cambridge, MA, USA
- Harvard-MIT Program in Health Sciences and Technology, Harvard Medical School, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
- David H. Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA, USA
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Julia Joung
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Brain and Cognitive Science, MA, Cambridge, MA, USA
- McGovern Institute for Brain Research at MIT, Cambridge, MA, USA
- Howard Hughes Medical Institute, MIT, Cambridge, MA, USA
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
| | - Fangtao Chi
- David H. Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA, USA
| | - Thomas McMahon-Skates
- Genetics Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Carolyn L. Winston
- Genetics Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Woo-Jeong Jeong
- Harvard-MIT Program in Health Sciences and Technology, Harvard Medical School, Cambridge, MA, USA
- Genetics Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Dana-Farber Cancer Institute, Boston, MA, USA
| | - Katherine J. Aney
- Harvard-MIT Program in Health Sciences and Technology, Harvard Medical School, Cambridge, MA, USA
- Genetics Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Dana-Farber Cancer Institute, Boston, MA, USA
| | - Ethan Chen
- Harvard-MIT Program in Health Sciences and Technology, Harvard Medical School, Cambridge, MA, USA
- Genetics Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Dana-Farber Cancer Institute, Boston, MA, USA
| | - Sahar Nissim
- Harvard-MIT Program in Health Sciences and Technology, Harvard Medical School, Cambridge, MA, USA
- Genetics Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Dana-Farber Cancer Institute, Boston, MA, USA
- Gastroenterology Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Feng Zhang
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Brain and Cognitive Science, MA, Cambridge, MA, USA
- McGovern Institute for Brain Research at MIT, Cambridge, MA, USA
- Howard Hughes Medical Institute, MIT, Cambridge, MA, USA
| | - Vikram Deshpande
- Department of Pathology, Massachusetts General Hospital, Boston, MA
| | - Georg M. Lauer
- Division of Gastroenterology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Ömer H. Yilmaz
- David H. Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Pathology, Massachusetts General Hospital, Boston, MA
- These senior authors contributed equally
| | - Wolfram Goessling
- Harvard-MIT Program in Health Sciences and Technology, Harvard Medical School, Cambridge, MA, USA
- Genetics Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Division of Gastroenterology, Massachusetts General Hospital, Boston, Massachusetts, USA
- Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Stem Cell Institute, Cambridge, MA, USA
- Developmental and Regenerative Biology Program, Harvard Medical School, Boston, MA, USA
- These senior authors contributed equally
| | - Alex K. Shalek
- Institute for Medical Engineering & Science, Massachusetts Institute of Technology, Cambridge, MA, USA
- Harvard-MIT Program in Health Sciences and Technology, Harvard Medical School, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
- David H. Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA, USA
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
- These senior authors contributed equally
| |
Collapse
|
20
|
Kasahara N, Imi Y, Amano R, Shinohara M, Okada K, Hosokawa Y, Imamori M, Tomimoto C, Kunisawa J, Kishino S, Ogawa J, Ogawa W, Hosooka T. A gut microbial metabolite of linoleic acid ameliorates liver fibrosis by inhibiting TGF-β signaling in hepatic stellate cells. Sci Rep 2023; 13:18983. [PMID: 37923895 PMCID: PMC10624680 DOI: 10.1038/s41598-023-46404-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 10/31/2023] [Indexed: 11/06/2023] Open
Abstract
The antidiabetic drug pioglitazone ameliorates insulin resistance by activating the transcription factor PPARγ. In addition to its blood glucose-lowering action, pioglitazone exerts pleiotropic effects including amelioration of nonalcoholic fatty liver disease (NAFLD)/nonalcoholic steatohepatitis (NASH). The mechanism by which pioglitazone achieves this latter effect has remained unclear, however. We here show that pioglitazone administration increases the amount of linoleic acid (LA) metabolites in adipose tissue of KK-Ay mice. These metabolites are produced by lactic acid bacteria in the gut, and pioglitazone also increased the fraction of Lactobacillus in the gut microbiota. Administration of the LA metabolite HYA (10-hydroxy-cis-12-octadecenoic acid) to C57BL/6 J mice fed a high-fat diet improved liver histology including steatosis, inflammatory cell infiltration, and fibrosis. Gene ontology analysis of RNA-sequencing data for the liver revealed that the top category for genes downregulated by HYA treatment was related to extracellular matrix, and the expression of individual genes related to fibrosis was confirmed to be attenuated by HYA treatment. Mechanistically, HYA suppressed TGF-β-induced Smad3 phosphorylation and fibrosis-related gene expression in human hepatic stellate cells (LX-2). Our results implicate LA metabolites in the mechanism by which pioglitazone ameliorates liver fibrosis, and they suggest that HYA is a potential therapeutic for NAFLD/NASH.
Collapse
Affiliation(s)
- Nanaho Kasahara
- Laboratory of Nutritional Physiology, Graduate School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, 52-1 Yada, Suruga-Ku, Shizuoka, 422-8526, Japan
| | - Yukiko Imi
- Laboratory of Nutritional Physiology, Graduate School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, 52-1 Yada, Suruga-Ku, Shizuoka, 422-8526, Japan
| | - Reina Amano
- Laboratory of Nutritional Physiology, Graduate School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, 52-1 Yada, Suruga-Ku, Shizuoka, 422-8526, Japan
| | - Masakazu Shinohara
- Division of Molecular Epidemiology, Department of Future Medicine Sciences, Kobe University Graduate School of Medicine, Kobe, Hyogo, 650-0017, Japan
- The Integrated Center for Mass Spectrometry, Kobe University Graduate School of Medicine, Kobe, Hyogo, 650-0017, Japan
| | - Kumiko Okada
- Division of Diabetes and Endocrinology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Hyogo, 650-0017, Japan
| | - Yusei Hosokawa
- Division of Diabetes and Endocrinology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Hyogo, 650-0017, Japan
| | - Makoto Imamori
- Division of Diabetes and Endocrinology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Hyogo, 650-0017, Japan
| | | | - Jun Kunisawa
- Laboratory of Vaccine Materials and Laboratory of Gut Environmental System, Microbial Research Center for Health and Medicine, National Institutes of Biomedical Innovation, Health, and Nutrition (NIBIOHN), Osaka, 567-0085, Japan
| | - Shigenobu Kishino
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo-Ku, Kyoto, 606-8502, Japan
| | - Jun Ogawa
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo-Ku, Kyoto, 606-8502, Japan
| | - Wataru Ogawa
- Division of Diabetes and Endocrinology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Hyogo, 650-0017, Japan
| | - Tetsuya Hosooka
- Laboratory of Nutritional Physiology, Graduate School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, 52-1 Yada, Suruga-Ku, Shizuoka, 422-8526, Japan.
- Division of Diabetes and Endocrinology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Hyogo, 650-0017, Japan.
- Laboratory of Vaccine Materials and Laboratory of Gut Environmental System, Microbial Research Center for Health and Medicine, National Institutes of Biomedical Innovation, Health, and Nutrition (NIBIOHN), Osaka, 567-0085, Japan.
| |
Collapse
|
21
|
Liu T, Wang Q, Zhou L, Zhang P, Mi L, Qiu X, Chen Z, Kuang H, Li S, Lin JD. Intrahepatic paracrine signaling by cardiotrophin-like cytokine factor 1 ameliorates diet-induced NASH in mice. Hepatology 2023; 78:1478-1491. [PMID: 35950514 PMCID: PMC9918604 DOI: 10.1002/hep.32719] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 08/03/2022] [Accepted: 08/05/2022] [Indexed: 12/08/2022]
Abstract
BACKGROUND AND AIMS The mammalian liver harbors heterogeneous cell types that communicate via local paracrine signaling. Recent studies have delineated the transcriptomic landscape of the liver in NASH that provides insights into liver cell heterogeneity, intercellular crosstalk, and disease-associated reprogramming. However, the nature of intrahepatic signaling and its role in NASH progression remain obscure. APPROACH AND RESULTS Here, we performed transcriptomic analyses and identified cardiotrophin-like cytokine factor 1 (CLCF1), a member of the IL-6 family cytokines, as a cholangiocyte-derived paracrine factor that was elevated in the liver from diet-induced NASH mice and patients with NASH. Adenovirus-associated virus-mediated overexpression of CLCF1 in the liver ameliorated NASH pathologies in two diet-induced NASH models in mice, illustrating that CLCF1 induction may serve an adaptive and protective role during NASH pathogenesis. Unexpectedly, messenger RNA and protein levels of leukemia inhibitory factor receptor (LIFR), a subunit of the receptor complex for CLCF1, were markedly downregulated in NASH liver. Hepatocyte-specific inactivation of LIFR accelerated NASH progression in mice, supporting an important role of intrahepatic cytokine signaling in maintaining tissue homeostasis under metabolic stress conditions. CONCLUSIONS Together, this study sheds light on the molecular nature of intrahepatic paracrine signaling during NASH pathogenesis and uncovers potential targets for therapeutic intervention.
Collapse
Affiliation(s)
- Tongyu Liu
- Life Sciences Institute and Department of Cell & Developmental Biology, University of Michigan Medical Center, Ann Arbor, MI 48109
| | - Qiuyu Wang
- Life Sciences Institute and Department of Cell & Developmental Biology, University of Michigan Medical Center, Ann Arbor, MI 48109
| | - Linkang Zhou
- Life Sciences Institute and Department of Cell & Developmental Biology, University of Michigan Medical Center, Ann Arbor, MI 48109
| | - Peng Zhang
- Life Sciences Institute and Department of Cell & Developmental Biology, University of Michigan Medical Center, Ann Arbor, MI 48109
| | - Lin Mi
- Life Sciences Institute and Department of Cell & Developmental Biology, University of Michigan Medical Center, Ann Arbor, MI 48109
| | - Xiaoxue Qiu
- Life Sciences Institute and Department of Cell & Developmental Biology, University of Michigan Medical Center, Ann Arbor, MI 48109
| | - Zhimin Chen
- Life Sciences Institute and Department of Cell & Developmental Biology, University of Michigan Medical Center, Ann Arbor, MI 48109
| | - Henry Kuang
- Life Sciences Institute and Department of Cell & Developmental Biology, University of Michigan Medical Center, Ann Arbor, MI 48109
| | - Siming Li
- Life Sciences Institute and Department of Cell & Developmental Biology, University of Michigan Medical Center, Ann Arbor, MI 48109
| | - Jiandie D. Lin
- Life Sciences Institute and Department of Cell & Developmental Biology, University of Michigan Medical Center, Ann Arbor, MI 48109
| |
Collapse
|
22
|
Zhang X, Sharma P, Maschmeyer P, Hu Y, Lou M, Kim J, Fujii H, Unutmaz D, Schwabe RF, Winau F. GARP on hepatic stellate cells is essential for the development of liver fibrosis. J Hepatol 2023; 79:1214-1225. [PMID: 37348791 PMCID: PMC10592496 DOI: 10.1016/j.jhep.2023.05.043] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 05/17/2023] [Accepted: 05/31/2023] [Indexed: 06/24/2023]
Abstract
BACKGROUND & AIMS Glycoprotein A repetitions predominant (GARP) is a membrane protein that functions as a latent TGF-β docking molecule. While the immune regulatory properties of GARP on blood cells have been studied, the function of GARP on tissue stromal cells remains unclear. Here, we investigate the role of GARP expressed on hepatic stellate cells (HSCs) in the development of liver fibrosis. METHODS The function of GARP on HSCs was explored in toxin-induced and metabolic liver fibrosis models, using conditional GARP-deficient mice or a newly generated inducible system for HSC-specific gene ablation. Primary mouse and human HSCs were isolated to evaluate the contribution of GARP to the activation of latent TGF-β. Moreover, cell contraction of HSCs in the context of TGF-β activation was tested in a GARP-dependent fashion. RESULTS Mice lacking GARP in HSCs were protected from developing liver fibrosis. Therapeutically deleting GARP on HSCs alleviated the fibrotic process in established disease. Furthermore, natural killer T cells exacerbated hepatic fibrosis by inducing GARP expression on HSCs through IL-4 production. Mechanistically, GARP facilitated fibrogenesis by activating TGF-β and enhancing endothelin-1-mediated HSC contraction. Functional GARP was expressed on human HSCs and significantly upregulated in the livers of patients with fibrosis. Lastly, deletion of GARP on HSCs did not augment inflammation or liver damage. CONCLUSIONS GARP expressed on HSCs drives the development of liver fibrosis via cell contraction-mediated activation of latent TGF-β. Considering that systemic blockade of TGF-β has major side effects, we highlight a therapeutic niche provided by GARP and surface-mediated TGF-β activation. Thus, our findings suggest an important role of GARP on HSCs as a promising target for the treatment of liver fibrosis. IMPACT AND IMPLICATIONS Liver fibrosis represents a substantial and increasing public health burden globally, for which specific treatments are not available. Glycoprotein A repetitions predominant (GARP) is a membrane protein that functions as a latent TGF-β docking molecule. Here, we show that GARP expressed on hepatic stellate cells drives the development of liver fibrosis. Our findings suggest GARP as a novel target for the treatment of fibrotic disease.
Collapse
Affiliation(s)
- Xiaolong Zhang
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| | - Pankaj Sharma
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| | - Patrick Maschmeyer
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| | - Yu Hu
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| | - Mumeng Lou
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| | - Jessica Kim
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| | - Hodaka Fujii
- Department of Biochemistry and Genome Biology, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori, Japan
| | - Derya Unutmaz
- Jackson Laboratory for Genomic Medicine, Farmington, Connecticut, USA
| | - Robert F Schwabe
- Department of Medicine, College of Physicians and Surgeons, Institute of Human Nutrition, Columbia University, New York, USA
| | - Florian Winau
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA.
| |
Collapse
|
23
|
Wang S, Friedman SL. Found in translation-Fibrosis in metabolic dysfunction-associated steatohepatitis (MASH). Sci Transl Med 2023; 15:eadi0759. [PMID: 37792957 PMCID: PMC10671253 DOI: 10.1126/scitranslmed.adi0759] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 09/15/2023] [Indexed: 10/06/2023]
Abstract
Metabolic dysfunction-associated steatohepatitis (MASH) is a severe form of liver disease that poses a global health threat because of its potential to progress to advanced fibrosis, leading to cirrhosis and liver cancer. Recent advances in single-cell methodologies, refined disease models, and genetic and epigenetic insights have provided a nuanced understanding of MASH fibrogenesis, with substantial cellular heterogeneity in MASH livers providing potentially targetable cell-cell interactions and behavior. Unlike fibrogenesis, mechanisms underlying fibrosis regression in MASH are still inadequately understood, although antifibrotic targets have been recently identified. A refined antifibrotic treatment framework could lead to noninvasive assessment and targeted therapies that preserve hepatocellular function and restore the liver's architectural integrity.
Collapse
Affiliation(s)
- Shuang Wang
- Division of Liver Diseases, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Scott L. Friedman
- Division of Liver Diseases, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| |
Collapse
|
24
|
Yamaji K, Iwabuchi S, Tokunaga Y, Hashimoto S, Yamane D, Toyama S, Kono R, Kitab B, Tsukiyama-Kohara K, Osawa Y, Hayashi Y, Hishima T, Tateno C, Kimura K, Okanoue T, Kohara M. Molecular insights of a CBP/β-catenin-signaling inhibitor on nonalcoholic steatohepatitis-induced liver fibrosis and disorder. Biomed Pharmacother 2023; 166:115379. [PMID: 37647690 DOI: 10.1016/j.biopha.2023.115379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/04/2023] [Accepted: 08/23/2023] [Indexed: 09/01/2023] Open
Abstract
Nonalcoholic steatohepatitis (NASH) is a progressive fibrotic disease associated with an increased risk of developing hepatocellular carcinoma; at present, no efficient therapeutic strategy has been established. Herein, we examined the efficacy of PRI-724, a potent inhibitor of CBP/β-catenin signaling, for treating NASH-related liver fibrosis and disorder and characterized its mechanism. Choline-deficient, L-amino acid-defined, high-fat diet (CDAHFD)-fed mice exhibited NASH-induced liver fibrosis that is characterized by steatosis, lobular inflammation, hepatocellular injury and collagen fibrils. To examine the therapeutic effect, CDAHFD-fed mice were administered PRI-724. Serum levels of ALT and pro-fibrotic molecule, i.e. Mac-2 bp, alpha smooth muscle actin, type I and type III collagens, decreased significantly. mRNA levels of the matrix metalloproteinases Mmp8 and Mmp9 in the liver were significantly increased, and increases in the abundance of MMP9-producing neutrophils and macrophages were observed. Marco+Mmp9+Cd68+ Kupffer cells were only observed in the livers of mice treated with PRI-724, and Mmp9 expression in Marco+Cd68+ Kupffer cells increased 4.3-fold. Moreover, hepatic expression of the lipid metabolism regulator, pyruvate dehydrogenase kinase 4 and liver lipid droplets also decreased significantly. PRI-724-treated NASH mice not only recovered from NASH-related liver fibrosis through the effect of PRI-724 down-regulating the expression of pro-fibrotic genes and up-regulating the expression of anti-fibrotic genes, but they also recovered from NASH-induced liver disorder. PRI-724, a selective CBP/β-catenin inhibitor, thus shows a potent therapeutic effect for NASH-related liver fibrosis and for decreasing adipose tissue in the liver.
Collapse
Affiliation(s)
- Kenzaburo Yamaji
- Department of Microbiology and Cell Biology, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan
| | - Sadahiro Iwabuchi
- Department of Molecular Pathophysiology, Institute of Advanced Medicine, Wakayama Medical University, Wakayama 641-8509, Japan
| | - Yuko Tokunaga
- Department of Microbiology and Cell Biology, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan
| | - Shinichi Hashimoto
- Department of Molecular Pathophysiology, Institute of Advanced Medicine, Wakayama Medical University, Wakayama 641-8509, Japan
| | - Daisuke Yamane
- Department of Microbiology and Cell Biology, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan
| | - Sakiko Toyama
- Department of Microbiology and Cell Biology, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan
| | - Risa Kono
- Department of Microbiology and Cell Biology, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan
| | - Bouchra Kitab
- Transboundary Animal Diseases Center, Joint Faculty of Veterinary Medicine, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan
| | - Kyoko Tsukiyama-Kohara
- Transboundary Animal Diseases Center, Joint Faculty of Veterinary Medicine, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan.
| | - Yosuke Osawa
- Department of Gastroenterology, International University of Health and Welfare Hospital, Nasushiobara 324-8501, Japan
| | - Yukiko Hayashi
- Department of Pathology, Tokyo Metropolitan Cancer and Infectious Diseases Center Komagome Hospital, Tokyo 113-8677, Japan
| | - Tsunekazu Hishima
- Department of Pathology, Tokyo Metropolitan Cancer and Infectious Diseases Center Komagome Hospital, Tokyo 113-8677, Japan
| | - Chise Tateno
- R&D Department, PhoenixBio Co., Ltd., 3-4-1 Kagamiyama, Higashihiroshima, Hiroshima 739-0046, Japan
| | - Kiminori Kimura
- Department of Hepatology, Tokyo Metropolitan Cancer and Infectious Diseases Center Komagome Hospital, Tokyo 113-8677, Japan
| | - Takeshi Okanoue
- Department of Gastroenterology and Hepatology, Saiseikai Suita Hospital, Osaka 564-0013, Japan
| | - Michinori Kohara
- Department of Microbiology and Cell Biology, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan.
| |
Collapse
|
25
|
Pan Q, Ai W, Chen Y, Kim DM, Shen Z, Yang W, Jiang W, Sun Y, Safe S, Guo S. Reciprocal Regulation of Hepatic TGF-β1 and Foxo1 Controls Gluconeogenesis and Energy Expenditure. Diabetes 2023; 72:1193-1206. [PMID: 37343276 PMCID: PMC10450826 DOI: 10.2337/db23-0180] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 06/13/2023] [Indexed: 06/23/2023]
Abstract
UNLABELLED Obesity and insulin resistance are risk factors for the pathogenesis of type 2 diabetes (T2D). Here, we report that hepatic TGF-β1 expression positively correlates with obesity and insulin resistance in mice and humans. Hepatic TGF-β1 deficiency decreased blood glucose levels in lean mice and improved glucose and energy dysregulations in diet-induced obese (DIO) mice and diabetic mice. Conversely, overexpression of TGF-β1 in the liver exacerbated metabolic dysfunctions in DIO mice. Mechanistically, hepatic TGF-β1 and Foxo1 are reciprocally regulated: fasting or insulin resistance caused Foxo1 activation, increasing TGF-β1 expression, which, in turn, activated protein kinase A, stimulating Foxo1-S273 phosphorylation to promote Foxo1-mediated gluconeogenesis. Disruption of TGF-β1→Foxo1→TGF-β1 looping by deleting TGF-β1 receptor II in the liver or by blocking Foxo1-S273 phosphorylation ameliorated hyperglycemia and improved energy metabolism in adipose tissues. Taken together, our studies reveal that hepatic TGF-β1→Foxo1→TGF-β1 looping could be a potential therapeutic target for prevention and treatment of obesity and T2D. ARTICLE HIGHLIGHTS Hepatic TGF-β1 levels are increased in obese humans and mice. Hepatic TGF-β1 maintains glucose homeostasis in lean mice and causes glucose and energy dysregulations in obese and diabetic mice. Hepatic TGF-β1 exerts an autocrine effect to promote hepatic gluconeogenesis via cAMP-dependent protein kinase-mediated Foxo1 phosphorylation at serine 273, endocrine effects on brown adipose tissue action, and inguinal white adipose tissue browning (beige fat), causing energy imbalance in obese and insulin-resistant mice. TGF-β1→Foxo1→TGF-β1 looping in hepatocytes plays a critical role in controlling glucose and energy metabolism in health and disease.
Collapse
Affiliation(s)
- Quan Pan
- Department of Nutrition, College of Agriculture and Life Sciences, Texas A&M University, College Station, TX
| | - Weiqi Ai
- Department of Nutrition, College of Agriculture and Life Sciences, Texas A&M University, College Station, TX
| | - Yunmei Chen
- Department of Nutrition, College of Agriculture and Life Sciences, Texas A&M University, College Station, TX
| | - Da Mi Kim
- Department of Nutrition, College of Agriculture and Life Sciences, Texas A&M University, College Station, TX
| | - Zheng Shen
- Department of Nutrition, College of Agriculture and Life Sciences, Texas A&M University, College Station, TX
| | - Wanbao Yang
- Department of Nutrition, College of Agriculture and Life Sciences, Texas A&M University, College Station, TX
| | - Wen Jiang
- Department of Nutrition, College of Agriculture and Life Sciences, Texas A&M University, College Station, TX
| | - Yuxiang Sun
- Department of Nutrition, College of Agriculture and Life Sciences, Texas A&M University, College Station, TX
| | - Stephen Safe
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX
| | - Shaodong Guo
- Department of Nutrition, College of Agriculture and Life Sciences, Texas A&M University, College Station, TX
| |
Collapse
|
26
|
Li S, Li Y, Wang X, Xia Z, Hu R. TRAF2 decreases lipid accumulation in hepatocytes under endoplasmic reticulum stress. Acta Biochim Biophys Sin (Shanghai) 2023; 55:1511-1514. [PMID: 37403454 PMCID: PMC10520476 DOI: 10.3724/abbs.2023094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 03/27/2023] [Indexed: 07/06/2023] Open
Affiliation(s)
- Siqi Li
- School of MedicineGuizhou UniversityGuiyang550025China
- State Key Laboratory of Molecular BiologyShanghai Institute of Biochemistry and Cell BiologyCenter for Excellence in Molecular Cell ScienceChinese Academy of SciencesShanghai200031China
| | - Yang Li
- College of Life Science and TechnologyKey Laboratory of Molecular Biophysics of MOEand International Research Center for Sensory Biology and Technology of MOSTHuazhong University of Science and TechnologyWuhan430074China
| | - Xiaoxia Wang
- Shanghai Institute of ImmunologyDepartment of Immunology and MicrobiologyShanghai Jiao Tong University School of MedicineShanghai Jiao Tong UniversityShanghai200025China
| | - Zhixiong Xia
- Key Laboratory of Systems Health Science of Zhejiang ProvinceSchool of Life ScienceHangzhou Institute for Advance StudyUniversity of Chinese Academy of SciencesHangzhou310024China
| | - Ronggui Hu
- School of MedicineGuizhou UniversityGuiyang550025China
- Key Laboratory of Systems Health Science of Zhejiang ProvinceSchool of Life ScienceHangzhou Institute for Advance StudyUniversity of Chinese Academy of SciencesHangzhou310024China
- State Key Laboratory of Molecular BiologyShanghai Institute of Biochemistry and Cell BiologyCenter for Excellence in Molecular Cell ScienceChinese Academy of SciencesShanghai200031China
| |
Collapse
|
27
|
Stiglund N, Hagström H, Stål P, Cornillet M, Björkström NK. Dysregulated peripheral proteome reveals NASH-specific signatures identifying patient subgroups with distinct liver biology. Front Immunol 2023; 14:1186097. [PMID: 37342340 PMCID: PMC10277514 DOI: 10.3389/fimmu.2023.1186097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 05/22/2023] [Indexed: 06/22/2023] Open
Abstract
Background and aims Non-alcoholic fatty liver disease (NAFLD) is the most common chronic liver disease. The prognosis may vary from simple steatosis to more severe outcomes such as nonalcoholic steatohepatitis (NASH), liver cirrhosis, and hepatocellular carcinoma. The understanding of the biological processes leading to NASH is limited and non-invasive diagnostic tools are lacking. Methods The peripheral immunoproteome in biopsy-proven NAFL (n=35) and NASH patients (n=35) compared to matched, normal-weight healthy controls (n=15) was studied using a proximity extension assay, combined with spatial and single cell hepatic transcriptome analysis. Results We identified 13 inflammatory serum proteins that, independent of comorbidities and fibrosis stage, distinguished NASH from NAFL. Analysis of co-expression patterns and biological networks further revealed NASH-specific biological perturbations indicative of temporal dysregulation of IL-4/-13, -10, -18, and non-canonical NF-kβ signaling. Of the identified inflammatory serum proteins, IL-18 and EN-RAGE as well as ST1A1 mapped to hepatic macrophages and periportal hepatocytes, respectively, at the single cell level. The signature of inflammatory serum proteins further permitted identification of biologically distinct subgroups of NASH patients. Conclusion NASH patients have a distinct inflammatory serum protein signature, which can be mapped to the liver parenchyma, disease pathogenesis, and identifies subgroups of NASH patients with altered liver biology.
Collapse
Affiliation(s)
- Natalie Stiglund
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Hannes Hagström
- Department of Upper GI, Karolinska University Hospital, Stockholm, Sweden
- Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Per Stål
- Department of Upper GI, Karolinska University Hospital, Stockholm, Sweden
- Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Martin Cornillet
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Niklas K. Björkström
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
28
|
Deprince A, Hennuyer N, Kooijman S, Pronk ACM, Baugé E, Lienard V, Verrijken A, Dirinck E, Vonghia L, Woitrain E, Kloosterhuis NJ, Marez E, Jacquemain P, Wolters JC, Lalloyer F, Eberlé D, Quemener S, Vallez E, Tailleux A, Kouach M, Goossens J, Raverdy V, Derudas B, Kuivenhoven JA, Croyal M, van de Sluis B, Francque S, Pattou F, Rensen PCN, Staels B, Haas JT. Apolipoprotein F is reduced in humans with steatosis and controls plasma triglyceride-rich lipoprotein metabolism. Hepatology 2023; 77:1287-1302. [PMID: 35735979 PMCID: PMC10026963 DOI: 10.1002/hep.32631] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 05/19/2022] [Accepted: 06/07/2022] [Indexed: 12/08/2022]
Abstract
BACKGROUND NAFLD affects nearly 25% of the global population. Cardiovascular disease (CVD) is the most common cause of death among patients with NAFLD, in line with highly prevalent dyslipidemia in this population. Increased plasma triglyceride (TG)-rich lipoprotein (TRL) concentrations, an important risk factor for CVD, are closely linked with hepatic TG content. Therefore, it is of great interest to identify regulatory mechanisms of hepatic TRL production and remnant uptake in the setting of hepatic steatosis. APPROACH AND RESULTS To identify liver-regulated pathways linking intrahepatic and plasma TG metabolism, we performed transcriptomic analysis of liver biopsies from two independent cohorts of obese patients. Hepatic encoding apolipoprotein F ( APOF ) expression showed the fourth-strongest negatively correlation with hepatic steatosis and the strongest negative correlation with plasma TG levels. The effects of adenoviral-mediated human ApoF (hApoF) overexpression on plasma and hepatic TG were assessed in C57BL6/J mice. Surprisingly, hApoF overexpression increased both hepatic very low density lipoprotein (VLDL)-TG secretion and hepatic lipoprotein remnant clearance, associated a ~25% reduction in plasma TG levels. Conversely, reducing endogenous ApoF expression reduced VLDL secretion in vivo , and reduced hepatocyte VLDL uptake by ~15% in vitro . Transcriptomic analysis of APOF -overexpressing mouse livers revealed a gene signature related to enhanced ApoB-lipoprotein clearance, including increased expression of Ldlr and Lrp1 , among others. CONCLUSION These data reveal a previously undescribed role for ApoF in the control of plasma and hepatic lipoprotein metabolism by favoring VLDL-TG secretion and hepatic lipoprotein remnant particle clearance.
Collapse
Affiliation(s)
- Audrey Deprince
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011‐ EGID, Lille, France
| | - Nathalie Hennuyer
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011‐ EGID, Lille, France
| | - Sander Kooijman
- Division of Endocrinology, and Einthoven Laboratory for Experimental Vascular Medicine, Department of Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Amanda C. M. Pronk
- Division of Endocrinology, and Einthoven Laboratory for Experimental Vascular Medicine, Department of Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Eric Baugé
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011‐ EGID, Lille, France
| | - Viktor Lienard
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011‐ EGID, Lille, France
| | - An Verrijken
- Department of Endocrinology, Diabetology and Metabolism, Antwerp University Hospital, Antwerp, Belgium
- Laboratory of Experimental Medicine and Paediatrics, University of Antwerp, Antwerp, Belgium
| | - Eveline Dirinck
- Department of Endocrinology, Diabetology and Metabolism, Antwerp University Hospital, Antwerp, Belgium
- Laboratory of Experimental Medicine and Paediatrics, University of Antwerp, Antwerp, Belgium
| | - Luisa Vonghia
- Department of Gastroenterology Hepatology, Antwerp University Hospital, Antwerp, Belgium
- Laboratory of Experimental Medicine and Paediatrics, University of Antwerp, Antwerp, Belgium
| | - Eloïse Woitrain
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011‐ EGID, Lille, France
| | - Niels J. Kloosterhuis
- Department of Paediatrics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Eléonore Marez
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011‐ EGID, Lille, France
| | - Pauline Jacquemain
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011‐ EGID, Lille, France
| | - Justina C. Wolters
- Department of Paediatrics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Fanny Lalloyer
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011‐ EGID, Lille, France
| | - Delphine Eberlé
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011‐ EGID, Lille, France
| | - Sandrine Quemener
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011‐ EGID, Lille, France
| | - Emmanuelle Vallez
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011‐ EGID, Lille, France
| | - Anne Tailleux
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011‐ EGID, Lille, France
| | - Mostafa Kouach
- Univ. Lille, CHU Lille, ULR 7365‐GRITA‐Groupe de Recherche sur les formes Injectables et les Technologies Associées, Lille, France
| | - Jean‐Francois Goossens
- Univ. Lille, CHU Lille, ULR 7365‐GRITA‐Groupe de Recherche sur les formes Injectables et les Technologies Associées, Lille, France
| | - Violeta Raverdy
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1190 ‐ EGID, Lille, France
| | - Bruno Derudas
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011‐ EGID, Lille, France
| | - Jan Albert Kuivenhoven
- Department of Paediatrics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Mikaël Croyal
- Université de Nantes, CNRS, INSERM, l'institut du thorax, Nantes, France
- Université de Nantes, CHU Nantes, Inserm, CNRS, SFR Santé, Inserm UMS 016, CNRS UMS 3556, Nantes, France
- CRNH‐Ouest Mass Spectrometry Core Facility, Nantes, France
| | - Bart van de Sluis
- Department of Paediatrics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Sven Francque
- Department of Gastroenterology Hepatology, Antwerp University Hospital, Antwerp, Belgium
- Laboratory of Experimental Medicine and Paediatrics, University of Antwerp, Antwerp, Belgium
| | - François Pattou
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1190 ‐ EGID, Lille, France
| | - Patrick C. N. Rensen
- Division of Endocrinology, and Einthoven Laboratory for Experimental Vascular Medicine, Department of Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Bart Staels
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011‐ EGID, Lille, France
| | - Joel T. Haas
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011‐ EGID, Lille, France
| |
Collapse
|
29
|
Ye D, Wang Y, Deng X, Zhou X, Liu D, Zhou B, Zheng W, Wang X, Fang L. DNMT3a-dermatopontin axis suppresses breast cancer malignancy via inactivating YAP. Cell Death Dis 2023; 14:106. [PMID: 36774339 PMCID: PMC9922281 DOI: 10.1038/s41419-023-05657-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 01/30/2023] [Accepted: 02/03/2023] [Indexed: 02/13/2023]
Abstract
Breast cancer (BC) is the most common malignant tumor in women worldwide, and its recurrence and metastasis negatively affect patient prognosis. However, the mechanisms underlying its tumorigenesis and progression remain unclear. Recently, the influence of dermatopontin (DPT), which is an extracellular matrix protein, has been proposed in the development of cancer. Here we found that DNMT3a-mediated DPT, promoter hypermethylation results in the downregulation of DPT expression in breast cancer and its low expression correlated with poor prognosis. Notably, DPT directly interacted with YAP to promote YAP Ser127 phosphorylation, and restricted the translocation of endogenous YAP from the cytoplasm to the nucleus, thereby suppressing malignant phenotypes in BC cells. In addition, Ectopic YAP overexpression reversed the inhibitory effects of DPT on BC growth and metastasis. Our study showed the critical role of DPT in regulating BC progression, making it easier to explore the clinical potential of modulating DPT/YAP activity in BC targeted therapies.
Collapse
Affiliation(s)
- Danrong Ye
- Department of Breast and Thyroid Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Yuying Wang
- Department of Breast and Thyroid Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Xiaochong Deng
- Department of Breast Surgery, Guizhou Provincial People's Hospital, Guiyang, 550002, China
| | - Xiqian Zhou
- Department of Breast and Thyroid Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Diya Liu
- Department of Breast and Thyroid Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Baian Zhou
- Department of Breast and Thyroid Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Wenfang Zheng
- Department of Breast and Thyroid Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Xuehui Wang
- Department of Breast and Thyroid Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Lin Fang
- Department of Breast and Thyroid Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China.
| |
Collapse
|
30
|
Chen X, Lv X, Han M, Hu Y, Zheng W, Xue H, Li Z, Li K, Tan W. EMP1 as a Potential Biomarker in Liver Fibrosis: A Bioinformatics Analysis. Gastroenterol Res Pract 2023; 2023:2479192. [PMID: 37008256 PMCID: PMC10060069 DOI: 10.1155/2023/2479192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 07/16/2022] [Accepted: 09/05/2022] [Indexed: 04/04/2023] Open
Abstract
Liver fibrosis is a wound-healing response to chronic injury, which may result in cirrhosis and liver failure. Studies have been carried on the mechanisms and pathogenesis of liver fibrosis. However, the potential cell-specific expressed marker genes involved in fibrotic processes remain unknown. In this study, we combined a publicly accessible single-cell transcriptome of human liver with microarray datasets to evaluate the cell-specific expression patterns of differentially expressed genes in the liver. We noticed that EMP1 (epithelial membrane protein 1) is significantly active not only in CCl4 (carbon tetrachloride)-treated mouse liver fibrosis but also in BDL (bile duct ligation)-induced liver fibrosis and even in human fibrotic liver tissues such as alcoholic hepatitis, NASH (nonalcoholic steatohepatitis), and advanced stage liver fibrosis. Furthermore, we demonstrated that EMP1 is a specific fibrotic gene expressed in HSCs (hepatic stellate cells) and endothelial cells using the Protein Atlas single-cell transcriptome RNA-sequencing clustering. Its expression was significantly elevated in fibrotic HSCs or CCl4 and NASH-induced fibroblasts. Previous research revealed that EMP1 plays a role in proliferation, migration, metastasis, and tumorigeneses in different cancers via a variety of mechanisms. Because HSC activation and proliferation are two important steps following liver injury, it would be interesting to investigate the role of EMP1 in these processes. All of this information suggested that EMP1 could be used as a novel fibrotic liver marker and a possible target in the future.
Collapse
Affiliation(s)
- Xuchen Chen
- Department of General Surgery, Wenzhou Hospital of Integrated Traditional Chinese and Western Medicine Wenzhou, Zhejiang, China
| | - Xinliang Lv
- Department of Hepatobiliary and Pancreatic Surgery, Lishui Municipal Central Hospital, The Fifth Affiliated Hospital of Wenzhou Medical University Lishui, Zhejiang, China
| | - Manman Han
- Department of General Surgery, Wenzhou Hospital of Integrated Traditional Chinese and Western Medicine Wenzhou, Zhejiang, China
| | - Yexiao Hu
- Department of General Surgery, Wenzhou Hospital of Integrated Traditional Chinese and Western Medicine Wenzhou, Zhejiang, China
| | - Wanqiong Zheng
- Department of General Surgery, Wenzhou Hospital of Integrated Traditional Chinese and Western Medicine Wenzhou, Zhejiang, China
| | - Haibo Xue
- Department of Gastroenterology, The First Affiliated Hospital of Wenzhou Medical University Wenzhou, Zhejiang, China
| | - Zhuokai Li
- Department of Hepatobiliary and Pancreatic Surgery, Lishui Municipal Central Hospital, The Fifth Affiliated Hospital of Wenzhou Medical University Lishui, Zhejiang, China
| | - Kui Li
- Department of Blood Transfusion, Lishui Central Hospital, Fifth Affiliated Hospital of Wenzhou Medical College Lishui, Zhejiang, China
| | - Wei Tan
- Department of Hepatobiliary and Pancreatic Surgery, Lishui Municipal Central Hospital, The Fifth Affiliated Hospital of Wenzhou Medical University Lishui, Zhejiang, China
| |
Collapse
|
31
|
Nanri Y, Nunomura S, Honda Y, Takedomi H, Yamaguchi Y, Izuhara K. A positive loop formed by SOX11 and periostin upregulates TGF-β signals leading to skin fibrosis. J Invest Dermatol 2022; 143:989-998.e7. [PMID: 36584910 DOI: 10.1016/j.jid.2022.12.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 11/28/2022] [Accepted: 12/14/2022] [Indexed: 12/29/2022]
Abstract
Systemic sclerosis (SSc) is a chronic, heterogenous disease of connective tissue characterized by organ fibrosis together with vascular injury and autoimmunity. Transforming growth factor (TGF)-β plays a central role in generating fibrosis, including SSc. Periostin is a matricellular protein playing a key role in the generation of fibrosis by amplifying the TGF-β signals. SOX (SRY-related HMG box) 11 is a transcription factor playing several important roles in organ development in embryos. We have previously shown that SOX11 induces periostin expression. However, the roles of the interactions among the TGF-β signals, periostin, and SOX11 remain unknown in the pathogenesis of SSc. In this study, we found that most clones of dermal fibroblasts derived from SSc patients showed constitutive, high expression of SOX11, which is significantly induced by TGF-β1. SOX11 forms a positive loop with periostin to activate the TGF-β signals in SSc dermal fibroblasts. Genetic deletion of Sox11 in Postn-expressing fibroblasts impairs dermal fibrosis by bleomycin. Moreover, using the DNA microarray method, we identified several fibrotic factors dependent on the TGF-β/SOX11/periostin pathway in SSc dermal fibroblasts. Our findings, taken together, show that a positive loop formed by SOX11 and periostin in fibroblasts upregulates the TGF-β signals, leading to skin fibrosis.
Collapse
Affiliation(s)
- Yasuhiro Nanri
- Division of Medical Biochemistry, Department of Biomolecular Sciences, Saga, Japan
| | - Satoshi Nunomura
- Division of Medical Biochemistry, Department of Biomolecular Sciences, Saga, Japan
| | - Yuko Honda
- Division of Medical Biochemistry, Department of Biomolecular Sciences, Saga, Japan
| | | | - Yukie Yamaguchi
- Department of Environmental Immuno-Dermatology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Kenji Izuhara
- Division of Medical Biochemistry, Department of Biomolecular Sciences, Saga, Japan.
| |
Collapse
|
32
|
Sharma R, Ali T, Kaur J. Folic acid depletion as well as oversupplementation helps in the progression of hepatocarcinogenesis in HepG2 cells. Sci Rep 2022; 12:16617. [PMID: 36198749 PMCID: PMC9534894 DOI: 10.1038/s41598-022-21084-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Accepted: 09/22/2022] [Indexed: 12/04/2022] Open
Abstract
Folate ingestion below and above the physiologic dose has been shown to play a tumorigenic role in certain cancers. Also, excessive folate supplementation after establishment of pre-established lesions led to an advancement in the growth of a few tumors. However, such information has not yet been achieved in the case of HCC. In our study, HepG2 cells were administered with three different concentrations of folic acid i.e. folic acid normal (FN) (2.27 µM), folic acid deficient (FD) (no folic acid), folic acid oversupplementation (FO) (100 µM) for 10 days. Intracellular folate levels were assayed by Elecsys Folate III kit based method. The migratory and invasive abilities were estimated by transwell migration and matrigel invasion methods respectively. FACS was done to evaluate cell viability and apoptosis. Agarose-coated plates were used to access cancer stem cells (CSCs) number. Quantitative RT-PCR and western blotting approaches were used for gene and protein expression of certain tumor suppressor genes (TSGs), respectively. FD cells depicted increased migration, invasion, apoptosis, necrosis and decreased cell viability, CSCs. On the other hand, FO cells showed increased migration, invasion, cell viability and number of CSCs and decreased apoptosis and necrosis. TSGs revealed diminished expression with both FA modulations with respect to FN cells. Thus, FA deficiency as well as abundance enhanced the HCC progression by adapting different mechanisms.
Collapse
Affiliation(s)
- Renuka Sharma
- Department of Biochemistry, Post Graduate Institute of Medical Education and Research, PGIMER, Chandigarh, India
| | - Taqveema Ali
- Department of Biochemistry, Post Graduate Institute of Medical Education and Research, PGIMER, Chandigarh, India
| | - Jyotdeep Kaur
- Department of Biochemistry, Post Graduate Institute of Medical Education and Research, PGIMER, Chandigarh, India.
| |
Collapse
|
33
|
Sen P, Govaere O, Sinioja T, McGlinchey A, Geng D, Ratziu V, Bugianesi E, Schattenberg JM, Vidal-Puig A, Allison M, Cockell S, Daly AK, Hyötyläinen T, Anstee QM, Orešič M. Quantitative modeling of human liver reveals dysregulation of glycosphingolipid pathways in nonalcoholic fatty liver disease. iScience 2022; 25:104949. [PMID: 36065182 PMCID: PMC9440293 DOI: 10.1016/j.isci.2022.104949] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 01/21/2022] [Accepted: 08/11/2022] [Indexed: 11/09/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is an increasingly prevalent disease that is associated with multiple metabolic disturbances, yet the metabolic pathways underlying its progression are poorly understood. Here, we studied metabolic pathways of the human liver across the full histological spectrum of NAFLD. We analyzed whole liver tissue transcriptomics and serum metabolomics data obtained from a large, prospectively enrolled cohort of 206 histologically characterized patients derived from the European NAFLD Registry and developed genome-scale metabolic models (GEMs) of human hepatocytes at different stages of NAFLD. We identified several metabolic signatures in the liver and blood of these patients, specifically highlighting the alteration of vitamins (A, E) and glycosphingolipids, and their link with complex glycosaminoglycans in advanced fibrosis. Furthermore, we derived GEMs and identified metabolic signatures of three common NAFLD-associated gene variants (PNPLA3, TM6SF2, and HSD17B13). The study demonstrates dysregulated liver metabolic pathways which may contribute to the progression of NAFLD.
Collapse
Affiliation(s)
- Partho Sen
- School of Medical Sciences, Örebro University, 70281 Örebro, Sweden
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20520 Turku, Finland
| | - Olivier Govaere
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Tim Sinioja
- Department of Chemistry, Örebro University, 70281 Örebro, Sweden
| | - Aidan McGlinchey
- School of Medical Sciences, Örebro University, 70281 Örebro, Sweden
| | - Dawei Geng
- Department of Chemistry, Örebro University, 70281 Örebro, Sweden
| | - Vlad Ratziu
- Assistance Publique-Hôpitaux de Paris, hôpital Beaujon, University Paris-Diderot, Paris, France
| | - Elisabetta Bugianesi
- Department of Medical Sciences, Division of Gastro-Hepatology, A.O. Città della Salute e della Scienza di Torino, University of Turin, Turin, Italy
| | - Jörn M. Schattenberg
- Metabolic Liver Research Programm, Department of Medicine, University Hospital Mainz, Mainz, Germany
| | - Antonio Vidal-Puig
- University of Cambridge Metabolic Research Laboratories, Wellcome-MRC Institute of Metabolic Science, Addenbrooke’s Hospital, Cambridge CB2 0QQ, UK
| | - Michael Allison
- Liver Unit, Department of Medicine, Cambridge Biomedical Research Centre, Cambridge University NHS Foundation Trust, UK
| | - Simon Cockell
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Ann K. Daly
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | | | - Quentin M. Anstee
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
- Newcastle NIHR Biomedical Research Center, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Matej Orešič
- School of Medical Sciences, Örebro University, 70281 Örebro, Sweden
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20520 Turku, Finland
| |
Collapse
|
34
|
Functional genomics uncovers the transcription factor BNC2 as required for myofibroblastic activation in fibrosis. Nat Commun 2022; 13:5324. [PMID: 36088459 PMCID: PMC9464213 DOI: 10.1038/s41467-022-33063-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 08/31/2022] [Indexed: 11/21/2022] Open
Abstract
Tissue injury triggers activation of mesenchymal lineage cells into wound-repairing myofibroblasts, whose unrestrained activity leads to fibrosis. Although this process is largely controlled at the transcriptional level, whether the main transcription factors involved have all been identified has remained elusive. Here, we report multi-omics analyses unraveling Basonuclin 2 (BNC2) as a myofibroblast identity transcription factor. Using liver fibrosis as a model for in-depth investigations, we first show that BNC2 expression is induced in both mouse and human fibrotic livers from different etiologies and decreases upon human liver fibrosis regression. Importantly, we found that BNC2 transcriptional induction is a specific feature of myofibroblastic activation in fibrotic tissues. Mechanistically, BNC2 expression and activities allow to integrate pro-fibrotic stimuli, including TGFβ and Hippo/YAP1 signaling, towards induction of matrisome genes such as those encoding type I collagen. As a consequence, Bnc2 deficiency blunts collagen deposition in livers of mice fed a fibrogenic diet. Additionally, our work establishes BNC2 as potentially druggable since we identified the thalidomide derivative CC-885 as a BNC2 inhibitor. Altogether, we propose that BNC2 is a transcription factor involved in canonical pathways driving myofibroblastic activation in fibrosis. Myofibroblasts contribute to the development of liver fibrosis. Here, the authors report that the transcription factor Basonuclin 2 (BNC2) integrates fibrogenic signals and drives myofibroblastic transcriptional activation in liver fibrosis.
Collapse
|
35
|
Yang Y, Liu X, Chen H, Wang P, Yao S, Zhou B, Yin R, Li C, Wu C, Yang X, Yu M. HPS protects the liver against steatosis, cell death, inflammation, and fibrosis in mice with steatohepatitis. FEBS J 2022; 289:5279-5304. [PMID: 35285180 DOI: 10.1111/febs.16430] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 01/20/2022] [Accepted: 03/10/2022] [Indexed: 12/14/2022]
Abstract
Hepassocin (HPS) is a hepatokine associated with metabolic regulation and development of non-alcoholic steatohepatitis (NASH). However, previous reports on HPS are controversial and its true function is not yet understood. Here, we demonstrated that hepatic HPS expression levels were upregulated in short-term feeding and downregulated in long-term feeding in high-fat diet (HFD)- and methionine- and choline-deficient (MCD) diet-fed mice, as well as in genetically obese (ob/ob) mice. HFD- and MCD-induced hepatic steatosis, inflammation, apoptosis, and fibrosis were more pronounced in HPS knockout mice than in the wild-type mice. Moreover, HPS depletion aggravated HFD-induced insulin resistance. By contrast, HPS administration improved MCD- or HFD-induced liver phenotypes and insulin resistance in HPS knockout and wild-type mice. Mechanistic studies revealed that MCD-induced hepatic oxidative stress was significantly increased by HPS deficiency and could be attenuated by HPS administration. Furthermore, palmitic acid-induced lipid accumulation and oxidative stress were exclusively enhanced in HPS knockout hepatocytes and diminished by HPS cotreatment. These data suggest that HPS ameliorates NASH in mice, at least in part, by inhibiting the oxidative stress. HPS expression levels are downregulated in human fatty liver tissues, suggesting that it may play an important protective role in NASH. Collectively, our findings provide clear genetic evidence that HPS has beneficial effects on the development of steatohepatitis in mice and suggest that upregulating HPS signaling may represent an effective treatment strategy for NASH.
Collapse
Affiliation(s)
- Yang Yang
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, China
| | - Xian Liu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Institute of Lifeomics, Beijing, China
| | - Hui Chen
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Institute of Lifeomics, Beijing, China
| | - Pengjun Wang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Institute of Lifeomics, Beijing, China
| | - Songhui Yao
- Institute of Life Sciences, HeBei University, Baoding, China
| | - Bin Zhou
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Institute of Lifeomics, Beijing, China
| | - Ronghua Yin
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Institute of Lifeomics, Beijing, China
| | - Changyan Li
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Institute of Lifeomics, Beijing, China
| | - Chutse Wu
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, China.,Beijing Institute of Radiation Medicine, China
| | - Xiaoming Yang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Institute of Lifeomics, Beijing, China
| | - Miao Yu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Institute of Lifeomics, Beijing, China.,Institute of Life Sciences, HeBei University, Baoding, China
| |
Collapse
|
36
|
Dermatopontin Influences the Development of Obesity-Associated Colon Cancer by Changes in the Expression of Extracellular Matrix Proteins. Int J Mol Sci 2022; 23:ijms23169222. [PMID: 36012487 PMCID: PMC9408942 DOI: 10.3390/ijms23169222] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 08/01/2022] [Accepted: 08/10/2022] [Indexed: 11/17/2022] Open
Abstract
Dysfunctional adipose tissue (AT) in the context of obesity leads to chronic inflammation together with an altered extracellular matrix (ECM) remodelling, favouring cancer development and progression. Recently, the influence of dermatopontin (DPT) in AT remodelling and inflammation has been proposed. We aimed to evaluate the role of DPT in the development of obesity-associated colon cancer (CC). Samples obtained from 73 subjects [26 lean (LN) and 47 with obesity (OB)] were used in a case-control study. Enrolled subjects were further subclassified according to the established diagnostic protocol for CC (42 without CC and 31 with CC). In vitro studies in the adenocarcinoma HT-29 cell line were performed to analyse the impact of pro- and anti-inflammatory mediators on the transcript levels of DPT as well as the effect of DPT on ECM remodelling and inflammation. Although obesity increased (p < 0.05) the circulating levels of DPT, its concentrations were significantly decreased (p < 0.05) in patients with CC. Gene expression levels of DPT in the colon from patients with CC were downregulated and, oppositely, a tendency towards increased mRNA levels in visceral AT was found. We further showed that DPT expression levels in HT-29 cells were enhanced (p < 0.05) by inflammatory factors (LPS, TNF-α and TGF-β), whereas the anti-inflammatory IL-4 decreased (p < 0.05) its expression levels. We also demonstrated that DPT upregulated (p < 0.05) the mRNA of key molecules involved in ECM remodelling (COL1A1, COL5A3, TNC and VEGFA) whereas decorin (DCN) expression was downregulated (p < 0.05) in HT-29 cells. Finally, we revealed that the adipocyte-conditioned medium obtained from volunteers with OB enhanced (p < 0.01) the expression of DPT in HT-29 and Caco-2 cells. The decreased circulating and expression levels of DPT in the colon together with the tendency towards increased levels in visceral AT in patients with CC and its influence on the expression of ECM proteins suggest a possible role of DPT in the OB-associated CC.
Collapse
|
37
|
Zhou Y, Zhang H, Yao Y, Zhang X, Guan Y, Zheng F. CD4 + T cell activation and inflammation in NASH-related fibrosis. Front Immunol 2022; 13:967410. [PMID: 36032141 PMCID: PMC9399803 DOI: 10.3389/fimmu.2022.967410] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 07/22/2022] [Indexed: 12/12/2022] Open
Abstract
Liver fibrosis is a common pathological feature of end stage liver failure, a severe life-threatening disease worldwide. Nonalcoholic fatty liver disease (NAFLD), especially its more severe form with steatohepatitis (NASH), results from obesity, type 2 diabetes and metabolic syndrome and becomes a leading cause of liver fibrosis. Genetic factor, lipid overload/toxicity, oxidative stress and inflammation have all been implicated in the development and progression of NASH. Both innate immune response and adaptive immunity contribute to NASH-associated inflammation. Innate immunity may cause inflammation and subsequently fibrosis via danger-associated molecular patterns. Increasing evidence indicates that T cell-mediated adaptive immunity also provokes inflammation and fibrosis in NASH via cytotoxicity, cytokines and other proinflammatory and profibrotic mediators. Recently, the single-cell transcriptome profiling has revealed that the populations of CD4+ T cells, CD8+ T cells, γδ T cells, and TEMs are expanded in the liver with NASH. The activation of T cells requires antigen presentation from professional antigen-presenting cells (APCs), including macrophages, dendritic cells, and B-cells. However, since hepatocytes express MHCII molecules and costimulators, they may also act as an atypical APC to promote T cell activation. Additionally, the phenotypic switch of hepatocytes to proinflammatory cells in NASH contributes to the development of inflammation. In this review, we focus on T cells and in particular CD4+ T cells and discuss the role of different subsets of CD4+ T cells including Th1, Th2, Th17, Th22, and Treg in NASH-related liver inflammation and fibrosis.
Collapse
Affiliation(s)
- Yunfeng Zhou
- Department of Physiology, Medical Research Center, Shenzhen University, Shenzhen, China
| | - Haibo Zhang
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, China
| | - Yao Yao
- Division of Nephrology, Affiliated Hospital of Nantong University, Nantong, China
| | - Xiaoyan Zhang
- Wuhu Hospital & Health Science Center, East China Normal University, Shanghai, China
| | - Youfei Guan
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, China
| | - Feng Zheng
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, China
| |
Collapse
|
38
|
Ilieva M, Dao J, Miller HE, Madsen JH, Bishop AJR, Kauppinen S, Uchida S. Systematic Analysis of Long Non-Coding RNA Genes in Nonalcoholic Fatty Liver Disease. Noncoding RNA 2022; 8:ncrna8040056. [PMID: 35893239 PMCID: PMC9332188 DOI: 10.3390/ncrna8040056] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 07/18/2022] [Accepted: 07/19/2022] [Indexed: 12/04/2022] Open
Abstract
The largest solid organ in humans, the liver, performs a variety of functions to sustain life. When damaged, cells in the liver can regenerate themselves to maintain normal liver physiology. However, some damage is beyond repair, which necessitates liver transplantation. Increasing rates of obesity, Western diets (i.e., rich in processed carbohydrates and saturated fats), and cardiometabolic diseases are interlinked to liver diseases, including non-alcoholic fatty liver disease (NAFLD), which is a collective term to describe the excess accumulation of fat in the liver of people who drink little to no alcohol. Alarmingly, the prevalence of NAFLD extends to 25% of the world population, which calls for the urgent need to understand the disease mechanism of NAFLD. Here, we performed secondary analyses of published RNA sequencing (RNA-seq) data of NAFLD patients compared to healthy and obese individuals to identify long non-coding RNAs (lncRNAs) that may underly the disease mechanism of NAFLD. Similar to protein-coding genes, many lncRNAs are dysregulated in NAFLD patients compared to healthy and obese individuals, suggesting that understanding the functions of dysregulated lncRNAs may shed light on the pathology of NAFLD. To demonstrate the functional importance of lncRNAs in the liver, loss-of-function experiments were performed for one NAFLD-related lncRNA, LINC01639, which showed that it is involved in the regulation of genes related to apoptosis, TNF/TGF, cytokine signaling, and growth factors as well as genes upregulated in NAFLD. Since there is no lncRNA database focused on the liver, especially NAFLD, we built a web database, LiverDB, to further facilitate functional and mechanistic studies of hepatic lncRNAs.
Collapse
Affiliation(s)
- Mirolyuba Ilieva
- Center for RNA Medicine, Department of Clinical Medicine, Aalborg University, DK-2450 Copenhagen SV, Denmark; (J.H.M.); (S.K.)
- Correspondence: (M.I.); (S.U.)
| | - James Dao
- Bioinformatics Research Network, Atlanta, GA 30317, USA; (J.D.); (H.E.M.)
| | - Henry E. Miller
- Bioinformatics Research Network, Atlanta, GA 30317, USA; (J.D.); (H.E.M.)
- Department of Cell Systems and Anatomy, UT Health San Antonio, San Antonio, TX 78229, USA;
- Greehey Children’s Cancer Research Institute, UT Health San Antonio, San Antonio, TX 78229, USA
| | - Jens Hedelund Madsen
- Center for RNA Medicine, Department of Clinical Medicine, Aalborg University, DK-2450 Copenhagen SV, Denmark; (J.H.M.); (S.K.)
| | - Alexander J. R. Bishop
- Department of Cell Systems and Anatomy, UT Health San Antonio, San Antonio, TX 78229, USA;
- Greehey Children’s Cancer Research Institute, UT Health San Antonio, San Antonio, TX 78229, USA
- May’s Cancer Center, UT Health San Antonio, San Antonio, TX 78229, USA
| | - Sakari Kauppinen
- Center for RNA Medicine, Department of Clinical Medicine, Aalborg University, DK-2450 Copenhagen SV, Denmark; (J.H.M.); (S.K.)
| | - Shizuka Uchida
- Center for RNA Medicine, Department of Clinical Medicine, Aalborg University, DK-2450 Copenhagen SV, Denmark; (J.H.M.); (S.K.)
- Bioinformatics Research Network, Atlanta, GA 30317, USA; (J.D.); (H.E.M.)
- Correspondence: (M.I.); (S.U.)
| |
Collapse
|
39
|
Li Y, Yuan SL, Yin JY, Yang K, Zhou XG, Xie W, Wang Q. Differences of core genes in liver fibrosis and hepatocellular carcinoma: Evidence from integrated bioinformatics and immunohistochemical analysis. World J Gastrointest Oncol 2022; 14:1265-1280. [PMID: 36051101 PMCID: PMC9305567 DOI: 10.4251/wjgo.v14.i7.1265] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 05/18/2022] [Accepted: 06/26/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Liver fibrosis and hepatocellular carcinoma (HCC) are common adverse consequences of chronic liver injury. The interaction of various risk factors may cause them to happen. Identification of specific biomarkers is of great significance for understanding the occurrence, development mechanisms, and determining the novel tools for diagnosis and treatment of both liver fibrosis and HCC.
AIM To identify liver fibrosis-related core genes, we analyzed the differential expression pattern of core genes in liver fibrosis and HCC.
METHODS Gene expression profiles of three datasets, GSE14323, GSE36411, and GSE89377, obtained from the Gene Expression Omnibus (GEO) database, were analyzed, and differentially expressed genes (DEGs) between patients with liver cirrhosis and healthy controls were identified by screening via R software packages and online tool for Venn diagrams. The WebGestalt online tool was used to identify DEGs enriched in biological processes, molecular functions, cellular components, and Kyoto Encyclopedia of Genes and Genomes pathways. The protein–protein interactions of DEGs were visualized using Cytoscape with STRING. Next, the expression pattern of core genes was analyzed using Western blot and immunohistochemistry in a carbon tetrachloride (CCl4)-induced liver cirrhosis mouse model and in patient liver samples. Finally, Kaplan-Meier curves were constructed using the Kaplan-Meier plotter online server.
RESULTS Forty-five DEGs (43 upregulated and 2 downregulated genes) associated with liver cirrhosis were identified from three GEO datasets. Ten hub genes were identified, which were upregulated in liver cirrhosis. Western blot and immunohistochemical analyses of the three core genes, decorin (DCN), dermatopontin (DPT), and SRY-box transcription factor 9 (SOX9), revealed that they were highly expressed in the CCl4-induced liver cirrhosis mouse model. The expression levels of DCN and SOX 9 were positively correlated with the degree of fibrosis, and SOX 9 level in HCC patients was significantly higher than that in fibrosis patients. However, high expression of DPT was observed only in patients with liver fibrosis, and its expression in HCC was low. The gene expression profiling interactive analysis server (GEPIA) showed that SOX9 was significantly upregulated whereas DCN and DPT were significantly downregulated in patients with HCC. In addition, the Kaplan-Meier curves showed that HCC patients with higher SOX9 expression had significantly lower 5-year survival rate, while patients with higher expression of DCN or DPT had significantly higher 5-year survival rates.
CONCLUSION The expression levels of DCN, DPT, and SOX9 were positively correlated with the degree of liver fibrosis but showed different correlations with the 5-year survival rates of HCC patients.
Collapse
Affiliation(s)
- Yue Li
- Department of Pathology, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China
- Beijing Key Laboratory of Emerging Infectious Diseases, Beijing 100015, China
| | - Shou-Li Yuan
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Beijing 100101, China
| | - Jing-Ya Yin
- Center of Liver Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China
| | - Kun Yang
- Department of Pathology, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China
| | - Xin-Gang Zhou
- Department of Pathology, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China
| | - Wen Xie
- Center of Liver Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China
| | - Qi Wang
- Center of Liver Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China
| |
Collapse
|
40
|
Fujiwara N, Kubota N, Crouchet E, Koneru B, Marquez CA, Jajoriya AK, Panda G, Qian T, Zhu S, Goossens N, Wang X, Liang S, Zhong Z, Lewis S, Taouli B, Schwartz ME, Fiel MI, Singal AG, Marrero JA, Fobar AJ, Parikh ND, Raman I, Li QZ, Taguri M, Ono A, Aikata H, Nakahara T, Nakagawa H, Matsushita Y, Tateishi R, Koike K, Kobayashi M, Higashi T, Nakagawa S, Yamashita YI, Beppu T, Baba H, Kumada H, Chayama K, Baumert TF, Hoshida Y. Molecular signatures of long-term hepatocellular carcinoma risk in nonalcoholic fatty liver disease. Sci Transl Med 2022; 14:eabo4474. [PMID: 35731891 PMCID: PMC9236162 DOI: 10.1126/scitranslmed.abo4474] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Prediction of hepatocellular carcinoma (HCC) risk is an urgent unmet need in patients with nonalcoholic fatty liver disease (NAFLD). In cohorts of 409 patients with NAFLD from multiple global regions, we defined and validated hepatic transcriptome and serum secretome signatures predictive of long-term HCC risk in patients with NAFLD. A 133-gene signature, prognostic liver signature (PLS)-NAFLD, predicted incident HCC over up to 15 years of longitudinal observation. High-risk PLS-NAFLD was associated with IDO1+ dendritic cells and dysfunctional CD8+ T cells in fibrotic portal tracts along with impaired metabolic regulators. PLS-NAFLD was validated in independent cohorts of patients with NAFLD who were HCC naïve (HCC incidence rates at 15 years were 22.7 and 0% in high- and low-risk patients, respectively) or HCC experienced (de novo HCC recurrence rates at 5 years were 71.8 and 42.9% in high- and low-risk patients, respectively). PLS-NAFLD was bioinformatically translated into a four-protein secretome signature, PLSec-NAFLD, which was validated in an independent cohort of HCC-naïve patients with NAFLD and cirrhosis (HCC incidence rates at 15 years were 37.6 and 0% in high- and low-risk patients, respectively). Combination of PLSec-NAFLD with our previously defined etiology-agnostic PLSec-AFP yielded improved HCC risk stratification. PLS-NAFLD was modified by bariatric surgery, lipophilic statin, and IDO1 inhibitor, suggesting that the signature can be used for drug discovery and as a surrogate end point in HCC chemoprevention clinical trials. Collectively, PLS/PLSec-NAFLD may enable NAFLD-specific HCC risk prediction and facilitate clinical translation of NAFLD-directed HCC chemoprevention.
Collapse
Affiliation(s)
- Naoto Fujiwara
- Division of Digestive and Liver Diseases, Department of Internal Medicine, University of Texas Southwestern Medical Center; Dallas, 75390, U.S
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo; Tokyo, 113-8655, Japan
| | - Naoto Kubota
- Division of Digestive and Liver Diseases, Department of Internal Medicine, University of Texas Southwestern Medical Center; Dallas, 75390, U.S
| | - Emilie Crouchet
- Inserm, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, University of Strasbourg and IHU, Pole Hépato-digestif, Strasbourg University Hospitals; Strasbourg, 67000, France
| | - Bhuvaneswari Koneru
- Division of Digestive and Liver Diseases, Department of Internal Medicine, University of Texas Southwestern Medical Center; Dallas, 75390, U.S
| | - Cesia A Marquez
- Division of Digestive and Liver Diseases, Department of Internal Medicine, University of Texas Southwestern Medical Center; Dallas, 75390, U.S
| | - Arun K Jajoriya
- Division of Digestive and Liver Diseases, Department of Internal Medicine, University of Texas Southwestern Medical Center; Dallas, 75390, U.S
| | - Gayatri Panda
- Division of Digestive and Liver Diseases, Department of Internal Medicine, University of Texas Southwestern Medical Center; Dallas, 75390, U.S
| | - Tongqi Qian
- Division of Digestive and Liver Diseases, Department of Internal Medicine, University of Texas Southwestern Medical Center; Dallas, 75390, U.S
| | - Shijia Zhu
- Division of Digestive and Liver Diseases, Department of Internal Medicine, University of Texas Southwestern Medical Center; Dallas, 75390, U.S
| | - Nicolas Goossens
- Division of Gastroenterology and Hepatology, Geneva University Hospital; Geneva, 44041, Switzerland
| | - Xiaochen Wang
- Department of Immunology, University of Texas Southwestern Medical Center; Dallas, 75390, U.S
| | - Shuang Liang
- Department of Immunology, University of Texas Southwestern Medical Center; Dallas, 75390, U.S
| | - Zhenyu Zhong
- Department of Immunology, University of Texas Southwestern Medical Center; Dallas, 75390, U.S
| | - Sara Lewis
- Department of Radiology, Icahn School of Medicine at Mount Sinai; New York, 10029, U.S
| | - Bachir Taouli
- Department of Radiology, Icahn School of Medicine at Mount Sinai; New York, 10029, U.S
| | - Myron E Schwartz
- Department of Surgery, Icahn School of Medicine at Mount Sinai; New York, 10029, U.S
| | - Maria Isabel Fiel
- Department of Pathology, Icahn School of Medicine at Mount Sinai; New York, 10029, U.S
| | - Amit G Singal
- Division of Digestive and Liver Diseases, Department of Internal Medicine, University of Texas Southwestern Medical Center; Dallas, 75390, U.S
| | - Jorge A Marrero
- Division of Digestive and Liver Diseases, Department of Internal Medicine, University of Texas Southwestern Medical Center; Dallas, 75390, U.S
- Division of Gastroenterology, Perelman School of Medicine, University of Pennsylvania; Philadelphia, 19104, U.S
| | - Austin J Fobar
- Division of Gastroenterology and Hepatology, University of Michigan; Ann Arbor, 48109, U.S
| | - Neehar D Parikh
- Division of Gastroenterology and Hepatology, University of Michigan; Ann Arbor, 48109, U.S
| | - Indu Raman
- BioCenter Microarray Core Facility, Department of Immunology, University of Texas Southwestern Medical Center; Dallas, 75390, U.S
| | - Quan-Zhen Li
- BioCenter Microarray Core Facility, Department of Immunology, University of Texas Southwestern Medical Center; Dallas, 75390, U.S
| | - Masataka Taguri
- Department of Data Science, School of Data Science, Yokohama City University; Yokohama, 236-0027, Japan
| | - Atsushi Ono
- Department of Gastroenterology and Metabolism, Graduate School of Biomedical & Health Sciences, Hiroshima University; Hiroshima, 734-8551, Japan
| | - Hiroshi Aikata
- Department of Gastroenterology and Metabolism, Graduate School of Biomedical & Health Sciences, Hiroshima University; Hiroshima, 734-8551, Japan
| | - Takashi Nakahara
- Department of Gastroenterology and Metabolism, Graduate School of Biomedical & Health Sciences, Hiroshima University; Hiroshima, 734-8551, Japan
| | - Hayato Nakagawa
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo; Tokyo, 113-8655, Japan
| | - Yuki Matsushita
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo; Tokyo, 113-8655, Japan
| | - Ryosuke Tateishi
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo; Tokyo, 113-8655, Japan
| | - Kazuhiko Koike
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo; Tokyo, 113-8655, Japan
| | | | - Takaaki Higashi
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University; Kumamoto, 860-8555, Japan
| | - Shigeki Nakagawa
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University; Kumamoto, 860-8555, Japan
| | - Yo-ichi Yamashita
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University; Kumamoto, 860-8555, Japan
| | - Toru Beppu
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University; Kumamoto, 860-8555, Japan
| | - Hideo Baba
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University; Kumamoto, 860-8555, Japan
| | - Hiromitsu Kumada
- Department of Hepatology, Toranomon Hospital; Tokyo, 105-0001, Japan
| | - Kazuaki Chayama
- Collaborative Research Laboratory of Medical Innovation, Research Center for Hepatology and Gastroenterology, Hiroshima University; Hiroshima, 734-8551, Japan
- RIKEN Center for Integrative Medical Sciences; Yokohama, 230-0045, Japan
| | - Thomas F Baumert
- Inserm, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, University of Strasbourg and IHU, Pole Hépato-digestif, Strasbourg University Hospitals; Strasbourg, 67000, France
| | - Yujin Hoshida
- Division of Digestive and Liver Diseases, Department of Internal Medicine, University of Texas Southwestern Medical Center; Dallas, 75390, U.S
| |
Collapse
|
41
|
Fahlbusch P, Nikolic A, Hartwig S, Jacob S, Kettel U, Köllmer C, Al-Hasani H, Lehr S, Müller-Wieland D, Knebel B, Kotzka J. Adaptation of Oxidative Phosphorylation Machinery Compensates for Hepatic Lipotoxicity in Early Stages of MAFLD. Int J Mol Sci 2022; 23:ijms23126873. [PMID: 35743314 PMCID: PMC9224893 DOI: 10.3390/ijms23126873] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/18/2022] [Accepted: 06/18/2022] [Indexed: 12/10/2022] Open
Abstract
Alterations in mitochondrial function are an important control variable in the progression of metabolic dysfunction-associated fatty liver disease (MAFLD), while also noted by increased de novo lipogenesis (DNL) and hepatic insulin resistance. We hypothesized that the organization and function of a mitochondrial electron transport chain (ETC) in this pathologic condition is a consequence of shifted substrate availability. We addressed this question using a transgenic mouse model with increased hepatic insulin resistance and DNL due to constitutively active human SREBP-1c. The abundance of ETC complex subunits and components of key metabolic pathways are regulated in the liver of these animals. Further omics approaches combined with functional assays in isolated liver mitochondria and primary hepatocytes revealed that the SREBP-1c-forced fatty liver induced a substrate limitation for oxidative phosphorylation, inducing enhanced complex II activity. The observed increased expression of mitochondrial genes may have indicated a counteraction. In conclusion, a shift of available substrates directed toward activated DNL results in increased electron flows, mainly through complex II, to compensate for the increased energy demand of the cell. The reorganization of key compounds in energy metabolism observed in the SREBP-1c animal model might explain the initial increase in mitochondrial function observed in the early stages of human MAFLD.
Collapse
Affiliation(s)
- Pia Fahlbusch
- Institute of Clinical Biochemistry and Pathobiochemistry, German Diabetes Center at the Heinrich-Heine-University Duesseldorf, Leibniz Center for Diabetes Research, 40225 Duesseldorf, Germany; (P.F.); (A.N.); (S.H.); (S.J.); (U.K.); (C.K.); (H.A.-H.); (S.L.); (J.K.)
- German Center for Diabetes Research (DZD), Partner Duesseldorf, 40225 Duesseldorf, Germany
| | - Aleksandra Nikolic
- Institute of Clinical Biochemistry and Pathobiochemistry, German Diabetes Center at the Heinrich-Heine-University Duesseldorf, Leibniz Center for Diabetes Research, 40225 Duesseldorf, Germany; (P.F.); (A.N.); (S.H.); (S.J.); (U.K.); (C.K.); (H.A.-H.); (S.L.); (J.K.)
- German Center for Diabetes Research (DZD), Partner Duesseldorf, 40225 Duesseldorf, Germany
| | - Sonja Hartwig
- Institute of Clinical Biochemistry and Pathobiochemistry, German Diabetes Center at the Heinrich-Heine-University Duesseldorf, Leibniz Center for Diabetes Research, 40225 Duesseldorf, Germany; (P.F.); (A.N.); (S.H.); (S.J.); (U.K.); (C.K.); (H.A.-H.); (S.L.); (J.K.)
- German Center for Diabetes Research (DZD), Partner Duesseldorf, 40225 Duesseldorf, Germany
| | - Sylvia Jacob
- Institute of Clinical Biochemistry and Pathobiochemistry, German Diabetes Center at the Heinrich-Heine-University Duesseldorf, Leibniz Center for Diabetes Research, 40225 Duesseldorf, Germany; (P.F.); (A.N.); (S.H.); (S.J.); (U.K.); (C.K.); (H.A.-H.); (S.L.); (J.K.)
| | - Ulrike Kettel
- Institute of Clinical Biochemistry and Pathobiochemistry, German Diabetes Center at the Heinrich-Heine-University Duesseldorf, Leibniz Center for Diabetes Research, 40225 Duesseldorf, Germany; (P.F.); (A.N.); (S.H.); (S.J.); (U.K.); (C.K.); (H.A.-H.); (S.L.); (J.K.)
| | - Cornelia Köllmer
- Institute of Clinical Biochemistry and Pathobiochemistry, German Diabetes Center at the Heinrich-Heine-University Duesseldorf, Leibniz Center for Diabetes Research, 40225 Duesseldorf, Germany; (P.F.); (A.N.); (S.H.); (S.J.); (U.K.); (C.K.); (H.A.-H.); (S.L.); (J.K.)
| | - Hadi Al-Hasani
- Institute of Clinical Biochemistry and Pathobiochemistry, German Diabetes Center at the Heinrich-Heine-University Duesseldorf, Leibniz Center for Diabetes Research, 40225 Duesseldorf, Germany; (P.F.); (A.N.); (S.H.); (S.J.); (U.K.); (C.K.); (H.A.-H.); (S.L.); (J.K.)
- German Center for Diabetes Research (DZD), Partner Duesseldorf, 40225 Duesseldorf, Germany
- Medical Faculty, Heinrich-Heine-University Düsseldorf, 40225 Düsseldorf, Germany
| | - Stefan Lehr
- Institute of Clinical Biochemistry and Pathobiochemistry, German Diabetes Center at the Heinrich-Heine-University Duesseldorf, Leibniz Center for Diabetes Research, 40225 Duesseldorf, Germany; (P.F.); (A.N.); (S.H.); (S.J.); (U.K.); (C.K.); (H.A.-H.); (S.L.); (J.K.)
- German Center for Diabetes Research (DZD), Partner Duesseldorf, 40225 Duesseldorf, Germany
| | - Dirk Müller-Wieland
- Clinical Research Centre, Department of Internal Medicine I, University Hospital Aachen, 52074 Aachen, Germany;
| | - Birgit Knebel
- Institute of Clinical Biochemistry and Pathobiochemistry, German Diabetes Center at the Heinrich-Heine-University Duesseldorf, Leibniz Center for Diabetes Research, 40225 Duesseldorf, Germany; (P.F.); (A.N.); (S.H.); (S.J.); (U.K.); (C.K.); (H.A.-H.); (S.L.); (J.K.)
- German Center for Diabetes Research (DZD), Partner Duesseldorf, 40225 Duesseldorf, Germany
- Correspondence: ; Tel.: +49-211-3382-536
| | - Jörg Kotzka
- Institute of Clinical Biochemistry and Pathobiochemistry, German Diabetes Center at the Heinrich-Heine-University Duesseldorf, Leibniz Center for Diabetes Research, 40225 Duesseldorf, Germany; (P.F.); (A.N.); (S.H.); (S.J.); (U.K.); (C.K.); (H.A.-H.); (S.L.); (J.K.)
- German Center for Diabetes Research (DZD), Partner Duesseldorf, 40225 Duesseldorf, Germany
| |
Collapse
|
42
|
Identification of Key Target Genes and Pathway Analysis in Nonalcoholic Fatty Liver Disease Via Integrated Bioinformatics Analysis. Balkan J Med Genet 2022; 25:25-34. [PMID: 36880036 PMCID: PMC9985361 DOI: 10.2478/bjmg-2022-0006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023] Open
Abstract
Purpose This study aimed at exploring the mechanisms underlying nonalcoholic fatty liver disease (NAFLD) and developing new diagnostic biomarkers for nonalcoholic steatohepatitis (NASH). Methods The microarray dataset GES83452 was downloaded from the NCBI-GEO database, and the differentially expressed RNAs (DERs) were screened between the NAFLD and non-NAFLD samples of the baseline and 1-year follow-up time point group based on the Limma package. Results A total of 561 DERs (268 downregulated and 293 upregulated) were screened in the baseline time point group, and 1163 DERs (522 downregulated and 641 upregulated) were screened in the 1-year follow-up time point group. A total of 74 lncRNA-miRNA pairs and 523 miRNA-mRNA pairs were obtained in order to construct a lncRNA-miRNA-mRNA regulatory network. Subsequently, functional enrichment analysis revealed 28 GO and 9 KEGG pathways in the ceRNA regulatory network. LEPR and CXCL10 are involved in the Cytokine-cytokine receptor interaction (P = 1.86E-02), and the FOXO1 is involved in both the insulin signaling pathway (P = 1.79E-02) and the pathways in cancer (P = 2.87E-02). Conclusion LEPR, CXCL10, and FOXO1 were the characteristic target genes for NAFLD.
Collapse
|
43
|
Rui L, Lin JD. Reprogramming of Hepatic Metabolism and Microenvironment in Nonalcoholic Steatohepatitis. Annu Rev Nutr 2022; 42:91-113. [PMID: 35584814 PMCID: PMC10122183 DOI: 10.1146/annurev-nutr-062220-105200] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Nonalcoholic fatty liver disease (NAFLD), a spectrum of metabolic liver disease associated with obesity, ranges from relatively benign hepatic steatosis to nonalcoholic steatohepatitis (NASH). The latter is characterized by persistent liver injury, inflammation, and liver fibrosis, which collectively increase the risk for end-stage liver diseases such as cirrhosis and hepatocellular carcinoma. Recent work has shed new light on the pathophysiology of NAFLD/NASH, particularly the role of genetic, epigenetic, and dietary factors and metabolic dysfunctions in other tissues in driving excess hepatic fat accumulation and liver injury. In parallel, single-cell RNA sequencing studies have revealed unprecedented details of the molecular nature of liver cell heterogeneity, intrahepatic cross talk, and disease-associated reprogramming of the liver immune and stromal vascular microenvironment. This review covers the recent advances in these areas, the emerging concepts of NASH pathogenesis, and potential new therapeutic opportunities. Expected final online publication date for the Annual Review of Nutrition, Volume 42 is August 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Liangyou Rui
- Department of Molecular and Integrated Physiology and Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA;
| | - Jiandie D Lin
- Life Sciences Institute and Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan, USA;
| |
Collapse
|
44
|
Jensen MM, Bonna A, Frederiksen SJ, Hamaia SW, Højrup P, Farndale RW, Karring H. Tyrosine-sulfated dermatopontin shares multiple binding sites and recognition determinants on triple-helical collagens with proteins implicated in cell adhesion and collagen folding, fibrillogenesis, cross-linking, and degradation. BIOCHIMICA ET BIOPHYSICA ACTA. PROTEINS AND PROTEOMICS 2022; 1870:140771. [PMID: 35306228 DOI: 10.1016/j.bbapap.2022.140771] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 03/09/2022] [Accepted: 03/13/2022] [Indexed: 06/14/2023]
Abstract
Dermatopontin (DPT), a small extracellular matrix protein that stimulates collagen fibrillogenesis, contains sulfotyrosine residues but neither its level of sulfation nor its binding sites on fibrillar collagens are known. Here, we discovered that DPT is present in a relatively high mass concentration (~ 0.02%) in porcine corneal stroma, from which we purified five DPT charge variants (A-E) containing up to six sulfations. The major variant (C), containing four sulfotyrosine residues, was used to locate binding sites for DPT on triple-helical collagens II and III using the Collagen Toolkits. DPT-binding loci included the triple helix crosslinking sites and collagenase cleavage site. We find that strong DPT-binding sites on triple-helical collagen comprise an arginine-rich, positively-charged sequence that also contains hydrophobic residues. This collagen-binding signature of DPT is similar to that of the chaperone HSP47. Thus, we propose that DPT assumes the role of HSP47 as a collagen chaperone during and after the secretion. Peptide II-44, harbouring the conserved collagenase cleavage site, shows the strongest DPT-binding of the Collagen Toolkit II peptides. Substituting any of the three arginine residues (R) with alanine in the sequence GLAGQRGIVGLOGQRGER of II-44 resulted in almost complete loss of DPT binding. Since osteogenesis imperfecta, spondyloepiphyseal dysplasia, and spondyloepimetaphyseal dysplasia congenita are associated with missense mutations that substitute the corresponding arginine residues in collagens alpha-1(I) and alpha-1(II), we suggest that disrupted DPT binding to fibrillar collagens may contribute to these connective tissue disorders. In conclusion, the present work provides a cornerstone for further elucidation of the role of DPT.
Collapse
Affiliation(s)
- Morten M Jensen
- Department of Green Technology, University of Southern Denmark, 5230 Odense, Denmark
| | - Arkadiusz Bonna
- Department of Biochemistry, Downing Site, University of Cambridge, Cambridge CB2 1QW, United Kingdom
| | - Sigurd J Frederiksen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense, Denmark
| | - Samir W Hamaia
- Department of Biochemistry, Downing Site, University of Cambridge, Cambridge CB2 1QW, United Kingdom
| | - Peter Højrup
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense, Denmark
| | - Richard W Farndale
- Department of Biochemistry, Downing Site, University of Cambridge, Cambridge CB2 1QW, United Kingdom
| | - Henrik Karring
- Department of Green Technology, University of Southern Denmark, 5230 Odense, Denmark.
| |
Collapse
|
45
|
Deep proteomic profiling unveils arylsulfatase A as a non-alcoholic steatohepatitis inducible hepatokine and regulator of glycemic control. Nat Commun 2022; 13:1259. [PMID: 35273160 PMCID: PMC8913628 DOI: 10.1038/s41467-022-28889-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 02/10/2022] [Indexed: 12/13/2022] Open
Abstract
Non-alcoholic steatohepatitis (NASH) and type 2 diabetes are closely linked, yet the pathophysiological mechanisms underpinning this bidirectional relationship remain unresolved. Using proteomic approaches, we interrogate hepatocyte protein secretion in two models of murine NASH to understand how liver-derived factors modulate lipid metabolism and insulin sensitivity in peripheral tissues. We reveal striking hepatokine remodelling that is associated with insulin resistance and maladaptive lipid metabolism, and identify arylsulfatase A (ARSA) as a hepatokine that is upregulated in NASH and type 2 diabetes. Mechanistically, hepatic ARSA reduces sulfatide content and increases lysophosphatidylcholine (LPC) accumulation within lipid rafts and suppresses LPC secretion from the liver, thereby lowering circulating LPC and lysophosphatidic acid (LPA) levels. Reduced LPA is linked to improvements in skeletal muscle insulin sensitivity and systemic glycemic control. Hepatic silencing of Arsa or inactivation of ARSA's enzymatic activity reverses these effects. Together, this study provides a unique resource describing global changes in hepatokine secretion in NASH, and identifies ARSA as a regulator of liver to muscle communication and as a potential therapeutic target for type 2 diabetes.
Collapse
|
46
|
Boeckmans J, Gatzios A, Heymans A, Rombaut M, Rogiers V, De Kock J, Vanhaecke T, Rodrigues RM. Transcriptomics Reveals Discordant Lipid Metabolism Effects between In Vitro Models Exposed to Elafibranor and Liver Samples of NAFLD Patients after Bariatric Surgery. Cells 2022; 11:893. [PMID: 35269515 PMCID: PMC8909190 DOI: 10.3390/cells11050893] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/01/2022] [Accepted: 03/02/2022] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND AND AIMS Non-alcoholic steatohepatitis (NASH) is a life-threatening stage of non-alcoholic fatty liver disease (NAFLD) for which no drugs have been approved. We have previously shown that human-derived hepatic in vitro models can be used to mimic key cellular mechanisms involved in the progression of NASH. In the present study, we first characterize the transcriptome of multiple in vitro NASH models. Subsequently, we investigate how elafibranor, which is a peroxisome proliferator-activated receptor (PPAR)-α/δ agonist that has recently failed a phase 3 clinical trial as a potential anti-NASH compound, modulates the transcriptome of these models. Finally, we compare the elafibranor-induced gene expression modulation to transcriptome data of patients with improved/resolved NAFLD/NASH upon bariatric surgery, which is the only proven clinical NASH therapy. METHODS Human whole genome microarrays were used for the transcriptomics evaluation of hepatic in vitro models. Comparison to publicly available clinical datasets was conducted using multiple bioinformatic application tools. RESULTS Primary human hepatocytes (PHH), HepaRG, and human skin stem cell-derived hepatic progenitors (hSKP-HPC) exposed to NASH-inducing triggers exhibit up to 35% overlap with datasets of liver samples from NASH patients. Exposure of the in vitro NASH models to elafibranor partially reversed the transcriptional modulations, predicting an inhibition of toll-like receptor (TLR)-2/4/9-mediated inflammatory responses, NFκB-signaling, hepatic fibrosis, and leukocyte migration. These transcriptomic changes were also observed in the datasets of liver samples of patients with resolved NASH. Peroxisome Proliferator Activated Receptor Alpha (PPARA), PPARG Coactivator 1 Alpha (PPARGC1A), and Sirtuin 1 (SIRT1) were identified as the major common upstream regulators upon exposure to elafibranor. Analysis of the downstream mechanistic networks further revealed that angiopoietin Like 4 (ANGPTL4), pyruvate dehydrogenase kinase 4 (PDK4), and perilipin 2 (PLIN2), which are involved in the promotion of hepatic lipid accumulation, were also commonly upregulated by elafibranor in all in vitro NASH models. Contrarily, these genes were not upregulated in liver samples of patients with resolved NASH. CONCLUSION Transcriptomics comparison between in vitro NASH models exposed to elafibranor and clinical datasets of NAFLD patients after bariatric surgery reveals commonly modulated anti-inflammatory responses, but discordant modulations of key factors in lipid metabolism. This discordant adverse effect of elafibranor deserves further investigation when assessing PPAR-α/δ agonism as a potential anti-NASH therapy.
Collapse
Affiliation(s)
- Joost Boeckmans
- Correspondence: (J.B.); (R.M.R.); Tel.: +32-(0)-2-477-45-19 (R.M.R.)
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Jiang B, Wang D, Hu Y, Li W, Liu F, Zhu X, Li X, Zhang H, Bai H, Yang Q, Yang X, Ben J, Chen Q. Serum Amyloid A1 Exacerbates Hepatic Steatosis via TLR4 Mediated NF-κB Signaling Pathway. Mol Metab 2022; 59:101462. [PMID: 35247611 PMCID: PMC8938331 DOI: 10.1016/j.molmet.2022.101462] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 02/10/2022] [Accepted: 02/10/2022] [Indexed: 11/29/2022] Open
Abstract
Objective Chronic inflammatory response plays a prominent role in obesity-related nonalcoholic fatty liver disease (NAFLD). However, the intrahepatic triggering mechanism of inflammation remains obscure. This study aimed to elucidate the role of serum amyloid A1 (SAA1), an acute-phase response protein, in the obesity-induced hepatic inflammation and NAFLD. Methods Male mice were fed a high fat diet (HFD) for 16 weeks, and insulin resistance, hepatic steatosis, and inflammation in mice were monitored. Murine SAA1/2 was genetically manipulated to investigate the role of SAA1 in NAFLD. Results We found that SAA1 was increased in the NAFLD liver in both humans and mice. Knockout of SAA1/2 or knockdown of hepatic SAA1/2 promoted energy expenditure and alleviated HFD-induced metabolic disorder, hepatic steatosis, and inflammation. Endogenous overexpression of SAA1 in hepatocytes by adeno-associated virus 8 (AAV8) transfection aggravated overnutrition-associated gain of body weight, insulin resistance, hepatic lipid accumulation, and liver injury, which were markedly alleviated by knockout of murine toll-like receptor 4 (TLR4). Mechanistically, SAA1 directly bound with TLR4/myeloid differentiation 2 (MD2) to induce TLR4 internalization, leading to the activation of nuclear factor (NF)-κB signaling and production of both SAA1 and other inflammatory cytokines, including interleukin (IL)-6 and C–C chemokine ligand (CCL2) in hepatocytes. Administration of HFD mice with an AAV8-shRNA-SAA1/2 showed a therapeutic effect on hepatic inflammation and NAFLD progression. Conclusions These results demonstrate that SAA1 triggers hepatic steatosis and intrahepatic inflammatory response by forming a SAA1/TLR4/NF-κB/SAA1 feedforward regulatory circuit, which, in turn, leads to NAFLD progression. SAA1 may act as a potential target for the disease intervention. SAA1/2 deficiency alleviates HFD-induced hepatic steatosis and inflammation in mice. SAA1 aggravating overnutrition-associated hepatic steatosis and inflammation is dependent on TLR4. SAA1 directly binds to TLR4/MD2 to induce TLR4 internalization, leading to the activation of NF-κB signaling . SAA1/TLR4/NF-κB/SAA1 positive feedback in hepatocytes may be a potential target for obesity associated NAFLD.
Collapse
Affiliation(s)
- Bin Jiang
- Department of Pathophysiology, Key Laboratory of Cardiovascular Disease and Molecular Intervention, Nanjing Medical University, Nanjing, China
| | - Dongdong Wang
- Department of Pathophysiology, Key Laboratory of Cardiovascular Disease and Molecular Intervention, Nanjing Medical University, Nanjing, China
| | - Yunfu Hu
- Department of Pathophysiology, Key Laboratory of Cardiovascular Disease and Molecular Intervention, Nanjing Medical University, Nanjing, China
| | - Wenxuan Li
- Department of Pathophysiology, Key Laboratory of Cardiovascular Disease and Molecular Intervention, Nanjing Medical University, Nanjing, China
| | - Fengjiang Liu
- Innovative Center for Pathogen Research, Guangzhou Laboratory, Guangzhou, China
| | - Xudong Zhu
- Department of Pathophysiology, Key Laboratory of Cardiovascular Disease and Molecular Intervention, Nanjing Medical University, Nanjing, China
| | - Xiaoyu Li
- Department of Pathophysiology, Key Laboratory of Cardiovascular Disease and Molecular Intervention, Nanjing Medical University, Nanjing, China
| | - Hanwen Zhang
- Department of Pathophysiology, Key Laboratory of Cardiovascular Disease and Molecular Intervention, Nanjing Medical University, Nanjing, China
| | - Hui Bai
- Department of Pathophysiology, Key Laboratory of Cardiovascular Disease and Molecular Intervention, Nanjing Medical University, Nanjing, China
| | - Qing Yang
- Department of Pathophysiology, Key Laboratory of Cardiovascular Disease and Molecular Intervention, Nanjing Medical University, Nanjing, China
| | - Xiuna Yang
- Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, China.
| | - Jingjing Ben
- Department of Pathophysiology, Key Laboratory of Cardiovascular Disease and Molecular Intervention, Nanjing Medical University, Nanjing, China.
| | - Qi Chen
- Department of Pathophysiology, Key Laboratory of Cardiovascular Disease and Molecular Intervention, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
48
|
Expression of Fibrosis-Related Genes in Liver and Kidney Fibrosis in Comparison to Inflammatory Bowel Diseases. Cells 2022; 11:cells11030314. [PMID: 35159124 PMCID: PMC8834113 DOI: 10.3390/cells11030314] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 01/08/2022] [Accepted: 01/14/2022] [Indexed: 12/21/2022] Open
Abstract
Fibrosis is an important feature of inflammatory bowel diseases (IBD), but its pathogenesis is incompletely understood. Our aim was to identify genes important for fibrosis in IBD by comparison with kidney and liver fibrosis. First, we performed bioinformatics analysis of Gene Expression Omnibus datasets of liver and kidney fibrosis and identified CXCL9, THBS2, MGP, PTPRC, CD52, GZMA, DPT and DCN as potentially important genes with altered expression in fibrosis. We then performed qPCR analysis of the selected genes’ expression on samples of fibrotic kidney, liver, Crohn’s disease (CD) with and without fibrosis and ulcerative colitis (UC), in comparison to corresponding normal tissue. We found significantly altered expression in fibrosis for all selected genes. A significant difference for some genes was observed in CD with fibrosis in comparison to CD without fibrosis and UC. We conclude that similar changes in the expression of selected genes in liver, kidney fibrosis and IBD provide further evidence that fibrosis in IBD might share common mechanisms with other organs, supporting the hypothesis that fibrosis is the common pathway in diseases of various organs. Some genes were already active in IBD with inflammation without fibrosis, suggesting the early activation of profibrotic pathways or overlapping function in fibrosis and inflammation.
Collapse
|
49
|
Zanoni P, Panteloglou G, Othman A, Haas JT, Meier R, Rimbert A, Futema M, Abou Khalil Y, Norrelykke SF, Rzepiela AJ, Stoma S, Stebler M, van Dijk F, Wijers M, Wolters JC, Dalila N, Huijkman NCA, Smit M, Gallo A, Carreau V, Philippi A, Rabès JP, Boileau C, Visentin M, Vonghia L, Weyler J, Francque S, Verrijken A, Verhaegen A, Van Gaal L, van der Graaf A, van Rosmalen BV, Robert J, Velagapudi S, Yalcinkaya M, Keel M, Radosavljevic S, Geier A, Tybjaerg-Hansen A, Varret M, Rohrer L, Humphries SE, Staels B, van de Sluis B, Kuivenhoven JA, von Eckardstein A. Posttranscriptional Regulation of the Human LDL Receptor by the U2-Spliceosome. Circ Res 2022; 130:80-95. [PMID: 34809444 DOI: 10.1161/circresaha.120.318141] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND The LDLR (low-density lipoprotein receptor) in the liver is the major determinant of LDL-cholesterol levels in human plasma. The discovery of genes that regulate the activity of LDLR helps to identify pathomechanisms of hypercholesterolemia and novel therapeutic targets against atherosclerotic cardiovascular disease. METHODS We performed a genome-wide RNA interference screen for genes limiting the uptake of fluorescent LDL into Huh-7 hepatocarcinoma cells. Top hit genes were validated by in vitro experiments as well as analyses of data sets on gene expression and variants in human populations. RESULTS The knockdown of 54 genes significantly inhibited LDL uptake. Fifteen of them encode for components or interactors of the U2-spliceosome. Knocking down any one of 11 out of 15 genes resulted in the selective retention of intron 3 of LDLR. The translated LDLR fragment lacks 88% of the full length LDLR and is detectable neither in nontransfected cells nor in human plasma. The hepatic expression of the intron 3 retention transcript is increased in nonalcoholic fatty liver disease as well as after bariatric surgery. Its expression in blood cells correlates with LDL-cholesterol and age. Single nucleotide polymorphisms and 3 rare variants of one spliceosome gene, RBM25, are associated with LDL-cholesterol in the population and familial hypercholesterolemia, respectively. Compared with overexpression of wild-type RBM25, overexpression of the 3 rare RBM25 mutants in Huh-7 cells led to lower LDL uptake. CONCLUSIONS We identified a novel mechanism of posttranscriptional regulation of LDLR activity in humans and associations of genetic variants of RBM25 with LDL-cholesterol levels.
Collapse
Affiliation(s)
- Paolo Zanoni
- Institute for Clinical Chemistry, University and University Hospital Zurich, Switzerland (P.Z., G.P., J.R., S.V., M.Y., M.K., S.R., L.R., A.v.E.).,Now with Institute of Medical Genetics, University of Zurich, Switzerland (P.Z.).,Center for Integrative Human Physiology, University of Zurich, Switzerland (P.Z., G.P., S.V., M.Y., M.K., S.R., L.R., A.v.E.)
| | - Grigorios Panteloglou
- Institute for Clinical Chemistry, University and University Hospital Zurich, Switzerland (P.Z., G.P., J.R., S.V., M.Y., M.K., S.R., L.R., A.v.E.).,Center for Integrative Human Physiology, University of Zurich, Switzerland (P.Z., G.P., S.V., M.Y., M.K., S.R., L.R., A.v.E.)
| | - Alaa Othman
- Institute of Molecular Systems Biology, ETH Zurich, Switzerland (A.O.)
| | - Joel T Haas
- University of Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011- EGID, France (J.T.H., B.S.)
| | - Roger Meier
- Scientific center for optical and electron microscopy (ScopeM), ETH Zurich, Switzerland (R.M., S.F.N., A.J.R., S.S., M. Stebler)
| | - Antoine Rimbert
- Department of Pediatrics, Section Molecular Genetics, University of Groningen, University Medical Center Groningen, the Netherlands (A.R., M.W., J.C.W., N.C.A.H., M. Smit, B.v.d.S., J.A.K.).,Now with Inserm UMR 1087/CNRS UMR 6291 IRS-UN, Nantes, France (A.R.)
| | - Marta Futema
- Cardiology Research Centre, Molecular and Clinical Sciences Research Institute, St George's, University of London, United Kingdom (M.F.)
| | - Yara Abou Khalil
- LVTS-INSERM UMRS 1148 and University of Paris, CHU Xavier Bichat, Paris, France (Y.A.K., J.-P.R., C.B., M. Varret).,Laboratory of Biochemistry and Molecular Therapeutics (LBTM), Faculty of Pharmacy and Pôle technologie Santé (PTS), Saint-Joseph University, Beirut, Lebanon (Y.A.K.)
| | - Simon F Norrelykke
- Scientific center for optical and electron microscopy (ScopeM), ETH Zurich, Switzerland (R.M., S.F.N., A.J.R., S.S., M. Stebler)
| | - Andrzej J Rzepiela
- Scientific center for optical and electron microscopy (ScopeM), ETH Zurich, Switzerland (R.M., S.F.N., A.J.R., S.S., M. Stebler)
| | - Szymon Stoma
- Scientific center for optical and electron microscopy (ScopeM), ETH Zurich, Switzerland (R.M., S.F.N., A.J.R., S.S., M. Stebler)
| | - Michael Stebler
- Scientific center for optical and electron microscopy (ScopeM), ETH Zurich, Switzerland (R.M., S.F.N., A.J.R., S.S., M. Stebler)
| | - Freerk van Dijk
- Department of Genetics, University of Groningen, University Medical Center Groningen, the Netherlands (F.v.D., A.v.d.G.)
| | - Melinde Wijers
- Department of Pediatrics, Section Molecular Genetics, University of Groningen, University Medical Center Groningen, the Netherlands (A.R., M.W., J.C.W., N.C.A.H., M. Smit, B.v.d.S., J.A.K.)
| | - Justina C Wolters
- Department of Pediatrics, Section Molecular Genetics, University of Groningen, University Medical Center Groningen, the Netherlands (A.R., M.W., J.C.W., N.C.A.H., M. Smit, B.v.d.S., J.A.K.)
| | - Nawar Dalila
- Department of Clinical Biochemistry, Rigshospitalet, Copenhagen University Hospital, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark (N.D., A.T.-H.)
| | - Nicolette C A Huijkman
- Department of Pediatrics, Section Molecular Genetics, University of Groningen, University Medical Center Groningen, the Netherlands (A.R., M.W., J.C.W., N.C.A.H., M. Smit, B.v.d.S., J.A.K.)
| | - Marieke Smit
- Department of Pediatrics, Section Molecular Genetics, University of Groningen, University Medical Center Groningen, the Netherlands (A.R., M.W., J.C.W., N.C.A.H., M. Smit, B.v.d.S., J.A.K.)
| | - Antonio Gallo
- AP-HP, Endocrinology and Metabolism Department, Human Research Nutrition Center, Pitié-Salpêtrière Hospital, Paris, France (A. Gallo, V.C.)
| | - Valérie Carreau
- AP-HP, Endocrinology and Metabolism Department, Human Research Nutrition Center, Pitié-Salpêtrière Hospital, Paris, France (A. Gallo, V.C.)
| | - Anne Philippi
- Université de Paris, Faculté de Médecine Paris-Diderot, UMR-S958 Paris, France; Now with Université de Paris, Institut Cochin, INSERM U1016, CNRS UMR-8104, Paris, France (A.P.)
| | - Jean-Pierre Rabès
- LVTS-INSERM UMRS 1148 and University of Paris, CHU Xavier Bichat, Paris, France (Y.A.K., J.-P.R., C.B., M. Varret).,AP-HP, Université Paris-Saclay, Paris, France (J.-P.R.).,UFR Simone Veil des Sciences de la Santé, UVSQ, Montigny-Le-Bretonneux, France (J.-P.R.)
| | - Catherine Boileau
- LVTS-INSERM UMRS 1148 and University of Paris, CHU Xavier Bichat, Paris, France (Y.A.K., J.-P.R., C.B., M. Varret).,AP-HP, Genetics Department, CHU Xavier Bichat, Université de Paris, France (C.B.)
| | - Michele Visentin
- Department of Clinical Pharmacology and Toxicology, University Hospital Zurich, Switzerland (M. Visentin)
| | - Luisa Vonghia
- Department of Gastroenterology and Hepatology, Antwerp University Hospital, Edegem, Belgium (L.V., J.W., S.F.).,Laboratory of Experimental Medicine and Paediatrics, Faculty of Medicine, University of Antwerp, Belgium (L.V., J.W., S.F., A. Verrijken, A. Verhaegen, L.V.G.)
| | - Jonas Weyler
- Department of Gastroenterology and Hepatology, Antwerp University Hospital, Edegem, Belgium (L.V., J.W., S.F.)
| | - Sven Francque
- Department of Gastroenterology and Hepatology, Antwerp University Hospital, Edegem, Belgium (L.V., J.W., S.F.).,Laboratory of Experimental Medicine and Paediatrics, Faculty of Medicine, University of Antwerp, Belgium (L.V., J.W., S.F., A. Verrijken, A. Verhaegen, L.V.G.)
| | - An Verrijken
- Laboratory of Experimental Medicine and Paediatrics, Faculty of Medicine, University of Antwerp, Belgium (L.V., J.W., S.F., A. Verrijken, A. Verhaegen, L.V.G.).,Department of Endocrinology, Diabetology and Metabolism, Antwerp University Hospital, Edegem, Belgium (A. Verrijken, A. Verhaegen, L.V.G.)
| | - Ann Verhaegen
- Laboratory of Experimental Medicine and Paediatrics, Faculty of Medicine, University of Antwerp, Belgium (L.V., J.W., S.F., A. Verrijken, A. Verhaegen, L.V.G.).,Department of Endocrinology, Diabetology and Metabolism, Antwerp University Hospital, Edegem, Belgium (A. Verrijken, A. Verhaegen, L.V.G.)
| | - Luc Van Gaal
- Laboratory of Experimental Medicine and Paediatrics, Faculty of Medicine, University of Antwerp, Belgium (L.V., J.W., S.F., A. Verrijken, A. Verhaegen, L.V.G.).,Department of Endocrinology, Diabetology and Metabolism, Antwerp University Hospital, Edegem, Belgium (A. Verrijken, A. Verhaegen, L.V.G.)
| | - Adriaan van der Graaf
- Department of Genetics, University of Groningen, University Medical Center Groningen, the Netherlands (F.v.D., A.v.d.G.)
| | - Belle V van Rosmalen
- Department of Surgery, Academic Medical Center, University of Amsterdam, the Netherlands (B.V.v.R.)
| | - Jerome Robert
- Institute for Clinical Chemistry, University and University Hospital Zurich, Switzerland (P.Z., G.P., J.R., S.V., M.Y., M.K., S.R., L.R., A.v.E.)
| | - Srividya Velagapudi
- Institute for Clinical Chemistry, University and University Hospital Zurich, Switzerland (P.Z., G.P., J.R., S.V., M.Y., M.K., S.R., L.R., A.v.E.).,Center for Molecular Cardiology, University of Zurich, Switzerland (S.V.).,Center for Integrative Human Physiology, University of Zurich, Switzerland (P.Z., G.P., S.V., M.Y., M.K., S.R., L.R., A.v.E.)
| | - Mustafa Yalcinkaya
- Institute for Clinical Chemistry, University and University Hospital Zurich, Switzerland (P.Z., G.P., J.R., S.V., M.Y., M.K., S.R., L.R., A.v.E.).,Division of Molecular Medicine, Department of Medicine, Columbia University, New York, NY (M.Y.).,Center for Integrative Human Physiology, University of Zurich, Switzerland (P.Z., G.P., S.V., M.Y., M.K., S.R., L.R., A.v.E.)
| | - Michaela Keel
- Institute for Clinical Chemistry, University and University Hospital Zurich, Switzerland (P.Z., G.P., J.R., S.V., M.Y., M.K., S.R., L.R., A.v.E.).,Center for Integrative Human Physiology, University of Zurich, Switzerland (P.Z., G.P., S.V., M.Y., M.K., S.R., L.R., A.v.E.)
| | - Silvija Radosavljevic
- Institute for Clinical Chemistry, University and University Hospital Zurich, Switzerland (P.Z., G.P., J.R., S.V., M.Y., M.K., S.R., L.R., A.v.E.).,Center for Integrative Human Physiology, University of Zurich, Switzerland (P.Z., G.P., S.V., M.Y., M.K., S.R., L.R., A.v.E.)
| | - Andreas Geier
- Division of Hepatology, Department of Medicine II, University Hospital Würzburg, Germany (A. Geier)
| | - Anne Tybjaerg-Hansen
- Department of Clinical Biochemistry, Rigshospitalet, Copenhagen University Hospital, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark (N.D., A.T.-H.)
| | - Mathilde Varret
- LVTS-INSERM UMRS 1148 and University of Paris, CHU Xavier Bichat, Paris, France (Y.A.K., J.-P.R., C.B., M. Varret)
| | - Lucia Rohrer
- Institute for Clinical Chemistry, University and University Hospital Zurich, Switzerland (P.Z., G.P., J.R., S.V., M.Y., M.K., S.R., L.R., A.v.E.).,Center for Integrative Human Physiology, University of Zurich, Switzerland (P.Z., G.P., S.V., M.Y., M.K., S.R., L.R., A.v.E.)
| | - Steve E Humphries
- Cardiovascular Genetics, Institute of Cardiovascular Science, University College London, United Kingdom (S.E.H.)
| | - Bart Staels
- University of Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011- EGID, France (J.T.H., B.S.)
| | - Bart van de Sluis
- Department of Pediatrics, Section Molecular Genetics, University of Groningen, University Medical Center Groningen, the Netherlands (A.R., M.W., J.C.W., N.C.A.H., M. Smit, B.v.d.S., J.A.K.)
| | - Jan Albert Kuivenhoven
- Department of Pediatrics, Section Molecular Genetics, University of Groningen, University Medical Center Groningen, the Netherlands (A.R., M.W., J.C.W., N.C.A.H., M. Smit, B.v.d.S., J.A.K.)
| | - Arnold von Eckardstein
- Institute for Clinical Chemistry, University and University Hospital Zurich, Switzerland (P.Z., G.P., J.R., S.V., M.Y., M.K., S.R., L.R., A.v.E.).,Center for Integrative Human Physiology, University of Zurich, Switzerland (P.Z., G.P., S.V., M.Y., M.K., S.R., L.R., A.v.E.)
| |
Collapse
|
50
|
Migdał M, Tralle E, Nahia KA, Bugajski Ł, Kędzierska KZ, Garbicz F, Piwocka K, Winata CL, Pawlak M. Multi-omics analyses of early liver injury reveals cell-type-specific transcriptional and epigenomic shift. BMC Genomics 2021; 22:904. [PMID: 34920711 PMCID: PMC8684102 DOI: 10.1186/s12864-021-08173-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 11/10/2021] [Indexed: 12/20/2022] Open
Abstract
Background Liver fibrosis is a wound-healing response to tissue injury and inflammation hallmarked by the extracellular matrix (ECM) protein deposition in the liver parenchyma and tissue remodelling. Different cell types of the liver are known to play distinct roles in liver injury response. Hepatocytes and liver endothelial cells receive molecular signals indicating tissue injury and activate hepatic stellate cells which produce ECM proteins upon their activation. Despite the growing knowledge on the molecular mechanism underlying hepatic fibrosis in general, the cell-type-specific gene regulatory network associated with the initial response to hepatotoxic injury is still poorly characterized. Results In this study, we used thioacetamide (TAA) to induce hepatic injury in adult zebrafish. We isolated three major liver cell types - hepatocytes, endothelial cells and hepatic stellate cells - and identified cell-type-specific chromatin accessibility and transcriptional changes in an early stage of liver injury. We found that TAA induced transcriptional shifts in all three cell types hallmarked by significant alterations in the expression of genes related to fatty acid and carbohydrate metabolism, as well as immune response-associated and vascular-specific genes. Interestingly, liver endothelial cells exhibit the most pronounced response to liver injury at the transcriptome and chromatin level, hallmarked by the loss of their angiogenic phenotype. Conclusion Our results uncovered cell-type-specific transcriptome and epigenome responses to early stage liver injury, which provide valuable insights into understanding the molecular mechanism implicated in the early response of the liver to pro-fibrotic signals. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-08173-1.
Collapse
|