1
|
Zhang Y, Xin J, Zhao D, Chen G, Ji P, Liu P, Wei H, Wang H, Xia Y, Wang Y, Wang Z, Ren X, Huo M, Yu H, Yang J. Magnesium hexacyanoferrate mitigates sepsis-associated encephalopathy through inhibiting microglial activation and neuronal cuproptosis. Biomaterials 2025; 321:123279. [PMID: 40164040 DOI: 10.1016/j.biomaterials.2025.123279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 03/02/2025] [Accepted: 03/19/2025] [Indexed: 04/02/2025]
Abstract
Sepsis-associated encephalopathy (SAE) is a severe neurological complication stemming from sepsis, characterized by cognitive impairment. The underlying mechanisms involve oxidative stress, neuroinflammation, and disruptions in copper/iron homeostasis. This study introduces magnesium hexacyanoferrate (MgHCF) as a novel compound and explores its therapeutic potential in SAE. Our investigation reveals that MgHCF features intriguing properties in effectively scavenging reactive oxygen species (ROS), and chelating excess copper and iron. Treatment with MgHCF significantly attenuates microglia activation, and protects neuronal cells from oxidative damage and cytotoxicity induced by activated microglia in vitro and in vivo. Furthermore, the cognitive impairment in SAE mice is effectively alleviated by MgHCF treatment, mechanically through a reduction in the copper/iron-responsive histone methylation, and neuronal cuproptosis. These findings suggest MgHCF as a promising therapeutic agent for SAE, targeting the copper/iron signaling pathway to alleviate neuroinflammation, and neuronal cuproptosis.
Collapse
Affiliation(s)
- Yabing Zhang
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan Province, China; Department of Anesthesiology, West China Second University Hospital, Sichuan University, Chengdu, 610041, China.
| | - Juan Xin
- Department of Anesthesiology, West China Hospital of Sichuan University, Chengdu, 610041, China.
| | - Di Zhao
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan Province, China.
| | - Gezi Chen
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan Province, China.
| | - Penghao Ji
- Shanghai Tenth People's Hospital, Shanghai Frontiers Science Center of Nanocatalytic Medicine, School of Medicine, Tongji University, Shanghai, 200072, China.
| | - Panmiao Liu
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan Province, China.
| | - Hua Wei
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan Province, China.
| | - Hongwei Wang
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan Province, China.
| | - Yuzhong Xia
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan Province, China.
| | - Yong Wang
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan Province, China.
| | - Zhongyu Wang
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan Province, China.
| | - Xiangyi Ren
- Core Facilities of West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Minfeng Huo
- Shanghai Tenth People's Hospital, Shanghai Frontiers Science Center of Nanocatalytic Medicine, School of Medicine, Tongji University, Shanghai, 200072, China.
| | - Hai Yu
- Department of Anesthesiology, West China Hospital of Sichuan University, Chengdu, 610041, China.
| | - Jianjun Yang
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan Province, China.
| |
Collapse
|
2
|
Song Z, Chen H, Xu W, Zong X, Wang X, Ji Y, Gong J, Pang M, Fung SY, Yang H, Yu Y. The hexapeptide functionalized gold nanoparticles protect against sepsis-associated encephalopathy by forming specific protein corona and regulating macrophage activation. Mater Today Bio 2025; 32:101704. [PMID: 40236814 PMCID: PMC11997411 DOI: 10.1016/j.mtbio.2025.101704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 03/07/2025] [Accepted: 03/23/2025] [Indexed: 04/17/2025] Open
Abstract
Sepsis-induced systemic inflammatory responses can often lead to brain dysfunction with impaired cognitive function and mobility, known as sepsis-associated encephalopathy (SAE). Currently, there are no effective pharmacological therapeutics to treat SAE. Herein, we demonstrated the hexapeptide functionalized gold nanoparticles P12 that reduced SAE in septic mice with a dual mechanism to down-regulate systemic inflammation. We found that intraperitoneally administered P12 could target macrophages and regulate their inflammatory responses to decrease systemic inflammation and improve mice's cognitive function and mobility with SAE. Depleting peritoneal macrophages diminished the neuroprotective effects of P12 in SAE mice, suggesting macrophages as the effector cells for the neuroprotection by P12. In addition, the proteomic analysis revealed that P12 was capable of sequestering specific circulating inflammatory proteins in the blood of septic mice by forming a protein corona, contributing to the suppression of systemic inflammation. We also found that the local administration of P12 directly to the brain parenchyma effectively inhibited microglia activation and neuroinflammation in mice with SAE. This study provides an insightful understanding of the function and mechanisms of action of P12 in regulating sepsis-associated systemic inflammation and presents a new drug-free nanotherapeutic approach to treat SAE.
Collapse
Affiliation(s)
- Zichen Song
- Department of Anesthesia, Tianjin Institute of Anesthesiology, Tianjin Medical University General Hospital, NO. 154 Anshan Road, Tianjin 300052, China
| | - Hongguang Chen
- Department of Anesthesia, Tianjin Institute of Anesthesiology, Tianjin Medical University General Hospital, NO. 154 Anshan Road, Tianjin 300052, China
| | - Wenfei Xu
- Department of Pharmacology and Tianjin Key Laboratory of Inflammation Biology, The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University, No. 22 Qixiangtai Road, Heping District, Tianjin 300070, China
| | - Xiaoye Zong
- Department of Pharmacology and Tianjin Key Laboratory of Inflammation Biology, The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University, No. 22 Qixiangtai Road, Heping District, Tianjin 300070, China
| | - Xiaoyu Wang
- Department of Immunology and Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), School of Basic Medical Sciences, Tianjin Medical University, No. 22 Qixiangtai Road, Heping District, Tianjin 300070, China
| | - Yuting Ji
- Department of Pharmacology and Tianjin Key Laboratory of Inflammation Biology, The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University, No. 22 Qixiangtai Road, Heping District, Tianjin 300070, China
| | - Jiameng Gong
- Department of Pharmacology and Tianjin Key Laboratory of Inflammation Biology, The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University, No. 22 Qixiangtai Road, Heping District, Tianjin 300070, China
| | - Mimi Pang
- Department of Pharmacology and Tianjin Key Laboratory of Inflammation Biology, The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University, No. 22 Qixiangtai Road, Heping District, Tianjin 300070, China
| | - Shan-Yu Fung
- Department of Immunology and Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), School of Basic Medical Sciences, Tianjin Medical University, No. 22 Qixiangtai Road, Heping District, Tianjin 300070, China
| | - Hong Yang
- Department of Pharmacology and Tianjin Key Laboratory of Inflammation Biology, The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University, No. 22 Qixiangtai Road, Heping District, Tianjin 300070, China
| | - Yonghao Yu
- Department of Anesthesia, Tianjin Institute of Anesthesiology, Tianjin Medical University General Hospital, NO. 154 Anshan Road, Tianjin 300052, China
| |
Collapse
|
3
|
Nguyen RH, Newton M, Kratofil RM, Scott BNV, Castanheira F, Kim JS, Ginhoux F, Jung S, Kubes P. Imaging a concussion and the ensuing immune response at the blood-brain barrier. Proc Natl Acad Sci U S A 2025; 122:e2414316122. [PMID: 40388609 DOI: 10.1073/pnas.2414316122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 03/20/2025] [Indexed: 05/21/2025] Open
Abstract
Concussions can cause debilitating symptoms despite no evidence of structural changes on diagnostic imaging. The cellular events occurring in the brain parenchyma following concussion, especially repetitive concussion, are not well elucidated. We developed a concussion model to induce a confined area of injury without causing frank hemorrhage. Using intravital microscopy, we observe activation of the vasculature that supported neutrophil rolling and platelet adhesion but no overt cellular recruitment from blood into brain parenchyma. Activated resident, not monocyte-derived, macrophages relocated to the injury site via Cx3cr1 and phagocytosed dysfunctional/detached astrocytes via scavenger receptors and TLR4, particularly after repetitive concussion. Additionally, microglia sealed areas of blood-brain barrier (BBB) disruption via purinergic pathways. Using a splitCre approach to dissect microglia and perivascular macrophages, we show that microglial invasion into the injury site is key to reducing BBB disruption. Our data suggest that microglia repair the BBB following concussion, but in doing so significantly alter the cellular ultrastructure of the brain milieu.
Collapse
Affiliation(s)
- Rita H Nguyen
- Department of Pharmacology and Physiology, University of Calgary, Calgary T2N1N4, AB, Canada
- Snyder Institute for Chronic Diseases, Cumming School of Medicine, Calgary T2N1N4, AB, Canada
| | - Michelle Newton
- Department of Pharmacology and Physiology, University of Calgary, Calgary T2N1N4, AB, Canada
- Snyder Institute for Chronic Diseases, Cumming School of Medicine, Calgary T2N1N4, AB, Canada
| | - Rachel M Kratofil
- Department of Pharmacology and Physiology, University of Calgary, Calgary T2N1N4, AB, Canada
- Snyder Institute for Chronic Diseases, Cumming School of Medicine, Calgary T2N1N4, AB, Canada
| | - Brittney N V Scott
- Department of Pharmacology and Physiology, University of Calgary, Calgary T2N1N4, AB, Canada
- Snyder Institute for Chronic Diseases, Cumming School of Medicine, Calgary T2N1N4, AB, Canada
| | - Fernanda Castanheira
- Department of Pharmacology and Physiology, University of Calgary, Calgary T2N1N4, AB, Canada
- Snyder Institute for Chronic Diseases, Cumming School of Medicine, Calgary T2N1N4, AB, Canada
| | - Jung-Seok Kim
- Department of Immunology and Biological Regeneration, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Florent Ginhoux
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore 138648, Singapore
- Gustave Roussy Cancer Campus, Villejuif 94800, France
| | - Steffen Jung
- Department of Immunology and Biological Regeneration, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Paul Kubes
- Department of Pharmacology and Physiology, University of Calgary, Calgary T2N1N4, AB, Canada
- Snyder Institute for Chronic Diseases, Cumming School of Medicine, Calgary T2N1N4, AB, Canada
| |
Collapse
|
4
|
Xu M, Wang J, Shi J, Wu X, Zhao Q, Shen H, Chen J, Yu J. Esketamine mitigates endotoxin-induced hippocampal injury by regulating calcium transient and synaptic plasticity via the NF-α1/CREB pathway. Neuropharmacology 2025; 269:110362. [PMID: 39947390 DOI: 10.1016/j.neuropharm.2025.110362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 01/30/2025] [Accepted: 02/10/2025] [Indexed: 02/18/2025]
Abstract
Esketamine (ES) has been shown to confer neuroprotection partly by exerting anti-inflammation, alleviating oxidative stress, enhancing neuronal vitality, and promoting synaptic remodeling. Nonetheless, its precise function in SAE and the associated mechanisms are not understood. In this study, we investigated the neuroprotective potential of ES at behavioral, structural, and functional levels in vivo and in vitro. C57BL/6J mice administered with lipopolysaccharide (LPS) served as the research model and were injected with 10 mg/kg ES intraperitoneally. Fiber photometry was performed to record Ca2+ transients during behavioral assays. The neuronal dendritic architecture and synaptic plasticity were examined using the Golgi staining and transmission electron microscopy. Stereotactic administration of siRNA was performed to suppress the NF-α1 expression and determine the role of the NF-α1/CREB pathway in vitro. The neuroprotective effects of ES were verified in primary neurons and HT22 cells using a conditioned culture. The ES treatment alleviated sepsis symptoms, cognitive impairment, and decreased mortality. It also upregulated the NF-α1 expression in the hippocampal CA1 region and reduced neuroinflammation, oxidative stress, and neuronal loss. Moreover, ES treatment normalized the Ca2+ transients and improved dendritic structure as well as synaptic plasticity. However, NF-α1 knockdown p-CREB downregulation abolished the protective effects of ES. This also reversed the phenotypic characteristics of Ca2+ transients, dendritic structure, and post-synaptic plasticity. ES can abolish the LPS-induced hippocampal neurotoxicity in vitro and in vivo models and modulate neuronal Ca2+ transients and post-synaptic plasticity via the NF-α1/CREB signaling pathway. These findings provide a theoretical basis that will guide the future application of ES to treat hippocampal injury in sepsis.
Collapse
Affiliation(s)
- Mu Xu
- Department of Anesthesiology and Critical Care Medicine, Tianjin Nankai Hospital, Tianjin Medical University, Tianjin, China; Department of Anesthesiology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430014, Hubei, China
| | - Jialiang Wang
- School of Biomedical Engineering and Technology, Tianjin Medical University, Tianjin, China
| | - Jia Shi
- Department of Anesthesiology and Critical Care Medicine, Tianjin Nankai Hospital, Tianjin Medical University, Tianjin, China; Institute of Integrative Medicine for Acute Abdominal Diseases, Tianjin, China; Tianjin Key Laboratory of Acute Abdomen Disease Associated Organ Injury and ITCWM Repair, Tianjin, China
| | - Xiuyun Wu
- Department of Anesthesiology and Critical Care Medicine, Tianjin Nankai Hospital, Tianjin Medical University, Tianjin, China
| | - Qin Zhao
- Department of Anesthesiology and Critical Care Medicine, Tianjin Nankai Hospital, Tianjin Medical University, Tianjin, China
| | - Hui Shen
- School of Biomedical Engineering and Technology, Tianjin Medical University, Tianjin, China.
| | - Jingli Chen
- Department of Anesthesiology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430014, Hubei, China.
| | - Jianbo Yu
- Department of Anesthesiology and Critical Care Medicine, Tianjin Nankai Hospital, Tianjin Medical University, Tianjin, China; Institute of Integrative Medicine for Acute Abdominal Diseases, Tianjin, China; Tianjin Key Laboratory of Acute Abdomen Disease Associated Organ Injury and ITCWM Repair, Tianjin, China.
| |
Collapse
|
5
|
Wang J, Zhong Z, Luo H, Han Q, Wu K, Jiang A, Chen L, Gao Y, Jiang Y. Modulation of brain immune microenvironment and cellular dynamics in systemic inflammation. Theranostics 2025; 15:5153-5171. [PMID: 40303348 PMCID: PMC12036864 DOI: 10.7150/thno.107061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Accepted: 03/13/2025] [Indexed: 05/02/2025] Open
Abstract
Background: Sepsis-associated encephalopathy (SAE) is a severe complication of sepsis, affecting approximately 70% of patients, leading to increased mortality and long-term cognitive impairments among survivors. However, there is a lack of comprehensive studies on the development of SAE, especially related to the cellular communication networks in the brain microenvironment. Methods: We evaluated the impact of myeloid cells on the brain's immune microenvironment through glial cell alterations using bulk and single-cell transcriptomics data from human and mouse models and validated this with correlative experiments. We also developed the DeconvCellLink R package to study neuroinflammation-associated cellular interaction networks. A dynamic brain immune microenvironment map showing temporal alterations in brain cellular network during systemic inflammatory reactions was constructed using time-series data. Results: While brain cellular alterations differed between human and animal models, a highly conserved set of sepsis-associated genes regulating immune microenvironment signalling was identified. The dynamic alterations in cellular interaction networks and cytokines revealed brain immune cells' temporal response to systemic inflammation. We also found that valproic acid could mitigate sepsis-induced neuroinflammation by regulating glial cell balance and modulating the neuroimmune microenvironment. Conclusion: Through dynamic cellular communication networks, the study revealed that, immune dysregulation in the inflamed brain in SAE involves overactivation of innate immunity, with neutrophils playing a crucial role, providing a scientific framework for developing novel therapeutic strategies and offering new insights into the mechanisms underlying sepsis-induced brain dysfunction.
Collapse
Affiliation(s)
- Junhao Wang
- Guangdong Provincial Key Laboratory of Proteomics, State Key Laboratory of Organ Failure Research, Department of Pathophysiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
- Current address: Department of Medicine, Section of Epidemiology and Population Sciences, Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX, USA
| | - Zhaoqian Zhong
- Guangdong Provincial Key Laboratory of Proteomics, State Key Laboratory of Organ Failure Research, Department of Pathophysiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Haihua Luo
- Guangdong Provincial Key Laboratory of Proteomics, State Key Laboratory of Organ Failure Research, Department of Pathophysiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Qizheng Han
- Guangdong Provincial Key Laboratory of Proteomics, State Key Laboratory of Organ Failure Research, Department of Pathophysiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Kan Wu
- Guangdong Provincial Key Laboratory of Proteomics, State Key Laboratory of Organ Failure Research, Department of Pathophysiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Aolin Jiang
- Guangdong Provincial Key Laboratory of Proteomics, State Key Laboratory of Organ Failure Research, Department of Pathophysiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Li Chen
- Guangdong Provincial Key Laboratory of Proteomics, State Key Laboratory of Organ Failure Research, Department of Pathophysiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Yanxia Gao
- Henan Key Laboratory of Critical Care Medicine, Henan International Joint Laboratory of Infection and Immunity, Department of Critical Care Medicine and Department of Emergency Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
- Institute of Infection and Immunity, Henan Academy of Innovations in Medical Science Zhengzhou 451163, China
| | - Yong Jiang
- Guangdong Provincial Key Laboratory of Proteomics, State Key Laboratory of Organ Failure Research, Department of Pathophysiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
- Henan Key Laboratory of Critical Care Medicine, Henan International Joint Laboratory of Infection and Immunity, Department of Critical Care Medicine and Department of Emergency Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
- Institute of Infection and Immunity, Henan Academy of Innovations in Medical Science Zhengzhou 451163, China
- Department of Respiratory and Critical Care Medicine, The Tenth Affiliated Hospital (Dongguan People's Hospital), Southern Medical University, Dongguan, 523059, China
| |
Collapse
|
6
|
Zhao S, Li H, Luo W, Hu Z, Wang Y, Liu T, Zhang Y, Dai R. WHOLE TRANSCRIPTION ANALYSIS IDENTIFIED THE REGULATION OF HYPOXIA-INDUCIBLE FACTORS IN MONOCYTES WITH IMMUNE SUPPRESSION: IMPLICATIONS FOR CLINICAL OUTCOMES. Shock 2025; 63:541-551. [PMID: 39405478 PMCID: PMC11939089 DOI: 10.1097/shk.0000000000002479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/08/2024] [Accepted: 09/03/2024] [Indexed: 03/21/2025]
Abstract
ABSTRACT Aims: Sepsis progression is marked by a complex immune response, where the involvement of hypoxia-inducible factors (HIFs) plays an uncertain role. The study aims to elucidate the involvement of HIF-1α in monocyte function during sepsis and its potential as a prognostic indicator. Methods and Results: Transcriptomic data from healthy individuals and septic patients in datasets GSE54514, GSE167363, and GSE46955 were analyzed. Additionally, human monocytes were employed to elucidate how HIF regulates immune responses in the context of sepsis. Septic nonsurvivors exhibited sustained upregulation of HIF-1α expression alongside compromised inflammatory response and antigen presentation, with downregulation of NF-κB and HLADRB1 genes associated with poor sepsis prognosis. Conversely, septic survivors displayed an increased proportion of classical monocytes and enhanced inflammation and expression of antigen presentation-related genes. During the recovery phase of sepsis, monocytes continued to demonstrate elevated HIF-1α expression. In cultured THP1 cells and septic CD14 + monocytes, HIF hindered inflammatory responses and antigen presentation, while also suppressing the proportion of classical monocytes after LPS stimulation. Mechanistically, HIF significantly attenuated LPS-induced immune responses in monocytes by inhibiting the phosphorylation of IKK. Conclusions: HIF in monocytes acts as a suppressor of immune-inflammatory responses and antigen presentation, and may serve as a negative molecular marker for sepsis development.
Collapse
Affiliation(s)
- Shuai Zhao
- Department of Anesthesiology, the Second Xiangya Hospital, Central South University, Changsha, China
- Anesthesiology Research Institute of Central South University, Changsha, China
| | - Hui Li
- Department of Anesthesiology, the Second Xiangya Hospital, Central South University, Changsha, China
- Anesthesiology Research Institute of Central South University, Changsha, China
| | - Wei Luo
- Department of Anesthesiology, the Second Xiangya Hospital, Central South University, Changsha, China
- Anesthesiology Research Institute of Central South University, Changsha, China
| | - Zhaolan Hu
- Department of Anesthesiology, the Second Xiangya Hospital, Central South University, Changsha, China
- Anesthesiology Research Institute of Central South University, Changsha, China
| | - Yulu Wang
- Department of Integrated Oncology, Center for Integrated Oncology, University Hospital of Bonn, Bonn, Germany
| | - Tao Liu
- Department of Anesthesiology, the Second Xiangya Hospital, Central South University, Changsha, China
- Anesthesiology Research Institute of Central South University, Changsha, China
| | - Yanling Zhang
- Department of Anesthesiology, the Second Xiangya Hospital, Central South University, Changsha, China
- Anesthesiology Research Institute of Central South University, Changsha, China
| | - RuPing Dai
- Department of Anesthesiology, the Second Xiangya Hospital, Central South University, Changsha, China
- Anesthesiology Research Institute of Central South University, Changsha, China
| |
Collapse
|
7
|
Denver P, Cunningham C. Microglial activation and neuroinflammation in acute and chronic cognitive deficits in sepsis. Neuropharmacology 2025; 267:110285. [PMID: 39746541 DOI: 10.1016/j.neuropharm.2024.110285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 12/11/2024] [Accepted: 12/26/2024] [Indexed: 01/04/2025]
Abstract
Sepsis is characterised by dysregulated immune responses to infection, leading to multi-organ dysfunction and high rates of mortality. With increasing survival rates in recent years long-term neurological and psychiatric consequences have become more apparent in survivors. Many patients develop sepsis associated encephalopathy (SAE) which encompasses the profound but usually transient neuropsychiatric syndrome delirium but also new brain injury that emerges in the months and years post-sepsis. It is now clear that systemic inflammatory signals reach the brain during sepsis and that very significant neuroinflammation ensues. The major brain resident immune cell population, the microglia, has been implicated in acute and chronic cognitive dysfunction in animal models of sepsis based on a growing number of studies using bacterial endotoxin and in polymicrobial sepsis models such as cecal ligation and puncture. The current review explores the effects of sepsis on the brain, focussing on how systemic insults translate to microglial activation and neuroinflammation and how this disrupts neuronal function and integrity. We examine what has been demonstrated specifically with respect to microglial activation, revealing robust evidence for a role for neuroinflammation in sepsis-induced brain sequelae but less clear information on the extent of the specific microglial contribution to this, arising from findings using global knockout mice, non-selective drugs and treatments that equally target peripheral and central compartments. There is, nonetheless, clear evidence that microglia do become activated and do contribute to brain consequences of sepsis thus arguing for improved understanding of these neuroinflammatory processes toward the prevention and treatment of sepsis-induced brain dysfunction.
Collapse
Affiliation(s)
- Paul Denver
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Pearse Street, Dublin 2, Ireland
| | - Colm Cunningham
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Pearse Street, Dublin 2, Ireland.
| |
Collapse
|
8
|
Hu J, Chen Z, Wang J, Xu A, Sun J, Xiao W, Yang M. Identification and Evaluation of Lipocalin-2 in Sepsis-Associated Encephalopathy via Machine Learning Approaches. J Inflamm Res 2025; 18:3843-3858. [PMID: 40109658 PMCID: PMC11920642 DOI: 10.2147/jir.s504390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Accepted: 03/04/2025] [Indexed: 03/22/2025] Open
Abstract
Purpose Sepsis-associated encephalopathy (SAE) critically contributes to poor prognosis in septic patients. Identifying and screening key genes responsible for SAE, as well as exploring potential targeted therapies, are vital for improving the management of sepsis and advancing precision medicine. Patients and Methods Single-cell RNA sequencing (scRNA-seq) was administrated to identify cell subpopulations related to poor prognosis in septic patients. Next, hierarchical dynamic weighted gene co-expression network analysis (hdWGCNA) was employed to identify genes associated with specific neutrophil subpopulations. Enrichment analysis revealed the biological functions of these genes. Subsequently, neuroinflammation-related genes were obtained to construct a neuroinflammation-related signature. The AddModuleScore algorithm was used to calculate neuroinflammation scores for each cell subpopulation, whereas the CellCall algorithm was used to assess the crosstalk between neutrophils and other cell subpopulations. To identify key genes accurately, four binary classification machine learning algorithms were utilized. Finally, Western blotting and behavioral tests were used to confirm the role of LCN2-related neuroinflammation in septic mice. Results This study utilized scRNA-seq to reveal the critical role of peripheral neutrophils during sepsis, identifying these neutrophils as contributors to poor prognosis and associated with neuroinflammation. On the basis of various machine learning algorithms, we discovered that Lipocalin-2 (LCN2) may be the key gene involved in neutrophil-induced SAE. To prove these findings, we conducted in vivo experiments and an animal model. Increased LCN2 expression and cognitive dysfunction occurred in septic mice. Additionally, the levels of markers of astrocytes and microglia and inflammatory factors such as TNF-α and IL-6 were significantly increased. All these phenomena were reversed by the downregulation of LCN2. Conclusion The upregulation of LCN2 expression on peripheral neutrophils is a critical step that triggers neuroinflammation in the central nervous system during SAE.
Collapse
Affiliation(s)
- Jia Hu
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, People's Republic of China
- Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei, Anhui Province, People's Republic of China
| | - Ziang Chen
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, People's Republic of China
- Fudan Institute of Urology, Huashan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Jinyan Wang
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, People's Republic of China
- Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei, Anhui Province, People's Republic of China
| | - Aoxue Xu
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, People's Republic of China
- Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei, Anhui Province, People's Republic of China
| | - Jinkai Sun
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, People's Republic of China
- Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei, Anhui Province, People's Republic of China
| | - Wenyan Xiao
- The Second Department of Critical Care Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, People's Republic of China
- The Laboratory of Cardiopulmonary Resuscitation and Critical Care Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, People's Republic of China
| | - Min Yang
- The Second Department of Critical Care Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, People's Republic of China
- The Laboratory of Cardiopulmonary Resuscitation and Critical Care Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, People's Republic of China
| |
Collapse
|
9
|
Heffernan ÁB, Steinruecke M, Dempsey G, Chandran S, Selvaraj BT, Jiwaji Z, Stavrou M. Role of glia in delirium: proposed mechanisms and translational implications. Mol Psychiatry 2025; 30:1138-1147. [PMID: 39463449 PMCID: PMC11835730 DOI: 10.1038/s41380-024-02801-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 08/23/2024] [Accepted: 10/17/2024] [Indexed: 10/29/2024]
Abstract
Delirium is a common acute onset neurological syndrome characterised by transient fluctuations in cognition. It affects over 20% of medical inpatients and 50% of those critically ill. Delirium is associated with morbidity and mortality, causes distress to patients and carers, and has significant socioeconomic costs in ageing populations. Despite its clinical significance, the pathophysiology of delirium is understudied, and many underlying cellular mechanisms remain unknown. There are currently no effective pharmacological treatments which directly target underlying disease processes. Although many studies focus on neuronal dysfunction in delirium, glial cells, primarily astrocytes, microglia, and oligodendrocytes, and their associated systems, are increasingly implicated in delirium pathophysiology. In this review, we discuss current evidence which implicates glial cells in delirium, including biomarker studies, post-mortem tissue analyses and pre-clinical models. In particular, we focus on how astrocyte pathology, including aberrant brain energy metabolism and glymphatic dysfunction, reactive microglia, blood-brain barrier impairment, and white matter changes may contribute to the pathogenesis of delirium. We also outline limitations in this body of work and the unique challenges faced in identifying causative mechanisms in delirium. Finally, we discuss how established neuroimaging and single-cell techniques may provide further mechanistic insight at pre-clinical and clinical levels.
Collapse
Affiliation(s)
- Áine Bríd Heffernan
- UK Dementia Research Institute at The University of Edinburgh, The University of Edinburgh, Edinburgh, UK
- Centre for Clinical Brain Sciences, The University of Edinburgh, Edinburgh, UK
| | | | - Georgia Dempsey
- School of Medicine, University of St Andrews, St Andrews, UK
- Centre for Neural Circuits and Behaviour, University of Oxford, Oxford, UK
| | - Siddharthan Chandran
- UK Dementia Research Institute at The University of Edinburgh, The University of Edinburgh, Edinburgh, UK
- Centre for Clinical Brain Sciences, The University of Edinburgh, Edinburgh, UK
- Euan MacDonald Centre for Motor Neuron Disease Research, The University of Edinburgh, Edinburgh, UK
- Anne Rowling Regenerative Neurology Clinic, The University of Edinburgh, Edinburgh, UK
| | - Bhuvaneish T Selvaraj
- UK Dementia Research Institute at The University of Edinburgh, The University of Edinburgh, Edinburgh, UK
- Centre for Clinical Brain Sciences, The University of Edinburgh, Edinburgh, UK
- Euan MacDonald Centre for Motor Neuron Disease Research, The University of Edinburgh, Edinburgh, UK
- Anne Rowling Regenerative Neurology Clinic, The University of Edinburgh, Edinburgh, UK
| | - Zoeb Jiwaji
- UK Dementia Research Institute at The University of Edinburgh, The University of Edinburgh, Edinburgh, UK
- Centre for Clinical Brain Sciences, The University of Edinburgh, Edinburgh, UK
| | - Maria Stavrou
- UK Dementia Research Institute at The University of Edinburgh, The University of Edinburgh, Edinburgh, UK.
- Centre for Clinical Brain Sciences, The University of Edinburgh, Edinburgh, UK.
- Euan MacDonald Centre for Motor Neuron Disease Research, The University of Edinburgh, Edinburgh, UK.
- Anne Rowling Regenerative Neurology Clinic, The University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
10
|
Denver P, Tortorelli L, Hov K, Berg JP, Giil LM, Nazmi A, Lopez-Rodriguez A, Healy D, Murray C, Barry R, Watne LO, Cunningham C. Chemokine associations with blood cerebrospinal fluid (CSF) barrier permeability and delirium. Brain Behav Immun Health 2025; 43:100920. [PMID: 39839987 PMCID: PMC11750293 DOI: 10.1016/j.bbih.2024.100920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Accepted: 12/01/2024] [Indexed: 01/23/2025] Open
Abstract
Delirium is a highly prevalent neuropsychiatric syndrome characterised by acute and fluctuating impairments in attention and cognition. Mechanisms driving delirium are poorly understood but it has been suggested that blood cytokines and chemokines cross the blood brain barrier during delirium, directly impairing brain function. It is not known whether these molecules reach higher brain levels when the blood cerebrospinal fluid barrier (BCSFB) is impaired. Here, in human hip-fracture patients, we tested the influence of BCSFB integrity on CSF levels of chemokines and assessed their association with delirium. CSF levels of IP-10, eotaxin, eotaxin 3 and TARC showed weak to moderate correlations with BCSFB permeability, as measured by the Qalbumin ratio, while MCP1, IL-8, MIP1α and MIP1β showed no significant correlation. Chemokines were not associated with delirium in univariate analysis or when stratified on dementia status, but exploratory analyses showed that elevated Eotaxin (CCL11) and MIP1α (CCL3) were associated with prevalent delirium. Modelling acute systemic inflammation, we used bacterial LPS (250 μg/kg) or sterile laparotomy surgery in mice to demonstrate de novo synthesis of chemokines at the choroid plexus (CP) and microvasculature. Gene expression data showed CP-enriched expression of Il1b, Tnfa, Cxcl1 and Ccl3 in both models and immunohistochemistry showed cytokine and chemokine synthesis in CP stromal (IL-1β, CCL2/MCP1) or epithelial cells (CXCL10/IP-10) cells and at the microvasculature. Larger studies are required to confirm these human findings on chemokine associations with BCSFB permeability and prevalent delirium. Preclinical studies are warranted to determine whether chemokines might play a role in the pathophysiology of delirium.
Collapse
Affiliation(s)
- Paul Denver
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute & Trinity College Institute of Neuroscience, Trinity College Dublin, Pearse Street, Dublin 2, Ireland
| | - Lucas Tortorelli
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute & Trinity College Institute of Neuroscience, Trinity College Dublin, Pearse Street, Dublin 2, Ireland
| | - Karen Hov
- Oslo Delirium Research Group, Department of Geriatric Medicine, Akershus University Hospital, Lørenskog, Norway
| | | | - Lasse M. Giil
- Department of Clinical Science, University of Bergen, 5020, Bergen, Norway
| | - Arshed Nazmi
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute & Trinity College Institute of Neuroscience, Trinity College Dublin, Pearse Street, Dublin 2, Ireland
| | - Ana Lopez-Rodriguez
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute & Trinity College Institute of Neuroscience, Trinity College Dublin, Pearse Street, Dublin 2, Ireland
| | - Daire Healy
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute & Trinity College Institute of Neuroscience, Trinity College Dublin, Pearse Street, Dublin 2, Ireland
| | - Carol Murray
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute & Trinity College Institute of Neuroscience, Trinity College Dublin, Pearse Street, Dublin 2, Ireland
| | - Robyn Barry
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute & Trinity College Institute of Neuroscience, Trinity College Dublin, Pearse Street, Dublin 2, Ireland
| | - Leiv Otto Watne
- Oslo Delirium Research Group, Department of Geriatric Medicine, Akershus University Hospital, Lørenskog, Norway
- Institute of Clinical Medicine, University of Oslo, Norway
| | - Colm Cunningham
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute & Trinity College Institute of Neuroscience, Trinity College Dublin, Pearse Street, Dublin 2, Ireland
| |
Collapse
|
11
|
Zhou L, Shi H, Xiao M, Liu W, Wang L, Zhou S, Chen S, Wang Y, Liu C. Remimazolam attenuates lipopolysaccharide-induced neuroinflammation and cognitive dysfunction. Behav Brain Res 2025; 476:115268. [PMID: 39322063 DOI: 10.1016/j.bbr.2024.115268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 09/14/2024] [Accepted: 09/20/2024] [Indexed: 09/27/2024]
Abstract
OBJECTIVE Remimazolam, a novel benzodiazepine, is widely used as an anesthetic in endoscopic procedures; however, its effects on cognitive function remain unclear, limiting its broader application in general anaesthesia. Neuroinflammation is a well-established key factor in the etiology and progression of cognitive dysfunction, including conditions such as Alzheimer's disease, Parkinson's disease, postoperative delirium, and postoperative cognitive dysfunction. Preclinical studies have demonstrated that remimazolam exerts anti-inflammatory and neuroprotective effects, and clinical reports indicate a reduced incidence of postoperative delirium in patients treated with remimazolam. Nevertheless, whether remimazolam improves cognitive function through its anti-inflammatory properties remains uncertain. This study aimed to investigate the neuroprotective effects of remimazolam and its underlying mechanism in a lipopolysaccharide (LPS)-induced model of neuroinflammation, neuronal injury, and cognitive dysfunction METHODS: C57BL/6 J male mice were administered LPS intraperitoneally to establish a model of neuroinflammation-induced cognitive impairment. A subset of mice received remimazolam via intraperitoneal injection 30 minutes prior to LPS administration. Cognitive performance was evaluated using behavioural tests, including the Morris Water Maze (MWM), Novel Object Recognition (NOR) test, and Open Field Test (OFT). Hippocampal tissues were analyzed by haematoxylin-eosin (HE) staining to assess structural changes. Inflammatory markers, including Interleukin (IL)-6, IL-1β, and tumor necrosis factor-α, were quantified using enzyme-linked immunosorbent assay (ELISA) and real-time quantitative PCR. Immunofluorescence was used to detect translocator protein (TSPO) and markers of microglia activation (IBA-1, CD16/32, and CD206). RESULTS (1) Remimazolam reversed LPS-induced cognitive deficits, as evidenced by shorter spatial exploration latency and increased platform crossings in the MWM, and an elevated recognition index in the NOR test. (2) Remimazolam improved hippocampal morphology, reducing LPS-induced neuronal damage. (3) Remimazolam significantly decreased levels of hippocampal inflammatory cytokines, inhibited microglial activation, promoted M2-type microglia polarization, and increased TSPO expression. CONCLUSION Remimazolam demonstrated neuroprotective and anti-neuroinflammatory effects in a mouse model of LPS-induced cognitive impairment. These effects are likely mediated through the regulation of TSPO, which inhibits microglial activation and promotes the polarization of microglia from the pro-inflammatory M1 phenotype to the anti-inflammatory M2 phenotype.
Collapse
Affiliation(s)
- Leguang Zhou
- Department of Anesthesiology, The Second Affiliated Hospital of University of South China, Hengyang, China; University of South China Hengyang Medical School Clinical Anatomy & Reproductive Medicine Application Institute, China
| | - Hongzhao Shi
- Department of Anesthesiology, The Second Affiliated Hospital of University of South China, Hengyang, China
| | - Mengzhe Xiao
- Department of Anesthesiology, The Second Affiliated Hospital of University of South China, Hengyang, China
| | - Wenjie Liu
- Department of Anesthesiology, The Second Affiliated Hospital of University of South China, Hengyang, China
| | - Lijuan Wang
- Department of Anesthesiology, The Second Affiliated Hospital of University of South China, Hengyang, China
| | - Shangtao Zhou
- Department of Anesthesiology, The Second Affiliated Hospital of University of South China, Hengyang, China
| | - Shenghua Chen
- University of South China Hengyang Medical School Clinical Anatomy & Reproductive Medicine Application Institute, China
| | - Yan Wang
- Department of Anesthesiology, The Second Affiliated Hospital of University of South China, Hengyang, China.
| | - Chengxi Liu
- Department of Anesthesiology, The Second Affiliated Hospital of University of South China, Hengyang, China; Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, China.
| |
Collapse
|
12
|
Duan H, Yang X, Cai S, Zhang L, Qiu Z, Wang J, Wang S, Li Z, Li X. Nrf2 mitigates sepsis-associated encephalopathy-induced hippocampus ferroptosis via modulating mitochondrial dynamic homeostasis. Int Immunopharmacol 2024; 143:113331. [PMID: 39396427 DOI: 10.1016/j.intimp.2024.113331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 09/24/2024] [Accepted: 10/04/2024] [Indexed: 10/15/2024]
Abstract
Sepsis-associated encephalopathy (SAE) is a serious neurological complication accompanied with acute and long-term cognitive dysfunction. Ferroptosis is a newly discovered type of cell death that is produced by iron-dependent lipid peroxidation. Emerging evidence suggests that ferroptosis is involved in SAE. The nuclear factor erythroid 2-related factor 2 (Nrf2) is a mitochondria related gene involved in ferroptosis. However, the role of Nrf2 in SAE and the mechanisms remains elusive. In this study, we found that Nrf2 knockout aggravated cognitive and emotional dysfunction and promoted caecal ligation and puncture (CLP)-induced brain injury and hippocampus ferroptosis as indicated by the increase of ROS, Fe2+ and the levels of proinflammatory cytokines. Meanwhile, the levels of glutathione peroxidase 4 (GPX4), SLC7A11 and glutathionewere downregulatedin Nrf2 knockout group. In vitro experiments showed that mitochondrial ROS, Fe2+ and the expression of Fis1 and Drp1 decreased, and the level of Mfn1 and Opa-1 increased after Nrf2 overexpression. The silence of Nrf2 increased the expression of ROS, MDA and Fe2+, while decreased glutathione, mitochondrial membrane potential (MMP) and cell viability in vitro, indicating Nrf2 improved LPS-induced mitochondrial dysfunction and mitigated hippocampal cells ferroptosis. These results suggest that Nrf2 could inhibit ferroptosis and neuroinflammation in hippocampus and reduce cognitive dysfunction in SAE mice, making it a potential therapeutic target in the treatment of SAE. The protective effects of Nrf2 on the brain may be mediated by maintaining mitochondrial dynamic homeostasis.
Collapse
Affiliation(s)
- Haifeng Duan
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, Wuhan, China; Hubei Provincial Engineering Research Center of Minimally Invasive Cardiovascular Surgery, Wuhan, China; Wuhan Clinical Research Center for Minimally Invasive Treatment of Structural Heart Disease, Wuhan, China
| | - Xin Yang
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, Wuhan, China; Hubei Provincial Engineering Research Center of Minimally Invasive Cardiovascular Surgery, Wuhan, China; Wuhan Clinical Research Center for Minimally Invasive Treatment of Structural Heart Disease, Wuhan, China
| | - Shuhan Cai
- Department of Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China; Clinical Research Center of Hubei Critical Care Medicine, Wuhan, China
| | - Lei Zhang
- Department of Anesthesiology, the First Clinical College of Hubei University of Medicine, Shiyan, Hubei, China
| | - Zebao Qiu
- Department of Anesthesiology, Suizhou Zengdu Hospital, Suizhou, Hubei, China
| | - Jin Wang
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Shun Wang
- Department of Ophthalmology, Zhongnan Hospital of Wuhan University, Wuhan, China.
| | - Zhi Li
- Department of Ophthalmology, Zhongnan Hospital of Wuhan University, Wuhan, China.
| | - Xinyi Li
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, Wuhan, China; Hubei Provincial Engineering Research Center of Minimally Invasive Cardiovascular Surgery, Wuhan, China; Wuhan Clinical Research Center for Minimally Invasive Treatment of Structural Heart Disease, Wuhan, China.
| |
Collapse
|
13
|
Yang YS, Liu CY, Pei MQ, Sun ZD, Lin S, He HF. Quercetin protects against sepsis-associated encephalopathy by inhibiting microglia-neuron crosstalk via the CXCL2/CXCR2 signaling pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 134:155987. [PMID: 39216299 DOI: 10.1016/j.phymed.2024.155987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 08/15/2024] [Accepted: 08/25/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND Sepsis-associated encephalopathy (SAE) is a common brain lesion associated with severe sepsis, for which ferroptosis is a key driving factor. Thus, suppressing ferroptosis may be an effective strategy for treating SAE. Quercetin (QUE) is a natural flavonoid with antioxidant and anti-inflammatory properties. However, its role on ferroptosis in SAE remains unclear. PURPOSE This study aimed to investigate the mechanism underlying the therapeutic effect of QUE on cecal ligation perforation (CLP)-induced SAE. METHODS In vivo and in vitro SAE models were established using CLP and lipopolysaccharide (LPS), respectively. Both models underwent pre-treatment with QUE. RESULTS QUE attenuated CLP-induced symptoms, including temperature changes, neurological severity scores, learning and memory dysfunction, inflammatory cytokine release, and microglia activation in SAE mice, and inhibited LPS-induced microglia recruitment and chemotaxis. Bioinformatics analysis revealed that the C-X-C motif chemokine ligand 2 (CXCL2)/C-X-C motif chemokine receptor 2 (CXCR2) axis may play a key role in QUE-mediated protection against SAE. Moreover, QUE significantly inhibited LPS-induced CXCL2 up-regulation and protein secretion from microglia. Recombinant mouse-derived CXCL2 (rmCXCL2) promoted inflammatory cytokine secretion, NF-κB/NLRP3 signaling activation, and microglia recruitment and chemotaxis. Furthermore, rmCXCL2 induced ferroptosis in mouse hippocampal neurons, as evidenced by elevated malondialdehyde levels, decreased glutathione levels, excessive iron uptake, and altered ferroptosis-related protein expression. The CXCR2 antagonist SB225002 effectively reversed the effects of rmCXCL2. Importantly, in vivo experiments further demonstrated that the therapeutic effect of QUE on SAE was inhibited by rmCXCL2. CONCLUSION This study demonstrates that CXCL2 secreted by activated microglia mediates microglia self-activation and induces hippocampal neuronal ferroptosis via CXCR2 and that QUE exerts neuroprotective effects on SAE by blocking interactions between microglia and neurons via CXCL2/CXCR2 pathway inhibition.
Collapse
Affiliation(s)
- Yu-Shen Yang
- Department of Anesthesiology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Chu-Yun Liu
- Department of Anesthesiology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Meng-Qin Pei
- Department of Anesthesiology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Zhen-Dong Sun
- Department of Anesthesiology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Shu Lin
- Centre of Neurological and Metabolic Research, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China; Neuroendocrinology Group, Garvan Institute of Medical Research, Darlinghurst, Australia.
| | - He-Fan He
- Department of Anesthesiology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China.
| |
Collapse
|
14
|
Singh MV, Uddin MN, Covacevich Vidalle M, Sutton KR, Boodoo ZD, Peterson AN, Tyrell A, Tivarus ME, Wang HZ, Sahin B, Zhong J, Weber MT, Wang L, Qiu X, Maggirwar SB, Schifitto G. Non-classical monocyte levels correlate negatively with HIV-associated cerebral small vessel disease and cognitive performance. Front Cell Infect Microbiol 2024; 14:1405431. [PMID: 39507948 PMCID: PMC11537857 DOI: 10.3389/fcimb.2024.1405431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 09/30/2024] [Indexed: 11/08/2024] Open
Abstract
Background Despite antiretroviral treatment (cART), aging people living with HIV (PWH) are more susceptible to neurocognitive impairment (NCI) probably due to synergistic/additive contribution of traditional cerebrovascular risk factors. Specifically, transmigration of inflammatory CD16+ monocytes through the altered blood brain barrier (BBB) may exacerbate cerebral small vessel disease (CSVD), a known cause of vascular cognitive impairment. Methods PWH on cART (n=108) and age, sex, and Reynold's cardiovascular risk score-matched uninfected individuals (PWoH, n=111) were enrolled. This is a longitudinal observational study but only cross-sectional data from entry visit are reported. Neuropsychological testing and brain magnetic resonance imaging (MRI) were performed. CSVD was diagnosed by Fazekas score ≥1. Flow cytometric analyses of fresh whole blood were conducted to evaluate circulating levels of monocyte subsets (classical, intermediate, and non-classical) and markers of monocyte activation (CCR2, CD40, PSGL-1, TNFR2 and tissue factor). ELISAs were used to measure sCD14, ICAM, and Osteoprotegerin. Two-way analysis of variance (ANOVA), and linear regression models were performed to study the effects of HIV status, CSVD status, and their interaction to outcome variables such as cognitive score. Two-sample t-tests and correlation analyses were performed between and within PWoH with CSVD and PWH with CSVD participants. Results PWH with CSVD (n=81) had significantly lower total cognitive scores, higher levels of NCMs and soluble CD14 and intracellular adhesion molecule 1 (ICAM-1) as compared to PWoH with CSVD group (n=68). sCD14 and ICAM1 were positively correlated with each other indicating that monocyte and endothelial activation are associated with each other. Cognition was negatively correlated with NCMs, especially in the PWH with CSVD group. Among other blood biomarkers measured, osteoprotegerin levels showed mild negative correlation with cognitive performance in individuals with CSVD irrespective of HIV status. Conclusions Elevated levels of NCMs may contribute to neuroinflammation, CSVD and subsequent cognitive impairment. This finding is of particular relevance in aging PWH as both HIV and aging are associated with increased levels of NCMs. NCMs may serve as a potential biomarker to address these comorbidities. Further longitudinal studies are needed to evaluate whether changes in NCM levels are associated with changes in CSVD burden and cognitive impairment.
Collapse
Affiliation(s)
- Meera V. Singh
- Department of Neurology, University of Rochester, Rochester, NY, United States
- Department of Microbiology and Immunology, University of Rochester, Rochester, NY, United States
| | - Md Nasir Uddin
- Department of Neurology, University of Rochester, Rochester, NY, United States
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, United States
| | | | - Karli R. Sutton
- Department of Microbiology and Immunology, University of Rochester, Rochester, NY, United States
| | - Zachary D. Boodoo
- Department of Microbiology and Immunology, University of Rochester, Rochester, NY, United States
| | | | - Alicia Tyrell
- Clinical and Translational Science Institute, University of Rochester, Rochester, NY, United States
| | - Madalina E. Tivarus
- Department of Imaging Sciences, University of Rochester, Rochester, NY, United States
- Department of Neuroscience, University of Rochester, Rochester, NY, United States
| | - Henry Z. Wang
- Department of Imaging Sciences, University of Rochester, Rochester, NY, United States
| | - Bogachan Sahin
- Department of Neurology, University of Rochester, Rochester, NY, United States
| | - Jianhui Zhong
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, United States
- Department of Imaging Sciences, University of Rochester, Rochester, NY, United States
- Department of Physics and Astronomy, University of Rochester, Rochester, NY, United States
| | - Miriam T. Weber
- Department of Neurology, University of Rochester, Rochester, NY, United States
- Department of Obstetrics and Gynecology, University of Rochester, Rochester, NY, United States
| | - Lu Wang
- Department of Biostatistics and Computational Biology, University of Rochester, Rochester, NY, United States
| | - Xing Qiu
- Department of Biostatistics and Computational Biology, University of Rochester, Rochester, NY, United States
| | - Sanjay B. Maggirwar
- Department of Microbiology, Immunology and Tropical Medicine, George Washington University, Washington, DC, United States
| | - Giovanni Schifitto
- Department of Neurology, University of Rochester, Rochester, NY, United States
- Department of Imaging Sciences, University of Rochester, Rochester, NY, United States
- Department of Electrical and Computer Engineering, University of Rochester, Rochester, NY, United States
| |
Collapse
|
15
|
McCloskey MC, Ahmad SD, Widom LP, Kasap P, Gastfriend BD, Shusta EV, Palecek SP, Engelhardt B, Gaborski TR, Flax J, Waugh RE, McGrath JL. Pericytes Enrich the Basement Membrane and Reduce Neutrophil Transmigration in an In Vitro Model of Peripheral Inflammation at the Blood-Brain Barrier. Biomater Res 2024; 28:0081. [PMID: 39363889 PMCID: PMC11447289 DOI: 10.34133/bmr.0081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 08/22/2024] [Accepted: 08/26/2024] [Indexed: 10/05/2024] Open
Abstract
Sepsis is the most lethal and expensive condition treated in intensive care units. Sepsis survivors frequently suffer long-term cognitive impairment, which has been linked to the breakdown of the blood-brain barrier (BBB) during a sepsis-associated "cytokine storm". Because animal models poorly recapitulate sepsis pathophysiology, human models are needed to understand sepsis-associated brain injury and to develop novel therapeutic strategies. With the concurrent emergence of tissue chip technologies and the maturation of protocols for human induced pluripotent stem cell (hiPSC), we can now develop advanced in vitro models of the human BBB and immune system to understand the relationship between systemic inflammation and brain injury. Here, we present a BBB model of the primary barrier developed on the μSiM (microphysiological system enabled by an ultrathin silicon nanomembrane) tissue chip platform. The model features isogenically matched hiPSC-derived extended endothelial culture method brain microvascular endothelial cell-like cells (EECM-BMEC-like cells) and brain pericyte-like cells (BPLCs) in a back-to-back coculture separated by the ultrathin (100 nm) membrane. Both endothelial monocultures and cocultures with pericytes responded to sepsis-like stimuli, with increased small-molecule permeability, although no differences were detected between culture conditions. Conversely, BPLC coculture reduced the number of neutrophils that crossed the EECM-BMEC-like cell monolayer under sepsis-like stimulation. Interestingly, this barrier protection was not seen when the stimulus originated from the tissue side. Our studies are consistent with the reported role for pericytes in regulating leukocyte trafficking during sepsis but indicate that EECM-BMEC-like cells alone are sufficient to maintain the restrictive small-molecule permeability of the BBB.
Collapse
Affiliation(s)
- Molly C. McCloskey
- Department of Biomedical Engineering,
University of Rochester, Rochester NY, USA
| | - S. Danial Ahmad
- Department of Biomedical Engineering,
University of Rochester, Rochester NY, USA
| | - Louis P. Widom
- Department of Biomedical Engineering,
Rochester Institute of Technology, Rochester NY, USA
| | - Pelin Kasap
- Theodor Kocher Institute,
University of Bern, Bern, Switzerland
| | - Benjamin D. Gastfriend
- Department of Chemical and Biological Engineering,
University of Wisconsin–Madison, Madison, WI, USA
- Departments of Pharmacology and Neurosciences,
University of California, San Diego, La Jolla, CA, USA
| | - Eric V. Shusta
- Department of Chemical and Biological Engineering,
University of Wisconsin–Madison, Madison, WI, USA
- Department of Neurological Surgery,
University of Wisconsin–Madison, Madison, WI, USA
| | - Sean P. Palecek
- Department of Chemical and Biological Engineering,
University of Wisconsin–Madison, Madison, WI, USA
| | | | - Thomas R. Gaborski
- Department of Biomedical Engineering,
Rochester Institute of Technology, Rochester NY, USA
| | - Jonathan Flax
- Department of Biomedical Engineering,
University of Rochester, Rochester NY, USA
| | - Richard E. Waugh
- Department of Biomedical Engineering,
University of Rochester, Rochester NY, USA
| | - James L. McGrath
- Department of Biomedical Engineering,
University of Rochester, Rochester NY, USA
| |
Collapse
|
16
|
Yang X, Duan H, Li S, Zhang J, Dong L, Ding J, Li X. Yap1 alleviates sepsis associated encephalopathy by inhibiting hippocampus ferroptosis via maintaining mitochondrial dynamic homeostasis. J Cell Mol Med 2024; 28:e70156. [PMID: 39400418 PMCID: PMC11472648 DOI: 10.1111/jcmm.70156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 09/13/2024] [Accepted: 10/01/2024] [Indexed: 10/15/2024] Open
Abstract
Sepsis-associated encephalopathy (SAE) is a serious neurological complication accompanied by acute and long-term cognitive dysfunction. Ferroptosis is a newly discovered type of cell death that is produced by iron-dependent lipid peroxidation. As a key transcriptional coactivator in the Hippo signalling pathway, Yes-associated protein 1 (YAP1) could target ferroptosis-related genes. This study was aimed to determine whether Yap1 protects against SAE and inhibits ferroptosis via maintaining mitochondrial dynamic homeostasis. Caecal ligation puncture (CLP) was used to establish the SAE model, and LPS was applied in hippocampal cells to mimic the inflammatory model in vitro. The results showed that Yap1 conditional knockout in hippocampal caused lower survival in SAE mice and cognitive dysfunction, as proved by Morri's water maze (MWM) task, tail suspension test (TST), open field test (OFT) and elevated plus maze test (EPMT). After Yap1 knockout, the production of ROS, MDA and Fe2+ and proinflammatory cytokines in the hippocampus were increased, indicating that Yap1 deficiency exacerbates CLP-induced brain injury and hippocampus ferroptosis. Meanwhile, GPX4, SLC7A11, ferritin (FTH1) and GSH levels were decreased in the Yap1 knockout group. In vitro, Yap1 overexpression mitigated LPS-induced hippocampal cell ferroptosis and improved mitochondrial function by inhibiting mitochondrial fission, as evidenced by lower mitochondrial ROS, cell viability, Fe2+ and the expression of Fis1 and Drp1. Further, the present study suggested that Yap1 could inhibit ferritinophagy-mediated ferroptosis in the hippocampus via inhibiting mitochondrial fission, thus reducing cognitive dysfunction in SAE mice.
Collapse
Affiliation(s)
- Xin Yang
- Department of AnesthesiologyZhongnan Hospital of Wuhan UniversityWuhanHubeiChina
- Hubei Provincial Engineering Research Center of Minimally Invasive Cardiovascular SurgeryWuhanChina
- Wuhan Clinical Research Center for Minimally Invasive Treatment of Structural Heart DiseaseWuhanChina
| | - Haifeng Duan
- Department of AnesthesiologyZhongnan Hospital of Wuhan UniversityWuhanHubeiChina
| | - Sirui Li
- Department of RadiologyZhongnan Hospital of Wuhan UniversityWuhanHubeiChina
| | - Jing Zhang
- Department of AnesthesiologyZhongnan Hospital of Wuhan UniversityWuhanHubeiChina
| | - Liang Dong
- Liuzhou People's Hospital Affiliated to Guangxi Medical UniversityGuangxiChina
| | - Jingli Ding
- Department of GastroenterologyZhongnan Hospital of Wuhan UniversityWuhanHubeiChina
| | - Xinyi Li
- Department of AnesthesiologyZhongnan Hospital of Wuhan UniversityWuhanHubeiChina
- Hubei Provincial Engineering Research Center of Minimally Invasive Cardiovascular SurgeryWuhanChina
- Wuhan Clinical Research Center for Minimally Invasive Treatment of Structural Heart DiseaseWuhanChina
| |
Collapse
|
17
|
Gao S, Shen R, Li J, Jiang Y, Sun H, Wu X, Li X, Miao C, He M, Wang J, Chen W. N-acetyltransferase 10 mediates cognitive dysfunction through the acetylation of GABA BR1 mRNA in sepsis-associated encephalopathy. Proc Natl Acad Sci U S A 2024; 121:e2410564121. [PMID: 39190359 PMCID: PMC11388286 DOI: 10.1073/pnas.2410564121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Accepted: 07/30/2024] [Indexed: 08/28/2024] Open
Abstract
Sepsis-associated encephalopathy (SAE) is a critical neurological complication of sepsis and represents a crucial factor contributing to high mortality and adverse prognosis in septic patients. This study explored the contribution of NAT10-mediated messenger RNA (mRNA) acetylation in cognitive dysfunction associated with SAE, utilizing a cecal ligation and puncture (CLP)-induced SAE mouse model. Our findings demonstrate that CLP significantly upregulates NAT10 expression and mRNA acetylation in the excitatory neurons of the hippocampal dentate gyrus (DG). Notably, neuronal-specific Nat10 knockdown improved cognitive function in septic mice, highlighting its critical role in SAE. Proteomic analysis, RNA immunoprecipitation, and real-time qPCR identified GABABR1 as a key downstream target of NAT10. Nat10 deletion reduced GABABR1 expression, and subsequently weakened inhibitory postsynaptic currents in hippocampal DG neurons. Further analysis revealed that microglia activation and the release of inflammatory mediators lead to the increased NAT10 expression in neurons. Microglia depletion with PLX3397 effectively reduced NAT10 and GABABR1 expression in neurons, and ameliorated cognitive dysfunction induced by SAE. In summary, our findings revealed that after CLP, NAT10 in hippocampal DG neurons promotes GABABR1 expression through mRNA acetylation, leading to cognitive dysfunction.
Collapse
Affiliation(s)
- Shenjia Gao
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai200032, China
- Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai200032, China
| | - Ruling Shen
- Shanghai Laboratory Animal Research Center, Shanghai201203, China
| | - Jie Li
- Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and Ministry of Education (MOE) Frontiers Center for Brain Science, Shanghai200032, China
- Department of Neurobiology, Zhongshan Hospital, Fudan University, Shanghai200032, China
| | - Yi Jiang
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai200032, China
- Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai200032, China
| | - Hao Sun
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai200032, China
- Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai200032, China
| | - Xinyi Wu
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai200032, China
- Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai200032, China
| | - Xiya Li
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai200032, China
- Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai200032, China
| | - Changhong Miao
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai200032, China
- Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai200032, China
| | - Miao He
- Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and Ministry of Education (MOE) Frontiers Center for Brain Science, Shanghai200032, China
- Department of Neurobiology, Zhongshan Hospital, Fudan University, Shanghai200032, China
| | - Jun Wang
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Science, Shanghai Key Laboratory of Acupuncture Mechanism and Acupoint Function, Fudan University, Shanghai200032, China
| | - Wankun Chen
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai200032, China
- Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai200032, China
- Department of Anesthesiology, Shanghai Geriatric Medical Center, Shanghai201104, China
- Department of Anesthesiology, QingPu Branch of Zhongshan Hospital, Fudan University, Shanghai201799, China
| |
Collapse
|
18
|
Ávila-Gómez P, Shingai Y, Dash S, Liu C, Callegari K, Meyer H, Khodarkovskaya A, Aburakawa D, Uchida H, Faraco G, Garcia-Bonilla L, Anrather J, Lee FS, Iadecola C, Sanchez T. Molecular and Functional Alterations in the Cerebral Microvasculature in an Optimized Mouse Model of Sepsis-Associated Cognitive Dysfunction. eNeuro 2024; 11:ENEURO.0426-23.2024. [PMID: 39266325 PMCID: PMC11439565 DOI: 10.1523/eneuro.0426-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 05/20/2024] [Accepted: 07/02/2024] [Indexed: 09/14/2024] Open
Abstract
Systemic inflammation has been implicated in the development and progression of neurodegenerative conditions such as cognitive impairment and dementia. Recent clinical studies indicate an association between sepsis, endothelial dysfunction, and cognitive decline. However, the investigations of the role and therapeutic potential of the cerebral microvasculature in sepsis-induced cognitive dysfunction have been limited by the lack of standardized experimental models for evaluating the alterations in the cerebral microvasculature and cognition induced by the systemic inflammatory response. Herein, we validated a mouse model of endotoxemia that recapitulates key pathophysiology related to sepsis-induced cognitive dysfunction, including the induction of an acute systemic hyperinflammatory response, blood-brain barrier (BBB) leakage, neurovascular inflammation, and memory impairment after recovery from the systemic inflammation. In the acute phase, we identified novel molecular (e.g., upregulation of plasmalemma vesicle-associated protein, PLVAP, a driver of endothelial permeability, and the procoagulant plasminogen activator inhibitor-1, PAI-1) and functional perturbations (i.e., albumin and small-molecule BBB leakage) in the cerebral microvasculature along with neuroinflammation. Remarkably, small-molecule BBB permeability, elevated levels of PAI-1, intra-/perivascular fibrin/fibrinogen deposition, and microglial activation persisted 1 month after recovery from sepsis. We also highlight molecular neuronal alterations of potential clinical relevance following systemic inflammation including changes in neurofilament phosphorylation and decreases in postsynaptic density protein 95 and brain-derived neurotrophic factor, suggesting diffuse axonal injury, synapse degeneration, and impaired neurotrophism. Our study serves as a standardized mouse model to support future mechanistic studies of sepsis-associated cognitive dysfunction and to identify novel endothelial therapeutic targets for this devastating condition.
Collapse
Affiliation(s)
- Paulo Ávila-Gómez
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, New York 10065
| | - Yuto Shingai
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, New York 10065
| | - Sabyasachi Dash
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, New York 10065
| | - Catherine Liu
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, New York 10065
| | - Keri Callegari
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, New York 10065
| | - Heidi Meyer
- Department of Psychiatry, Weill Cornell Medicine, New York, New York 10065
| | - Anne Khodarkovskaya
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, New York 10065
| | - Daiki Aburakawa
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, New York 10065
| | - Hiroki Uchida
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, New York 10065
| | - Giuseppe Faraco
- Department of Neuroscience, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, New York 10065
| | - Lidia Garcia-Bonilla
- Department of Neuroscience, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, New York 10065
| | - Josef Anrather
- Department of Neuroscience, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, New York 10065
| | - Francis S Lee
- Department of Psychiatry, Weill Cornell Medicine, New York, New York 10065
| | - Costantino Iadecola
- Department of Neuroscience, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, New York 10065
| | - Teresa Sanchez
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, New York 10065
- Department of Neuroscience, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, New York 10065
| |
Collapse
|
19
|
Zhang Q, Lu C, Fan W, Yin Y. Exploring the molecular mechanism of sepsis-associated encephalopathy by integrated analysis of multiple datasets. Cytokine 2024; 180:156609. [PMID: 38781871 DOI: 10.1016/j.cyto.2024.156609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 04/06/2024] [Indexed: 05/25/2024]
Abstract
BACKGROUND We aim to deal with the Hub-genes and signalling pathways connected with Sepsis-associated encephalopathy (SAE). METHODS The raw datasets were acquired from the Gene Expression Omnibus (GEO) database (GSE198861 and GSE167610). R software filtered the differentially expressed genes (DEGs) for hub genes exploited for Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis. Hub genes were identified from the intersection of DEGs via protein-protein interaction (PPI) network. And the single-cell dataset (GSE101901) was used to authenticate where the hub genes express in hippocampus cells. Cell-cell interaction analysis and Gene Set Variation Analysis (GSVA) analysis of the whole transcriptome validated the interactions between hippocampal cells. RESULTS A total of 161 DEGs were revealed in GSE198861 and GSE167610 datasets. Biological function analysis showed that the DEGs were primarily involved in the phagosome pathway and significantly enriched. The PPI network extracted 10 Hub genes. The M2 Macrophage cell decreased significantly during the acute period, and the hub gene may play a role in this biological process. The hippocampal variation pathway was associated with the MAPK signaling pathway. CONCLUSION Hub genes (Pecam1, Cdh5, Fcgr, C1qa, Vwf, Vegfa, C1qb, C1qc, Fcgr4 and Fcgr2b) may paticipate in the biological process of SAE.
Collapse
Affiliation(s)
- Qiulei Zhang
- Department of Emergency and Critical Care Medicine, The Second Hospital of Jilin University, NO.218 Ziqiang Street, Changchun 130041, China
| | - Chang Lu
- Department of Anesthesiology, The Second Hospital of Jilin University, NO.218 Ziqiang Street, Changchun 130041, China
| | - Weixuan Fan
- Department of Emergency and Critical Care Medicine, The Second Hospital of Jilin University, NO.218 Ziqiang Street, Changchun 130041, China
| | - Yongjie Yin
- Department of Emergency and Critical Care Medicine, The Second Hospital of Jilin University, NO.218 Ziqiang Street, Changchun 130041, China.
| |
Collapse
|
20
|
Zhou Y, Bai L, Tang W, Yang W, Sun L. Research progress in the pathogenesis of sepsis-associated encephalopathy. Heliyon 2024; 10:e33458. [PMID: 39027435 PMCID: PMC11254713 DOI: 10.1016/j.heliyon.2024.e33458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 06/18/2024] [Accepted: 06/21/2024] [Indexed: 07/20/2024] Open
Abstract
Sepsis is a syndrome that causes dysfunction of multiple organs due to the host's uncontrolled response to infection and is a significant contributor to morbidity and mortality in intensive care units worldwide. Surviving patients are often left with acute brain injury and long-term cognitive impairment, known as sepsis-associated encephalopathy (SAE). In recent years, researchers have directed their focus towards the pathogenesis of SAE. However, due to the complexity of its development, there remains a lack of effective treatment measures that arise as a serious issue affecting the prognosis of sepsis patients. Further research on the possible causes of SAE aims to provide clinicians with potential therapeutic targets and help develop targeted prevention strategies. This paper aims to review recent research on the pathogenesis of SAE, in order to enhance our understanding of this syndrome.
Collapse
Affiliation(s)
- Yue Zhou
- Teaching Department, First Hospital of Jilin University, Changchun, 130021, China
| | - Lu Bai
- Department of Medical Oncology, Dalian NO.3 People's Hospital, Dalian, 116091, China
| | - Wenjing Tang
- Department of Emergency Medicine, First Hospital of Jilin University, Changchun, 130021, China
| | - Weiying Yang
- Department of Emergency Medicine, First Hospital of Jilin University, Changchun, 130021, China
| | - Lichao Sun
- Department of Emergency Medicine, First Hospital of Jilin University, Changchun, 130021, China
| |
Collapse
|
21
|
Ávila-Gómez P, Shingai Y, Dash S, Liu C, Callegari K, Meyer H, Khodarkovskaya A, Aburakawa D, Uchida H, Faraco G, Garcia-Bonilla L, Anrather J, Lee FS, Iadecola C, Sanchez T. Molecular and functional alterations in the cerebral microvasculature in an optimized mouse model of sepsis-associated cognitive dysfunction. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.28.596050. [PMID: 38853992 PMCID: PMC11160628 DOI: 10.1101/2024.05.28.596050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Systemic inflammation has been implicated in the development and progression of neurodegenerative conditions such as cognitive impairment and dementia. Recent clinical studies indicate an association between sepsis, endothelial dysfunction, and cognitive decline. However, the investigations of the role and therapeutic potential of the cerebral microvasculature in systemic inflammation-induced cognitive dysfunction have been limited by the lack of standardized experimental models for evaluating the alterations in the cerebral microvasculature and cognition induced by the systemic inflammatory response. Herein, we validated a mouse model of endotoxemia that recapitulates key pathophysiology related to sepsis-induced cognitive dysfunction, including the induction of an acute systemic hyperinflammatory response, blood-brain barrier (BBB) leakage, neurovascular inflammation, and memory impairment after recovery from the systemic inflammatory response. In the acute phase, we identified novel molecular (e.g. upregulation of plasmalemma vesicle associated protein, a driver of endothelial permeability, and the pro-coagulant plasminogen activator inhibitor-1, PAI-1) and functional perturbations (i.e., albumin and small molecule BBB leakage) in the cerebral microvasculature along with neuroinflammation. Remarkably, small molecule BBB permeability, elevated levels of PAI-1, intra/perivascular fibrin/fibrinogen deposition and microglial activation persisted 1 month after recovery from sepsis. We also highlight molecular neuronal alterations of potential clinical relevance following systemic inflammation including changes in neurofilament phosphorylation and decreases in postsynaptic density protein 95 and brain-derived neurotrophic factor suggesting diffuse axonal injury, synapse degeneration and impaired neurotrophism. Our study serves as a standardized model to support future mechanistic studies of sepsis-associated cognitive dysfunction and to identify novel endothelial therapeutic targets for this devastating condition. SIGNIFICANCE The limited knowledge of how systemic inflammation contributes to cognitive decline is a major obstacle to the development of novel therapies for dementia and other neurodegenerative diseases. Clinical evidence supports a role for the cerebral microvasculature in sepsis-induced neurocognitive dysfunction, but the investigation of the underlying mechanisms has been limited by the lack of standardized experimental models. Herein, we optimized a mouse model that recapitulates important pathophysiological aspects of systemic inflammation-induced cognitive decline and identified key alterations in the cerebral microvasculature associated with cognitive dysfunction. Our study provides a reliable experimental model for mechanistic studies and therapeutic discovery of the impact of systemic inflammation on cerebral microvascular function and the development and progression of cognitive impairment.
Collapse
|
22
|
Palakshappa JA, Batt JAE, Bodine SC, Connolly BA, Doles J, Falvey JR, Ferrante LE, Files DC, Harhay MO, Harrell K, Hippensteel JA, Iwashyna TJ, Jackson JC, Lane-Fall MB, Monje M, Moss M, Needham DM, Semler MW, Lahiri S, Larsson L, Sevin CM, Sharshar T, Singer B, Stevens T, Taylor SP, Gomez CR, Zhou G, Girard TD, Hough CL. Tackling Brain and Muscle Dysfunction in Acute Respiratory Distress Syndrome Survivors: NHLBI Workshop Report. Am J Respir Crit Care Med 2024; 209:1304-1313. [PMID: 38477657 PMCID: PMC11146564 DOI: 10.1164/rccm.202311-2130ws] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 03/12/2024] [Indexed: 03/14/2024] Open
Abstract
Acute respiratory distress syndrome (ARDS) is associated with long-term impairments in brain and muscle function that significantly impact the quality of life of those who survive the acute illness. The mechanisms underlying these impairments are not yet well understood, and evidence-based interventions to minimize the burden on patients remain unproved. The NHLBI of the NIH assembled a workshop in April 2023 to review the state of the science regarding ARDS-associated brain and muscle dysfunction, to identify gaps in current knowledge, and to determine priorities for future investigation. The workshop included presentations by scientific leaders across the translational science spectrum and was open to the public as well as the scientific community. This report describes the themes discussed at the workshop as well as recommendations to advance the field toward the goal of improving the health and well-being of ARDS survivors.
Collapse
Affiliation(s)
| | - Jane A. E. Batt
- University of Toronto Temerty Faculty of Medicine, Toronto, Ontario, Canada
| | - Sue C. Bodine
- Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma
- Oklahoma City Veterans Affairs Medical Center, Oklahoma City, Oklahoma
| | - Bronwen A. Connolly
- Wellcome-Wolfson Institute for Experimental Medicine, Queen’s University, Belfast, United Kingdom
| | - Jason Doles
- Indiana University School of Medicine, Indianapolis, Indiana
| | - Jason R. Falvey
- University of Maryland School of Medicine, Baltimore, Maryland
| | | | - D. Clark Files
- Wake Forest University School of Medicine, Winston-Salem, North Carolina
| | - Michael O. Harhay
- University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | | | | | | | | | - Meghan B. Lane-Fall
- University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Michelle Monje
- Howard Hughes Medical Institute, Stanford University, Stanford, California
| | - Marc Moss
- University of Colorado School of Medicine, Aurora, Colorado
| | - Dale M. Needham
- Johns Hopkins University School of Medicine, Baltimore, Maryland
| | | | - Shouri Lahiri
- Cedars Sinai Medical Center, Los Angeles, California
| | - Lars Larsson
- Center for Molecular Medicine, Karolinska Institute, Solna, Sweden
- Department of Physiology & Pharmacology, Karolinska Institute and Viron Molecular Medicine Institute, Boston, Massachusetts
| | - Carla M. Sevin
- Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Tarek Sharshar
- Anesthesia and Intensive Care Department, GHU Paris Psychiatry and Neurosciences, Institute of Psychiatry and Neurosciences of Paris, INSERM U1266, University Paris Cité, Paris, France
| | | | | | | | - Christian R. Gomez
- Division of Lung Diseases, National Heart, Lung, and Blood Institute, Bethesda, Maryland
| | - Guofei Zhou
- Division of Lung Diseases, National Heart, Lung, and Blood Institute, Bethesda, Maryland
| | - Timothy D. Girard
- Center for Research, Investigation, and Systems Modeling of Acute Illness, Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | | |
Collapse
|
23
|
Shad A, Rewell SSJ, Macowan M, Gandasasmita N, Wang J, Chen K, Marsland B, O'Brien TJ, Li J, Semple BD. Modelling lung infection with Klebsiella pneumoniae after murine traumatic brain injury. J Neuroinflammation 2024; 21:122. [PMID: 38720343 PMCID: PMC11080247 DOI: 10.1186/s12974-024-03093-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 04/05/2024] [Indexed: 05/12/2024] Open
Abstract
Pneumonia is a common comorbidity in patients with severe traumatic brain injury (TBI), and is associated with increased morbidity and mortality. In this study, we established a model of intratracheal Klebsiella pneumoniae administration in young adult male and female mice, at 4 days following an experimental TBI, to investigate how K. pneumoniae infection influences acute post-TBI outcomes. A dose-response curve determined the optimal dose of K. pneumoniae for inoculation (1 x 10^6 colony forming units), and administration at 4 days post-TBI resulted in transient body weight loss and sickness behaviors (hypoactivity and acute dyspnea). K. pneumoniae infection led to an increase in pro-inflammatory cytokines in serum and bronchoalveolar lavage fluid at 24 h post-infection, in both TBI and sham (uninjured) mice. By 7 days, when myeloperoxidase + neutrophil numbers had returned to baseline in all groups, lung histopathology was observed with an increase in airspace size in TBI + K. pneumoniae mice compared to TBI + vehicle mice. In the brain, increased neuroinflammatory gene expression was observed acutely in response to TBI, with an exacerbated increase in Ccl2 and Hmox1 in TBI + K. pneumoniae mice compared to either TBI or K. pneumoniae alone. However, the presence of neuroinflammatory immune cells in the injured brain, and the extent of damage to cortical and hippocampal brain tissue, was comparable between K. pneumoniae and vehicle-treated mice by 7 days. Examination of the fecal microbiome across a time course did not reveal any pronounced effects of either injury or K. pneumoniae on bacterial diversity or abundance. Together, these findings demonstrate that K. pneumoniae lung infection after TBI induces an acute and transient inflammatory response, primarily localized to the lungs with some systemic effects. However, this infection had minimal impact on secondary injury processes in the brain following TBI. Future studies are needed to evaluate the potential longer-term consequences of this dual-hit insult.
Collapse
Affiliation(s)
- Ali Shad
- Department of Neuroscience, The School of Translational Medicine, Monash University, Level 6 Alfred Centre, 99 Commercial Rd, Melbourne, VIC, 3004 VIC, Australia
- Alfred Health, Prahran, VIC, Australia
| | - Sarah S J Rewell
- Department of Neuroscience, The School of Translational Medicine, Monash University, Level 6 Alfred Centre, 99 Commercial Rd, Melbourne, VIC, 3004 VIC, Australia
- Alfred Health, Prahran, VIC, Australia
| | - Matthew Macowan
- Department of Immunology, The School of Translational Medicine, Monash University, Melbourne, VIC, Australia
- GIN Discovery Program, The School of Translational Medicine, Monash University, Melbourne, VIC, Australia
| | - Natasha Gandasasmita
- Department of Neuroscience, The School of Translational Medicine, Monash University, Level 6 Alfred Centre, 99 Commercial Rd, Melbourne, VIC, 3004 VIC, Australia
| | - Jiping Wang
- Department of Microbiology, Monash Biomedical Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Ke Chen
- Department of Microbiology, Monash Biomedical Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Ben Marsland
- Department of Immunology, The School of Translational Medicine, Monash University, Melbourne, VIC, Australia
- GIN Discovery Program, The School of Translational Medicine, Monash University, Melbourne, VIC, Australia
| | - Terence J O'Brien
- Department of Neuroscience, The School of Translational Medicine, Monash University, Level 6 Alfred Centre, 99 Commercial Rd, Melbourne, VIC, 3004 VIC, Australia
- Alfred Health, Prahran, VIC, Australia
- GIN Discovery Program, The School of Translational Medicine, Monash University, Melbourne, VIC, Australia
- Department of Medicine (Royal Melbourne Hospital), University of Melbourne, Parkville, VIC, Australia
| | - Jian Li
- Department of Microbiology, Monash Biomedical Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Bridgette D Semple
- Department of Neuroscience, The School of Translational Medicine, Monash University, Level 6 Alfred Centre, 99 Commercial Rd, Melbourne, VIC, 3004 VIC, Australia.
- Alfred Health, Prahran, VIC, Australia.
- Department of Medicine (Royal Melbourne Hospital), University of Melbourne, Parkville, VIC, Australia.
| |
Collapse
|
24
|
Tanaka K, Choudhury ME, Kikuchi S, Takeda I, Umakoshi K, Miyaue N, Mikami K, Takenaga A, Yagi H, Shinabe R, Matsumoto H, Yano H, Nagai M, Takeba J, Tanaka J. A dopamine D1-like receptor-specific agonist improves the survival of septic mice. iScience 2024; 27:109587. [PMID: 38623339 PMCID: PMC11016908 DOI: 10.1016/j.isci.2024.109587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 02/08/2024] [Accepted: 03/25/2024] [Indexed: 04/17/2024] Open
Abstract
In this study, a murine sepsis model was developed using the cecum ligation and puncture (CLP) technique. The expression of the proinflammatory cytokines tumor necrosis factor alpha (TNF-α) and interleukin-1β (IL-1β) in the brain increased 6 h after CLP but decreased 24 h later when elevated endogenous dopamine levels in the brain were sustained. Methyl-4-phenyl-1,2,3,6-tetrahydropyridine hydrochloride reduced dopamine levels in the striatum and increased mortality in septic mice. Dopamine D1-like receptors were significantly expressed in the brain, but not in the lungs. Intraperitoneally administered SKF-81297 (SKF), a blood-brain barrier-permeable D1-like receptor agonist, prevented CLP-induced death of septic mice with ameliorated acute lung injury and cognitive dysfunction and suppressed TNF-α and IL-1β expression. The D1-like receptor antagonist SCH-23390 abolished the anti-inflammatory effects of SKF. These data suggest that D1-like receptor-mediated signals in the brain prevent CLP-induced inflammation in both the brain and the periphery.
Collapse
Affiliation(s)
- Koichi Tanaka
- Advanced Emergency and Critical Care Center, Ehime Prefectural Central Hospital, Kasugamachi, Matsuyama, Ehime 790-0024, Japan
- Department of Aeromedical Services for Emergency and Trauma Care, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime 791-0295, Japan
| | - Mohammed E. Choudhury
- Department of Molecular and Cellular Physiology, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime 791-0295, Japan
| | - Satoshi Kikuchi
- Department of Emergency Medicine, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime 791-0295, Japan
| | - Ikuko Takeda
- Department of Anatomy and Molecular Cell Biology, Nagoya University Graduate School of Medicine, Nagoya, Aichi 466-8550, Japan
- Division of Multicellular Circuit Dynamics, National Institute for Physiological Sciences, Okazaki, Aichi 444-8585, Japan
| | - Kensuke Umakoshi
- Advanced Emergency and Critical Care Center, Ehime Prefectural Central Hospital, Kasugamachi, Matsuyama, Ehime 790-0024, Japan
| | - Noriyuki Miyaue
- Department of Clinical Pharmacology and Therapeutics, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime 791-0295, Japan
| | - Kanta Mikami
- Department of Molecular and Cellular Physiology, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime 791-0295, Japan
| | - Ayane Takenaga
- Department of Molecular and Cellular Physiology, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime 791-0295, Japan
- Department of Clinical Pharmacology and Therapeutics, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime 791-0295, Japan
| | - Harumichi Yagi
- Department of Molecular and Cellular Physiology, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime 791-0295, Japan
| | - Rintaro Shinabe
- Department of Molecular and Cellular Physiology, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime 791-0295, Japan
| | - Hironori Matsumoto
- Department of Emergency Medicine, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime 791-0295, Japan
| | - Hajime Yano
- Department of Molecular and Cellular Physiology, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime 791-0295, Japan
| | - Masahiro Nagai
- Department of Clinical Pharmacology and Therapeutics, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime 791-0295, Japan
| | - Jun Takeba
- Department of Aeromedical Services for Emergency and Trauma Care, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime 791-0295, Japan
| | - Junya Tanaka
- Department of Molecular and Cellular Physiology, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime 791-0295, Japan
| |
Collapse
|
25
|
Fan Z, Wang K, Zhao X, Sun X. P2X7 receptor: A receptor closely linked with sepsis-associated encephalopathy. Open Life Sci 2024; 19:20220775. [PMID: 38585633 PMCID: PMC10998679 DOI: 10.1515/biol-2022-0775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 09/15/2023] [Accepted: 10/27/2023] [Indexed: 04/09/2024] Open
Abstract
Sepsis is defined as a dysregulated host response to infection resulting in life-threatening organ dysfunction. Sepsis-associated encephalopathy (SAE) is the main manifestation of sepsis. Inflammation, peroxidation stress injury, and apoptosis are the main factors involved in the pathogenesis of SAE. A growing body of evidence has proved that P2X7 receptor (P2X7R), a cationic channel receptor that is widely distributed in the body, plays a major role in the occurrence and development of inflammatory injury. Therefore, this review mainly describes the activation of P2X7R in sepsis, which leads to the recruitment of inflammatory cells to the cerebral vasculature, the destruction of the blood-brain barrier, the activation of microglial cells in the brain, the apoptosis of brain cells, and other damage processes. This review also illustrates the potential therapeutic value of P2X7R inhibition in SAE.
Collapse
Affiliation(s)
- Zhao Fan
- Shandong Provincial Medicine and Health Key Laboratory of Clinical Anesthesia, School of Anesthesiology, Weifang Medical University, Weifang261053, Shandong, China
| | - Kaifang Wang
- Shandong Provincial Medicine and Health Key Laboratory of Clinical Anesthesia, School of Anesthesiology, Weifang Medical University, Weifang261053, Shandong, China
| | - Xiaoyong Zhao
- Shandong Provincial Medicine and Health Key Laboratory of Clinical Anesthesia, School of Anesthesiology, Weifang Medical University, Weifang261053, Shandong, China
- The Affiliated Hospital of Weifang Medical University, Weifang261021, Shandong, China
| | - Xude Sun
- Shandong Provincial Medicine and Health Key Laboratory of Clinical Anesthesia, School of Anesthesiology, Weifang Medical University, Weifang261053, Shandong, China
- Department of Anesthesiology, Tangdu Hospital, Air Force Military Medical University, Xian710038, Shanxi, China
| |
Collapse
|
26
|
Tenfen L, Simon Machado R, Mathias K, Piacentini N, Joaquim L, Bonfante S, Danielski LG, Engel NA, da Silva MR, Rezin GT, de Quadros RW, Gava FF, Petronilho F. Short-term hyperoxia induced mitochondrial respiratory chain complexes dysfunction and oxidative stress in lung of rats. Inhal Toxicol 2024; 36:174-188. [PMID: 38449063 DOI: 10.1080/08958378.2024.2322497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 02/18/2024] [Indexed: 03/08/2024]
Abstract
BACKGROUND Oxygen therapy is an alternative for many patients with hypoxemia. However, this practice can be dangerous as oxygen is closely associated with the development of oxidative stress. METHODS Male Wistar rats were exposed to hyperoxia with a 40% fraction of inspired oxygen (FIO2) and hyperoxia (FIO2 = 60%) for 120 min. Blood and lung tissue samples were collected for gas, oxidative stress, and inflammatory analyses. RESULTS Hyperoxia (FIO2 = 60%) increased PaCO2 and PaO2, decreased blood pH and caused thrombocytopenia and lymphocytosis. In lung tissue, neutrophil infiltration, nitric oxide concentration, carbonyl protein formation and the activity of complexes I and II of the mitochondrial respiratory chain increased. FIO2 = 60% decreased SOD activity and caused several histologic changes. CONCLUSION In conclusion, we have experimentally demonstrated that short-term exposure to high FIO2 can cause oxidative stress in the lung.
Collapse
Affiliation(s)
- Leonardo Tenfen
- Graduate Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarão, Brazil
| | - Richard Simon Machado
- Graduate Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarão, Brazil
| | - Khiany Mathias
- Graduate Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarão, Brazil
| | - Natalia Piacentini
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, Brazil
| | - Larissa Joaquim
- Graduate Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarão, Brazil
| | - Sandra Bonfante
- Graduate Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarão, Brazil
| | - Lucineia Gainski Danielski
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, Brazil
| | - Nicole Alessandra Engel
- Graduate Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarão, Brazil
| | - Mariella Reinol da Silva
- Graduate Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarão, Brazil
| | - Gislaine Tezza Rezin
- Graduate Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarão, Brazil
| | | | - Fernanda Frederico Gava
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, Brazil
| | - Fabricia Petronilho
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, Brazil
| |
Collapse
|
27
|
Zhang C, Tian F, Peng J, Wang X, Li J, Zhang L, Tan Z. Serotonergic neurotransmission mediated cognitive dysfunction in two mouse models of sepsis-associated encephalopathy. CNS Neurosci Ther 2024; 30:e14655. [PMID: 38433019 PMCID: PMC10909618 DOI: 10.1111/cns.14655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/12/2024] [Accepted: 02/13/2024] [Indexed: 03/05/2024] Open
Abstract
BACKGROUND Patients with sepsis-associated encephalopathy (SAE) often exhibit cognitive impairments. Despite this, the underlying mechanisms of SAE remain largely unexplored. Here, we explored the role of serotonergic neurotransmission in cognitive dysfunction of two mouse models of SAE. METHODS The mouse models of SAE were established by injection of lipopolysaccharide (LPS, 10 mg/kg, intraperitoneal) and cecal ligation puncture (CLP) respectively. Barnes maze, new object recognition test and open field test were used to evaluate the effects of fluoxetine (selective serotonin reuptake inhibitor) and cyproheptadine (nonselective 5-HT2 receptor antagonist) on cognition and motor activity of mice. Additionally, WAY100635 (5-HT1A receptor antagonist) was co-administered with fluoxetine to explore the mechanism underlying effect of fluoxetine on cognitive impairments of SAE. Enzyme-linked immunosorbent assay (ELISA) was performed to determine 5-HT levels in hippocampus, brainstem and frontal lobe of experimental groups. RESULTS Both LPS-induced sepsis and CLP induced sepsis resulted in a notable learning deficit. Fluoxetine ameliorated, while cyproheptadine aggravated, cognitive impairment in two classic mouse models of SAE. The cognition-enhancing effect of fluoxetine is reversed by WAY100635. Decreased 5-HT levels in hippocampus, brainstem and frontal lobe were observed in LPS septic model and CLP septic model. Notably, both fluoxetine and cyproheptadine significantly increased 5-HT levels in those brain regions in LPS septic model. Additionally, fluoxetine significantly increased 5-HT levels in frontal lobe of CLP septic model. CONCLUSIONS Our study demonstrated that serotonergic neurotransmission plays a significant role in mechanisms underlying cognitive impairment in SAE. These findings contribute to identification of novel targets to prevent and arrest cognitive impairment in SAE.
Collapse
Affiliation(s)
- Chen Zhang
- Department of Pediatrics, Xiangya HospitalCentral South UniversityChangshaChina
| | - Fafa Tian
- Department of Neurology, Xiangya HospitalCentral South UniversityChangshaChina
| | - Jing Peng
- Department of Pediatrics, Xiangya HospitalCentral South UniversityChangshaChina
| | - Xia Wang
- Department of Pediatrics, Xiangya HospitalCentral South UniversityChangshaChina
| | - Jingchen Li
- Department of Neurology, Xiangya HospitalCentral South UniversityChangshaChina
- Bioinformatics Center & National Clinical Research Centre for Geriatric Disorders & Department of Geriatrics, Xiangya HospitalCentral South UniversityChangshaHumanChina
| | - Lina Zhang
- Department of Critical Care Medicine, Xiangya HospitalCentral South UniversityChangshaChina
- National Clinical Research Center for Geriatric DisordersChangshaHunanChina
- Hunan Provincial Clinical Research Center for Critical Care MedicineChangshaHunanChina
| | - Zheren Tan
- Department of Critical Care Medicine, Xiangya HospitalCentral South UniversityChangshaChina
- National Clinical Research Center for Geriatric DisordersChangshaHunanChina
- Hunan Provincial Clinical Research Center for Critical Care MedicineChangshaHunanChina
| |
Collapse
|
28
|
Dong H, Dai X, Zhou Y, Shi C, Bhuiyan P, Sun Z, Li N, Jin W. Enhanced meningeal lymphatic drainage ameliorates lipopolysaccharide-induced brain injury in aged mice. J Neuroinflammation 2024; 21:36. [PMID: 38287311 PMCID: PMC10826026 DOI: 10.1186/s12974-024-03028-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 01/22/2024] [Indexed: 01/31/2024] Open
Abstract
BACKGROUND Sepsis-associated encephalopathy (SAE) is an acute cerebral dysfunction caused by sepsis. Neuroinflammation induced by sepsis is considered a potential mechanism of SAE; however, very little is known about the role of the meningeal lymphatic system in SAE. METHODS Sepsis was established in male C57BL/6J mice by intraperitoneal injection of 5 mg/kg lipopolysaccharide, and the function of meningeal lymphatic drainage was assessed. Adeno-associated virus 1-vascular endothelial growth factor C (AAV1-VEGF-C) was injected into the cisterna magna to induce meningeal lymphangiogenesis. Ligation of deep cervical lymph nodes (dCLNs) was performed to induce pre-existing meningeal lymphatic dysfunction. Cognitive function was evaluated by a fear conditioning test, and inflammatory factors were detected by enzyme-linked immunosorbent assay. RESULTS The aged mice with SAE showed a significant decrease in the drainage of OVA-647 into the dCLNs and the coverage of the Lyve-1 in the meningeal lymphatic, indicating that sepsis impaired meningeal lymphatic drainage and morphology. The meningeal lymphatic function of aged mice was more vulnerable to sepsis in comparison to young mice. Sepsis also decreased the protein levels of caspase-3 and PSD95, which was accompanied by reductions in the activity of hippocampal neurons. Microglia were significantly activated in the hippocampus of SAE mice, which was accompanied by an increase in neuroinflammation, as indicated by increases in interleukin-1 beta, interleukin-6 and Iba1 expression. Cognitive function was impaired in aged mice with SAE. However, the injection of AAV1-VEGF-C significantly increased coverage in the lymphatic system and tracer dye uptake in dCLNs, suggesting that AAV1-VEGF-C promotes meningeal lymphangiogenesis and drainage. Furthermore, AAV1-VEGF-C reduced microglial activation and neuroinflammation and improved cognitive dysfunction. Improvement of meningeal lymphatics also reduced sepsis-induced expression of disease-associated genes in aged mice. Pre-existing lymphatic dysfunction by ligating bilateral dCLNs aggravated sepsis-induced neuroinflammation and cognitive impairment. CONCLUSION The meningeal lymphatic drainage is damaged in sepsis, and pre-existing defects in this drainage system exacerbate SAE-induced neuroinflammation and cognitive dysfunction. Promoting meningeal lymphatic drainage improves SAE. Manipulation of meningeal lymphangiogenesis could be a new strategy for the treatment of SAE.
Collapse
Affiliation(s)
- Hongquan Dong
- Department of Anesthesiology, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Xiaonan Dai
- Department of Obstetrics, Nanjing Women and Children's Healthcare Hospital, Women's Hospital of Nanjing Medical University, Nanjing, 210004, China
| | - Yin Zhou
- Department of Anesthesiology, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Chonglong Shi
- Department of Anesthesiology, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Piplu Bhuiyan
- Department of Anesthesiology, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Zhaochu Sun
- Department of Anesthesiology, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Nana Li
- Department of Anesthesiology, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Wenjie Jin
- Department of Anesthesiology, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China.
| |
Collapse
|
29
|
Mao Y, Zhang A, Yang H, Zhang C. Identification of IL-8 in CSF as a potential biomarker in sepsis-associated encephalopathy. Cytokine 2023; 172:156390. [PMID: 37812997 DOI: 10.1016/j.cyto.2023.156390] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/28/2023] [Accepted: 10/02/2023] [Indexed: 10/11/2023]
Abstract
BACKGROUND Sepsis-associated encephalopathy (SAE) is frequently present at the acute and chronic phase of sepsis, which is characterized by delirium, coma, and cognitive dysfunction. Despite the increased morbidity and mortality of SAE, the pathogenesis of SAE remains unclear. This study aims to discover the potential biomarkers, so as to clear the pathogenesis potentially contributing to the development of SAE and provide new therapeutic strategies for the treatment of SAE. METHODS The GSE135838 dataset was obtained from the Gene Expression Omnibus (GEO) database and utilized for analysis the differentially expressed genes (DEGs). The DEGs were analyzed by limma package of R language and the extracellular protein-differentially expressed genes (EP-DEGs) were screened by the Human Protein Atlas (HPA) and UniProt database. Gene Ontology (GO) analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis were carried out to analyze the function and pathway of EP-DEGs. STRING, Cytoscape, MCODE and Cytohubba were used to construct a protein-protein interaction (PPI) network and screen key EP-DEGs. Key EP-DEGs levels were detected in the cerebrospinal fluid (CSF) of SAE patients and non-sepsis patients with critical illness. ROC curve was used to evaluate the diagnostic of SAE. RESULTS We screened 82 EP-DEGs from DEGs. EP-DEGs were enriched in cytokine-cytokine receptor interaction, IL-17 signaling pathway and NOD-like receptor signaling pathway. We identified 2 key extracellular proteins IL-1B and IL-8. We clinically verified that IL-6 and IL-8 levels were increased in CSF of SAE patients and CSF IL-8 (AUC = 0.882, 95 % CI = 0.775-0.988) had a higher accuracy in the diagnosis of SAE than CSF IL-6 (AUC = 0.824, 95 % CI = 0.686-0.961). Furthermore, we found that the IL-8 levels in CSF might not associated with Glasgow Coma Scale (GCS) scores of SAE patients. CONCLUSION IL-8 may be the key extracellular cytokine in the pathogenesis of SAE. Bioinformatics methods were used to explore the biomarkers of SAE and validated the results in clinical samples. Our findings indicate that the IL-8 in CSF might be the potential diagnostic biomarker and therapeutic target in SAE.
Collapse
Affiliation(s)
- Yingying Mao
- Department of General Practice, Liaocheng People's Hospital, No.67 West Dongchang Road, Liaocheng 252000, Shandong Province, China
| | - Amin Zhang
- Department of Pediatrics, Qilu Hospital of Shandong University, No.107 West Wenhua Road, Jinan 250012, Shandong Province, China
| | - Haitao Yang
- Department of General Practice, Liaocheng People's Hospital, No.67 West Dongchang Road, Liaocheng 252000, Shandong Province, China
| | - Chen Zhang
- Department of Pediatrics, Qilu Hospital of Shandong University, No.107 West Wenhua Road, Jinan 250012, Shandong Province, China.
| |
Collapse
|
30
|
Zhu Y, Feng W, Kong Q, Sheng F, Li Z, Xu W, Li Q, Han Y, Wu X, Jia C, Guo J, Zhao Y. Evaluating the effects of S-ketamine on postoperative delirium in elderly patients following total hip or knee arthroplasty under intraspinal anesthesia: a single-center randomized, double-blind, placebo-controlled, pragmatic study protocol. Front Aging Neurosci 2023; 15:1298661. [PMID: 38099265 PMCID: PMC10720081 DOI: 10.3389/fnagi.2023.1298661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 11/14/2023] [Indexed: 12/17/2023] Open
Abstract
Introduction Postoperative delirium (POD) is an acute, transient brain disorder associated with decreased postoperative quality of life, dementia, neurocognitive changes, and mortality. A small number of trials have explored the role of S-ketamine in the treatment of POD due to its neuroprotective effects. Surprisingly, these trials have failed to yield supportive results. However, heterogeneity in delirium assessment methodologies, sample sizes, and outcome settings as well as deficiencies in S-ketamine use methods make the evidence provided by these studies less persuasive. Given the severe impact of POD on the health of elderly patients and the potential for S-ketamine to prevent it, we believe that designing a large sample size, and rigorous randomized controlled trial for further evaluation is necessary. Methods This is a single-center, randomized, double-blind, placebo-controlled, pragmatic study. Subjects undergoing total hip or knee arthroplasty will be randomized in a 1:1 ratio to intervention (n = 186) and placebo (n = 186) groups. This trial aims to explore the potential role of S-ketamine in the prevention of POD. Its primary outcome is the incidence of POD within 3 postoperative days. Secondary outcomes include the number of POD episodes, the onset and duration of POD, the severity and subtype of POD, pain scores and opioid consumption, sleep quality, clinical outcomes, and safety outcomes. Discussion To our knowledge, this is the first pragmatic study that proposes to use S-ketamine to prevent POD. We reviewed a large body of literature to identify potential preoperative confounding variables that may bias associations between the intervention and primary outcome. We will use advanced statistical methods to correct potential confounding variables, improving the test's power and external validity of test results. Of note, the patient population included in this trial will undergo intraspinal anesthesia. Although large, multicenter, randomized controlled studies have found no considerable difference in the effects of regional and general anesthesia on POD, patients receiving intraspinal anesthesia have less exposure to at-risk drugs, such as sevoflurane, propofol, and benzodiazepines, than patients receiving general anesthesia. At-risk drugs have been shown to negatively interfere with the neuroprotective effects of S-ketamine, which may be the reason for the failure of a large number of previous studies. There is currently a lack of randomized controlled studies evaluating S-ketamine for POD prevention, and our trial helps to fill a gap in this area.Trial registration: http://www.chictr.org.cn, identifier ChiCTR2300075796.
Collapse
Affiliation(s)
- Youzhuang Zhu
- Department of Anesthesiology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Wei Feng
- Department of Anesthesiology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Qinghan Kong
- Department of Anesthesiology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Fang Sheng
- Department of Anesthesiology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Zhichao Li
- Department of Anesthesiology, Cancer Hospital Chinese Academy of Medical Science, Beijing, China
| | - Weilong Xu
- Department of Anesthesiology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Qun Li
- Department of Anesthesiology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Yan Han
- Department of Anesthesiology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Xiuyun Wu
- Department of Anesthesiology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Changxin Jia
- Department of Anesthesiology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Jie Guo
- Department of Anesthesiology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Yang Zhao
- Department of Anesthesiology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| |
Collapse
|
31
|
Hong Y, Chen P, Gao J, Lin Y, Chen L, Shang X. Sepsis-associated encephalopathy: From pathophysiology to clinical management. Int Immunopharmacol 2023; 124:110800. [PMID: 37619410 DOI: 10.1016/j.intimp.2023.110800] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 07/20/2023] [Accepted: 08/11/2023] [Indexed: 08/26/2023]
Abstract
Sepsis-associated encephalopathy, which presents as delirium and coma, is a significant complication of sepsis characterized by acute brain dysfunction. The presence of inflammatory pathological changes in the brain of sepsis patients and animal models has been recognized since the 1920 s, initially attributed to the entry of microbial toxins into the brain. In the early 2000 s, attention shifted towards the impact of oxidative stress, the cholinergic system, and cytokines on brain function following sepsis onset. More recently, sepsis-associated encephalopathy has been defined as a diffuse brain dysfunction not directly caused by pathogenic infection of the brain. Currently, there is no evidence-based standard for diagnosing sepsis-associated encephalopathy, and clinical management is primarily focused on symptomatic and supportive measures. This review aims to explore the pathophysiology of sepsis-associated encephalopathy and establish the connection between pathophysiological mechanisms and clinical characteristics. We hope that this work will spark the interest of researchers from various fields and contribute to the advancement of sepsis-associated encephalopathy research.
Collapse
Affiliation(s)
- Yixiao Hong
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China; The Third Department of Critical Care Medicine, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fujian Provincial Center for Critical Care Medicine, Fujian Provincial Key Laboratory of Critical Care Medicine, Fuzhou, China
| | - Peiling Chen
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China; The Third Department of Critical Care Medicine, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fujian Provincial Center for Critical Care Medicine, Fujian Provincial Key Laboratory of Critical Care Medicine, Fuzhou, China
| | - Jingqi Gao
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China; The Third Department of Critical Care Medicine, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fujian Provincial Center for Critical Care Medicine, Fujian Provincial Key Laboratory of Critical Care Medicine, Fuzhou, China
| | - Yingying Lin
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China; The Third Department of Critical Care Medicine, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fujian Provincial Center for Critical Care Medicine, Fujian Provincial Key Laboratory of Critical Care Medicine, Fuzhou, China
| | - Linfang Chen
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China; The Third Department of Critical Care Medicine, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fujian Provincial Center for Critical Care Medicine, Fujian Provincial Key Laboratory of Critical Care Medicine, Fuzhou, China
| | - Xiuling Shang
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China; The Third Department of Critical Care Medicine, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fujian Provincial Center for Critical Care Medicine, Fujian Provincial Key Laboratory of Critical Care Medicine, Fuzhou, China.
| |
Collapse
|
32
|
Hu J, Xie S, Zhang H, Wang X, Meng B, Zhang L. Microglial Activation: Key Players in Sepsis-Associated Encephalopathy. Brain Sci 2023; 13:1453. [PMID: 37891821 PMCID: PMC10605398 DOI: 10.3390/brainsci13101453] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 10/03/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023] Open
Abstract
Sepsis-associated encephalopathy (SAE) is a common brain dysfunction, which results in severe cognitive and neurological sequelae and an increased mortality rate in patients with sepsis. Depending on the stimulus, microglia (resident macrophages in the brain that are involved in SAE pathology and physiology) can adopt two polarization states (M1/M2), corresponding to altered microglial morphology, gene expression, and function. We systematically described the pathogenesis, morphology, function, and phenotype of microglial activation in SAE and demonstrated that microglia are closely related to SAE occurrence and development, and concomitant cognitive impairment. Finally, some potential therapeutic approaches that can prime microglia and neuroinflammation toward the beneficial restorative microglial phenotype in SAE were outlined.
Collapse
Affiliation(s)
- Jiyun Hu
- Department of Critical Care Medicine, Xiangya Hospital, Central South University, Changsha 410008, China
- Hunan Provincial Clinical Research Center for Critical Care Medicine, Xiangya Hospital, Central South University, Changsha 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Shucai Xie
- Department of Critical Care Medicine, Xiangya Hospital, Central South University, Changsha 410008, China
- Hunan Provincial Clinical Research Center for Critical Care Medicine, Xiangya Hospital, Central South University, Changsha 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Haisong Zhang
- Department of Critical Care Medicine, Xiangya Hospital, Central South University, Changsha 410008, China
- Hunan Provincial Clinical Research Center for Critical Care Medicine, Xiangya Hospital, Central South University, Changsha 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Xinrun Wang
- Department of Critical Care Medicine, Xiangya Hospital, Central South University, Changsha 410008, China
- Hunan Provincial Clinical Research Center for Critical Care Medicine, Xiangya Hospital, Central South University, Changsha 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Binbin Meng
- Department of Critical Care Medicine, Xiangya Hospital, Central South University, Changsha 410008, China
- Hunan Provincial Clinical Research Center for Critical Care Medicine, Xiangya Hospital, Central South University, Changsha 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Lina Zhang
- Department of Critical Care Medicine, Xiangya Hospital, Central South University, Changsha 410008, China
- Hunan Provincial Clinical Research Center for Critical Care Medicine, Xiangya Hospital, Central South University, Changsha 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| |
Collapse
|
33
|
Castanheira FVS, Nguyen R, Willson M, Davoli-Ferreira M, David BA, Kelly MM, Lee WY, Kratofil RM, Zhang WX, Bui-Marinos M, Corcoran JA, Kubes P. Intravital imaging of three different microvascular beds in SARS-CoV-2-infected mice. Blood Adv 2023; 7:4170-4181. [PMID: 37307197 PMCID: PMC10284260 DOI: 10.1182/bloodadvances.2022009430] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 05/08/2023] [Accepted: 05/29/2023] [Indexed: 06/14/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) enters the respiratory tract, where it infects the alveoli epithelial lining. However, patients have sequelae that extend well beyond the alveoli into the pulmonary vasculature and, perhaps, beyond to the brain and other organs. Because of the dynamic events within blood vessels, histology does not report platelet and neutrophil behavior. Because of the rapid nontranscriptional response of these cells, neither single-cell RNA sequencing nor proteomics report robustly on their critical behaviors. We used intravital microscopy in level-3 containment to examine the pathogenesis of SARS-CoV-2 within 3 organs in mice expressing human angiotensin converting enzyme 2 (ACE-2) ubiquitously (CAG-AC-70) or on epithelium (K18-promoter). Using a neon-green SARS-CoV-2, we observed both the epithelium and endothelium infected in AC70 mice but only the epithelium in K18 mice. There were increased neutrophils in the microcirculation but not in the alveoli of the lungs of AC70 mice. Platelets formed large aggregates in the pulmonary capillaries. Despite only neurons being infected within the brain, profound neutrophil adhesion forming the nidus of large platelet aggregates were observed in the cerebral microcirculation, with many nonperfused microvessels. Neutrophils breached the brain endothelial layer associated with a significant disruption of the blood-brain-barrier. Despite ubiquitous ACE-2 expression, CAG-AC-70 mice had very small increases in blood cytokine, no increase in thrombin, no infected circulating cells, and no liver involvement suggesting limited systemic effects. In summary, our imaging of SARS-CoV-2-infected mice gave direct evidence that there is a significant perturbation locally in the lung and brain microcirculation induced by local viral infection leading to increased local inflammation and thrombosis in these organs.
Collapse
Affiliation(s)
- Fernanda V. S. Castanheira
- Department of Physiology and Pharmacology, University of Calgary, Calgary, AB
- Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, AB
- Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB
| | - Rita Nguyen
- Department of Physiology and Pharmacology, University of Calgary, Calgary, AB
- Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, AB
- Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB
| | - Michelle Willson
- Department of Physiology and Pharmacology, University of Calgary, Calgary, AB
- Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, AB
- Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB
| | - Marcela Davoli-Ferreira
- Department of Physiology and Pharmacology, University of Calgary, Calgary, AB
- Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB
| | - Bruna A. David
- Department of Physiology and Pharmacology, University of Calgary, Calgary, AB
- Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, AB
- Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB
| | - Margaret M. Kelly
- Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB
- Pathology and Laboratory Medicine, University of Calgary, Calgary, AB
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB
| | - Woo-Yong Lee
- Department of Physiology and Pharmacology, University of Calgary, Calgary, AB
- Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, AB
- Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB
| | - Rachel M. Kratofil
- Department of Physiology and Pharmacology, University of Calgary, Calgary, AB
- Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, AB
- Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB
| | - Wen X. Zhang
- Department of Physiology and Pharmacology, University of Calgary, Calgary, AB
- Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, AB
- Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB
| | - Maxwell Bui-Marinos
- Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, AB
- Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB
- Charbonneau Cancer Research Institute, University of Calgary, Calgary, AB
| | - Jennifer A. Corcoran
- Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, AB
- Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB
- Charbonneau Cancer Research Institute, University of Calgary, Calgary, AB
| | - Paul Kubes
- Department of Physiology and Pharmacology, University of Calgary, Calgary, AB
- Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, AB
- Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB
| |
Collapse
|
34
|
Millán Solano MV, Salinas Lara C, Sánchez-Garibay C, Soto-Rojas LO, Escobedo-Ávila I, Tena-Suck ML, Ortíz-Butrón R, Choreño-Parra JA, Romero-López JP, Meléndez Camargo ME. Effect of Systemic Inflammation in the CNS: A Silent History of Neuronal Damage. Int J Mol Sci 2023; 24:11902. [PMID: 37569277 PMCID: PMC10419139 DOI: 10.3390/ijms241511902] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/21/2023] [Accepted: 06/24/2023] [Indexed: 08/13/2023] Open
Abstract
Central nervous system (CNS) infections including meningitis and encephalitis, resulting from the blood-borne spread of specific microorganisms, provoke nervous tissue damage due to the inflammatory process. Moreover, different pathologies such as sepsis can generate systemic inflammation. Bacterial lipopolysaccharide (LPS) induces the release of inflammatory mediators and damage molecules, which are then released into the bloodstream and can interact with structures such as the CNS, thus modifying the blood-brain barrier's (BBB´s) and blood-cerebrospinal fluid barrier´s (BCSFB´s) function and inducing aseptic neuroinflammation. During neuroinflammation, the participation of glial cells (astrocytes, microglia, and oligodendrocytes) plays an important role. They release cytokines, chemokines, reactive oxygen species, nitrogen species, peptides, and even excitatory amino acids that lead to neuronal damage. The neurons undergo morphological and functional changes that could initiate functional alterations to neurodegenerative processes. The present work aims to explain these processes and the pathophysiological interactions involved in CNS damage in the absence of microbes or inflammatory cells.
Collapse
Affiliation(s)
- Mara Verónica Millán Solano
- Red MEDICI, Carrera Médico Cirujano, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de Mexico, Tlalnepantla 54090, Mexico; (M.V.M.S.); (C.S.-G.); (L.O.S.-R.); (I.E.-Á.); (J.P.R.-L.)
- Laboratory of Immunobiology and Genetics, Instituto Nacional de Enfermedades Respiratorias Ismael Cos’ıo Villegas, Mexico City 14080, Mexico;
| | - Citlaltepetl Salinas Lara
- Red MEDICI, Carrera Médico Cirujano, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de Mexico, Tlalnepantla 54090, Mexico; (M.V.M.S.); (C.S.-G.); (L.O.S.-R.); (I.E.-Á.); (J.P.R.-L.)
- Departamento de Neuropatología, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suarez, Mexico City 14269, Mexico;
| | - Carlos Sánchez-Garibay
- Red MEDICI, Carrera Médico Cirujano, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de Mexico, Tlalnepantla 54090, Mexico; (M.V.M.S.); (C.S.-G.); (L.O.S.-R.); (I.E.-Á.); (J.P.R.-L.)
- Departamento de Neuropatología, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suarez, Mexico City 14269, Mexico;
| | - Luis O. Soto-Rojas
- Red MEDICI, Carrera Médico Cirujano, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de Mexico, Tlalnepantla 54090, Mexico; (M.V.M.S.); (C.S.-G.); (L.O.S.-R.); (I.E.-Á.); (J.P.R.-L.)
- Laboratorio de Patogénesis Molecular, Laboratorio 4, Edificio A4, Carrera Médico Cirujano, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla 54090, Mexico
| | - Itzel Escobedo-Ávila
- Red MEDICI, Carrera Médico Cirujano, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de Mexico, Tlalnepantla 54090, Mexico; (M.V.M.S.); (C.S.-G.); (L.O.S.-R.); (I.E.-Á.); (J.P.R.-L.)
- Departamento de Neurodesarrollo y Fisiología, Instituto de Fisiología Celular, Universidad Nacional Autonoma de Mexico, Mexico City 04510, Mexico
| | - Martha Lilia Tena-Suck
- Departamento de Neuropatología, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suarez, Mexico City 14269, Mexico;
| | - Rocío Ortíz-Butrón
- Laboratorio de Neurobiología, Departamento de Fisiología de ENCB, Instituto Politécnico Nacional, Mexico City 07738, Mexico;
| | - José Alberto Choreño-Parra
- Laboratory of Immunobiology and Genetics, Instituto Nacional de Enfermedades Respiratorias Ismael Cos’ıo Villegas, Mexico City 14080, Mexico;
| | - José Pablo Romero-López
- Red MEDICI, Carrera Médico Cirujano, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de Mexico, Tlalnepantla 54090, Mexico; (M.V.M.S.); (C.S.-G.); (L.O.S.-R.); (I.E.-Á.); (J.P.R.-L.)
- Laboratorio de Patogénesis Molecular, Laboratorio 4, Edificio A4, Carrera Médico Cirujano, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla 54090, Mexico
| | - María Estela Meléndez Camargo
- Laboratorio de Farmacología, Departamento de Farmacia, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Av. Wilfrido Massieu Esq. Manuel Luis Stampa S/N, U.P. Adolfo López Mateos, Mexico City 07738, Mexico;
| |
Collapse
|
35
|
Ji MH, Gao YZ, Shi CN, Wu XM, Yang JJ. Acute and long-term cognitive impairment following sepsis: mechanism and prevention. Expert Rev Neurother 2023; 23:931-943. [PMID: 37615511 DOI: 10.1080/14737175.2023.2250917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 08/18/2023] [Indexed: 08/25/2023]
Abstract
INTRODUCTION Sepsis is a severe host response to infection, which induces both acute and long-term cognitive impairment. Despite its high incidence following sepsis, the underlying mechanisms remain elusive and effective treatments are not available clinically. AREA COVERED This review focuses on elucidating the pathological mechanisms underlying cognitive impairment following sepsis. Specifically, the authors discuss the role of systemic inflammation response, blood-brain barrier disruption, neuroinflammation, mitochondrial dysfunction, neuronal dysfunction, and Aβ accumulation and tau phosphorylation in cognitive impairment after sepsis. Additionally, they review current strategies to ameliorate cognitive impairment. EXPERT OPINION Potential interventions to reduce cognitive impairment after sepsis include earlier diagnosis and effective infection control, hemodynamic homeostasis, and adequate brain perfusion. Furthermore, interventions to reduce inflammatory response, reactive oxygen species, blood-brain barrier disruption, mitochondrial dysfunction, neuronal injury or death could be beneficial. Implementing strategies to minimize delirium, sleep disturbance, stress factors, and immobility are also recommended. Furthermore, avoiding neurotoxins and implementing early rehabilitation may also be important for preventing cognitive impairment after sepsis.
Collapse
Affiliation(s)
- Mu-Huo Ji
- Department of Anesthesiology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yu-Zhu Gao
- Department of Anesthesiology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Cui-Na Shi
- Department of Anesthesiology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xin-Miao Wu
- Department of Anesthesiology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jian-Jun Yang
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
36
|
Moriyama N, Saito M, Ono Y, Yamashita K, Aoi T, Kotani J. Increased Interleukin-17-Producing γδT Cells in the Brain Exacerbate the Pathogenesis of Sepsis-Associated Encephalopathy and Sepsis-Induced Anxiety in Mice. J Clin Med 2023; 12:4309. [PMID: 37445343 DOI: 10.3390/jcm12134309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 06/06/2023] [Accepted: 06/13/2023] [Indexed: 07/15/2023] Open
Abstract
Overactivated microglia play a key role in sepsis-associated encephalopathy (SAE), although the involvement of T cells is unclear. γδT cells in the brain and meninges regulate normal fear responses via interleukin (IL)-17 in healthy mice. In our sepsis model, the mice showed exacerbated anxious behavior at 10 days post-induction (dpi). At 8 dpi, IL-17 mRNA was significantly upregulated in the brains of septic mice compared with those of control mice. Simultaneously, the number of γδT cells increased in the brains of septic mice in a severity-dependent manner. Additionally, IL-17-producing γδT cells, expressing both the C-X-C motif receptor (CXCR) 6 and the C-C motif receptor (CCR) 6, increased in mice brains, dependent on the severity of sepsis. The frequency of γδT cells in the meninges fluctuated similarly to that in the brain, peaking at 8 dpi of sepsis. Behavioral tests were performed on septic mice after the continuous administration of anti-γδTCR (α-γδTCR) or anti-IL-17A (α-IL-17A) antibodies to deplete the γδT cells and IL-17A, respectively. Compared with IgG-treated septic mice, α-γδTCR- and α-IL-17A-treated septic mice showed suppressed microglial activation and improvements in anxious behavior. These results suggested that CCR6+CXCR6+ IL-17-producing γδT cells in the brain and meninges promote the exacerbation of SAE and sepsis-induced psychological disorders in mice.
Collapse
Affiliation(s)
- Naoki Moriyama
- Department of Disaster and Emergency and Critical Care Medicine, Kobe University Graduate School of Medicine, Kusunoki-cho 7-5-2, Chuo-ward, Kobe 650-0017, Japan
| | - Masafumi Saito
- Department of Disaster and Emergency and Critical Care Medicine, Kobe University Graduate School of Medicine, Kusunoki-cho 7-5-2, Chuo-ward, Kobe 650-0017, Japan
| | - Yuko Ono
- Department of Disaster and Emergency and Critical Care Medicine, Kobe University Graduate School of Medicine, Kusunoki-cho 7-5-2, Chuo-ward, Kobe 650-0017, Japan
| | - Kimihiro Yamashita
- Department of Surgery, Division of Gastrointestinal Surgery, Kobe University Graduate School of Medicine, Kusunoki-cho 7-5-2, Chuo-ward, Kobe 650-0017, Japan
| | - Takashi Aoi
- Division of Stem Cell Medicine, Kobe University Graduate School of Medicine, Kusunoki-cho 7-5-2, Chuo-ward, Kobe 650-0017, Japan
- Division of Advanced Medical Science, Kobe University Graduate School of Science, Technology and Innovation, Kusunoki-cho 7-5-2, Chuo-ward, Kobe 650-0017, Japan
- Center for Human Resource Development for Regenerative Medicine, Kobe University Hospital, Kusunoki-cho 7-5-2, Chuo-ward, Kobe 650-0017, Japan
| | - Joji Kotani
- Department of Disaster and Emergency and Critical Care Medicine, Kobe University Graduate School of Medicine, Kusunoki-cho 7-5-2, Chuo-ward, Kobe 650-0017, Japan
| |
Collapse
|
37
|
Bircak-Kuchtova B, Chung HY, Wickel J, Ehler J, Geis C. Neurofilament light chains to assess sepsis-associated encephalopathy: Are we on the track toward clinical implementation? Crit Care 2023; 27:214. [PMID: 37259091 DOI: 10.1186/s13054-023-04497-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 05/18/2023] [Indexed: 06/02/2023] Open
Abstract
Sepsis is the most common cause of admission to intensive care units worldwide. Sepsis patients frequently suffer from sepsis-associated encephalopathy (SAE) reflecting acute brain dysfunction. SAE may result in increased mortality, extended length of hospital stay, and long-term cognitive dysfunction. The diagnosis of SAE is based on clinical assessments, but a valid biomarker to identify and confirm SAE and to assess SAE severity is missing. Several blood-based biomarkers indicating neuronal injury have been evaluated in sepsis and their potential role as early diagnosis and prognostic markers has been studied. Among those, the neuroaxonal injury marker neurofilament light chain (NfL) was identified to potentially serve as a prognostic biomarker for SAE and to predict long-term cognitive impairment. In this review, we summarize the current knowledge of biomarkers, especially NfL, in SAE and discuss a possible future clinical application considering existing limitations.
Collapse
Affiliation(s)
- Barbora Bircak-Kuchtova
- Section Translational Neuroimmunology, Department for Neurology, Jena University Hospital, Am Klinikum 1, 07747, Jena, Germany
| | - Ha-Yeun Chung
- Section Translational Neuroimmunology, Department for Neurology, Jena University Hospital, Am Klinikum 1, 07747, Jena, Germany.
- Center for Sepsis Control and Care, Jena University Hospital, 07747, Jena, Germany.
| | - Jonathan Wickel
- Section Translational Neuroimmunology, Department for Neurology, Jena University Hospital, Am Klinikum 1, 07747, Jena, Germany
- Center for Sepsis Control and Care, Jena University Hospital, 07747, Jena, Germany
| | - Johannes Ehler
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, 07747, Jena, Germany
| | - Christian Geis
- Section Translational Neuroimmunology, Department for Neurology, Jena University Hospital, Am Klinikum 1, 07747, Jena, Germany
- Center for Sepsis Control and Care, Jena University Hospital, 07747, Jena, Germany
| |
Collapse
|
38
|
Vasunilashorn SM, Lunardi N, Newman JC, Crosby G, Acker L, Abel T, Bhatnagar S, Cunningham C, de Cabo R, Dugan L, Hippensteel JA, Ishizawa Y, Lahiri S, Marcantonio ER, Xie Z, Inouye SK, Terrando N, Eckenhoff RG. Preclinical and translational models for delirium: Recommendations for future research from the NIDUS delirium network. Alzheimers Dement 2023; 19:2150-2174. [PMID: 36799408 PMCID: PMC10576242 DOI: 10.1002/alz.12941] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 12/19/2022] [Accepted: 12/20/2022] [Indexed: 02/18/2023]
Abstract
Delirium is a common, morbid, and costly syndrome that is closely linked to Alzheimer's disease (AD) and AD-related dementias (ADRD) as a risk factor and outcome. Human studies of delirium have advanced our knowledge of delirium incidence and prevalence, risk factors, biomarkers, outcomes, prevention, and management. However, understanding of delirium neurobiology remains limited. Preclinical and translational models for delirium, while challenging to develop, could advance our knowledge of delirium neurobiology and inform the development of new prevention and treatment approaches. We discuss the use of preclinical and translational animal models in delirium, focusing on (1) a review of current animal models, (2) challenges and strategies for replicating elements of human delirium in animals, and (3) the utility of biofluid, neurophysiology, and neuroimaging translational markers in animals. We conclude with recommendations for the development and validation of preclinical and translational models for delirium, with the goal of advancing awareness in this important field.
Collapse
Affiliation(s)
- Sarinnapha M Vasunilashorn
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
- Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Nadia Lunardi
- Department of Anesthesiology, University of Virginia, Charlottesville, Virginia, USA
| | - John C Newman
- Department of Medicine, University of California, San Francisco, California, USA
- Buck Institute for Research on Aging, Novato, California, USA
| | - Gregory Crosby
- Harvard Medical School, Boston, Massachusetts, USA
- Department of Anesthesiology, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Leah Acker
- Department of Anesthesiology, Duke University, Durham, Massachusetts, USA
| | - Ted Abel
- Department of Neuroscience and Pharmacology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Seema Bhatnagar
- Department of Anesthesiology and Critical Care, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Anesthesiology and Critical Care, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Colm Cunningham
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Dublin, Ireland
- Trinity College Institute of Neuroscience, Trinity College, Dublin, Ireland
| | - Rafael de Cabo
- Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, Baltimore, Maryland, USA
| | - Laura Dugan
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, Tennessee, USA
- Division of Geriatric Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- VA Tennessee Valley Geriatric Research, Education, and Clinical Center (GRECC), Nashville, Tennessee, USA
| | - Joseph A Hippensteel
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Yumiko Ishizawa
- Harvard Medical School, Boston, Massachusetts, USA
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Shouri Lahiri
- Department of Neurology, Neurosurgery, and Biomedical Sciences, Cedar-Sinai Medical Center, Los Angeles, California, USA
| | - Edward R Marcantonio
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
- Marcus Institute for Aging Research, Hebrew SeniorLife, Boston, Massachusetts, USA
| | - Zhongcong Xie
- Harvard Medical School, Boston, Massachusetts, USA
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Sharon K Inouye
- Harvard Medical School, Boston, Massachusetts, USA
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
- Marcus Institute for Aging Research, Hebrew SeniorLife, Boston, Massachusetts, USA
| | - Niccolò Terrando
- Department of Anesthesiology, Duke University, Durham, North Carolina, USA
- Department of Cell Biology, Duke University, Durham, North Carolina, USA
- Department of Immunology, Duke University, Durham, North Carolina, USA
- Duke Center for the Study of Aging and Human Development, Duke University School of Medicine, Durham, USA
| | - Roderic G Eckenhoff
- Department of Anesthesiology and Critical Care, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| |
Collapse
|
39
|
Song YQ, Lin WJ, Hu HJ, Wu SH, Jing L, Lu Q, Zhu W. Sodium tanshinone IIA sulfonate attenuates sepsis-associated brain injury via inhibiting NOD-like receptor 3/caspase-1/gasdermin D-mediated pyroptosis. Int Immunopharmacol 2023; 118:110111. [PMID: 37028275 DOI: 10.1016/j.intimp.2023.110111] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/19/2023] [Accepted: 03/26/2023] [Indexed: 04/08/2023]
Abstract
BACKGROUND Sodium tanshinone IIA sulfonate (STS) has been reported to protect organ function in sepsis. However, the attenuation of sepsis-associated brain injury and its underlying mechanisms by STS has not been established. METHODS C57BL/6 mice were used to establish the cecal ligation perforation (CLP) model, and STS was injected intraperitoneally 30 min before the surgery. The BV2 cells were stimulated by lipopolysaccharide after being pre-treated with STS for 4 h. The STS protective effects against brain injury and in vivo anti-neuroinflammatory effects were investigated using the 48-hour survival rate and body weight changes, brain water content, histopathological staining, immunohistochemistry, ELISA, RT-qPCR, and transmission electron microscopy. The pro-inflammatory cytokines of BV2 cells were detected by ELISA and RT-qPCR. At last, the levels of NOD-like receptor 3 (NLRP3) inflammasome activation and pyroptosis in brain tissues of the CLP model and BV2 cells were detected using western blotting. RESULTS STS increased the survival rate, decreased brain water content, and improved brain pathological damage in the CLP models. STS increased the expressions of tight junction proteins ZO-1 and Claudin5 while reducing the expressions of tumor necrosis factor α (TNF-α), interleukin-1β(IL-1β), and interleukin-18 (IL-18) in the brain tissues of the CLP models. Meanwhile, STS inhibited microglial activation and M1-type polarization in vitro and in vivo. The NLRP3/caspase-1/ gasdermin D (GSDMD)-mediated pyroptosis was activated in the brain tissues of the CLP models and lipopolysaccharide (LPS)-treated BV2 cells, which was significantly inhibited by STS. CONCLUSIONS The activation of NLRP3/caspase-1/GSDMD-mediated pyroptosis and subsequent secretion of proinflammatory cytokines may be the underlying mechanisms of STS against sepsis-associated brain injury and neuroinflammatory response.
Collapse
Affiliation(s)
- Ya-Qin Song
- Department of Emergency Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Department of Intensive Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Wei-Ji Lin
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hong-Jie Hu
- Department of Emergency Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Department of Intensive Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Shu-Hui Wu
- Department of Emergency Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Department of Intensive Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Liang Jing
- Department of Emergency Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Department of Intensive Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Qing Lu
- Department of Pharmacology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Wei Zhu
- Department of Emergency Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Department of Intensive Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| |
Collapse
|
40
|
Algahtani MM, Alshehri S, Alqarni SS, Ahmad SF, Al-Harbi NO, Alqarni SA, Alfardan AS, Ibrahim KE, Attia SM, Nadeem A. Inhibition of ITK Signaling Causes Amelioration in Sepsis-Associated Neuroinflammation and Depression-like State in Mice. Int J Mol Sci 2023; 24:ijms24098101. [PMID: 37175808 PMCID: PMC10179574 DOI: 10.3390/ijms24098101] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/25/2023] [Accepted: 04/27/2023] [Indexed: 05/15/2023] Open
Abstract
Sepsis affects millions of people worldwide and is associated with multiorgan dysfunction that is a major cause of increased morbidity and mortality. Sepsis is associated with several morbidities, such as lung, liver, and central nervous system (CNS) dysfunction. Sepsis-associated CNS dysfunction usually leads to several mental problems including depression. IL-17A is one of the crucial cytokines that is expressed and secreted by Th17 cells. Th17 cells are reported to be involved in the pathogenesis of depression and anxiety in humans and animals. One of the protein tyrosine kinases that plays a key role in controlling the development/differentiation of Th17 cells is ITK. However, the role of ITK in sepsis-associated neuroinflammation and depression-like symptoms in mice has not been investigated earlier. Therefore, this study investigated the efficacy of the ITK inhibitor, BMS 509744, in sepsis-linked neuroinflammation (ITK, IL-17A, NFkB, iNOS, MPO, lipid peroxides, IL-6, MCP-1, IL-17A) and a battery of depression-like behavioral tests, such as sucrose preference, tail suspension, and the marble burying test. Further, the effect of the ITK inhibitor on anti-inflammatory signaling (Foxp3, IL-10, Nrf2, HO-1, SOD-2) was assessed in the CNS. Our data show that sepsis causes increased ITK protein expression, IL-17A signaling, and neuroinflammatory mediators in the CNS that are associated with a depression-like state in mice. ITK inhibitor-treated mice with sepsis show attenuated IL-17A signaling, which is associated with the upregulation of IL-10/Nrf2 signaling and the amelioration of depression-like symptoms in mice. Our data show, for the first time, that the ITK inhibition strategy may counteract sepsis-mediated depression through a reduction in IL-17A signaling in the CNS.
Collapse
Affiliation(s)
- Mohammad M Algahtani
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Samiyah Alshehri
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Sana S Alqarni
- Department of Medical Laboratory Science, College of Applied Medical Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| | - Sheikh F Ahmad
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Naif O Al-Harbi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Saleh A Alqarni
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Ali S Alfardan
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Khalid E Ibrahim
- Department of Zoology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Sabry M Attia
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Ahmed Nadeem
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
41
|
Zhou S, Li Y, Hong Y, Zhong Z, Zhao M. Puerarin protects against sepsis-associated encephalopathy by inhibiting NLRP3/Caspase-1/GSDMD pyroptosis pathway and reducing blood-brain barrier damage. Eur J Pharmacol 2023; 945:175616. [PMID: 36863556 DOI: 10.1016/j.ejphar.2023.175616] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 02/03/2023] [Accepted: 02/20/2023] [Indexed: 03/04/2023]
Abstract
Puerarin (Pue), an isoflavone compound extracted from Pueraria, has been shown to inhibit inflammation and reduce cerebral edema. The neuroprotective effect of puerarin has attracted much attention in recent years. Sepsis-associated encephalopathy (SAE) is a serious complication of sepsis that causes damage to the nervous system. This study aimed to investigate the effect of puerarin on SAE and elucidate the potential underlying mechanisms. A rat model of SAE was established by cecal ligation and puncture, and puerarin was injected intraperitoneally immediately after the operation. Puerarin was found to improve the survival rate and neurobehavioral score of SAE rats, alleviate symptoms, inhibit the level of brain injury markers NSE and S100β, and improve the pathological changes in rat brain tissue. Puerarin was also found to inhibit the level of factors related to the classical pathway of pyroptosis, such as NLRP3, Caspase-1, GSDMD, ASC, IL-1β, and IL-18. Puerarin also reduced the brain water content and penetration of Evan's Blue dye in SAE rats, and reduced the expression of MMP-9. In the in vitro experiments, we further confirmed the inhibitory effect of puerarin on neuronal pyroptosis by establishing a pyroptosis model in HT22 cells. Our findings suggest that puerarin may improve SAE by inhibiting the classical pathway of NLRP3/Caspase-1/GSDMD-mediated pyroptosis and reducing blood-brain barrier damage, thus playing a role in brain protection. Our study may provide a novel therapeutic strategy for SAE.
Collapse
Affiliation(s)
- Shuang Zhou
- Department of Emergency, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, 110004, China.
| | - Yuhua Li
- Department of Critical Care Medicine, Wuhan Children's Hospital, Wuhan, Hubei Province, 430014, China
| | - Yi Hong
- Department of Emergency, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, 110004, China
| | - Zhitao Zhong
- Department of Emergency, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, 110004, China
| | - Min Zhao
- Department of Emergency, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, 110004, China.
| |
Collapse
|
42
|
Jiang S, Shi D, Bai L, Niu T, Kang R, Liu Y. Inhibition of interleukin-6 trans-signaling improves survival and prevents cognitive impairment in a mouse model of sepsis. Int Immunopharmacol 2023; 119:110169. [PMID: 37058750 DOI: 10.1016/j.intimp.2023.110169] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 03/16/2023] [Accepted: 04/06/2023] [Indexed: 04/16/2023]
Abstract
Sepsis-associated encephalopathy (SAE) manifests clinically as acute and chronic cognitive impairments, which is associated with increased morbidity and mortality. Interleukin-6 (IL-6), a pro-inflammatory cytokine, is consistently up-regulated in sepsis. IL-6 initiates proinflammatory effects after binding to soluble IL-6 receptor (IL-6R) through trans-signalling, which requires the transducer gp130. In this study, we investigated whether inhibition of IL-6 trans-signalling is a putative therapeutic target for sepsis and SAE. Twenty-five patients (12 septic and 13 non-septic patients) were recruited for the study. A significant increase of IL-6, IL-1β, IL-10, and IL-8 was observed in the septic patients 24 h after ICU admission. In animal study, cecal ligation and puncture (CLP) was used to induce sepsis in male C57BL/6J mice. One hour before or after inducing sepsis, mice were treated with sgp130, a selective IL-6 trans-signaling inhibitor, respectively. Survival rate, cognition, levels of inflammatory cytokines, integrity of blood-brain barrier (BBB), and oxidative stress were assessed. In addition, immune cells activation and transmigration were evaluated in peripheral blood and brains. Sgp130 improved survival rate and cognitive functions, reduced levels of inflammatory cytokines, including IL-6, TNF-α, IL-10, and MCP-1, in plasma and hippocampus (hipp), mitigated BBB disruption, and ameliorated sepsis-induced oxidative stress. Sgp130 also affected monocytes/macrophages and lymphocytes transmigration and activation in septic mice. Our results indicate that selective inhibition of IL-6 trans-signaling by sgp130 exerts protective effects against SAE in a mouse model of sepsis, suggesting a potential therapeutic strategy.
Collapse
Affiliation(s)
- Sufang Jiang
- Department of Anesthesiology, The Second Hospital of Hebei Medical University, No. 215 Heping West Road, Shijiazhuang, Hebei Province, China
| | - Dandan Shi
- Department of Anesthesiology and Intensive Care, The Second Hospital of Hebei Medical University, No. 215 Heping West Road, Shijiazhuang, Hebei Province, China
| | - Long Bai
- Department of Anesthesiology and Intensive Care, The Second Hospital of Hebei Medical University, No. 215 Heping West Road, Shijiazhuang, Hebei Province, China
| | - Tianfu Niu
- Department of Anesthesiology and Intensive Care, The Second Hospital of Hebei Medical University, No. 215 Heping West Road, Shijiazhuang, Hebei Province, China
| | - Rongtian Kang
- Department of Anesthesiology, The Second Hospital of Hebei Medical University, No. 215 Heping West Road, Shijiazhuang, Hebei Province, China
| | - Ya Liu
- Department of Anesthesiology and Intensive Care, The Second Hospital of Hebei Medical University, No. 215 Heping West Road, Shijiazhuang, Hebei Province, China.
| |
Collapse
|
43
|
Xiaofeng G, You W, Qi J, Hongwei M, Zhongmin F, Shiquan W, Lixia D, Yuliang P, Zongping F, Xijing Z. PERK-STING-RIPK3 pathway facilitates cognitive impairment by inducing neuronal necroptosis in sepsis-associated encephalopathy. CNS Neurosci Ther 2023; 29:1178-1191. [PMID: 36694328 PMCID: PMC10018099 DOI: 10.1111/cns.14095] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 01/05/2023] [Accepted: 01/09/2023] [Indexed: 01/26/2023] Open
Abstract
AIMS Sepsis-associated encephalopathy (SAE) is a common but serious complication in septic survivors and often causes long-term cognitive impairments. The role of RIPK3-participated necroptosis in SAE remains obscured. STING is a key molecule in regulating necroptosis and apoptosis. However, there is uncertainty as to the mechanisms of STING in CLP-induced SAE. The aim of this study was to investigate whether STING is involved in the underlying mechanism of SAE. METHODS The contextual fear conditioning test (CFCT) assesses cognitive impairment. A transmission electron microscope (TEM) was used to notice the necroptosis. Western blotting and immunofluorescence labeling were applied for the observation of related proteins. RESULTS The phosphorylated STING in the hippocampal neuron of SAE mice was significantly elevated. Knocking down STING inhibited necroptosis and attenuated cognitive impairment in SAE mice. Moreover, RIPK3-/- mice had less cognitive deficit in the SAE model. However, STING overexpression did not deteriorate cognitive impairment in RIPK3-/- mice with SAE, indicating that STING is upstream involved in necroptosis. Furthermore, PERK inhibition ameliorated cognitive deficits through a STING-dependent pathway in SAE mice. CONCLUSION PERK-STING-RIPK3 pathway facilitates cognitive impairment by inducing neuronal necroptosis in the pathology of SAE, which provided a new therapeutic target in SAE treatment.
Collapse
Affiliation(s)
- Guo Xiaofeng
- Department of Critical Care Medicine, Xijing Hospital, The Fourth Military Medical University, China.,Department of Intensive Care Unit, Joint Logistics Force No. 988 Hospital, Zhengzhou, China
| | - Wu You
- Department of Critical Care Medicine, Xijing Hospital, The Fourth Military Medical University, China
| | - Jia Qi
- Department of Critical Care Medicine, Xijing Hospital, The Fourth Military Medical University, China
| | - Ma Hongwei
- Department of Critical Care Medicine, Xijing Hospital, The Fourth Military Medical University, China
| | - Fan Zhongmin
- Department of Critical Care Medicine, Xijing Hospital, The Fourth Military Medical University, China
| | - Wang Shiquan
- Department of Critical Care Medicine, Xijing Hospital, The Fourth Military Medical University, China
| | - Du Lixia
- Department of Critical Care Medicine, Xijing Hospital, The Fourth Military Medical University, China
| | - Peng Yuliang
- Department of Critical Care Medicine, Xijing Hospital, The Fourth Military Medical University, China
| | - Fang Zongping
- Department of Critical Care Medicine, Xijing Hospital, The Fourth Military Medical University, China
| | - Zhang Xijing
- Department of Critical Care Medicine, Xijing Hospital, The Fourth Military Medical University, China
| |
Collapse
|
44
|
Singh MV, Uddin MN, Vidalle MC, Sutton KR, Boodoo ZD, Peterson AN, Tyrell A, Brenner R, Tivarus ME, Wang HZ, Sahin B, Zhong J, Weber M, Wang L, Qiu X, Maggiwar SB, Schifitto G. Role of non-classical monocytes in HIV-associated vascular cognitive impairment. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.03.24.23287660. [PMID: 37034744 PMCID: PMC10081378 DOI: 10.1101/2023.03.24.23287660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Despite antiretroviral treatment (cART), people living with HIV (PLWH) are more susceptible to neurocognitive impairment (NCI), probably due to synergistic/additive contribution of traditional cerebrovascular risk factors. Specifically, altered blood brain barrier (BBB) and transmigration of inflammatory monocytes are risk factors for developing cerebral small vessel disease (CSVD). In order to investigate if inflammatory monocytes exacerbate CSVD and cognitive impairment, 110 PLWH on cART and 110 age-, sex- and Reynold’s cardiovascular risk score-matched uninfected individuals were enrolled. Neuropsychological testing, brain magnetic resonance imaging and whole blood analyses to measure platelet-monocyte interaction and monocyte, endothelial activation were performed. Results demonstrated that PLWH exhibited increased levels of platelet-monocyte complexes (PMCs) and higher expression of activation molecules on PMCs. PLWH with CSVD had the poorest cognitive performance and the highest circulating levels of non-classical monocytes which exhibited significant inverse correlation with each other. Furthermore, markers of monocyte and endothelium activation were significantly positively correlated indicating BBB impairment. Our results confirm that interaction with platelets activates and drives monocytes towards an inflammatory phenotype in PLWH. In particular, elevated levels of non-classical monocytes may represent a common pathway to neuroinflammation, CSVD and subsequent cognitive impairment, warranting further longitudinal studies to evaluate responsiveness of this potential biomarker.
Collapse
|
45
|
Ahmad SD, Cetin M, Waugh RE, McGrath JL. A computer vision approach for analyzing label free leukocyte trafficking dynamics on a microvascular mimetic. Front Immunol 2023; 14:1140395. [PMID: 37033977 PMCID: PMC10080102 DOI: 10.3389/fimmu.2023.1140395] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 03/09/2023] [Indexed: 04/11/2023] Open
Abstract
High-content imaging techniques in conjunction with in vitro microphysiological systems (MPS) allow for novel explorations of physiological phenomena with a high degree of translational relevance due to the usage of human cell lines. MPS featuring ultrathin and nanoporous silicon nitride membranes (µSiM) have been utilized in the past to facilitate high magnification phase contrast microscopy recordings of leukocyte trafficking events in a living mimetic of the human vascular microenvironment. Notably, the imaging plane can be set directly at the endothelial interface in a µSiM device, resulting in a high-resolution capture of an endothelial cell (EC) and leukocyte coculture reacting to different stimulatory conditions. The abundance of data generated from recording observations at this interface can be used to elucidate disease mechanisms related to vascular barrier dysfunction, such as sepsis. The appearance of leukocytes in these recordings is dynamic, changing in character, location and time. Consequently, conventional image processing techniques are incapable of extracting the spatiotemporal profiles and bulk statistics of numerous leukocytes responding to a disease state, necessitating labor-intensive manual processing, a significant limitation of this approach. Here we describe a machine learning pipeline that uses a semantic segmentation algorithm and classification script that, in combination, is capable of automated and label-free leukocyte trafficking analysis in a coculture mimetic. The developed computational toolset has demonstrable parity with manually tabulated datasets when characterizing leukocyte spatiotemporal behavior, is computationally efficient and capable of managing large imaging datasets in a semi-automated manner.
Collapse
Affiliation(s)
- S. Danial Ahmad
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, United States
| | - Mujdat Cetin
- Department of Electrical and Computer Engineering, University of Rochester, Rochester, NY, United States
- Goergen Institute for Data Science, University of Rochester, Rochester, NY, United States
| | - Richard E. Waugh
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, United States
| | - James L. McGrath
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, United States
| |
Collapse
|
46
|
Wu H, Wang Y, Fu H, Ji L, Li N, Zhang D, Su L, Hu Z. Maresin1 Ameliorates Sepsis-Induced Microglial Neuritis Induced through Blocking TLR4-NF-κ B-NLRP3 Signaling Pathway. J Pers Med 2023; 13:jpm13030534. [PMID: 36983716 PMCID: PMC10054512 DOI: 10.3390/jpm13030534] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/09/2023] [Accepted: 03/03/2023] [Indexed: 03/19/2023] Open
Abstract
Objective: Neuroinflammation is a major etiology of cognitive dysfunction due to sepsis. Maresin1 (MaR1), identified as a docosahexaenoic acid (DHA)-derived metabolite from macrophages, has been demonstrated to exhibit potent neuroprotective and anti-inflammatory effects. Nevertheless, detailed functions and molecular mechanism of MaR1 in sepsis-induced cognitive dysfunction has not been fully elucidated. Here, we aimed to investigate potential neuroprotective effects of MaR1 on microglia-induced neuroinflammation in sepsis-induced cognitive impairment and to explore its anti-inflammatory mechanism. Methods: Different doses of MaR1 were administered to septic rats by via tail vein injection. The optimal dose was determined based on the 7-day survival rate of rats from each group. derived from macrophages with both anti-inflammatory to observe the ameliorative effects of MaR1 at optimal doses on cognitive dysfunction in septic rats. The effects of MaR1 on neuroinflammation-mediated microglial activation, neuronal apoptosis, and pro-inflammatory cytokine productions were in vivo and in vitro assayed, using Western blot, ELISA, TUNEL staining, Nissl staining, and the immunofluorescence method. To further elucidate anti-inflammatory machinery of MaR1, protein expressions of NLRP3 inflammatory vesicles and TLR4-NF-κB pathway-related proteins were subjected to Western blot assay. Results: After tail vein injection of MaR1 with different doses (2 ng/g, 4 ng/g, 8 ng/g), the results showed that 4 ng/g MaR1 treatment significantly increased the rats’ 7-day survival rate compared to the CLP controls. Therefore, subsequent experiments set 4 ng/g MaR1 as the optimal dose. Morris water maze experiments confirmed that MaR1 significantly reduced space memory dysfunction in rats. In addition, in CLP rats and LPS-stimulated BV2 microglia, MaR1 significantly reduced activated microglia and pro-inflammatory cytokines levels and neuronal apoptosis. Mechanically, MaR1 inhibits microglia-induced neuroinflammation through suppressing activations of NLRP3 inflammatory vesicles and TLR4-NF-κB signal pathway. Conclusion: Collectively, our findings suggested that MaR1 might be a prospective neuroprotective compound for prevention and treatment in the sepsis process.
Collapse
Affiliation(s)
- Huiping Wu
- School of Medicine, Soochow University, Suzhou 215006, China
- Intensive Care Unit, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou 121001, China
| | - Ying Wang
- Operating Room, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou 121012, China
| | - Haiyan Fu
- Intensive Care Unit, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou 121001, China
| | - Lili Ji
- Emergency Department, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou 121012, China
| | - Na Li
- Intensive Care Unit, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou 121001, China
| | - Dan Zhang
- Intensive Care Unit, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou 121001, China
| | - Longxiang Su
- Department of Critical Care Medicine, Peking Union Medical College Hospital, Beijing 100730, China
- Correspondence: (L.S.); (Z.H.)
| | - Zhansheng Hu
- School of Medicine, Soochow University, Suzhou 215006, China
- Intensive Care Unit, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou 121001, China
- Correspondence: (L.S.); (Z.H.)
| |
Collapse
|
47
|
Dumbuya JS, Li S, Liang L, Zeng Q. Paediatric sepsis-associated encephalopathy (SAE): a comprehensive review. Mol Med 2023; 29:27. [PMID: 36823611 PMCID: PMC9951490 DOI: 10.1186/s10020-023-00621-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 02/10/2023] [Indexed: 02/25/2023] Open
Abstract
Sepsis-associated encephalopathy (SAE) is one of the most common types of organ dysfunction without overt central nervous system (CNS) infection. It is associated with higher mortality, low quality of life, and long-term neurological sequelae, its mortality in patients diagnosed with sepsis, progressing to SAE, is 9% to 76%. The pathophysiology of SAE is still unknown, but its mechanisms are well elaborated, including oxidative stress, increased cytokines and proinflammatory factors levels, disturbances in the cerebral circulation, changes in blood-brain barrier permeability, injury to the brain's vascular endothelium, altered levels of neurotransmitters, changes in amino acid levels, dysfunction of cerebral microvascular cells, mitochondria dysfunction, activation of microglia and astrocytes, and neuronal death. The diagnosis of SAE involves excluding direct CNS infection or other types of encephalopathies, which might hinder its early detection and appropriate implementation of management protocols, especially in paediatric patients where only a few cases have been reported in the literature. The most commonly applied diagnostic tools include electroencephalography, neurological imaging, and biomarker detection. SAE treatment mainly focuses on managing underlying conditions and using antibiotics and supportive therapy. In contrast, sedative medication is used judiciously to treat those showing features such as agitation. The most widely used medication is dexmedetomidine which is neuroprotective by inhibiting neuronal apoptosis and reducing a sepsis-associated inflammatory response, resulting in improved short-term mortality and shorter time on a ventilator. Other agents, such as dexamethasone, melatonin, and magnesium, are also being explored in vivo and ex vivo with encouraging results. Managing modifiable factors associated with SAE is crucial in improving generalised neurological outcomes. From those mentioned above, there are still only a few experimentation models of paediatric SAE and its treatment strategies. Extrapolation of adult SAE models is challenging because of the evolving brain and technical complexity of the model being investigated. Here, we reviewed the current understanding of paediatric SAE, its pathophysiological mechanisms, diagnostic methods, therapeutic interventions, and potential emerging neuroprotective agents.
Collapse
Affiliation(s)
- John Sieh Dumbuya
- Department of Paediatrics, Zhujiang Hospital of Southern Medical University, Guangzhou, 510282, People's Republic of China
| | - Siqi Li
- Department of Paediatrics, Zhujiang Hospital of Southern Medical University, Guangzhou, 510282, People's Republic of China
| | - Lili Liang
- Department of Paediatrics, Zhujiang Hospital of Southern Medical University, Guangzhou, 510282, People's Republic of China
| | - Qiyi Zeng
- Department of Paediatrics, Zhujiang Hospital of Southern Medical University, Guangzhou, 510282, People's Republic of China.
| |
Collapse
|
48
|
Qin M, Gao Y, Guo S, Lu X, Zhao Q, Ge Z, Zhu H, Li Y. Establishment and evaluation of animal models of sepsis-associated encephalopathy. World J Emerg Med 2023; 14:349-353. [PMID: 37908801 PMCID: PMC10613796 DOI: 10.5847/wjem.j.1920-8642.2023.088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 06/20/2023] [Indexed: 11/02/2023] Open
Abstract
BACKGROUND Sepsis-associated encephalopathy (SAE) is a critical disease caused by sepsis. In addition to high mortality, SAE can also adversely affect life quality and lead to significant socioeconomic costs. This review aims to explore the development of evaluation animal models of SAE, giving insight into the direction of future research in terms of its pathophysiology and therapy. METHODS We performed a literature search from January 1, 2000, to December 31, 2022, in MEDLINE, PubMed, EMBASE, and Web of Science using related keywords. Two independent researchers screened all the accessible articles based on the inclusion and exclusion criteria and collected the relevant data of the studies. RESULTS The animal models for sepsis are commonly induced through cecal ligation and puncture (CLP) or lipopolysaccharide (LPS) injection. SAE can be evaluated using nervous reflex scores and sepsis evaluation during the acute phase, or through Morris water maze (MWM), open-field test, fear condition (FC) test, inhibitory avoidance, and other tests during the late phase. CONCLUSION CLP and LPS injection are the most common methods for establishing SAE animal models. Nervous reflexs cores, MWM, FC test, and inhibitory avoidance are widely used in SAE model analysis. Future research should focus on establishing a standardized system for SAE development and analysis.
Collapse
Affiliation(s)
- Mubing Qin
- Emergency Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Yanxia Gao
- Emergency Department, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Shigong Guo
- Department of Rehabilitation Medicine, Southmead Hospital, Southmead Road, Bristol BS10 5NB, UK
| | - Xin Lu
- Emergency Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Qian Zhao
- Health Service Department of the Guard Bureau of the Joint Staff Department, Beijing 100017, China
| | - Zengzheng Ge
- Emergency Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Huadong Zhu
- Emergency Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Yi Li
- Emergency Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China
| |
Collapse
|
49
|
Wang J, Yang S, Jing G, Wang Q, Zeng C, Song X, Li X. Inhibition of ferroptosis protects sepsis-associated encephalopathy. Cytokine 2023; 161:156078. [PMID: 36401983 DOI: 10.1016/j.cyto.2022.156078] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/08/2022] [Accepted: 10/11/2022] [Indexed: 11/17/2022]
Abstract
Sepsis-associated encephalopathy (SAE) is a serious and common complication of sepsis. To study the ferroptosis in the pathogenesis of SAE and demonstrate the protection effect of ferroptosis resistance, cognitive function, neurological deficits, blood-brain barrier integrity and neuroinflammation were detected. SAE model was established by cecal ligation and puncture (CLP) in mice and an in vitro model was created by introducing LPS to HT22 cells. Ferroptosis inducer Fe-citrate (Fe) and ferroptosis inhibitor ferrostatin-1 (Fer-1) was post-treated in the models, respectively. SAE caused ferroptosis, as evidenced by an increase in reactive oxygen species (ROS), iron content and malondialdehyde (MDA) and a decrease in glutathione (GSH) level, as well as changes in the expression of ferroptosis-related proteins as acyl-CoA synthetase long-chain family member 4 (ACSL4), glutathione peroxidase 4 (GPX4), and cystine-glutamate antiporter (SLC7A11), and harmed mitochondrial function. In contrast, inhibiting ferroptosis with Fer-1 attenuated ferroptosis. Meanwhile, Fer-1 attenuated neurologic severity score, learning and memory impairment, Fluoro-Jade C (FJC) staining, and decreased Evans Blue (EB) extravasation, microglia activation and TNF-α and IL-1β production following SAE. The benefit of Fer-1 was diminished by ferroptosis inducer Fe. In addition, Fer-1 up-regulated the nuclear factor erythroid-2-related factor 2 (Nrf2)/ heme oxygenase-1(HO-1) signaling axis both in vivo and in vitro. In conclusion, our study revealed that Fer-1 might inhibit feroptosis in neurons by triggering the Nrf2/OH-1 pathway, thereby providing a therapeutic solution for SAE.
Collapse
Affiliation(s)
- Jin Wang
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Shuhua Yang
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Guoqing Jing
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Qingyuan Wang
- Department of Anesthesiology, the People's Hospital of Tuanfeng, Huanggang, Hubei, China
| | - Cheng Zeng
- Institute of Hepatobiliary Diseases of Wuhan University, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China; Transplant Center of Wuhan University, National Quality Control Center for Donated Organ Procurement, Hubei Key Laboratory of Medical Technology on Transplantation, Wuhan, Hubei, China.
| | - Xuemin Song
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China.
| | - Xinyi Li
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China.
| |
Collapse
|
50
|
Xin Y, Tian M, Deng S, Li J, Yang M, Gao J, Pei X, Wang Y, Tan J, Zhao F, Gao Y, Gong Y. The Key Drivers of Brain Injury by Systemic Inflammatory Responses after Sepsis: Microglia and Neuroinflammation. Mol Neurobiol 2023; 60:1369-1390. [PMID: 36445634 PMCID: PMC9899199 DOI: 10.1007/s12035-022-03148-z] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 11/21/2022] [Indexed: 12/03/2022]
Abstract
Sepsis is a leading cause of intensive care unit admission and death worldwide. Most surviving patients show acute or chronic mental disorders, which are known as sepsis-associated encephalopathy (SAE). Although accumulating studies in the past two decades focused on the pathogenesis of SAE, a systematic review of retrospective studies which exclusively focuses on the inflammatory mechanisms of SAE has been lacking yet. This review summarizes the recent advance in the field of neuroinflammation and sheds light on the activation of microglia in SAE. Activation of microglia predominates neuroinflammation. As the gene expression profile changes, microglia show heterogeneous characterizations throughout all stages of SAE. Here, we summarize the systemic inflammation following sepsis and also the relationship of microglial diversity and neuroinflammation. Moreover, a collection of neuroinflammation-related dysfunction has also been reviewed to illustrate the possible mechanisms for SAE. In addition, promising pharmacological or non-pharmacological therapeutic strategies, especially those which target neuroinflammation or microglia, are also concluded in the final part of this review. Collectively, clarification of the vital relationship between neuroinflammation and SAE-related mental disorders would significantly improve our understanding of the pathophysiological mechanisms in SAE and therefore provide potential targets for therapies of SAE aimed at inhibiting neuroinflammation.
Collapse
Affiliation(s)
- Yuewen Xin
- Department of Critical Care Medicine of Huashan Hospital, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science and Institutes of Brain Science, Fudan University, Shanghai, China
| | - Mi Tian
- Department of Critical Care Medicine of Huashan Hospital, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science and Institutes of Brain Science, Fudan University, Shanghai, China
| | - Shuixiang Deng
- Department of Critical Care Medicine of Huashan Hospital, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science and Institutes of Brain Science, Fudan University, Shanghai, China
| | - Jiaying Li
- Department of Critical Care Medicine of Huashan Hospital, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science and Institutes of Brain Science, Fudan University, Shanghai, China
| | - Miaoxian Yang
- Department of Critical Care Medicine of Huashan Hospital, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science and Institutes of Brain Science, Fudan University, Shanghai, China
| | - Jianpeng Gao
- Department of Critical Care Medicine of Huashan Hospital, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science and Institutes of Brain Science, Fudan University, Shanghai, China
| | - Xu Pei
- Department of Critical Care Medicine of Huashan Hospital, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science and Institutes of Brain Science, Fudan University, Shanghai, China
| | - Yao Wang
- Department of Critical Care Medicine of Huashan Hospital, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science and Institutes of Brain Science, Fudan University, Shanghai, China
| | - Jiaying Tan
- Department of Critical Care Medicine of Huashan Hospital, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science and Institutes of Brain Science, Fudan University, Shanghai, China
| | - Feng Zhao
- Department of Critical Care Medicine of Huashan Hospital, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science and Institutes of Brain Science, Fudan University, Shanghai, China
| | - Yanqin Gao
- Department of Critical Care Medicine of Huashan Hospital, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science and Institutes of Brain Science, Fudan University, Shanghai, China.
| | - Ye Gong
- Department of Critical Care Medicine of Huashan Hospital, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science and Institutes of Brain Science, Fudan University, Shanghai, China.
| |
Collapse
|