1
|
Liu H, Yang S, Chen B, Shao S, Zhang X. Integrating network pharmacology and molecular docking to explore the pharmacological mechanism of tanshinone IIA in improving chronic obstructive pulmonary disease. Medicine (Baltimore) 2025; 104:e41638. [PMID: 40128040 PMCID: PMC11936567 DOI: 10.1097/md.0000000000041638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 02/05/2025] [Indexed: 03/26/2025] Open
Abstract
This study explores the mechanism of action of tanshinone IIA in the treatment of chronic obstructive pulmonary disease (COPD) using network pharmacology and molecular docking. The targets of tanshinone IIA were searched by Swiss Target Prediction Database, PharmMapper Database, SuperPred Database, and TargetNet Database. The targets of COPD were obtained by Genecards Database, OMIM Database, and Therapeutic Target Database, then the intersection targets were selected as the targets of tanshinone IIA in the treatment of COPD. The intersecting targets were imported into the STRING database to obtain the PPI network and the top10 relevant targets, and GO enrichment and KEGG signaling pathway analysis were performed by R language. Core targets were obtained by taking the intersection of Top5 GO and KEGG corresponding targets with Top10 targets in PPI. Then tanshinone IIA was molecularly docked to the screened core target protein receptors by AutoDock Vina software. Tanshinone IIA included 442 potential targets and 979 COPD-associated targets, and 104 intersecting targets were obtained by taking the intersection of the two. The PPI network showed that ALB, EGFR, CASP3, MMP9, PTGS2, NFKB1, ESR1, SRC, PPARG, and HSP90AA1 were the top 10 relevant targets. GO enrichment analyses showed that the main components involved were the response to response to lipopolysaccharide, response to molecule of bacterial origin, positive regulation of cytokine production, positive regulation of MAPK cascade, and positive regulation of kinase activity. KEGG signaling pathway analysis revealed major involvement in prostate cancer, AGE-RAGE signaling pathway in diabetic complications, Hepatitis B, PI3K-Akt signaling pathway, relaxin signaling pathway. EGFR, CASP3, MMP9, NFKB1, SRC, and HSP90AA1 were the 6 core targets. Molecular docking showed that the binding energies of tanshinone IIA and the core target were all less than ≤-5.0 kcal/mol, demonstrating good affinity. The treatment of COPD with tanshinone IIA involves multiple signaling pathways and biological processes, and its binding to the key targets of EGFR, CASP3, MMP9, NFKB1, SRC, and HSP90AA1 may be one of the important mechanisms of its action, which provides new theoretical ideas for the subsequent treatment of COPD with tanshinone IIA.
Collapse
Affiliation(s)
- Huaiquan Liu
- Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Shili Yang
- Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Bo Chen
- Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Shuoshuo Shao
- Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Xinyan Zhang
- Guizhou University of Traditional Chinese Medicine, Guiyang, China
| |
Collapse
|
2
|
Xu Y, Zhang L, Chen C, Zou M, Wang K, Liu X, Kang T, Li M, Wu D, Jiang Z, Liu J. Investigation of the efficacy and potential pharmacological mechanism of Yupingfeng in treating chronic obstructive pulmonary disease: A meta-analysis and in silico study. JOURNAL OF ETHNOPHARMACOLOGY 2025; 343:119441. [PMID: 39914688 DOI: 10.1016/j.jep.2025.119441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 01/26/2025] [Accepted: 02/03/2025] [Indexed: 02/17/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Chronic obstructive pulmonary disease (COPD) is the fourth leading cause of death globally, significantly burdening healthcare and economies. Studies show Yupingfeng (YPF) combined with conventional treatments (CT) can effectively control COPD progression, improving lung function and quality of life. AIM OF THE STUDY This study aims to comprehensively explore the multiple therapeutic effects and potential pharmacological mechanisms of YPF in the treatment of COPD through various approaches, including meta-analysis, network pharmacology, molecular docking, and molecular dynamics simulations. MATERIALS AND METHODS We searched PubMed, Embase, Cochrane Library, Web of Science, CNKI, Wanfang Data, VIP, and CBM databases up to June 2024. Meta-analysis was conducted using Review Manager 5.4 and Stata 16.0. The certainty of evidence was assessed using the GRADE system. Network pharmacology, molecular docking, and dynamics simulations were employed to explore mechanisms and evaluate the binding of YPF's active components to targets. RESULTS The meta-analysis showed that YPF combined with CT significantly improved COPD treatment efficacy compared to CT alone (moderate certainty). Lung function markers, including FEV1% pred (high certainty), FVC (moderate certainty), and FEV1/FVC (high certainty), also improved significantly. Secondary outcomes, such as Traditional Chinese Medicine (TCM) syndrome scores, CAT scores, and inflammatory and immune biomarkers, also showed improvement (low certainty). Network pharmacology identified potential YPF targets, including ESR1, SRC, EP300 and HSP90AA1, possibly involving calcium and cAMP signaling pathways. Molecular docking and dynamics simulations suggested that YPF may exert its effects by stabilizing the binding of isoflavanone to HSP90AA1. CONCLUSIONS This study demonstrates that YPF combined with CT can enhance the treatment efficacy for COPD, improving lung function and quality of life, with strong anti-inflammatory and immunomodulatory effects, and good safety. The molecular docking and molecular dynamics simulation results suggest that isoflavanone, isorhamnetin, and 14_acetyl_12_senecioyl_2E_8E_10E_atractylentriol may be the active components with strong binding affinity for COPD treatment, with HSP90AA1_isoflavanone showing the best performance in terms of stability and binding energy, second only to the standard ligand, and possibly being one of the key mechanisms of YPF in treating COPD.
Collapse
Affiliation(s)
- Yunpeng Xu
- The First Clinical Medical College of Lanzhou University, Lanzhou, 730000, China
| | - Lei Zhang
- The First Clinical Medical College of Lanzhou University, Lanzhou, 730000, China
| | - Chen Chen
- Department of Pharmacy, The First Hospital of Lanzhou University, Lanzhou, 730000, China
| | - Mingyang Zou
- The Second Clinical Medical School of Lanzhou University, Lanzhou, 730000, China
| | - Ke Wang
- The Second Clinical Medical School of Lanzhou University, Lanzhou, 730000, China
| | - Xiaoying Liu
- The Second Clinical Medical School of Lanzhou University, Lanzhou, 730000, China
| | - Tingyue Kang
- The Second Clinical Medical School of Lanzhou University, Lanzhou, 730000, China
| | - Ming Li
- The Second Clinical Medical School of Lanzhou University, Lanzhou, 730000, China
| | - Danning Wu
- The Second Clinical Medical School of Lanzhou University, Lanzhou, 730000, China
| | - Ziyi Jiang
- The Second Clinical Medical School of Lanzhou University, Lanzhou, 730000, China
| | - Jian Liu
- The First Clinical Medical College of Lanzhou University, Lanzhou, 730000, China; Gansu Province Maternity and Child-Care Hospital (Gansu Provincial Central Hospital), Lanzhou, 730050, China.
| |
Collapse
|
3
|
Xu M, Chen J, Gao L, Cai S, Dong H. Microplastic exposure induces HSP90α secretion and aggravates asthmatic airway remodeling via PI3K-Akt-mTOR pathway. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 291:117828. [PMID: 39923560 DOI: 10.1016/j.ecoenv.2025.117828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 01/21/2025] [Accepted: 01/29/2025] [Indexed: 02/11/2025]
Abstract
Microplastics pollution has raised a considerable awareness due to their extensive distribution in the environment. It has potential side effects on human health. Microplastics can enter the human respiratory system, then deposit in the lung, destroying the structure of the bronchus and alveoli, and causing pulmonary inflammation, mucus production, and airway hyperresponsiveness, leading to the aggravation of asthma. Nevertheless, the underlying mechanism remains elusive. There are several cytokines involved in the inflammatory response of asthma. Heat shock protein 90α(HSP90α) is one of cytokines involving in inflammation which is a member of the HSPs family. The aim of this study is to explore the mechanism by which microplastics influence the secretion of HSP90α and the progression of asthma. Initially, we found that microplastics were destroyed airway epithelial barrier, resulting in inherent dysfunction in the secretion of HSP90α. Then, microplastics were proved to activate PI3K-Akt-mTOR pathway by prompting airway epithelial cells secrete HSP90α and proliferation of airway smooth muscle cells(ASMCs), leading to airway narrowing and hypersensitivity. 1G6-D7 is a monoclonal antibody to HSP90, which can reverse the pulmonary inflammation infiltration, mucus production, and airway hyperresponsiveness(AHR). Overall, these finding suggested that microplastics elicited inflammation via the PI3K-Akt-mTOR signaling pathway and stimulated the proliferation of ASMCs. Hence, the present study unveils a novel mechanism responsible for microplastic-induced inflammation and airway hyperreactivity, establishing a basis for further research and risk evaluations of microplastics.
Collapse
Affiliation(s)
- Mingming Xu
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Jiyuan Chen
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Lin Gao
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Shaoxi Cai
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China.
| | - Hangming Dong
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China.
| |
Collapse
|
4
|
Zhu X, Cheng F, Duan H, Fu S, Zhao C. Novel insights into the study of goblet cell hypersecretion in allergic rhinitis. Front Immunol 2025; 16:1525928. [PMID: 39958344 PMCID: PMC11825788 DOI: 10.3389/fimmu.2025.1525928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Accepted: 01/06/2025] [Indexed: 02/18/2025] Open
Abstract
Goblet cell hypersecretion is a hallmark of airway inflammation and is driven by complex neuroimmune regulation involving submucosal glands and goblet cells. Although studies have focused on mast cell degranulation as a critical driver of nasal secretion, the role of goblet cells in this process is relatively under-researched. In allergic airway inflammation, goblet cells exhibit metaplasia and hypersecretion. However, allergen exposure does not directly trigger goblet cell degranulation, raising questions regarding the underlying mechanisms of these reactions. The activation of enteric neurons promotes goblet cell degranulation by stimulating the calcitonin gene-related peptide (CGRP)-receptor active modification protein-1 (RAMP1) axis. Meanwhile, airway goblet cells express various neuropeptide receptors, and their activation by neuropeptides such as substance P and CGRP induces mucus secretion, exacerbating allergic rhinitis-associated hypersecretion. Thus, although previously less recognised, the neuron-goblet cell signalling axis plays a critical role in allergic rhinitis mucus secretion. This review highlights current research on the neuroimmune mechanisms underlying goblet cell metaplasia and degranulation, focusing on allergic rhinitis, so as to guide clinical treatment strategies.
Collapse
Affiliation(s)
- Xiaojia Zhu
- Department of Otolaryngology–Head and Neck Surgery, The Second Hospital, Shanxi Medical University, Taiyuan, China
- Shanxi Medical University, Taiyuan, China
| | - Fengli Cheng
- Department of Otolaryngology–Head and Neck Surgery, The Second Hospital, Shanxi Medical University, Taiyuan, China
| | - Hongying Duan
- Department of Otolaryngology–Head and Neck Surgery, The Second Hospital, Shanxi Medical University, Taiyuan, China
- Shanxi Medical University, Taiyuan, China
| | - Sirui Fu
- Department of Otolaryngology–Head and Neck Surgery, The Second Hospital, Shanxi Medical University, Taiyuan, China
- Shanxi Medical University, Taiyuan, China
| | - Changqing Zhao
- Department of Otolaryngology–Head and Neck Surgery, The Second Hospital, Shanxi Medical University, Taiyuan, China
| |
Collapse
|
5
|
Monteleone G, Cameli P, Bonella F. The role of heat shock protein 90 in idiopathic pulmonary fibrosis: state of the art. Eur Respir Rev 2025; 34:240147. [PMID: 40107664 PMCID: PMC11920893 DOI: 10.1183/16000617.0147-2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 12/16/2024] [Indexed: 03/22/2025] Open
Abstract
Heat shock protein 90 (HSP 90) and its isoforms are a group of homodimeric proteins that regulate several cellular processes, such as the elimination of misfolded proteins, cell development and post-translational modifications of kinase proteins and receptors. Due to its involvement in extracellular matrix (ECM) remodelling, myofibroblast differentiation and apoptosis, HSP 90 has been investigated as a key player in the pathogenesis of lung fibrosis. Idiopathic pulmonary fibrosis (IPF) is the most common and deadly interstitial lung disease, due to the progressive distortion of lung parenchyma related to the overproduction and deposition of altered ECM, driven by transforming growth factor-β (TGF-β) dependent and independent pathways. The inhibition or induction of HSP 90 is associated with a reduced or increased expression of TGF-β receptors, respectively, suggesting a role for HSP 90 as a biomarker and therapeutic target in IPF. Experimental drugs such as geldanamycin and its derivatives 17-AAG (17-N-allylamino-17-demethoxygeldanamicin) and 17-DMAG (17-dimethylaminoethylamino-17-demethoxigeldanamycin), along with AUY-922, 1G6-D7, AT-13387, TAS-116 and myricetin, have been found to reduce lung fibrosis in both in vivo and in vitro models, supporting the role of this emerging target. This review aims to illustrate the structure and biological function of HSP 90 in the context of IPF pathobiology, as well as perspective application of this molecule as a biomarker and therapeutic target for IPF.
Collapse
Affiliation(s)
- Giorgio Monteleone
- Department of Cardiovascular and Pulmonary Sciences, Catholic University of Sacred Heart, Rome, Italy
| | - Paolo Cameli
- Respiratory Diseases Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy
| | - Francesco Bonella
- Center for interstitial and rare lung diseases, Pneumology Department, Ruhrlandklinik University Hospital, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
6
|
Sasaki H, Miyata J, Kawashima Y, Konno R, Ishikawa M, Hasegawa Y, Onozato R, Otsu Y, Matsuyama E, Sunata K, Masaki K, Kabata H, Kimizuka Y, Abe T, Ueki S, Asano K, Kawana A, Fukunaga K. Aspergillus fumigatus extract modulates human eosinophils via NOD2 and oxidative stress. Allergol Int 2025; 74:156-165. [PMID: 39307590 DOI: 10.1016/j.alit.2024.08.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 08/08/2024] [Accepted: 08/23/2024] [Indexed: 01/07/2025] Open
Abstract
BACKGROUND Aspergillus fumigatus is a pathogenic fungus known to be associated with severe asthma and allergic bronchopulmonary mycosis. However, the precise mechanisms underlying airway inflammation remain unclear. In this study, we investigated the direct modulation of human eosinophils by A. fumigatus and identified the specific mechanism of airway inflammation. METHODS Eosinophils isolated from healthy subjects were stimulated with extracts of A. fumigatus. Multi-omics analysis, comprising transcriptomic and proteomic analyses, was performed. The expression of specific factors was evaluated using quantitative real-time polymerase chain reaction and flow cytometry. Mechanistic analyses were performed using NOD2 inhibitor and N-acetyl-l-cysteine (NAC). RESULTS The A. fumigatus extract changed the expression of adhesion molecules (CD62L and CD11b) and CD69 on the surface of eosinophils, without affecting their viability, via nucleotide-binding oligomerization domain-containing protein 2 (NOD2) but not protease activity. Investigation using kinase inhibitors showed that A. fumigatus extract-induced modulation was partly mediated via p38 mitogen-activated protein kinases. Multi-omics analysis revealed that A. fumigatus-induced gene and protein expression profiles were characterized by the upregulation of oxidative stress-related molecules, including heat shock proteins (HSP90AA1, HSP90AB1, SRXN1, and HMOX1). NOD2 inhibitor and NAC differentially inhibited A. fumigatus-induced inflammatory changes. Additional multi-omics analysis identified that NOD2 signaling induced gene signatures different from those of interleukin (IL)-5 and elicited synergistic change with IL-5. CONCLUSIONS A. fumigatus modulates human eosinophils via NOD2 and oxidative stress-mediated signaling. NOD2 signaling potentiated IL-5-induced activation, suggesting its pathogenic role in type 2 inflammation. NOD2 inhibitors and antioxidants can have therapeutic potential against A. fumigatus-related allergic disorders.
Collapse
Affiliation(s)
- Hisashi Sasaki
- Division of Infectious Diseases and Respiratory Medicine, Department of Internal Medicine, National Defense Medical College, Saitama, Japan
| | - Jun Miyata
- Division of Infectious Diseases and Respiratory Medicine, Department of Internal Medicine, National Defense Medical College, Saitama, Japan; Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo, Japan.
| | - Yusuke Kawashima
- Department of Applied Genomics, Kazusa DNA Research Institute, Chiba, Japan
| | - Ryo Konno
- Department of Applied Genomics, Kazusa DNA Research Institute, Chiba, Japan
| | - Masaki Ishikawa
- Department of Applied Genomics, Kazusa DNA Research Institute, Chiba, Japan
| | - Yoshinori Hasegawa
- Department of Applied Genomics, Kazusa DNA Research Institute, Chiba, Japan
| | - Ryuta Onozato
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Yo Otsu
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Emiko Matsuyama
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Keeya Sunata
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Katsunori Masaki
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Hiroki Kabata
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Yoshifumi Kimizuka
- Division of Infectious Diseases and Respiratory Medicine, Department of Internal Medicine, National Defense Medical College, Saitama, Japan
| | - Tomoe Abe
- Department of General Internal Medicine and Clinical Laboratory Medicine, Akita University Graduate School of Medicine, Akita, Japan
| | - Shigeharu Ueki
- Department of General Internal Medicine and Clinical Laboratory Medicine, Akita University Graduate School of Medicine, Akita, Japan
| | - Koichiro Asano
- Division of Pulmonary Medicine, Department of Medicine, Tokai University School of Medicine, Kanagawa, Japan
| | - Akihiko Kawana
- Division of Infectious Diseases and Respiratory Medicine, Department of Internal Medicine, National Defense Medical College, Saitama, Japan
| | - Koichi Fukunaga
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
7
|
Zhan D, Zhang N, Zhao L, Sun Z, Cang C. Inhibition of Hsp90 K284 Acetylation Aalleviates Cardiac Injury After Ischemia-Reperfusion Injury. J Cardiovasc Transl Res 2024; 17:1427-1441. [PMID: 39046654 PMCID: PMC11634933 DOI: 10.1007/s12265-024-10548-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 07/16/2024] [Indexed: 07/25/2024]
Abstract
Our objective was to determine the role of acetyl-Hsp90 and its relationship with the NF-κB p65 signaling pathway in CVDs. We investigated the effect of acetyl-Hsp90 on cardiac inflammation and apoptosis after ischemia-reperfusion injury (I/RI). The results showed that the induction of acetyl-Hsp90 occurred in the heart during I/R and in primary cardiomyocytes during oxygen-glucose deprivation/reoxygenation (OGD/R). Moreover, the nonacetylated mutant of Hsp90 (Hsp90-K284R), through the regulation of ATPase activities within its N-terminal domain (NTD), indirectly or directly increases its interaction with NF-κB p65. This led to a reduction in the activation of the NF-κB p65 pathway, thereby attenuating inflammation, apoptosis, and fibrosis, ultimately leading to an improvement in cardiac function. Furthermore, we demonstrated that recombinant human interleukin-37 (rIL-37) exerts a similar cardioprotective effect by reducing acetylation at K284 of Hsp90 after inhibiting the expression of KAT2A.
Collapse
Affiliation(s)
- Dongyu Zhan
- Department of Cardiovascular Medicine, The Third Affiliated Hospital of Qiqihar Medical University, No. 3, Taishun Street, Tiefeng District, Qiqihar, 161099, Heilongjiang Province, P. R. China
| | - Na Zhang
- Department of Cardiovascular Medicine, The Third Affiliated Hospital of Qiqihar Medical University, No. 3, Taishun Street, Tiefeng District, Qiqihar, 161099, Heilongjiang Province, P. R. China
| | - Li Zhao
- Department of Cardiovascular Medicine, The Third Affiliated Hospital of Qiqihar Medical University, No. 3, Taishun Street, Tiefeng District, Qiqihar, 161099, Heilongjiang Province, P. R. China
| | - Zhirui Sun
- Department of Cardiovascular Medicine, The Third Affiliated Hospital of Qiqihar Medical University, No. 3, Taishun Street, Tiefeng District, Qiqihar, 161099, Heilongjiang Province, P. R. China
| | - Chunyang Cang
- Department of Cardiovascular Medicine, The Third Affiliated Hospital of Qiqihar Medical University, No. 3, Taishun Street, Tiefeng District, Qiqihar, 161099, Heilongjiang Province, P. R. China.
| |
Collapse
|
8
|
Chen F, Tang H, Cai X, Lin J, Kang R, Tang D, Liu J. DAMPs in immunosenescence and cancer. Semin Cancer Biol 2024; 106-107:123-142. [PMID: 39349230 DOI: 10.1016/j.semcancer.2024.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 09/26/2024] [Accepted: 09/26/2024] [Indexed: 10/02/2024]
Abstract
Damage-associated molecular patterns (DAMPs) are endogenous molecules released by cells in response to injury or stress, recognized by host pattern recognition receptors that assess the immunological significance of cellular damage. The interaction between DAMPs and innate immune receptors triggers sterile inflammation, which serves a dual purpose: promoting tissue repair and contributing to pathological conditions, including age-related diseases. Chronic inflammation mediated by DAMPs accelerates immunosenescence and influences both tumor progression and anti-tumor immunity, underscoring the critical role of DAMPs in the nexus between aging and cancer. This review explores the characteristics of immunosenescence and its impact on age-related cancers, investigates the various types of DAMPs, their release mechanisms during cell death, and the immune activation pathways they initiate. Additionally, we examine the therapeutic potential of targeting DAMPs in age-related diseases. A detailed understanding of DAMP-induced signal transduction could provide critical insights into immune regulation and support the development of innovative therapeutic strategies.
Collapse
Affiliation(s)
- Fangquan Chen
- DAMP Laboratory, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510150, China
| | - Hu Tang
- DAMP Laboratory, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510150, China
| | - Xiutao Cai
- DAMP Laboratory, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510150, China
| | - Junhao Lin
- DAMP Laboratory, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510150, China
| | - Rui Kang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Daolin Tang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX 75390, USA.
| | - Jiao Liu
- DAMP Laboratory, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510150, China.
| |
Collapse
|
9
|
Romano Ibarra GS, Lei L, Yu W, Thurman AL, Gansemer ND, Meyerholz DK, Pezzulo AA, McCray PB, Thornell IM, Stoltz DA. IL-13 induces loss of CFTR in ionocytes and reduces airway epithelial fluid absorption. J Clin Invest 2024; 134:e181995. [PMID: 39255033 PMCID: PMC11527443 DOI: 10.1172/jci181995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 09/06/2024] [Indexed: 09/12/2024] Open
Abstract
The airway surface liquid (ASL) plays a crucial role in lung defense mechanisms, and its composition and volume are regulated by the airway epithelium. The cystic fibrosis transmembrane conductance regulator (CFTR) is abundantly expressed in a rare airway epithelial cell type called an ionocyte. Recently, we demonstrated that ionocytes can increase liquid absorption through apical CFTR and basolateral barttin/chloride channels, while airway secretory cells mediate liquid secretion through apical CFTR channels and basolateral NKCC1 transporters. Th2-driven (IL-4/IL-13) airway diseases, such as asthma, cause goblet cell metaplasia, accompanied by increased mucus production and airway secretions. In this study, we investigate the effect of IL-13 on chloride and liquid transport performed by ionocytes. IL-13 treatment of human airway epithelia was associated with reduced epithelial liquid absorption rates and increased ASL volume. Additionally, IL-13 treatment reduced the abundance of CFTR-positive ionocytes and increased the abundance of CFTR-positive secretory cells. Increasing ionocyte abundance attenuated liquid secretion caused by IL-13. Finally, CFTR-positive ionocytes were less common in asthma and chronic obstructive pulmonary disease and were associated with airflow obstruction. Our findings suggest that loss of CFTR in ionocytes contributes to the liquid secretion observed in IL-13-mediated airway diseases.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Paul B. McCray
- Department of Internal Medicine
- Department of Pediatrics
- Pappajohn Biomedical Institute, and
| | - Ian M. Thornell
- Department of Internal Medicine
- Pappajohn Biomedical Institute, and
| | - David A. Stoltz
- Department of Internal Medicine
- Pappajohn Biomedical Institute, and
- Department of Molecular Physiology and Biophysics, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
- Department of Biomedical Engineering, University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
10
|
Hu D, Yan C, Xie H, Wen X, He K, Ding Y, Zhao Y, Meng H, Li K, Yang Z. Perihematomal Neurovascular Protection: Blocking HSP90 Reduces Blood Infiltration Associated with Inflammatory Effects Following Intracerebral Hemorrhage in Rates. Transl Stroke Res 2024:10.1007/s12975-024-01289-y. [PMID: 39230786 DOI: 10.1007/s12975-024-01289-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 07/30/2024] [Accepted: 08/12/2024] [Indexed: 09/05/2024]
Abstract
The active hemorrhage surrounding the hematoma is caused by the infiltration of blood into the cerebral parenchyma through the ruptured vessel, including the compromised blood-brain barrier (BBB). This process is thought to be mainly driven by inflammation and serves as a significant pathological characteristic that contributes to the neurological deterioration observed in individuals with intracerebral hemorrhage (ICH). Heat shock protein 90 (HSP90) exhibits abnormally high expression levels in various diseases and is closely associated with the onset of inflammation. Here, we found that blocking HSP90 effectively alleviates the inflammatory damage to BBB and subsequent bleeding around the hematoma. We have observed increased HSP90 levels in the serum of patients with ICH and the perihematoma region in ICH rats. Treatment with anti-HSP90 drugs (Geldanamycin and radicicol) effectively reduced HSP90 levels, resulting in enhanced neurological outcomes, decreased hematoma volume, and prevented peripheral immune cells from adhering to the BBB and infiltrating the brain parenchyma surrounding the hematoma in ICH rats. Mechanistically, anti-HSP90 therapy alleviated BBB injury caused by ICH-induced inflammation by suppressing TLR4 signaling. The study highlights the potential of anti-HSP90 therapy in mitigating BBB disruption and hemorrhage surrounding the hematoma, providing new insights into the management of ICH by targeting HSP90.
Collapse
Affiliation(s)
- Di Hu
- Department of Neurology and Stroke Center, Clinical Neuroscience Institute, The First Affiliated Hospital of Jinan University, 613 West Huangpu Ave, Guangzhou, 510632, China
| | - Chao Yan
- Department of Neurology and Stroke Center, Clinical Neuroscience Institute, The First Affiliated Hospital of Jinan University, 613 West Huangpu Ave, Guangzhou, 510632, China
| | - Hesong Xie
- Department of Neurology and Stroke Center, Clinical Neuroscience Institute, The First Affiliated Hospital of Jinan University, 613 West Huangpu Ave, Guangzhou, 510632, China
| | - Xueyi Wen
- Department of Neurology and Stroke Center, Clinical Neuroscience Institute, The First Affiliated Hospital of Jinan University, 613 West Huangpu Ave, Guangzhou, 510632, China
| | - Kejing He
- Department of Neurology and Stroke Center, Clinical Neuroscience Institute, The First Affiliated Hospital of Jinan University, 613 West Huangpu Ave, Guangzhou, 510632, China
| | - Yan Ding
- Department of Neurology and Stroke Center, Clinical Neuroscience Institute, The First Affiliated Hospital of Jinan University, 613 West Huangpu Ave, Guangzhou, 510632, China
| | - Ying Zhao
- Department of Neurology and Stroke Center, Clinical Neuroscience Institute, The First Affiliated Hospital of Jinan University, 613 West Huangpu Ave, Guangzhou, 510632, China
| | - Heng Meng
- Department of Neurology and Stroke Center, Clinical Neuroscience Institute, The First Affiliated Hospital of Jinan University, 613 West Huangpu Ave, Guangzhou, 510632, China.
| | - Keshen Li
- Department of Neurology and Stroke Center, Clinical Neuroscience Institute, The First Affiliated Hospital of Jinan University, 613 West Huangpu Ave, Guangzhou, 510632, China.
| | - Zhenguo Yang
- Department of Neurology and Stroke Center, Clinical Neuroscience Institute, The First Affiliated Hospital of Jinan University, 613 West Huangpu Ave, Guangzhou, 510632, China.
| |
Collapse
|
11
|
Ghimire S, Xue B, Li K, Gannon RM, Wohlford-Lenane CL, Thurman AL, Gong H, Necker GC, Zheng J, Meyerholz DK, Perlman S, McCray PB, Pezzulo AA. IL-13 decreases susceptibility to airway epithelial SARS-CoV-2 infection but increases disease severity in vivo. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.03.601941. [PMID: 39005257 PMCID: PMC11244965 DOI: 10.1101/2024.07.03.601941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Treatments available to prevent progression of virus-induced lung diseases, including coronavirus disease 2019 (COVID-19) are of limited benefit once respiratory failure occurs. The efficacy of approved and emerging cytokine signaling-modulating antibodies is variable and is affected by disease course and patient-specific inflammation patterns. Therefore, understanding the role of inflammation on the viral infectious cycle is critical for effective use of cytokine-modulating agents. We investigated the role of the type 2 cytokine IL-13 on SARS-CoV-2 binding/entry, replication, and host response in primary HAE cells in vitro and in a model of mouse-adapted SARS-CoV-2 infection in vivo. IL-13 protected airway epithelial cells from SARS-CoV-2 infection in vitro by decreasing the abundance of ACE2-expressing ciliated cells rather than by neutralization in the airway surface liquid or by interferon-mediated antiviral effects. In contrast, IL-13 worsened disease severity in mice; the effects were mediated by eicosanoid signaling and were abolished in mice deficient in the phospholipase A2 enzyme PLA2G2D. We conclude that IL-13-induced inflammation differentially affects multiple steps of COVID-19 pathogenesis. IL-13-induced inflammation may be protective against initial SARS-CoV-2 airway epithelial infection; however, it enhances disease progression in vivo. Blockade of IL-13 and/or eicosanoid signaling may be protective against progression to severe respiratory virus-induced lung disease.
Collapse
Affiliation(s)
- Shreya Ghimire
- Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | - Biyun Xue
- Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | - Kun Li
- Stead Family Department of Pediatrics, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA
| | - Ryan M. Gannon
- Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | - Christine L. Wohlford-Lenane
- Stead Family Department of Pediatrics, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA
| | - Andrew L. Thurman
- Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | - Huiyu Gong
- Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | - Grace C. Necker
- Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | - Jian Zheng
- Department of Microbiology and Immunology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | - David K. Meyerholz
- Department of Pathology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | - Stanley Perlman
- Stead Family Department of Pediatrics, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA
- Department of Microbiology and Immunology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | - Paul B. McCray
- Stead Family Department of Pediatrics, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA
- Department of Microbiology and Immunology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | - Alejandro A. Pezzulo
- Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa
| |
Collapse
|
12
|
Li K, Bartlett JA, Wohlford-Lenane CL, Xue B, Thurman AL, Gallagher TM, Pezzulo AA, McCray PB. Interleukin 13-Induced Inflammation Increases DPP4 Abundance but Does Not Enhance Middle East Respiratory Syndrome Coronavirus Replication in Airway Epithelia. J Infect Dis 2024; 229:1419-1429. [PMID: 37698016 PMCID: PMC11095549 DOI: 10.1093/infdis/jiad383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 08/18/2023] [Accepted: 09/08/2023] [Indexed: 09/13/2023] Open
Abstract
BACKGROUND Chronic pulmonary conditions such as asthma and chronic obstructive pulmonary disease increase the risk of morbidity and mortality during infection with the Middle East respiratory syndrome coronavirus (MERS-CoV). We hypothesized that individuals with such comorbidities are more susceptible to MERS-CoV infection due to increased expression of its receptor, dipeptidyl peptidase 4 (DPP4). METHODS We modeled chronic airway disease by treating primary human airway epithelia with the Th2 cytokine interleukin 13 (IL-13), examining how this affected DPP4 protein levels with MERS-CoV entry and replication. RESULTS IL-13 exposure for 3 days led to greater DPP4 protein abundance, while a 21-day treatment raised DPP4 levels and caused goblet cell metaplasia. Surprisingly, despite this increase in receptor availability, MERS-CoV entry and replication were not significantly affected by IL-13 treatment. CONCLUSIONS Our results suggest that greater DPP4 abundance is likely not the primary mechanism leading to increased MERS severity in the setting of Th2 inflammation. Transcriptional profiling analysis highlighted the complexity of IL-13-induced changes in airway epithelia, including altered expression of genes involved in innate immunity, antiviral responses, and maintenance of the extracellular mucus barrier. These data suggest that additional factors likely interact with DPP4 abundance to determine MERS-CoV infection outcomes.
Collapse
Affiliation(s)
- Kun Li
- Department of Pediatrics, Pappajohn Biomedical Institute, Carver College of Medicine, University of Iowa, Iowa City, IA
| | - Jennifer A Bartlett
- Department of Pediatrics, Pappajohn Biomedical Institute, Carver College of Medicine, University of Iowa, Iowa City, IA
| | - Christine L Wohlford-Lenane
- Department of Pediatrics, Pappajohn Biomedical Institute, Carver College of Medicine, University of Iowa, Iowa City, IA
| | - Biyun Xue
- Department of Internal Medicine, Pappajohn Biomedical Institute, Carver College of Medicine, University of Iowa, Iowa City, IA
| | - Andrew L Thurman
- Department of Internal Medicine, Pappajohn Biomedical Institute, Carver College of Medicine, University of Iowa, Iowa City, IA
| | - Thomas M Gallagher
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, IL
| | - Alejandro A Pezzulo
- Department of Internal Medicine, Pappajohn Biomedical Institute, Carver College of Medicine, University of Iowa, Iowa City, IA
| | - Paul B McCray
- Department of Pediatrics, Pappajohn Biomedical Institute, Carver College of Medicine, University of Iowa, Iowa City, IA
- Department of Microbiology, Pappajohn Biomedical Institute, Carver College of Medicine, University of Iowa, Iowa City, IA
| |
Collapse
|
13
|
Sponchiado M, Fagan A, Mata L, Bonilla AL, Trevizan-Baú P, Prabhakaran S, Reznikov LR. Sex-dependent regulation of mucin gene transcription and airway secretion and mechanics following intra-airway IL-13 in mice with conditional loss of club cell Creb1. Front Physiol 2024; 15:1392443. [PMID: 38711951 PMCID: PMC11070562 DOI: 10.3389/fphys.2024.1392443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 04/01/2024] [Indexed: 05/08/2024] Open
Abstract
Introduction: Interleukin 13 (IL-13) is an important effector molecule in allergic asthma. IL-13-mediated mucin hypersecretion requires conversion of secretoglobin-positive club cells into goblet cells through suppression of forkhead box A2 (FOXA2) and induction of SAM pointed domain containing ETS transcription factor (SPDEF). IL-13-mediated mucin hypersecretion may also include modulation of purinergic and muscarinic receptors that control basal and stimulated mucin secretion. We recently found that the transcription factor cAMP response element-binding protein (Creb1) inhibits FOXA2 and modulates mucus secretion in mice. Methods: We tested the hypothesis that loss of club cell Creb1 mitigates the pro-mucin effects of IL-13. We challenged male and female mice with conditional loss of club cell Creb1 and wild type littermates with intra-airway IL-13 or vehicle. We also studied human "club cell-like" NCI-H322 cells. Results: Loss of club cell Creb1 augmented IL-13-mediated increases in mRNA for the gel-forming mucins Muc5ac and Muc5b and prevented IL-13-mediated decreases in muscarinic 3 receptor (M3R) mRNA in male airways. In female airways, loss of club cell Creb1 reduced M3R mRNA and significantly blunted IL-13-mediated increases in purinergic receptor P2Y2 (P2ry2) mRNA but did not impact Muc5ac and Muc5b mRNA. Despite changes in mucins and secretion machinery, goblet cell density following cholinergic stimulation was not impacted by loss of club cell Creb1 in either sex. IL-13 treatment decreased basal airway resistance across sexes in mice with loss of club cell Creb1, whereas loss of club cell Creb1 augmented IL-13-mediated increases in airway elastance in response to methacholine. NCI-H322 cells displayed IL-13 signaling components, including IL-13Rα1 and IL-4Rα. Pharmacologic inhibition of CREB reduced IL-13Rα1 mRNA, whereas recombinant CREB decreased IL-4Rα mRNA. Application of IL-13 to NCI-H322 cells increased concentrations of cAMP in a delayed manner, thus linking IL-13 signaling to CREB signaling. Conclusion: These data highlight sex-specific regulation of club cell Creb1 on IL-13-mediated mucin hypersecretion and airway mechanics.
Collapse
Affiliation(s)
- Mariana Sponchiado
- Department of Physiological Sciences, University of Florida, Gainesville, FL, United States
| | - Amy Fagan
- Department of Physiological Sciences, University of Florida, Gainesville, FL, United States
| | - Luz Mata
- Department of Physiological Sciences, University of Florida, Gainesville, FL, United States
| | - Angelina L. Bonilla
- Department of Physiological Sciences, University of Florida, Gainesville, FL, United States
| | - Pedro Trevizan-Baú
- Department of Physiological Sciences, University of Florida, Gainesville, FL, United States
| | - Sreekala Prabhakaran
- Department of Pediatrics Pediatric Pulmonary Division, University of Florida, Gainesville, FL, United States
| | - Leah R. Reznikov
- Department of Physiological Sciences, University of Florida, Gainesville, FL, United States
| |
Collapse
|
14
|
Huang H, Qiao Y, Chu L, Ye C, Lin L, Liao H, Meng X, Zou F, Zhao H, Zou M, Cai S, Dong H. Up-regulation of HSP90α in HDM-induced asthma causes pyroptosis of airway epithelial cells by activating the cGAS-STING-ER stress pathway. Int Immunopharmacol 2024; 131:111917. [PMID: 38527402 DOI: 10.1016/j.intimp.2024.111917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/20/2024] [Accepted: 03/20/2024] [Indexed: 03/27/2024]
Abstract
Heat Shock protein 90 α (HSP90α), an main subtype of chaperone protein HSP90, involves important biological functions such as DNA damage repair, protein modification, innate immunity. However, the potential role of HSP90α in asthma occurrence and development is still unclear. This study aimed to elucidate the underlying mechanism of HSP90α in asthma by focusing on the cGAS-STING-Endoplasmic Reticulum stress pathway in inflammatory airway epithelial cell death (i.e., pyroptosis; inflammatory cell death). To accomplish that, we modeled allergen exposure in C57/6BL mice and bronchial epithelial cells with house dust mite. Protein technologies and immunofluorescence utilized to study the expression of HSP90α, activation of cGAS-STING pathway and pyroptosis. The effect of inhibitors on HDM-exposed mice detected by histological techniques and examination of bronchoalveolar lavage fluid. Results showed that HSP90α promotes asthma inflammation via pyroptosis and activation of the cGAS-STING-ER stress pathway. Treatment with the HSP90 inhibitor tanespimycin (17-AAG) significantly relieved airway inflammation and abrogated the effect of HSP90α on pyroptosis and cGAS-STING-ER stress in vitro and in vivo models of HDM. Further data indicated that up-regulation of HSP90α stabilized STING through interaction, which increased localization of STING on the ER. Activation of STING triggered ER stress and leaded to pyroptosis-related airway inflammation. The finding showed the potential role of pyroptosis caused by dysregulation of HSP90α on airway epithelial cells in allergic inflammation, suggested that targeting HSP90α in airway epithelial cells might prove to be a potential additional treatment strategy for asthma.
Collapse
Affiliation(s)
- Haohua Huang
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yujie Qiao
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Lanhe Chu
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Cuiping Ye
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Lishan Lin
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Hua Liao
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, The Fifth Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Xiaojing Meng
- School of Public Health, Southern Medical University, Guangzhou, China
| | - Fei Zou
- School of Public Health, Southern Medical University, Guangzhou, China
| | - Haijin Zhao
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Mengchen Zou
- Department of Endocrinology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Shaoxi Cai
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| | - Hangming Dong
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
15
|
Feng N, Han X, Peng D, Geng F, Li Q, Pan C, Wang H, Pan Y, Tan L. P. gingivalis alters lung microbiota and aggravates disease severity of COPD rats by up-regulating Hsp90α/MLKL. J Oral Microbiol 2024; 16:2334588. [PMID: 38550659 PMCID: PMC10977012 DOI: 10.1080/20002297.2024.2334588] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 03/19/2024] [Indexed: 11/12/2024] Open
Abstract
Background Epidemiological evidence has confirmed that periodontitis is an essential and independent risk factor of chronic obstructive pulmonary disease (COPD). Porphyromonas gingivalis, a major pathogen implicated in periodontitis, may make a vital contribution to COPD progression. However, the specific effects and molecular mechanism of the link between P. gingivalis and COPD are not clear. Methods and Results A COPD rat model was constructed by smoke exposure combined intratracheal instillation of E. coli-LPS, then P. gingivalis was introduced into the oral cavity of COPD rats. This research observed that lower lung function, more severe alveolar damage and inflammation occurred in COPD rats with P. gingivalis group. Meanwhile, P. gingivalis/gingipains could colonize the lung tissues and be enriched in bronchoalveolar lavage fluid (BALF) of COPD rats with P. gingivalis group, along with alterations in lung microbiota. Proteomic analysis suggested that Hsp90α/MLKL-meditated necroptosis pathway was up-regulated in P. gingivalis-induced COPD aggravation, the detection of Hsp90α and MLKL in serum and lung tissue verified that Hsp90α/MLKL was up-regulated. Conclusion These results indicate that P. gingivalis could emigrate into the lungs, alter lung microbiota and lead to aggravation of COPD, which Hsp90α/MLKL might participate in.
Collapse
Affiliation(s)
- Nan Feng
- Department of Periodontics, School and Hospital of Stomatology, China Medical University, Shenyang, China
| | - Xuan Han
- Department of Periodontics, School and Hospital of Stomatology, China Medical University, Shenyang, China
| | - Da Peng
- Department of Periodontics, School and Hospital of Stomatology, China Medical University, Shenyang, China
| | - Fengxue Geng
- Department of Periodontics, School and Hospital of Stomatology, China Medical University, Shenyang, China
| | - Qian Li
- Department of Periodontics, School and Hospital of Stomatology, China Medical University, Shenyang, China
- Department of Oral Biology, School and Hospital of Stomatology, China Medical University, Shenyang, China
| | - Chunlin Pan
- Department of Periodontics, School and Hospital of Stomatology, China Medical University, Shenyang, China
| | - Hongyan Wang
- Department of Periodontics, School and Hospital of Stomatology, China Medical University, Shenyang, China
| | - Yaping Pan
- Department of Periodontics, School and Hospital of Stomatology, China Medical University, Shenyang, China
- Department of Oral Biology, School and Hospital of Stomatology, China Medical University, Shenyang, China
| | - Lisi Tan
- Department of Periodontics, School and Hospital of Stomatology, China Medical University, Shenyang, China
| |
Collapse
|
16
|
López-Posadas R, Bagley DC, Pardo-Pastor C, Ortiz-Zapater E. The epithelium takes the stage in asthma and inflammatory bowel diseases. Front Cell Dev Biol 2024; 12:1258859. [PMID: 38529406 PMCID: PMC10961468 DOI: 10.3389/fcell.2024.1258859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 02/22/2024] [Indexed: 03/27/2024] Open
Abstract
The epithelium is a dynamic barrier and the damage to this epithelial layer governs a variety of complex mechanisms involving not only epithelial cells but all resident tissue constituents, including immune and stroma cells. Traditionally, diseases characterized by a damaged epithelium have been considered "immunological diseases," and research efforts aimed at preventing and treating these diseases have primarily focused on immuno-centric therapeutic strategies, that often fail to halt or reverse the natural progression of the disease. In this review, we intend to focus on specific mechanisms driven by the epithelium that ensure barrier function. We will bring asthma and Inflammatory Bowel Diseases into the spotlight, as we believe that these two diseases serve as pertinent examples of epithelium derived pathologies. Finally, we will argue how targeting the epithelium is emerging as a novel therapeutic strategy that holds promise for addressing these chronic diseases.
Collapse
Affiliation(s)
- Rocío López-Posadas
- Department of Medicine 1, University Hospital of Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie, Friedrich-Alexander-Universtiy Eralngen-Nürnberg, Erlangen, Germany
| | - Dustin C. Bagley
- Randall Centre for Cell and Molecular Biophysics, New Hunt’s House, School of Basic and Medical Sciences, Faculty of Life Sciences and Medicine, King’s College London, London, United Kingdom
| | - Carlos Pardo-Pastor
- Randall Centre for Cell and Molecular Biophysics, New Hunt’s House, School of Basic and Medical Sciences, Faculty of Life Sciences and Medicine, King’s College London, London, United Kingdom
| | - Elena Ortiz-Zapater
- Department of Biochemistry and Molecular Biology, Universitat de Valencia, Valencia, Spain
- Instituto Investigación Hospital Clínico-INCLIVA, Valencia, Spain
| |
Collapse
|
17
|
Zhou J, Du JY, Xu R, Wu XJ, Zhang GY. Reduced miR-513a-5p expression in COPD may regulate airway mucous cell hyperplasia through TFR1-dependent signaling. Kaohsiung J Med Sci 2024; 40:139-149. [PMID: 37916742 DOI: 10.1002/kjm2.12777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/18/2023] [Accepted: 10/10/2023] [Indexed: 11/03/2023] Open
Abstract
Airway mucous cell metaplasia and mucous hypersecretion is one of the key characteristic pathophysiological status of chronic obstructive pulmonary disease (COPD). micro(mi)RNAs are acknowledged as non-encoding RNA molecules playing important roles in gene expression regulation. In this study, we searched the Gene Expression Omnibus (GEO) database for the differentially expressed miRNAs between COPD and non-COPD controls with bioinformatics analysis. Finally, we focused on miR-513a-5p and investigated the potential mechanism by which miR-513a-5p regulates airway mucous hypersecretion and goblet cell metaplasia. A dual-luciferase reporter assay was then showing that miR-513a-5p targeted the 3'-UTR of TFR1 and inhibited its expression in vitro. In vivo transfection demonstrated that TFR1 downregulation partially blocked MUC5AC hypersecretion and goblet cell hyperplasia in COPD model rats. In vitro study, CSE increased the intracellular expression and secretion of MUC5AC by BEAS-2B branchial epithelial cells in the BEAS-2B cell and THP-1 cell coculture system. Coculture with either miR-513a-5p mimic-pretreated or TFR1-deficient THP-1 cells attenuated intracellular MUC5AC expression in BEAS-2B cells exposed to CSE. ELISA demonstrated that transfection of TFR1 siRNA or pretreatment with miR-513a-5p mimic reduced the secretion of inflammatory factors that are responsible for airway goblet cell hyperplasia, such as IL-1β, IL-13, and IL-17, by THP-1 cells after CSE stimulation. Our findings supported that miR-513a-5p/TFR1 signaling axis might activate macrophages as well as promote airway inflammation and airway mucous cell hyperplasia in COPD.
Collapse
Affiliation(s)
- Jia Zhou
- Department of Respiratory Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Jun-Yi Du
- Standardized Training Base For Resident Physician, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Rui Xu
- Department of Respiratory Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Xiao-Juan Wu
- Department of Respiratory Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
- Department of Respiratory and Critical Care Medicine, Suining Central Hospital, Suining, Sichuan, People's Republic of China
| | - Guo-Yue Zhang
- Department of Respiratory Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| |
Collapse
|
18
|
Kageyama T, Ito T, Tanaka S, Nakajima H. Physiological and immunological barriers in the lung. Semin Immunopathol 2024; 45:533-547. [PMID: 38451292 PMCID: PMC11136722 DOI: 10.1007/s00281-024-01003-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 02/10/2024] [Indexed: 03/08/2024]
Abstract
The lungs serve as the primary organ for respiration, facilitating the vital exchange of gases with the bloodstream. Given their perpetual exposure to external particulates and pathogens, they possess intricate protective barriers. Cellular adhesion in the lungs is robustly maintained through tight junctions, adherens junctions, and desmosomes. Furthermore, the pulmonary system features a mucociliary clearance mechanism that synthesizes mucus and transports it to the outside. This mucus is enriched with chemical barriers like antimicrobial proteins and immunoglobulin A (IgA). Additionally, a complex immunological network comprising epithelial cells, neural cells, and immune cells plays a pivotal role in pulmonary defense. A comprehensive understanding of these protective systems offers valuable insights into potential pathologies and their therapeutic interventions.
Collapse
Affiliation(s)
- Takahiro Kageyama
- Department of Allergy and Clinical Immunology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chiba, 260-8670, Japan.
- Institute for Advanced Academic Research, Chiba University, Chiba, Japan.
| | - Takashi Ito
- Department of Allergy and Clinical Immunology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chiba, 260-8670, Japan
- Chiba University Synergy Institute for Futuristic Mucosal Vaccine Research and Development (cSIMVa), Chiba, Japan
| | - Shigeru Tanaka
- Department of Allergy and Clinical Immunology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chiba, 260-8670, Japan
| | - Hiroshi Nakajima
- Department of Allergy and Clinical Immunology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chiba, 260-8670, Japan
- Chiba University Synergy Institute for Futuristic Mucosal Vaccine Research and Development (cSIMVa), Chiba, Japan
| |
Collapse
|
19
|
Sponchiado M, Bonilla AL, Mata L, Jasso-Johnson K, Liao YSJ, Fagan A, Moncada V, Reznikov LR. Club cell CREB regulates the goblet cell transcriptional network and pro-mucin effects of IL-1B. Front Physiol 2023; 14:1323865. [PMID: 38173934 PMCID: PMC10761479 DOI: 10.3389/fphys.2023.1323865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 11/30/2023] [Indexed: 01/05/2024] Open
Abstract
Introduction: Club cells are precursors for mucus-producing goblet cells. Interleukin 1β (IL-1B) is an inflammatory mediator with pro-mucin activities that increases the number of mucus-producing goblet cells. IL-1B-mediated mucin production in alveolar adenocarcinoma cells requires activation of the cAMP response element-binding protein (CREB). Whether the pro-mucin activities of IL-1B require club cell CREB is unknown. Methods: We challenged male mice with conditional loss of club cell Creb1 and wild type littermates with intra-airway IL-1B or vehicle. Secondarily, we studied human "club cell-like" H322 cells. Results: IL-1B increased whole lung mRNA of secreted (Mucin 5ac, Mucin 5b) and tethered (Mucin 1, Mucin 4) mucins independent of genotype. However, loss of club cell Creb1 increased whole lung mRNA of member RAS oncogene family (Rab3D), decreased mRNA of the muscarinic receptor 3 (M3R) and prevented IL-1B mediated increases in purinergic receptor P2Y, (P2ry2) mRNA. IL-1B increased the density of goblet cells containing neutral mucins in wildtype mice but not in mice with loss of club cell Creb1. These findings suggested that club cell Creb1 regulated mucin secretion. Loss of club cell Creb1 also prevented IL-1B-mediated impairments in airway mechanics. Four days of pharmacologic CREB inhibition in H322 cells increased mRNA abundance of forkhead box A2 (FOXA2), a repressor of goblet cell expansion, and decreased mRNA expression of SAM pointed domain containing ETS transcription factor (SPDEF), a driver of goblet cell expansion. Chromatin immunoprecipitation demonstrated that CREB directly bound to the promoter region of FOXA2, but not to the promoter region of SPDEF. Treatment of H322 cells with IL-1B increased cAMP levels, providing a direct link between IL-1B and CREB signaling. Conclusion: Our findings suggest that club cell Creb1 regulates the pro-mucin properties of IL-1B through pathways likely involving FOXA2.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Leah R. Reznikov
- Department of Physiological Sciences, University of Florida, Gainesville, FL, United States
| |
Collapse
|
20
|
Chen J, Zhu Q, Mo Y, Ling H, Wang Y, Xie H, Li L. Exploring the action mechanism of Jinxin oral liquid on asthma by network pharmacology, molecular docking, and microRNA recognition. Medicine (Baltimore) 2023; 102:e35438. [PMID: 37904411 PMCID: PMC10615469 DOI: 10.1097/md.0000000000035438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 09/08/2023] [Indexed: 11/01/2023] Open
Abstract
Using network pharmacology, molecular docking, and microRNA recognition, we have elucidated the mechanisms underlying the treatment of asthma by Jinxin oral liquid (JXOL). We began by identifying and normalizing the active compounds in JXOL through searches in the traditional Chinese medicine systems pharmacology database, SwissADME database, encyclopedia of traditional Chinese medicine database, HERB database, and PubChem. Subsequently, we gathered and standardized the targets of these active compounds from sources including the encyclopedia of traditional Chinese medicine database, similarity ensemble approach dataset, UniProt, and other databases. Disease targets were extracted from GeneCards, PharmGKB, OMIM, comparative toxicogenomics database, and DisGeNET. The intersection of targets between JXOL and asthma was determined using a Venn diagram. We visualized a Formula-Herb-Compound-Target-Disease network and a protein-protein interaction network using Cytoscape 3.9.0. Molecular docking studies were performed using Schrodinger software. To identify pathways related to asthma, we conducted gene ontology functional analysis and Kyoto encyclopedia of genes and genomes pathway enrichment analysis using Metascape. MicroRNAs regulating the hub genes were obtained from the miRTarBase database, and a network linking these targets and miRNAs was constructed. Finally, we found 88 bioactive components in JXOL and 218 common targets with asthma. Molecular docking showed JXOL key compounds strongly bind to HUB targets. According to gene ontology biological process analysis and Kyoto encyclopedia of genes and genomes pathway enrichment analysis, the PI3K-Akt signaling pathway, the MAPK signaling pathway, or the cAMP signaling pathway play a key role in treating of asthma by JXOL. The HUB target-miRNA network showed that 6 miRNAs were recognized. In our study, we have revealed for the first time the unique components, multiple targets, and diverse pathways in JXOL that underlie its mechanism of action in treating asthma through miRNAs.
Collapse
Affiliation(s)
- Jing Chen
- Shanghai municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Qiaozhen Zhu
- Clinical Medical School, Henan University, Kaifeng, People’s Republic of China
| | - Yanling Mo
- Department of Pediatrics, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, People’s Republic of China
| | - Hao Ling
- Department of Pediatrics, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, People’s Republic of China
| | - Yan Wang
- Department of Pediatrics, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, People’s Republic of China
| | - Huihui Xie
- Department of Pediatrics, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, People’s Republic of China
| | - Lan Li
- Department of Pediatrics, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, People’s Republic of China
| |
Collapse
|
21
|
Peng Y, Jiang H, Li B, Liu Y, Guo B, Gan W. A NIR-Activated and Mild-Temperature-Sensitive Nanoplatform with an HSP90 Inhibitor for Combinatory Chemotherapy and Mild Photothermal Therapy in Cancel Cells. Pharmaceutics 2023; 15:2252. [PMID: 37765221 PMCID: PMC10537501 DOI: 10.3390/pharmaceutics15092252] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/11/2023] [Accepted: 08/12/2023] [Indexed: 09/29/2023] Open
Abstract
Mild photothermal therapy (PTT) shows great potential to treat cancers while avoiding unwanted damage to surrounding normal cells. However, the efficacy of mild PTT is normally moderate because of the low hyperthermia temperature and limited light penetration depth. Chemotherapy has unlimited penetration but often suffers from unsatisfactory efficacy in view of the occurrence of drug resistance, suboptimal drug delivery and release profile. As a result, the combinatory of chemotherapy and mild PTT would integrate their advantages and overcome the shortcomings. Herein, we synthesized an NIR-activatable and mild-temperature-sensitive nanoplatform (BDPII-gel@TSL) composed of temperature-sensitive liposomes (TSL), heat shock protein 90 (HSP90) inhibitor (geldanamycin) and photothermal agent (BDPII), for dual chemotherapy and mild PTT in cancer cells. BDPII, constructed with donor-acceptor moieties, acts as an excellent near-infrared (NIR) photothermal agent (PTA) with a high photothermal conversion efficiency (80.75%). BDPII-containing TSLs efficiently produce a mild hyperthermia effect (42 °C) under laser irradiation (808 nm, 0.5 W cm-2). Importantly, the phase transformation of TSL leads to burst release of geldanamycin from BDPII-gel@TSL, and this contributes to down-regulation of the overexpression of HSP90, ensuring efficient inhibition of cancer cell growth. This research provides a dual-sensitive synergistic therapeutic strategy for cancer cell treatment.
Collapse
Affiliation(s)
- Yingying Peng
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, School of Science, Harbin Institute of Technology (Shenzhen), University Town, Shenzhen 518055, China; (Y.P.); (H.J.); (B.L.); (Y.L.)
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Hanlin Jiang
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, School of Science, Harbin Institute of Technology (Shenzhen), University Town, Shenzhen 518055, China; (Y.P.); (H.J.); (B.L.); (Y.L.)
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Bifei Li
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, School of Science, Harbin Institute of Technology (Shenzhen), University Town, Shenzhen 518055, China; (Y.P.); (H.J.); (B.L.); (Y.L.)
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Yue Liu
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, School of Science, Harbin Institute of Technology (Shenzhen), University Town, Shenzhen 518055, China; (Y.P.); (H.J.); (B.L.); (Y.L.)
- Shenzhen Key Laboratory of Advanced Functional Carbon Materials Research and Comprehensive Application, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Bing Guo
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, School of Science, Harbin Institute of Technology (Shenzhen), University Town, Shenzhen 518055, China; (Y.P.); (H.J.); (B.L.); (Y.L.)
- Shenzhen Key Laboratory of Advanced Functional Carbon Materials Research and Comprehensive Application, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Wei Gan
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, School of Science, Harbin Institute of Technology (Shenzhen), University Town, Shenzhen 518055, China; (Y.P.); (H.J.); (B.L.); (Y.L.)
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| |
Collapse
|
22
|
Li J, Xuan R, Wu W, Zhang H, Zhao J, Zhang S. Geldanamycin ameliorates multiple organ dysfunction and microthrombosis in septic mice by inhibiting the formation of the neutrophil extracellular network by activating heat shock factor 1 HSF1. Clin Exp Pharmacol Physiol 2023; 50:698-707. [PMID: 37308449 DOI: 10.1111/1440-1681.13798] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 02/13/2023] [Accepted: 05/15/2023] [Indexed: 06/14/2023]
Abstract
Sepsis and septic shock are common critical illnesses in the intensive care unit with a high mortality rate. Geldanamycin (GA) has a broad spectrum of antibacterial and antiviral activity and has inhibitory effects on various viruses. However, whether GA affects sepsis due to infections remains unknown. In this study, alanine aminotransferase, aspartate aminotransferase, blood urea nitrogen and creatinine in serum; neutrophil gelatinase-associated lipocalin and kidney injury molecule-1 in the urine, cytokines (tumour necrosis factor alpha, interleukin-1β and interleukin-6) in the bronchoalveolar lavage fluid and myeloperoxidase in the lung tissues were measured using enzyme-linked immunosorbent assay kits. Pathological injury was measured by hematoxylin and eosin staining and neutrophils were measured by flow cytometry analysis; related expressions were analysed by qPCR, western blot and immunofluorescence assay. The results showed that GA significantly ameliorated cecum ligation and puncture (CLP)-triggered liver, kidney and lung injury in septic mice. In addition, we found that GA dose-dependently inhibited microthrombosis and alleviated coagulopathy in septic mice. Further molecular mechanism analysis suggests that GA may act through upregulation of heat shock factor 1 and tissue-type plasminogen activator. In conclusion, our study elucidated the protective effects of GA in a mouse model established using CLP, and the results reveal that GA may be a promising agent for sepsis.
Collapse
Affiliation(s)
- Jing Li
- Department of Critical Care Medicine, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
| | - Ruijing Xuan
- Department of Experimental Zoology, Laboratory Animal Center, Shanxi Medical University, Taiyuan, China
| | - Weidong Wu
- Department of Critical Care Medicine, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
| | - Hailong Zhang
- Department of Clinical Laboratory, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
| | - Jie Zhao
- Department of Critical Care Medicine, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
| | - Shan Zhang
- Department of Critical Care Medicine, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
| |
Collapse
|
23
|
Tan D, Lu M, Cai Y, Qi W, Wu F, Bao H, Qv M, He Q, Xu Y, Wang X, Shen T, Luo J, He Y, Wu J, Tang L, Barkat MQ, Xu C, Wu X. SUMOylation of Rho-associated protein kinase 2 induces goblet cell metaplasia in allergic airways. Nat Commun 2023; 14:3887. [PMID: 37393345 PMCID: PMC10314948 DOI: 10.1038/s41467-023-39600-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Accepted: 06/21/2023] [Indexed: 07/03/2023] Open
Abstract
Allergic asthma is characterized by goblet cell metaplasia and subsequent mucus hypersecretion that contribute to the morbidity and mortality of this disease. Here, we explore the potential role and underlying mechanism of protein SUMOylation-mediated goblet cell metaplasia. The components of SUMOylaion machinery are specifically expressed in healthy human bronchial epithelia and robustly upregulated in bronchial epithelia of patients or mouse models with allergic asthma. Intratracheal suppression of SUMOylation by 2-D08 robustly attenuates not only allergen-induced airway inflammation, goblet cell metaplasia, and hyperreactivity, but IL-13-induced goblet cell metaplasia. Phosphoproteomics and biochemical analyses reveal SUMOylation on K1007 activates ROCK2, a master regulator of goblet cell metaplasia, by facilitating its binding to and activation by RhoA, and an E3 ligase PIAS1 is responsible for SUMOylation on K1007. As a result, knockdown of PIAS1 in bronchial epithelia inactivates ROCK2 to attenuate IL-13-induced goblet cell metaplasia, and bronchial epithelial knock-in of ROCK2(K1007R) consistently inactivates ROCK2 to alleviate not only allergen-induced airway inflammation, goblet cell metaplasia, and hyperreactivity, but IL-13-induced goblet cell metaplasia. Together, SUMOylation-mediated ROCK2 activation is an integral component of Rho/ROCK signaling in regulating the pathological conditions of asthma and thus SUMOylation is an additional target for the therapeutic intervention of this disease.
Collapse
Affiliation(s)
- Dan Tan
- Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Key Laboratory of CFDA for Respiratory Drug Research, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Meiping Lu
- National Clinical Research Center for Child Health, the Children's Hospital of Zhejiang University School of Medicine, Hangzhou, 310053, China.
| | - Yuqing Cai
- National Clinical Research Center for Child Health, the Children's Hospital of Zhejiang University School of Medicine, Hangzhou, 310053, China
| | - Weibo Qi
- Department of Thoracic Surgery, the Affiliated Hospital of Jiaxing University, Jiaxing, 314001, China
| | - Fugen Wu
- Department of Paediatrics, the First People's Hospital of Wenling City, Wenling City, 317500, China
| | - Hangyang Bao
- Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Meiyu Qv
- Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Qiangqiang He
- Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Yana Xu
- Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Xiangzhi Wang
- National Clinical Research Center for Child Health, the Children's Hospital of Zhejiang University School of Medicine, Hangzhou, 310053, China
| | - Tingyu Shen
- Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Jiahao Luo
- Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Yangxun He
- Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Junsong Wu
- Department of Critical Care Medicine, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Lanfang Tang
- National Clinical Research Center for Child Health, the Children's Hospital of Zhejiang University School of Medicine, Hangzhou, 310053, China
| | - Muhammad Qasim Barkat
- Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Chengyun Xu
- Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou, 310058, China.
- Key Laboratory of CFDA for Respiratory Drug Research, Zhejiang University School of Medicine, Hangzhou, 310058, China.
- National Clinical Research Center for Child Health, the Children's Hospital of Zhejiang University School of Medicine, Hangzhou, 310053, China.
| | - Ximei Wu
- Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou, 310058, China.
- Key Laboratory of CFDA for Respiratory Drug Research, Zhejiang University School of Medicine, Hangzhou, 310058, China.
| |
Collapse
|
24
|
Mikami Y, Grubb BR, Rogers TD, Dang H, Asakura T, Kota P, Gilmore RC, Okuda K, Morton LC, Sun L, Chen G, Wykoff JA, Ehre C, Vilar J, van Heusden C, Livraghi-Butrico A, Gentzsch M, Button B, Stutts MJ, Randell SH, O’Neal WK, Boucher RC. Chronic airway epithelial hypoxia exacerbates injury in muco-obstructive lung disease through mucus hyperconcentration. Sci Transl Med 2023; 15:eabo7728. [PMID: 37285404 PMCID: PMC10664029 DOI: 10.1126/scitranslmed.abo7728] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 05/17/2023] [Indexed: 06/09/2023]
Abstract
Unlike solid organs, human airway epithelia derive their oxygen from inspired air rather than the vasculature. Many pulmonary diseases are associated with intraluminal airway obstruction caused by aspirated foreign bodies, virus infection, tumors, or mucus plugs intrinsic to airway disease, including cystic fibrosis (CF). Consistent with requirements for luminal O2, airway epithelia surrounding mucus plugs in chronic obstructive pulmonary disease (COPD) lungs are hypoxic. Despite these observations, the effects of chronic hypoxia (CH) on airway epithelial host defense functions relevant to pulmonary disease have not been investigated. Molecular characterization of resected human lungs from individuals with a spectrum of muco-obstructive lung diseases (MOLDs) or COVID-19 identified molecular features of chronic hypoxia, including increased EGLN3 expression, in epithelia lining mucus-obstructed airways. In vitro experiments using cultured chronically hypoxic airway epithelia revealed conversion to a glycolytic metabolic state with maintenance of cellular architecture. Chronically hypoxic airway epithelia unexpectedly exhibited increased MUC5B mucin production and increased transepithelial Na+ and fluid absorption mediated by HIF1α/HIF2α-dependent up-regulation of β and γENaC (epithelial Na+ channel) subunit expression. The combination of increased Na+ absorption and MUC5B production generated hyperconcentrated mucus predicted to perpetuate obstruction. Single-cell and bulk RNA sequencing analyses of chronically hypoxic cultured airway epithelia revealed transcriptional changes involved in airway wall remodeling, destruction, and angiogenesis. These results were confirmed by RNA-in situ hybridization studies of lungs from individuals with MOLD. Our data suggest that chronic airway epithelial hypoxia may be central to the pathogenesis of persistent mucus accumulation in MOLDs and associated airway wall damage.
Collapse
Affiliation(s)
- Yu Mikami
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Barbara R. Grubb
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Troy D. Rogers
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Hong Dang
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Takanori Asakura
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Pradeep Kota
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Rodney C. Gilmore
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Kenichi Okuda
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Lisa C. Morton
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Ling Sun
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Gang Chen
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Jason A. Wykoff
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Camille Ehre
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Juan Vilar
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Catharina van Heusden
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | | | - Martina Gentzsch
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Brian Button
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - M. Jackson Stutts
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Scott H. Randell
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Wanda K. O’Neal
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Richard C. Boucher
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| |
Collapse
|
25
|
Kouakou YI, Lee RJ. Interkingdom Detection of Bacterial Quorum-Sensing Molecules by Mammalian Taste Receptors. Microorganisms 2023; 11:1295. [PMID: 37317269 PMCID: PMC10221136 DOI: 10.3390/microorganisms11051295] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/11/2023] [Accepted: 05/13/2023] [Indexed: 06/16/2023] Open
Abstract
Bitter and sweet taste G protein-coupled receptors (known as T2Rs and T1Rs, respectively) were originally identified in type II taste cells on the tongue, where they signal perception of bitter and sweet tastes, respectively. Over the past ~15 years, taste receptors have been identified in cells all over the body, demonstrating a more general chemosensory role beyond taste. Bitter and sweet taste receptors regulate gut epithelial function, pancreatic β cell secretion, thyroid hormone secretion, adipocyte function, and many other processes. Emerging data from a variety of tissues suggest that taste receptors are also used by mammalian cells to "eavesdrop" on bacterial communications. These receptors are activated by several quorum-sensing molecules, including acyl-homoserine lactones and quinolones from Gram-negative bacteria such as Pseudomonas aeruginosa, competence stimulating peptides from Streptococcus mutans, and D-amino acids from Staphylococcus aureus. Taste receptors are an arm of immune surveillance similar to Toll-like receptors and other pattern recognition receptors. Because they are activated by quorum-sensing molecules, taste receptors report information about microbial population density based on the chemical composition of the extracellular environment. This review summarizes current knowledge of bacterial activation of taste receptors and identifies important questions remaining in this field.
Collapse
Affiliation(s)
- Yobouet Ines Kouakou
- Department of Otorhinolaryngology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA;
| | - Robert J. Lee
- Department of Otorhinolaryngology and Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
26
|
Esnault S, Jarjour NN. Development of Adaptive Immunity and Its Role in Lung Remodeling. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1426:287-351. [PMID: 37464127 DOI: 10.1007/978-3-031-32259-4_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
Asthma is characterized by airflow limitations resulting from bronchial closure, which can be either reversible or fixed due to changes in airway tissue composition and structure, also known as remodeling. Airway remodeling is defined as increased presence of mucins-producing epithelial cells, increased thickness of airway smooth muscle cells, angiogenesis, increased number and activation state of fibroblasts, and extracellular matrix (ECM) deposition. Airway inflammation is believed to be the main cause of the development of airway remodeling in asthma. In this chapter, we will review the development of the adaptive immune response and the impact of its mediators and cells on the elements defining airway remodeling in asthma.
Collapse
|
27
|
HSP90 mediates the connection of multiple programmed cell death in diseases. Cell Death Dis 2022; 13:929. [PMID: 36335088 PMCID: PMC9637177 DOI: 10.1038/s41419-022-05373-9] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 10/19/2022] [Accepted: 10/24/2022] [Indexed: 11/07/2022]
Abstract
Heat shock protein (HSP) 90, an important component of the molecular chaperone network, is closely concerned with cellular signaling pathways and stress response by participating in the process of maturation and activation of client proteins, playing a crucial role both in the normal and abnormal operation of the organism. In functionally defective tissues, programmed cell death (PCD) is one of the regulable fundamental mechanisms mediated by HSP90, including apoptosis, autophagy, necroptosis, ferroptosis, and others. Here, we show the complex relationship between HSP90 and different types of PCD in various diseases, and discuss the possibility of HSP90 as the common regulatory nodal in multiple PCD, which would provide a new perspective for the therapeutic approaches in disease.
Collapse
|
28
|
Kokubo K, Onodera A, Kiuchi M, Tsuji K, Hirahara K, Nakayama T. Conventional and pathogenic Th2 cells in inflammation, tissue repair, and fibrosis. Front Immunol 2022; 13:945063. [PMID: 36016937 PMCID: PMC9395650 DOI: 10.3389/fimmu.2022.945063] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 07/18/2022] [Indexed: 12/15/2022] Open
Abstract
Type 2 helper T (Th2) cells, a subset of CD4+ T cells, play an important role in the host defense against pathogens and allergens by producing Th2 cytokines, such as interleukin-4 (IL-4), IL-5, and IL-13, to trigger inflammatory responses. Emerging evidence reveals that Th2 cells also contribute to the repair of injured tissues after inflammatory reactions. However, when the tissue repair process becomes chronic, excessive, or uncontrolled, pathological fibrosis is induced, leading to organ failure and death. Thus, proper control of Th2 cells is needed for complete tissue repair without the induction of fibrosis. Recently, the existence of pathogenic Th2 (Tpath2) cells has been revealed. Tpath2 cells produce large amounts of Th2 cytokines and induce type 2 inflammation when activated by antigen exposure or tissue injury. In recent studies, Tpath2 cells are suggested to play a central role in the induction of type 2 inflammation whereas the role of Tpath2 cells in tissue repair and fibrosis has been less reported in comparison to conventional Th2 cells. In this review, we discuss the roles of conventional Th2 cells and pathogenic Th2 cells in the sequence of tissue inflammation, repair, and fibrosis.
Collapse
Affiliation(s)
- Kota Kokubo
- Department of Immunology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Atsushi Onodera
- Department of Immunology, Graduate School of Medicine, Chiba University, Chiba, Japan
- Institute for Advanced Academic Research, Chiba University, Chiba, Japan
| | - Masahiro Kiuchi
- Department of Immunology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Kaori Tsuji
- Department of Immunology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Kiyoshi Hirahara
- Department of Immunology, Graduate School of Medicine, Chiba University, Chiba, Japan
- *Correspondence: Kiyoshi Hirahara, ; Toshinori Nakayama,
| | - Toshinori Nakayama
- Department of Immunology, Graduate School of Medicine, Chiba University, Chiba, Japan
- AMED-CREST, AMED, Chiba, Japan
- *Correspondence: Kiyoshi Hirahara, ; Toshinori Nakayama,
| |
Collapse
|
29
|
Thurman AL, Li X, Villacreses R, Yu W, Gong H, Mather SE, Romano-Ibarra GS, Meyerholz DK, Stoltz DA, Welsh MJ, Thornell IM, Zabner J, Pezzulo AA. A Single-Cell Atlas of Large and Small Airways at Birth in a Porcine Model of Cystic Fibrosis. Am J Respir Cell Mol Biol 2022; 66:612-622. [PMID: 35235762 PMCID: PMC9163647 DOI: 10.1165/rcmb.2021-0499oc] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 01/26/2022] [Indexed: 11/24/2022] Open
Abstract
Lack of CFTR (cystic fibrosis transmembrane conductance regulator) affects the transcriptome, composition, and function of large and small airway epithelia in people with advanced cystic fibrosis (CF); however, whether lack of CFTR causes cell-intrinsic abnormalities present at birth versus inflammation-dependent abnormalities is unclear. We performed a single-cell RNA-sequencing census of microdissected small airways from newborn CF pigs, which recapitulate CF host defense defects and pathology over time. Lack of CFTR minimally affected the transcriptome of large and small airways at birth, suggesting that infection and inflammation drive transcriptomic abnormalities in advanced CF. Importantly, common small airway epithelial cell types expressed a markedly different transcriptome than corresponding large airway cell types. Quantitative immunohistochemistry and electrophysiology of small airway epithelia demonstrated basal cells that reach the apical surface and a water and ion transport advantage. This single cell atlas highlights the archetypal nature of airway epithelial cells with location-dependent gene expression and function.
Collapse
Affiliation(s)
| | - Xiaopeng Li
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, Michigan
| | | | | | | | | | | | | | - David A. Stoltz
- Department of Internal Medicine
- Pappajohn Biomedical Institute
- Department of Molecular Physiology and Biophysics, and
- Department of Biomedical Engineering, and
| | - Michael J. Welsh
- Department of Internal Medicine
- Pappajohn Biomedical Institute
- Department of Molecular Physiology and Biophysics, and
- Department of Neurology, Roy J. and Lucille A. Carver College of Medicine
- Howard Hughes Medical Institute, University of Iowa, Iowa City, Iowa
| | | | - Joseph Zabner
- Department of Internal Medicine
- Pappajohn Biomedical Institute
| | | |
Collapse
|
30
|
Carey RM, Hariri BM, Adappa ND, Palmer JN, Lee RJ. HSP90 Modulates T2R Bitter Taste Receptor Nitric Oxide Production and Innate Immune Responses in Human Airway Epithelial Cells and Macrophages. Cells 2022; 11:1478. [PMID: 35563784 PMCID: PMC9101439 DOI: 10.3390/cells11091478] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 04/22/2022] [Accepted: 04/26/2022] [Indexed: 02/04/2023] Open
Abstract
Bitter taste receptors (T2Rs) are G protein-coupled receptors (GPCRs) expressed in various cell types including ciliated airway epithelial cells and macrophages. T2Rs in these two innate immune cell types are activated by bitter products, including those secreted by Pseudomonas aeruginosa, leading to Ca2+-dependent activation of endothelial nitric oxide (NO) synthase (eNOS). NO enhances mucociliary clearance and has direct antibacterial effects in ciliated epithelial cells. NO also increases phagocytosis by macrophages. Using biochemistry and live-cell imaging, we explored the role of heat shock protein 90 (HSP90) in regulating T2R-dependent NO pathways in primary sinonasal epithelial cells, primary monocyte-derived macrophages, and a human bronchiolar cell line (H441). Immunofluorescence showed that H441 cells express eNOS and T2Rs and that the bitter agonist denatonium benzoate activates NO production in a Ca2+- and HSP90-dependent manner in cells grown either as submerged cultures or at the air-liquid interface. In primary sinonasal epithelial cells, we determined that HSP90 inhibition reduces T2R-stimulated NO production and ciliary beating, which likely limits pathogen clearance. In primary monocyte-derived macrophages, we found that HSP-90 is integral to T2R-stimulated NO production and phagocytosis of FITC-labeled Escherichia coli and pHrodo-Staphylococcus aureus. Our study demonstrates that HSP90 serves as an innate immune modulator by regulating NO production downstream of T2R signaling by augmenting eNOS activation without impairing upstream Ca2+ signaling. These findings suggest that HSP90 plays an important role in airway antibacterial innate immunity and may be an important target in airway diseases such as chronic rhinosinusitis, asthma, or cystic fibrosis.
Collapse
Affiliation(s)
- Ryan M. Carey
- Department of Otorhinolaryngology—Head and Neck Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (B.M.H.); (N.D.A.); (J.N.P.)
| | - Benjamin M. Hariri
- Department of Otorhinolaryngology—Head and Neck Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (B.M.H.); (N.D.A.); (J.N.P.)
| | - Nithin D. Adappa
- Department of Otorhinolaryngology—Head and Neck Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (B.M.H.); (N.D.A.); (J.N.P.)
| | - James N. Palmer
- Department of Otorhinolaryngology—Head and Neck Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (B.M.H.); (N.D.A.); (J.N.P.)
| | - Robert J. Lee
- Department of Otorhinolaryngology—Head and Neck Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (B.M.H.); (N.D.A.); (J.N.P.)
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
31
|
Morrison CB, Edwards CE, Shaffer KM, Araba KC, Wykoff JA, Williams DR, Asakura T, Dang H, Morton LC, Gilmore RC, O’Neal WK, Boucher RC, Baric RS, Ehre C. SARS-CoV-2 infection of airway cells causes intense viral and cell shedding, two spreading mechanisms affected by IL-13. Proc Natl Acad Sci U S A 2022; 119:e2119680119. [PMID: 35353667 PMCID: PMC9169748 DOI: 10.1073/pnas.2119680119] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 02/14/2022] [Indexed: 12/15/2022] Open
Abstract
Muco-obstructive lung diseases are typically associated with high risks of COVID-19 severity; however, allergic asthma showed reduced susceptibility. To investigate viral spread, primary human airway epithelial (HAE) cell cultures were infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), and host–virus interactions were examined via electron microscopy, immunohistochemistry, RNA in situ hybridization, and gene expression analyses. In HAE cell cultures, angiotensin-converting enzyme 2 (ACE2) expression governed cell tropism and viral load and was up-regulated by infection. Electron microscopy identified intense viral egress from infected ciliated cells and severe cytopathogenesis, culminating in the shedding of ciliated cells packed with virions, providing a large viral reservoir for spread and transmission. Intracellular stores of MUC5AC, a major airway mucin involved in asthma, were rapidly depleted, likely to trap viruses. To mimic asthmatic airways, HAE cells were treated with interleukin-13 (IL-13), which reduced viral titers, viral messenger RNA, and cell shedding, and significantly diminished the number of infected cells. Although mucus hyperproduction played a shielding role, IL-13–treated cells maintained a degree of protection despite the removal of mucus. Using Gene Expression Omnibus databases, bulk RNA-sequencing analyses revealed that IL-13 up-regulated genes controlling glycoprotein synthesis, ion transport, and antiviral processes (albeit not the typical interferon-induced genes) and down-regulated genes involved in cilial function and ribosomal processing. More precisely, we showed that IL-13 reduced ACE2 expression, intracellular viral load, and cell-to-cell transmission while increasing the cilial keratan sulfate coating. In conclusion, intense viral and cell shedding caused by SARS-CoV-2 infection was attenuated by IL-13, which affected viral entry, replication, and spread.
Collapse
Affiliation(s)
- Cameron B. Morrison
- Marsico Lung Institute, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Caitlin E. Edwards
- Department of Epidemiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Kendall M. Shaffer
- Marsico Lung Institute, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Kenza C. Araba
- Marsico Lung Institute, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Jason A. Wykoff
- Marsico Lung Institute, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Danielle R. Williams
- Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Takanori Asakura
- Marsico Lung Institute, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Hong Dang
- Marsico Lung Institute, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Lisa C. Morton
- Marsico Lung Institute, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Rodney C. Gilmore
- Marsico Lung Institute, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Wanda K. O’Neal
- Marsico Lung Institute, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Richard C. Boucher
- Marsico Lung Institute, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Ralph S. Baric
- Department of Epidemiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
- Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Camille Ehre
- Marsico Lung Institute, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
- Department of Pediatrics/Pediatric Pulmonology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| |
Collapse
|
32
|
Lyu M, Wang Y, Chen Q, Qin J, Hou D, Huang S, Shao D, Gong X, Huang G, Zhang S, Zhang Z, Cui H. Molecular Mechanism Underlying Effects of Wumeiwan on Steroid-Dependent Asthma: A Network Pharmacology, Molecular Docking, and Experimental Verification Study. Drug Des Devel Ther 2022; 16:909-929. [PMID: 35386850 PMCID: PMC8978578 DOI: 10.2147/dddt.s349950] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 02/15/2022] [Indexed: 12/15/2022] Open
Abstract
Background Steroid-dependent asthma (SDA) is characterized by oral corticosteroid (OCS) resistance and dependence. Wumeiwan (WMW) showed potentials in reducing the dose of OCS of SDA patients based on our previous studies. Methods Network pharmacology was conducted to explore the molecular mechanism of WMW against SDA with the databases of TCMSP, STRING, etcetera. GO annotation and KEGG functional enrichment analysis were conducted by metascape database. Pymol performed the molecular docking. In the experiment, the OVA-induced plus descending dexamethasone intervention chronic asthmatic rat model was conducted. Lung pathological changes were analyzed by H&E, Masson, and IHC staining. Relative expressions of the gene were performed by real-time PCR. Results A total of 102 bioactive ingredients in WMW were identified, as well as 191 common targets were found from 241 predicted targets in WMW and 3539 SDA-related targets. The top five bioactive ingredients were identified as pivotal ingredients, which included quercetin, candletoxin A, palmidin A, kaempferol, and beta-sitosterol. Besides, 35 HUB genes were obtained from the PPI network, namely, TP53, AKT1, MAPK1, JUN, HSP90AA1, TNF, RELA, IL6, CXCL8, EGFR, etcetera. GO biological process analysis indicated that HUB genes were related to bacteria, transferase, cell differentiation, and steroid. KEGG pathway enrichment analysis indicated that the potential mechanism might be associated with IL-17 and MAPK signaling pathways. Molecular docking results supported these findings. H&E and Masson staining proved that WMW could reduce airway inflammation and remodeling of model rats, which might be related to the downward expression of IL-8 proved by IHC staining and real-time PCR. Conclusion WMW could be a complementary and alternative therapy for SDA by reducing airway inflammation.
Collapse
Affiliation(s)
- Mingsheng Lyu
- Department of Respiratory, The Third Affiliated Hospital, Beijing University of Chinese Medicine, Beijing, People's Republic of China
| | - Yahui Wang
- Department of Neurology and Stroke Center, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, People's Republic of China
| | - Qiuyi Chen
- Department of Respiratory, The Third Affiliated Hospital, Beijing University of Chinese Medicine, Beijing, People's Republic of China
| | - Jingbo Qin
- National Institute of TCM Constitution and Preventive Medicine, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, People's Republic of China
| | - Dan Hou
- Department of Respiratory, The Third Affiliated Hospital, Beijing University of Chinese Medicine, Beijing, People's Republic of China
| | - Shuaiyang Huang
- Department of Respiratory, The Third Affiliated Hospital, Beijing University of Chinese Medicine, Beijing, People's Republic of China
| | - Dongmei Shao
- Department of Respiratory, The Third Affiliated Hospital, Beijing University of Chinese Medicine, Beijing, People's Republic of China
| | - Xuefeng Gong
- Department of Traditional Chinese Medicine, Beijing Chaoyang Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Guirui Huang
- Department of Respiratory, The Third Affiliated Hospital, Beijing University of Chinese Medicine, Beijing, People's Republic of China
| | - Shiyu Zhang
- Department of Respiratory, The Third Affiliated Hospital, Beijing University of Chinese Medicine, Beijing, People's Republic of China
| | - Zhijie Zhang
- Department of Respiratory, The Third Affiliated Hospital, Beijing University of Chinese Medicine, Beijing, People's Republic of China
| | - Hongsheng Cui
- Department of Respiratory, The Third Affiliated Hospital, Beijing University of Chinese Medicine, Beijing, People's Republic of China
| |
Collapse
|
33
|
黄 浩, 乔 妤, 黄 奕, 董 航. [HSP90α exacerbates house dust mite-induced asthmatic airway inflammation by upregulating endoplasmic reticulum stress in bronchial epithelial cells]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2022; 42:347-353. [PMID: 35426797 PMCID: PMC9010984 DOI: 10.12122/j.issn.1673-4254.2022.03.05] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Indexed: 06/14/2023]
Abstract
OBJECTIVE To explore the role of heat shock protein 90α (HSP90α) and endoplasmic reticulum (ER) stress pathway in allergic airway inflammation induced by house dust mite (HDM) in bronchial epithelial cells. METHODS A HDM- induced asthmatic cell model was established in human bronchial epithelial (HBE) cells by exposure to a concentration gradient (200, 400 and 800 U/mL) of HDM for 24 h. To test the effect of siHSP90α and HSP90 inhibitor 17-AAG on HDM-induced asthmatic inflammation, HBE cells were transfected with siHSP90α (50 nmol, 12 h) or pretreated with 17-AAG (900 nmol, 6 h) prior to HDM exposure (800 U/mL) for 24 h, and the changes in the expression of HSP90α and ER stress markers were assessed. We also tested the effect of nasal drip of 17-AAG, HDM, or their combination on airway inflammation and ER stress in C57BL/6 mice. RESULTS In HBE cells, HDM exposure significantly up-regulated the expression of HSP90α protein (P=0.011) and ER stress markers XBP-1 (P=0.044), ATF-6α (P=0.030) and GRP-78 (P=0.027). Knocking down HSP90α and treatment with 17-AAG both significantly inhibited HDM-induced upregulation of XBP-1 (P=0.008). In C57BL/6 mice, treatment with 17-AAG obviously improved HDM-induced airway inflammation and significantly reduced the number of inflammatory cells in the airway (P=0.014) and lowered the levels of IL-4 (P=0.030) and IL-5 (P=0.035) in alveolar lavage fluid. Immunohistochemical staining showed that the expressions of XBP-1 and GRP-78 in airway epithelial cells decreased significantly after the treatment of 17-AAG. CONCLUSIONS HSP90α promotes HDM-induced airway allergic inflammation possibly by upregulating ER stress pathway in bronchial epithelial cells.
Collapse
Affiliation(s)
- 浩华 黄
- />南方医科大学南方医院呼吸与危重症医学科,广东 广州 510515Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - 妤婕 乔
- />南方医科大学南方医院呼吸与危重症医学科,广东 广州 510515Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - 奕 黄
- />南方医科大学南方医院呼吸与危重症医学科,广东 广州 510515Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - 航明 董
- />南方医科大学南方医院呼吸与危重症医学科,广东 广州 510515Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
34
|
Hsp90 in Human Diseases: Molecular Mechanisms to Therapeutic Approaches. Cells 2022; 11:cells11060976. [PMID: 35326427 PMCID: PMC8946885 DOI: 10.3390/cells11060976] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/09/2022] [Accepted: 03/10/2022] [Indexed: 02/04/2023] Open
Abstract
The maturation of hemeprotein dictates that they incorporate heme and become active, but knowledge of this essential cellular process remains incomplete. Studies on chaperon Hsp90 has revealed that it drives functional heme maturation of inducible nitric oxide synthase (iNOS), soluble guanylate cyclase (sGC) hemoglobin (Hb) and myoglobin (Mb) along with other proteins including GAPDH, while globin heme maturations also need an active sGC. In all these cases, Hsp90 interacts with the heme-free or apo-protein and then drives the heme maturation by an ATP dependent process before dissociating from the heme-replete proteins, suggesting that it is a key player in such heme-insertion processes. As the studies on globin maturation also need an active sGC, it connects the globin maturation to the NO-sGC (Nitric oxide-sGC) signal pathway, thereby constituting a novel NO-sGC-Globin axis. Since many aggressive cancer cells make Hbβ/Mb to survive, the dependence of the globin maturation of cancer cells places the NO-sGC signal pathway in a new light for therapeutic intervention. Given the ATPase function of Hsp90 in heme-maturation of client hemeproteins, Hsp90 inhibitors often cause serious side effects and this can encourage the alternate use of sGC activators/stimulators in combination with specific Hsp90 inhibitors for better therapeutic intervention.
Collapse
|
35
|
Margelidon-Cozzolino V, Tsicopoulos A, Chenivesse C, de Nadai P. Role of Th17 Cytokines in Airway Remodeling in Asthma and Therapy Perspectives. FRONTIERS IN ALLERGY 2022; 3:806391. [PMID: 35386663 PMCID: PMC8974749 DOI: 10.3389/falgy.2022.806391] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 01/10/2022] [Indexed: 12/07/2022] Open
Abstract
Airway remodeling is a frequent pathological feature of severe asthma leading to permanent airway obstruction in up to 50% of cases and to respiratory disability. Although structural changes related to airway remodeling are well-characterized, immunological processes triggering and maintaining this phenomenon are still poorly understood. As a consequence, no biotherapy targeting cytokines are currently efficient to treat airway remodeling and only bronchial thermoplasty may have an effect on bronchial nerves and smooth muscles with uncertain clinical relevance. Th17 cytokines, including interleukin (IL)-17 and IL-22, play a role in neutrophilic inflammation in severe asthma and may be involved in airway remodeling. Indeed, IL-17 is increased in sputum from severe asthmatic patients, induces the expression of "profibrotic" cytokines by epithelial, endothelial cells and fibroblasts, and provokes human airway smooth muscle cell migration in in vitro studies. IL-22 is also increased in asthmatic samples, promotes myofibroblast differentiation, epithelial-mesenchymal transition and proliferation and migration of smooth muscle cells in vitro. Accordingly, we also found high levels of IL-17 and IL-22 in a mouse model of dog-allergen induced asthma characterized by a strong airway remodeling. Clinical trials found no effect of therapy targeting IL-17 in an unselected population of asthmatic patients but showed a potential benefit in a sub-population of patients exhibiting a high level of airway reversibility, suggesting a potential role on airway remodeling. Anti-IL-22 therapies have not been evaluated in asthma yet but were demonstrated efficient in severe atopic dermatitis including an effect on skin remodeling. In this review, we will address the role of Th17 cytokines in airway remodeling through data from in vitro, in vivo and translational studies, and examine the potential place of Th17-targeting therapies in the treatment of asthma with airway remodeling.
Collapse
Affiliation(s)
- Victor Margelidon-Cozzolino
- Univ. Lille, CNRS, INSERM, CHU de Lille, Institut Pasteur de Lille, Unité INSERM U1019-UMR9017-CIIL-Centre d'Infection et d'Immunité de Lille, Lille, France
| | - Anne Tsicopoulos
- Univ. Lille, CNRS, INSERM, CHU de Lille, Institut Pasteur de Lille, Unité INSERM U1019-UMR9017-CIIL-Centre d'Infection et d'Immunité de Lille, Lille, France
| | - Cécile Chenivesse
- Univ. Lille, CNRS, INSERM, CHU de Lille, Institut Pasteur de Lille, Unité INSERM U1019-UMR9017-CIIL-Centre d'Infection et d'Immunité de Lille, Lille, France
- CRISALIS (Clinical Research Initiative in Severe Asthma: a Lever for Innovation & Science), F-CRIN Network, INSERM US015, Toulouse, France
| | - Patricia de Nadai
- Univ. Lille, CNRS, INSERM, CHU de Lille, Institut Pasteur de Lille, Unité INSERM U1019-UMR9017-CIIL-Centre d'Infection et d'Immunité de Lille, Lille, France
| |
Collapse
|
36
|
Zeng NX, Li HZ, Wang HZ, Liu KG, Gong XY, Luo WL, Yan C, Wu LL. Exploration of the mechanism by which icariin modulates hippocampal neurogenesis in a rat model of depression. Neural Regen Res 2022; 17:632-642. [PMID: 34380904 PMCID: PMC8504392 DOI: 10.4103/1673-5374.320993] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Icariin (ICA) has a significant capacity to protect against depression and hippocampal injury, but it cannot effectively cross the blood-brain barrier and accumulate in the brain. Therefore, the mechanism by which ICA protects against hippocampal injury in depression remains unclear. In this study, we performed proteomics analysis of cerebrospinal fluid to investigate the mechanism by which ICA prevents dysfunctional hippocampal neurogenesis in depression. A rat model of depression was established through exposure to chronic unpredictable mild stress for 6 weeks, after which 120 mg/kg ICA was administered subcutaneously every day. The results showed that ICA alleviated depressive symptoms, learning and memory dysfunction, dysfunctional neurogenesis, and neuronal loss in the dentate gyrus of rats with depression. Neural stem cells from rat embryonic hippocampi were cultured in media containing 20% cerebrospinal fluid from each group of rats and then treated with 100 μM corticosterone. The addition of cerebrospinal fluid from rats treated with ICA largely prevented the corticosterone-mediated inhibition of neuronal proliferation and differentiation. Fifty-two differentially expressed proteins regulated by chronic unpredictable mild stress and ICA were identified through proteomics analysis of cerebrospinal fluid. These proteins were mainly involved in the ribosome, PI3K-Akt signaling, and interleukin-17 signaling pathways. Parallel reaction monitoring mass spectrometry showed that Rps4x, Rps12, Rps14, Rps19, Hsp90b1, and Hsp90aa1 were up-regulated by chronic unpredictable mild stress and down-regulated by ICA. In contrast, HtrA1 was down-regulated by chronic unpredictable mild stress and up-regulated by ICA. These findings suggest that ICA can prevent depression and dysfunctional hippocampal neurogenesis through regulating the expression of certain proteins found in the cerebrospinal fluid. The study was approved by the Experimental Animal Ethics Committee of Guangzhou University of Chinese Medicine of China in March 2017.
Collapse
Affiliation(s)
- Ning-Xi Zeng
- Research Center for Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, China
| | - Hui-Zhen Li
- Research Center for Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, China
| | - Han-Zhang Wang
- Research Center for Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, China
| | - Kai-Ge Liu
- Research Center for Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, China
| | - Xia-Yu Gong
- Research Center for Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, China
| | - Wu-Long Luo
- Research Center for Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, China
| | - Can Yan
- Research Center for Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, China
| | - Li-Li Wu
- Research Center for Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, China
| |
Collapse
|
37
|
Rahmawati SF, te Velde M, Kerstjens HAM, Dömling ASS, Groves MR, Gosens R. Pharmacological Rationale for Targeting IL-17 in Asthma. FRONTIERS IN ALLERGY 2021; 2:694514. [PMID: 35387016 PMCID: PMC8974835 DOI: 10.3389/falgy.2021.694514] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 07/07/2021] [Indexed: 01/09/2023] Open
Abstract
Asthma is a respiratory disease that currently affects around 300 million people worldwide and is defined by coughing, shortness of breath, wheezing, mucus overproduction, chest tightness, and expiratory airflow limitation. Increased levels of interleukin 17 (IL-17) have been observed in sputum, nasal and bronchial biopsies, and serum of patients with asthma compared to healthy controls. Patients with higher levels of IL-17 have a more severe asthma phenotype. Biologics are available for T helper 2 (Th2)-high asthmatics, but the Th17-high subpopulation has a relatively low response to these treatments, rendering it a rather severe asthma phenotype to treat. Several experimental models suggest that targeting the IL-17 pathway may be beneficial in asthma. Moreover, as increased activation of the Th17/IL-17 axis is correlated with reduced inhaled corticosteroids (ICS) sensitivity, targeting the IL-17 pathway might reverse ICS unresponsiveness. In this review, we present and discuss the current knowledge on the role of IL-17 in asthma and its interaction with the Th2 pathway, focusing on the rationale for therapeutic targeting of the IL-17 pathway.
Collapse
Affiliation(s)
- Siti Farah Rahmawati
- Department of Molecular Pharmacology, University of Groningen, Groningen, Netherlands
- Department of Pharmacology and Clinical Pharmacy, Institut Teknologi Bandung, Bandung, Indonesia
- Groningen Research Institute for Asthma and COPD (GRIAC), University Medical Centre Groningen (UMCG), Groningen, Netherlands
| | - Maurice te Velde
- Department of Molecular Pharmacology, University of Groningen, Groningen, Netherlands
- Groningen Research Institute for Asthma and COPD (GRIAC), University Medical Centre Groningen (UMCG), Groningen, Netherlands
| | - Huib A. M. Kerstjens
- Groningen Research Institute for Asthma and COPD (GRIAC), University Medical Centre Groningen (UMCG), Groningen, Netherlands
- Department of Pulmonary Medicine, University of Groningen and University Medical Center Groningen (UMCG), Groningen, Netherlands
| | | | | | - Reinoud Gosens
- Department of Molecular Pharmacology, University of Groningen, Groningen, Netherlands
- Groningen Research Institute for Asthma and COPD (GRIAC), University Medical Centre Groningen (UMCG), Groningen, Netherlands
- *Correspondence: Reinoud Gosens
| |
Collapse
|
38
|
Li CM, Chen Z. Autoimmunity as an Etiological Factor of Cancer: The Transformative Potential of Chronic Type 2 Inflammation. Front Cell Dev Biol 2021; 9:664305. [PMID: 34235145 PMCID: PMC8255631 DOI: 10.3389/fcell.2021.664305] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 05/31/2021] [Indexed: 12/12/2022] Open
Abstract
Recent epidemiological studies have found an alarming trend of increased cancer incidence in adults younger than 50 years of age and projected a substantial rise in cancer incidence over the next 10 years in this age group. This trend was exemplified in the incidence of non-cardia gastric cancer and its disproportionate impact on non-Hispanic white females under the age of 50. The trend is concurrent with the increasing incidence of autoimmune diseases in industrialized countries, suggesting a causal link between the two. While autoimmunity has been suspected to be a risk factor for some cancers, the exact mechanisms underlying the connection between autoimmunity and cancer remain unclear and are often controversial. The link has been attributed to several mediators such as immune suppression, infection, diet, environment, or, perhaps most plausibly, chronic inflammation because of its well-recognized role in tumorigenesis. In that regard, autoimmune conditions are common causes of chronic inflammation and may trigger repetitive cycles of antigen-specific cell damage, tissue regeneration, and wound healing. Illustrating the connection between autoimmune diseases and cancer are patients who have an increased risk of cancer development associated with genetically predisposed insufficiency of cytotoxic T lymphocyte-associated protein 4 (CTLA4), a prototypical immune checkpoint against autoimmunity and one of the main targets of cancer immune therapy. The tumorigenic process triggered by CTLA4 insufficiency has been shown in a mouse model to be dependent on the type 2 cytokines interleukin-4 (IL4) and interleukin-13 (IL13). In this type 2 inflammatory milieu, crosstalk with type 2 immune cells may initiate epigenetic reprogramming of epithelial cells, leading to a metaplastic differentiation and eventually malignant transformation even in the absence of classical oncogenic mutations. Those findings complement a large body of evidence for type 1, type 3, or other inflammatory mediators in inflammatory tumorigenesis. This review addresses the potential of autoimmunity as a causal factor for tumorigenesis, the underlying inflammatory mechanisms that may vary depending on host-environment variations, and implications to cancer prevention and immunotherapy.
Collapse
Affiliation(s)
- Chris M Li
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Zhibin Chen
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL, United States.,Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, United States
| |
Collapse
|
39
|
Andrade RC, Boroni M, Amazonas MK, Vargas FR. New drug candidates for osteosarcoma: Drug repurposing based on gene expression signature. Comput Biol Med 2021; 134:104470. [PMID: 34004576 DOI: 10.1016/j.compbiomed.2021.104470] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 05/01/2021] [Accepted: 05/02/2021] [Indexed: 02/03/2023]
Abstract
Osteosarcoma (OS) is an aggressive bone malignancy and the third most common cancer in adolescence. Since the late 1970s, OS therapy and prognosis had only modest improvements, making it appealing to explore new tools that could help ameliorate the treatment. We present a meta-analysis of the gene expression signature of primary OS, and propose small molecules that could reverse this signature. The meta-analysis was performed using GEO microarray series. We first compared gene expression from eleven primary OS against osteoblasts to obtain the differentially expressed genes (DEGs). We later filtered those DEGs by verifying which ones had a concordant direction of differential expression in a validation group of 82 OS samples versus 30 bone marrow mesenchymal stem cells (BM-MSC) samples. A final gene expression signature of 266 genes (98 up and 168 down regulated) was obtained. The L1000CDS2 engine was used for drug repurposing. The top molecules predicted to reverse the signature were afatinib (PubChem CID 10184653), BRD-K95196255 (PubChem CID 3242434), DG-041 (PubChem CID 11296282) and CA-074 Me (PubChem CID 23760717). Afatinib (Gilotrif™) is currently used for metastatic non-small-cell lung cancer with EGFR mutations, and in vitro evidence shows antineoplastic potential in OS cells. The other three molecules have reports of antineoplastic effects, but are not currently FDA-approved. Further studies are necessary to establish the potential of these drugs in OS treatment. We believe our results can be an important contribution for the investigation of new therapeutic genetic targets and for selecting new drugs to be tested for OS.
Collapse
Affiliation(s)
- Raissa Coelho Andrade
- Birth Defects Epidemiology Laboratory, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil; Genetics and Molecular Biology Department, Federal University of the State of Rio de Janeiro (UNIRIO), Rio de Janeiro, Brazil
| | - Mariana Boroni
- Bioinformatics and Computational Biology Lab, Division of Experimental and Translational Research, Brazilian National Cancer Institute (INCA), Rio de Janeiro, Brazil; Experimental Medicine Research Cluster (EMRC), University of Campinas (UNICAMP), Campinas, Brazil
| | | | - Fernando Regla Vargas
- Birth Defects Epidemiology Laboratory, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil; Genetics and Molecular Biology Department, Federal University of the State of Rio de Janeiro (UNIRIO), Rio de Janeiro, Brazil.
| |
Collapse
|
40
|
Cellular and functional heterogeneity of the airway epithelium. Mucosal Immunol 2021; 14:978-990. [PMID: 33608655 PMCID: PMC7893625 DOI: 10.1038/s41385-020-00370-7] [Citation(s) in RCA: 140] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 11/15/2020] [Accepted: 12/07/2020] [Indexed: 02/07/2023]
Abstract
The airway epithelium protects us from environmental insults, which we encounter with every breath. Not only does it passively filter large particles, it also senses potential danger and alerts other cells, including immune and nervous cells. Together, these tissues orchestrate the most appropriate response, balancing the need to eliminate the danger with the risk of damage to the host. Each cell subset within the airway epithelium plays its part, and when impaired, may contribute to the development of respiratory disease. Here we highlight recent advances regarding the cellular and functional heterogeneity along the airway epithelium and discuss how we can use this knowledge to design more effective, targeted therapeutics.
Collapse
|
41
|
Thornell IM, Rehman T, Pezzulo AA, Welsh MJ. Paracellular bicarbonate flux across human cystic fibrosis airway epithelia tempers changes in airway surface liquid pH. J Physiol 2020; 598:4307-4320. [PMID: 32627187 PMCID: PMC7589346 DOI: 10.1113/jp280120] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 06/22/2020] [Indexed: 12/20/2022] Open
Abstract
KEY POINTS Cl- and HCO3- had similar paracellular permeabilities in human airway epithelia. PCl /PNa of airway epithelia was unaltered by pH 7.4 vs. pH 6.0 solutions. Under basal conditions, calculated paracellular HCO3- flux was secretory. Cytokines that increased airway surface liquid pH decreased or reversed paracellular HCO3- flux. HCO3- flux through the paracellular pathway may counterbalance effects of cellular H+ and HCO3- secretion. ABSTRACT Airway epithelia control the pH of airway surface liquid (ASL), thereby optimizing respiratory defences. Active H+ and HCO3- secretion by airway epithelial cells produce an ASL that is acidic compared with the interstitial space. The paracellular pathway could provide a route for passive HCO3- flux that also modifies ASL pH. However, there is limited information about paracellular HCO3- flux, and it remains uncertain whether an acidic pH produced by loss of cystic fibrosis transmembrane conductance regulator anion channels or proinflammatory cytokines might alter the paracellular pathway function. To investigate paracellular HCO3- transport, we studied differentiated primary cultures of human cystic fibrosis (CF) and non-CF airway epithelia. The paracellular pathway was pH-insensitive at pH 6.0 vs. pH 7.4 and was equally permeable to Cl- and HCO3- . Under basal conditions at pH ∼6.6, calculated paracellular HCO3- flux was weakly secretory. Treating epithelia with IL-17 plus TNFα alkalinized ASL pH to ∼7.0, increased paracellular HCO3- permeability, and paracellular HCO3- flux was negligible. Applying IL-13 increased ASL pH to ∼7.4 without altering paracellular HCO3- permeability, and calculated paracellular HCO3- flux was absorptive. These results suggest that HCO3- flux through the paracellular pathway counterbalances, in part, changes in the ASL pH produced via cellular mechanisms. As the pH of ASL increases towards that of basolateral liquid, paracellular HCO3- flux becomes absorptive, tempering the alkaline pH generated by transcellular HCO3- secretion.
Collapse
Affiliation(s)
- Ian M. Thornell
- Department of Internal MedicinePappajohn Biomedical InstituteRoy J. and Lucille A. Carver College of MedicineUniversity of IowaIowa CityIAUSA
| | - Tayyab Rehman
- Department of Internal MedicinePappajohn Biomedical InstituteRoy J. and Lucille A. Carver College of MedicineUniversity of IowaIowa CityIAUSA
| | - Alejandro A. Pezzulo
- Department of Internal MedicinePappajohn Biomedical InstituteRoy J. and Lucille A. Carver College of MedicineUniversity of IowaIowa CityIAUSA
| | - Michael J. Welsh
- Department of Internal MedicinePappajohn Biomedical InstituteRoy J. and Lucille A. Carver College of MedicineUniversity of IowaIowa CityIAUSA
- Department of Molecular Physiology and BiophysicsPappajohn Biomedical InstituteRoy J. and Lucille A. Carver College of MedicineUniversity of IowaIowa CityIAUSA
- Howard Hughes Medical InstituteUniversity of IowaIowa CityIAUSA
| |
Collapse
|
42
|
Yi L, Cui J, Wang W, Tang W, Teng F, Zhu X, Qin J, Wuniqiemu T, Sun J, Wei Y, Dong J. Formononetin Attenuates Airway Inflammation and Oxidative Stress in Murine Allergic Asthma. Front Pharmacol 2020; 11:533841. [PMID: 33013383 PMCID: PMC7500463 DOI: 10.3389/fphar.2020.533841] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 08/12/2020] [Indexed: 12/14/2022] Open
Abstract
Allergic asthma has been considered as a respiratory disorder with pathological features of airway inflammation and remodeling, which involves oxidative stress. Formononetin (FMT) is a bioactive isoflavone obtained from Chinese herb Radix Astragali, and has been reported to have notable anti-inflammatory and antioxidant effects in several diseases. The purpose of our study was to elaborate the effects of FMT on asthma and the underlying mechanisms. To establish allergic asthma model, BALB/c mice were given ovalbumin (OVA) sensitization and challenge, treated with FMT (10, 20, 40 mg/kg) or dexamethasone (2 mg/kg). The effects of FMT on lung inflammation and oxidative stress were assessed. In OVA-induced asthmatic mice, FMT treatments significantly ameliorated lung function, alleviated lung inflammation including infiltration of inflammatory cells, the elevated levels of interleukin (IL)-4, IL-5, and IL-13, immunoglobulin (Ig) E, C-C motif chemokine ligand 5 (CCL5, also known as RANTES), CCL11 (also called Eotaxin-1), and IL-17A. In addition, FMT treatments eminently blunted goblet cell hyperplasia and collagen deposition, and remarkably reduced oxidative stress as displayed by decreased reactive oxygen species (ROS), and increased superoxide diamutase (SOD) activity. Furthermore, to clarify the potential mechanisms responsible for the effects, we determined the inflammation and oxidation-related signaling pathway including nuclear factor kappa β (NF-κB), c-Jun N-terminal kinase (JNK), and the transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2). FMT treatments appeared to dramatically inhibit the activation of NF-κB and JNK, significantly elevated the expression of heme oxygenase 1 (HO-1) but failed to activate expression of Nrf2. In conclusion, our study suggested that FMT had the therapeutic effects in attenuating airway inflammation and oxidative stress in asthma.
Collapse
Affiliation(s)
- La Yi
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Jie Cui
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China.,Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Wenqian Wang
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China.,Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Weifeng Tang
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China.,Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Fangzhou Teng
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China.,Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Xueyi Zhu
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China.,Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Jingjing Qin
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China.,Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Tulake Wuniqiemu
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China.,Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Jing Sun
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China.,Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Ying Wei
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China.,Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Jingcheng Dong
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China.,Institutes of Integrative Medicine, Fudan University, Shanghai, China
| |
Collapse
|
43
|
Chen L, Wang M, Lin Z, Yao M, Wang W, Cheng S, Li B, Zhang Y, Yin Q. Mild microwave ablation combined with HSP90 and TGF‑β1 inhibitors enhances the therapeutic effect on osteosarcoma. Mol Med Rep 2020; 22:906-914. [PMID: 32468060 PMCID: PMC7339669 DOI: 10.3892/mmr.2020.11173] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 04/08/2020] [Indexed: 12/22/2022] Open
Abstract
Osteosarcoma is the most common malignant bone tumour and the second leading cause of cancer-related death in children and adolescents. Microwave ablation has an excellent therapeutic effect on bone tumours by instantaneously increasing the temperature in the tumour; however, there is a risk of damaging the surrounding healthy tissues by exposure to a high temperature when the treatment power is too large. In the present study, two anti-tumour reagents, a heat shock protein 90 (HSP90) inhibitor (PF-04929113) and a transforming growth factor-β1 (TGF-β1) inhibitor (SB-525334) were employed to enhance the therapeutic effect of mild-power microwave ablation. It was revealed that microwaving to 48°C combined with HSP90 and TGF-β1 inhibitors significantly increased the apoptotic rate of VX2 cells. The same results were observed during in vivo experiments using New Zealand rabbits to model osteosarcoma. In addition, the results indicated that the expression of cytochrome c, caspase-3 and caspase-9 were upregulated in response to the treatment, which indicated that the mitochondrial apoptotic signalling pathway had been activated. These findings may provide a novel strategy for the development of microwave ablation in osteosarcoma treatment, which could effectively kill tumour cells without damaging the surrounding normal tissues.
Collapse
Affiliation(s)
- Lingling Chen
- The Graduate School of Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Ming Wang
- The Graduate School of Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Zefeng Lin
- Guangdong Key Laboratories of Orthopedic Technology and Implant Materials, General Hospital of Southern Theater Command of PLA, Guangzhou, Guangdong 510010, P.R. China
| | - Mengyu Yao
- Department of Orthopaedics, Guangdong Provincial People's Hospital, Guangzhou, Guangdong 510080, P.R. China
| | - Wanshun Wang
- Guangdong Key Laboratories of Orthopedic Technology and Implant Materials, General Hospital of Southern Theater Command of PLA, Guangzhou, Guangdong 510010, P.R. China
| | - Shi Cheng
- The Graduate School of Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Binglin Li
- Guangdong Key Laboratories of Orthopedic Technology and Implant Materials, General Hospital of Southern Theater Command of PLA, Guangzhou, Guangdong 510010, P.R. China
| | - Yu Zhang
- Department of Orthopaedics, Guangdong Provincial People's Hospital, Guangzhou, Guangdong 510080, P.R. China
| | - Qingshui Yin
- The Graduate School of Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| |
Collapse
|
44
|
Rehman T, Thornell IM, Pezzulo AA, Thurman AL, Romano Ibarra GS, Karp PH, Tan P, Duffey ME, Welsh MJ. TNFα and IL-17 alkalinize airway surface liquid through CFTR and pendrin. Am J Physiol Cell Physiol 2020; 319:C331-C344. [PMID: 32432926 PMCID: PMC7500220 DOI: 10.1152/ajpcell.00112.2020] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The pH of airway surface liquid (ASL) is a key factor that determines respiratory host defense; ASL acidification impairs and alkalinization enhances key defense mechanisms. Under healthy conditions, airway epithelia secrete base ([Formula: see text]) and acid (H+) to control ASL pH (pHASL). Neutrophil-predominant inflammation is a hallmark of several airway diseases, and TNFα and IL-17 are key drivers. However, how these cytokines perturb pHASL regulation is uncertain. In primary cultures of differentiated human airway epithelia, TNFα decreased and IL-17 did not change pHASL. However, the combination (TNFα+IL-17) markedly increased pHASL by increasing [Formula: see text] secretion. TNFα+IL-17 increased expression and function of two apical [Formula: see text] transporters, CFTR anion channels and pendrin Cl-/[Formula: see text] exchangers. Both were required for maximal alkalinization. TNFα+IL-17 induced pendrin expression primarily in secretory cells where it was coexpressed with CFTR. Interestingly, significant pendrin expression was not detected in CFTR-rich ionocytes. These results indicate that TNFα+IL-17 stimulate [Formula: see text] secretion via CFTR and pendrin to alkalinize ASL, which may represent an important defense mechanism in inflamed airways.
Collapse
Affiliation(s)
- Tayyab Rehman
- Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | - Ian M Thornell
- Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | - Alejandro A Pezzulo
- Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | - Andrew L Thurman
- Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | - Guillermo S Romano Ibarra
- Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | - Philip H Karp
- Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa.,Howard Hughes Medical Institute, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | - Ping Tan
- Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | - Michael E Duffey
- Department of Physiology and Biophysics, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York
| | - Michael J Welsh
- Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa.,Howard Hughes Medical Institute, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa.,Department of Molecular Physiology and Biophysics, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa
| |
Collapse
|
45
|
Lv J, Zhou D, Wang Y, Sun W, Zhang C, Xu J, Yang H, Zhou T, Li P. Effects of luteolin on treatment of psoriasis by repressing HSP90. Int Immunopharmacol 2020; 79:106070. [DOI: 10.1016/j.intimp.2019.106070] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 11/20/2019] [Accepted: 11/21/2019] [Indexed: 02/08/2023]
|
46
|
Hadzic S, Wu CY, Avdeev S, Weissmann N, Schermuly RT, Kosanovic D. Lung epithelium damage in COPD - An unstoppable pathological event? Cell Signal 2020; 68:109540. [PMID: 31953012 DOI: 10.1016/j.cellsig.2020.109540] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 01/11/2020] [Accepted: 01/11/2020] [Indexed: 10/25/2022]
Abstract
Chronic obstructive pulmonary disease (COPD) is a common term for alveolar septal wall destruction resulting in emphysema, and chronic bronchitis accompanied by conductive airway remodelling. In general, this disease is characterized by a disbalance of proteolytic/anti-proteolytic activity, augmented inflammatory response, increased oxidative/nitrosative stress, rise in number of apoptotic cells and decreased proliferation. As the first responder to the various environmental stimuli, epithelium occupies an important position in different lung pathologies, including COPD. Epithelium sequentially transitions from the upper airways in the direction of the gas exchange surface in the alveoli, and every cell type possesses a distinct role in the maintenance of the homeostasis. Basically, a thick ciliated structure of the airway epithelium has a major function in mucus secretion, whereas, alveolar epithelium which forms a thin barrier covered by surfactant has a function in gas exchange. Following this line, we will try to reveal whether or not the chronic bronchitis and emphysema, being two pathological phenotypes in COPD, could originate in two different types of epithelium. In addition, this review focuses on the role of lung epithelium in COPD pathology, and summarises underlying mechanisms and potential therapeutics.
Collapse
Affiliation(s)
- Stefan Hadzic
- Department of Internal Medicine, Cardio-Pulmonary Institute (CPI), German Center for Lung Research (DZL), Justus-Liebig University, Giessen, Germany
| | - Cheng-Yu Wu
- Department of Internal Medicine, Cardio-Pulmonary Institute (CPI), German Center for Lung Research (DZL), Justus-Liebig University, Giessen, Germany
| | - Sergey Avdeev
- Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Norbert Weissmann
- Department of Internal Medicine, Cardio-Pulmonary Institute (CPI), German Center for Lung Research (DZL), Justus-Liebig University, Giessen, Germany
| | - Ralph Theo Schermuly
- Department of Internal Medicine, Cardio-Pulmonary Institute (CPI), German Center for Lung Research (DZL), Justus-Liebig University, Giessen, Germany
| | - Djuro Kosanovic
- Department of Internal Medicine, Cardio-Pulmonary Institute (CPI), German Center for Lung Research (DZL), Justus-Liebig University, Giessen, Germany; Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia.
| |
Collapse
|
47
|
Potaczek DP, Miethe S, Schindler V, Alhamdan F, Garn H. Role of airway epithelial cells in the development of different asthma phenotypes. Cell Signal 2020; 69:109523. [PMID: 31904412 DOI: 10.1016/j.cellsig.2019.109523] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 12/30/2019] [Accepted: 12/31/2019] [Indexed: 01/06/2023]
Abstract
The term (bronchial) asthma describes a disorder syndrome that comprises several disease phenotypes, all characterized by chronic inflammation in the bronchial epithelium, with a variety of subsequent functional consequences. Thus, the epithelium in the conducting airways is the main localization of the complex pathological changes in the disease. In this regard, bronchial epithelial cells are not passively affected by inflammatory mechanisms induced by immunological processes but rather actively involved in all steps of disease development from initiation and perpetuation to chronification. In recent years it turned out that bronchial epithelial cells show a high level of structural and functional diversity and plasticity with epigenetic mechanisms playing a crucial role in the regulation of these processes. Thus, it is quite reasonable that differential functional activities of the bronchial epithelium are involved in the development of different asthma phenotypes and/or stages of disease. The current knowledge on this topic will be discussed in this review article.
Collapse
Affiliation(s)
- Daniel P Potaczek
- Institute of Laboratory Medicine and Pathobiochemistry - Molecular Diagnostics, Philipps University of Marburg - Medical Faculty, Universities of Giessen and Marburg Lung Center (UGMLC), German Center for Lung Research (DZL), Marburg, Germany; John Paul II Hospital, Krakow, Poland
| | - Sarah Miethe
- Institute of Laboratory Medicine and Pathobiochemistry - Molecular Diagnostics, Philipps University of Marburg - Medical Faculty, Universities of Giessen and Marburg Lung Center (UGMLC), German Center for Lung Research (DZL), Marburg, Germany
| | - Viktoria Schindler
- Institute of Laboratory Medicine and Pathobiochemistry - Molecular Diagnostics, Philipps University of Marburg - Medical Faculty, Universities of Giessen and Marburg Lung Center (UGMLC), German Center for Lung Research (DZL), Marburg, Germany
| | - Fahd Alhamdan
- Institute of Laboratory Medicine and Pathobiochemistry - Molecular Diagnostics, Philipps University of Marburg - Medical Faculty, Universities of Giessen and Marburg Lung Center (UGMLC), German Center for Lung Research (DZL), Marburg, Germany
| | - Holger Garn
- Institute of Laboratory Medicine and Pathobiochemistry - Molecular Diagnostics, Philipps University of Marburg - Medical Faculty, Universities of Giessen and Marburg Lung Center (UGMLC), German Center for Lung Research (DZL), Marburg, Germany.
| |
Collapse
|
48
|
Yombo DJK, Mentink-Kane MM, Wilson MS, Wynn TA, Madala SK. Heat shock protein 70 is a positive regulator of airway inflammation and goblet cell hyperplasia in a mouse model of allergic airway inflammation. J Biol Chem 2019; 294:15082-15094. [PMID: 31431507 DOI: 10.1074/jbc.ra119.009145] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 08/09/2019] [Indexed: 12/19/2022] Open
Abstract
Heat shock proteins (Hsps) are highly conserved molecular chaperones that are ubiquitously expressed in all species to aid the solubilization of misfolded proteins, protein degradation, and transport. Elevated levels of Hsp70 have been found in the sputum, serum, and bronchoalveolar lavage (BAL) fluid of asthma patients and are known to correlate with disease severity. However, the function of Hsp70 in allergic airway inflammation has remained largely unknown. This study aimed to determine the role of Hsp70 in airway inflammation and remodeling using a mouse model of allergic airway inflammation. WT and Hsp70 double-knockout (Hsp70.1/.3-/-) mice were sensitized and challenged intratracheally with Schistosoma mansoni soluble egg antigens (SEAs) to induce robust Th2 responses and airway inflammation in the lungs. The lack of Hsp70 resulted in a significant reduction in airway inflammation, goblet cell hyperplasia, and Th2 cytokine production, including IL-4, IL-5, and IL-13. An analysis of the BAL fluid suggested that Hsp70 is critically required for eosinophilic infiltration, collagen accumulation, and Th2 cytokine production in allergic airways. Furthermore, our bone marrow (BM) transfer studies show that SEA-induced airway inflammation, goblet cell hyperplasia, and Th2 cytokine production were attenuated in WT mice that were reconstituted with Hsp70-deficient BM, but these effects were not attenuated in Hsp70-deficient mice that were reconstituted with WT BM. Together, these studies identify a pathogenic role for Hsp70 in hematopoietic cells during allergic airway inflammation; this illustrates the potential utility of targeting Hsp70 to alleviate allergen-induced Th2 cytokines, goblet cell hyperplasia, and airway inflammation.
Collapse
Affiliation(s)
- Dan J K Yombo
- Division of Pulmonary Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio 45267
| | | | - Mark S Wilson
- Mill Hill Laboratory, The Francis Crick Institute, London NW1 1AT, United Kingdom
| | - Thomas A Wynn
- Laboratory of Parasitic Diseases, NIAID, National Institutes of Health, Bethesda, Maryland 20892
| | - Satish K Madala
- Division of Pulmonary Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229 .,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio 45267
| |
Collapse
|
49
|
Hamilton BA, Li X, Pezzulo AA, Abou Alaiwa MH, Zabner J. Polarized AAVR expression determines infectivity by AAV gene therapy vectors. Gene Ther 2019; 26:240-249. [PMID: 30962536 PMCID: PMC6588428 DOI: 10.1038/s41434-019-0078-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 02/04/2019] [Accepted: 03/11/2019] [Indexed: 12/14/2022]
Abstract
Adeno-associated virus (AAV) has been investigated to transfer the cystic fibrosis transmembrane conductance regulator (CFTR) to airways. Inhaled AAV2-CFTR in people with cystic fibrosis (CF) is safe, but inefficient. In vitro, AAV2 transduction of human airway epithelia on the apical (luminal) side is inefficient, but efficient basolaterally. We previously selected AAV2.5T, a novel capsid that apically transduces CF human airway epithelia and efficiently restores CFTR function. We hypothesize the AAV receptor (AAVR) is basolaterally localized, and that AAV2.5T utilizes an alternative apical receptor. We found AAVR in human airway epithelia by western blot and RNA-Seq analyses. Using immunocytochemistry we did not find endogenous AAVR at membranes but overexpression localized AAVR to the basolateral membrane, where it preferentially increased transduction. Anti-AAVR antibodies blocked transduction by AAV2 from the basolateral side but not AAV2.5T from the apical side, suggesting a unique apical receptor. Finally, we found infection by AAV2 but not AAV2.5T was blocked by CRISPR knockout of AAVR in cell lines. Our data suggest the absence of apical AAVR is rate limiting for AAV2, and efficient transduction by AAV2.5T is accomplished using an AAVR independent pathway. Our findings inform the development of gene therapy for CF, and AAV vectors in general.
Collapse
Affiliation(s)
- Bradley A Hamilton
- Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, Pappajohn Biomedical Institute, The University of Iowa, Iowa City, IA, USA
- Molecular Medicine Program, The University of Iowa, Iowa City, IA, USA
| | - Xiaopeng Li
- Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, Pappajohn Biomedical Institute, The University of Iowa, Iowa City, IA, USA
| | - Alejandro A Pezzulo
- Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, Pappajohn Biomedical Institute, The University of Iowa, Iowa City, IA, USA
| | - Mahmoud H Abou Alaiwa
- Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, Pappajohn Biomedical Institute, The University of Iowa, Iowa City, IA, USA
- Department of Biomedical Engineering, The University of Iowa, Iowa City, IA, USA
| | - Joseph Zabner
- Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, Pappajohn Biomedical Institute, The University of Iowa, Iowa City, IA, USA.
- Molecular Medicine Program, The University of Iowa, Iowa City, IA, USA.
| |
Collapse
|