1
|
Elhage Hassan M, Vinales J, Perkins S, Sandesara P, Aggarwal V, Jaber WA. Pathogenesis, Diagnosis, and Management of Chronic Thromboembolic Pulmonary Hypertension. Interv Cardiol Clin 2023; 12:e37-e49. [PMID: 38964822 DOI: 10.1016/j.iccl.2024.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/06/2024]
Abstract
Chronic thromboembolic pulmonary hypertension (CTEPH) is thought to occur as a sequelae of thromboembolic processes in the pulmonary vasculature. The pathophysiology of CTEPH is multifactorial, including impaired fibrinolysis, endothelial dysregulation, and hypoxic adaptations. The diagnosis of CTEPH is typically delayed considering the nonspecific nature of the symptoms, lack of screening, and relatively low incidence. Diagnostic tools include ventilation-perfusion testing, echocardiography, cardiac catheterization, and pulmonary angiography. The only potentially curative treatment for CTEPH is pulmonary endarterectomy However, approximately 40% of patients are inoperable. Currently, only Riociguat is Food and Drug Administration approved specifically for CTEPH, with additional drug trials underway.
Collapse
Affiliation(s)
- Malika Elhage Hassan
- Division of Cardiology, Department of Medicine, Emory University School of Medicine, 1364 Clifton Road Northeast Suite F606, Atlanta, GA 30322, USA
| | - Jorge Vinales
- Department of Medicine, University of Michigan Medical School, 1301 Catherine Street, Ann Arbor, MI 48109, USA
| | - Sidney Perkins
- Department of Internal Medicine, University of Michigan Medical School, 1500 E Medical Center Drive, Ann Arbor, MI 48109, USA
| | - Pratik Sandesara
- Division of Cardiology, Department of Medicine, Emory University School of Medicine, 1364 Clifton Road Northeast Suite F606, Atlanta, GA 30322, USA
| | - Vikas Aggarwal
- Department of Cardiology, Henry Ford Medical Center, 2799 W Grand Blvd, K-2 Cath Admin Suite, Detroit, MI 48206, USA
| | - Wissam A Jaber
- Division of Cardiology, Department of Medicine, Emory University School of Medicine, 1364 Clifton Road Northeast Suite F606, Atlanta, GA 30322, USA.
| |
Collapse
|
2
|
Ruffenach G, Hong J, Vaillancourt M, Medzikovic L, Eghbali M. Pulmonary hypertension secondary to pulmonary fibrosis: clinical data, histopathology and molecular insights. Respir Res 2020; 21:303. [PMID: 33208169 PMCID: PMC7677848 DOI: 10.1186/s12931-020-01570-2] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 11/09/2020] [Indexed: 12/13/2022] Open
Abstract
Pulmonary hypertension (PH) developing secondarily in pulmonary fibrosis (PF) patients (PF-PH) is a frequent co-morbidity. The high prevalence of PH in PF patients is very concerning since the presence of PH is a strong predictor of mortality in PF patients. Until recently, PH was thought to arise solely from fibrotic destruction of the lung parenchyma, leading to hypoxic vasoconstriction and loss of vascular bed density. Thus, potential cellular and molecular dysregulation of vascular remodeling as a driver of PF-PH has been under-investigated. The recent demonstrations that there is no correlation between the severity of the fibrosis and development of PH, along with the finding that significant vascular histological and molecular differences exist between patients with and without PH have shifted the etiological paradigm of PF-PH. This review aims to provide a comprehensive translational overview of PH in PF patients from clinical diagnosis and outcome to the latest understanding of the histology and molecular pathophysiology of PF-PH.
Collapse
Affiliation(s)
- Grégoire Ruffenach
- Division of Molecular Medicine, Department of Anesthesiology and Perioperiative Medicine, David Geffen School of Medicine, University of California, BH-550CHS, Los Angeles, CA, 90095-7115, USA
| | - Jason Hong
- Division of Molecular Medicine, Department of Anesthesiology and Perioperiative Medicine, David Geffen School of Medicine, University of California, BH-550CHS, Los Angeles, CA, 90095-7115, USA.,Division of Pulmonary, Critical Care, and Sleep Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Mylène Vaillancourt
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Lejla Medzikovic
- Division of Molecular Medicine, Department of Anesthesiology and Perioperiative Medicine, David Geffen School of Medicine, University of California, BH-550CHS, Los Angeles, CA, 90095-7115, USA
| | - Mansoureh Eghbali
- Division of Molecular Medicine, Department of Anesthesiology and Perioperiative Medicine, David Geffen School of Medicine, University of California, BH-550CHS, Los Angeles, CA, 90095-7115, USA.
| |
Collapse
|
3
|
Mercier O, Arthur Ataam J, Langer NB, Dorfmüller P, Lamrani L, Lecerf F, Decante B, Dartevelle P, Eddahibi S, Fadel E. Abnormal pulmonary endothelial cells may underlie the enigmatic pathogenesis of chronic thromboembolic pulmonary hypertension. J Heart Lung Transplant 2016; 36:305-314. [PMID: 27793518 DOI: 10.1016/j.healun.2016.08.012] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 06/30/2016] [Accepted: 08/17/2016] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Chronic thromboembolic pulmonary hypertension results from chronic mechanical obstruction of the pulmonary arteries after acute venous thromboembolism. However, the mechanisms that result in the progression from unresolved thrombus to fibrotic vascular remodeling are unknown. We hypothesized that pulmonary artery endothelial cells contribute to this phenomenon via paracrine growth factor and cytokine signaling. METHODS Using enzyme-linked immunosorbent assay and cell migration assays, we investigated the circulating growth factors and cytokines of chronic thromboembolic pulmonary hypertension patients as well as the cross talk between pulmonary endothelial cells and pulmonary artery smooth muscle cells and monocytes from patients with chronic thromboembolic pulmonary hypertension in vitro. RESULTS Culture medium from the pulmonary endothelial cells of chronic thromboembolic pulmonary hypertension patients contained higher levels of growth factors (fibroblast growth factor 2), inflammatory cytokines (interleukin 1β, interleukin 6, monocyte chemoattractant protein 1), and cell adhesion molecules (vascular cell adhesion molecule 1 and intercellular adhesion molecule 1). Furthermore, exposure to the culture medium of pulmonary endothelial cells from patients with chronic thromboembolic pulmonary hypertension elicited marked pulmonary artery smooth muscle cell growth and monocyte migration. CONCLUSIONS These findings implicate pulmonary endothelial cells as key regulators of pulmonary artery smooth muscle cell and monocyte behavior in chronic thromboembolic pulmonary hypertension and suggest a potential mechanism for the progression from unresolved thrombus to fibrotic vascular remodeling.
Collapse
Affiliation(s)
- Olaf Mercier
- Research and Innovation Unit, INSERM U999, DHU TORINO, Paris Sud University, Marie Lannelongue Hospital, Le Plessis Robinson, France; Departments of Thoracic and Vascular Surgery and Heart-Lung Transplantation, Marie Lannelongue Hospital, Le Plessis Robinson, France.
| | - Jennifer Arthur Ataam
- Research and Innovation Unit, INSERM U999, DHU TORINO, Paris Sud University, Marie Lannelongue Hospital, Le Plessis Robinson, France
| | - Nathaniel B Langer
- Research and Innovation Unit, INSERM U999, DHU TORINO, Paris Sud University, Marie Lannelongue Hospital, Le Plessis Robinson, France; Departments of Thoracic and Vascular Surgery and Heart-Lung Transplantation, Marie Lannelongue Hospital, Le Plessis Robinson, France
| | - Peter Dorfmüller
- Research and Innovation Unit, INSERM U999, DHU TORINO, Paris Sud University, Marie Lannelongue Hospital, Le Plessis Robinson, France; Pathology, Marie Lannelongue Hospital, Le Plessis Robinson, France
| | - Lilia Lamrani
- Research and Innovation Unit, INSERM U999, DHU TORINO, Paris Sud University, Marie Lannelongue Hospital, Le Plessis Robinson, France
| | - Florence Lecerf
- Research and Innovation Unit, INSERM U999, DHU TORINO, Paris Sud University, Marie Lannelongue Hospital, Le Plessis Robinson, France
| | - Benoit Decante
- Research and Innovation Unit, INSERM U999, DHU TORINO, Paris Sud University, Marie Lannelongue Hospital, Le Plessis Robinson, France
| | - Philippe Dartevelle
- Research and Innovation Unit, INSERM U999, DHU TORINO, Paris Sud University, Marie Lannelongue Hospital, Le Plessis Robinson, France; Departments of Thoracic and Vascular Surgery and Heart-Lung Transplantation, Marie Lannelongue Hospital, Le Plessis Robinson, France
| | - Saadia Eddahibi
- Research and Innovation Unit, INSERM U999, DHU TORINO, Paris Sud University, Marie Lannelongue Hospital, Le Plessis Robinson, France; INSERM U1046, CNRS UMR 9214, Université de Montpellier, CHU Arnaud de Villeneuve Montpellier, Montpellier, France
| | - Elie Fadel
- Research and Innovation Unit, INSERM U999, DHU TORINO, Paris Sud University, Marie Lannelongue Hospital, Le Plessis Robinson, France; Departments of Thoracic and Vascular Surgery and Heart-Lung Transplantation, Marie Lannelongue Hospital, Le Plessis Robinson, France
| |
Collapse
|
4
|
Abstract
Recent clinical and experimental studies are redefining the cellular and molecular bases of pulmonary arterial hypertension (PAH). The genetic abnormalities first identified in association with the idiopathic form of PAH--together with a vast increase in our understanding of cell signaling, cell transformation, and cell-cell interactions; gene expression; microRNA processing; and mitochondrial and ion channel function--have helped explain the abnormal response of vascular cells to injury. Experimental and clinical studies now converge on the intersection and interactions between a genetic predisposition involving the BMPR2 signaling pathway and an impaired metabolic and chronic inflammatory state in the vessel wall. These deranged processes culminate in an exuberant proliferative response that occludes the pulmonary arterial (PA) lumen and obliterates the most distal intraacinar vessels. Here, we describe emerging therapies based on preclinical studies that address these converging pathways.
Collapse
Affiliation(s)
- Marlene Rabinovitch
- Stanford University School of Medicine, Stanford, California 94305-5162, USA.
| |
Collapse
|
5
|
Li M, Riddle SR, Frid MG, El Kasmi KC, McKinsey TA, Sokol RJ, Strassheim D, Meyrick B, Yeager ME, Flockton AR, McKeon BA, Lemon DD, Horn TR, Anwar A, Barajas C, Stenmark KR. Emergence of fibroblasts with a proinflammatory epigenetically altered phenotype in severe hypoxic pulmonary hypertension. THE JOURNAL OF IMMUNOLOGY 2011; 187:2711-22. [PMID: 21813768 DOI: 10.4049/jimmunol.1100479] [Citation(s) in RCA: 178] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Persistent accumulation of monocytes/macrophages in the pulmonary artery adventitial/perivascular areas of animals and humans with pulmonary hypertension has been documented. The cellular mechanisms contributing to chronic inflammatory responses remain unclear. We hypothesized that perivascular inflammation is perpetuated by activated adventitial fibroblasts, which, through sustained production of proinflammatory cytokines/chemokines and adhesion molecules, induce accumulation, retention, and activation of monocytes/macrophages. We further hypothesized that this proinflammatory phenotype is the result of the abnormal activity of histone-modifying enzymes, specifically, class I histone deacetylases (HDACs). Pulmonary adventitial fibroblasts from chronically hypoxic hypertensive calves (termed PH-Fibs) expressed a constitutive and persistent proinflammatory phenotype defined by high expression of IL-1β, IL-6, CCL2(MCP-1), CXCL12(SDF-1), CCL5(RANTES), CCR7, CXCR4, GM-CSF, CD40, CD40L, and VCAM-1. The proinflammatory phenotype of PH-Fibs was associated with epigenetic alterations as demonstrated by increased activity of HDACs and the findings that class I HDAC inhibitors markedly decreased cytokine/chemokine mRNA expression levels in these cells. PH-Fibs induced increased adhesion of THP-1 monocytes and produced soluble factors that induced increased migration of THP-1 and murine bone marrow-derived macrophages as well as activated monocytes/macrophages to express proinflammatory cytokines and profibrogenic mediators (TIMP1 and type I collagen) at the transcriptional level. Class I HDAC inhibitors markedly reduced the ability of PH-Fibs to induce monocyte migration and proinflammatory activation. The emergence of a distinct adventitial fibroblast population with an epigenetically altered proinflammatory phenotype capable of recruiting, retaining, and activating monocytes/macrophages characterizes pulmonary hypertension-associated vascular remodeling and thus could contribute significantly to chronic inflammatory processes in the pulmonary artery wall.
Collapse
Affiliation(s)
- Min Li
- Division of Critical Care Medicine, Department of Pediatrics, University of Colorado at Denver, Aurora, CO 80045, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Identification of markers that distinguish monocyte-derived fibrocytes from monocytes, macrophages, and fibroblasts. PLoS One 2009; 4:e7475. [PMID: 19834619 PMCID: PMC2759556 DOI: 10.1371/journal.pone.0007475] [Citation(s) in RCA: 399] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2009] [Accepted: 09/22/2009] [Indexed: 12/11/2022] Open
Abstract
Background The processes that drive fibrotic diseases are complex and include an influx of peripheral blood monocytes that can differentiate into fibroblast-like cells called fibrocytes. Monocytes can also differentiate into other cell types, such as tissue macrophages. The ability to discriminate between monocytes, macrophages, fibrocytes, and fibroblasts in fibrotic lesions could be beneficial in identifying therapies that target either stromal fibroblasts or fibrocytes. Methodology/Principal Findings We have identified markers that discriminate between human peripheral blood monocytes, tissue macrophages, fibrocytes, and fibroblasts. Amongst these four cell types, only peripheral blood monocytes express the combination of CD45RO, CD93, and S100A8/A9; only macrophages express the combination of CD45RO, 25F9, S100A8/A9, and PM-2K; only fibrocytes express the combination of CD45RO, 25F9, and S100A8/A9, but not PM-2K; and only fibroblasts express the combination of CD90, cellular fibronectin, hyaluronan, and TE-7. These markers are effective both in vitro and in sections from human lung. We found that markers such as CD34, CD68, and collagen do not effectively discriminate between the four cell types. In addition, IL-4, IL-12, IL-13, IFN-γ, and SAP differentially regulate the expression of CD32, CD163, CD172a, and CD206 on both macrophages and fibrocytes. Finally, CD49c (α3 integrin) expression identifies a subset of fibrocytes, and this subset increases with time in culture. Conclusions/Significance These results suggest that discrimination of monocytes, macrophages, fibrocytes, and fibroblasts in fibrotic lesions is possible, and this may allow for an assessment of fibrocytes in fibrotic diseases.
Collapse
|
7
|
Papakonstantinou E, Karakiulakis G. The 'sweet' and 'bitter' involvement of glycosaminoglycans in lung diseases: pharmacotherapeutic relevance. Br J Pharmacol 2009; 157:1111-27. [PMID: 19508395 DOI: 10.1111/j.1476-5381.2009.00279.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The extracellular matrix (ECM) plays a significant role in the structure and function of the lung. The ECM is a three-dimensional fibre mesh, comprised of various interconnected and intercalated macromolecules, among which are the glycosaminoglycans (GAG). GAG are long, linear and highly charged, heterogeneous polysaccharides that are composed of a variable number of repeating disaccharide units (macromolecular sugars) and most of them, as their name implies, have a sweet taste. In the lung, GAG support the structure of the interstitium, the subepithelial tissue and the bronchial walls, and are secreted in the airway secretions. Besides maintaining lung tissue structure, GAG also play an important role in lung function as they regulate hydration and water homeostasis, modulate the inflammatory response and influence lung tissue repair and remodelling. However, depending on their size and/or degree of sulphation, and their immobilization or solubilization in the ECM, specific GAG in the lung either live up to their sweet taste/name, supporting normal lung physiology, or they are associated to 'bitter' effects, related to lung pathology. The present review discusses the biological role of GAG in the lung as well as the involvement of these molecules in various respiratory diseases. Given the great structural diversity of GAG, understanding the changes in GAG expression that occur in lung diseases may lead to novel targets for pharmacological intervention in order to prevent and/or to treat a range of lung diseases.
Collapse
Affiliation(s)
- Eleni Papakonstantinou
- 2nd Department of Pharmacology, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece.
| | | |
Collapse
|
8
|
Chen Z, Shin MH, Moon YJ, Lee SR, Kim YK, Seo JE, Kim JE, Kim KH, Chung JH. Modulation of elastin exon 26A mRNA and protein expression in human skinin vivo. Exp Dermatol 2009; 18:378-86. [DOI: 10.1111/j.1600-0625.2008.00799.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
9
|
Abstract
Recent investigations have suggested that it might be possible to reverse the pathology of pulmonary arterial hypertension (PAH), a disorder that can be rapidly progressive and fatal despite current treatments including i.v. prostacyclin. This review will address the cellular and molecular processes implicated in clinical, genetic, and experimental studies as underlying the pulmonary vascular abnormalities associated with PAH. Emerging treatments are aimed at inducing apoptosis of abnormal vascular cells that obstruct blood flow and at promoting regeneration of "lost" distal vasculature.
Collapse
Affiliation(s)
- Marlene Rabinovitch
- Department of Pediatrics, Stanford University School of Medicine, Stanford, California 94305-5162, USA.
| |
Collapse
|
10
|
Rabinovitch M. Pathobiology of pulmonary hypertension. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2008; 2:369-99. [PMID: 18039104 DOI: 10.1146/annurev.pathol.2.010506.092033] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
A variety of conditions can lead to the development of pulmonary arterial hypertension (PAH). Current treatments can improve symptoms and reduce the severity of the hemodynamic abnormality, but most patients remain quite limited, and deterioration in their condition necessitates a lung transplant. This review discusses current experimental and clinical studies that investigate the pathobiology of PAH. An emerging theme is the consideration of ways in which one might reverse the advanced occlusive structural changes in the pulmonary circulation causing PAH. The current debate concerning the role of regeneration through stem cells is presented. This review also highlights investigations in a number of laboratories relating the pathobiology of PAH to mutations causing loss of function of bone morphogenetic protein receptor II in patients with familial PAH, as well as sporadic cases.
Collapse
Affiliation(s)
- Marlene Rabinovitch
- Department of Pediatrics, Stanford University School of Medicine, Stanford, California 94305, USA.
| |
Collapse
|
11
|
Sanchez O, Marcos E, Perros F, Fadel E, Tu L, Humbert M, Dartevelle P, Simonneau G, Adnot S, Eddahibi S. Role of Endothelium-derived CC Chemokine Ligand 2 in Idiopathic Pulmonary Arterial Hypertension. Am J Respir Crit Care Med 2007; 176:1041-7. [PMID: 17823354 DOI: 10.1164/rccm.200610-1559oc] [Citation(s) in RCA: 160] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
RATIONALE Inflammatory cytokines may affect pulmonary vascular remodeling in idiopathic pulmonary arterial hypertension (IPAH). CC chemokine ligand 2 (CCL2) is synthesized by vascular cells and can stimulate monocyte/macrophage migration and smooth muscle cell (SMC) proliferation. OBJECTIVES To investigate the role of CCL2 in IPAH. METHODS CCL2 levels in plasma, monocytes, lungs, and medium from pulmonary endothelial cell (P-EC) or pulmonary artery SMC (PA-SMC) cultures were measured by ELISA and Western blot analysis. CCL2 receptor CCR2 mRNA levels in monocytes, P-ECs, and PA-SMCs were measured by real-time polymerase chain reaction. Effect of CCL2 on PA-SMC proliferation and migration was assessed using [3H]thymidine incorporation and a modified Boyden's chamber. The effect of endothelial cell-derived CCL2 on monocyte migration was measured using a modified Boyden's chamber. MEASUREMENTS AND MAIN RESULTS Compared with control subjects, we found the following in patients with IPAH: elevated CCL2 protein levels in plasma and lung tissue, whereas monocyte CCL2 levels were similar between patients and control subjects, and elevated CCL2 release by P-ECs or PA-SMCs. P-ECs released twice as much CCL2 than did PA-SMCs. Monocyte migration was markedly increased in the presence of P-ECs, and the increase was larger with P-ECs from patients with IPAH. CCL2-blocking antibodies reduced P-ECs' chemotactic activity by 60%. Compared with controls, PA-SMCs from patients exhibited stronger migratory and proliferative responses to CCL2, in keeping with the finding that CCR2 was markedly increased in PA-SMCs from patients. CONCLUSIONS These results suggest that CCL2 overproduction may be a feature of the abnormal P-EC phenotype in IPAH, contributing to the inflammatory process and to pulmonary vascular remodeling.
Collapse
Affiliation(s)
- Olivier Sanchez
- INSERM U841 and Département de Physiologie Explorations Fonctionnelles, Hôpital H. Mondor, AP-HP, Créteil, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Pinto RFA, Higuchi MDL, Aiello VD. Decreased numbers of T-lymphocytes and predominance of recently recruited macrophages in the walls of peripheral pulmonary arteries from 26 patients with pulmonary hypertension secondary to congenital cardiac shunts. Cardiovasc Pathol 2004; 13:268-275. [PMID: 15358341 DOI: 10.1016/j.carpath.2004.06.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2004] [Revised: 06/23/2004] [Accepted: 06/29/2004] [Indexed: 10/26/2022] Open
Abstract
INTRODUCTION In the primary form of pulmonary hypertension (PH), the involvement of inflammation in the physiopathology of the vascular lesions is well established. Its role in secondary PH is yet to be investigated. We quantified the inflammatory cells on the walls of peripheral pulmonary arteries from patients with congenital heart shunts. METHODS Twenty-six lung biopsies from patients with increased pulmonary flow and 10 lung fragments from control participants were examined. B-lymphocytes (CD20), T-lymphocytes (CD3), recently recruited macrophages (MAC387) and granulocytes (CD15) were quantified by area of the adventitia in arteries >50 microm. An index of inflammatory cells infiltrating the medial and intimal layers was also determined. RESULTS There was no difference in the sum of densities of adventitial inflammatory cells between the groups. A prevalence of MAC387-labeled cells was detected in the PH group and of CD3-labeled cells in the controls. There was a lower density of T-lymphocytes in the PH group (P<.004). Patients with intimal proliferative lesions showed prevalence of MAC387-labeled cells (P=.004). PH participants showed a higher index of MAC387-labeled cells infiltrating the arterial medial and intimal layers (P<.001). CONCLUSION The predominance of recently recruited macrophages in the PH group is compatible with ongoing inflammatory reaction in the arterial walls. This could be related to the pathogenesis of the vascular lesions, as a consequence of cytokines produced by the inflammatory cells. The smaller number of adventitial T-lymphocytes in patients with congenital shunts can reflect an impairment of their immune response.
Collapse
Affiliation(s)
- Rubens Fraga Alves Pinto
- Laboratory of Pathology, Heart Institute (InCor), São Paulo University Medical School, Av. Dr. Enéas C. Aguiar 44, São Paulo-SP 05403-000, Brazil
| | | | | |
Collapse
|
13
|
Floquet N, Héry-Huynh S, Dauchez M, Derreumaux P, Tamburro AM, Alix AJP. Structural characterization of VGVAPG, an elastin-derived peptide. Biopolymers 2004; 76:266-80. [PMID: 15148686 DOI: 10.1002/bip.20029] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Elastic fibers are an important component of the extracellular matrix, providing elasticity and resilience to tissues that require the ability to deform repetitively and reversibly. Among the elastin-derived peptides, the Val-Gly-Val-Ala-Pro-Gly (VGVAPG) hexapeptide is known for its chemotactic activity and metalloproteinases upregulation properties. As other elastin-derived peptides, having homologous similar sequences, do not exhibit any biological activity, the following question arises: Does the peptide-receptor interaction need a specific active conformation? Previous experimental studies including NMR and CD spectroscopies did not clearly identify the conformations adopted by the VGVAPG peptide in solution. However, structural predictions made on VGVAPG and related XGXXPG peptides suggested a folded beta-turn conformation. So we undertook a theoretical and experimental study of the VGVAPG peptide. The work presented here, which gives an overall structural description of VGVAPG behavior in water, also provides an additional insight into its structure-activity relationship. Both theoretical and experimental results suggest the existence of an ensemble of rather extended and folded conformations in solution. All the folded structures obtained exhibit a type VIII beta-turn spanning the GVAP sequence. In the lack of any structural information concerning the elastin receptor, these results suggest that such a conformation could be relevant for the peptide-receptor interaction and thus for biological activity.
Collapse
Affiliation(s)
- Nicolas Floquet
- Laboratoire de Spectroscopies et Structures BioMoléculaires (LSSBM, EA.3305), IFR 53 Biomolécules, UFR Sciences Exactes et Naturelles, Université de Reims Champagne-Ardenne, BP 1039, 51687 Reims Cedex 2, France
| | | | | | | | | | | |
Collapse
|
14
|
Wright RW, Parikh M, Allen T, Brodt MD, Silva MJ, Botney MD. Effect of hemorrhage on medial collateral ligament healing in a mouse model. Am J Sports Med 2003; 31:660-6. [PMID: 12975183 DOI: 10.1177/03635465030310050501] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Medial collateral ligament injuries heal by a scar response. HYPOTHESIS Increased hemorrhage at the site of medial collateral ligament injury improves healing. STUDY DESIGN Controlled laboratory study. METHODS Ninety-six mice were divided into two groups. Group 1 mice underwent knee medial collateral ligament transection with the opposite knee as a sham-operated control and group 2 animals additionally had 0.25 ml of tail cut blood pipetted to the medial collateral ligament transection site and sham-operated opposite knee. Ligament specimens were harvested at 3, 7, 21, and 28 days. RESULTS Immunohistochemical analysis demonstrated peak macrophage counts at day 7 in all transected specimens. Macrophage counts were higher in group 2 than in group 1 at all time points, with a statistically significant increase of macrophages noted at day 7. In situ hybridization demonstrated increased collagen gene expression, with peaks at 7 and 28 days after transection. Group 2 animals showed increased gene expression at all time points as compared with group 1, with a statistically significant increase noted at 7 and 28 days. Biomechanical testing demonstrated progressive healing at each time point. At 28 days, the load to failure was 67% that of the sham-operated knee. CONCLUSIONS This study suggests there is an increased healing response with bleeding at the ligament injury site. CLINICAL RELEVANCE Identification of the factors involved with increased healing may allow manipulation of the healing response in the clinical setting.
Collapse
Affiliation(s)
- Rick W Wright
- Department of Orthopaedic Surgery, Washington University School of Medicine at Barnes-Jewish Hospital, St Louis, Missouri 63110, USA
| | | | | | | | | | | |
Collapse
|
15
|
Xu C, Zarins CK, Glagov S. Gene expression of tropoelastin is enhanced in the aorta proximal to the coarctation in rabbits. Exp Mol Pathol 2002; 72:115-23. [PMID: 11890720 DOI: 10.1006/exmp.2002.2423] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
To assess elastin biosynthesis in the aortic wall in response to acute elevation of blood pressure, we studied the aortic gene expression of tropoelastin in a rabbit midthoracic aortic coarctation model. The time points of the study were 1, 3, and 7 days and 2, 4, and 8 weeks after coarctation. Additional animals were subjected to hypercholesterolemia for analysis of tropoelastin expression in the intimal lesion. mRNA for tropoelastin was quantitated by Northern blot analysis and its distribution was revealed by in situ hybridization. The 65-kDa tropoelastin was analyzed by Western blotting and immunohistochemistry. Tropoelastin mRNA proximal to the coarctation was increased at 2 weeks and returned to baseline by 8 weeks (P < 0.05 versus control). Changes in 65-kDa tropoelastin corresponded to those of mRNA. Tropoelastin gene was expressed mainly in the intima and in the outer media at the proximal region to the stenoses, which was particularly remarkable in the intimal lesion. The results indicate that tropoelastin gene expression was enhanced in the early remodeling response to elevated blood pressure. The distribution of newly synthesized tropoelastin in the outer media suggests a reenforcement role of tropoelastin, which preserves mechanical resiliency in response to changes in tensile stress.
Collapse
Affiliation(s)
- Chengpei Xu
- Department of Surgery, Stanford University, Division of Vascular Surgery, 300 Pasteur Drive, Suite H3600, Stanford, California, USA.
| | | | | |
Collapse
|
16
|
Abstract
Changes in the extracellular matrix underlie the structural and functional abnormalities in the vessel wall that lead to progressive pulmonary vascular disease. Studies are reviewed aimed at addressing the cellular and molecular programs that regulate the production of the extracellular matrix describing new ways to arrest proliferation and migration of smooth muscle cells and to induce apoptosis. The latter can lead to the reversal of pathology at least in experimental animal models.
Collapse
Affiliation(s)
- M Rabinovitch
- Departments of Pediatrics, Laboratory Medicine and Pathobiology, and Medicine, University of Toronto, Cardiovascular Research Program, Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada.
| |
Collapse
|
17
|
Kimura H, Okada O, Tanabe N, Tanaka Y, Terai M, Takiguchi Y, Masuda M, Nakajima N, Hiroshima K, Inadera H, Matsushima K, Kuriyama T. Plasma monocyte chemoattractant protein-1 and pulmonary vascular resistance in chronic thromboembolic pulmonary hypertension. Am J Respir Crit Care Med 2001; 164:319-24. [PMID: 11463608 DOI: 10.1164/ajrccm.164.2.2006154] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The pathogenesis of severe pulmonary hypertension seems to be related to inflammatory response in diseased sites. Monocyte chemoattractant protein-1 (MCP-1) has been reported to play a role in the development of congestive heart failure. In this immunological response, activation and migration of leukocytes including macrophages to the inflammatory region are important factors. We hypothesized that the severity of pulmonary hypertension may be related to MCP-1, which is thought to be upregulated by blood pressure or shear stress in pulmonary vasculature as well as by immunological and inflammatory reactions in chronic thromboembolic pulmonary hypertension (CTEPH). Circulating levels of MCP-1, interleukin-1beta (IL-1beta), and tumor necrosis factor-alpha (TNF-alpha) were measured by sandwich ELISA in 14 patients with CTEPH. The plasma level of MCP-1 was significantly correlated with pulmonary vascular resistance. In IL-1beta and TNF-alpha, on the other hand, there was no correlation between cytokines and pulmonary hemodynamics. Pathological specimens obtained from the patients with CTEPH undergoing thromboendarterectomy demonstrated immunoreactivity of MCP-1 in endothelium, smooth muscle cells, and macrophages within neointima in the hypertensive large elastic pulmonary artery. We conclude that MCP-1 is upregulated in the remodeling of pulmonary arteries in close association with increased pulmonary vascular resistance in CTEPH.
Collapse
Affiliation(s)
- H Kimura
- Department of Chest Medicine, Institute of Pulmonary Cancer Research, Chiba University School of Medicine, 1-8-1 Inohana, Chuo-ku, Chiba 260-8679, Japan.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
O'Blenes CA, Kinnear C, Rabinovitch M. Tumor necrosis factor-alpha induces fibronectin synthesis in coronary artery smooth muscle cells by a nitric oxide-dependent posttranscriptional mechanism. Circ Res 2001; 89:26-32. [PMID: 11440974 DOI: 10.1161/hh1301.093631] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Postcardiac transplant coronary arteriopathy is associated with tumor necrosis factor-alpha (TNF-alpha) induction of fibronectin-dependent smooth muscle cell (SMC) migration into the subendothelium, resulting in occlusive neointimal formation. Because expression of inducible nitric oxide synthase (iNOS) is elevated in neointimal formation after transplantation and upregulated in vascular SMCs by TNF-alpha, we investigated whether TNF-alpha induction of fibronectin synthesis in coronary artery (CA) SMCs is mediated by nitric oxide (NO). TNF-alpha caused a dose-dependent increase in reactive oxygen and nitrogen intermediates in CA SMCs (P<0.05). This correlated with increased NO production (P<0.05) and fibronectin synthesis (P<0.05). TNF-alpha induction of fibronectin synthesis was abrogated by the NOS inhibitor N(G)-monomethyl-L-arginine (L-NMMA) (P<0.05) or the flavonoid-containing enzyme inhibitor diphenyleneiodonium (DPI) (P<0.05) and reproduced with the NO donor S-nitroso-N-acetyl-penicillamine (SNAP) (P<0.05). Northern blotting showed no effect of TNF-alpha on steady-state fibronectin mRNA levels. TNF-alpha increased expression of light chain 3 (LC-3), a protein shown previously to facilitate fibronectin mRNA translation through its interaction with an adenosine-uracil rich element (ARE) in the 3'-untranslated region of fibronectin mRNA. RNA gel mobility shift and UV cross-linking assays using CA SMC lysates revealed protein binding complexes with radiolabeled oligonucleotide containing the ARE, similar to those generated with recombinant LC-3. One of these complexes increased after TNF-alpha treatment, an effect inhibited with L-NMMA or DPI. These data demonstrate a novel paradigm whereby cytokines regulate mRNA translation of extracellular matrix proteins through NO-dependent modulation of RNA binding protein interaction with mRNA.
Collapse
Affiliation(s)
- C A O'Blenes
- Division of Cardiovascular Research, The Hospital for Sick Children, Toronto, Ontario, Canada
| | | | | |
Collapse
|
19
|
|
20
|
Mitani Y, Ueda M, Komatsu R, Maruyama K, Nagai R, Matsumura M, Sakurai M. Vascular smooth muscle cell phenotypes in primary pulmonary hypertension. Eur Respir J 2001; 17:316-20. [PMID: 11334137 DOI: 10.1183/09031936.01.17203160] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Primary pulmonary hypertension (PPH) is associated with specific structural alterations, including cellular intimal thickening, intimal fibrosis, and plexiform lesions. To determine the phenotypes of smooth muscle cells (SMCs) in such lesions, the authors conducted an immunohistochemical analysis of lung tissues from two patients with PPH, using two antimuscle actin antibodies, HHF35 and CGA7, and two anti-SMC myosin heavy chain markers, anti-SM1 and anti-SM2 antibodies and related antibodies. Cells that stained positive (+) with HHF35, CGA7, anti-SM1, and anti-SM2 were considered to be SMCs of a mature state. Conversely, those that stained positive with HHF35 and anti-SM1, but weakly positive (+/-) or negative (-) with CGA7 and anti-SM2, were considered to be SMCs exhibiting an immature state. Cellular intimal thickening was composed of SMCs of an immature phenotype (HHF35+, CGA7+/-, SM1+, SM2+/-), accompanied by the expression of fibronectin and the presence of macrophages; intimal fibrosis contained mature SMCs (HHF35+, CGA7+, SM1+, SM2+); and plexiform lesion consisted of proliferative endothelial cells (von Willebrand factor-positive cells, proliferating cell nuclear antigen-positive cells) and underlying immature SMCs (HHF35+, CGA7-, SM1+, SM2-) associated with fibronectin expression and macrophage infiltration. These findings suggest that smooth muscle cells with specific phenotypes may contribute to the development of specific vascular lesions in primary pulmonary hypertension.
Collapse
Affiliation(s)
- Y Mitani
- Dept of Pediatrics, Mie University School of Medicine, Tsu, Japan
| | | | | | | | | | | | | |
Collapse
|
21
|
Qing F, McCarthy TJ, Markham J, Schuster DP. Pulmonary angiotensin-converting enzyme (ACE) binding and inhibition in humans. A positron emission tomography study. Am J Respir Crit Care Med 2000; 161:2019-25. [PMID: 10852783 DOI: 10.1164/ajrccm.161.6.9907036] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Angiotensin-converting enzyme (ACE) inhibition attenuates pulmonary hypertension and delays the development of pulmonary vascular remodeling in animal models. Thus, ACE inhibition might be a useful treatment for primary pulmonary hypertension (PPH). To determine the dose of ACE inhibitor required to specifically block pulmonary ACE in humans, we measured the combined forward rate constant (CFRC) for [(18)F]-fluorocaptopril, which is proportional to the mass of ACE in the lung, using positron emission tomography (PET). In five normal subjects, CFRC was measured twice, 1 wk apart, to assess measurement reproducibility. The CFRC was 0.151 +/- 0.067 for the first measurement and 0.140 +/- 0.060 for the second measurement (p = not significant [NS]). In five normals, CFRC decreased on average 84%, from 0.177 +/- 0.053/s to 0.028 +/- 0.017/s (p < 0.05), after 1 wk ingestion of 5 mg enalapril orally once a day (the scans were performed 24 h after the last medication). Similarly, in five patients with PPH, CFRC decreased on average 76%, from 0.052 +/- 0. 020/s to 0.012 +/- 0.003 (p < 0.01), after 1 wk enalapril, despite much lower baseline values. We conclude that the total mass of pulmonary ACE appears to be significantly reduced in PPH and that only low doses of ACE inhibitors may be needed to block the effects of ACE on vascular remodeling in PPH.
Collapse
Affiliation(s)
- F Qing
- Departments of Medicine and Radiology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | | | |
Collapse
|
22
|
Bortman SM, Losordo DW. Dynamics of Vascular Remodeling: An Overview and Bibliography. J Thromb Thrombolysis 1999; 3:71-86. [PMID: 10608041 DOI: 10.1007/bf00226415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- SM Bortman
- Department of Cardiology, St. Elizabeth's Medical Center, Tufts University School of Medicine, Boston, Massachusetts and Department of Cardiovascular Research, St. Elizabeth's Medical Center, Tufts University School of Medicine, Boston, Massachusetts
| | | |
Collapse
|
23
|
Weitkamp B, Cullen P, Plenz G, Robenek H, Rauterberg J. Human macrophages synthesize type VIII collagen in vitro and in the atherosclerotic plaque. FASEB J 1999; 13:1445-57. [PMID: 10428768 DOI: 10.1096/fasebj.13.11.1445] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Type VIII collagen is a short-chain collagen that is present in increased amounts in atherosclerotic lesions. Although the physiological function of this matrix protein is unclear, recent data suggest an important role in tissue remodeling. Type VIII collagen in the atherosclerotic lesion is mainly derived from smooth muscle cells. We now show that macrophages in the atherosclerotic vessel wall and monocytes in adjacent mural thrombi also express type VIII collagen. We demonstrated this using a novel combined fluorescence technique that simultaneously stains, within the same tissue section, specific RNAs by in situ hybridization and proteins by indirect immunofluorescence. In culture, human monocyte/macrophages expressed type VIII collagen at all time points from 1 h to 3 wk after isolation. Western blotting and immunoprecipitation also revealed secretion of type VIII collagen into the medium of 14-day-old macrophages. Because this is the first report of secretion of a collagen by macrophages, we tested the effect of lipopolysaccharide (LPS) and interferon gamma, substances that stimulate macrophages to secrete lytic enzymes, on macrophage expression of type VIII collagen. LPS and interferon gamma decreased expression of type VIII collagen. By contrast, secretion of matrix metalloproteinase 1 (MMP 1) was increased, indicating a switch from a collagen-producing to a degradative phenotype. Double in situ hybridization studies of expression of type VIII collagen and MMP 1 in human coronary arteries showed that in regions important for plaque stability, the ratio of MMP 1 RNA to macrophage type VIII collagen RNA varies widely, indicating that the transition from one phenotype to the other that we observed in vitro may also occur in vivo.
Collapse
Affiliation(s)
- B Weitkamp
- Institut für Arterioskleroseforschung, 48149 Münster, Germany
| | | | | | | | | |
Collapse
|
24
|
Botney MD. Role of hemodynamics in pulmonary vascular remodeling: implications for primary pulmonary hypertension. Am J Respir Crit Care Med 1999; 159:361-4. [PMID: 9927344 DOI: 10.1164/ajrccm.159.2.9805075] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Affiliation(s)
- M D Botney
- Respiratory and Critical Care Division, Washington University Medical Center, St. Louis, Missouri, USA
| |
Collapse
|
25
|
Okada K, Bernstein ML, Zhang W, Schuster DP, Botney MD. Angiotensin-converting enzyme inhibition delays pulmonary vascular neointimal formation. Am J Respir Crit Care Med 1998; 158:939-50. [PMID: 9731029 DOI: 10.1164/ajrccm.158.3.9710007] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Primary pulmonary hypertension (PPH) is a disease characterized pathologically by pulmonary artery medial hypertrophy, adventitial thickening, and neointimal proliferation. Increasing recognition of the importance of remodeling to the pathogenesis of PPH suggests new therapeutic possibilities, but it will be necessary to (1) identify essential mediators of remodeling, and (2) demonstrate that inhibiting those mediators suppresses remodeling before new antiremodeling therapies can be considered feasible. The effect of angiotensin-converting enzyme (ACE) inhibition on pulmonary vascular remodeling was studied in a newly developed rat model in which neointimal lesions develop between 3 and 5 wk after monocrotaline injury is coupled with increased pulmonary artery blood flow after contralateral pneumonectomy. Neointimal formation was significantly suppressed at 5 wk by ACE inhibition whether it was started 10 d before or 3 wk after remodeling was initiated, although medial hypertrophy and adventitial thickening still developed. By 11 wk, the extent of neointimal formation in rats treated with ACE inhibition was similar to rats without ACE inhibition at 5 wk. Pulmonary artery pressures and right ventricular weights correlated with the extent of neointimal formation. Northern blot analysis and in situ hybridization demonstrated marked suppression of lung tropoelastin and type I procollagen gene expression in the presence of ACE inhibition. An angiotensin II type I receptor antagonist partially, but not completely, replicated the effects of ACE inhibition. These data suggest that the tissue angiotensin system may be a target for therapeutic efforts to suppress the vascular remodeling that is characteristic of primary pulmonary hypertension.
Collapse
Affiliation(s)
- K Okada
- Respiratory and Critical Care Division, Washington University Medical Center, St. Louis, Missouri, USA
| | | | | | | | | |
Collapse
|
26
|
Bisaccia F, Castiglione-Morelli MA, Spisani S, Ostuni A, Serafini-Fracassini A, Bavoso A, Tamburro AM. The amino acid sequence coded by the rarely expressed exon 26A of human elastin contains a stable beta-turn with chemotactic activity for monocytes. Biochemistry 1998; 37:11128-35. [PMID: 9693009 DOI: 10.1021/bi9802566] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The structural and biological properties of the amino acid sequence coded by the rarely expressed exon 26A of human elastin were investigated. The C-terminal portion of this sequence, corresponding to residues 600-619 of human tropoelastin, REGDPSSSQHLPSTPSSPRV and three shorter derived peptides, LREGDPSS, SSSQHLPS, and LPSTPSSP, were synthesized and studied. Spectroscopic analyses by CD and NMR have identified a type II beta-turn within the sequence REGD of the octapeptide LREGDPSS. This structural motif was found also in the tetrapeptide REGD in both trifluoroethanol and water. The CD spectrum of the tetrapeptide REGD in trifluoroethanol was consistent with a pure type II beta-turn. A high chemotactic activity for monocytes was exhibited by the structured peptides REGD (CI 0.90 at 10(-)7 M) and LREGDPSS (CI 0.80 at 10(-)11 M), at variance with the unfolded peptides LPSTPSSP and SSSQHLPS, suggesting that this activity is strictly correlated with folded structures. Because the exon 26A of human elastin is expressed in the neointima of hypertensive pulmonary arteries, and macrophages are present in this pathologic tissue [Liptay et al. (1993) J. Clin. Invest. 91, 588-594], the chemotactic activity for human monocytes reported in this paper is consistent with an active role played by the exon 26A in inducing the migration of the monocyte/macrophage cells to the neointima.
Collapse
Affiliation(s)
- F Bisaccia
- Department of Chemistry, University of Basilicata, Potenza, Italy
| | | | | | | | | | | | | |
Collapse
|
27
|
Kitahara M, Kanaki T, Toyoda K, Miyakoshi C, Tanaka S, Tamaki T, Saito Y. NK-104, a newly developed HMG-CoA reductase inhibitor, suppresses neointimal thickening by inhibiting smooth muscle cell growth and fibronectin production in balloon-injured rabbit carotid artery. JAPANESE JOURNAL OF PHARMACOLOGY 1998; 77:117-28. [PMID: 9681568 DOI: 10.1254/jjp.77.117] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
3-Hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase inhibitors have been reported to suppress smooth muscle cell growth and arterial neointimal thickening. In this study, to elucidate the potency and mechanisms of NK-104 ((+)-monocalcium bis[(3R,5S,6E)-7-[2-cyclopropyl-4-(4-fluorophenyl)-3-quinolyl]-3,5-dihydroxy-6-heptenoate], CAS 147526-32-7) in neointimal thickening, the effect of NK-104 on the neointimal thickening, Br-dU-labeled cell number and extracellular matrix immunohistochemistry were examined in balloon-injured rabbit carotid artery. NK-104 suppressed the neointimal thickening dose-dependently, and the suppression was 69.5% at 1.0 mg/kg. NK-104 suppressed the intimal total and Br-dU-labeled cell number. Fibronectin and type I collagen were observed in 81% and 38% of the total intimal area in the control arteries, respectively, and the areas occupied by fibronectin and type I collagen were significantly decreased by 1.0 mg/kg NK-104 to 39% and 22%, respectively. The decrease in fibronectin per cell was more potently demonstrated. Aortic total and activated TGF-beta contents that were markedly increased in the injured artery were increased further by NK-104. NK-104 concentration-dependently suppressed fibronectin content of the basement lesion in rabbit primary cultured smooth muscle cells. These findings suggest that NK-104 suppresses balloon-injury-induced neointimal thickening through inhibition of intimal smooth muscle cell growth and extracellular matrix accumulation.
Collapse
Affiliation(s)
- M Kitahara
- Shiraoka Research Station of Biological Science, Nissan Chemical Industries, Ltd., Minamisaitama, Saitama, Japan
| | | | | | | | | | | | | |
Collapse
|
28
|
Carver TW, Srinathan SK, Velloff CR, Pérez Fontán JJ. Increased type I procollagen mRNA in airways and pulmonary vessels after vagal denervation in rats. Am J Respir Cell Mol Biol 1997; 17:691-701. [PMID: 9409556 DOI: 10.1165/ajrcmb.17.6.2830] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
To test the hypothesis that increased airway strain resulting from lung denervation initiates a fibroproliferative response in the airways, we compared the transcriptional expressions of alpha1(I)-procollagen and tropoelastin in the lungs of rats subjected to unilateral vagal denervation, unilateral vagal denervation combined with ipsilateral phrenectomy, or thoracotomy without denervation (controls). We found increases in alpha1(I)-procollagen messenger ribonucleic acids (mRNAs) in the submucosa of the airways and the adventitia of airways and pulmonary vessels of the denervated lungs in 31% of the rats subjected to unilateral denervation (with and without phrenectomy), and in none of the controls. The increased transcripts were associated with collagen deposition in the peribronchial and perivascular tissue, and occasionally with cell proliferation leading to occlusion of the airway and vascular lumina. Unilateral phrenectomy did not decrease the frequency with which production of Type I procollagen was upregulated, suggesting that the upregulation was not entirely dependent on airway strain. Tropoelastin expression was not influenced by denervation. Our results indicate that the autonomic nervous system has a previously unsuspected trophic influence on collagen synthesis in the airways and pulmonary vessels. Abolition of this influence by denervation may lead to structural changes analogous to those observed in bronchiolitis obliterans after lung transplantation.
Collapse
Affiliation(s)
- T W Carver
- The Edward Mallinckrodt Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | | | |
Collapse
|
29
|
Okada K, Tanaka Y, Bernstein M, Zhang W, Patterson GA, Botney MD. Pulmonary hemodynamics modify the rat pulmonary artery response to injury. A neointimal model of pulmonary hypertension. THE AMERICAN JOURNAL OF PATHOLOGY 1997; 151:1019-25. [PMID: 9327735 PMCID: PMC1858047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Hemodynamic factors have profound influences on blood vessels. To test the hypothesis that hemodynamic conditions modify the pattern of remodeling in response to injury, monocrotaline (MCT) injury in Sprague-Dawley rats was followed 1 week later by left pneumonectomy to increase blood flow to the right lung. Right pulmonary artery remodeling in these MCT plus pneumonectomy animals was compared with animals receiving MCT or pneumonectomy alone. Neointimal changes developed in more than 90% of all right lung intra-acinar vessels 5 weeks after MCT injury (4 weeks after pneumonectomy). Neointimal lesions did not develop in untreated animals or in animals receiving MCT or pneumonectomy only. Animals with a neointimal pattern of remodeling developed severe right ventricular hypertrophy (RVH) whereas animals with a medial hypertrophy pattern of remodeling (MCT only) developed moderate RVH compared with control animals. Neointimal lesions and RVH were similar whether injury preceded pneumonectomy or vice versa. To exclude the possibility that neointimal lesions resulted from injury plus post-pneumonectomy compensatory lung growth, rather than injury plus increased flow, a left subclavian-pulmonary artery anastomosis was substituted for pneumonectomy. Neointimal lesions and severe RVH developed in these animals but were not seen in animals receiving either MCT or anastomosis only. These studies demonstrate an important role for hemodynamics in determining the pattern of pulmonary vascular remodeling after injury.
Collapse
Affiliation(s)
- K Okada
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | | | | | | | | | | |
Collapse
|
30
|
Jones PL, Cowan KN, Rabinovitch M. Tenascin-C, proliferation and subendothelial fibronectin in progressive pulmonary vascular disease. THE AMERICAN JOURNAL OF PATHOLOGY 1997; 150:1349-60. [PMID: 9094991 PMCID: PMC1858188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Progressive pulmonary hypertension is characterized by smooth muscle cell proliferation and migration leading to occlusive arterial lesions. Previously, using cultured smooth muscle cells, we demonstrated that epidermal growth factor (EGF)-dependent proliferation and migration are dependent on tenascin-C (Tn) and cellular fibronectin (Fn), respectively. In this study we applied immunohistochemistry to lung biopsy tissue from patients with congenital heart defects and pulmonary hypertension to determine how the distribution and intensity of Tn, EGF, proliferating cell nuclear antigen (PCNA), and Fn expression related to arterial abnormalities. With mildly increased wall thickness, minimal Tn, PCNA, and EGF was evident. With progressive hypertrophy, moderately intense foci of Tn were apparent in the adventitia, periendothelium, and occasionally the media but not consistently co-distributing with EGF and PCNA. With obstructive lesions, intense neointimal Tn expression co-localized with EGF and PCNA. Fn accumulation in the periendothelium increased with medial hypertrophy and became more widespread in a diffuse pattern with neointimal formation. The neointima was predominantly composed of alpha-smooth-muscle-actin-positive cells, occasional inflammatory cells with no evidence of apoptosis. These studies are consistent with Tn modulating EGF-dependent neointimal smooth muscle cell proliferation and Fn providing a gradient for smooth muscle cell migration from media to neointima.
Collapse
Affiliation(s)
- P L Jones
- Division of Cardiovascular Research, Hospital for Sick Children, Toronto, Ontario, Canada
| | | | | |
Collapse
|
31
|
Abstract
In many organs and tissues, the cellular response to injury is associated with a reiteration of specific developmental processes. Studies have shown that, in response to injury, vascular wall cells in adult organisms express genes or gene products characteristic of earlier developmental states. Other genes, expressed preferentially in adult cells in vivo, are down-regulated following injurious stimuli. Complicating matters, however, are recent observations demonstrating that the vascular wall is comprised of phenotypically heterogeneous subpopulations of endothelial cells, smooth muscle cells, and fibroblasts. It is unclear how specific subsets of cells respond to injury and thus contribute to the vascular remodeling that characterizes chronic pulmonary hypertension. This review discusses vascular development in the lung and the cellular responses occurring in pulmonary hypertension; special attention is given to heterogeneity of responses within cell populations and reiteration of developmental processes.
Collapse
Affiliation(s)
- K R Stenmark
- University of Colorado Health Sciences Center, Developmental Lung Biology Laboratory, Denver 80262, USA
| | | |
Collapse
|
32
|
Jones PL, Rabinovitch M. Tenascin-C is induced with progressive pulmonary vascular disease in rats and is functionally related to increased smooth muscle cell proliferation. Circ Res 1996; 79:1131-42. [PMID: 8943951 DOI: 10.1161/01.res.79.6.1131] [Citation(s) in RCA: 122] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Tenascin-C, an extracellular matrix glycoprotein prominent during tissue remodeling, has been linked to cell migration, proliferation, and apoptosis. To determine its potential role in the pathobiology of pulmonary hypertension, we compared tenascin expression in adult and infant rat pulmonary arteries (PAs) after injection of the toxin monocrotaline. Immunohistochemistry, in situ hybridization, and Northern blot analysis demonstrated induction of tenascin in adult rat central and peripheral PA. Tenascin was not, however, detected in infant vessels, which show spontaneous regression of vascular lesions. To determine a function for tenascin, we correlated its expression with evidence of apoptosis and cell proliferation using the TdT-mediated dUTP-biotin nick end labeling (TUNEL) assay and 5-bromo-2'-deoxyuridine labeling, respectively. Apoptosis was observed only in the adult rat PA endothelial cell layer, preceding the induction of tenascin, which colocalized both temporally and spatially with proliferating smooth muscle cells (SMCs). A cause-and-effect relationship was documented in cultured rat PA SMCs, where tenascin promoted growth in response to basic fibroblast growth factor and was a prerequisite for epidermal growth factor-induced proliferation. These data provide novel functional information suggesting that endothelial cell apoptosis precedes progressive pulmonary hypertension and that induction of tenascin may be critical to growth factor-dependent SMC proliferation.
Collapse
Affiliation(s)
- P L Jones
- Division of Cardiovascular Research, Hospital for Sick Children, Toronto, Ontario, Canada
| | | |
Collapse
|
33
|
Eddy AA. Interstitial inflammation and fibrosis in rats with diet-induced hypercholesterolemia. Kidney Int 1996; 50:1139-49. [PMID: 8887271 DOI: 10.1038/ki.1996.421] [Citation(s) in RCA: 79] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Abnormalities in lipid metabolism appear to play a pathogenic role in progressive renal disease. To elucidate the cellular and molecular basis of renal interstitial fibrosis in uninephrectomized rats with diet-induced hypercholesterolemia, we fed experimental rats with standard rat chow supplemented with 4% cholesterol and 1% cholic acid. Control rats were fed an isocaloric diet. Groups of 7 control and 7 experimental rats were killed after 4, 8, and 12 weeks. Hypercholesterolemic rats developed albuminuria; serum creatinine was elevated at 12 weeks. By 12 weeks numerous oil red O-positive cells were present throughout the interstitium and to a lesser extent in tubules. Total renal lipid-peroxidation products were significantly increased (172 +/- 15, 198 +/- 28, and 197 +/- 13 mmol malondialdehyde/kidney at 4, 8, and 12 weeks vs. 123 +/- 17, 144 +/- 6, and 125 +/- 10 mmol in controls). Immunostaining revealed oxidatively modified lipoproteins within tubular and interstitial cells. The interstitial disease was characterized by an interstitial infiltrate of monocytes. Significant increases were detected in renal cortical mRNA levels for monocyte chemoattractant protein-1 (MCP-1), osteopontin, and vascular cell adhesion molecule-1 (VCAM-1), associated with changes in the pattern of immunostaining for each encoded proteins. Total kidney collagen was significantly increased at 12 weeks (9.8 +/- 0.9 mg/kidney vs. 7.8 +/- 0.9 mg in controls). At 12 weeks there was a significant increase in interstitial immunostaining for collagen I, collagen III, collagen IV, fibronectin and tenascin. A significant threefold increase in renal cortical mRNA levels for transforming growth factor beta-1 (TGF-beta 1) at 4 and 12 weeks was associated with the appearance of TGF-beta 1-positive interstitial cells. Renal matrix protein mRNA levels were measured at 4, 8, and 12 weeks. The only statistically significant elevations were procollagen alpha 1(I) and procollagen alpha 1(III) at weeks 8 and 12. In contrast, renal cortical mRNA levels for the tissue inhibitor of metalloproteinases-1 (TIMP-1) were significantly increased at 4, 8 and 12 weeks (1.4 +/- 0.5, 2.7 +/- 0.9 and 2.7 +/- 1.4 arbitrary densitometric units, respectively, vs. 1.0 +/- 0.4, 1.0 +/- 0.5 and 1.0 +/- 0.4 units for controls), and urokinase-type plasminogen activator (muPA) mRNA levels were significantly decreased at 4, 8, and 12 weeks (0.4 +/- 0.1 arbitrary densitometric units for all three experimental groups vs. 1.0 +/- 0.4, 1.0 +/- 0.3, and 1.0 +/- 0.4 units for the control groups). In summary, rats with diet-induced hypercholesterolemia develop renal interstitial fibrosis over several weeks. Following the accumulation of lipids within tubulointerstitial cells, interstitial nephritis develops. The fibrotic phase is characterized by modest changes in matrix protein mRNA levels, up-regulated TIMP-1, and down-regulated muPA levels, suggesting that altered matrix degradation plays a role in the interstitial fibrogenesis in this model.
Collapse
Affiliation(s)
- A A Eddy
- Hospital for Sick Children, Toronto, Ontario, Canada
| |
Collapse
|
34
|
Tanaka Y, Schuster DP, Davis EC, Patterson GA, Botney MD. The role of vascular injury and hemodynamics in rat pulmonary artery remodeling. J Clin Invest 1996; 98:434-42. [PMID: 8755654 PMCID: PMC507447 DOI: 10.1172/jci118809] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Vascular remodeling in adult human elastic pulmonary arteries is characterized by diffuse neointimal lesions containing smooth muscle cells expressing extracellular matrix genes. Recent studies suggest vascular injury is needed to initiate remodeling and that growth factor mediators participate in the repair response. However, because neointimal formation is only observed in patients with pulmonary artery blood pressures approaching systemic levels, it has been hypothesized that systemic-like hemodynamic conditions are also necessary. To test that hypothesis, subclavian-pulmonary artery anastomoses were created in Sprague-Dawley rats under three different experimental conditions: no accompanying injury, or after monocrotaline or balloon endarterectomy injury. Pulmonary vascular remodeling was not induced by the subclavian-pulmonary artery anastomosis alone. A non-neointimal pattern of remodeling after mild monocrotaline-induced injury was converted into a neointimal pattern in the presence of the anastomosis. Neointima was also observed after severe, balloon endarterectomy-induced injury even in the absence of anastomosis. Tropoelastin, type I procollagen and TGF-beta gene expression, and angiotensin converting enzyme immunoreactivity, was confined to the neointima resembling the pattern of gene expression and immunoreactivity in human hypertensive elastic pulmonary artery neointimal lesions. These observations introduce the concepts that the type of injury and the associated hemodynamic conditions can modify the elastic pulmonary artery response to injury.
Collapse
Affiliation(s)
- Y Tanaka
- Department of Medicine, Washington University Medical Center, St. Louis, Missouri 63110, USA
| | | | | | | | | |
Collapse
|
35
|
Abstract
Morphologic and immunocytochemical studies of hypercholesterolemic animal models have now clearly established the chronological patterns of cellular interactions that occur during the initial and transitional phases of the atherogenic process. These include: adherence of leukocytes to the endothelial surface, chemotactic attraction of the leukocytes into the arterial intima, conversion of monocytes to foam cells, stimulation of smooth muscle cell migration, connective tissue synthesis and proliferation, inflammatory and immune activation of macrophages and T lymphocytes, and the necrosis or apoptosis of cells within the developing lesions. Recent studies have begun to provide-mechanistic explanations for these observed cellular events. For example, the adherence of leukocytes to the endothelium appears to be dependent on the increased expression of adherence molecules by endothelial cells. The formation of foam cells is likely dependent on an increase in the expression of modified lipoprotein receptors. An increase in the migration and proliferation of macrophages, T lymphocytes, and smooth muscle cells appears to be in response to the inflammatory activation of cells with a resulting increase in the secretion of cytokines, chemoattractants, and growth regulatory molecules. However, it is still unclear how cells within atherosclerotic lesions initially become activated and whether there are common stimulatory factors. In this regard, immunocytochemical staining of human and rabbit lesions with antibodies recognizing oxidation-specific epitopes suggests that many of the cells involved in these key events in the atherogenic process contain these lipid-protein adducts and that it is these products of oxidation that activate the cells. Furthermore, we have also recently demonstrated that components of oxidized LDL maximally induce the production of IL-1 by macrophage-derived foam cells. These observations suggest that there may be a common intracellular signal transduction pathway that is responsive to oxidative mechanisms and which underlies some of the key cellular events in the atherogenic process.
Collapse
Affiliation(s)
- M E Rosenfeld
- Department of Pathobiology, University of Washington, Seattle 98195, USA
| |
Collapse
|
36
|
Abstract
This article reviews our current understanding of the mechanisms of low-density lipoprotein (LDL) oxidation and the potential role of oxidized lipoproteins in atherosclerosis. Studies in hypercholesterolemic animal models indicate that oxidation of LDL is likely to play an important role in atherogenesis. Epidemiological investigations further suggest that the dietary intake of antioxidants is inversely associated with the risk of vascular disease, suggesting that oxidized LDL may be important in human atherosclerosis. By activating inflammatory events, oxidized lipoproteins may contribute to all stages of the atherosclerotic process. Lipoprotein oxidation is promoted by several different systems in vitro, including free and protein-bound metal ions, thiols, reactive oxygen intermediates, lipoxygenase, peroxynitrite, and myeloperoxidase. Intracellular proteins that bind iron or regulate iron metabolism might also play an important role. The physiologically relevant pathways have yet to be identified, however. We assess recent findings on the effects of antioxidants in vivo and suggest potential strategies for inhibiting oxidation in the vessel wall.
Collapse
Affiliation(s)
- J A Berliner
- Department of Pathology, University of California Los Angeles 90024, USA
| | | |
Collapse
|
37
|
Severson AR, Ingram RT, Fitzpatrick LA. Matrix proteins associated with bone calcification are present in human vascular smooth muscle cells grown in vitro. In Vitro Cell Dev Biol Anim 1995; 31:853-7. [PMID: 8826089 DOI: 10.1007/bf02634569] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Atherosclerotic lesions are composed of cellular elements that have migrated from the vessel lumen and wall to form the cellular component of the developing plaque. The cellular elements are influenced by various growth-regulatory molecules, cytokines, chemoattractants, and vasoregulatory molecules that regulate the synthesis of the extracellular matrix composing the plaque. Because vascular smooth muscle cells (VSMC) constitute the major cellular elements of the atherosclerotic plaque and are thought to be responsible for the extracellular matrix that becomes calcified in mature plaques, immunostaining for collagenous and noncollagenous proteins typically associated with bone matrix was conducted on VSMC grown in vitro. VSMC obtained from human aorta were grown in chambers on glass slides and immunostained for procollagen type I, bone sialoprotein, osteonectin, osteocalcin, osteopontin, decorin, and biglycan. VSMC demonstrated an intense staining for procollagen type I, and a moderately intense staining for the noncollagenous proteins, bone sialoprotein and osteonectin, two proteins closely associated with bone mineralization. Minimal immunostaining was noted for osteocalcin, osteopontin, decorin, and biglycan. The presence in VSMC of collagenous and noncollagenous proteins associated with bone mineralization suggest that the smooth muscle cells in the developing atherosclerotic plaque play an important role in the deposition of the extracellular matrix involved in calcification of developing lesions.
Collapse
Affiliation(s)
- A R Severson
- Department of Anatomy and Cell Biology, University of Minnesota, Duluth 55812, USA
| | | | | |
Collapse
|
38
|
Dubin D, Peters JH, Brown LF, Logan B, Kent KC, Berse B, Berven S, Cercek B, Sharifi BG, Pratt RE. Balloon catheterization induced arterial expression of embryonic fibronectins. Arterioscler Thromb Vasc Biol 1995; 15:1958-67. [PMID: 7583577 DOI: 10.1161/01.atv.15.11.1958] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Fibronectins (FNs) comprise a family of adhesive extracellular matrix proteins that arise by alternative splicing in three regions: V (IIICS), EIIIA (ED-A), and EIIIB (ED-B). FNs bearing the EIIIA and EIIIB segments are prevalent during embryogenesis, expressed to lesser degrees in normal adult tissues, and may be locally reexpressed at adult tissue injury. RNase mapping shows that normal rat arteries express low levels of FNs that are predominantly EIIIA- and EIIIB-. Following balloon injury, arterial walls produce increased total levels of FN transcripts that preferentially include both the EIIIA and EIIIB segments. However, despite inducing increased total FN mRNA, balloon injury does not alter the relative composition of V120+, V95+, AND V0 spliced forms. In situ hybridization reveals that as early as 4 days after injury medial cells express increased total FN mRNA, and by 7 days substantial neointimal and focal medial synthesis of EIIIA+, EIIIB+, and V120+ FNs occurs; macrophages do not significantly contribute to this observed vascular FN synthesis. Consistent with the mRNA data, immunofluorescence microscopic analysis reveals increased deposition of EIIIB+ and V+ FN protein forms in injured arterial walls, particularly within the neointima. Our results suggest that local synthesis of specific FN isoforms is important to the neointimal formation that ensues after balloon injury.
Collapse
Affiliation(s)
- D Dubin
- Department of Pathology, Beth Israel Hospital, Boston, MA 02215, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Molossi S, Elices M, Arrhenius T, Rabinovitch M. Lymphocyte transendothelial migration toward smooth muscle cells in interleukin-1 beta-stimulated co-cultures is related to fibronectin interactions with alpha 4 beta 1 and alpha 5 beta 1 integrins. J Cell Physiol 1995; 164:620-33. [PMID: 7650068 DOI: 10.1002/jcp.1041640321] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
We previously reported infiltration of immune-inflammatory cells in coronary arteries from cardiac allografts, associated with increased endothelial and smooth muscle cell fibronectin synthesis regulated by interleukin (IL)-1 beta. We now investigate, using a porcine endothelial-smooth muscle cell co-culture system, whether IL-1 beta-stimulated fibronectin production is functionally important in lymphocyte transendothelial migration. Lymphocytes were harvested from porcine peripheral blood and, in the unactivated state or following activation with phorbol myristic acetate (PMA) and IL-2, were characterized by fluorescence-activated cell sorter (FACS) analysis and added to a confluent endothelial monolayer on the upper chamber of a transwell system. Endothelial cells, as well as smooth muscle cells (in the bottom of the chamber), were stimulated with IL-1 beta. Then transendothelial lymphocyte migration was determined in the presence of CS1 and RGD (fibronectin) peptides, blocking alpha 4 beta 1 and alpha 5 beta 1 integrin receptors on lymphocyte surfaces, respectively. A 55-70% inhibition of lymphocyte migration was observed when compared to control peptides. The combination of CS1 and RGD peptides did not significantly enhance the inhibitory effect of either peptide alone. A similar decrease in lymphocyte transendothelial migration toward smooth muscle cells was documented using a monoclonal antibody to cellular fibronectin. Furthermore, using smooth muscle cell conditioned medium, we reproduced the enhanced transendothelial lymphocyte migration as well as the inhibition with blocking peptides or fibronectin antibodies. Our data suggest that cytokine-mediated fibronectin synthesis in vascular cells recruits inflammatory cells through interactions of specific peptides with cell surface alpha 4 beta 1 and alpha 5 beta 1 integrins.
Collapse
Affiliation(s)
- S Molossi
- Division of Cardiovascular Research, Hospital for Sick Children, Ontario, Canada
| | | | | | | |
Collapse
|
40
|
Rekhter MD, Gordon D. Active proliferation of different cell types, including lymphocytes, in human atherosclerotic plaques. THE AMERICAN JOURNAL OF PATHOLOGY 1995; 147:668-77. [PMID: 7677178 PMCID: PMC1870963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Cell proliferation, an important mechanism of atherosclerotic plaque growth, occurs among smooth muscle, inflammatory cell, and other cell types. We have identified different topographical patterns of cell proliferation in human carotid plaques, based on cell type. Cell proliferation was determined with an antibody to the proliferating cell nuclear antigen (PCNA), combined with cell type-specific antibodies. Despite low levels of overall proliferative activity, the intima displayed more proliferative activity than the underlying media (1.61 +/- 0.35% in intima versus 0.05 +/- 0.03% in media; P < 0.01). The preponderant proliferative cell type in the intima was the monocyte/macrophage (46.0% of PCNA-positive cells), with a minority being smooth muscle alpha-actin-positive (9.7%), microvascular endothelial (14.3%), and T cells (13.1%). Smooth muscle cells were the dominant proliferating cell type in the media (44.4% of PCNA-positive cells versus 20% endothelial cells, 13.0% monocyte/macrophages, and 14.3% T cells). Within the plaque, foam-cell-rich regions mostly displayed proliferation among macrophages (66.5%), whereas in vascularized fields PCNA positivity was almost equally shared by endothelial cells (23.8%), monocyte/macrophages (26.3%), smooth muscle alpha-actin-positive cells (14.0%), and to a lesser extent, T cells (8.2%). Logistic and linear regression analyses also demonstrated that location in foam-cell-rich regions was a significant predictor of proliferation only among monocyte/macrophages, whereas location in vascularized regions was a good predictor of PCNA positivity among both inflammatory and noninflammatory cells. These different patterns of cell type proliferation suggest possibly different distributions of putative responsible growth regulatory factors in human atherosclerosis.
Collapse
Affiliation(s)
- M D Rekhter
- Department of Pathology, University of Michigan, Ann Arbor 48109-0602, USA
| | | |
Collapse
|
41
|
Stary HC, Chandler AB, Dinsmore RE, Fuster V, Glagov S, Insull W, Rosenfeld ME, Schwartz CJ, Wagner WD, Wissler RW. A definition of advanced types of atherosclerotic lesions and a histological classification of atherosclerosis. A report from the Committee on Vascular Lesions of the Council on Arteriosclerosis, American Heart Association. Arterioscler Thromb Vasc Biol 1995; 15:1512-31. [PMID: 7670967 DOI: 10.1161/01.atv.15.9.1512] [Citation(s) in RCA: 689] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
This report is the continuation of two earlier reports that defined human arterial intima and precursors of advanced atherosclerotic lesions in humans. This report describes the characteristic components and pathogenic mechanisms of the various advanced atherosclerotic lesions. These, with the earlier definitions of precursor lesions, led to the histological classification of human atherosclerotic lesions found in the second part of this report. The Committee on Vascular Lesions also attempted to correlate the appearance of lesions noted in clinical imaging studies with histological lesion types and corresponding clinical syndromes. In the histological classification, lesions are designated by Roman numerals, which indicate the usual sequence of lesion progression. The initial (type 1) lesion contains enough atherogenic lipoprotein to elicit an increase in macrophages and formation of scattered macrophage foam cells. As in subsequent lesion types, the changes are more marked in locations of arteries with adaptive intimal thickening. (Adaptive thickenings, which are present at constant locations in everyone from birth, do not obstruct the lumen and represent adaptations to local mechanical forces). Type II lesions consist primarily of layers of macrophage foam cells and lipid-laden smooth muscle cells and include lesions grossly designated as fatty streaks. Type III is the intermediate stage between type II and type IV (atheroma, a lesion that is potentially symptom-producing). In addition to the lipid-laden cells of type II, type III lesions contain scattered collections of extracellular lipid droplets and particles that disrupt the coherence of some intimal smooth muscle cells. This extracellular lipid is the immediate precursor of the larger, confluent, and more disruptive core of extracellular lipid that characterizes type IV lesions. Beginning around the fourth decade of life, lesions that usually have a lipid core may also contain thick layers of fibrous connective tissue (type V lesion) and/or fissure, hematoma, and thrombus (type VI lesion). Some type V lesions are largely calcified (type Vb), and some consist mainly of fibrous connective tissue and little or no accumulated lipid or calcium (type Vc).
Collapse
Affiliation(s)
- H C Stary
- Office of Scientific Affairs, American Heart Association, Dallas, TX 75231-4596, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Stary HC, Chandler AB, Dinsmore RE, Fuster V, Glagov S, Insull W, Rosenfeld ME, Schwartz CJ, Wagner WD, Wissler RW. A definition of advanced types of atherosclerotic lesions and a histological classification of atherosclerosis. A report from the Committee on Vascular Lesions of the Council on Arteriosclerosis, American Heart Association. Circulation 1995; 92:1355-74. [PMID: 7648691 DOI: 10.1161/01.cir.92.5.1355] [Citation(s) in RCA: 1694] [Impact Index Per Article: 56.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
This report is the continuation of two earlier reports that defined human arterial intima and precursors of advanced atherosclerotic lesions in humans. This report describes the characteristic components and pathogenic mechanisms of the various advanced atherosclerotic lesions. These, with the earlier definitions of precursor lesions, led to the histological classification of human atherosclerotic lesions found in the second part of this report. The Committee on Vascular Lesions also attempted to correlate the appearance of lesions noted in clinical imaging studies with histological lesion types and corresponding clinical syndromes. In the histological classification, lesions are designated by Roman numerals, which indicate the usual sequence of lesions progression. The initial (type I) lesion contains enough atherogenic lipoprotein to elicit an increase in macrophages and formation of scattered macrophage foam cells. As in subsequent lesion types, the changes are more marked in locations of arteries with adaptive intimal thickening. (Adaptive thickenings, which are present at constant locations in everyone from birth, do not obstruct the lumen and represent adaptations to local mechanical forces). Type II lesions consist primarily of layers of macrophage foam cells and lipid-laden smooth muscle cells and include lesions grossly designated as fatty streaks. Type III is the intermediate stage between type II and type IV (atheroma, a lesion that is potentially symptom-producing). In addition to the lipid-laden cells of type II, type III lesions contain scattered collections of extracellular lipid droplets and particles that disrupt the coherence of some intimal smooth muscle cells. This extracellular lipid is the immediate precursor of the larger, confluent, and more disruptive core of extracellular lipid that characterizes type IV lesions. Beginning around the fourth decade of life, lesions that usually have a lipid core may also contain thick layers of fibrous connective tissue (type V lesion) and/or fissure, hematoma, and thrombus (type VI lesion). Some type V lesions are largely calcified (type Vb), and some consist mainly of fibrous connective tissue and little or no accumulated lipid or calcium (type Vc).
Collapse
Affiliation(s)
- H C Stary
- Office of Scientific Affairs, American Heart Association, Dallas, TX 75231-4596, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Bahadori L, Milder J, Gold L, Botney M. Active macrophage-associated TGF-beta co-localizes with type I procollagen gene expression in atherosclerotic human pulmonary arteries. THE AMERICAN JOURNAL OF PATHOLOGY 1995; 146:1140-9. [PMID: 7747808 PMCID: PMC1869280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Vascular remodeling in adult atherosclerotic pulmonary arteries is characterized by discrete areas of neointimal smooth muscle cell extracellular matrix gene expression in close proximity to non-foamy macrophages, suggesting regulation by local macrophage-associated factors. The purpose of these studies was to begin addressing the role of putative macrophage-associated factors such as transforming growth factor-beta (TGF-beta), by determining the spatial relationship between TGF-beta and neointimal matrix gene expression in human atherosclerotic pulmonary arteries. For example, the participation of TGF-beta in vascular remodeling could be inferred by its colocalization with non-foamy macrophages in areas of active matrix synthesis. In situ hybridization and immunohistochemistry demonstrated focal neointimal procollagen gene expression in close association with non-foamy but not foamy macrophages. Immunohistochemistry with isoform-specific anti-TGF-beta antibodies demonstrated all three isoforms of TGF-beta associated with non-foamy macrophages, but foamy macrophages were not immunoreactive. Neointimal and medial smooth muscle cells stained lightly. In contrast, intense TGF-beta immunoreactivity was also associated with medial smooth muscle cells in normal nonremodeling vessels. Immunohistochemistry with antibodies specific for latent TGF-beta was similar to immunohistochemistry for mature TGF-beta in both remodeling and nonremodeling vessels. Finally, using an antibody specific for active TGF-beta 1, immunoreactivity was only seen in non-foamy neointimal macrophages but not in foamy macrophages or medial smooth muscle cells from hypertensive or normal vessels. These observations suggest non-foamy macrophages may participate in modulating matrix gene expression in atherosclerotic remodeling via a TGF-beta-dependent mechanism.
Collapse
Affiliation(s)
- L Bahadori
- Respiratory and Critical Care Division, Jewish Hospital, Washington University Medical Center, St. Louis, MO 63110, USA
| | | | | | | |
Collapse
|
44
|
Karim MA, Miller DD, Farrar MA, Eleftheriades E, Reddy BH, Breland CM, Samarel AM. Histomorphometric and biochemical correlates of arterial procollagen gene expression during vascular repair after experimental angioplasty. Circulation 1995; 91:2049-57. [PMID: 7895364 DOI: 10.1161/01.cir.91.7.2049] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
BACKGROUND To determine the transcriptional, biochemical, and histomorphometric correlates of neointimal procollagen accumulation during arterial repair after balloon angioplasty of atherogenic vessels, rabbit iliac artery collagen content and the induction of alpha 1(I) and alpha 1(III) procollagen mRNA were assessed in normal vessels and at 2, 7, and 30 days after angioplasty. METHODS AND RESULTS Quantitative iliac artery histomorphometric neointimal collagen analysis was performed using a specific picrosirius red stain under polarized light. Arterial cross-sectional area reduction, total cellularity, and vascular smooth muscle cell density (per 10(4) mu2 of neointima) were quantified in routine and immunohistochemically stained sections (alpha-actin and RAM-11), from which biochemical concentrations of tissue protein, RNA, and DNA were also measured. Collagen comprised 0.23 +/- 0.1 mg/mg of total protein in the normal vessel wall and did not increase in vessels studied 2 and 7 days after angioplasty (0.26 +/- 0.06, 0.28 +/- 0.05 mg/mg of protein, P = NS). By 30 days after angioplasty, > 50% of the protein concentration was collagen (0.55 +/- 0.11 mg/mg of protein, P = .02). Collagen-positive histological staining also increased significantly from 17 +/- 2% of the neointima at day 2 to 32 +/- 5% by day 30 (P = .01). The transcript regulatory signal for alpha 1(I) procollagen mRNA was induced 2 days after angioplasty, peaking at 7 days for both alpha 1(I) and alpha 1(III), and returning to control levels 30 days after angioplasty. A significant luminal cross-sectional area reduction of the arterial wall was confirmed both by angiography and histomorphometry (P = .01). This was not associated with a significant change in alpha-actin (+) vascular smooth muscle cell density (38 +/- 7 nuclei per 10(4) mu2 at day 2 and at day 30) or tissue DNA concentration (P = NS). CONCLUSIONS We conclude that procollagen genes are transcriptionally activated early (2 to 7 days) after angioplasty vessel injury and that collagen subsequently constitutes a major biochemical and histological component of the proliferative neointima by 30 days after angioplasty. Alterations in pathways regulating procollagen metabolism may also contribute to the accumulation of extracellular matrix and growth of the neointima in the late repair phase after vessel wall injury.
Collapse
Affiliation(s)
- M A Karim
- Department of Medicine, St Louis University School of Medicine, Mo
| | | | | | | | | | | | | |
Collapse
|
45
|
Molossi S, Rabinovitch M. VLA-4 and lymphocyte trafficking in immune-inflammatory states: novel therapeutic approaches in allograft arteriopathy. SPRINGER SEMINARS IN IMMUNOPATHOLOGY 1995; 16:443-65. [PMID: 7570295 DOI: 10.1007/bf00196100] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- S Molossi
- Department of Pediatrics, Pathology and Medicine, University of Toronto, Ontario, Canada
| | | |
Collapse
|
46
|
Zempo N, Kenagy RD, Au YP, Bendeck M, Clowes MM, Reidy MA, Clowes AW. Matrix metalloproteinases of vascular wall cells are increased in balloon-injured rat carotid artery. J Vasc Surg 1994; 20:209-17. [PMID: 8040944 DOI: 10.1016/0741-5214(94)90008-6] [Citation(s) in RCA: 204] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
PURPOSE Although matrix metalloproteinase (MMP) expression has been correlated with proliferation and migration of various tumor cells, the relation between MMP expression and smooth muscle cell (SMC) proliferation and migration has not been established. METHODS We measured MMP expression (gelatin, casein, and elastin zymography) by vascular wall cells in balloon-injured carotid artery during the period of medial SMC proliferation, migration of SMC from the media to the intima, and subsequent intimal SMC proliferation. RESULTS The 72 and 64-kd gelatinases (presumably 72 kd type IV collagenase or MMP 2) were constitutively expressed in normal carotid arteries, and the activated (59 and 54 kd) forms of this enzyme were increased at 5 days when SMCs start to migrate. A 92 kd gelatinase (presumably 92 kd type IV collagenase or MMP 9) was increased at 24 hours, when SMCs entered the growth cycle, and decreased thereafter. A low-molecular-weight metalloproteinase with elastolytic activity was present in the adventitia, and the activity was increased at 5 days after surgery. CONCLUSIONS These results suggest that the 72 kd and 92 kd gelatinases may be involved in basement membrane and matrix degradation in the media in relation to SMC proliferation and migration, whereas the low-molecular-weight metalloproteinase may have a role in elastin turnover in the adventitia.
Collapse
Affiliation(s)
- N Zempo
- Department of Surgery and Pathology, University of Washington, Seattle 98195
| | | | | | | | | | | | | |
Collapse
|
47
|
Ståhle-Bäckdahl M, Inoue M, Guidice GJ, Parks WC. 92-kD gelatinase is produced by eosinophils at the site of blister formation in bullous pemphigoid and cleaves the extracellular domain of recombinant 180-kD bullous pemphigoid autoantigen. J Clin Invest 1994; 93:2022-30. [PMID: 8182134 PMCID: PMC294314 DOI: 10.1172/jci117196] [Citation(s) in RCA: 156] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Eosinophils are prominent in bullous pemphigoid (BP), and proteases secreted from these and other inflammatory cells may induce disruption of the basement membrane. We used in situ hybridization and immunohistochemistry to localize the sites of 92-kD gelatinase expression in BP lesions. In all samples (20/20), a strong signal for gelatinase mRNA was detected only in eosinophils and was most pronounced where these cells accumulated at the floor of forming blisters. No other cells were positive for enzyme mRNA. Both eosinophils and neutrophils, however, contained immunoreactive 92-kD gelatinase indicating that active expression occurred only in eosinophils. Degranulated eosinophils were also seen near blisters, and as demonstrated by gelatin zymography, immunoblotting, and ELISA, 92-kD gelatinase protein was prominent in BP blister fluid. No other gelatinolytic activity was specifically detected in BP fluid, and only small amounts of 92-kD gelatinase were present in suction blister fluids. As demonstrated in vitro, 92-kD gelatinase cleaved the extracellular, collagenous domain of recombinant 180-kD BP autoantigen (BP180, BPAG2, HD4, type XVII collagen), a transmembrane molecule of the epidermal hemidesmosome. Our results suggest that production and release 92-kD gelatinase by eosinophils contributes significantly to tissue damage in BP.
Collapse
|
48
|
Riessen R, Rahimizadeh H, Blessing E, Takeshita S, Barry JJ, Isner JM. Arterial gene transfer using pure DNA applied directly to a hydrogel-coated angioplasty balloon. Hum Gene Ther 1993; 4:749-58. [PMID: 8186290 DOI: 10.1089/hum.1993.4.6-749] [Citation(s) in RCA: 123] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Direct arterial gene transfer has been previously achieved using double-balloon catheters and perforated balloons, in most cases facilitated by the use of cationic liposomes or viral vectors. These gene delivery systems, however, have been compromised by issues relating to efficacy and/or safety, and furthermore require that angioplasty be performed independent of gene transfer. We investigated the possibility that arterial gene transfer might be performed during balloon angioplasty by delivery of naked genetic material from a thin coat of hydrogel polymer applied to a standard angioplasty balloon. Transfections with luciferase DNA applied to a hydrogel balloon were performed in rabbit arteries. Luciferase expression 3 days after transfection was tested in three different models: (i) an organ culture model (n = 10); (ii) surgically exposed carotid arteries (n = 14); and (iii) external iliac arteries using a percutaneous approach (n = 13). Supplementary transfections (n = 3), intended to identify the site of arterial transfection, were performed using the gene encoding for nuclear-specific beta-galactosidase (beta-gal). All rabbit arteries transfected with the luciferase gene (37/37; 100%) expressed luciferase activity. Gene expression achieved in vivo, either in the surgically exposed carotid arteries or in the external iliac arteries transfected percutaneously, was quantitatively similar to that achieved in the organ culture model. Reduction in the duration of inflation from 30 min to 1 min had no statistically significant impact on transfection efficiency. Gene expression was documented to persist up to 14 days post percutaneous transfection. Analysis of arteries transfected with nuclear-specific beta-gal showed the presence of the transgene in intimal and subintimal sites. These results demonstrate that vascular gene transfer can be performed successfully without liposomes or viral vectors using DNA applied to a standard angioplasty catheter balloon coated with hydrogel. Percutaneous transfection with a hydrogel-coated balloon permits gene transfer coincident with the angioplasty procedure itself, even with inflations as short as 1 min.
Collapse
Affiliation(s)
- R Riessen
- Department of Medicine (Cardiology), St. Elizabeth's Hospital, Tufts University School of Medicine, Boston, MA 02135
| | | | | | | | | | | |
Collapse
|