1
|
Mokhtari YG, Varnava I, Kyrgiannis K, Ampatsidou V, Giakoumettis D. Stem cell therapy for Parkinson’s disease: A new hope for neural regeneration. World J Biol Chem 2025; 16:106850. [DOI: 10.4331/wjbc.v16.i2.106850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2025] [Revised: 03/31/2025] [Accepted: 04/09/2025] [Indexed: 05/30/2025] Open
Abstract
Parkinson’s disease (PD) is a progressive neurodegenerative disorder marked by the loss of dopaminergic neurons in the substantia nigra that leads to reduced dopamine levels and impaired motor function. Current treatments only provide temporary symptom relief without addressing the underlying neuronal loss. A promising new approach for treating PD is stem cell therapy, particularly induced pluripotent stem cells and human pluripotent stem cells. They have the ability to differentiate into various neural cells, offering potential for neuronal replacement and restoration of brain function. Induced pluripotent stem cells are derived from reprogramming adult cells and present advantages such as genetic compatibility and reduced immune rejection, overcoming ethical concerns associated with embryonic stem cells. Preclinical studies show promising results, demonstrating that stem cells can differentiate into dopaminergic neurons and improve motor function in animal models. These advancements pave the way for clinical trials and potential long-term solutions for patients with PD. This review highlighted the significance of stem cell therapy in neuroregeneration and addressed preclinical successes, challenges in long-term safety, and ethical considerations, with the hope of revolutionizing PD treatment and improving patient outcomes.
Collapse
Affiliation(s)
- Yasmin Garkani Mokhtari
- Department of Medicine, Basic Biomedical Sciences, Specialization in Stem Cells, Gene-Cell Therapy, Regenerative Medicine, University of Ioannina, Ioannina 45110, Ipeiros, Greece
| | - Irene Varnava
- Department of Medicine, Basic Biomedical Sciences, Specialization in Stem Cells, Gene-Cell Therapy, Regenerative Medicine, University of Ioannina, Ioannina 45110, Ipeiros, Greece
| | - Kosmas Kyrgiannis
- Department of Neurosurgery, Agios Savvas, General Anticancer Oncological Hospital, Athens 11522, Attikí, Greece
| | - Vasiliki Ampatsidou
- Department of Neurosurgery, Agios Savvas, General Anticancer Oncological Hospital, Athens 11522, Attikí, Greece
| | - Dimitrios Giakoumettis
- Department of Neurosurgery, Agios Savvas, General Anticancer Oncological Hospital, Athens 11522, Attikí, Greece
- Department of Neurosurgery, Democritus University of Thrace, Greece, Alexandroupoli 69100, Anatolikí Makedonía kai Thráki, Greece
| |
Collapse
|
2
|
Holm Nygaard A, Schörling AL, Abay-Nørgaard Z, Hänninen E, Li Y, Ramón Santonja A, Rathore GS, Salvador A, Rusimbi C, Lauritzen KB, Zhang Y, Kirkeby A. Patterning effects of FGF17 and cAMP on generation of dopaminergic progenitors for cell replacement therapy in Parkinson's disease. Stem Cells 2025; 43:sxaf004. [PMID: 40071608 PMCID: PMC11976395 DOI: 10.1093/stmcls/sxaf004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 01/06/2025] [Indexed: 04/09/2025]
Abstract
Cell replacement therapies using human pluripotent stem cell-derived ventral midbrain (VM) dopaminergic (DA) progenitors are currently in clinical trials for treatment of Parkinson's disease (PD). Recapitulating developmental patterning cues, such as fibroblast growth factor 8 (FGF8), secreted at the midbrain-hindbrain boundary (MHB), is critical for the in vitro production of authentic VM DA progenitors. Here, we explored the application of alternative MHB-secreted FGF-family members, FGF17 and FGF18, for VM DA progenitor patterning. We show that while FGF17 and FGF18 both recapitulated VM DA progenitor patterning events, FGF17 induced expression of key VM DA progenitor markers at higher levels than FGF8 and transplanted FGF17-patterned progenitors fully reversed motor deficits in a rat PD model. Early activation of the cAMP pathway mimicked FGF17-induced patterning, although strong cAMP activation came at the expense of EN1 expression. In summary, we identified FGF17 as a promising alternative FGF candidate for robust VM DA progenitor patterning.
Collapse
Affiliation(s)
- Amalie Holm Nygaard
- Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Alrik L Schörling
- Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
- Department of Experimental Medical Sciences, Wallenberg Center for Molecular Medicine (WCMM) and Lund Stem Cell Center, Lund University, SE-221 84 Lund, Sweden
| | - Zehra Abay-Nørgaard
- Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Erno Hänninen
- Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Yuan Li
- Department of Experimental Medical Sciences, Wallenberg Center for Molecular Medicine (WCMM) and Lund Stem Cell Center, Lund University, SE-221 84 Lund, Sweden
| | - Adrian Ramón Santonja
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Gaurav Singh Rathore
- Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Alison Salvador
- Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Charlotte Rusimbi
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Katrine Bech Lauritzen
- Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Yu Zhang
- Department of Experimental Medical Sciences, Wallenberg Center for Molecular Medicine (WCMM) and Lund Stem Cell Center, Lund University, SE-221 84 Lund, Sweden
| | - Agnete Kirkeby
- Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
- Department of Experimental Medical Sciences, Wallenberg Center for Molecular Medicine (WCMM) and Lund Stem Cell Center, Lund University, SE-221 84 Lund, Sweden
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| |
Collapse
|
3
|
Calvo B, Schembri-Wismayer P, Durán-Alonso MB. Age-Related Neurodegenerative Diseases: A Stem Cell's Perspective. Cells 2025; 14:347. [PMID: 40072076 PMCID: PMC11898746 DOI: 10.3390/cells14050347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 02/22/2025] [Accepted: 02/24/2025] [Indexed: 03/15/2025] Open
Abstract
Neurodegenerative diseases encompass a number of very heterogeneous disorders, primarily characterized by neuronal loss and a concomitant decline in neurological function. Examples of this type of clinical condition are Alzheimer's Disease, Parkinson's Disease, Huntington's Disease and Amyotrophic Lateral Sclerosis. Age has been identified as a major risk in the etiology of these disorders, which explains their increased incidence in developed countries. Unfortunately, despite continued and intensive efforts, no cure has yet been found for any of these diseases; reliable markers that allow for an early diagnosis of the disease and the identification of key molecular events leading to disease onset and progression are lacking. Altered adult neurogenesis appears to precede the appearance of severe symptoms. Given the scarcity of human samples and the considerable differences with model species, increasingly complex human stem-cell-based models are being developed. These are shedding light on the molecular alterations that contribute to disease development, facilitating the identification of new clinical targets and providing a screening platform for the testing of candidate drugs. Moreover, the secretome and other promising features of these cell types are being explored, to use them as replacement cells of high plasticity or as co-adjuvant therapy in combinatorial treatments.
Collapse
Affiliation(s)
- Belén Calvo
- Faculty of Health Sciences, Catholic University of Ávila, 05005 Ávila, Spain;
| | - Pierre Schembri-Wismayer
- Department of Anatomy, Faculty of Medicine and Surgery, University of Malta, MSD 2080 Msida, Malta;
| | - María Beatriz Durán-Alonso
- Department of Biochemistry and Molecular Biology and Physiology, Faculty of Medicine, University of Valladolid, 47005 Valladolid, Spain
| |
Collapse
|
4
|
Yang Y, Tao Y. Regenerating Locus Coeruleus-Norepinephrine (LC-NE) Function: A Novel Approach for Neurodegenerative Diseases. Cell Prolif 2025:e13807. [PMID: 39876531 DOI: 10.1111/cpr.13807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 11/16/2024] [Accepted: 01/03/2025] [Indexed: 01/30/2025] Open
Abstract
Pathological changes in the locus coeruleus-norepinephrine (LC-NE) neurons, the major source of norepinephrine (NE, also known as noradrenaline) in the brain, are evident during the early stages of neurodegenerative diseases (ND). Research on both human and animal models have highlighted the therapeutic potential of targeting the LC-NE system to mitigate the progression of ND and alleviate associated psychiatric symptoms. However, the early and widespread degeneration of the LC-NE system presents a significant challenge for direct intervention in ND. Recent advances in regenerative cell therapy offer promising new strategies for ND treatment. The regeneration of LC-NE from pluripotent stem cells (PSCs) could significantly broaden the scope of LC-NE-based therapies for ND. In this review, we delve into the fundamental background and physiological functions of LC-NE. Additionally, we systematically examine the evidence and role of the LC-NE system in the neuropathology of ND and psychiatric diseases over recent years. Notably, we focus on the significance of PSCs-derived LC-NE and its potential impact on ND therapy. A deeper understanding and further investigation into the regeneration of LC-NE function could pave the way for practical and effective treatments for ND.
Collapse
Affiliation(s)
- Yana Yang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, China
| | - Yunlong Tao
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, China
| |
Collapse
|
5
|
Norouzi Esfahani E, Knedlik T, Shin SH, Magalhães Rebelo AP, De Mario A, Vianello C, Persano L, Rampazzo E, Edomi P, Bean C, Brunetti D, Scorrano L, Greco S, Gerdol M, Giacomello M. Remodeling of Mitochondria-Endoplasmic Reticulum Contact Sites Accompanies LUHMES Differentiation. Biomolecules 2025; 15:126. [PMID: 39858520 PMCID: PMC11764118 DOI: 10.3390/biom15010126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 01/09/2025] [Accepted: 01/10/2025] [Indexed: 01/27/2025] Open
Abstract
Neural progenitor cells (NPCs) are often used to study the subcellular mechanisms underlying differentiation into neurons in vitro. Works published to date have focused on the pathways that distinguish undifferentiated NPCs from mature neurons, neglecting the earlier and intermediate stages of this process. Current evidence suggests that mitochondria interaction with the ER is fundamental to a wide range of intracellular processes. However, it is not clear whether and how the mitochondria-ER interactions differ between NPCs and their differentiated counterparts. Here we take advantage of the widely used NPC line LUHMES to provide hints on the mitochondrial dynamic trait changes that occur during the first stage of their maturation into dopaminergic-like neurons. We observed that the morphology of mitochondria, their interaction with the ER, and the expression of several mitochondria-ER contact site resident proteins change, which suggests the potential contribution of mitochondria dynamics to NPC differentiation. Further studies will be needed to explore in depth these changes, and their functional outcomes, which may be relevant to the scientific community focusing on embryonic neurogenesis and developmental neurotoxicity.
Collapse
Affiliation(s)
- Emad Norouzi Esfahani
- Department of Biology, University of Padua, 35131 Padua, Italy; (E.N.E.); (T.K.); (S.H.S.); (A.P.M.R.); (C.V.); (L.S.)
| | - Tomas Knedlik
- Department of Biology, University of Padua, 35131 Padua, Italy; (E.N.E.); (T.K.); (S.H.S.); (A.P.M.R.); (C.V.); (L.S.)
| | - Sang Hun Shin
- Department of Biology, University of Padua, 35131 Padua, Italy; (E.N.E.); (T.K.); (S.H.S.); (A.P.M.R.); (C.V.); (L.S.)
| | - Ana Paula Magalhães Rebelo
- Department of Biology, University of Padua, 35131 Padua, Italy; (E.N.E.); (T.K.); (S.H.S.); (A.P.M.R.); (C.V.); (L.S.)
| | - Agnese De Mario
- Department of Biomedical Science, University of Padua, 35131 Padua, Italy;
| | - Caterina Vianello
- Department of Biology, University of Padua, 35131 Padua, Italy; (E.N.E.); (T.K.); (S.H.S.); (A.P.M.R.); (C.V.); (L.S.)
| | - Luca Persano
- Department of Women’s and Children’s Health, University of Padua, 35128 Padua, Italy; (L.P.); (E.R.)
- Pediatric Research Institute, Città della Speranza Foundation, 35127 Padua, Italy
| | - Elena Rampazzo
- Department of Women’s and Children’s Health, University of Padua, 35128 Padua, Italy; (L.P.); (E.R.)
- Pediatric Research Institute, Città della Speranza Foundation, 35127 Padua, Italy
| | - Paolo Edomi
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy; (P.E.); (S.G.); (M.G.)
| | - Camilla Bean
- Department of Medicine, University of Udine, 33100 Udine, Italy;
| | - Dario Brunetti
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico “C. Besta”, 20126 Milan, Italy;
- Department of Clinical Sciences and Community Health, University of Milan, 20122 Milan, Italy
| | - Luca Scorrano
- Department of Biology, University of Padua, 35131 Padua, Italy; (E.N.E.); (T.K.); (S.H.S.); (A.P.M.R.); (C.V.); (L.S.)
- Veneto Institute of Molecular Medicine, 35129 Padua, Italy
| | - Samuele Greco
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy; (P.E.); (S.G.); (M.G.)
| | - Marco Gerdol
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy; (P.E.); (S.G.); (M.G.)
| | - Marta Giacomello
- Department of Biology, University of Padua, 35131 Padua, Italy; (E.N.E.); (T.K.); (S.H.S.); (A.P.M.R.); (C.V.); (L.S.)
| |
Collapse
|
6
|
Liang Z, Liu W, Cao M, Cui J, Lan J, Ding Y, Zhang T, Yang Z. Epigenetic regulation-mediated disorders in dopamine transporter endocytosis: A novel mechanism for the pathogenesis of Parkinson's disease. Theranostics 2025; 15:2250-2278. [PMID: 39990232 PMCID: PMC11840736 DOI: 10.7150/thno.107436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Accepted: 12/30/2024] [Indexed: 02/25/2025] Open
Abstract
Mechanisms such as DNA methylation, histone modifications, and non-coding RNA regulation may impact the endocytosis of dopamine transporter (DAT) by influencing processes like neuronal survival, thereby contributing to the initiation and progression of Parkinson's Disease (PD). Some small molecule inhibitors or natural bioactive compounds have the potential to modulate epigenetic processes, thereby reversing induced pluripotent stem cells (iPSCs) reprogramming and abnormal differentiation, offering potential therapeutic effects for PD. Although no specific DNA modification enzyme directly regulates DAT endocytosis, enzymes such as DNA methyltransferases (DNMTs) may indirectly influence DAT endocytosis by regulating the expression of genes associated with this process. DNA modifications impact DAT endocytosis by modulating key signaling pathways, including the (protein kinase C) PKC and D2 receptor (D2R) pathways. Key enzymes involved in RNA modifications that influence DAT endocytosis include m6A methyltransferases and other related enzymes. This regulation impacts the synthesis and function of proteins involved in DAT endocytosis, thereby indirectly affecting the process itself. RNA modifications regulate DAT endocytosis through various indirect pathways, as well as histone modifications. Key enzymes influence the expression of genes associated with DAT endocytosis by modulating the chromatin's accessibility and compaction state. These enzymes control the expression of proteins involved in regulating endocytosis, promoting endosome formation, and facilitating recycling processes. Through the modulation exerted by these enzymes, the speed of DAT endocytosis and recycling patterns are indirectly regulated, establishing a crucial epigenetic control point for the regulation of neurotransmitter transport. Based on this understanding, we anticipate that targeting these processes could lead to favorable therapeutic effects for early PD pathogenesis.
Collapse
Affiliation(s)
- Ziqi Liang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201210, China
| | - Wanqing Liu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201210, China
| | - Mian Cao
- Program in Neuroscience and Behavioral Disorders, Duke-NUS Medical School, Singapore, 169857, Singapore; Department of Physiology, National University of Singapore, Singapore, 169857, Singapore
| | - Jiajun Cui
- Department of Biochemistry, College of Medicine, Yichun University, Yichun, Jiangxi 336000, China
| | - Jinshuai Lan
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201210, China
| | - Yue Ding
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201210, China
| | - Tong Zhang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201210, China
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201210, China
| | - Zizhao Yang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201210, China
- Program in Neuroscience and Behavioral Disorders, Duke-NUS Medical School, Singapore, 169857, Singapore; Department of Physiology, National University of Singapore, Singapore, 169857, Singapore
- Department of General Surgery, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, 200137, China
| |
Collapse
|
7
|
Kim TW, Piao J, Bocchi VD, Koo SY, Choi SJ, Chaudhry F, Yang D, Cho HS, Hergenreder E, Perera LR, Joshi S, Mrad ZA, Claros N, Donohue SA, Frank AK, Walsh R, Mosharov EV, Betel D, Tabar V, Studer L. Enhanced yield and subtype identity of hPSC-derived midbrain dopamine neuron by modulation of WNT and FGF18 signaling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.06.631400. [PMID: 39829874 PMCID: PMC11741396 DOI: 10.1101/2025.01.06.631400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
While clinical trials are ongoing using human pluripotent stem cell-derived midbrain dopamine (mDA) neuron precursor grafts in Parkinson's disease (PD), current protocols to derive mDA neurons remain suboptimal. In particular, the yield of TH+ mDA neurons after in vivo grafting and the expression of some mDA neuron and subtype-specific markers can be further improved. For example, characterization of mDA grafts by single cell transcriptomics has yielded only a small proportion of mDA neurons and a considerable fraction of contaminating cell populations. Here we present an optimized mDA neuron differentiation strategy that builds on our clinical grade ("Boost") protocol but includes the addition of FGF18 and IWP2 treatment ("Boost+") at the mDA neurogenesis stage. We demonstrate that Boost+ mDA neurons show higher expression of EN1, PITX3 and ALDH1A1. Improvements in both mDA neurons yield and transcriptional similarity to primary mDA neurons is observed both in vitro and in grafts. Furthermore, grafts are enriched in authentic A9 mDA neurons by single nucSeq. Functional studies in vitro demonstrate increased dopamine production and release and improved electrophysiological properties. In vivo analyses show increased percentages of TH+ mDA neurons resulting in efficient rescue of amphetamine induced rotation behavior in the 6-OHDA rat model and rescue of some motor deficits in non-drug induced assays, including the ladder rung assay that is not improved by Boost mDA neurons. The Boost+ conditions present an optimized protocol with advantages for disease modeling and mDA neuron grafting paradigms.
Collapse
|
8
|
Valdes P, Caldwell AB, Liu Q, Fitzgerald MQ, Ramachandran S, Karch CM, Galasko DR, Yuan SH, Wagner SL, Subramaniam S. Integrative multiomics reveals common endotypes across PSEN1, PSEN2, and APP mutations in familial Alzheimer's disease. Alzheimers Res Ther 2025; 17:5. [PMID: 39754192 PMCID: PMC11699654 DOI: 10.1186/s13195-024-01659-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 12/20/2024] [Indexed: 01/06/2025]
Abstract
BACKGROUND PSEN1, PSEN2, and APP mutations cause Alzheimer's disease (AD) with an early age at onset (AAO) and progressive cognitive decline. PSEN1 mutations are more common and generally have an earlier AAO; however, certain PSEN1 mutations cause a later AAO, similar to those observed in PSEN2 and APP. METHODS We examined whether common disease endotypes exist across these mutations with a later AAO (~ 55 years) using hiPSC-derived neurons from familial Alzheimer's disease (FAD) patients harboring mutations in PSEN1A79V, PSEN2N141I, and APPV717I and mechanistically characterized by integrating RNA-seq and ATAC-seq. RESULTS We identified common disease endotypes, such as dedifferentiation, dysregulation of synaptic signaling, repression of mitochondrial function and metabolism, and inflammation. We ascertained the master transcriptional regulators associated with these endotypes, including REST, ASCL1, and ZIC family members (activation), and NRF1 (repression). CONCLUSIONS FAD mutations share common regulatory changes within endotypes with varying severity, resulting in reversion to a less-differentiated state. The regulatory mechanisms described offer potential targets for therapeutic interventions.
Collapse
Affiliation(s)
- Phoebe Valdes
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, 92093, USA
- Bioengineering Graduate Program, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Andrew B Caldwell
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Qing Liu
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, 92093, USA
- Present Address: Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Michael Q Fitzgerald
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, 92093, USA
- Bioengineering Graduate Program, University of California, San Diego, La Jolla, CA, 92093, USA
| | | | - Celeste M Karch
- Department of Psychiatry, Washington University in St. Louis School of Medicine, St. Louis, MO, 63110, USA
| | - Douglas R Galasko
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Shauna H Yuan
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, 92093, USA
- Present Address: N. Bud Grossman Center for Memory Research and Care, Department of Neurology, University of Minnesota, GRECC, Minneapolis VA Health Care System, Minneapolis, MN, 55417, USA
| | - Steven L Wagner
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, 92093, USA
- VA San Diego Healthcare System, San Diego, CA, 92161, USA
| | - Shankar Subramaniam
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, 92093, USA.
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, 92093, USA.
- Department of Nanoengineering, University of California, San Diego, La Jolla, CA, 92093, USA.
- Department of Computer Science and Engineering, University of California, San Diego, La Jolla, CA, 92093, USA.
| |
Collapse
|
9
|
Vassal M, Martins F, Monteiro B, Tambaro S, Martinez-Murillo R, Rebelo S. Emerging Pro-neurogenic Therapeutic Strategies for Neurodegenerative Diseases: A Review of Pre-clinical and Clinical Research. Mol Neurobiol 2025; 62:46-76. [PMID: 38816676 PMCID: PMC11711580 DOI: 10.1007/s12035-024-04246-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 05/14/2024] [Indexed: 06/01/2024]
Abstract
The neuroscience community has largely accepted the notion that functional neurons can be generated from neural stem cells in the adult brain, especially in two brain regions: the subventricular zone of the lateral ventricles and the subgranular zone in the dentate gyrus of the hippocampus. However, impaired neurogenesis has been observed in some neurodegenerative diseases, particularly in Alzheimer's, Parkinson's, and Huntington's diseases, and also in Lewy Body dementia. Therefore, restoration of neurogenic function in neurodegenerative diseases emerges as a potential therapeutic strategy to counteract, or at least delay, disease progression. Considering this, the present study summarizes the different neuronal niches, provides a collection of the therapeutic potential of different pro-neurogenic strategies in pre-clinical and clinical research, providing details about their possible modes of action, to guide future research and clinical practice.
Collapse
Affiliation(s)
- Mariana Vassal
- Department of Medical Sciences, Institute of Biomedicine (iBiMED), University of Aveiro, Aveiro, Portugal
| | - Filipa Martins
- Department of Medical Sciences, Institute of Biomedicine (iBiMED), University of Aveiro, Aveiro, Portugal
| | - Bruno Monteiro
- Department of Medical Sciences, Institute of Biomedicine (iBiMED), University of Aveiro, Aveiro, Portugal
| | - Simone Tambaro
- Department of Neurobiology, Care Sciences and Society, Division of Neurogeriatrics, Karolinska Institutet, Huddinge, Sweden
| | - Ricardo Martinez-Murillo
- Neurovascular Research Group, Department of Translational Neurobiology, Cajal Institute (CSIC), Madrid, Spain
| | - Sandra Rebelo
- Department of Medical Sciences, Institute of Biomedicine (iBiMED), University of Aveiro, Aveiro, Portugal.
| |
Collapse
|
10
|
Yuan Q, Zhang SC. Circuit integration by transplanted human neurons. Curr Opin Genet Dev 2024; 89:102225. [PMID: 39586651 DOI: 10.1016/j.gde.2024.102225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 06/03/2024] [Accepted: 06/24/2024] [Indexed: 11/27/2024]
Abstract
Transplantation-based cell therapy holds the potential to offer sustained and physiological repair for neurological diseases and injuries, which requires the integration of transplanted neurons into the neural circuits of the human brain. Recent studies involving transplantation of human pluripotent stem cell-derived neural progenitors into the brain of model animals reveal the remarkable capacity of grafted immature human neurons to mature, project axons in a long distance, and form both pre- and postsynaptic connections with host neurons, corresponding to functional recovery. Strikingly, this circuit integration depends largely on the identity of the transplanted cells and may be modified by external stimuli. This realization begs for enriched authentic target cells for transplantation and combination with rehabilitation for better therapeutic outcomes.
Collapse
Affiliation(s)
- Qiang Yuan
- Program in Neuroscience & Behavioral Disorders, Duke-NUS Medical School, Singapore; GK Goh Centre for Neuroscience, Duke-NUS Medical School, Singapore
| | - Su-Chun Zhang
- Program in Neuroscience & Behavioral Disorders, Duke-NUS Medical School, Singapore; GK Goh Centre for Neuroscience, Duke-NUS Medical School, Singapore; Waisman Center, University of Wisconsin-Madison, Madison, WI, USA; Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA; Department of Neurology, School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA.
| |
Collapse
|
11
|
Storm P, Zhang Y, Nilsson F, Fiorenzano A, Krausse N, Åkerblom M, Davidsson M, Yuan J, Kirkeby A, Björklund T, Parmar M. Lineage tracing of stem cell-derived dopamine grafts in a Parkinson's model reveals shared origin of all graft-derived cells. SCIENCE ADVANCES 2024; 10:eadn3057. [PMID: 39423273 PMCID: PMC11488568 DOI: 10.1126/sciadv.adn3057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 09/13/2024] [Indexed: 10/21/2024]
Abstract
Stem cell therapies for Parkinson's disease are at an exciting time of development, and several clinical trials have recently been initiated. Human pluripotent stem cells are differentiated into transplantable dopamine (DA) progenitors which are proliferative at the time of grafting and undergo terminal differentiation and maturation in vivo. While the progenitors are homogeneous at the time of transplantation, they give rise to heterogeneous grafts composed not only of therapeutic DA neurons but also of other mature cell types. The mechanisms for graft diversification are unclear. We used single-nucleus RNA-seq and ATAC-seq to profile DA progenitors before transplantation combined with molecular barcode-based tracing to determine origin and shared lineages of the mature cell types in the grafts. Our data demonstrate that astrocytes, vascular leptomeningeal cells, and DA neurons are the main component of the DAergic grafts, originating from a common progenitor that is tripotent at the time of transplantation.
Collapse
Affiliation(s)
- Petter Storm
- Developmental and Regenerative Neurobiology, Wallenberg Neuroscience Center, Lund Stem Cell Center, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Yu Zhang
- Developmental and Regenerative Neurobiology, Wallenberg Neuroscience Center, Lund Stem Cell Center, Department of Experimental Medical Science, Lund University, Lund, Sweden
- Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW) and Department of Neuroscience, University of Copenhagen, Copenhagen, Denmark
- Wallenberg Center for Molecular Medicine (WCMM) and Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Fredrik Nilsson
- Developmental and Regenerative Neurobiology, Wallenberg Neuroscience Center, Lund Stem Cell Center, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Alessandro Fiorenzano
- Developmental and Regenerative Neurobiology, Wallenberg Neuroscience Center, Lund Stem Cell Center, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Niklas Krausse
- Division of Molecular Hematology, Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Malin Åkerblom
- Molecular Neuromodulation, Wallenberg Neuroscience Center, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Marcus Davidsson
- Molecular Neuromodulation, Wallenberg Neuroscience Center, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Joan Yuan
- Division of Molecular Hematology, Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Agnete Kirkeby
- Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW) and Department of Neuroscience, University of Copenhagen, Copenhagen, Denmark
- Wallenberg Center for Molecular Medicine (WCMM) and Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Tomas Björklund
- Molecular Neuromodulation, Wallenberg Neuroscience Center, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Malin Parmar
- Developmental and Regenerative Neurobiology, Wallenberg Neuroscience Center, Lund Stem Cell Center, Department of Experimental Medical Science, Lund University, Lund, Sweden
| |
Collapse
|
12
|
Brien H, Lee JC, Sharma J, Hamann CA, Spetz MR, Lippmann ES, Brunger JM. Templated Pluripotent Stem Cell Differentiation via Substratum-Guided Artificial Signaling. ACS Biomater Sci Eng 2024; 10:6465-6482. [PMID: 39352143 PMCID: PMC11480943 DOI: 10.1021/acsbiomaterials.4c00885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 09/20/2024] [Accepted: 09/24/2024] [Indexed: 10/15/2024]
Abstract
The emerging field of synthetic morphogenesis implements synthetic biology tools to investigate the minimal cellular processes sufficient for orchestrating key developmental events. As the field continues to grow, there is a need for new tools that enable scientists to uncover nuances in the molecular mechanisms driving cell fate patterning that emerge during morphogenesis. Here, we present a platform that combines cell engineering with biomaterial design to potentiate artificial signaling in pluripotent stem cells (PSCs). This platform, referred to as PSC-MATRIX, extends the use of programmable biomaterials to PSCs competent to activate morphogen production through orthogonal signaling, giving rise to the opportunity to probe developmental events by initiating morphogenetic programs in a spatially constrained manner through non-native signaling channels. We show that the PSC-MATRIX platform enables temporal and spatial control of transgene expression in response to bulk, soluble inputs in synthetic Notch (synNotch)-engineered human PSCs for an extended culture of up to 11 days. Furthermore, we used PSC-MATRIX to regulate multiple differentiation events via material-mediated artificial signaling in engineered PSCs using the orthogonal ligand green fluorescent protein, highlighting the potential of this platform for probing and guiding fate acquisition. Overall, this platform offers a synthetic approach to interrogate the molecular mechanisms driving PSC differentiation that could be applied to a variety of differentiation protocols.
Collapse
Affiliation(s)
- Hannah
J. Brien
- Department
of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Joanne C. Lee
- Department
of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Jhanvi Sharma
- Department
of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Catherine A. Hamann
- Department
of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Madeline R. Spetz
- Department
of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Ethan S. Lippmann
- Department
of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee 37235, United States
- Center
for Stem Cell Biology, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Jonathan M. Brunger
- Department
of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee 37235, United States
- Center
for Stem Cell Biology, Vanderbilt University, Nashville, Tennessee 37235, United States
| |
Collapse
|
13
|
Lu P, Ruan D, Huang M, Tian M, Zhu K, Gan Z, Xiao Z. Harnessing the potential of hydrogels for advanced therapeutic applications: current achievements and future directions. Signal Transduct Target Ther 2024; 9:166. [PMID: 38945949 PMCID: PMC11214942 DOI: 10.1038/s41392-024-01852-x] [Citation(s) in RCA: 73] [Impact Index Per Article: 73.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 04/02/2024] [Accepted: 04/28/2024] [Indexed: 07/02/2024] Open
Abstract
The applications of hydrogels have expanded significantly due to their versatile, highly tunable properties and breakthroughs in biomaterial technologies. In this review, we cover the major achievements and the potential of hydrogels in therapeutic applications, focusing primarily on two areas: emerging cell-based therapies and promising non-cell therapeutic modalities. Within the context of cell therapy, we discuss the capacity of hydrogels to overcome the existing translational challenges faced by mainstream cell therapy paradigms, provide a detailed discussion on the advantages and principal design considerations of hydrogels for boosting the efficacy of cell therapy, as well as list specific examples of their applications in different disease scenarios. We then explore the potential of hydrogels in drug delivery, physical intervention therapies, and other non-cell therapeutic areas (e.g., bioadhesives, artificial tissues, and biosensors), emphasizing their utility beyond mere delivery vehicles. Additionally, we complement our discussion on the latest progress and challenges in the clinical application of hydrogels and outline future research directions, particularly in terms of integration with advanced biomanufacturing technologies. This review aims to present a comprehensive view and critical insights into the design and selection of hydrogels for both cell therapy and non-cell therapies, tailored to meet the therapeutic requirements of diverse diseases and situations.
Collapse
Affiliation(s)
- Peilin Lu
- Nanomedicine Research Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, PR China
- Department of Minimally Invasive Interventional Radiology, and Laboratory of Interventional Radiology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, PR China
| | - Dongxue Ruan
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Department of Respiratory and Critical Care Medicine, Guangzhou Institute for Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, PR China
| | - Meiqi Huang
- Department of Minimally Invasive Interventional Radiology, and Laboratory of Interventional Radiology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, PR China
| | - Mi Tian
- Department of Stomatology, Chengdu Second People's Hospital, Chengdu, 610021, PR China
| | - Kangshun Zhu
- Department of Minimally Invasive Interventional Radiology, and Laboratory of Interventional Radiology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, PR China.
| | - Ziqi Gan
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, 510055, PR China.
| | - Zecong Xiao
- Nanomedicine Research Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, PR China.
| |
Collapse
|
14
|
Carraro C, Montgomery JV, Klimmt J, Paquet D, Schultze JL, Beyer MD. Tackling neurodegeneration in vitro with omics: a path towards new targets and drugs. Front Mol Neurosci 2024; 17:1414886. [PMID: 38952421 PMCID: PMC11215216 DOI: 10.3389/fnmol.2024.1414886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 06/04/2024] [Indexed: 07/03/2024] Open
Abstract
Drug discovery is a generally inefficient and capital-intensive process. For neurodegenerative diseases (NDDs), the development of novel therapeutics is particularly urgent considering the long list of late-stage drug candidate failures. Although our knowledge on the pathogenic mechanisms driving neurodegeneration is growing, additional efforts are required to achieve a better and ultimately complete understanding of the pathophysiological underpinnings of NDDs. Beyond the etiology of NDDs being heterogeneous and multifactorial, this process is further complicated by the fact that current experimental models only partially recapitulate the major phenotypes observed in humans. In such a scenario, multi-omic approaches have the potential to accelerate the identification of new or repurposed drugs against a multitude of the underlying mechanisms driving NDDs. One major advantage for the implementation of multi-omic approaches in the drug discovery process is that these overarching tools are able to disentangle disease states and model perturbations through the comprehensive characterization of distinct molecular layers (i.e., genome, transcriptome, proteome) up to a single-cell resolution. Because of recent advances increasing their affordability and scalability, the use of omics technologies to drive drug discovery is nascent, but rapidly expanding in the neuroscience field. Combined with increasingly advanced in vitro models, which particularly benefited from the introduction of human iPSCs, multi-omics are shaping a new paradigm in drug discovery for NDDs, from disease characterization to therapeutics prediction and experimental screening. In this review, we discuss examples, main advantages and open challenges in the use of multi-omic approaches for the in vitro discovery of targets and therapies against NDDs.
Collapse
Affiliation(s)
- Caterina Carraro
- Systems Medicine, Deutsches Zentrum für Neurodegenerative Erkrankungen e.V. (DZNE), Bonn, Germany
- Genomics and Immunoregulation, Life & Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany
| | - Jessica V. Montgomery
- Systems Medicine, Deutsches Zentrum für Neurodegenerative Erkrankungen e.V. (DZNE), Bonn, Germany
| | - Julien Klimmt
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Munich, Germany
| | - Dominik Paquet
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Joachim L. Schultze
- Systems Medicine, Deutsches Zentrum für Neurodegenerative Erkrankungen e.V. (DZNE), Bonn, Germany
- Genomics and Immunoregulation, Life & Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany
- PRECISE, Platform for Single Cell Genomics and Epigenomics at the German Center for Neurodegenerative Diseases and the University of Bonn and West German Genome Center, Bonn, Germany
| | - Marc D. Beyer
- Systems Medicine, Deutsches Zentrum für Neurodegenerative Erkrankungen e.V. (DZNE), Bonn, Germany
- PRECISE, Platform for Single Cell Genomics and Epigenomics at the German Center for Neurodegenerative Diseases and the University of Bonn and West German Genome Center, Bonn, Germany
- Immunogenomics & Neurodegeneration, Deutsches Zentrum für Neurodegenerative Erkrankungen e.V. (DZNE), Bonn, Germany
| |
Collapse
|
15
|
李 洋, 徐 佳, 姜 诚, 陈 子, 陈 颖, 应 梦, 王 澳, 马 彩, 王 春, 郭 俣, 刘 长. [Rho kinase inhibitor Y27632 promotes survival of human induced pluripotent stem cells during differentiation into functional midbrain dopaminergic progenitor cells in vitro]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2024; 44:236-243. [PMID: 38501408 PMCID: PMC10954535 DOI: 10.12122/j.issn.1673-4254.2024.02.05] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Indexed: 03/20/2024]
Abstract
OBJECTIVE To improve the efficiency of induced differentiation of primitive neural epithelial cells derived from human induced pluripotent stem cells (hiPSCs-NECs) into functional midbrain dopaminergic progenitor cells (DAPs). METHODS HiPSCs were cultured in mTeSRTM medium containing DMH1 (10 μmol/L), SB431542 (10 μmol/L), SHH (200 ng/mL), FGF8 (100 ng/mL), purmorphamine (2 μmol/L), CHIR99021 (3 μmol/L), and N2 (1%) for 12 days to induce their differentiation into primitive neuroepithelial cells (NECs). The hiPSCs-NECs were digested with collagenase Ⅳ and then cultured in neurobasal medium supplemented with 1% N2, 2% B27-A, BDNF (10 ng/mL), GDNF (10 ng/mL), AA, TGF-β, cAMP, and 1% GlutaMax in the presence of different concentrations of Rho kinase inhibitor Y27632, and the culture medium was changed the next day to remove Y27632. Continuous induction was performed until day 28 to obtain DAPs. RESULTS Human iPSCs expressed the pluripotency markers OCT4, SOX2, Nanog, and SSEA1 and were positive for alkaline phosphatase staining. The hiPSCs-NECs were obtained on day 13 in the form of neural rosettes expressing neuroepithelial markers SOX2, nestin, and PAX6. In digested hiPSCs-NECs, the addition of 5 μmol/L Y27632 significantly promoted survival of the adherent cells, increased cell viability and the proportion of S-phase cells (P < 0.01), and reduced the rate of apoptotic cells (P < 0.05). On day 28 of induction, the obtained cells highly expressed the specific markers of DAPS (TH, FOXA2, NURR1, and Tuj1). CONCLUSION Treatment with Y27632 (5 μmol/L) for 24 h significantly promotes the survival of human iPSCs-NECs during their differentiation into DPAs without affecting the cell differentiation, which indirectly enhances the efficiency of cell differentiation.
Collapse
Affiliation(s)
- 洋洋 李
- 蚌埠医科大学安徽省神经再生技术与医用新材料工程研究中心,安徽 蚌埠 233000Anhui Engineering Research Center for Neural Regeneration Technology and Medical New Materials, Bengbu Medical University, Bengbu 233000, China
| | - 佳佳 徐
- 蚌埠医科大学安徽省神经再生技术与医用新材料工程研究中心,安徽 蚌埠 233000Anhui Engineering Research Center for Neural Regeneration Technology and Medical New Materials, Bengbu Medical University, Bengbu 233000, China
| | - 诚诚 姜
- 蚌埠医科大学安徽省神经再生技术与医用新材料工程研究中心,安徽 蚌埠 233000Anhui Engineering Research Center for Neural Regeneration Technology and Medical New Materials, Bengbu Medical University, Bengbu 233000, China
| | - 子龙 陈
- 蚌埠医科大学安徽省神经再生技术与医用新材料工程研究中心,安徽 蚌埠 233000Anhui Engineering Research Center for Neural Regeneration Technology and Medical New Materials, Bengbu Medical University, Bengbu 233000, China
| | - 颖 陈
- 蚌埠医科大学安徽省神经再生技术与医用新材料工程研究中心,安徽 蚌埠 233000Anhui Engineering Research Center for Neural Regeneration Technology and Medical New Materials, Bengbu Medical University, Bengbu 233000, China
| | - 梦娇 应
- 蚌埠医科大学安徽省神经再生技术与医用新材料工程研究中心,安徽 蚌埠 233000Anhui Engineering Research Center for Neural Regeneration Technology and Medical New Materials, Bengbu Medical University, Bengbu 233000, China
| | - 澳 王
- 蚌埠医科大学生命科学学院,安徽 蚌埠 233000School of Life Sciences, Bengbu Medical University, Bengbu 233000, China
| | - 彩云 马
- 蚌埠医科大学安徽省神经再生技术与医用新材料工程研究中心,安徽 蚌埠 233000Anhui Engineering Research Center for Neural Regeneration Technology and Medical New Materials, Bengbu Medical University, Bengbu 233000, China
| | - 春景 王
- 蚌埠医科大学安徽省神经再生技术与医用新材料工程研究中心,安徽 蚌埠 233000Anhui Engineering Research Center for Neural Regeneration Technology and Medical New Materials, Bengbu Medical University, Bengbu 233000, China
| | - 俣 郭
- 蚌埠医科大学生命科学学院,安徽 蚌埠 233000School of Life Sciences, Bengbu Medical University, Bengbu 233000, China
| | - 长青 刘
- 蚌埠医科大学安徽省神经再生技术与医用新材料工程研究中心,安徽 蚌埠 233000Anhui Engineering Research Center for Neural Regeneration Technology and Medical New Materials, Bengbu Medical University, Bengbu 233000, China
| |
Collapse
|
16
|
Cardo LF, Monzón-Sandoval J, Li Z, Webber C, Li M. Single-Cell Transcriptomics and In Vitro Lineage Tracing Reveals Differential Susceptibility of Human iPSC-Derived Midbrain Dopaminergic Neurons in a Cellular Model of Parkinson's Disease. Cells 2023; 12:2860. [PMID: 38132179 PMCID: PMC10741976 DOI: 10.3390/cells12242860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/11/2023] [Accepted: 12/15/2023] [Indexed: 12/23/2023] Open
Abstract
Advances in stem cell technologies open up new avenues for modelling development and diseases. The success of these pursuits, however, relies on the use of cells most relevant to those targeted by the disease of interest, for example, midbrain dopaminergic neurons for Parkinson's disease. In the present study, we report the generation of a human induced pluripotent stem cell (iPSC) line capable of purifying and tracing nascent midbrain dopaminergic progenitors and their differentiated progeny via the expression of a Blue Fluorescent Protein (BFP). This was achieved by CRISPR/Cas9-assisted knock-in of BFP and Cre into the safe harbour locus AAVS1 and an early midbrain dopaminergic lineage marker gene LMX1A, respectively. Immunocytochemical analysis and single-cell RNA sequencing of iPSC-derived neural cultures confirm developmental recapitulation of the human fetal midbrain and high-quality midbrain cells. By modelling Parkinson's disease-related drug toxicity using 1-Methyl-4-phenylpyridinium (MPP+), we showed a preferential reduction of BFP+ cells, a finding demonstrated independently by cell death assays and single-cell transcriptomic analysis of MPP+ treated neural cultures. Together, these results highlight the importance of disease-relevant cell types in stem cell modelling.
Collapse
Affiliation(s)
- Lucia F. Cardo
- Dementia Research Institute, School of Medicine, Cardiff University, Hadyn Ellis Building, Maindy Road, Cardiff CF24 4HQ, UK; (L.F.C.); (J.M.-S.); (Z.L.)
| | - Jimena Monzón-Sandoval
- Dementia Research Institute, School of Medicine, Cardiff University, Hadyn Ellis Building, Maindy Road, Cardiff CF24 4HQ, UK; (L.F.C.); (J.M.-S.); (Z.L.)
| | - Zongze Li
- Dementia Research Institute, School of Medicine, Cardiff University, Hadyn Ellis Building, Maindy Road, Cardiff CF24 4HQ, UK; (L.F.C.); (J.M.-S.); (Z.L.)
- Neuroscience and Mental Health Innovation Institute, School of Medicine, Cardiff University, Hadyn Ellis Building, Maindy Road, Cardiff CF24 4HQ, UK
| | - Caleb Webber
- Dementia Research Institute, School of Medicine, Cardiff University, Hadyn Ellis Building, Maindy Road, Cardiff CF24 4HQ, UK; (L.F.C.); (J.M.-S.); (Z.L.)
| | - Meng Li
- Neuroscience and Mental Health Innovation Institute, School of Medicine, Cardiff University, Hadyn Ellis Building, Maindy Road, Cardiff CF24 4HQ, UK
| |
Collapse
|
17
|
Maimaitili M, Chen M, Febbraro F, Ucuncu E, Kelly R, Niclis JC, Christiansen JR, Mermet-Joret N, Niculescu D, Lauritsen J, Iannielli A, Klæstrup IH, Jensen UB, Qvist P, Nabavi S, Broccoli V, Nykjær A, Romero-Ramos M, Denham M. Enhanced production of mesencephalic dopaminergic neurons from lineage-restricted human undifferentiated stem cells. Nat Commun 2023; 14:7871. [PMID: 38052784 PMCID: PMC10698156 DOI: 10.1038/s41467-023-43471-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 11/10/2023] [Indexed: 12/07/2023] Open
Abstract
Current differentiation protocols for generating mesencephalic dopaminergic (mesDA) neurons from human pluripotent stem cells result in grafts containing only a small proportion of mesDA neurons when transplanted in vivo. In this study, we develop lineage-restricted undifferentiated stem cells (LR-USCs) from pluripotent stem cells, which enhances their potential for differentiating into caudal midbrain floor plate progenitors and mesDA neurons. Using a ventral midbrain protocol, 69% of LR-USCs become bona fide caudal midbrain floor plate progenitors, compared to only 25% of human embryonic stem cells (hESCs). Importantly, LR-USCs generate significantly more mesDA neurons under midbrain and hindbrain conditions in vitro and in vivo. We demonstrate that midbrain-patterned LR-USC progenitors transplanted into 6-hydroxydopamine-lesioned rats restore function in a clinically relevant non-pharmacological behavioral test, whereas midbrain-patterned hESC-derived progenitors do not. This strategy demonstrates how lineage restriction can prevent the development of undesirable lineages and enhance the conditions necessary for mesDA neuron generation.
Collapse
Affiliation(s)
- Muyesier Maimaitili
- Danish Research Institute of Translational Neuroscience (DANDRITE), Nordic EMBL Partnership for Molecular Medicine, Aarhus University, 8000C, Aarhus, Denmark
- Department of Biomedicine, Aarhus University, 8000C, Aarhus, Denmark
| | - Muwan Chen
- Danish Research Institute of Translational Neuroscience (DANDRITE), Nordic EMBL Partnership for Molecular Medicine, Aarhus University, 8000C, Aarhus, Denmark
- Department of Biomedicine, Aarhus University, 8000C, Aarhus, Denmark
| | - Fabia Febbraro
- Department of Biomedicine, Aarhus University, 8000C, Aarhus, Denmark
- Department of Clinical Genetics, Aarhus University Hospital, 8200, Aarhus, Denmark
| | - Ekin Ucuncu
- Danish Research Institute of Translational Neuroscience (DANDRITE), Nordic EMBL Partnership for Molecular Medicine, Aarhus University, 8000C, Aarhus, Denmark
- Department of Biomedicine, Aarhus University, 8000C, Aarhus, Denmark
| | - Rachel Kelly
- Danish Research Institute of Translational Neuroscience (DANDRITE), Nordic EMBL Partnership for Molecular Medicine, Aarhus University, 8000C, Aarhus, Denmark
- Department of Biomedicine, Aarhus University, 8000C, Aarhus, Denmark
| | | | | | - Noëmie Mermet-Joret
- Danish Research Institute of Translational Neuroscience (DANDRITE), Nordic EMBL Partnership for Molecular Medicine, Aarhus University, 8000C, Aarhus, Denmark
- Department of Molecular Biology and Genetics, Aarhus University, 8000C, Aarhus, Denmark
- Center of Excellence PROMEMO, Aarhus University, Aarhus, Denmark
| | - Dragos Niculescu
- Danish Research Institute of Translational Neuroscience (DANDRITE), Nordic EMBL Partnership for Molecular Medicine, Aarhus University, 8000C, Aarhus, Denmark
- Department of Biomedicine, Aarhus University, 8000C, Aarhus, Denmark
- Center of Excellence PROMEMO, Aarhus University, Aarhus, Denmark
| | - Johanne Lauritsen
- Danish Research Institute of Translational Neuroscience (DANDRITE), Nordic EMBL Partnership for Molecular Medicine, Aarhus University, 8000C, Aarhus, Denmark
- Department of Biomedicine, Aarhus University, 8000C, Aarhus, Denmark
| | - Angelo Iannielli
- Stem Cell and Neurogenesis Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132, Milan, Italy
- CNR Institute of Neuroscience, 20129, Milan, Italy
| | - Ida H Klæstrup
- Danish Research Institute of Translational Neuroscience (DANDRITE), Nordic EMBL Partnership for Molecular Medicine, Aarhus University, 8000C, Aarhus, Denmark
- Department of Biomedicine, Aarhus University, 8000C, Aarhus, Denmark
| | - Uffe Birk Jensen
- Department of Biomedicine, Aarhus University, 8000C, Aarhus, Denmark
- Department of Clinical Genetics, Aarhus University Hospital, 8200, Aarhus, Denmark
| | - Per Qvist
- Department of Biomedicine, Aarhus University, 8000C, Aarhus, Denmark
- Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, 8000C, Aarhus, Denmark
- Centre for Integrative Sequencing, iSEQ, Aarhus University, 8000C, Aarhus, Denmark
- Centre for Genomics and Personalized Medicine, CGPM, Aarhus University, 8000C, Aarhus, Denmark
| | - Sadegh Nabavi
- Danish Research Institute of Translational Neuroscience (DANDRITE), Nordic EMBL Partnership for Molecular Medicine, Aarhus University, 8000C, Aarhus, Denmark
- Department of Molecular Biology and Genetics, Aarhus University, 8000C, Aarhus, Denmark
- Center of Excellence PROMEMO, Aarhus University, Aarhus, Denmark
| | - Vania Broccoli
- Stem Cell and Neurogenesis Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132, Milan, Italy
- CNR Institute of Neuroscience, 20129, Milan, Italy
| | - Anders Nykjær
- Danish Research Institute of Translational Neuroscience (DANDRITE), Nordic EMBL Partnership for Molecular Medicine, Aarhus University, 8000C, Aarhus, Denmark
- Department of Biomedicine, Aarhus University, 8000C, Aarhus, Denmark
- Center of Excellence PROMEMO, Aarhus University, Aarhus, Denmark
| | - Marina Romero-Ramos
- Danish Research Institute of Translational Neuroscience (DANDRITE), Nordic EMBL Partnership for Molecular Medicine, Aarhus University, 8000C, Aarhus, Denmark
- Department of Biomedicine, Aarhus University, 8000C, Aarhus, Denmark
| | - Mark Denham
- Danish Research Institute of Translational Neuroscience (DANDRITE), Nordic EMBL Partnership for Molecular Medicine, Aarhus University, 8000C, Aarhus, Denmark.
- Department of Biomedicine, Aarhus University, 8000C, Aarhus, Denmark.
| |
Collapse
|
18
|
Offen N, Filatova A, Nuber UA. Enrichment of FGF8-expressing cells from neurally induced human pluripotent stem cell cultures. Stem Cell Reports 2023; 18:2240-2253. [PMID: 37922914 PMCID: PMC10679777 DOI: 10.1016/j.stemcr.2023.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 10/05/2023] [Accepted: 10/09/2023] [Indexed: 11/07/2023] Open
Abstract
In early vertebrate development, organizer regions-groups of cells that signal to and thereby influence neighboring cells by secreted morphogens-play pivotal roles in the establishment and maintenance of cell identities within defined tissue territories. The midbrain-hindbrain organizer drives regionalization of neural tissue into midbrain and hindbrain territories with fibroblast growth factor 8 (FGF8) acting as a key morphogen. This organizer has been extensively studied in chicken, mouse, and zebrafish. Here, we demonstrate the enrichment of FGF8-expressing cells from human pluripotent stem cells (hPSCs), cultured as attached embryoid bodies using antibodies that recognize "Similar Expression to Fgf" (SEF) and Frizzled proteins. The arrangement of cells in embryoid body subsets of these cultures and the gene expression profile of the FGF8-expressing population show certain similarities to the midbrain-hindbrain organizer in animal models. In the embryonic chick brain, the enriched cell population induces formation of midbrain structures, consistent with FGF8-organizing capability.
Collapse
Affiliation(s)
- Nils Offen
- Stem Cell and Developmental Biology, Technical University of Darmstadt, 64287 Darmstadt, Germany
| | - Alina Filatova
- Stem Cell and Developmental Biology, Technical University of Darmstadt, 64287 Darmstadt, Germany
| | - Ulrike A Nuber
- Stem Cell and Developmental Biology, Technical University of Darmstadt, 64287 Darmstadt, Germany.
| |
Collapse
|
19
|
Colvett I, Gilmore A, Guzman S, Ledreux A, Quintero JE, Ginjupally DR, Gurwell JA, Slevin JT, Guduru Z, Gerhardt GA, van Horne CG, Granholm AC. Recipient Reaction and Composition of Autologous Sural Nerve Tissue Grafts into the Human Brain. J Clin Med 2023; 12:6121. [PMID: 37834764 PMCID: PMC10573749 DOI: 10.3390/jcm12196121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 09/12/2023] [Accepted: 09/19/2023] [Indexed: 10/15/2023] Open
Abstract
Parkinson's disease (PD) is a severe neurological disease for which there is no effective treatment or cure, and therefore it remains an unmet need in medicine. We present data from four participants who received autologous transplantation of small pieces of sural nerve tissue into either the basal forebrain containing the nucleus basalis of Meynert (NBM) or the midbrain substantia nigra (SN). The grafts did not exhibit significant cell death or severe host-tissue reaction up to 55 months post-grafting and contained peripheral cells. Dopaminergic neurites showed active growth in the graft area and into the graft in the SN graft, and cholinergic neurites were abundant near the graft in the NBM. These results provide a histological basis for changes in clinical features after autologous peripheral nerve tissue grafting into the NBM or SN in PD.
Collapse
Affiliation(s)
- Isaac Colvett
- Department of Neurosurgery, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (I.C.); (A.G.); (A.L.)
| | - Anah Gilmore
- Department of Neurosurgery, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (I.C.); (A.G.); (A.L.)
| | - Samuel Guzman
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA;
| | - Aurélie Ledreux
- Department of Neurosurgery, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (I.C.); (A.G.); (A.L.)
| | - Jorge E. Quintero
- Brain Restoration Center, University of Kentucky, Lexington, KY 40536, USA; (J.E.Q.); (J.A.G.); (J.T.S.); (G.A.G.); (C.G.v.H.)
- Department of Neurosurgery, University of Kentucky, Lexington, KY 40536, USA;
- Department of Neuroscience, University of Kentucky, Lexington, KY 40536, USA
| | - Dhanunjaya Rao Ginjupally
- Department of Neurosurgery, University of Kentucky, Lexington, KY 40536, USA;
- Department of Neurosurgery, Krishna Institute of Medical Sciences, Secunderabad 500003, Telangana, India
| | - Julie A. Gurwell
- Brain Restoration Center, University of Kentucky, Lexington, KY 40536, USA; (J.E.Q.); (J.A.G.); (J.T.S.); (G.A.G.); (C.G.v.H.)
- Department of Neurology, University of Kentucky, Lexington, KY 40536, USA;
| | - John T. Slevin
- Brain Restoration Center, University of Kentucky, Lexington, KY 40536, USA; (J.E.Q.); (J.A.G.); (J.T.S.); (G.A.G.); (C.G.v.H.)
- Department of Neurology, University of Kentucky, Lexington, KY 40536, USA;
| | - Zain Guduru
- Department of Neurology, University of Kentucky, Lexington, KY 40536, USA;
| | - Greg A. Gerhardt
- Brain Restoration Center, University of Kentucky, Lexington, KY 40536, USA; (J.E.Q.); (J.A.G.); (J.T.S.); (G.A.G.); (C.G.v.H.)
- Department of Neurosurgery, University of Kentucky, Lexington, KY 40536, USA;
- Department of Neuroscience, University of Kentucky, Lexington, KY 40536, USA
- Department of Neurology, University of Kentucky, Lexington, KY 40536, USA;
| | - Craig G. van Horne
- Brain Restoration Center, University of Kentucky, Lexington, KY 40536, USA; (J.E.Q.); (J.A.G.); (J.T.S.); (G.A.G.); (C.G.v.H.)
- Department of Neurosurgery, University of Kentucky, Lexington, KY 40536, USA;
- Department of Neuroscience, University of Kentucky, Lexington, KY 40536, USA
| | - Ann-Charlotte Granholm
- Department of Neurosurgery, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (I.C.); (A.G.); (A.L.)
| |
Collapse
|
20
|
Chen M, Niclis JC, Denham M. Protocol for generating reproducible miniaturized controlled midbrain organoids. STAR Protoc 2023; 4:102451. [PMID: 37481727 PMCID: PMC10382973 DOI: 10.1016/j.xpro.2023.102451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/07/2023] [Accepted: 06/20/2023] [Indexed: 07/25/2023] Open
Abstract
Here, we present a protocol for generating miniaturized controlled midbrain organoids (MiCOs) of reproducible size and cellular composition, without a necrotic center. We describe steps for maintaining and passaging human pluripotent stem cells, generating MiCOs using AggreWell™400, and maintaining them in an EB-Disk360on an orbital shaker, eliminating the need for Matrigel or a spinner flask and preventing organoid fusion. We then detail organoid collection for different endpoint analysis. This protocol is suitable for compound screening and disease modeling studies.
Collapse
Affiliation(s)
- Muwan Chen
- Danish Research Institute of Translational Neuroscience (DANDRITE), Nordic EMBL Partnership for Molecular Medicine, Aarhus University, 8000C Aarhus, Denmark; Department of Biomedicine, Aarhus University, 8000C Aarhus, Denmark.
| | | | - Mark Denham
- Danish Research Institute of Translational Neuroscience (DANDRITE), Nordic EMBL Partnership for Molecular Medicine, Aarhus University, 8000C Aarhus, Denmark; Department of Biomedicine, Aarhus University, 8000C Aarhus, Denmark.
| |
Collapse
|
21
|
Tam RW, Keung AJ. Profiling transcriptomic responses of human stem cell-derived medium spiny neuron-like cells to exogenous phasic and tonic neurotransmitters. Mol Cell Neurosci 2023; 126:103876. [PMID: 37385515 PMCID: PMC10528483 DOI: 10.1016/j.mcn.2023.103876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 06/06/2023] [Accepted: 06/24/2023] [Indexed: 07/01/2023] Open
Abstract
Transcriptomic responses to neurotransmitters contribute to the complex processes driving memory and addiction. Advances in both measurement methods and experimental models continue to improve our understanding of this regulatory layer. Here we focus on the experimental potential of stem cell derived neurons, currently the only ethical model that can be used in reductionist and experimentally perturbable studies of human cells. Prior work has focused on generating distinct cell types from human stem cells, and has also shown their utility in modeling development and cellular phenotypes related to neurodegeneration. Here we seek an understanding of how stem cell derived neural cultures respond to perturbations experienced during development and disease progression. This work profiles transcriptomic responses of human medium spiny neuron-like cells with three specific goals. We first characterize transcriptomic responses to dopamine and dopamine receptor agonists and antagonists presented in dosing patterns mimicking acute, chronic, and withdrawal regimens. We also assess transcriptomic responses to low and persistent tonic levels of dopamine, acetylcholine, and glutamate to better mimic the in vivo environment. Finally, we identify similar and distinct responses between hMSN-like cells derived from H9 and H1 stem cell lines, providing some context for the extent of variability these types of systems will likely pose for experimentalists. The results here suggest future optimizations of human stem cell derived neurons to increase their in vivo relevance and the biological insights that can be garnered from these models.
Collapse
Affiliation(s)
- Ryan W Tam
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27606, United States of America
| | - Albert J Keung
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27606, United States of America.
| |
Collapse
|
22
|
Nakamura R, Nonaka R, Oyama G, Jo T, Kamo H, Nuermaimaiti M, Akamatsu W, Ishikawa KI, Hattori N. A defined method for differentiating human iPSCs into midbrain dopaminergic progenitors that safely restore motor deficits in Parkinson's disease. Front Neurosci 2023; 17:1202027. [PMID: 37502682 PMCID: PMC10368972 DOI: 10.3389/fnins.2023.1202027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 06/20/2023] [Indexed: 07/29/2023] Open
Abstract
Background Parkinson's disease (PD) is a progressive neurodegenerative condition that primarily affects motor functions; it is caused by the loss of midbrain dopaminergic (mDA) neurons. The therapeutic effects of transplanting human-induced pluripotent stem cell (iPSC)-derived mDA neural progenitor cells in animal PD models are known and are being evaluated in an ongoing clinical trial. However, However, improvements in the safety and efficiency of differentiation-inducing methods are crucial for providing a larger scale of cell therapy studies. This study aimed to investigate the usefulness of dopaminergic progenitor cells derived from human iPSCs by our previously reported method, which promotes differentiation and neuronal maturation by treating iPSCs with three inhibitors at the start of induction. Methods Healthy subject-derived iPS cells were induced into mDA progenitor cells by the CTraS-mediated method we previously reported, and their proprieties and dopaminergic differentiation efficiency were examined in vitro. Then, the induced mDA progenitors were transplanted into 6-hydroxydopamine-lesioned PD model mice, and their efficacy in improving motor function, cell viability, and differentiation ability in vivo was evaluated for 16 weeks. Results Approximately ≥80% of cells induced by this method without sorting expressed mDA progenitor markers and differentiated primarily into A9 dopaminergic neurons in vitro. After transplantation in 6-hydroxydopamine-lesioned PD model mice, more than 90% of the engrafted cells differentiated into the lineage of mDA neurons, and approximately 15% developed into mature mDA neurons without tumour formation. The grafted PD model mice also demonstrated significantly improved motor functions. Conclusion This study suggests that the differentiation protocol for the preparation of mDA progenitors is a promising option for cell therapy in patients with PD.
Collapse
Affiliation(s)
- Ryota Nakamura
- Department of Neurology, Faculty of Medicine, Juntendo University, Tokyo, Japan
| | - Risa Nonaka
- Department of Neurology, Faculty of Medicine, Juntendo University, Tokyo, Japan
- Department of Diagnosis, Prevention and Treatment of Dementia, Graduate School of Medicine, Juntendo University, Tokyo, Japan
- Department of Clinical Data of Parkinson’s Disease, Graduate School of Medicine, Juntendo University, Tokyo, Japan
| | - Genko Oyama
- Department of Neurology, Faculty of Medicine, Juntendo University, Tokyo, Japan
| | - Takayuki Jo
- Department of Neurology, Faculty of Medicine, Juntendo University, Tokyo, Japan
| | - Hikaru Kamo
- Department of Neurology, Faculty of Medicine, Juntendo University, Tokyo, Japan
| | - Maierdanjiang Nuermaimaiti
- Department of Neurology, Faculty of Medicine, Juntendo University, Tokyo, Japan
- Department of Clinical Data of Parkinson’s Disease, Graduate School of Medicine, Juntendo University, Tokyo, Japan
| | - Wado Akamatsu
- Center for Genomic and Regenerative Medicine, Graduate School of Medicine, Juntendo University, Tokyo, Japan
| | - Kei-ichi Ishikawa
- Department of Neurology, Faculty of Medicine, Juntendo University, Tokyo, Japan
- Center for Genomic and Regenerative Medicine, Graduate School of Medicine, Juntendo University, Tokyo, Japan
- Department of Research and Development for Organoids, School of Medicine, Juntendo University, Tokyo, Japan
| | - Nobutaka Hattori
- Department of Neurology, Faculty of Medicine, Juntendo University, Tokyo, Japan
- Department of Diagnosis, Prevention and Treatment of Dementia, Graduate School of Medicine, Juntendo University, Tokyo, Japan
- Department of Clinical Data of Parkinson’s Disease, Graduate School of Medicine, Juntendo University, Tokyo, Japan
- Center for Genomic and Regenerative Medicine, Graduate School of Medicine, Juntendo University, Tokyo, Japan
- Department of Research and Development for Organoids, School of Medicine, Juntendo University, Tokyo, Japan
- Neurodegenerative Disorders Collaborative Laboratory, RIKEN Center for Brain Science, Saitama, Japan
| |
Collapse
|
23
|
Park TY, Jeon J, Lee N, Kim J, Song B, Kim JH, Lee SK, Liu D, Cha Y, Kim M, Leblanc P, Herrington TM, Carter BS, Schweitzer JS, Kim KS. Co-transplantation of autologous T reg cells in a cell therapy for Parkinson's disease. Nature 2023; 619:606-615. [PMID: 37438521 PMCID: PMC12012854 DOI: 10.1038/s41586-023-06300-4] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 06/08/2023] [Indexed: 07/14/2023]
Abstract
The specific loss of midbrain dopamine neurons (mDANs) causes major motor dysfunction in Parkinson's disease, which makes cell replacement a promising therapeutic approach1-4. However, poor survival of grafted mDANs remains an obstacle to successful clinical outcomes5-8. Here we show that the surgical procedure itself (referred to here as 'needle trauma') triggers a profound host response that is characterized by acute neuroinflammation, robust infiltration of peripheral immune cells and brain cell death. When midbrain dopamine (mDA) cells derived from human induced pluripotent stem (iPS) cells were transplanted into the rodent striatum, less than 10% of implanted tyrosine hydroxylase (TH)+ mDANs survived at two weeks after transplantation. By contrast, TH- grafted cells mostly survived. Notably, transplantation of autologous regulatory T (Treg) cells greatly modified the response to needle trauma, suppressing acute neuroinflammation and immune cell infiltration. Furthermore, intra-striatal co-transplantation of Treg cells and human-iPS-cell-derived mDA cells significantly protected grafted mDANs from needle-trauma-associated death and improved therapeutic outcomes in rodent models of Parkinson's disease with 6-hydroxydopamine lesions. Co-transplantation with Treg cells also suppressed the undesirable proliferation of TH- grafted cells, resulting in more compact grafts with a higher proportion and higher absolute numbers of TH+ neurons. Together, these data emphasize the importance of the initial inflammatory response to surgical injury in the differential survival of cellular components of the graft, and suggest that co-transplanting autologous Treg cells effectively reduces the needle-trauma-induced death of mDANs, providing a potential strategy to achieve better clinical outcomes for cell therapy in Parkinson's disease.
Collapse
Affiliation(s)
- Tae-Yoon Park
- Molecular Neurobiology Laboratory, Department of Psychiatry and McLean Hospital, Harvard Medical School, Belmont, MA, USA
- Program in Neuroscience, Harvard Medical School, Belmont, MA, USA
| | - Jeha Jeon
- Molecular Neurobiology Laboratory, Department of Psychiatry and McLean Hospital, Harvard Medical School, Belmont, MA, USA
- Program in Neuroscience, Harvard Medical School, Belmont, MA, USA
| | - Nayeon Lee
- Molecular Neurobiology Laboratory, Department of Psychiatry and McLean Hospital, Harvard Medical School, Belmont, MA, USA
- Program in Neuroscience, Harvard Medical School, Belmont, MA, USA
| | - Jisun Kim
- Molecular Neurobiology Laboratory, Department of Psychiatry and McLean Hospital, Harvard Medical School, Belmont, MA, USA
- Program in Neuroscience, Harvard Medical School, Belmont, MA, USA
| | - Bin Song
- Molecular Neurobiology Laboratory, Department of Psychiatry and McLean Hospital, Harvard Medical School, Belmont, MA, USA
- Program in Neuroscience, Harvard Medical School, Belmont, MA, USA
| | - Jung-Ho Kim
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Sang-Kyou Lee
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea
- Good T Cells, Inc., Seoul, Republic of Korea
| | - Dongxin Liu
- Molecular Neurobiology Laboratory, Department of Psychiatry and McLean Hospital, Harvard Medical School, Belmont, MA, USA
- Program in Neuroscience, Harvard Medical School, Belmont, MA, USA
| | - Young Cha
- Molecular Neurobiology Laboratory, Department of Psychiatry and McLean Hospital, Harvard Medical School, Belmont, MA, USA
- Program in Neuroscience, Harvard Medical School, Belmont, MA, USA
| | - Minseon Kim
- Molecular Neurobiology Laboratory, Department of Psychiatry and McLean Hospital, Harvard Medical School, Belmont, MA, USA
- Program in Neuroscience, Harvard Medical School, Belmont, MA, USA
| | - Pierre Leblanc
- Molecular Neurobiology Laboratory, Department of Psychiatry and McLean Hospital, Harvard Medical School, Belmont, MA, USA
- Program in Neuroscience, Harvard Medical School, Belmont, MA, USA
| | - Todd M Herrington
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Bob S Carter
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Jeffrey S Schweitzer
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Kwang-Soo Kim
- Molecular Neurobiology Laboratory, Department of Psychiatry and McLean Hospital, Harvard Medical School, Belmont, MA, USA.
- Program in Neuroscience, Harvard Medical School, Belmont, MA, USA.
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
- Harvard Stem Cell Institute, Harvard Medical School, Belmont, MA, USA.
| |
Collapse
|
24
|
Rájová J, Davidsson M, Avallone M, Hartnor M, Aldrin-Kirk P, Cardoso T, Nolbrant S, Mollbrink A, Storm P, Heuer A, Parmar M, Björklund T. Deconvolution of spatial sequencing provides accurate characterization of hESC-derived DA transplants in vivo. Mol Ther Methods Clin Dev 2023; 29:381-394. [PMID: 37251982 PMCID: PMC10209706 DOI: 10.1016/j.omtm.2023.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 04/28/2023] [Indexed: 05/31/2023]
Abstract
Cell therapy for Parkinson's disease has experienced substantial growth in the past decades with several ongoing clinical trials. Despite increasing refinement of differentiation protocols and standardization of the transplanted neural precursors, the transcriptomic analysis of cells in the transplant after its full maturation in vivo has not been thoroughly investigated. Here, we present spatial transcriptomics analysis of fully differentiated grafts in their host tissue. Unlike earlier transcriptomics analyses using single-cell technologies, we observe that cells derived from human embryonic stem cells (hESCs) in the grafts adopt mature dopaminergic signatures. We show that the presence of phenotypic dopaminergic genes, which were found to be differentially expressed in the transplants, is concentrated toward the edges of the grafts, in agreement with the immunohistochemical analyses. Deconvolution shows dopamine neurons being the dominating cell type in many features beneath the graft area. These findings further support the preferred environmental niche of TH-positive cells and confirm their dopaminergic phenotype through the presence of multiple dopaminergic markers.
Collapse
Affiliation(s)
- Jana Rájová
- Molecular Neuromodulation, Department of Experimental Medical Science, Lund University, 221 84 Lund, Sweden
| | - Marcus Davidsson
- Molecular Neuromodulation, Department of Experimental Medical Science, Lund University, 221 84 Lund, Sweden
| | - Martino Avallone
- Molecular Neuromodulation, Department of Experimental Medical Science, Lund University, 221 84 Lund, Sweden
| | - Morgan Hartnor
- Molecular Neuromodulation, Department of Experimental Medical Science, Lund University, 221 84 Lund, Sweden
| | - Patrick Aldrin-Kirk
- Molecular Neuromodulation, Department of Experimental Medical Science, Lund University, 221 84 Lund, Sweden
| | - Tiago Cardoso
- Developmental and Regenerative Neurobiology, Department of Experimental Medical Science, Lund University, 221 84 Lund, Sweden
| | - Sara Nolbrant
- Developmental and Regenerative Neurobiology, Department of Experimental Medical Science, Lund University, 221 84 Lund, Sweden
| | - Annelie Mollbrink
- Science for Life Laboratory, Division of Gene Technology, KTH Royal Institute of Technology, 106 91 Stockholm, Sweden
| | - Petter Storm
- Developmental and Regenerative Neurobiology, Department of Experimental Medical Science, Lund University, 221 84 Lund, Sweden
| | - Andreas Heuer
- Behavioural Neuroscience Laboratory, Department of Experimental Medical Sciences, Lund University, 221 84 Lund, Sweden
| | - Malin Parmar
- Developmental and Regenerative Neurobiology, Department of Experimental Medical Science, Lund University, 221 84 Lund, Sweden
| | - Tomas Björklund
- Molecular Neuromodulation, Department of Experimental Medical Science, Lund University, 221 84 Lund, Sweden
| |
Collapse
|
25
|
Temple S. Advancing cell therapy for neurodegenerative diseases. Cell Stem Cell 2023; 30:512-529. [PMID: 37084729 PMCID: PMC10201979 DOI: 10.1016/j.stem.2023.03.017] [Citation(s) in RCA: 80] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/20/2023] [Accepted: 03/28/2023] [Indexed: 04/23/2023]
Abstract
Cell-based therapies are being developed for various neurodegenerative diseases that affect the central nervous system (CNS). Concomitantly, the roles of individual cell types in neurodegenerative pathology are being uncovered by genetic and single-cell studies. With a greater understanding of cellular contributions to health and disease and with the arrival of promising approaches to modulate them, effective therapeutic cell products are now emerging. This review examines how the ability to generate diverse CNS cell types from stem cells, along with a deeper understanding of cell-type-specific functions and pathology, is advancing preclinical development of cell products for the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Sally Temple
- Neural Stem Cell Institute, Rensselaer, NY 12144, USA.
| |
Collapse
|
26
|
You Z, Wang L, He H, Wu Z, Zhang X, Xue S, Xu P, Hong Y, Xiong M, Wei W, Chen Y. Mapping of clonal lineages across developmental stages in human neural differentiation. Cell Stem Cell 2023; 30:473-487.e9. [PMID: 36933556 DOI: 10.1016/j.stem.2023.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 01/06/2023] [Accepted: 02/17/2023] [Indexed: 03/19/2023]
Abstract
The cell lineages across developmental stages remain to be elucidated. Here, we developed single-cell split barcoding (SISBAR) that allows clonal tracking of single-cell transcriptomes across stages in an in vitro model of human ventral midbrain-hindbrain differentiation. We developed "potential-spective" and "origin-spective" analyses to investigate the cross-stage lineage relationships and mapped a multi-level clonal lineage landscape depicting the whole differentiation process. We uncovered many previously uncharacterized converging and diverging trajectories. Furthermore, we demonstrate that a transcriptome-defined cell type can arise from distinct lineages that leave molecular imprints on their progenies, and the multilineage fates of a progenitor cell-type represent the collective results of distinct rather than similar clonal fates of individual progenitors, each with distinct molecular signatures. Specifically, we uncovered a ventral midbrain progenitor cluster as the common clonal origin of midbrain dopaminergic (mDA) neurons, midbrain glutamatergic neurons, and vascular and leptomeningeal cells and identified a surface marker that can improve graft outcomes.
Collapse
Affiliation(s)
- Zhiwen You
- Institute of Neuroscience, Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Luyue Wang
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hui He
- Institute of Neuroscience, Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ziyan Wu
- Institute of Neuroscience, Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xinyue Zhang
- Institute of Neuroscience, Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuaixiang Xue
- Institute of Neuroscience, Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Peibo Xu
- Institute of Neuroscience, Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanhong Hong
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Man Xiong
- State Key Laboratory of Medical Neurobiology, Ministry of Education (MOE) Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Wu Wei
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai 200031, China; Lingang Laboratory, Shanghai 200031, China.
| | - Yuejun Chen
- Institute of Neuroscience, Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China; Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai 201210, China.
| |
Collapse
|
27
|
Yeap YJ, Teddy TJW, Lee MJ, Goh M, Lim KL. From 2D to 3D: Development of Monolayer Dopaminergic Neuronal and Midbrain Organoid Cultures for Parkinson's Disease Modeling and Regenerative Therapy. Int J Mol Sci 2023; 24:ijms24032523. [PMID: 36768843 PMCID: PMC9917335 DOI: 10.3390/ijms24032523] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/24/2023] [Accepted: 01/26/2023] [Indexed: 01/31/2023] Open
Abstract
Parkinson's Disease (PD) is a prevalent neurodegenerative disorder that is characterized pathologically by the loss of A9-specific dopaminergic (DA) neurons in the substantia nigra pars compacta (SNpc) of the midbrain. Despite intensive research, the etiology of PD is currently unresolved, and the disease remains incurable. This, in part, is due to the lack of an experimental disease model that could faithfully recapitulate the features of human PD. However, the recent advent of induced pluripotent stem cell (iPSC) technology has allowed PD models to be created from patient-derived cells. Indeed, DA neurons from PD patients are now routinely established in many laboratories as monolayers as well as 3D organoid cultures that serve as useful toolboxes for understanding the mechanism underlying PD and also for drug discovery. At the same time, the iPSC technology also provides unprecedented opportunity for autologous cell-based therapy for the PD patient to be performed using the patient's own cells as starting materials. In this review, we provide an update on the molecular processes underpinning the development and differentiation of human pluripotent stem cells (PSCs) into midbrain DA neurons in both 2D and 3D cultures, as well as the latest advancements in using these cells for drug discovery and regenerative medicine. For the novice entering the field, the cornucopia of differentiation protocols reported for the generation of midbrain DA neurons may seem daunting. Here, we have distilled the essence of the different approaches and summarized the main factors driving DA neuronal differentiation, with the view to provide a useful guide to newcomers who are interested in developing iPSC-based models of PD.
Collapse
Affiliation(s)
- Yee Jie Yeap
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore
| | - Tng J. W. Teddy
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore
- Interdisciplinary Graduate Programme (IGP-Neuroscience), Nanyang Technological University, Singapore 639798, Singapore
| | - Mok Jung Lee
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore
| | - Micaela Goh
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore
| | - Kah Leong Lim
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore
- National Neuroscience Institute, Singapore 308433, Singapore
- Department of Brain Sciences, Imperial College London, London SW7 2AZ, UK
- Department of Anatomy, Shanxi Medical University, Taiyuan 030001, China
- Correspondence:
| |
Collapse
|
28
|
Tang Q, Schweitzer JS, Song B. Panning for gold: Purifying mesencephalic dopaminergic progenitors differentiated from human pluripotent stem cells. Stem Cell Reports 2022; 17:2167-2171. [PMID: 36179693 PMCID: PMC9561634 DOI: 10.1016/j.stemcr.2022.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 09/01/2022] [Accepted: 09/02/2022] [Indexed: 12/20/2022] Open
Abstract
In a recently published study, Xu et al. used two surface markers, CLSTN2 and PTPRO, to generate highly purified donor dopaminergic neurons and achieved stable and predictable therapeutic outcomes by transplantation into the brain of PD animal models (Xu et al., 2022).
Collapse
Affiliation(s)
- Qingyuan Tang
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; Department of Neurosurgery, Huashan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200032, China
| | - Jeffrey S Schweitzer
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA.
| | - Bin Song
- Department of Neurosurgery, Huashan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200032, China.
| |
Collapse
|