1
|
Feng X, Zheng H, Wang M, Wang Y, Zhou X, Zhang X, Li J, Xiao Y, Wei M, Li X, Hashimoto T, Li J, Li W. Autoimmune bullous diseases: pathogenesis and clinical management. MOLECULAR BIOMEDICINE 2025; 6:30. [PMID: 40372624 DOI: 10.1186/s43556-025-00272-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 04/28/2025] [Accepted: 05/05/2025] [Indexed: 05/16/2025] Open
Abstract
Autoimmune bullous diseases (AIBDs) represent a heterogeneous group of immune-mediated disorders characterized by life-threatening blistering of the skin and mucous membranes. This Review synthesizes current understanding of AIBD pathogenesis, clinical phenotypes, diagnostic approaches, and therapeutic strategies, emphasizing recent advancements and translational opportunities. At the core of AIBDs is autoantibody-mediated disruption of structural proteins in the epidermis or basement membrane zone, particularly at desmosomal and hemidesmosomal junctions. Key subtypes, including pemphigus, paraneoplastic pemphigus, pemphigoid, and IgA-related diseases, are distinguished by their target antigens, clinical manifestations, and immunopathological profiles. Diagnostic workflows rely on direct immunofluorescence, and serological assays, yet subtype differentiation remains challenging due to overlapping features. Traditional therapies, such as systemic corticosteroids and immunosuppressants, have improved outcomes but are limited by toxicity. Recent breakthroughs highlight targeted interventions, including B-cell depletion with rituximab, cytokine modulation via dupilumab, and JAK inhibitors for inflammatory pathways. Innovative strategies like chimeric autoantibody receptor T-cell (CAART) therapy further address refractory cases by eliminating autoreactive B cells. Additionally, the Review underscores the emerging role of inflammation-driven mechanisms and the necessity of multidisciplinary care, given AIBDs' associations with malignancies, autoimmune comorbidities. Despite progress, challenges persist in early diagnosis, personalized therapy optimization, and understanding antigen-specific immune responses. Future directions include refining diagnostic biomarkers, exploring novel targets, and developing precision medicine approaches.
Collapse
Affiliation(s)
- Xun Feng
- Department of Dermatology & Venerology, Rare Diseases Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Huaping Zheng
- Department of Respiratory and Critical Care Medicine, Center for High Altitude Medicine, Institutes for Systems Genetics, West China Hospital, Sichuan University, Chengdu, 610000, China
| | - Mi Wang
- Department of Dermatology & Venerology, Rare Diseases Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yiyi Wang
- Department of Dermatology & Venerology, Rare Diseases Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xingli Zhou
- Department of Dermatology & Venerology, Rare Diseases Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xiwen Zhang
- Department of Dermatology & Venerology, Rare Diseases Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jishu Li
- Department of Dermatology & Venerology, Rare Diseases Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yue Xiao
- Department of Dermatology & Venerology, Rare Diseases Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Mintong Wei
- Department of Dermatology & Venerology, Rare Diseases Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | | | - Takashi Hashimoto
- Department of Dermatology, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Jingyi Li
- Department of Dermatology & Venerology, Rare Diseases Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| | - Wei Li
- Department of Dermatology & Venerology, Rare Diseases Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
2
|
Sneha Muppala R, Basavaraj V. Role of C4d immunohistochemical marker in the diagnosis of bullous pemphigoid: A cross-sectional study. Indian J Dermatol Venereol Leprol 2024; 90:569-574. [PMID: 38595011 DOI: 10.25259/ijdvl_124_2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 09/15/2023] [Indexed: 04/11/2024]
Abstract
Objective To determine the diagnostic utility of C4d immunohistochemical marker in cases of bullous pemphigoid by calculating the sensitivity, specificity, positive predictive value and negative predictive value. Methods We conducted an exploratory study (retrospectively and prospectively) from January 2017 to June 2022. All direct immunofluorescence proven cases of bullous pemphigoid were included in the study while cases with inadequate tissue for immunohistochemistry studies were excluded. Results Among the 57 cases of bullous pemphigoid, 49 showed positivity for C4d marker. All the ten control cases of inflammatory dermatoses were negative for C4d staining. A sensitivity of 86%, a specificity of 100%, a positive predictive value of 100% and a negative predictive value of 55.56% were calculated with a confidence interval of 95%. Limitation It is a single centre study. Selection bias may come into play. Conclusion Direct immunofluorescence on fresh or frozen skin tissue remains the gold standard. But in circumstances where direct immunofluorescence facilities are not available, C4d immunohistochemistry marker staining on formalin-fixed paraffin-embedded material submitted for standard microscopic investigation can, in most cases, confirm the diagnosis of bullous pemphigoid, obviating the need for a second biopsy.
Collapse
Affiliation(s)
- Raaga Sneha Muppala
- Department of Pathology, Jagadguru Sri Shivarathreeshwara Medical College, JSS Academy of Higher Education and Research, Mysuru, India
| | - Vijaya Basavaraj
- Department of Pathology, Jagadguru Sri Shivarathreeshwara Medical College, JSS Academy of Higher Education and Research, Mysuru, India
| |
Collapse
|
3
|
Pigors M, Patzelt S, Reichhelm N, Dworschak J, Khil'chenko S, Emtenani S, Bieber K, Hofrichter M, Kamaguchi M, Goletz S, Köhl G, Köhl J, Komorowski L, Probst C, Vanderheyden K, Balbino B, Ludwig RJ, Verheesen P, Schmidt E. Bullous pemphigoid induced by IgG targeting type XVII collagen non-NC16A/NC15A extracellular domains is driven by Fc gamma receptor- and complement-mediated effector mechanisms and is ameliorated by neonatal Fc receptor blockade. J Pathol 2024; 262:161-174. [PMID: 37929639 DOI: 10.1002/path.6220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/18/2023] [Accepted: 09/21/2023] [Indexed: 11/07/2023]
Abstract
Bullous pemphigoid (BP) is an autoimmune blistering disease characterized by autoantibodies targeting type XVII collagen (Col17) with the noncollagenous 16A (NC16A) ectodomain representing the immunodominant site. The role of additional extracellular targets of Col17 outside NC16A has not been unequivocally demonstrated. In this study, we showed that Col17 ectodomain-reactive patient sera depleted in NC16A IgG induced dermal-epidermal separation in a cryosection model indicating the pathogenic potential of anti-Col17 non-NC16A extracellular IgG. Moreover, injection of IgG targeting the murine Col17 NC14-1 domains (downstream of NC15A, the murine homologue of human NC16A) into C57BL/6J mice resulted in erythematous skin lesions and erosions. Clinical findings were accompanied by IgG/C3 deposits along the basement membrane and subepidermal blistering with inflammatory infiltrates. Disease development was significantly reduced in either Fc-gamma receptor (FcγR)- or complement-5a receptor-1 (C5aR1)-deficient mice. Inhibition of the neonatal FcR (FcRn), an atypical FcγR regulating IgG homeostasis, with the murine Fc fragment IgG2c-ABDEG, a derivative of efgartigimod, reduced anti-NC14-1 IgG levels, resulting in ameliorated skin inflammation compared with isotype-treated controls. These data demonstrate that the pathogenic effects of IgG targeting the Col17 domain outside human NC16A/murine NC15A are partly attributable to antibody-mediated FcγR- and C5aR1 effector mechanisms while pharmacological inhibition of the FcRn represents a promising treatment for BP. The mouse model of BP will be instrumental in further investigating the role of Col17 non-NC16A/NC15A extracellular epitopes and validating new therapies for this disease. © 2023 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Manuela Pigors
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany
| | - Sabrina Patzelt
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany
| | - Niklas Reichhelm
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany
| | - Jenny Dworschak
- Institute of Experimental Immunology, EUROIMMUN AG, Lübeck, Germany
| | | | - Shirin Emtenani
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany
| | - Katja Bieber
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany
| | - Maxi Hofrichter
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany
| | - Mayumi Kamaguchi
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany
| | - Stephanie Goletz
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany
| | - Gabriele Köhl
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany
| | - Jörg Köhl
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center and University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Lars Komorowski
- Institute of Experimental Immunology, EUROIMMUN AG, Lübeck, Germany
| | - Christian Probst
- Institute of Experimental Immunology, EUROIMMUN AG, Lübeck, Germany
| | | | | | - Ralf J Ludwig
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany
- Department of Dermatology, Allergology and Venerology, University of Lübeck, Lübeck, Germany
| | | | - Enno Schmidt
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany
- Department of Dermatology, Allergology and Venerology, University of Lübeck, Lübeck, Germany
| |
Collapse
|
4
|
Jing K, Jordan TJM, Li N, Burette S, Yang B, Marinkovich MP, Diaz LA, Googe P, Thomas NE, Feng S, Liu Z. Anti-NC16A IgA from Patients with Linear IgA Bullous Dermatosis Induce Neutrophil-Dependent Subepidermal Blistering in Mice. J Invest Dermatol 2024; 144:24-32.e1. [PMID: 37437774 PMCID: PMC10776798 DOI: 10.1016/j.jid.2023.05.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 05/02/2023] [Accepted: 05/15/2023] [Indexed: 07/14/2023]
Abstract
Linear IgA bullous dermatosis (LABD) is an acquired autoimmune subepidermal blistering skin disease characterized by circulating and tissue-bound IgA autoantibodies that recognize epitopes within the hemidesmosomal protein BP180, including its NC16A domain. Histologically, LABD has long been defined by neutrophil infiltration and dermal-epidermal separation. However, the pathogenic roles of anti-NC16A IgA and neutrophils in LABD, as well as their interactions, have not been thoroughly studied. We show that passive transfer of patient-derived anti-NC16A IgA induce clinical and histologic LABD pathology in humanized NC16A mice that are reconstituted locally or systemically with human neutrophils. The lesional skin of mice exhibits significantly elevated levels of the neutrophil chemoattractants CXCL-1 and CXCL-2. Furthermore, we show significantly increased levels of the neutrophil chemoattractant IL-8 in blister fluids of patients with LABD. This study provides direct evidence that anti-NC16A IgA in patients with LABD are pathogenic and interact with neutrophils to mediate tissue injury and subepidermal blister formation. This study further corroborates the importance of neutrophil-mediated tissue injury in LABD disease physiology and establishes a clinically relevant in vivo model system that can be used to systematically dissect the immunopathogenesis of LABD.
Collapse
Affiliation(s)
- Ke Jing
- Department of Dermatology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina, USA; Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing, P.R. China
| | - Tyler J M Jordan
- Department of Dermatology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina, USA; Department of Clinical Sciences, North Carolina State University, Raleigh, North Carolina, USA
| | - Ning Li
- Department of Dermatology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina, USA
| | - Susan Burette
- Department of Dermatology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina, USA
| | - Baoqi Yang
- Departmentof Dermatology, Shandong Provincial Hospital for Skin Diseases & Shandong Provincial Institute of Dermatology and Venereology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - M Peter Marinkovich
- Department of Dermatology, Stanford University, Stanford, and Dermatology, Veteran's Affairs Medical Center, Palo Alto, California, USA
| | - Luis A Diaz
- Department of Dermatology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina, USA
| | - Paul Googe
- Department of Dermatology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina, USA
| | - Nancy E Thomas
- Department of Dermatology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina, USA; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Suying Feng
- Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing, P.R. China
| | - Zhi Liu
- Department of Dermatology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina, USA; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA; Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.
| |
Collapse
|
5
|
Chen HC, Wang CW, Toh WH, Lee HE, Chung WH, Chen CB. Advancing Treatment in Bullous Pemphigoid: A Comprehensive Review of Novel Therapeutic Targets and Approaches. Clin Rev Allergy Immunol 2023; 65:331-353. [PMID: 37897588 DOI: 10.1007/s12016-023-08973-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/15/2023] [Indexed: 10/30/2023]
Abstract
Bullous pemphigoid is one of the most common autoimmune bullous diseases occurring primarily in the elderly. Pathogenic autoantibodies against BP180 and BP230 at the dermal-epidermal junction cause subepidermal blisters, erosions, and intense pruritus, all of which adversely affect the patients' quality of life and may increase their morbidity and mortality. Current systemic treatment options for bullous pemphigoid are limited to corticosteroids and immunosuppressants, which can have substantial side effects on these vulnerable patients that even exceed their therapeutic benefits. Therefore, more precisely, targeting therapies to the pathogenic cells and molecules in bullous pemphigoid is an urgent issue. In this review, we describe the pathophysiology of bullous pemphigoid, focusing on autoantibodies, complements, eosinophils, neutrophils, proteases, and the T helper 2 and 17 axes since they are crucial in promoting proinflammatory environments. We also highlight the emerging therapeutic targets for bullous pemphigoid and their latest discoveries in clinical trials or experimental studies. Further well-designed studies are required to establish the efficacy and safety of these prospective therapeutic options.
Collapse
Affiliation(s)
- Hsuan-Chi Chen
- Department of Medical Education, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Chuang-Wei Wang
- Department of Dermatology, Drug Hypersensitivity Clinical and Research Center, Chang Gung Memorial Hospital, Keelung, Linkou, Taipei, Taiwan
- Cancer Vaccine and Immune Cell Therapy Core Laboratory, Department of Medical Research, Chang Gung Memorial Hospital, Linkou, Taiwan
- Chang Gung Immunology Consortium, Chang Gung Memorial Hospital and Chang Gung University, Kaohsiung, Taiwan
- Department of Dermatology, Xiamen Chang Gung Hospital, Xiamen, China
- Xiamen Chang Gung Allergology Consortium, Xiamen Chang Gung Hospital, Xiamen, China
| | - Wu Han Toh
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD, USA
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Computer Science, Johns Hopkins University, Baltimore, MD, USA
- Department of Biology, Johns Hopkins University, Baltimore, MD, USA
| | - Hua-En Lee
- Department of Dermatology, Drug Hypersensitivity Clinical and Research Center, Chang Gung Memorial Hospital, Keelung, Linkou, Taipei, Taiwan
- Cancer Vaccine and Immune Cell Therapy Core Laboratory, Department of Medical Research, Chang Gung Memorial Hospital, Linkou, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Wen-Hung Chung
- Department of Dermatology, Drug Hypersensitivity Clinical and Research Center, Chang Gung Memorial Hospital, Keelung, Linkou, Taipei, Taiwan.
- Cancer Vaccine and Immune Cell Therapy Core Laboratory, Department of Medical Research, Chang Gung Memorial Hospital, Linkou, Taiwan.
- Chang Gung Immunology Consortium, Chang Gung Memorial Hospital and Chang Gung University, Kaohsiung, Taiwan.
- Department of Dermatology, Xiamen Chang Gung Hospital, Xiamen, China.
- Xiamen Chang Gung Allergology Consortium, Xiamen Chang Gung Hospital, Xiamen, China.
- College of Medicine, Chang Gung University, Taoyuan, Taiwan.
- Immune-Oncology Center of Excellence, Chang Gung Memorial Hospital, Linkou, Taiwan.
- Whole-Genome Research Core Laboratory of Human Diseases, Chang Gung Memorial Hospital, Keelung, Taiwan.
- Department of Dermatology, Beijing Tsinghua Chang Gung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China.
- Department of Dermatology, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
- Genomic Medicine Core Laboratory, Chang Gung Memorial Hospital, Linkou, Taiwan.
| | - Chun-Bing Chen
- Department of Dermatology, Drug Hypersensitivity Clinical and Research Center, Chang Gung Memorial Hospital, Keelung, Linkou, Taipei, Taiwan.
- Cancer Vaccine and Immune Cell Therapy Core Laboratory, Department of Medical Research, Chang Gung Memorial Hospital, Linkou, Taiwan.
- Chang Gung Immunology Consortium, Chang Gung Memorial Hospital and Chang Gung University, Kaohsiung, Taiwan.
- Department of Dermatology, Xiamen Chang Gung Hospital, Xiamen, China.
- Xiamen Chang Gung Allergology Consortium, Xiamen Chang Gung Hospital, Xiamen, China.
- School of Medicine, National Tsing Hua University, Hsinchu, Taiwan.
- College of Medicine, Chang Gung University, Taoyuan, Taiwan.
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan.
- Immune-Oncology Center of Excellence, Chang Gung Memorial Hospital, Linkou, Taiwan.
| |
Collapse
|
6
|
Toh WH, Lee HE, Chen CB. Targeting type 2 inflammation in bullous pemphigoid: current and emerging therapeutic approaches. Front Med (Lausanne) 2023; 10:1196946. [PMID: 37614956 PMCID: PMC10442825 DOI: 10.3389/fmed.2023.1196946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 07/19/2023] [Indexed: 08/25/2023] Open
Abstract
Bullous pemphigoid (BP) is one of the most common autoimmune bullous diseases and mainly affects an elderly population with multi-morbidity. Due to the frailty of many BP patients, existing treatment options are limited. The blisters associated with BP result from IgG and IgE autoantibodies binding to the central components of hemidesmosome, BP180, and BP230, stimulating a destructive inflammatory process. The known characteristic features of BP, such as intense pruritus, urticarial prodrome, peripheral eosinophilia, elevated IgE, as well as recent expanding evidence from in vitro and in vivo studies implicate type 2 inflammation as an important driver of BP pathogenesis. Type 2 inflammation is an inflammatory pathway involving a subset of CD4+ T cells that secrete IL-4, IL-5, and IL-13, IgE-secreting B cells, and granulocytes, such as eosinophils, mast cells, and basophils. It is believed that effectors in type 2 inflammation may serve as novel and effective treatment targets for BP. This review focuses on recent understandings of BP pathogenesis with a particular emphasis on the role of type 2 inflammation. We summarize current clinical evidence of using rituximab (B-cell depletion), omalizumab (anti-IgE antibody), and dupilumab (anti-IL-4/13 antibody) in the treatment of BP. The latest advances in emerging targeted therapeutic approaches for BP treatment are also discussed.
Collapse
Affiliation(s)
- Wu Han Toh
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD, United States
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Department of Computer Science, Johns Hopkins University, Baltimore, MD, United States
- Department of Biology, Johns Hopkins University, Baltimore, MD, United States
- Cancer Vaccine and Immune Cell Therapy Core Laboratory, Chang Gung Memorial Hospital, Chang Gung Immunology Consortium, Taoyuan, Taiwan
| | - Hua-En Lee
- Cancer Vaccine and Immune Cell Therapy Core Laboratory, Chang Gung Memorial Hospital, Chang Gung Immunology Consortium, Taoyuan, Taiwan
- Department of Dermatology and Drug Hypersensitivity Clinical and Research Center, Chang Gung Memorial Hospital, Taipei, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Chang Gung Immunology Consortium, Chang Gung Memorial Hospital, Chang Gung University, Taoyuan, Taiwan
| | - Chun-Bing Chen
- Cancer Vaccine and Immune Cell Therapy Core Laboratory, Chang Gung Memorial Hospital, Chang Gung Immunology Consortium, Taoyuan, Taiwan
- Department of Dermatology and Drug Hypersensitivity Clinical and Research Center, Chang Gung Memorial Hospital, Taipei, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Chang Gung Immunology Consortium, Chang Gung Memorial Hospital, Chang Gung University, Taoyuan, Taiwan
- Department of Dermatology, Xiamen Chang Gung Hospital, Xiamen, China
- Xiamen Chang Gung Allergology Consortium, Xiamen Chang Gung Hospital, Xiamen, China
| |
Collapse
|
7
|
Lamberts A, Kotnik N, Meijer JM, van Kempen LC, Diercks GFH, Horváth B. Gene expression profiling suggests that complement activation is important for blister formation in bullous pemphigoid. J Invest Dermatol 2023:S0022-202X(23)00099-4. [PMID: 36863446 DOI: 10.1016/j.jid.2023.01.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 11/29/2022] [Accepted: 01/16/2023] [Indexed: 03/03/2023]
|
8
|
Maglie R, Solimani F, Didona D, Pipitò C, Antiga E, Di Zenzo G. The cytokine milieu of bullous pemphigoid: Current and novel therapeutic targets. Front Med (Lausanne) 2023; 10:1128154. [PMID: 36814775 PMCID: PMC9939461 DOI: 10.3389/fmed.2023.1128154] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 01/23/2023] [Indexed: 02/09/2023] Open
Abstract
Bullous pemphigoid (BP) is the most common autoimmune bullous disease, characterized by severe pruritus and skin blistering. The loss of tolerance against Collagen XVII, also referred to as BP180, is the main pathogenic event of BP, leading to production of IgG autoantibodies which mainly target the juxtamembranous extracellular non-collagenous 16th A (NC16A) domain of BP180. A complex inflammatory network is activated upon autoantibody binding to the basement membrane zone; this inflammatory loop involves the complement cascade and the release of several inflammatory cytokines, chemokines and proteases from keratinocytes, lymphocytes, mast cells and granulocytes. Collectively, these events disrupt the integrity of the dermal-epidermal junction, leading to subepidermal blistering. Recent advances have led to identify novel therapeutic targets for BP, whose management is mainly based on the long-term use of topical and systemic corticosteroids. As an example, targeting type-2 T-helper cell-associated cytokines, such as Interleukin-4 and interleukin-13 has shown meaningful clinical efficacy in case series and studies; targeting IL-17 and IL-23 has also been tried, owing to an important role of these cytokines in the chronic maintenance phase of BP. In this review article, we discuss the complex cytokine milieu that characterized BP inflammation, highlighting molecules, which are currently investigated as present and future therapeutic targets for this life-threatening disease.
Collapse
Affiliation(s)
- Roberto Maglie
- Section of Dermatology, Department of Health Sciences, University of Florence, Florence, Italy
| | - Farzan Solimani
- Department of Dermatology, Venereology and Allergology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
- BIH Charité Clinician Scientist Program, Berlin Institute of Health at Charité – Universitätsmedizin Berlin, BIH Biomedical Innovation Academy, Berlin, Germany
| | - Dario Didona
- Department of Dermatology and Allergology, Philipps University, Marburg, Germany
| | - Carlo Pipitò
- Section of Dermatology, Department of Health Sciences, University of Florence, Florence, Italy
| | - Emiliano Antiga
- Section of Dermatology, Department of Health Sciences, University of Florence, Florence, Italy
| | - Giovanni Di Zenzo
- Laboratory of Molecular and Cell Biology, Istituto Dermopatico dell’Immacolata (IDI)-IRCCS, Rome, Italy
| |
Collapse
|
9
|
Bieber K, Hundt JE, Yu X, Ehlers M, Petersen F, Karsten CM, Köhl J, Kridin K, Kalies K, Kasprick A, Goletz S, Humrich JY, Manz RA, Künstner A, Hammers CM, Akbarzadeh R, Busch H, Sadik CD, Lange T, Grasshoff H, Hackel AM, Erdmann J, König I, Raasch W, Becker M, Kerstein-Stähle A, Lamprecht P, Riemekasten G, Schmidt E, Ludwig RJ. Autoimmune pre-disease. Autoimmun Rev 2023; 22:103236. [PMID: 36436750 DOI: 10.1016/j.autrev.2022.103236] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 11/17/2022] [Indexed: 11/27/2022]
Abstract
Approximately 5% of the world-wide population is affected by autoimmune diseases. Overall, autoimmune diseases are still difficult to treat, impose a high burden on patients, and have a significant economic impact. Like other complex diseases, e.g., cancer, autoimmune diseases develop over several years. Decisive steps in the development of autoimmune diseases are (i) the development of autoantigen-specific lymphocytes and (often) autoantibodies and (ii) potentially clinical disease manifestation at a later stage. However, not all healthy individuals with autoantibodies develop disease manifestations. Identifying autoantibody-positive healthy individuals and monitoring and inhibiting their switch to inflammatory autoimmune disease conditions are currently in their infancy. The switch from harmless to inflammatory autoantigen-specific T and B-cell and autoantibody responses seems to be the hallmark for the decisive factor in inflammatory autoimmune disease conditions. Accordingly, biomarkers allowing us to predict this progression would have a significant impact. Several factors, such as genetics and the environment, especially diet, smoking, exposure to pollutants, infections, stress, and shift work, might influence the progression from harmless to inflammatory autoimmune conditions. To inspire research directed at defining and ultimately targeting autoimmune predisease, here, we review published evidence underlying the progression from health to autoimmune predisease and ultimately to clinically manifest inflammatory autoimmune disease, addressing the following 3 questions: (i) what is the current status, (ii) what is missing, (iii) and what are the future perspectives for defining and modulating autoimmune predisease.
Collapse
Affiliation(s)
- Katja Bieber
- Lübeck Institute of Experimental Dermatology and Center for Research on Inflammation of the Skin, University of Lübeck, Germany
| | - Jennifer E Hundt
- Lübeck Institute of Experimental Dermatology and Center for Research on Inflammation of the Skin, University of Lübeck, Germany
| | - Xinhua Yu
- Priority Area Chronic Lung Diseases, Research Center Borstel, Airway Research Center North (ARCN), Member of the German Center for Lung Research (DZL), Borstel, Germany
| | - Marc Ehlers
- Institute of Nutritional Medicine, University of Lübeck and University Hospital Schleswig-Holstein, Lübeck, Germany
| | - Frank Petersen
- Priority Area Chronic Lung Diseases, Research Center Borstel, Airway Research Center North (ARCN), Member of the German Center for Lung Research (DZL), Borstel, Germany
| | - Christian M Karsten
- Institute for Systemic Inflammation Research, University of Lübeck, 23562 Lübeck, Germany
| | - Jörg Köhl
- Institute for Systemic Inflammation Research, University of Lübeck, 23562 Lübeck, Germany; Division of Immunobiology, Cincinnati Children's Hospital and University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Khalaf Kridin
- Lübeck Institute of Experimental Dermatology and Center for Research on Inflammation of the Skin, University of Lübeck, Germany; Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel; Unit of Dermatology and Skin Research Laboratory, Baruch Padeh Medical Center, Poriya, Israel
| | - Kathrin Kalies
- Institute of Anatomy, University of Lübeck, Lübeck, Germany
| | - Anika Kasprick
- Lübeck Institute of Experimental Dermatology and Center for Research on Inflammation of the Skin, University of Lübeck, Germany
| | - Stephanie Goletz
- Lübeck Institute of Experimental Dermatology and Center for Research on Inflammation of the Skin, University of Lübeck, Germany
| | - Jens Y Humrich
- Department of Rheumatology and Clinical Immunology, University of Lübeck, Lübeck, Germany
| | - Rudolf A Manz
- Institute for Systemic Inflammation Research, University of Lübeck, 23562 Lübeck, Germany
| | - Axel Künstner
- Lübeck Institute of Experimental Dermatology and Center for Research on Inflammation of the Skin, University of Lübeck, Germany
| | - Christoph M Hammers
- Lübeck Institute of Experimental Dermatology and Center for Research on Inflammation of the Skin, University of Lübeck, Germany
| | - Reza Akbarzadeh
- Department of Rheumatology and Clinical Immunology, University of Lübeck, Lübeck, Germany
| | - Hauke Busch
- Lübeck Institute of Experimental Dermatology and Center for Research on Inflammation of the Skin, University of Lübeck, Germany
| | | | - Tanja Lange
- Department of Rheumatology and Clinical Immunology, University of Lübeck, Lübeck, Germany
| | - Hanna Grasshoff
- Department of Rheumatology and Clinical Immunology, University of Lübeck, Lübeck, Germany
| | - Alexander M Hackel
- Department of Rheumatology and Clinical Immunology, University of Lübeck, Lübeck, Germany
| | - Jeanette Erdmann
- Institute of Medical Biometry and Statistics, University of Lübeck, Lübeck, Germany
| | - Inke König
- Institute for Cardiogenetics, University of Lübeck, Lübeck, Germany
| | - Walter Raasch
- Institute of Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, Lübeck, Germany
| | - Mareike Becker
- Department of Dermatology, University of Lübeck, Lübeck, Germany
| | - Anja Kerstein-Stähle
- Department of Rheumatology and Clinical Immunology, University of Lübeck, Lübeck, Germany
| | - Peter Lamprecht
- Department of Rheumatology and Clinical Immunology, University of Lübeck, Lübeck, Germany
| | - Gabriela Riemekasten
- Department of Rheumatology and Clinical Immunology, University of Lübeck, Lübeck, Germany
| | - Enno Schmidt
- Lübeck Institute of Experimental Dermatology and Center for Research on Inflammation of the Skin, University of Lübeck, Germany; Department of Dermatology, University of Lübeck, Lübeck, Germany
| | - Ralf J Ludwig
- Lübeck Institute of Experimental Dermatology and Center for Research on Inflammation of the Skin, University of Lübeck, Germany.
| |
Collapse
|
10
|
Giang J, van Doorn MBA, Diercks GFH, de Cordoba SR, van den Bosch TPP, Schreurs MWJ, Poppelaars F, Damman J. Successful pharmacological intervention at different levels of the complement system in an in vitro complement fixation model for bullous pemphigoid. Exp Dermatol 2023; 32:632-640. [PMID: 36704908 DOI: 10.1111/exd.14755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 12/12/2022] [Accepted: 01/10/2023] [Indexed: 01/28/2023]
Abstract
Bullous pemphigoid (BP) is characterized by deposition of immunoglobulins and complement along the epidermal basement membrane (BM). In humans, there is a lack of functional studies targeting the complement system (CS). This study investigates activation of all complement pathways in BP skin biopsies. Moreover, pharmacological inhibition at different levels of the CS was investigated using anti-complement compounds in a complement fixation BP assay. In this retrospective study, 21 frozen biopsies from BP patients were stained by direct immunofluorescence for C1q, MBL, ficolin-2, C4d, properdin, C3c and C5b-9. Sera from 10 patients were analysed in a complement fixation assay in the presence of C1 inhibitor, anti-factor B monoclonal antibody (mAb), anti-C3 mAb and anti-C5 mAb and compared with dexamethasone. The two readouts were the quantity of complement deposited along the BM and the release of sC5b-9 in the supernatant. Our results show classical and alternative complement pathway activation in BP skin biopsies, but could not demonstrate significant lectin pathway activation. In contrast to dexamethasone, complement deposition along the BM could be selectively inhibited by anti-C1 and anti- factor B. More downstream, selective intervention at the level of C3 and C5 could effectively reduce complement deposition along the BM and the release of sC5b-9 in the supernatant. This study shows that selective intervention in either the classical, alternative or terminal pathway prevented deposition of complement along the BM in an in vitro BP model. The results of our study greatly encourage the clinical development of complement inhibitors for the treatment of BP.
Collapse
Affiliation(s)
- Jenny Giang
- Department of Pathology, Maasstad Hospital, Rotterdam, The Netherlands
| | - Martijn B A van Doorn
- Department of Dermatology, Erasmus Medical Center Rotterdam, Rotterdam, The Netherlands.,Centre for Human Drug Research, Leiden, The Netherlands
| | - Gilles F H Diercks
- Department of Pathology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Santiago Rodriguez de Cordoba
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Madrid, Spain.,Centro de Investigación Biomédica en Enfermedades Raras, Madrid, Spain
| | | | - Marco W J Schreurs
- Department of Immunology, Erasmus Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Felix Poppelaars
- Department of Internal Medicine, Division of Nephrology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Jeffrey Damman
- Department of Pathology, Erasmus Medical Center Rotterdam, Rotterdam, The Netherlands
| |
Collapse
|
11
|
Intravenous immunoglobulin in patients with bullous pemphigoid insufficient response to corticosteroids: Nationwide post-marketing surveillance in Japan. J Dermatol Sci 2023; 109:22-29. [PMID: 36697305 DOI: 10.1016/j.jdermsci.2023.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 11/19/2022] [Accepted: 01/09/2023] [Indexed: 01/15/2023]
Abstract
BACKGROUND In Japan, intravenous immunoglobulin (IVIG) has been approved for corticosteroid-unresponsive bullous pemphigoid (BP); however, its usage, efficacy, and safety in clinical settings remain unclear. OBJECTIVE To elucidate IVIG efficacy, we examined the improvement in disease severity based on the Bullous Pemphigoid Disease Area Index (BPDAI). METHODS In this 3-year (April 2016-March 2019), prospective, post-marketing, observational surveillance study, we enrolled 379 patients (51.3 % men; mean age, 74.5 years) with corticosteroid-unresponsive BP treated with IVIG from 143 institutions in Japan (720 treatment cycles). The percentage of patients who improved by at least one severity stage or whose symptoms completely resolved based on the BPDAI score was evaluated at 15, 30, and 60-90 days. RESULTS The improvement rates at 15, 30, and 60-90 days after initial treatment in the 328 IVIG-naïve patients were 70.7 %, 83.5 %, and 84.3 %, respectively. The BPDAI score decreased rapidly and significantly by 15 days compared with that observed during pre-treatment. Further improvement was observed at 30 and 60-90 days. The corticosteroid dose and anti-BP180 antibody titers decreased significantly post-treatment (both, p < .001). Approximately 25 % of IVIG-naïve patients underwent multiple treatment cycles. The improvement rate at 30 days after the final dose was 88 %, and the symptoms completely resolved in 44 % of patients. The incidence of adverse drug reactions per cycle was 8.34 %; the most common reaction was transient thrombocytopenia. CONCLUSION Most patients showed improvement in severity and decrease in corticosteroid dose and anti-BP180 antibody levels post-treatment, indicating that IVIG is useful for corticosteroid-unresponsive BP treatment.
Collapse
|
12
|
Emtenani S, Holtsche MM, Stahlkopf R, Seiler DL, Burn T, Liu H, Parker M, Yilmaz K, Dikmen HO, Lang MH, Sadik CD, Karsten CM, van Beek N, Ludwig RJ, Köhl J, Schmidt E. Differential expression of C5aR1 and C5aR2 in innate and adaptive immune cells located in early skin lesions of bullous pemphigoid patients. Front Immunol 2022; 13:942493. [PMID: 36466856 PMCID: PMC9716273 DOI: 10.3389/fimmu.2022.942493] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 09/05/2022] [Indexed: 10/20/2023] Open
Abstract
Bullous pemphigoid (BP), the by far most frequent autoimmune subepidermal blistering disorder (AIBD), is characterized by the deposition of autoantibodies against BP180 (type XVII collagen; Col17) and BP230 as well as complement components at the dermal-epidermal junction (DEJ). The mechanisms of complement activation in BP patients, including the generation of C5a and regulation of its two cognate C5aRs, i.e., C5aR1 and C5aR2, are incompletely understood. In this study, transcriptome analysis of perilesional and non-lesional skin biopsies of BP patients compared to site-, age-, and sex-matched controls showed an upregulated expression of C5AR1, C5AR2, CR1, and C3AR1 and other complement-associated genes in perilesional BP skin. Of note, increased expressions of C5AR2 and C3AR1 were also observed in non-lesional BP skin. Subsequently, double immunofluorescence (IF) staining revealed T cells and macrophages as the dominant cellular sources of C5aR1 in early lesions of BP patients, while C5aR2 mainly expressed on mast cells and eosinophils. In addition, systemic levels of various complement factors and associated molecules were measured in BP patients and controls. Significantly higher plasma levels of C3a, CD55, and mannose-binding lectin-pathway activity were found in BP patients compared to controls. Finally, the functional relevance of C5aR1 and C5aR2 in BP was explored by two in vitro assays. Specific inhibition of C5aR1, resulted in significantly reduced migration of human neutrophils toward the chemoattractant C5a, whereas stimulation of C5aR2 showed no effect. In contrast, the selective targeting of C5aR1 and/or C5aR2 had no effect on the release of reactive oxygen species (ROS) from Col17-anti-Col17 IgG immune complex-stimulated human leukocytes. Collectively, this study delineates a complex landscape of activated complement receptors, complement factors, and related molecules in early BP skin lesions. Our results corroborate findings in mouse models of pemphigoid diseases that the C5a/C5aR1 axis is pivotal for attracting inflammatory cells to the skin and substantiate our understanding of the C5a/C5aR1 axis in human BP. The broad expression of C5aRs on multiple cell types critical for BP pathogenesis call for clinical studies targeting this axis in BP and other complement-mediated AIBDs.
Collapse
Affiliation(s)
- Shirin Emtenani
- Lübeck Institute of Experimental Dermatology (LIED), University of Lübeck, Lübeck, Germany
| | - Maike M. Holtsche
- Department of Dermatology, Allergy, and Venereology, University of Lübeck, Lübeck, Germany
| | - Richard Stahlkopf
- Lübeck Institute of Experimental Dermatology (LIED), University of Lübeck, Lübeck, Germany
| | - Daniel L. Seiler
- Institute for Systemic Inflammation Research (ISEF), University of Lübeck, Lübeck, Germany
| | - Timothy Burn
- Incyte Research Institute, Wilmington, DE, United States
| | - Huiqing Liu
- Incyte Research Institute, Wilmington, DE, United States
| | - Melissa Parker
- Incyte Research Institute, Wilmington, DE, United States
| | - Kaan Yilmaz
- Department of Dermatology, Allergy, and Venereology, University of Lübeck, Lübeck, Germany
| | - Hasan O. Dikmen
- Department of Dermatology, Allergy, and Venereology, University of Lübeck, Lübeck, Germany
| | - Markus Huber Lang
- Institute of Experimental Trauma-Immunology, University Hospital of Ulm, Ulm, Germany
| | - Christian D. Sadik
- Department of Dermatology, Allergy, and Venereology, University of Lübeck, Lübeck, Germany
| | - Christian M. Karsten
- Institute for Systemic Inflammation Research (ISEF), University of Lübeck, Lübeck, Germany
| | - Nina van Beek
- Department of Dermatology, Allergy, and Venereology, University of Lübeck, Lübeck, Germany
| | - Ralf J. Ludwig
- Lübeck Institute of Experimental Dermatology (LIED), University of Lübeck, Lübeck, Germany
- Department of Dermatology, Allergy, and Venereology, University of Lübeck, Lübeck, Germany
| | - Jörg Köhl
- Institute for Systemic Inflammation Research (ISEF), University of Lübeck, Lübeck, Germany
- Division of Immunobiology, Cincinnati Children’s Hospital Medical Centre, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Enno Schmidt
- Lübeck Institute of Experimental Dermatology (LIED), University of Lübeck, Lübeck, Germany
- Department of Dermatology, Allergy, and Venereology, University of Lübeck, Lübeck, Germany
| |
Collapse
|
13
|
Zeng FAP, Murrell DF. Bullous pemphigoid-What do we know about the most recent therapies? Front Med (Lausanne) 2022; 9:1057096. [PMID: 36405625 PMCID: PMC9669062 DOI: 10.3389/fmed.2022.1057096] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 10/18/2022] [Indexed: 08/25/2023] Open
Abstract
Introduction Bullous pemphigoid (BP) is the most common subtype of autoimmune blistering diseases that primarily affects the elderly and is classically defined by the presence of IgG and/or complement C3 against the BP180 and BP230 hemidesmosome proteins. However, most recent studies have introduced the role of specific eosinophil receptors and chemokine mediators in the pathogenesis of BP which are helpful in identifying new targets for future treatments. Areas covered This review will focus on the involvement of eosinophils in BP, including the processes that lead to their recruitment, activation, and regulation. Subsequently, covering new therapeutic options in relation to the role of eosinophils. Eotaxin enhances the recruitment of eosinophils in BP, with CCR3 chemoreceptor that is expressed on eosinophils being identified as a key binding site for eotaxin-1. The pathogenic role of IgE and IL-4 in BP is corroborated by successful treatments with Omalizumab and Dupilumab, respectively. IL-5, IL-17 and IL-23 inhibitors may be effective given their roles in promoting eosinophilia. Expert opinion Further research into inhibitors of eotaxin, IL-4, IL-5, IL-17, IL-23, CCR3, and specific complement factors are warranted as preliminary studies have largely identified success in treating BP with these agents. Learning from novel treatments for other IgG-mediated autoimmune diseases may be beneficial.
Collapse
Affiliation(s)
- Faith A. P. Zeng
- School of Medicine, University of New South Wales, Sydney, NSW, Australia
| | - Dedee F. Murrell
- School of Medicine, University of New South Wales, Sydney, NSW, Australia
- Department of Dermatology, St George Hospital, Sydney, NSW, Australia
- The George Institute for Global Health, Sydney, NSW, Australia
| |
Collapse
|
14
|
Mizuno Y, Shibata S, Ito Y, Taira H, Sugimoto E, Awaji K, Sato S. Interleukin-26–DNA complexes promote inflammation and dermal-epidermal separation in a modified human cryosection model of bullous pemphigoid. Front Immunol 2022; 13:1013382. [PMID: 36311716 PMCID: PMC9599390 DOI: 10.3389/fimmu.2022.1013382] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 09/22/2022] [Indexed: 11/16/2022] Open
Abstract
Bullous pemphigoid (BP) is an autoimmune disease characterized by autoantibody-mediated activation of immune cells and subepidermal blister formation. Excess amounts of extracellular DNA are produced in BP, however, it remains unclear how extracellular DNA contributes to BP pathogenesis. Here we show a possible mechanism by which interleukin (IL)-26 binds to extracellular DNA released from neutrophils and eosinophils to support DNA sensing. Patients with BP exhibited high circulating levels of IL-26, forming IL-26–DNA complexes in the upper dermis and inside the blisters. IL-26–DNA complexes played a dual role in regulating local immunity and blister formation. First, they enhanced the production of inflammatory cytokines in monocytes and neutrophils. Second, and importantly, the complexes augmented the production and activity of proteases from co-cultured monocytes and neutrophils, which induced BP180 cleavage in keratinocytes and dermal-epidermal separation in a modified human cryosection model. Collectively, we propose a model in which IL-26 and extracellular DNA synergistically act on immune cells to enhance autoantibody-driven local immune responses and protease-mediated fragility of dermal-epidermal junction in BP.
Collapse
|
15
|
Papara C, Karsten CM, Ujiie H, Schmidt E, Schmidt-Jiménez LF, Baican A, Freire PC, Izumi K, Bieber K, Peipp M, Verschoor A, Ludwig RJ, Köhl J, Zillikens D, Hammers CM. The relevance of complement in pemphigoid diseases: A critical appraisal. Front Immunol 2022; 13:973702. [PMID: 36059476 PMCID: PMC9434693 DOI: 10.3389/fimmu.2022.973702] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 07/26/2022] [Indexed: 11/13/2022] Open
Abstract
Pemphigoid diseases are autoimmune chronic inflammatory skin diseases, which are characterized by blistering of the skin and/or mucous membranes, and circulating and tissue-bound autoantibodies. The well-established pathomechanisms comprise autoantibodies targeting various structural proteins located at the dermal-epidermal junction, leading to complement factor binding and activation. Several effector cells are thus attracted and activated, which in turn inflict characteristic tissue damage and subepidermal blistering. Moreover, the detection of linear complement deposits in the skin is a diagnostic hallmark of all pemphigoid diseases. However, recent studies showed that blistering might also occur independently of complement. This review reassesses the importance of complement in pemphigoid diseases based on current research by contrasting and contextualizing data from in vitro, murine and human studies.
Collapse
Affiliation(s)
- Cristian Papara
- Department of Dermatology, University of Lübeck, Lübeck, Germany
- Department of Dermatology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Christian M. Karsten
- Institute of Systemic Inflammation Research, University of Lübeck, Lübeck, Germany
| | - Hideyuki Ujiie
- Department of Dermatology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Enno Schmidt
- Department of Dermatology, University of Lübeck, Lübeck, Germany
- Lübeck Institute of Experimental Dermatology (LIED), University of Lübeck, Lübeck, Germany
| | | | - Adrian Baican
- Department of Dermatology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Patricia C. Freire
- Institute of Systemic Inflammation Research, University of Lübeck, Lübeck, Germany
| | - Kentaro Izumi
- Department of Dermatology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Katja Bieber
- Lübeck Institute of Experimental Dermatology (LIED), University of Lübeck, Lübeck, Germany
| | - Matthias Peipp
- Division of Antibody-Based Immunotherapy, Department of Medicine II, Christian-Albrechts-University of Kiel and University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Admar Verschoor
- Department of Dermatology, University of Lübeck, Lübeck, Germany
- Department of Otorhinolaryngology, Klinikum rechts der Isar, Technical University Munich, Munich, Germany
| | - Ralf J. Ludwig
- Department of Dermatology, University of Lübeck, Lübeck, Germany
- Lübeck Institute of Experimental Dermatology (LIED), University of Lübeck, Lübeck, Germany
| | - Jörg Köhl
- Institute of Systemic Inflammation Research, University of Lübeck, Lübeck, Germany
- Division of Immunobiology, Cincinnati Children’s Hospital Medical Center and University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Detlef Zillikens
- Department of Dermatology, University of Lübeck, Lübeck, Germany
| | - Christoph M. Hammers
- Department of Dermatology, University of Lübeck, Lübeck, Germany
- Lübeck Institute of Experimental Dermatology (LIED), University of Lübeck, Lübeck, Germany
- *Correspondence: Christoph M. Hammers,
| |
Collapse
|
16
|
Opelka B, Schmidt E, Goletz S. Type XVII collagen: Relevance of distinct epitopes, complement-independent effects, and association with neurological disorders in pemphigoid disorders. Front Immunol 2022; 13:948108. [PMID: 36032160 PMCID: PMC9400597 DOI: 10.3389/fimmu.2022.948108] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 07/07/2022] [Indexed: 11/13/2022] Open
Abstract
Pemphigoid diseases (PD) are autoimmune skin blistering diseases characterized by autoantibodies directed against proteins of the cutaneous basement membrane zone (BMZ). One of the major antigens is type XVII collagen (BP180), a transmembrane glycoprotein, which is targeted in four PDs: bullous pemphigoid, mucous membrane pemphigoid, linear IgA dermatosis, and pemphigoid gestationis. To date, different epitopes on BP180 have been described to be recognized by PD disease patients’ autoantibodies. Different BP180 epitopes were associated with distinct clinical phenotypes while the underlying mechanisms are not yet fully understood. So far, the main effects of anti-BP180 reactivity are mediated by Fcγ-receptors on immune cells. More precisely, the autoantibody–antigen interaction leads to activation of complement at the BMZ and infiltration of immune cells into the upper dermis and, by the release of specific enzymes and reactive oxygen species, to the degradation of BP180 and other BMZ components, finally manifesting as blisters and erosions. On the other hand, inflammatory responses independent of Fcγ-receptors have also been reported, including the release of proinflammatory cytokines and internalization and depletion of BP180. Autoantibodies against BP180 can also be found in patients with neurological diseases. The assumption that the clinical expression of PD depends on epitope specificity in addition to target antigens, autoantibody isotypes, and antibody glycosylation is supported by the observation that epitopes of PD patients differ from those of PD patients. The aim of the present review is to describe the fine specificities of anti-BP180 autoantibodies in different PDs and highlight the associated clinical differences. Furthermore, the direct effects after binding of the autoantibodies to their target are summarized.
Collapse
Affiliation(s)
- Bianca Opelka
- Lübeck Institute of Experimental Dermatology (LIED), University of Lübeck, Lübeck, Germany
| | - Enno Schmidt
- Lübeck Institute of Experimental Dermatology (LIED), University of Lübeck, Lübeck, Germany
- Department of Dermatology, University of Lübeck, Lübeck, Germany
| | - Stephanie Goletz
- Lübeck Institute of Experimental Dermatology (LIED), University of Lübeck, Lübeck, Germany
- *Correspondence: Stephanie Goletz,
| |
Collapse
|
17
|
Eichkorn RA, Schmidt MF, Walter E, Hertl M, Baron JM, Waschke J, Yazdi AS. Innate immune activation as cofactor in pemphigus disease manifestation. Front Immunol 2022; 13:898819. [PMID: 35928825 PMCID: PMC9343989 DOI: 10.3389/fimmu.2022.898819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 06/28/2022] [Indexed: 11/23/2022] Open
Abstract
Molecular mechanisms underlying auto-antibody-induced acantholysis in pemphigus vulgaris are subject of current research to date. To decipher the discrepancy between ubiquitous antibody binding to the epidermal desmosomes, but discontinuous disease manifestation, we were able to identify Ultraviolet A (UVA) as a cofactor for acantholysis. UVA induces interleukin (IL)-1 secretion in keratinocytes, mirroring innate immune system activation. In an in vitro keratinocyte dissociation assay increased fragmentation was observed when UVA was added to anti-Desmoglein 3 Immunoglobulins (anti-Dsg3 IgG). These results were confirmed in skin explants where UVA enhanced anti-Dsg3-mediated loss of epidermal adhesion. The UVA-mediated effect was blocked in vitro by the pan-caspase-inhibitor zVAD-fmk. Thus, we introduce UVA as a caspase-dependent exogenous cofactor for acantholysis which suggests that local innate immune responses largely contribute to overt clinical blister formation upon autoantibody binding to epidermal cells in pemphigus vulgaris.
Collapse
Affiliation(s)
- Ramona A. Eichkorn
- Department of Dermatology, Eberhard Karl University of Tuebingen, Tuebingen, Germany
| | - Morna F. Schmidt
- Department of Dermatology, Rheinisch-Westfälische Technische Hochschule Aachen (RWTH) Aachen University, Aachen, Germany
| | - Elias Walter
- Department I, Institute of Anatomy and Cell Biology, Ludwig Maximilian University of Munich (LMU), Munich, Germany
| | - Michael Hertl
- Department of Dermatology and Allergology, Philipps University of Marburg, Marburg, Germany
| | - Jens Malte Baron
- Department of Dermatology, Rheinisch-Westfälische Technische Hochschule Aachen (RWTH) Aachen University, Aachen, Germany
| | - Jens Waschke
- Department I, Institute of Anatomy and Cell Biology, Ludwig Maximilian University of Munich (LMU), Munich, Germany
| | - Amir S. Yazdi
- Department of Dermatology, Eberhard Karl University of Tuebingen, Tuebingen, Germany
- Department of Dermatology, Rheinisch-Westfälische Technische Hochschule Aachen (RWTH) Aachen University, Aachen, Germany
- *Correspondence: Amir S. Yazdi,
| |
Collapse
|
18
|
Cole C, Vinay K, Borradori L, Amber KT. Insights Into the Pathogenesis of Bullous Pemphigoid: The Role of Complement-Independent Mechanisms. Front Immunol 2022; 13:912876. [PMID: 35874745 PMCID: PMC9300999 DOI: 10.3389/fimmu.2022.912876] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 06/09/2022] [Indexed: 11/13/2022] Open
Abstract
Bullous pemphigoid is an autoimmune blistering disease caused by autoantibodies targeting BP180 and BP230. While deposits of IgG and/or complement along the epidermal basement membrane are typically seen suggesting complement -mediated pathogenesis, several recent lines of evidence point towards complement-independent pathways contributing to tissue damage and subepidermal blister formation. Notable pathways include macropinocytosis of IgG-BP180 complexes resulting in depletion of cellular BP180, direct induction of pro-inflammatory cytokines from keratinocytes, as well as IgE autoantibody- and eosinophil-mediated effects. We review these mechanisms which open new perspectives on novel targeted treatment modalities.
Collapse
|
19
|
Cole C, Borradori L, Amber KT. Deciphering the Contribution of BP230 Autoantibodies in Bullous Pemphigoid. Antibodies (Basel) 2022; 11:antib11030044. [PMID: 35892704 PMCID: PMC9326648 DOI: 10.3390/antib11030044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/09/2022] [Accepted: 06/17/2022] [Indexed: 11/18/2022] Open
Abstract
Bullous pemphigoid (BP) is a subepidermal autoimmune blistering disease predominantly affecting elderly patients and carries significant morbidity and mortality. Patients typically suffer from severe itch with eczematous lesions, urticarial plaques, and/or tense blisters. BP is characterized by the presence of circulating autoantibodies against two components of the hemidesmosome, BP180 and BP230. The transmembrane BP180, also known as type XVII collagen or BPAG2, represents the primary pathogenic autoantigen in BP, whereas the intracellular BP230 autoantigen is thought to play a minor role in disease pathogenesis. Although experimental data exist suggesting that anti-BP230 antibodies are secondarily formed following initial tissue damage mediated by antibodies targeting extracellular antigenic regions of BP180, there is emerging evidence that anti-BP230 IgG autoantibodies alone directly contribute to tissue damage. It has been further claimed that a subset of patients has a milder variant of BP driven solely by anti-BP230 autoantibodies. Furthermore, the presence of anti-BP230 autoantibodies might correlate with distinct clinical features. This review summarizes the current understanding of the role of BP230 and anti-BP230 antibodies in BP pathogenesis.
Collapse
Affiliation(s)
- Connor Cole
- Division of Dermatology, Rush University Medical Center, Chicago, IL 60612, USA;
- Correspondence:
| | - Luca Borradori
- Department of Dermatology, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland;
| | - Kyle T. Amber
- Division of Dermatology, Rush University Medical Center, Chicago, IL 60612, USA;
- Department of Internal Medicine, Rush University Medical Center, Chicago, IL 60612, USA
| |
Collapse
|
20
|
Afarideh M, Borucki R, Werth VP. A Review of the Immunologic Pathways Involved in Bullous Pemphigoid and Novel Therapeutic Targets. J Clin Med 2022; 11:2856. [PMID: 35628982 PMCID: PMC9146139 DOI: 10.3390/jcm11102856] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/08/2022] [Accepted: 05/10/2022] [Indexed: 02/01/2023] Open
Abstract
Bullous pemphigoid (BP) is a rare, chronic antibody-mediated autoimmune blistering disease primarily affecting the elderly, with an age of onset over 60. Current treatment options are limited and involve the use of corticosteroids and immunosuppressants, but their long-term use is associated with significant morbidity and mortality. In Japan, human intravenous immunoglobin is approved for the treatment of corticosteroid-refractory BP. However, no treatment option is approved by the Food and Drug Administration for the management of BP. Therefore, developing effective therapies free of debilitating side effects is imperative. In this review, we summarize the main immunologic pathways involved in the pathogenesis of BP, with an emphasis on the role of eosinophils, immunoglobulins, cytokines such as the interleukin (IL)-4 and IL-5, and complements. We further discuss the latest advances with novel therapeutic targets tested for the management of BP. Ongoing efforts are needed to run well-designed controlled trials and test the efficacy and safety of investigational drugs while providing much-needed access to these medications for refractory patients who will not otherwise be able to afford them as off-label prescriptions.
Collapse
Affiliation(s)
- Mohsen Afarideh
- Corporal Michael J. Crescenz VA Medical Center, United States Department of Veterans Affairs, Philadelphia, PA 19104, USA; (M.A.); (R.B.)
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Robert Borucki
- Corporal Michael J. Crescenz VA Medical Center, United States Department of Veterans Affairs, Philadelphia, PA 19104, USA; (M.A.); (R.B.)
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Victoria P. Werth
- Corporal Michael J. Crescenz VA Medical Center, United States Department of Veterans Affairs, Philadelphia, PA 19104, USA; (M.A.); (R.B.)
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
21
|
Sadik CD, Rashid H, Hammers CM, Diercks GFH, Weidinger A, Beissert S, Schauer F, Fettiplace J, Thaçi D, Ngai Y, Nunn MA, Zillikens D, Horváth B. Evaluation of Nomacopan for Treatment of Bullous Pemphigoid: A Phase 2a Nonrandomized Controlled Trial. JAMA Dermatol 2022; 158:641-649. [PMID: 35507334 PMCID: PMC9069343 DOI: 10.1001/jamadermatol.2022.1156] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Importance Bullous pemphigoid is a difficult-to-treat autoimmune blistering skin disease that predominantly affects older adults and is associated with an increased mortality rate. Objective To examine the safety and therapeutic potential of nomacopan, an inhibitor of leukotriene B4 and complement C5, in patients with bullous pemphigoid. Design, Setting, and Participants This multicenter, single-group, phase 2a nonrandomized controlled trial was conducted in the dermatology departments of universities in the Netherlands and Germany. Participants were enrolled between September 2018 and April 2020. Older adult patients (aged ≥55 years) with mild to moderate, new-onset or relapsing bullous pemphigoid were recruited into the study. Interventions Patients received nomacopan, 90 mg, subcutaneously on day 1 and 30 mg subcutaneously daily until day 42. Main Outcomes and Measures The primary end point was the proportion of patients with grade 3 to 5 (severe) adverse events associated or possibly associated with nomacopan. Secondary end points included mean absolute and percentage changes in the Bullous Pemphigoid Disease Area Index (BPDAI) activity score, the BPDAI pruritus score, and the patient-reported outcome measures Dermatology Life Quality Index (DLQI) and Treatment of Autoimmune Bullous Disease Quality of Life (TABQOL). Results A total of 9 patients (median [range] age, 75 [55-85] years) with bullous pemphigoid were included in the trial, of whom 5 were women (55.6%). No serious adverse events associated with nomacopan were found. The mean (90% CI) BPDAI activity score decreased from 32.0 (8.7) points on day 1 to 19.6 (9.0) points on day 42. Seven of 9 patients (77.8%) responded to nomacopan with a reduction in the BPDAI activity score of at least 8 points between days 1 and 42; in 3 responders, the reduction was 80% or greater. On day 42, the mean (90% CI) BPDAI pruritus score had decreased by 6.8 (4.6) points from 17.6 (4.0) points on day 1. The mean (90% CI) DLQI score decreased from 11.3 (4.2) points at baseline to 6.4 (3.8) points by day 42, and the mean (90% CI) TABQOL score decreased from 14.6 (5.4) points at baseline to 10.3 (5.0) points on day 42. Conclusions and Relevance Results of this nonrandomized controlled trial suggest that nomacopan can be well tolerated in older patients with bullous pemphigoid and may have therapeutic benefits for suppressing acute flares of this disease. A larger, placebo-controlled randomized clinical trial is warranted to confirm this safety profile and to establish nomacopan as a new therapeutic option for bullous pemphigoid. Trial Registration ClinicalTrials.gov Identifier: NCT04035733.
Collapse
Affiliation(s)
- Christian D Sadik
- Department of Dermatology, Allergy, and Venereology, University of Lübeck, Lübeck, Germany.,Center for Research on Inflammation of the Skin, University of Lübeck, Lübeck, Germany
| | - Hanan Rashid
- Department of Dermatology, Center of Blistering Diseases, European Reference Network-Skin, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Christoph M Hammers
- Department of Dermatology, Allergy, and Venereology, University of Lübeck, Lübeck, Germany.,Center for Research on Inflammation of the Skin, University of Lübeck, Lübeck, Germany
| | - Gilles F H Diercks
- Department of Dermatology, Center of Blistering Diseases, European Reference Network-Skin, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands.,Department of Pathology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Anke Weidinger
- Department of Dermatology and Allergy, University of Kiel, Kiel, Germany
| | - Stefan Beissert
- Department of Dermatology, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Franziska Schauer
- Department of Dermatology, Medical Center-University of Freiburg, Faculty of Medicine, Freiburg, Germany
| | | | - Diamant Thaçi
- Center for Research on Inflammation of the Skin, University of Lübeck, Lübeck, Germany.,Institute and Comprehensive Center for Inflammation Medicine, University of Lübeck, Lübeck, Germany
| | | | | | - Detlef Zillikens
- Department of Dermatology, Allergy, and Venereology, University of Lübeck, Lübeck, Germany.,Center for Research on Inflammation of the Skin, University of Lübeck, Lübeck, Germany
| | - Barbara Horváth
- Department of Dermatology, Center of Blistering Diseases, European Reference Network-Skin, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| |
Collapse
|
22
|
A Review of Acquired Autoimmune Blistering Diseases in Inherited Epidermolysis Bullosa: Implications for the Future of Gene Therapy. Antibodies (Basel) 2021; 10:antib10020019. [PMID: 34067512 PMCID: PMC8161452 DOI: 10.3390/antib10020019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 04/24/2021] [Accepted: 05/10/2021] [Indexed: 02/06/2023] Open
Abstract
Gene therapy serves as a promising therapy in the pipeline for treatment of epidermolysis bullosa (EB). However, with great promise, the risk of autoimmunity must be considered. While EB is a group of inherited blistering disorders caused by mutations in various skin proteins, autoimmune blistering diseases (AIBD) have a similar clinical phenotype and are caused by autoantibodies targeting skin antigens. Often, AIBD and EB have the same protein targeted through antibody or mutation, respectively. Moreover, EB patients are also reported to carry anti-skin antibodies of questionable pathogenicity. It has been speculated that activation of autoimmunity is both a consequence and cause of further skin deterioration in EB due to a state of chronic inflammation. Herein, we review the factors that facilitate the initiation of autoimmune and inflammatory responses to help understand the pathogenesis and therapeutic implications of the overlap between EB and AIBD. These may also help explain whether corrections of highly immunogenic portions of protein through gene therapy confers a greater risk towards developing AIBD.
Collapse
|
23
|
Bieber K, Kridin K, Emtenani S, Boch K, Schmidt E, Ludwig RJ. Milestones in Personalized Medicine in Pemphigus and Pemphigoid. Front Immunol 2021; 11:591971. [PMID: 33505392 PMCID: PMC7829330 DOI: 10.3389/fimmu.2020.591971] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 11/16/2020] [Indexed: 12/20/2022] Open
Abstract
Pemphigus and pemphigoid diseases are autoimmune bullous diseases characterized and caused by autoantibodies targeting adhesion molecules in the skin and/or mucous membranes. Personalized medicine is a new medical model that separates patients into different groups and aims to tailor medical decisions, practices, and interventions based on the individual patient`s predicted response or risk factors. An important milestone in personalized medicine in pemphigus and pemphigoid was achieved by verifying the autoimmune pathogenesis underlying these diseases, as well as by identifying and cloning several pemphigus/pemphigoid autoantigens. The latter has become the basis of the current, molecular-based diagnosis that allows the differentiation of about a dozen pemphigus and pemphigoid entities. The importance of autoantigen-identification in pemphigus/pemphigoid is further highlighted by the emergence of autoantigen-specific B cell depleting strategies. To achieve this goal, the chimeric antigen receptor (CAR) T cell technology, which is used for the treatment of certain hematological malignancies, was adopted, by generating chimeric autoantigen receptor (CAAR) T cells. In addition to these more basic science-driven milestones in personalized medicine in pemphigus and pemphigoid, careful clinical observation and epidemiology are again contributing to personalized medicine. The identification of clearly distinct clinical phenotypes in pemphigoid like the non-inflammatory and gliptin-associated bullous pemphigoid embodies a prominent instance of the latter. We here review these exciting developments in basic, translational, clinical, and epidemiological research in pemphigus and pemphigoid. Overall, we hereby aim to attract more researchers and clinicians to this highly interesting and dynamic field of research.
Collapse
Affiliation(s)
- Katja Bieber
- Lübeck Institute of Experimental Dermatology and Center for Research on Inflammation of the Skin, University of Lübeck, Lübeck, Germany
| | - Khalaf Kridin
- Lübeck Institute of Experimental Dermatology and Center for Research on Inflammation of the Skin, University of Lübeck, Lübeck, Germany
| | - Shirin Emtenani
- Lübeck Institute of Experimental Dermatology and Center for Research on Inflammation of the Skin, University of Lübeck, Lübeck, Germany
| | - Katharina Boch
- Department of Dermatology and Center for Research on Inflammation of the Skin, University of Lübeck, Lübeck, Germany
| | - Enno Schmidt
- Lübeck Institute of Experimental Dermatology and Center for Research on Inflammation of the Skin, University of Lübeck, Lübeck, Germany
- Department of Dermatology and Center for Research on Inflammation of the Skin, University of Lübeck, Lübeck, Germany
| | - Ralf J. Ludwig
- Lübeck Institute of Experimental Dermatology and Center for Research on Inflammation of the Skin, University of Lübeck, Lübeck, Germany
- Department of Dermatology and Center for Research on Inflammation of the Skin, University of Lübeck, Lübeck, Germany
| |
Collapse
|
24
|
Presence of Cutaneous Complement Deposition Distinguishes between Immunological and Histological Features of Bullous Pemphigoid-Insights from a Retrospective Cohort Study. J Clin Med 2020; 9:jcm9123928. [PMID: 33287364 PMCID: PMC7761814 DOI: 10.3390/jcm9123928] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 11/22/2020] [Accepted: 11/30/2020] [Indexed: 12/27/2022] Open
Abstract
The practical implications of complement deposition in direct immunofluorescence (DIF) microscopy and its influence on the disease phenotype are poorly understood. We aimed to investigate whether the presence of complement deposition in DIF microscopy gives rise to differences in the morphological, immunological, and histological characteristics of patients with BP (bullous pemphigoid). We performed a retrospective study encompassing patients with BP in a specialized tertiary referral center. Logistic regression model was utilized to identify variables independently associated with complement deposition. The study included 233 patients with BP, of whom 196 (84.1%) demonstrated linear C3 deposition along the dermal-epidermal junction (DEJ) in DIF analysis. BP patients with C3 deposition had higher mean (SD) levels (645.2 (1418.5) vs. 172.5 (243.9) U/mL; p < 0.001) and seropositivity rate (86.3% vs.64.9%; p = 0.002) of anti-BP180 NC16A and less prevalent neutrophilic infiltrate in lesional skin specimens (29.8% vs. 52.4%; p = 0.041). C3 deposition was found positively associated with the detection of anti-BP180 NC16A autoantibodies (OR, 4.25; 95% CI, 1.38–13.05) and inversely associated with the presence of neutrophils in lesional skin (OR, 3.03; 95% CI, 1.09–8.33). To conclude, complement deposition influences the immunological and histological features of BP. These findings are in line with experimental data describing the pathogenic role of complement in BP.
Collapse
|
25
|
Koneczny I. Update on IgG4-mediated autoimmune diseases: New insights and new family members. Autoimmun Rev 2020; 19:102646. [PMID: 32801046 DOI: 10.1016/j.autrev.2020.102646] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Accepted: 03/08/2020] [Indexed: 12/23/2022]
Abstract
Antibodies of IgG4 subclass are exceptional players of the immune system, as they are considered to be immunologically inert and functionally monovalent, and as such may be part of classical tolerance mechanisms. IgG4 antibodies are found in a range of different diseases, including IgG4-related diseases, allergy, cancer, rheumatoid arthritis, helminth infection and IgG4 autoimmune diseases, where they may be pathogenic or protective. IgG4 autoimmune diseases are an emerging new group of diseases that are characterized by pathogenic, antigen-specific autoantibodies of IgG4 subclass, such as MuSK myasthenia gravis, pemphigus vulgaris and thrombotic thrombocytopenic purpura. The list of IgG4 autoantigens is rapidly growing and to date contains 29 candidate antigens. Interestingly, IgG4 autoimmune diseases are restricted to four distinct organs: 1) the central and peripheral nervous system, 2) the kidney, 3) the skin and mucous membranes and 4) the vascular system and soluble antigens in the blood circulation. The pathogenicity of IgG4 can be validated using our classification system, and is usually excerted by functional blocking of protein-protein interaction.
Collapse
Affiliation(s)
- Inga Koneczny
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, Währingergürtel 18-20, 1090 Vienna, Austria.
| |
Collapse
|
26
|
Buhl T, Beissert S, Gaffal E, Goebeler M, Hertl M, Mauch C, Reich K, Schmidt E, Schön MP, Sticherling M, Sunderkötter C, Traidl‐Hoffmann C, Werfel T, Wilsman‐Theis D, Worm M. COVID‐19 und Auswirkungen auf dermatologische und allergologische Erkrankungen. J Dtsch Dermatol Ges 2020; 18:815-825. [PMID: 32881343 PMCID: PMC7461475 DOI: 10.1111/ddg.14195_g] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Die durch das Coronavirus SARS‐CoV‐2 verursachte Krankheit COVID‐19 hat sich zu einer Pandemie entwickelt. Bei der Betrachtung von dermatologischen und allergologischen Krankheiten, die potenziell von COVID‐19 betroffen sind, stehen wir vor komplexen Herausforderungen, die Pathogenese und Beeinflussung verschiedener immunologischer Signalwege einschließen. Medizinische Behandlungen müssen daher im Zusammenhang mit dieser Infektion oft neu bewertet und in Frage gestellt werden. Dieser Übersichtsartikel fasst den aktuellen Wissensstand zu COVID‐19 hinsichtlich der wichtigsten dermatologischen und allergologischen Erkrankungen zusammen. Es werden aber auch die medizinischen Bereiche beschrieben, für die keine ausreichenden Daten vorliegen. Unter Zusammenfassung der publizierten Daten und grundsätzlicher pathophysiologischer Überlegungen werden hier Schlussfolgerungen für das Management unserer Patienten während der Pandemie gezogen. Wir konzentrieren uns auf häufige Hauterkrankungen mit komplexer immunologischer Pathogenese: Psoriasis, Ekzeme einschließlich atopischer Dermatitis, Typ‐I‐Allergien, blasenbildende Autoimmundermatosen, Kollagenosen, Vaskulitiden und Hautkrebserkrankung. Da viele weitere Hauterkrankungen verwandte oder vergleichbare immunologische Reaktionsmuster aufweisen, können pathophysiologisch ähnliche entzündliche Dermatosen möglicherweise auch mit ähnlichen therapeutischen Überlegungen und Schlussfolgerungen während der Pandemie behandelt werden. Daher soll diese Übersicht Behandlungsempfehlungen auf der Basis bisher publizierter Daten und Empfehlungen zu Therapieentscheidungen auch über die hier diskutierten, häufigsten Erkrankungen hinaus liefern.
Collapse
Affiliation(s)
- Timo Buhl
- Klinik für DermatologieVenerologie und AllergologieUniversitätsklinikum GöttingenDeutschland
- Niedersächsisches Institut für BerufsdermatologieUniversitätsklinikum GöttingenDeutschland
| | - Stefan Beissert
- Klinik für DermatologieUniversitätsklinikum Carl Gustav CarusTU DresdenDeutschland
| | - Evelyn Gaffal
- Klinik für DermatologieUniversitätsklinikum MagdeburgDeutschland
| | - Matthias Goebeler
- Klinik für DermatologieVenerologie und AllergologieUniversitätsklinik WürzburgDeutschland
| | - Michael Hertl
- Klinik für DermatologiePhilipps‐UniversitätMarburgDeutschland
| | - Cornelia Mauch
- Klinik für DermatologieUniversitätsklinik KölnDeutschland
| | - Kristian Reich
- Translational Research in Inflammatory Skin DiseasesIVDPUniversitätsklinikum Hamburg‐EppendorfDeutschland
| | - Enno Schmidt
- Klinik für DermatologieUniversität zu LübeckDeutschland
- Lübecker Institut für Experimentelle Dermatologie (LIED)Universität zu LübeckDeutschland
| | - Michael P. Schön
- Klinik für DermatologieVenerologie und AllergologieUniversitätsklinikum GöttingenDeutschland
- Niedersächsisches Institut für BerufsdermatologieUniversitätsklinikum GöttingenDeutschland
| | - Michael Sticherling
- Klinik für DermatologieFAU Erlangen‐Nürnberg und Universitätsklinikum ErlangenDeutsches Zentrum für Immuntherapie (DZI)ErlangenDeutschland
| | - Cord Sunderkötter
- Klinik für Dermatologie und VenerologieUniversitätsklinikum Halle‐WittenbergHalle (Saale)Deutschland
| | - Claudia Traidl‐Hoffmann
- Institut für UmweltmedizinUNIKA‐T AugsburgTechnische Universität München und Helmholtz Zentrum MünchenDeutsches Forschungszentrum für Gesundheit und UmweltDeutschland
- Ambulanz für UmweltmedizinUniversitätsklinikum AugsburgDeutschland
| | - Thomas Werfel
- Abteilung für Immundermatologie und AllergieforschungKlinik für Dermatologie und AllergologieMedizinische Hochschule HannoverDeutschland
| | - Dagmar Wilsman‐Theis
- Klinik für Dermatologie und AllergologieUniversitätsklinikumFriedrich‐Wilhelms‐UniversitätBonnDeutschland
| | - Margitta Worm
- Abteilung für Allergologie und ImmunologieKlinik für DermatologieVenerologie und AllergologieCharité ‐ Universitätsmedizin BerlinDeutschland
| |
Collapse
|
27
|
Buhl T, Beissert S, Gaffal E, Goebeler M, Hertl M, Mauch C, Reich K, Schmidt E, Schön MP, Sticherling M, Sunderkötter C, Traidl-Hoffmann C, Werfel T, Wilsman-Theis D, Worm M. COVID-19 and implications for dermatological and allergological diseases. J Dtsch Dermatol Ges 2020; 18:815-824. [PMID: 32717116 DOI: 10.1111/ddg.14195] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Accepted: 06/30/2020] [Indexed: 12/15/2022]
Abstract
COVID-19, caused by the coronavirus SARS-CoV-2, has become pandemic. A further level of complexity opens up as soon as we look at diseases whose pathogenesis and therapy involve different immunological signaling pathways, which are potentially affected by COVID-19. Medical treatments must often be reassessed and questioned in connection with this infection. This article summarizes the current knowledge of COVID-19 in the light of major dermatological and allergological diseases. It identifies medical areas lacking sufficient data and draws conclusions for the management of our patients during the pandemic. We focus on common chronic inflammatory skin diseases with complex immunological pathogenesis: psoriasis, eczema including atopic dermatitis, type I allergies, autoimmune blistering and inflammatory connective tissue diseases, vasculitis, and skin cancers. Since several other inflammatory skin diseases display related or comparable immunological reactions, clustering of the various inflammatory dermatoses into different disease patterns may help with therapeutic decisions. Thus, following these patterns of skin inflammation, our review may supply treatment recommendations and thoughtful considerations for disease management even beyond the most frequent diseases discussed here.
Collapse
Affiliation(s)
- Timo Buhl
- Department of Dermatology, Venereology and Allergology, University Medical Center Göttingen, Germany.,Lower Saxony Institute of Occupational Dermatology, University Medical Center Göttingen, Germany
| | - Stefan Beissert
- Department of Dermatology, University Hospital Carl Gustav Carus, TU Dresden, Germany
| | - Evelyn Gaffal
- Department of Dermatology, University Hospital Magdeburg, Germany
| | - Matthias Goebeler
- Department of Dermatology, Venereology and Allergology, University Hospital Würzburg, Germany
| | - Michael Hertl
- Department of Dermatology, Philipps University, Marburg, Germany
| | - Cornelia Mauch
- Department of Dermatology, University Hospital Cologne, Germany
| | - Kristian Reich
- Translational Research in Inflammatory Skin Diseases, IVDP, University Medical Center Hamburg-Eppendorf, Germany
| | - Enno Schmidt
- Department of Dermatology, University of Lübeck, Germany.,Lübeck Institute for Experimental Dermatology (LIED), University of Lübeck, Lübeck, Germany
| | - Michael P Schön
- Department of Dermatology, Venereology and Allergology, University Medical Center Göttingen, Germany.,Lower Saxony Institute of Occupational Dermatology, University Medical Center Göttingen, Germany
| | - Michael Sticherling
- Department of Dermatology, FAU Erlangen-Nuremberg and University Hospital Erlangen, German Center Immunotherapy (DZI), Erlangen, Germany
| | - Cord Sunderkötter
- Department of Dermatology and Venereology, University Hospital Halle-Wittenberg, Halle (Saale), Germany
| | - Claudia Traidl-Hoffmann
- Institute of Environmental Medicine, UNIKA-T Augsburg, Technical University Munich and Helmholtz-Zentrum Munich, German Research Center for Environmental Health, Germany.,Outpatient Clinic for Environmental Medicine, University Hospital Augsburg, Germany
| | - Thomas Werfel
- Division of Immunodermatology and Allergy Research, Department of Dermatology and Allergy, Hannover Medical School, Germany
| | - Dagmar Wilsman-Theis
- Department of Dermatology and Allergology, University Medical Center, Friedrich Wilhelm University, Bonn, Germany
| | - Margitta Worm
- Division of Allergy and Immunology, Department of Dermatology, Venereology and Allergology, Charité - Universitätsmedizin Berlin, Germany
| |
Collapse
|
28
|
McEvoy AM, Anadkat MJ. SnapshotDx Quiz: May 2020. J Invest Dermatol 2020. [DOI: 10.1016/j.jid.2020.02.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
29
|
Freire PC, Muñoz CH, Derhaschnig U, Schoergenhofer C, Firbas C, Parry GC, Panicker S, Gilbert JC, Stingl G, Jilma B, Heil PM. Specific Inhibition of the Classical Complement Pathway Prevents C3 Deposition along the Dermal-Epidermal Junction in Bullous Pemphigoid. J Invest Dermatol 2019; 139:2417-2424.e2. [PMID: 31229501 DOI: 10.1016/j.jid.2019.04.025] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 04/04/2019] [Accepted: 04/19/2019] [Indexed: 12/23/2022]
Abstract
Deposition of autoantibodies (α-BP180 and BP230) and complement along the dermal-epidermal-junction is a hallmark of bullous pemphigoid and was shown to be important for pathogenesis. Given the adverse effects of standard treatment (glucocorticoids, immunosuppressants), there is an unmet need for safe and effective therapies. In this phase 1 trial, we evaluated the safety and activity of BIVV009 (sutimlimab, previously TNT009), a targeted C1s inhibitor, in 10 subjects with active or past bullous pemphigoid (NCT02502903). Four weekly 60 mg/kg infusions of BIVV009 proved sufficient for inhibition of the classical complement pathway in all patients, as measured by CH50. C3c deposition along the dermal-epidermal junction was partially or completely abrogated in 4 of 5 patients, where it was present at baseline. BIVV009 was found to be safe and tolerable in this elderly population, with only mild to moderate adverse events reported (e.g., headache, fatigue). One serious adverse event (i.e., fatal cardiac decompensation) occurred at the end of the post-treatment observation period in an 84-year-old patient with a history of diabetes and heart failure, but was deemed unlikely to be related to the study drug. This trial provides the first results with a complement-targeting therapy in bullous pemphigoid, to our knowledge, and supports further studies on BIVV009's efficacy and safety in this population.
Collapse
Affiliation(s)
| | | | - Ulla Derhaschnig
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
| | | | - Christa Firbas
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Graham C Parry
- Complement Translational Research, Sanofi, Waltham, Massachusetts, USA
| | | | - James C Gilbert
- True North Therapeutics, South San Francisco, California, USA
| | - Georg Stingl
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Bernd Jilma
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
| | | |
Collapse
|
30
|
Ujiie H, Iwata H, Yamagami J, Nakama T, Aoyama Y, Ikeda S, Ishii N, Iwatsuki K, Kurosawa M, Sawamura D, Tanikawa A, Tsuruta D, Nishie W, Fujimoto W, Amagai M, Shimizu H. Japanese guidelines for the management of pemphigoid (including epidermolysis bullosa acquisita). J Dermatol 2019; 46:1102-1135. [PMID: 31646663 DOI: 10.1111/1346-8138.15111] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 09/10/2019] [Indexed: 10/25/2022]
Abstract
The pemphigoid group is a category of autoimmune subepidermal blistering diseases in which autoantibodies deposit linearly at the epidermal basement membrane zone (BMZ). The main subtypes of pemphigoid mediated by immunoglobulin G autoantibodies are bullous pemphigoid (BP), mucous membrane pemphigoid (MMP) and epidermolysis bullosa acquisita (EBA). To establish the first guidelines approved by the Japanese Dermatological Association for the management of pemphigoid diseases, the Committee for Guidelines for the Management of Pemphigoid Diseases (Including EBA) was founded as part of the Study Group for Rare Intractable Skin Diseases under the Ministry of Health, Labor and Welfare Research Project on Overcoming Intractable Diseases. These guidelines aim to provide current information for the management of BP, MMP and EBA in Japan. Based on evidence, the guidelines summarize the clinical and immunological manifestations, pathophysiologies, diagnostic criteria, disease severity determination criteria, treatment algorithms and treatment recommendations. Because of the rarity of these diseases, there are few clinical studies with a high degree of evidence, so several parts of these guidelines were established based on the opinions of the Committee. To further optimize these guidelines, periodic revision in line with the new evidence is necessary.
Collapse
Affiliation(s)
- Hideyuki Ujiie
- Department of Dermatology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Hiroaki Iwata
- Department of Dermatology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Jun Yamagami
- Department of Dermatology, Keio University School of Medicine, Tokyo, Japan
| | - Takekuni Nakama
- Department of Dermatology, Kurume University School of Medicine, Kurume, Japan
| | - Yumi Aoyama
- Department of Dermatology, Kawasaki Medical School, Kurashiki, Japan
| | - Shigaku Ikeda
- Department of Dermatology, Juntendo University School of Medicine, Tokyo, Japan
| | - Norito Ishii
- Department of Dermatology, Kurume University School of Medicine, Kurume, Japan
| | - Keiji Iwatsuki
- Department of Dermatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Michiko Kurosawa
- Department of Epidemiology and Environmental Health, Faculty of Medicine, Juntendo University, Tokyo, Japan
| | - Daisuke Sawamura
- Department of Dermatology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Akiko Tanikawa
- Department of Dermatology, Keio University School of Medicine, Tokyo, Japan
| | - Daisuke Tsuruta
- Department of Dermatology, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Wataru Nishie
- Department of Dermatology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Wataru Fujimoto
- Department of Dermatology, Kawasaki Medical School, Kurashiki, Japan
| | - Masayuki Amagai
- Department of Dermatology, Keio University School of Medicine, Tokyo, Japan
| | - Hiroshi Shimizu
- Department of Dermatology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| |
Collapse
|
31
|
Abstract
Pemphigoid diseases are a group of autoimmune blistering skin diseases defined by an immune response against certain components of the dermal-epidermal adhesion complex. They are prototypical, autoantibody-driven, organ-specific diseases with the emergence of inflammatory skin lesions dependent on the recruitment of immune cells, particularly granulocytes, into the skin. During an acute flare of disease, inflammatory skin lesions typically progressing from erythema through urticarial plaques to subepidermal blisters erosions erupt and, finally, completely resolve, thus illustrating that resolution of inflammation is continuously executed in pemphigoid disease patients and can be directly monitored on the skin. Despite these superb conditions for examining resolution in pemphigoid diseases as paradigm diseases for antibody-induced tissue inflammation, the mechanisms of resolution in pemphigoid are underinvestigated and still largely elusive. In the last decade, mouse models for pemphigoid diseases were developed, which have been instrumental to identify several key pathways for the initiation of inflammation in these diseases. More recently, also protective pathways, specifically IL-10 and C5aR2 signalling on the molecular level and Tregs on the cellular level, counteracting skin inflammation have been highlighted and may contribute to the continuous execution of resolution in pemphigoid diseases. The upstream orchestrators of this process are currently under investigation. Pemphigoid disease patients, particularly bullous pemphigoid patients, who are predominantly above 75 years of age, often succumb to the side effects of the immunosuppressive therapeutics nowadays still required to suppress the disease. Pemphigoid disease patients may therefore represent a group of patients benefiting most substantially from the introduction of non-immunosuppressive, proresolving therapeutics into the treatment regimens for their disease.
Collapse
Affiliation(s)
- Christian D Sadik
- Department of Dermatology, Allergy, and Venerology, University of Lübeck, Lübeck, Germany
| | - Enno Schmidt
- Department of Dermatology, Allergy, and Venerology, University of Lübeck, Lübeck, Germany.
- Lübeck Institute of Experimental Dermatology (LIED), University of Lübeck, Ratzeburger Allee 160, 23538, Lübeck, Germany.
| |
Collapse
|
32
|
Mast cells drive IgE-mediated disease but might be bystanders in many other inflammatory and neoplastic conditions. J Allergy Clin Immunol 2019; 144:S19-S30. [DOI: 10.1016/j.jaci.2019.07.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 06/11/2019] [Accepted: 07/08/2019] [Indexed: 01/05/2023]
|
33
|
Nesmond S, Muller C, Le Naour R, Viguier M, Bernard P, Antonicelli F, Le Jan S. Characteristic Pattern of IL-17RA, IL-17RB, and IL-17RC in Monocytes/Macrophages and Mast Cells From Patients With Bullous Pemphigoid. Front Immunol 2019; 10:2107. [PMID: 31572359 PMCID: PMC6749098 DOI: 10.3389/fimmu.2019.02107] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 08/21/2019] [Indexed: 01/08/2023] Open
Abstract
Inflammation is largely implicated in bullous pemphigoid (BP), the most frequent skin auto-immune blistering disease. IL-17, essentially IL-17A/F, has been involved in blister formation through regulation of protease production, and its specific serum profile within BP was related to disease outcome. However, relationships between IL-17 family ligands and receptors are quite complex with six different IL-17 isoforms, and five different receptors. We here aimed at clarifying the contribution of the IL-17 axis in BP by characterizing not only the expression of IL-17 receptor (IL-17R) members within immune cells isolated from BP patients (PMNs, n = 9; T-lymphocytes, n = 10; and monocytes, n = 10) but also the expression of IL-17 isoforms in sera (n = 83), and blister fluid (n = 31) of BP patients. We showed that at diagnosis, IL-17RA and IL-17RC expression were significantly increased in monocytes isolated from BP patients as compared to those from control subjects (p = 0.006 and p = 0.016, respectively). Notably, both IL-17RA and IL-17RC mRNA expression remained elevated in BP monocytes at time of relapse. We further demonstrated a significant increase of all IL-17 isoforms tested in BP blister fluid compared with BP serum (IL-17A, p < 0.0001; IL-17A/F, p < 0.0001; IL-17B, p = 0.0023; IL-17C, p = 0.0022; IL-17E, p < 0.0001). Among all, IL-17B was the only cytokine for which a significant decreased concentration within blister fluid was observed in BP patients with severe disease compared to patients with moderate disease (p = 0.012). We further evidenced a significant negative correlation between IL-17B levels and blister/erosion BPDAI subscore (r = −0.52, p = 0.003). We finally identified mast cells as a potential target of IL-17B in lesional skin of BP patients. In conclusion, we showed here that IL-17RA and IL-17RC expression in monocyte was associated with disease activity and evidenced in situ a negative correlation between BP disease activity and IL-17B, whose effects could be mediated by IL-17RB expressed by mast cell in BP lesional skin.
Collapse
Affiliation(s)
- Stéphane Nesmond
- Laboratory of Dermatology, EA7509 IRMAIC, University of Reims-Champagne-Ardenne, Reims, France
| | - Céline Muller
- Laboratory of Dermatology, EA7509 IRMAIC, University of Reims-Champagne-Ardenne, Reims, France
| | - Richard Le Naour
- Laboratory of Dermatology, EA7509 IRMAIC, University of Reims-Champagne-Ardenne, Reims, France.,Department of Biological Sciences, UFR Pharmacy, University of Reims Champagne-Ardenne, Reims, France
| | - Manuelle Viguier
- Department of Dermatology, University Hospital, University of Reims-Champagne-Ardenne, Reims, France
| | - Philippe Bernard
- Laboratory of Dermatology, EA7509 IRMAIC, University of Reims-Champagne-Ardenne, Reims, France.,Department of Dermatology, University Hospital, University of Reims-Champagne-Ardenne, Reims, France
| | - Frank Antonicelli
- Laboratory of Dermatology, EA7509 IRMAIC, University of Reims-Champagne-Ardenne, Reims, France.,Department of Biological Sciences, Immunology, UFR Odontology, University of Reims-Champagne-Ardenne, Reims, France
| | - Sébastien Le Jan
- Laboratory of Dermatology, EA7509 IRMAIC, University of Reims-Champagne-Ardenne, Reims, France
| |
Collapse
|
34
|
Hashimoto T, Kanazawa N, Inoue N. Anticomplement therapy in bullous pemphigoid. Br J Dermatol 2019; 181:448-449. [DOI: 10.1111/bjd.18229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- T. Hashimoto
- Department of Dermatology Osaka City University Graduate School of Medicine 1‐4‐3 Asahimachi, Abeno‐ku Osaka 545‐8585 Japan
| | - N. Kanazawa
- Department of Dermatology Wakayama Medical University Wakayama Japan
| | - N. Inoue
- Department of Molecular Genetics Wakayama Medical University Wakayama Japan
| |
Collapse
|
35
|
Szilveszter KP, Németh T, Mócsai A. Tyrosine Kinases in Autoimmune and Inflammatory Skin Diseases. Front Immunol 2019; 10:1862. [PMID: 31447854 PMCID: PMC6697022 DOI: 10.3389/fimmu.2019.01862] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 07/23/2019] [Indexed: 12/30/2022] Open
Abstract
Tyrosine kinases relay signals from diverse leukocyte antigen receptors, innate immune receptors, and cytokine receptors, and therefore mediate the recruitment and activation of various leukocyte populations. Non-receptor tyrosine kinases of the Jak, Src, Syk, and Btk families play major roles in various immune-mediated disorders, and small-molecule tyrosine kinase inhibitors are emerging novel therapeutics in a number of those diseases. Autoimmune and inflammatory skin diseases represent a broad spectrum of immune-mediated diseases. Genetic and pharmacological studies in humans and mice support the role of tyrosine kinases in several inflammatory skin diseases. Atopic dermatitis and psoriasis are characterized by an inflammatory microenvironment which activates cytokine receptors coupled to the Jak-Stat signaling pathway. Jak kinases are also implicated in alopecia areata and vitiligo, skin disorders mediated by cytotoxic T lymphocytes. Genetic studies indicate a critical role for Src-family kinases and Syk in animal models of autoantibody-mediated blistering skin diseases. Here, we review the various tyrosine kinase signaling pathways and their role in various autoimmune and inflammatory skin diseases. Special emphasis will be placed on identification of potential therapeutic targets, as well as on ongoing preclinical and clinical studies for the treatment of inflammatory skin diseases by small-molecule tyrosine kinase inhibitors.
Collapse
Affiliation(s)
- Kata P Szilveszter
- Department of Physiology, Semmelweis University School of Medicine, Budapest, Hungary
| | - Tamás Németh
- Department of Physiology, Semmelweis University School of Medicine, Budapest, Hungary
| | - Attila Mócsai
- Department of Physiology, Semmelweis University School of Medicine, Budapest, Hungary
| |
Collapse
|
36
|
Genovese G, Di Zenzo G, Cozzani E, Berti E, Cugno M, Marzano AV. New Insights Into the Pathogenesis of Bullous Pemphigoid: 2019 Update. Front Immunol 2019; 10:1506. [PMID: 31312206 PMCID: PMC6614376 DOI: 10.3389/fimmu.2019.01506] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 06/17/2019] [Indexed: 12/19/2022] Open
Abstract
There are several lines of evidence indicating that the physiopathological bases of bullous pemphigoid (BP), the most common subepidermal autoimmune bullous disease, are hallmarked by the production of autoantibodies directed against the hemidesmosomal anchoring proteins BP180 and BP230. In contrast to the robustness of the latter assumption, the multifaceted complexity of upstream and downstream mechanisms implied in the pathogenesis of BP remains an area of intense speculation. So far, an imbalance between T regulatory cells and autoreactive T helper (Th) cells has been regarded as the main pathogenic factor triggering the autoimmune response in BP patients. However, the contributory role of signaling pathways fostering the B cell stimulation, such as Toll-like receptor activation, as well as that of ancillary inflammatory mechanisms responsible for blister formation, such as Th17 axis stimulation and the activation of the coagulation cascade, are still a matter of debate. In the same way, the pathomechanisms implied in the loss of dermal-epidermal adhesion secondary to autoantibodies binding are not fully understood. Herein, we review in detail the current concepts and controversies on the complex pathogenesis of BP, shedding light on the most recent theories emerging from the literature.
Collapse
Affiliation(s)
- Giovanni Genovese
- Dermatology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Physiopathology and Transplantation, Università degli Studi di Milano, Milan, Italy
| | - Giovanni Di Zenzo
- Molecular and Cell Biology Laboratory, Istituto Dermopatico dell'Immacolata (IDI) IRCCS, Rome, Italy
| | - Emanuele Cozzani
- DISSAL Section of Dermatology, Università degli Studi di Genova, Genoa, Italy
| | - Emilio Berti
- Dermatology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Physiopathology and Transplantation, Università degli Studi di Milano, Milan, Italy
| | - Massimo Cugno
- Department of Physiopathology and Transplantation, Università degli Studi di Milano, Milan, Italy
- Internal Medicine Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Angelo Valerio Marzano
- Dermatology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Physiopathology and Transplantation, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
37
|
Hübner F, Langan EA, Recke A. Lichen Planus Pemphigoides: From Lichenoid Inflammation to Autoantibody-Mediated Blistering. Front Immunol 2019; 10:1389. [PMID: 31312198 PMCID: PMC6614382 DOI: 10.3389/fimmu.2019.01389] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 06/03/2019] [Indexed: 12/17/2022] Open
Abstract
Lichen planus pemphigoides (LPP) is a very rare autoimmune sub-epidermal blistering disease associated with lichenoid skin changes. Initially thought to be a mere variant of more common inflammatory dermatoses, particularly Bullous Pemphigoid (BP) or Lichen Planus (LP), a growing body of evidence suggests that it is a disease entity in its own right. In common with a range of autoimmune blistering diseases, including BP, pemphigoid gestationis (PG), mucous membrane pemphigoid (MMP) and linear IgA dermatosis (LAD), a key feature of the disease is the development of autoantibodies against type XVII collagen (COL17). However, accurately establishing the diagnosis is dependent on a careful correlation between the clinical, histological and immunological features of the disease. Therefore, we present an up to date summary of the epidemiology and etiopathogenesis of LPP, before illustrating the predisposing and precipitating factors implicated in the development of the disease. In addition to a selective literature search, we compare reports of potential drug-induced cases of LPP with pharmacovigilance data available via OpenVigil. We subsequently outline the cardinal clinical features, important differential diagnoses and current treatment options. We conclude by demonstrating that an improved understanding of LPP may not only lead to the development of novel treatment strategies for the disease itself, but may also shed new light on the pathophysiology of more common and treatment-refractory autoimmune blistering diseases.
Collapse
Affiliation(s)
- Franziska Hübner
- Department of Dermatology, University of Lübeck, Lübeck, Germany
| | - Ewan A. Langan
- Department of Dermatology, University of Lübeck, Lübeck, Germany
- Dermatological Sciences, University of Manchester, Manchester, United Kingdom
| | - Andreas Recke
- Department of Dermatology, University of Lübeck, Lübeck, Germany
- Lübeck Institute of Dermatological Research, University of Lübeck, Lübeck, Germany
| |
Collapse
|
38
|
Edwards G, Diercks GFH, Seelen MAJ, Horvath B, van Doorn MBA, Damman J. Complement Activation in Autoimmune Bullous Dermatoses: A Comprehensive Review. Front Immunol 2019; 10:1477. [PMID: 31293600 PMCID: PMC6606728 DOI: 10.3389/fimmu.2019.01477] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 06/13/2019] [Indexed: 12/14/2022] Open
Abstract
Autoimmune bullous dermatoses (AIBD) are characterized by circulating autoantibodies that are either directed against epidermal antigens or deposited as immune complexes in the basement membrane zone (BMZ). The complement system (CS) can be activated by autoantibodies, thereby triggering activation of specific complement pathways. Local complement activation induces a pathogenic inflammatory response that eventually results in the formation of a sub- or intraepidermal blister. Deposition of complement components is routinely used as a diagnostic marker for AIBD. Knowledge from different animal models mimicking AIBD and deposition of complement components in human skin biopsies provides more insight into the role of complement in the pathogenesis of the different AIBD. This review outlines the role of the CS in several AIBD including bullous pemphigoid, epidermolysis bullosa acquisita, mucous membrane pemphigoid (MMP), pemphigus, linear IgA-disease, and dermatitis herpetiformis. We also discuss potential therapeutic approaches targeting key complement components, pathways and pathogenic complement-mediated events.
Collapse
Affiliation(s)
- Gareth Edwards
- Department of Dermatology, University Medical Center Groningen, Groningen, Netherlands
| | - Gilles F H Diercks
- Department of Pathology, University Medical Center Groningen, Groningen, Netherlands
| | - Marc A J Seelen
- Department of Nephrology, University Medical Center Groningen, Groningen, Netherlands
| | - Barbara Horvath
- Department of Dermatology, University Medical Center Groningen, Groningen, Netherlands
| | | | - Jeffrey Damman
- Department of Pathology, Erasmus Medical Center Rotterdam, Rotterdam, Netherlands
| |
Collapse
|
39
|
Iwata H, Kamaguchi M, Ujiie H, Ujiie I, Natsuga K, Nishie W, Shimizu H. Fc-binding proteins enhance autoantibody-induced BP180 depletion in pemphigoid. J Pathol 2019; 247:371-380. [PMID: 30426510 DOI: 10.1002/path.5196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 10/05/2018] [Accepted: 11/08/2018] [Indexed: 11/10/2022]
Abstract
Immunoglobulins (Igs) consist of two antigen-binding regions (Fab) and one constant region (Fc). Protein A and protein G are bacterial proteins used for the purification of IgG by virtue of their high affinities for the Fc fragment. Rheumatoid factors are autoantibodies against IgG Fc fragments, which are present in the body under physiological conditions. Little is known about the influence of Fc-binding proteins on the pathogenicity of antibody-induced autoimmune diseases. Pemphigoid diseases are a group of autoimmune subepidermal blistering disorders that includes bullous pemphigoid and mucous membrane pemphigoid. IgGs targeting the non-collagenous NC16A domain of the 180-kDa bullous pemphigoid antigen (BP180) are known to induce skin fragility in mice and the depletion of BP180 in keratinocytes. In this study, mAb against NC16A in combination with Fc-binding proteins was found to enhance BP180 depletion. Although mAb against the C-terminus of BP180 does not show pathogenicity in vivo or in vitro, mAb treatment with Fc-binding proteins clearly induced skin fragility in mice and BP180 depletion in keratinocytes. Anti-BP180 mAbs and Fc-binding proteins were colocalized in the cytoplasm and at the basement membrane zone. Cell adhesion strengths were decreased in parallel with BP180 amounts. Clinically, bullous pemphigoid patients had higher rheumatoid factor titers than controls. Anti-BP180 mAb in combination with high-titer rheumatoid factor serum was found to enhance BP180 depletion. Furthermore, saliva from mucous membrane pemphigoid patients contained larger quantities of bacteria and Fc-binding proteins than controls. Our results suggest that Fc-binding proteins (rheumatoid factor or protein G) may enhance the pathogenicity of autoantibodies in pemphigoid diseases. Copyright © 2018 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Hiroaki Iwata
- Department of Dermatology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Mayumi Kamaguchi
- Department of Dermatology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
- Department of Oral Diagnosis and Medicine, Hokkaido University Graduate School of Dental Medicine, Sapporo, Japan
| | - Hideyuki Ujiie
- Department of Dermatology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Inkin Ujiie
- Department of Dermatology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Ken Natsuga
- Department of Dermatology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Wataru Nishie
- Department of Dermatology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Hiroshi Shimizu
- Department of Dermatology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| |
Collapse
|
40
|
Kamaguchi M, Iwata H. The Diagnosis and Blistering Mechanisms of Mucous Membrane Pemphigoid. Front Immunol 2019; 10:34. [PMID: 30740099 PMCID: PMC6357922 DOI: 10.3389/fimmu.2019.00034] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 01/08/2019] [Indexed: 12/30/2022] Open
Abstract
Mucous membrane pemphigoid (MMP) is a mucous membrane-dominated autoimmune subepithelial blistering disease that is caused by autoantibodies against various autoantigens in basement membrane zone (BMZ) proteins, including collagen XVII (COL17). Clinicians face diagnostic problems in detecting circulating antibodies and targeted antigens in MMP. The diagnostic difficulties are mainly attributed to the low titers of MMP autoantibodies in sera and to heterogeneous autoantigens. Additionally, no unanimous diagnostic criteria have been drawn for MMP, which can result in delayed diagnoses or misdiagnoses. This review aims to integrate and present currently available data to clarify diagnostic strategies and to present diagnostic criteria for MMP. The ultimate blistering mechanism in MMP has not been elucidated, and such mechanism is especially obscure in COL17-type MMP. In bullous pemphigoid (BP), which is the most common autoimmune subepidermal blistering disease, some patients show oral lesion as well as predominant skin lesions. However, there is no fundamental explanation for the onset of oral lesions in BP. This article summarizes innovative research perspectives on the pathogenesis of oral lesions in pemphigoid. Finally, we propose a potential pathogenesis for COL17-type MMP.
Collapse
Affiliation(s)
- Mayumi Kamaguchi
- Department of Dermatology, Hokkaido University Graduate School of Medicine, Sapporo, Japan.,Department of Oral Diagnosis and Medicine, Hokkaido University Graduate School of Dental Medicine, Sapporo, Japan
| | - Hiroaki Iwata
- Department of Dermatology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| |
Collapse
|
41
|
Kamaguchi M, Iwata H, Nishie W, Toyonaga E, Ujiie H, Natsuga K, Kitagawa Y, Shimizu H. The direct binding of collagen XVII and collagen IV is disrupted by pemphigoid autoantibodies. J Transl Med 2019; 99:48-57. [PMID: 30089857 DOI: 10.1038/s41374-018-0113-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 06/11/2018] [Accepted: 07/09/2018] [Indexed: 12/26/2022] Open
Abstract
The basement membrane zone (BMZ) is framed by hemidesmosomes and extracellular matrix (ECM) including collagen IV (COL4). Hemidesmosomes are multiprotein complexes that include collagen XVII (COL17). BMZ proteins can be targeted in autoimmune subepidermal blistering diseases, e.g., pemphigoid targeting COL17. The blistering mechanisms in pemphigoid have not been fully elucidated, especially in mucous membrane pemphigoid (MMP), which mainly affects the mucosa. In this study, we showed that oral lesions in pemphigoid may be attributed to the inhibition of protein-protein interactions by autoantibodies. Using immunoprecipitation, we revealed that COL17 directly binds to COL4 in normal human keratinocytes and normal human oral keratinocytes. In particular, the C-terminus of COL17 is binding site to COL4 in oral keratinocytes. The precise COL4-binding region on COL17 was determined by protein-protein binding assay to be from amino acid Gly1175 to Asp1340 on the C-terminus. MMP-IgG or mAb recognizing the C-terminus hindered the interaction of COL17 with COL4 in oral keratinocytes. Furthermore, keratinocyte adhesion strength to COL4-coated plates was significantly reduced by the treatment of mAb against the C-terminus. In addition, the inflammatory infiltrates around perilesions were significantly less in MMP compared to BP. These results indicate that pemphigoid IgG targeting the C-terminus plays a pathogenic role in blister formation in the oral mucosa to inhibit protein interactions with less inflammation.
Collapse
Affiliation(s)
- Mayumi Kamaguchi
- Department of Dermatology, Hokkaido University Graduate School of Medicine, Kita-ku, Sapporo, 060-8638, Japan
- Department of Oral Diagnosis and Medicine, Hokkaido University Graduate School of Dental Medicine, Kita-ku, Sapporo, 060-8638, Japan
| | - Hiroaki Iwata
- Department of Dermatology, Hokkaido University Graduate School of Medicine, Kita-ku, Sapporo, 060-8638, Japan.
| | - Wataru Nishie
- Department of Dermatology, Hokkaido University Graduate School of Medicine, Kita-ku, Sapporo, 060-8638, Japan
| | - Ellen Toyonaga
- Department of Dermatology, Hokkaido University Graduate School of Medicine, Kita-ku, Sapporo, 060-8638, Japan
| | - Hideyuki Ujiie
- Department of Dermatology, Hokkaido University Graduate School of Medicine, Kita-ku, Sapporo, 060-8638, Japan
| | - Ken Natsuga
- Department of Dermatology, Hokkaido University Graduate School of Medicine, Kita-ku, Sapporo, 060-8638, Japan
| | - Yoshimasa Kitagawa
- Department of Oral Diagnosis and Medicine, Hokkaido University Graduate School of Dental Medicine, Kita-ku, Sapporo, 060-8638, Japan
| | - Hiroshi Shimizu
- Department of Dermatology, Hokkaido University Graduate School of Medicine, Kita-ku, Sapporo, 060-8638, Japan
| |
Collapse
|
42
|
Chiorean RM, Baican A, Mustafa MB, Lischka A, Leucuta DC, Feldrihan V, Hertl M, Sitaru C. Complement-Activating Capacity of Autoantibodies Correlates With Disease Activity in Bullous Pemphigoid Patients. Front Immunol 2018; 9:2687. [PMID: 30524436 PMCID: PMC6257046 DOI: 10.3389/fimmu.2018.02687] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 10/31/2018] [Indexed: 01/29/2023] Open
Abstract
Background: Bullous pemphigoid is a subepidermal blistering skin disease, associated with autoantibodies to hemidesmosomal proteins, complement activation at the dermal-epidermal junction, and dermal granulocyte infiltration. Clinical and experimental laboratory findings support conflicting hypotheses regarding the role of complement activation for the skin blistering induced by pemphigoid autoantibodies. In-depth studies on the pathogenic relevance of autoimmune complement activation in patients are largely lacking. Therefore, the aim of this study was to investigate the pathogenic relevance of complement activation in patients with bullous pemphigoid. Complement activation by autoantibodies in vivo as measured by the intensity of complement C3 deposits in the patients' skin and ex vivo by the complement-fixation assay in serum was correlated with the clinical disease activity, evaluated by Autoimmune Bullous Skin Disorder Intensity Score (ABSIS) and Bullous Pemphigoid Disease Area Index (BPDAI), as well as, with further immunopathological findings in patients with bullous pemphigoid. Results: Complement-activation capacity of autoantibodies ex vivo, but not deposition of complement in the perilesional skin of patients, correlates with the extent of skin disease (measured by ABSIS and BPDAI) and with levels of autoantibodies. Conclusions: Our study provides for the first time evidence in patients for a pathogenic role of complement activation in bullous pemphigoid and should greatly facilitate the development of novel diagnostic tools and of more specific therapies for complement-dependent autoimmune injury.
Collapse
Affiliation(s)
- Roxana M Chiorean
- Department of Dermatology, Medical Faculty, Medical Center - University of Freiburg, Freiburg, Germany.,Department of Dermatology, University of Medicine and Pharmacy Iuliu Hatieganu, Cluj-Napoca, Romania
| | - Adrian Baican
- Department of Dermatology, Medical Faculty, Medical Center - University of Freiburg, Freiburg, Germany
| | - Mayson B Mustafa
- Department of Dermatology, Medical Faculty, Medical Center - University of Freiburg, Freiburg, Germany
| | - Annette Lischka
- Department of Dermatology, Medical Faculty, Medical Center - University of Freiburg, Freiburg, Germany
| | - Daniel-Corneliu Leucuta
- Department of Medical Informatics and Biostatistics, University of Medicine and Pharmacy Iuliu Hatieganu, Cluj-Napoca, Romania
| | - Vasile Feldrihan
- Department of Immunology, University of Medicine and Pharmacy Iuliu Hatieganu, Cluj-Napoca, Romania
| | - Michael Hertl
- Department of Dermatology and Allergology, Philipps-University, Marburg, Germany
| | - Cassian Sitaru
- Department of Dermatology, Medical Faculty, Medical Center - University of Freiburg, Freiburg, Germany.,Centre for Biological Signaling Studies(BIOSS), University of Freiburg, Freiburg, Germany
| |
Collapse
|
43
|
Chakievska L, Holtsche MM, Künstner A, Goletz S, Petersen BS, Thaci D, Ibrahim SM, Ludwig RJ, Franke A, Sadik CD, Zillikens D, Hölscher C, Busch H, Schmidt E. IL-17A is functionally relevant and a potential therapeutic target in bullous pemphigoid. J Autoimmun 2018; 96:104-112. [PMID: 30219389 DOI: 10.1016/j.jaut.2018.09.003] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 09/04/2018] [Accepted: 09/07/2018] [Indexed: 01/19/2023]
Abstract
IL-17A has been identified as key regulatory molecule in several autoimmune and chronic inflammatory diseases followed by the successful use of anti-IL-17 therapy, e.g. in ankylosing spondylitis and psoriasis. Bullous pemphigoid (BP) is the most frequent autoimmune blistering disease with a high need for more specific, effective and safe treatment options. The aim of this study was to clarify the pathophysiological importance of IL-17A in BP. We found elevated numbers of IL-17A+ CD4+ lymphocytes in the peripheral blood of BP patients and identified CD3+ cells as major source of IL-17A in early BP skin lesions. IL17A and related genes were upregulated in BP skin and exome sequencing of 51 BP patients revealed mutations in twelve IL-17-related genes in 18 patients. We have subsequently found several lines of evidence suggesting a significant role of IL-17A in the BP pathogenesis: (i) IL-17A activated human neutrophils in vitro, (ii) inhibition of dermal-epidermal separation in cryosections of human skin incubated with anti-BP180 IgG and subsequently with anti-IL-17A IgG-treated leukocytes, (iii) close correlation of serum IL-17A levels and diseases activity in a mouse model of BP, (iv) IL17A-deficient mice were protected against autoantibody-induced BP, and (v) pharmacological inhibition of lL-17A reduced the induction of BP in mice. Our data give evidence for a pivotal role of IL-17A in the pathophysiology of BP and advocate IL-17A inhibition as potential novel treatment for this disease.
Collapse
Affiliation(s)
- Lenche Chakievska
- Lübeck Institute for Experimental Dermatology (LIED), University of Lübeck, Lübeck, Germany
| | - Maike M Holtsche
- Department of Dermatology, University of Lübeck, Lübeck, Germany
| | - Axel Künstner
- Lübeck Institute for Experimental Dermatology (LIED), University of Lübeck, Lübeck, Germany
| | - Stephanie Goletz
- Lübeck Institute for Experimental Dermatology (LIED), University of Lübeck, Lübeck, Germany
| | | | - Diamant Thaci
- Institute for Inflammation Medicine, University of Lübeck, Lübeck, Germany
| | - Saleh M Ibrahim
- Lübeck Institute for Experimental Dermatology (LIED), University of Lübeck, Lübeck, Germany
| | - Ralf J Ludwig
- Lübeck Institute for Experimental Dermatology (LIED), University of Lübeck, Lübeck, Germany
| | - Andre Franke
- Institute of Clinical Molecular Biology, University of Kiel, Kiel, Germany
| | | | - Detlef Zillikens
- Department of Dermatology, University of Lübeck, Lübeck, Germany
| | - Christoph Hölscher
- Division of Infection Immunology, Research Center Borstel, Borstel, Germany
| | - Hauke Busch
- Lübeck Institute for Experimental Dermatology (LIED), University of Lübeck, Lübeck, Germany
| | - Enno Schmidt
- Lübeck Institute for Experimental Dermatology (LIED), University of Lübeck, Lübeck, Germany; Department of Dermatology, University of Lübeck, Lübeck, Germany.
| |
Collapse
|
44
|
Yoshimoto N, Ujiie H, Zheng M, Iwata H, Kosumi H, Hata H, Shimizu H. Bullous pemphigoid with the deposition of IgG2 but not IgG1, IgG3 nor IgG4 autoantibodies at the basement membrane zone. J Eur Acad Dermatol Venereol 2018; 32:e344-e346. [DOI: 10.1111/jdv.14920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- N. Yoshimoto
- Department of Dermatology; Hokkaido University Graduate School of Medicine; Sapporo Japan
| | - H. Ujiie
- Department of Dermatology; Hokkaido University Graduate School of Medicine; Sapporo Japan
| | - M. Zheng
- Department of Dermatology; Hokkaido University Graduate School of Medicine; Sapporo Japan
| | - H. Iwata
- Department of Dermatology; Hokkaido University Graduate School of Medicine; Sapporo Japan
| | - H. Kosumi
- Department of Dermatology; Hokkaido University Graduate School of Medicine; Sapporo Japan
| | - H. Hata
- Department of Dermatology; Hokkaido University Graduate School of Medicine; Sapporo Japan
| | - H. Shimizu
- Department of Dermatology; Hokkaido University Graduate School of Medicine; Sapporo Japan
| |
Collapse
|
45
|
Kamaguchi M, Iwata H, Ujiie H, Natsuga K, Nishie W, Kitagawa Y, Shimizu H. High Expression of Collagen XVII Compensates for its Depletion Induced by Pemphigoid IgG in the Oral Mucosa. J Invest Dermatol 2018; 138:1707-1715. [PMID: 29530535 DOI: 10.1016/j.jid.2018.03.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Revised: 02/22/2018] [Accepted: 03/02/2018] [Indexed: 02/08/2023]
Abstract
The basement membrane zone consists of multiple components, including collagen XVII (COL17), which is the target of bullous pemphigoid. To our knowledge, no research has addressed the differences in basement membrane zone components between the skin and oral mucosa; therefore, we investigated the basement membrane zone proteins, with a focus on COL17. The mRNA and protein expression levels of COL17 were significantly higher in oral keratinocytes than in skin keratinocytes. Hemidesmosomal COL17 expression was markedly higher in oral keratinocytes than in skin keratinocytes, and its level was associated with adhesion strength. Oral keratinocytes adhered to the extracellular matrix more tightly than did skin keratinocytes in vitro. Based on these results, we attempt to explain the clinical diversity of bullous pemphigoid. COL17 depletion was more prominent in skin keratinocytes than in oral keratinocytes after treatment with COL17-NC16A mAbs, which have in vivo pathogenicity. COL17 C-terminus mAbs, which are not pathogenic, facilitated COL17 depletion in combination treatment with COL17-NC16A mAbs in both types of keratinocytes. In summary, the greater amount of COL17 in oral keratinocytes than in skin keratinocytes is associated with the higher strength of oral keratinocyte hemidesmosomal adhesion at the basement membrane zone. Our results may explain why bullous pemphigoid blistering tends to be more prevalent in the skin than in the oral mucosa.
Collapse
Affiliation(s)
- Mayumi Kamaguchi
- Department of Dermatology, Hokkaido University Graduate School of Medicine, Sapporo, Japan; Department of Oral Diagnosis and Medicine, Hokkaido University Graduate School of Dental Medicine, Sapporo, Japan
| | - Hiroaki Iwata
- Department of Dermatology, Hokkaido University Graduate School of Medicine, Sapporo, Japan.
| | - Hideyuki Ujiie
- Department of Dermatology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Ken Natsuga
- Department of Dermatology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Wataru Nishie
- Department of Dermatology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Yoshimasa Kitagawa
- Department of Oral Diagnosis and Medicine, Hokkaido University Graduate School of Dental Medicine, Sapporo, Japan
| | - Hiroshi Shimizu
- Department of Dermatology, Hokkaido University Graduate School of Medicine, Sapporo, Japan.
| |
Collapse
|
46
|
Bartko J, Schoergenhofer C, Schwameis M, Firbas C, Beliveau M, Chang C, Marier JF, Nix D, Gilbert JC, Panicker S, Jilma B. A Randomized, First-in-Human, Healthy Volunteer Trial of sutimlimab, a Humanized Antibody for the Specific Inhibition of the Classical Complement Pathway. Clin Pharmacol Ther 2018; 104:655-663. [PMID: 29737533 PMCID: PMC6175298 DOI: 10.1002/cpt.1111] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 04/30/2018] [Accepted: 05/02/2018] [Indexed: 01/19/2023]
Abstract
Aberrant activation of the classical complement pathway is the common underlying pathophysiology of orphan diseases such as bullous pemphigoid, antibody‐mediated rejection of organ transplants, cold agglutinin disease, and warm autoimmune hemolytic anemia. Therapeutic options for these complement‐mediated disorders are limited and sutimlimab, a humanized monoclonal antibody directed against complement factor C1s, may be potentially useful for inhibition of the classical complement pathway. A phase I, first‐in‐human, double‐blind, randomized, placebo‐controlled, dose‐escalation trial of single and multiple doses of sutimlimab or placebo was conducted in 64 volunteers to evaluate safety, tolerability, pharmacokinetic, and pharmacodynamic profiles. Single and multiple infusions of sutimlimab were well tolerated without any safety concerns. sutimlimab exhibited a steep concentration–effect relationship with a Hill coefficient of 2.4, and an IC90 of 15.5 μg/mL. This study establishes the foundation for using sutimlimab as a highly selective inhibitor of the classical complement pathway in different diseases.
Collapse
Affiliation(s)
- Johann Bartko
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria.,Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of WGKK and AUVA Trauma Centre Meidling, 1st Medical Department Hanusch Hospital, Vienna, Austria
| | | | - Michael Schwameis
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Christa Firbas
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
| | | | - Colin Chang
- Certara Strategic Consulting, Montreal, Canada
| | | | | | - James C Gilbert
- True North Therapeutics Inc., South San Francisco, California, USA (a Bioverativ company)
| | - Sandip Panicker
- Bioverativ Therapeutics Inc., South San Francisco, California, USA
| | - Bernd Jilma
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
47
|
Sasaoka T, Ujiie H, Nishie W, Iwata H, Ishikawa M, Higashino H, Natsuga K, Shinkuma S, Shimizu H. Intravenous IgG Reduces Pathogenic Autoantibodies, Serum IL-6 Levels, and Disease Severity in Experimental Bullous Pemphigoid Models. J Invest Dermatol 2018; 138:1260-1267. [PMID: 29391250 DOI: 10.1016/j.jid.2018.01.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 12/22/2017] [Accepted: 01/03/2018] [Indexed: 12/25/2022]
Abstract
Bullous pemphigoid (BP) is an autoimmune blistering disease characterized by autoantibodies to COL17. Currently, systemic corticosteroids are used as first-line treatments for BP; alternatively, intravenous administration of high-dose IgG (IVIG) has been shown to be effective for patients with steroid-resistant BP in clinical practice. However, the effect of IVIG on BP has not fully been investigated. To examine the effects and mechanisms of action of IVIG against BP, we performed IVIG experiments using two experimental BP mouse models. One is a passive-transfer BP model that reproduces subepidermal separation in neonatal mice by the passive transfer of IgGs against COL17, such as polyclonal or monoclonal mouse IgG or IgG from BP patients. The other is an active BP model that continuously develops a disease phenotype in adult mice. IVIG decreased pathogenic IgG and the disease scores in both models. Injected IVIG distributed throughout the dermis and the intercellular space of the lower epidermis. Notably, IVIG inhibited the increase of IL-6 in both models, possibly by suppressing the production of IL-6 by keratinocytes. These results suggest that the inhibitory effects of IVIG on BP are associated with the reduction of pathogenic IgG and the modulation of cytokine production.
Collapse
MESH Headings
- Administration, Intravenous
- Animals
- Autoantibodies/blood
- Autoantibodies/immunology
- Autoantigens/genetics
- Autoantigens/immunology
- Cell Line
- Disease Models, Animal
- Drug Evaluation, Preclinical
- Humans
- Immunization, Passive/methods
- Immunoglobulin G/administration & dosage
- Immunoglobulins, Intravenous/administration & dosage
- Interleukin-6/blood
- Interleukin-6/immunology
- Interleukin-6/metabolism
- Keratinocytes/drug effects
- Keratinocytes/metabolism
- Keratinocytes/microbiology
- Mice
- Mice, Inbred C57BL
- Mice, Transgenic
- Non-Fibrillar Collagens/genetics
- Non-Fibrillar Collagens/immunology
- Pemphigoid, Bullous/blood
- Pemphigoid, Bullous/drug therapy
- Pemphigoid, Bullous/immunology
- Severity of Illness Index
- Skin/immunology
- Skin Transplantation/methods
- Treatment Outcome
- Collagen Type XVII
Collapse
Affiliation(s)
- Tetsumasa Sasaoka
- Department of Dermatology, Hokkaido University Graduate School of Medicine, Sapporo, Japan; Research Laboratory, NIHON Pharmaceutical Co Ltd, Narita, Chiba, Japan
| | - Hideyuki Ujiie
- Department of Dermatology, Hokkaido University Graduate School of Medicine, Sapporo, Japan.
| | - Wataru Nishie
- Department of Dermatology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Hiroaki Iwata
- Department of Dermatology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Makoto Ishikawa
- Research Laboratory, NIHON Pharmaceutical Co Ltd, Narita, Chiba, Japan
| | - Hiroshi Higashino
- Research Laboratory, NIHON Pharmaceutical Co Ltd, Narita, Chiba, Japan
| | - Ken Natsuga
- Department of Dermatology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Satoru Shinkuma
- Department of Dermatology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Hiroshi Shimizu
- Department of Dermatology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| |
Collapse
|
48
|
Giang J, Seelen MAJ, van Doorn MBA, Rissmann R, Prens EP, Damman J. Complement Activation in Inflammatory Skin Diseases. Front Immunol 2018; 9:639. [PMID: 29713318 PMCID: PMC5911619 DOI: 10.3389/fimmu.2018.00639] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 03/14/2018] [Indexed: 01/02/2023] Open
Abstract
The complement system is a fundamental part of the innate immune system, playing a crucial role in host defense against various pathogens, such as bacteria, viruses, and fungi. Activation of complement results in production of several molecules mediating chemotaxis, opsonization, and mast cell degranulation, which can contribute to the elimination of pathogenic organisms and inflammation. Furthermore, the complement system also has regulating properties in inflammatory and immune responses. Complement activity in diseases is rather complex and may involve both aberrant expression of complement and genetic deficiencies of complement components or regulators. The skin represents an active immune organ with complex interactions between cellular components and various mediators. Complement involvement has been associated with several skin diseases, such as psoriasis, lupus erythematosus, cutaneous vasculitis, urticaria, and bullous dermatoses. Several triggers including auto-antibodies and micro-organisms can activate complement, while on the other hand complement deficiencies can contribute to impaired immune complex clearance, leading to disease. This review provides an overview of the role of complement in inflammatory skin diseases and discusses complement factors as potential new targets for therapeutic intervention.
Collapse
Affiliation(s)
- Jenny Giang
- Department of Pathology, Erasmus Medical Center Rotterdam, Rotterdam, Netherlands
| | - Marc A J Seelen
- Department of Nephrology, University Medical Center Groningen, Groningen, Netherlands
| | | | | | - Errol P Prens
- Department of Dermatology, Erasmus Medical Center Rotterdam, Rotterdam, Netherlands
| | - Jeffrey Damman
- Department of Pathology, Erasmus Medical Center Rotterdam, Rotterdam, Netherlands
| |
Collapse
|
49
|
Sadik CD, Miyabe Y, Sezin T, Luster AD. The critical role of C5a as an initiator of neutrophil-mediated autoimmune inflammation of the joint and skin. Semin Immunol 2018; 37:21-29. [PMID: 29602515 DOI: 10.1016/j.smim.2018.03.002] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 03/18/2018] [Accepted: 03/20/2018] [Indexed: 01/15/2023]
Abstract
The deposition of IgG autoantibodies in peripheral tissues and the subsequent activation of the complement system, which leads to the accumulation of the anaphylatoxin C5a in these tissues, is a common hallmark of diverse autoimmune diseases, including rheumatoid arthritis (RA) and pemphigoid diseases (PDs). C5a is a potent chemoattractant for granulocytes and mice deficient in its precursor C5 or its receptor C5aR1 are resistant to granulocyte recruitment and, consequently, to tissue inflammation in several models of autoimmune diseases. However, the mechanism whereby C5a/C5aR regulates granulocyte recruitment in these diseases has remained elusive. Mechanistic studies over the past five years into the role of C5a/C5aR1 in the K/BxN serum arthritis mouse model have provided novel insights into the mechanisms C5a/C5aR1 engages to initiate granulocyte recruitment into the joint. It is now established that the critical actions of C5a/C5aR1 do not proceed in the joint itself, but on the luminal endothelial surface of the joint vasculature, where C5a/C5aR1 mediate the arrest of neutrophils on the endothelium by activating β2 integrin. Then, C5a/C5aR1 induces the release of leukotriene B4 (LTB4) from the arrested neutrophils. The latter, subsequently, initiates by autocrine/paracrine actions via its receptor BLT1 the egress of neutrophils from the blood vessel lumen into the interstitial. Compelling evidence suggests that this C5a/C5aR1-LTB4/BLT1 axis driving granulocyte recruitment in arthritis may represent a more generalizable biological principle critically regulating effector cell recruitment in other IgG autoantibody-induced diseases, such as in pemphigoid diseases. Thus, dual inhibition of C5a and LTB4, as implemented in nature by the lipocalin coversin in the soft-tick Ornithodoros moubata, may constitute a most effective therapeutic principle for the treatment of IgG autoantibody-driven diseases.
Collapse
Affiliation(s)
- Christian D Sadik
- Department of Dermatology, Allergy, and Venereology University of Lübeck, 23538, Lübeck, Germany.
| | - Yoshishige Miyabe
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Tanya Sezin
- Department of Dermatology, Allergy, and Venereology University of Lübeck, 23538, Lübeck, Germany
| | - Andrew D Luster
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
50
|
Mihai S, Hirose M, Wang Y, Thurman JM, Holers VM, Morgan BP, Köhl J, Zillikens D, Ludwig RJ, Nimmerjahn F. Specific Inhibition of Complement Activation Significantly Ameliorates Autoimmune Blistering Disease in Mice. Front Immunol 2018; 9:535. [PMID: 29616034 PMCID: PMC5865061 DOI: 10.3389/fimmu.2018.00535] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 03/02/2018] [Indexed: 11/13/2022] Open
Abstract
Epidermolysis bullosa acquisita (EBA) is an antibody-mediated blistering skin disease associated with tissue-bound and circulating autoantibodies to type VII collagen (COL7). Transfer of antibodies against COL7 into mice results in a subepidermal blistering phenotype, strictly depending on the complement component C5. Further, activation predominantly by the alternative pathway is required to induce experimental EBA, as blistering was delayed and significantly ameliorated only in factor B-/- mice. However, C5 deficiency not only blocked the activation of terminal complement components and assembly of the membrane attack complex (MAC) but also eliminated the formation of C5a. Therefore, in the present study, we first aimed to elucidate which molecules downstream of C5 are relevant for blister formation in this EBA model and could be subsequently pharmaceutically targeted. For this purpose, we injected mice deficient in C5a receptor 1 (C5aR1) or C6 with antibodies to murine COL7. Importantly, C5ar1-/- mice were significantly protected from experimental EBA, demonstrating that C5a-C5aR1 interactions are critical intermediates linking pathogenic antibodies to tissue damage in this experimental model of EBA. By contrast, C6-/- mice developed widespread blistering disease, suggesting that MAC is dispensable for blister formation in this model. In further experiments, we tested the therapeutic potential of inhibitors of complement components which were identified to play a key role in this experimental model. Complement components C5, factor B (fB), and C5aR1 were specifically targeted using complement inhibitors both prophylactically and in mice that had already developed disease. All complement inhibitors led to a significant improvement of the blistering phenotype when injected shortly before anti-COL7 antibodies. To simulate a therapeutic intervention, anti-fB treatment was first administered in full-blown EBA (day 5) and induced significant amelioration only in the final phase of disease evolution, suggesting that early intervention in disease development may be necessary to achieve higher efficacy. Anti-C5 treatment in incipient EBA (day 2) significantly ameliorated disease during the whole experiment. This finding is therapeutically relevant, since the humanized anti-C5 antibody eculizumab is already successfully used in patients. In conclusion, in this study, we have identified promising candidate molecules for complement-directed therapeutic intervention in EBA and similar autoantibody-mediated diseases.
Collapse
Affiliation(s)
- Sidonia Mihai
- Lübeck Institute of Experimental Dermatology and Department of Dermatology, University of Lübeck, Lübeck, Germany.,Institute of Genetics, Department of Biology, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Misa Hirose
- Lübeck Institute of Experimental Dermatology and Department of Dermatology, University of Lübeck, Lübeck, Germany
| | - Yi Wang
- Alexion Pharmaceuticals, Cheshire, CT, United States
| | - Joshua M Thurman
- Departments of Medicine and Immunology, University of Colorado Health Sciences Center, Denver, CO, United States
| | - V Michael Holers
- Departments of Medicine and Immunology, University of Colorado Health Sciences Center, Denver, CO, United States
| | - B Paul Morgan
- Systems Immunity Research Institute, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Jörg Köhl
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany.,Division of Immunobiology, Cincinnati Children's Hospital Medical Center and University of Cincinnati, College of Medicine, Cincinnati, OH, United States
| | - Detlef Zillikens
- Lübeck Institute of Experimental Dermatology and Department of Dermatology, University of Lübeck, Lübeck, Germany
| | - Ralf J Ludwig
- Lübeck Institute of Experimental Dermatology and Department of Dermatology, University of Lübeck, Lübeck, Germany
| | - Falk Nimmerjahn
- Institute of Genetics, Department of Biology, University of Erlangen-Nuremberg, Erlangen, Germany
| |
Collapse
|