1
|
Li L, Zhao C, Zhang R, Wei W, Liu B, Dong J, Gao X, Zhang D, Wang X, Lu M, Zhang Y, Yu Y, Yuan N, Xu Y, Wang J, Fang Y. Beclin 1 of megakaryocytic lineage cells is locally dispensable for platelet hemostasis but functions distally in bone homeostasis. Bone Res 2025; 13:32. [PMID: 40032858 PMCID: PMC11876339 DOI: 10.1038/s41413-025-00410-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 01/15/2025] [Accepted: 01/21/2025] [Indexed: 03/05/2025] Open
Abstract
The crosstalk between megakaryocytic lineage cells and the skeletal system has just begun to be explored but remains largely elusive. Using conditional gene knockout mouse models, we demonstrated that loss of Beclin 1 (Becn1), a major regulator of mammalian autophagy, exclusively in the megakaryocytic lineage disrupted autophagy in platelets but did not compromise megakaryopoiesis or the formation and function of platelets. Unexpectedly, conditional Becn1 deletion in male mice led to a remarkable increase in bone mass with improved bone quality, in association with a decrease in sex hormone binding globulin (SHBG) and an increase in free testosterone (FT). In vivo Becn1 overexpression in megakaryocytic lineage-specific cells reduced bone mass and quality, along with an increase in SHBG and a decrease in FT. Transplantation of wild-type bone marrow cells into megakaryocytic lineage Becn1-deficient male mice restored bone mass and normalized SHBG and FT. Furthermore, bilateral orchiectomy of Becn1f/f;Pf4-iCre mice, which are crippled with the production of testosterone, resulted in a reduction in bone mass and quality, whereas in vivo overexpression of SHBG, specifically in the liver of Becn1f/f;Pf4-iCre mice, decreased FT and reduced bone mass and quality. In addition, metformin treatment, which induces SHBG expression, reduced FT and normalized bone mass in Becn1f/f;Pf4-iCre mice. We thus concluded that Becn1 of the megakaryocytic lineage is dispensable locally for platelet hemostasis but limits bone mass by increasing SHBG, which in turn reduces the FT of male mice. Our findings highlight a mechanism by which Becn1 from megakaryocytic lineage cells distally balances bone growth.
Collapse
Affiliation(s)
- Lei Li
- Research Center for Blood Engineering and Manufacturing, Cyrus Tang Medical Institute, Suzhou Medical College, Soochow University, Suzhou, China
- National Research Center for Hematological Diseases, State Key Laboratory of Radiation Medicine and Protection, Collaborative Innovation Center of Hematology, Institute of Blood and Marrow Transplantation, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- The Affiliated Ninth Suzhou Hospital of Soochow University, Suzhou, China
| | - Chen Zhao
- Research Center for Blood Engineering and Manufacturing, Cyrus Tang Medical Institute, Suzhou Medical College, Soochow University, Suzhou, China
- National Research Center for Hematological Diseases, State Key Laboratory of Radiation Medicine and Protection, Collaborative Innovation Center of Hematology, Institute of Blood and Marrow Transplantation, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Ruizhi Zhang
- Osteoporosis Institute, Department of Orthopedics, Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Wen Wei
- Research Center for Blood Engineering and Manufacturing, Cyrus Tang Medical Institute, Suzhou Medical College, Soochow University, Suzhou, China
- National Research Center for Hematological Diseases, State Key Laboratory of Radiation Medicine and Protection, Collaborative Innovation Center of Hematology, Institute of Blood and Marrow Transplantation, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- The Affiliated Ninth Suzhou Hospital of Soochow University, Suzhou, China
| | - Bowen Liu
- Research Center for Blood Engineering and Manufacturing, Cyrus Tang Medical Institute, Suzhou Medical College, Soochow University, Suzhou, China
- National Research Center for Hematological Diseases, State Key Laboratory of Radiation Medicine and Protection, Collaborative Innovation Center of Hematology, Institute of Blood and Marrow Transplantation, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jin Dong
- Research Center for Blood Engineering and Manufacturing, Cyrus Tang Medical Institute, Suzhou Medical College, Soochow University, Suzhou, China
- National Research Center for Hematological Diseases, State Key Laboratory of Radiation Medicine and Protection, Collaborative Innovation Center of Hematology, Institute of Blood and Marrow Transplantation, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Xueqin Gao
- Research Center for Blood Engineering and Manufacturing, Cyrus Tang Medical Institute, Suzhou Medical College, Soochow University, Suzhou, China
- National Research Center for Hematological Diseases, State Key Laboratory of Radiation Medicine and Protection, Collaborative Innovation Center of Hematology, Institute of Blood and Marrow Transplantation, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Di Zhang
- Research Center for Blood Engineering and Manufacturing, Cyrus Tang Medical Institute, Suzhou Medical College, Soochow University, Suzhou, China
- National Research Center for Hematological Diseases, State Key Laboratory of Radiation Medicine and Protection, Collaborative Innovation Center of Hematology, Institute of Blood and Marrow Transplantation, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Xueqing Wang
- Research Center for Blood Engineering and Manufacturing, Cyrus Tang Medical Institute, Suzhou Medical College, Soochow University, Suzhou, China
- National Research Center for Hematological Diseases, State Key Laboratory of Radiation Medicine and Protection, Collaborative Innovation Center of Hematology, Institute of Blood and Marrow Transplantation, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Meilin Lu
- Research Center for Blood Engineering and Manufacturing, Cyrus Tang Medical Institute, Suzhou Medical College, Soochow University, Suzhou, China
- National Research Center for Hematological Diseases, State Key Laboratory of Radiation Medicine and Protection, Collaborative Innovation Center of Hematology, Institute of Blood and Marrow Transplantation, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yumu Zhang
- Research Center for Blood Engineering and Manufacturing, Cyrus Tang Medical Institute, Suzhou Medical College, Soochow University, Suzhou, China
- National Research Center for Hematological Diseases, State Key Laboratory of Radiation Medicine and Protection, Collaborative Innovation Center of Hematology, Institute of Blood and Marrow Transplantation, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yao Yu
- Research Center for Blood Engineering and Manufacturing, Cyrus Tang Medical Institute, Suzhou Medical College, Soochow University, Suzhou, China
- National Research Center for Hematological Diseases, State Key Laboratory of Radiation Medicine and Protection, Collaborative Innovation Center of Hematology, Institute of Blood and Marrow Transplantation, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Na Yuan
- Research Center for Blood Engineering and Manufacturing, Cyrus Tang Medical Institute, Suzhou Medical College, Soochow University, Suzhou, China
- National Research Center for Hematological Diseases, State Key Laboratory of Radiation Medicine and Protection, Collaborative Innovation Center of Hematology, Institute of Blood and Marrow Transplantation, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- The Affiliated Ninth Suzhou Hospital of Soochow University, Suzhou, China
| | - Youjia Xu
- Osteoporosis Institute, Department of Orthopedics, Second Affiliated Hospital of Soochow University, Suzhou, China.
| | - Jianrong Wang
- Research Center for Blood Engineering and Manufacturing, Cyrus Tang Medical Institute, Suzhou Medical College, Soochow University, Suzhou, China.
- National Research Center for Hematological Diseases, State Key Laboratory of Radiation Medicine and Protection, Collaborative Innovation Center of Hematology, Institute of Blood and Marrow Transplantation, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China.
- The Affiliated Ninth Suzhou Hospital of Soochow University, Suzhou, China.
| | - Yixuan Fang
- Research Center for Blood Engineering and Manufacturing, Cyrus Tang Medical Institute, Suzhou Medical College, Soochow University, Suzhou, China.
- National Research Center for Hematological Diseases, State Key Laboratory of Radiation Medicine and Protection, Collaborative Innovation Center of Hematology, Institute of Blood and Marrow Transplantation, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China.
- The Affiliated Ninth Suzhou Hospital of Soochow University, Suzhou, China.
| |
Collapse
|
2
|
Suares A, Medina MV, Coso O. Autophagy in Viral Development and Progression of Cancer. Front Oncol 2021; 11:603224. [PMID: 33763351 PMCID: PMC7982729 DOI: 10.3389/fonc.2021.603224] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Accepted: 01/12/2021] [Indexed: 12/12/2022] Open
Abstract
Autophagy is a complex degradative process by which eukaryotic cells capture cytoplasmic components for subsequent degradation through lysosomal hydrolases. Although this catabolic process can be triggered by a great variety of stimuli, action in cells varies according to cellular context. Autophagy has been previously linked to disease development modulation, including cancer. Autophagy helps suppress cancer cell advancement in tumor transformation early stages, while promoting proliferation and metastasis in advanced settings. Oncoviruses are a particular type of virus that directly contribute to cell transformation and tumor development. Extensive molecular studies have revealed complex ways in which autophagy can suppress or improve oncovirus fitness while still regulating viral replication and determining host cell fate. This review includes recent advances in autophagic cellular function and emphasizes its antagonistic role in cancer cells.
Collapse
Affiliation(s)
- Alejandra Suares
- Departamento de Fisiología y Biología Molecular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), CONICET—Universidad de Buenos Aires, Buenos Aires, Argentina
| | - María Victoria Medina
- Departamento de Fisiología y Biología Molecular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), CONICET—Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Omar Coso
- Departamento de Fisiología y Biología Molecular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), CONICET—Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
3
|
Suares A, Medina MV, Coso O. Autophagy in Viral Development and Progression of Cancer. Front Oncol 2021. [DOI: 10.3389/fonc.2021.603224
expr 816899697 + 824303767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
Abstract
Autophagy is a complex degradative process by which eukaryotic cells capture cytoplasmic components for subsequent degradation through lysosomal hydrolases. Although this catabolic process can be triggered by a great variety of stimuli, action in cells varies according to cellular context. Autophagy has been previously linked to disease development modulation, including cancer. Autophagy helps suppress cancer cell advancement in tumor transformation early stages, while promoting proliferation and metastasis in advanced settings. Oncoviruses are a particular type of virus that directly contribute to cell transformation and tumor development. Extensive molecular studies have revealed complex ways in which autophagy can suppress or improve oncovirus fitness while still regulating viral replication and determining host cell fate. This review includes recent advances in autophagic cellular function and emphasizes its antagonistic role in cancer cells.
Collapse
|
4
|
Harman RM, Das SP, Bartlett AP, Rauner G, Donahue LR, Van de Walle GR. Beyond tradition and convention: benefits of non-traditional model organisms in cancer research. Cancer Metastasis Rev 2020; 40:47-69. [PMID: 33111160 DOI: 10.1007/s10555-020-09930-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 09/01/2020] [Indexed: 02/07/2023]
Abstract
Traditional laboratory model organisms are indispensable for cancer research and have provided insight into numerous mechanisms that contribute to cancer development and progression in humans. However, these models do have some limitations, most notably related to successful drug translation, because traditional model organisms are often short-lived, small-bodied, genetically homogeneous, often immunocompromised, are not exposed to natural environments shared with humans, and usually do not develop cancer spontaneously. We propose that assimilating information from a variety of long-lived, large, genetically diverse, and immunocompetent species that live in natural environments and do develop cancer spontaneously (or do not develop cancer at all) will lead to a more comprehensive understanding of human cancers. These non-traditional model organisms can also serve as sentinels for environmental risk factors that contribute to human cancers. Ultimately, expanding the range of animal models that can be used to study cancer will lead to improved insights into cancer development, progression and metastasis, tumor microenvironment, as well as improved therapies and diagnostics, and will consequently reduce the negative impacts of the wide variety of cancers afflicting humans overall.
Collapse
Affiliation(s)
- Rebecca M Harman
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| | - Sanjna P Das
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| | - Arianna P Bartlett
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| | - Gat Rauner
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| | - Leanne R Donahue
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| | - Gerlinde R Van de Walle
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA.
| |
Collapse
|
5
|
Zachari M, Longo M, Ganley IG. Aberrant autophagosome formation occurs upon small molecule inhibition of ULK1 kinase activity. Life Sci Alliance 2020; 3:3/12/e202000815. [PMID: 33109685 PMCID: PMC7652397 DOI: 10.26508/lsa.202000815] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 10/19/2020] [Accepted: 10/19/2020] [Indexed: 11/24/2022] Open
Abstract
Pharmacological inhibition of ULK1 with multiple and distinct small molecules does not block autophagosome initiation but does impair autophagic flux. Autophagy is a crucial homeostatic mechanism that mediates the degradation of damaged or excess intracellular components. Such components are engulfed and sequestered into double membrane autophagosomes, which deliver their contents to lysosomes for degradation. Autophagy plays a role in numerous human disorders and its pharmacological targeting by small molecules offers therapeutic potential. The serine/threonine kinase ULK1 (and its homologue ULK2) is the most upstream component of the autophagic machinery and is required for autophagy initiation. Here, we use the most selective and potent published ULK1 inhibitors to gain insights into ULK1 kinase function during autophagy. Treatment with all inhibitors blocked autophagy but also resulted in the limited formation of initial autophagosome-like structures, which appeared abnormal in size and did not traffic to lysosomes. We found that upon ULK1 inhibition, phosphatidylinositol-3-phosphate–binding proteins are still recruited to forming autophagosomes, implying that ULK1 activity is not essential for VPS34 activation. We conclude that the kinase activity of ULK1 is important in regulating autophagosome maturation, by the phosphorylation of currently unidentified key substrates.
Collapse
Affiliation(s)
- Maria Zachari
- Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee, UK
| | - Marianna Longo
- Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee, UK
| | - Ian G Ganley
- Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee, UK
| |
Collapse
|
6
|
Soto-Avellaneda A, Morrison BE. Signaling and other functions of lipids in autophagy: a review. Lipids Health Dis 2020; 19:214. [PMID: 32998777 PMCID: PMC7525950 DOI: 10.1186/s12944-020-01389-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 09/23/2020] [Indexed: 12/19/2022] Open
Abstract
The process of autophagy is integral to cellular function. In this process, proteins, organelles, and metabolites are engulfed in a lipid vesicle and trafficked to a lysosome for degradation. Its central role in protein and organelle homeostasis has piqued interest for autophagy dysfunction as a driver of pathology for a number of diseases including cancer, muscular disorders, neurological disorders, and non-alcoholic fatty liver disease. For much of its history, the study of autophagy has centered around proteins, however, due to advances in mass spectrometry and refined methodologies, the role of lipids in this essential cellular process has become more apparent. This review discusses the diverse endogenous lipid compounds shown to mediate autophagy. Downstream lipid signaling pathways are also reviewed in the context of autophagy regulation. Specific focus is placed upon the Mammalian Target of Rapamycin (mTOR) and Peroxisome Proliferator-Activated Receptor (PPAR) signaling pathways as integration hubs for lipid regulation of autophagy.
Collapse
Affiliation(s)
| | - Brad E Morrison
- Biomolecular Sciences Graduate programs, Boise State University, Boise, ID, 83725, USA.
- Department of Biological Sciences, Boise State University, Boise, ID, 83725, USA.
| |
Collapse
|
7
|
Towers CG, Wodetzki D, Thorburn A. Autophagy and cancer: Modulation of cell death pathways and cancer cell adaptations. J Cell Biol 2020; 219:jcb.201909033. [PMID: 31753861 PMCID: PMC7039213 DOI: 10.1083/jcb.201909033] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 11/01/2019] [Accepted: 11/04/2019] [Indexed: 12/11/2022] Open
Abstract
Autophagy is intricately linked with many intracellular signaling pathways, particularly nutrient-sensing mechanisms and cell death signaling cascades. In cancer, the roles of autophagy are context dependent. Tumor cell-intrinsic effects of autophagy can be both tumor suppressive and tumor promotional. Autophagy can therefore not only activate and inhibit cell death, but also facilitate the switch between cell death mechanisms. Moreover, autophagy can play opposing roles in the tumor microenvironment via non-cell-autonomous mechanisms. Preclinical data support a tumor-promotional role of autophagy in established tumors and during cancer therapy; this has led to the launch of dozens of clinical trials targeting autophagy in multiple cancer types. However, many questions remain: which tumors and genetic backgrounds are the most sensitive to autophagy inhibition, and which therapies should be combined with autophagy inhibitors? Additionally, since cancer cells are under selective pressure and are prone to adaptation, particularly after treatment, it is unclear if and how cells adapt to autophagy inhibition. Here we review recent literature addressing these issues.
Collapse
Affiliation(s)
- Christina G Towers
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Darya Wodetzki
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Andrew Thorburn
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO
| |
Collapse
|
8
|
Finkbeiner S. The Autophagy Lysosomal Pathway and Neurodegeneration. Cold Spring Harb Perspect Biol 2020; 12:cshperspect.a033993. [PMID: 30936119 DOI: 10.1101/cshperspect.a033993] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The autophagy lysosomal pathway (ALP) is a major mechanism for degrading intracellular macromolecules. The catabolic products can then be used by the cell for energy or as building blocks to make other macromolecules. Since its discovery, a variety of cellular pathways have emerged that target components with varying specificity for lysosomal degradation. Under some circumstances, lysosomes may release their contents into the extracellular space where they may serve signaling or pathogenic functions. The ALP is active in healthy cells, and the level of activity can be regulated by nutrient-sensing and metabolic signaling pathways. The ALP is the primary pathway by which lipids and damaged organelles are degraded and may be the only pathway capable of degrading aggregated proteins. As such, there has been intense interest in understanding the role of the ALP in the accumulation of aggregated misfolded proteins characteristic of many of the major adult-onset neurodegenerative diseases. This review focuses on recent advances in our understanding of the ALP and its potential relationship to the pathogenesis and treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Steven Finkbeiner
- Gladstone Institutes, San Francisco, California 94158.,Departments of Neurology and Physiology, University of California, San Francisco, California 94158
| |
Collapse
|
9
|
Autophagy and Its Role in Protein Secretion: Implications for Cancer Therapy. Mediators Inflamm 2018; 2018:4231591. [PMID: 30622432 PMCID: PMC6304875 DOI: 10.1155/2018/4231591] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 09/26/2018] [Accepted: 10/02/2018] [Indexed: 12/11/2022] Open
Abstract
Autophagy is a protein and organelle degradation pathway important for the maintenance of cytoplasmic homeostasis and for providing nutrients for survival in response to stress conditions. Recently, autophagy has been shown to be important for the secretion of diverse proteins involved in inflammation, intercellular signaling, and cancer progression. The role of autophagy in cancer depends on the stage of tumorigenesis, serving a tumor-suppressor role before transformation and a tumor-survival function once a tumor is established. We review recent evidence demonstrating the complexity of autophagy regulation during cancer, considering the interaction of autophagy with protein secretion pathways. Autophagy manipulation during cancer treatment is likely to affect protein secretion andinter-cellular signaling either to the neighboring cancer cells or to the antitumoral immune response. This will be an important consideration during cancer therapy since several clinical trials are trying to manipulate autophagy in combination with chemotherapy for the treatment of diverse types of cancers.
Collapse
|
10
|
Abstract
In this review, Amaravadi et al. discuss recent developments in the role of autophagy in cancer, in particular how autophagy can promote cancer through suppressing p53 and preventing energy crisis, cell death, senescence, and an anti-tumor immune response. Macroautophagy (referred to here as autophagy) is induced by starvation to capture and degrade intracellular proteins and organelles in lysosomes, which recycles intracellular components to sustain metabolism and survival. Autophagy also plays a major homeostatic role in controlling protein and organelle quality and quantity. Dysfunctional autophagy contributes to many diseases. In cancer, autophagy can be neutral, tumor-suppressive, or tumor-promoting in different contexts. Large-scale genomic analysis of human cancers indicates that the loss or mutation of core autophagy genes is uncommon, whereas oncogenic events that activate autophagy and lysosomal biogenesis have been identified. Autophagic flux, however, is difficult to measure in human tumor samples, making functional assessment of autophagy problematic in a clinical setting. Autophagy impacts cellular metabolism, the proteome, and organelle numbers and quality, which alter cell functions in diverse ways. Moreover, autophagy influences the interaction between the tumor and the host by promoting stress adaptation and suppressing activation of innate and adaptive immune responses. Additionally, autophagy can promote a cross-talk between the tumor and the stroma, which can support tumor growth, particularly in a nutrient-limited microenvironment. Thus, the role of autophagy in cancer is determined by nutrient availability, microenvironment stress, and the presence of an immune system. Here we discuss recent developments in the role of autophagy in cancer, in particular how autophagy can promote cancer through suppressing p53 and preventing energy crisis, cell death, senescence, and an anti-tumor immune response.
Collapse
Affiliation(s)
- Ravi Amaravadi
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA; Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Alec C Kimmelman
- Perlmutter Cancer Center, New York University Langone Medical Center, New York, New York 10016, USA; Department of Radiation Oncology, New York University Langone Medical Center, New York, New York 10016, USA
| | - Eileen White
- Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey 08903, USA; Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, New Jersey 08854, USA
| |
Collapse
|
11
|
Mathiassen SG, De Zio D, Cecconi F. Autophagy and the Cell Cycle: A Complex Landscape. Front Oncol 2017; 7:51. [PMID: 28409123 PMCID: PMC5374984 DOI: 10.3389/fonc.2017.00051] [Citation(s) in RCA: 146] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 03/10/2017] [Indexed: 12/11/2022] Open
Abstract
Autophagy is a self-degradation pathway, in which cytoplasmic material is sequestered in double-membrane vesicles and delivered to the lysosome for degradation. Under basal conditions, autophagy plays a homeostatic function. However, in response to various stresses, the pathway can be further induced to mediate cytoprotection. Defective autophagy has been linked to a number of human pathologies, including neoplastic transformation, even though autophagy can also sustain the growth of tumor cells in certain contexts. In recent years, a considerable correlation has emerged between autophagy induction and stress-related cell-cycle responses, as well as unexpected roles for autophagy factors and selective autophagic degradation in the process of cell division. These advances have obvious implications for our understanding of the intricate relationship between autophagy and cancer. In this review, we will discuss our current knowledge of the reciprocal regulation connecting the autophagy pathway and cell-cycle progression. Furthermore, key findings involving nonautophagic functions for autophagy-related factors in cell-cycle regulation will be addressed.
Collapse
Affiliation(s)
- Søs Grønbæk Mathiassen
- Cell Stress and Survival Unit, Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Daniela De Zio
- Cell Stress and Survival Unit, Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Francesco Cecconi
- Cell Stress and Survival Unit, Danish Cancer Society Research Center, Copenhagen, Denmark.,Department of Biology, University of Rome Tor Vergata, Rome, Italy.,Department of Pediatric Hematology and Oncology, Istituto di Ricovero e Cura a Carattere Scientifico Bambino Gesù Children's Hospital, Rome, Italy
| |
Collapse
|
12
|
Kumar A, Singh B, Sharma PR, Bharate SB, Saxena AK, Mondhe DM. A novel microtubule depolymerizing colchicine analogue triggers apoptosis and autophagy in HCT-116 colon cancer cells. Cell Biochem Funct 2016; 34:69-81. [PMID: 26919061 DOI: 10.1002/cbf.3166] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Revised: 01/14/2016] [Accepted: 01/15/2016] [Indexed: 01/10/2023]
Abstract
Colchicine is a tubulin-binding natural product isolated from Colchicum autumnale. Here we report the in vitro anticancer activity of C-ring modified semi-synthetic derivative of colchicine; N-[(7S)-1,2,3-trimethoxy-9-oxo-10-(4-phenyl-piperidin-1-yl)-5,6,7,9 tetrahydrobenzo[a]heptalen-7-yl]acetamide (4h) on colon cancer HCT-116 cell line. The compound 4h was screened for anti-proliferative activity against different human cancer cell lines and was found to exhibit higher cytotoxicity against colon cancer cell lines HCT-116 and Colo-205 with IC50 of 1 and 0.8 μM respectively. Cytotoxicity of the compound to the normal fR2 breast epithelial cells and normal HEK293 human embryonic kidney cells was evaluated in concentration and time-dependent manner to estimate its selectivity for cancer cells which showed much better selectivity than that of colchicine. Compound 4h induced cell death in HCT-116 cells by activating apoptosis and autophagy pathways. Autophagy inhibitor 3-MA blocked the production of LC3-II and reduced the cytotoxicity in response to 4h, but did not affect apoptosis, suggesting thereby that these two were independent events. Reactive oxygen species scavenger ascorbic acid pretreatment not only decreased the reactive oxygen species level but also reversed 4h induced cytotoxicity. Treatment with compound 4h depolymerized microtubules and the majority of cells arrested at the G2/M transition. Together, these data suggest that 4h has better selectivity and is a microtubule depolymerizer, which activates dual cell-death machineries, and thus, it could be a potential novel therapeutic agent in cancer therapy.
Collapse
Affiliation(s)
- Ashok Kumar
- Cancer Pharmacology Division, Indian Institute of Integrative Medicine (CSIR), Jammu, India.,Academy of Scientific and Innovative Research (AcSIR), Indian Institute of Integrative Medicine (CSIR), Jammu, India
| | - Baljinder Singh
- Academy of Scientific and Innovative Research (AcSIR), Indian Institute of Integrative Medicine (CSIR), Jammu, India.,Natural Products Chemistry Division, Indian Institute of Integrative Medicine (CSIR), Jammu, India
| | - Parduman R Sharma
- Cancer Pharmacology Division, Indian Institute of Integrative Medicine (CSIR), Jammu, India.,Academy of Scientific and Innovative Research (AcSIR), Indian Institute of Integrative Medicine (CSIR), Jammu, India
| | - Sandip B Bharate
- Academy of Scientific and Innovative Research (AcSIR), Indian Institute of Integrative Medicine (CSIR), Jammu, India.,Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Jammu, India
| | | | - D M Mondhe
- Cancer Pharmacology Division, Indian Institute of Integrative Medicine (CSIR), Jammu, India.,Academy of Scientific and Innovative Research (AcSIR), Indian Institute of Integrative Medicine (CSIR), Jammu, India
| |
Collapse
|
13
|
Abstract
Unlike the rather stereotypic image by which it was portrayed until not too many years ago, p53 is now increasingly emerging as a multifaceted transcription factor that can sometimes exert opposing effects on biological processes. This includes pro-survival activities that seem to contradict p53's canonical proapoptotic features, as well as opposing effects on cell migration, metabolism, and differentiation. Such antagonistic bifunctionality (balancing both positive and negative signals) bestows p53 with an ideal attribute to govern homeostasis. The molecular mechanisms underpinning the paradoxical activities of p53 may be related to a protein conformational spectrum (from canonical wild-type to "pseudomutant"), diversity of DNA response elements, and/or higher-order chromatin configuration. Altogether, this functional flexibility positions p53 as a transcriptional "super hub" that dictates cell homeostasis, and ultimately cell fate, by governing a hierarchy of other functional hubs. Deciphering the mechanisms by which p53 determines which hubs to engage, and how one might modulate the preferences of p53, remains a major challenge for both basic science and translational cancer medicine.
Collapse
Affiliation(s)
- Yael Aylon
- Department of Molecular Cell Biology, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Moshe Oren
- Department of Molecular Cell Biology, The Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
14
|
Lenzi P, Lazzeri G, Biagioni F, Busceti CL, Gambardella S, Salvetti A, Fornai F. The Autophagoproteasome a Novel Cell Clearing Organelle in Baseline and Stimulated Conditions. Front Neuroanat 2016; 10:78. [PMID: 27493626 PMCID: PMC4955296 DOI: 10.3389/fnana.2016.00078] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 07/05/2016] [Indexed: 12/24/2022] Open
Abstract
Protein clearing pathways named autophagy (ATG) and ubiquitin proteasome (UP) control homeostasis within eukaryotic cells, while their dysfunction produces neurodegeneration. These pathways are viewed as distinct biochemical cascades occurring within specific cytosolic compartments owing pathway-specific enzymatic activity. Recent data strongly challenged the concept of two morphologically distinct and functionally segregated compartments. In fact, preliminary evidence suggests the convergence of these pathways to form a novel organelle named autophagoproteasome. This is characterized in the present study by using a cell line where, mTOR activity is upregulated and autophagy is suppressed. This was reversed dose-dependently by administering the mTOR inhibitor rapamycin. Thus, we could study autophagoproteasomes when autophagy was either suppressed or stimulated. The occurrence of autophagoproteasome was shown also in non-human cell lines. Ultrastructural morphometry, based on the stochiometric binding of immunogold particles allowed the quantitative evaluation of ATG and UP component within autophagoproteasomes. The number of autophagoproteasomes increases following mTOR inhibition. Similarly, mTOR inhibition produces overexpression of both LC3 and P20S particles. This is confirmed by the fact that the ratio of free vs. autophagosome-bound LC3 is similar to that measured for P20S, both in baseline conditions and following mTOR inhibition. Remarkably, within autophagoproteasomes there is a slight prevalence of ATG compared with UP components for low rapamycin doses, whereas for higher rapamycin doses UP increases more than ATG. While LC3 is widely present within cytosol, UP is strongly polarized within autophagoproteasomes. These fine details were evident at electron microscopy but could not be deciphered by using confocal microscopy. Despite its morphological novelty autophagoproteasomes appear in the natural site where clearing pathways (once believed to be anatomically segregated) co-exist and they are likely to interact at molecular level. In fact, LC3 and P20S co-immunoprecipitate, suggesting a specific binding and functional interplay, which may be altered by inhibiting mTOR. In summary, ATG and UP often represent two facets of a single organelle, in which unexpected amount of enzymatic activity should be available. Thus, autophagoproteasome may represent a sophisticated ultimate clearing apparatus.
Collapse
Affiliation(s)
- Paola Lenzi
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa Pisa, Italy
| | - Gloria Lazzeri
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa Pisa, Italy
| | - Francesca Biagioni
- Istituti di Ricovero e Cura a Carattere Scientifico (I.R.C.C.S.), Neuromed Pozzilli, Italy
| | - Carla L Busceti
- Istituti di Ricovero e Cura a Carattere Scientifico (I.R.C.C.S.), Neuromed Pozzilli, Italy
| | - Stefano Gambardella
- Istituti di Ricovero e Cura a Carattere Scientifico (I.R.C.C.S.), Neuromed Pozzilli, Italy
| | - Alessandra Salvetti
- Department of Clinical and Experimental Medicine, University of Pisa Pisa, Italy
| | - Francesco Fornai
- Department of Translational Research and New Technologies in Medicine and Surgery, University of PisaPisa, Italy; Istituti di Ricovero e Cura a Carattere Scientifico (I.R.C.C.S.), NeuromedPozzilli, Italy
| |
Collapse
|
15
|
Transcription Factor EB Is Selectively Reduced in the Nuclear Fractions of Alzheimer's and Amyotrophic Lateral Sclerosis Brains. NEUROSCIENCE JOURNAL 2016; 2016:4732837. [PMID: 27433468 PMCID: PMC4940567 DOI: 10.1155/2016/4732837] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 06/03/2016] [Accepted: 06/07/2016] [Indexed: 12/11/2022]
Abstract
Multiple studies suggest that autophagy is strongly dysregulated in Alzheimer's disease (AD) and amyotrophic lateral sclerosis (ALS), as evidenced by accumulation of numerous autophagosomes, lysosomes with discontinuous membranes, and aggregated proteins in the patients' brains. Transcription factor EB (TFEB) was recently discovered to be a master regulator of lysosome biogenesis and autophagy. To examine whether aberrant autophagy in AD and ALS is due to alterations in TFEB expression, we systematically quantified the levels of TFEB in these brains by immunoblotting. Interestingly, cytoplasmic fractions of AD brains showed increased levels of normalized (to tubulin) TFEB only at Braak stage IV (61%, p < 0.01). Most importantly, normalized (to lamin) TFEB levels in the nuclear fractions were consistently reduced starting from Braak stage IV (52%, p < 0.01), stage V (67%, p < 0.01), and stage VI (85%, p < 0.01) when compared to normal control (NC) brains. In the ALS brains also, nuclear TFEB levels were reduced by 62% (p < 0.001). These data suggest that nuclear TFEB is selectively lost in ALS as well as AD brains, in which TFEB reduction was Braak-stage-dependent. Taken together, the observed reductions in TFEB protein levels may be responsible for the widely reported autophagy defects in these disorders.
Collapse
|
16
|
Teng YC, Shen ZQ, Kao CH, Tsai TF. Hepatocellular carcinoma mouse models: Hepatitis B virus-associated hepatocarcinogenesis and haploinsufficient tumor suppressor genes. World J Gastroenterol 2016; 22:300-325. [PMID: 26755878 PMCID: PMC4698494 DOI: 10.3748/wjg.v22.i1.300] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 10/14/2015] [Accepted: 11/24/2015] [Indexed: 02/06/2023] Open
Abstract
The multifactorial and multistage pathogenesis of hepatocellular carcinoma (HCC) has fascinated a wide spectrum of scientists for decades. While a number of major risk factors have been identified, their mechanistic roles in hepatocarcinogenesis still need to be elucidated. Many tumor suppressor genes (TSGs) have been identified as being involved in HCC. These TSGs can be classified into two groups depending on the situation with respect to allelic mutation/loss in the tumors: the recessive TSGs with two required mutated alleles and the haploinsufficient TSGs with one required mutated allele. Hepatitis B virus (HBV) is one of the most important risk factors associated with HCC. Although mice cannot be infected with HBV due to the narrow host range of HBV and the lack of a proper receptor, one advantage of mouse models for HBV/HCC research is the numerous and powerful genetic tools that help investigate the phenotypic effects of viral proteins and allow the dissection of the dose-dependent action of TSGs. Here, we mainly focus on the application of mouse models in relation to HBV-associated HCC and on TSGs that act either in a recessive or in a haploinsufficient manner. Discoveries obtained using mouse models will have a great impact on HCC translational medicine.
Collapse
|
17
|
Zhou Y, Rucker EB, Zhou BP. Autophagy regulation in the development and treatment of breast cancer. Acta Biochim Biophys Sin (Shanghai) 2016; 48:60-74. [PMID: 26637829 DOI: 10.1093/abbs/gmv119] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 10/21/2015] [Indexed: 12/14/2022] Open
Abstract
Autophagy is a major catabolic process in which intracellular membrane structures, protein complexes, and lysosomes are formed as lysoautophagosome to degrade and renew cytoplasmic components. Autophagy is physiologically a strategy and mechanism for cellular homeostasis as well as adaptation to stress, and thus alterations in the autophagy machinery may lead to diverse pathological conditions. The role of autophagy in cancer is complex, and the current literature reflects this as a 'double-edged sword'. Autophagy shows promise as a novel therapeutic target in various types of breast cancer, inhibiting or increasing treatment efficacy in a context- and cell-type-dependent manner. This review aims to summarize the recent advances in the understanding of the mechanisms by which key modulators of autophagy participate in cancer metastasis, highlight different autophagy-deficient murine models for breast cancer study, and provide further impetus for the modulation of autophagy in anticancer therapy.
Collapse
Affiliation(s)
- Yuting Zhou
- Department of Molecular and Cellular Biochemistry, University of Kentucky School of Medicine, Lexington, KY 40506, USA Department of Markey Cancer Center, University of Kentucky School of Medicine, Lexington, KY 40506, USA
| | - Edmund B Rucker
- Department of Biology, University of Kentucky College of Arts and Sciences, Lexington, KY 40506, USA Department of Markey Cancer Center, University of Kentucky School of Medicine, Lexington, KY 40506, USA
| | - Binhua P Zhou
- Department of Molecular and Cellular Biochemistry, University of Kentucky School of Medicine, Lexington, KY 40506, USA Department of Markey Cancer Center, University of Kentucky School of Medicine, Lexington, KY 40506, USA
| |
Collapse
|
18
|
Weckman A, Rotondo F, Di Ieva A, Syro LV, Butz H, Cusimano MD, Kovacs K. Autophagy in endocrine tumors. Endocr Relat Cancer 2015; 22:R205-18. [PMID: 25947570 DOI: 10.1530/erc-15-0042] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/06/2015] [Indexed: 12/12/2022]
Abstract
Autophagy is an important intracellular process involving the degradation of cytoplasmic components. It is involved in both physiological and pathological conditions, including cancer. The role of autophagy in cancer is described as a 'double-edged sword,' a term that reflects its known participation in tumor suppression, tumor survival and tumor cell proliferation. Available research regarding autophagy in endocrine cancer supports this concept. Autophagy shows promise as a novel therapeutic target in different types of endocrine cancer, inhibiting or increasing treatment efficacy in a context- and cell-type-dependent manner. At present, however, there is very little research concerning autophagy in endocrine tumors. No research was reported connecting autophagy to some of the tumors of the endocrine glands such as the pancreas and ovary. This review aims to elucidate the roles of autophagy in different types of endocrine cancer and highlight the need for increased research in the field.
Collapse
Affiliation(s)
- Andrea Weckman
- Division of NeurosurgeryDepartment of SurgeryDivision of PathologyDepartment of Laboratory Medicine, St Michael's Hospital, 30 Bond Street, Toronto, Ontario, M5B 1W8 CanadaDepartment of NeurosurgeryHospital Pablo Tobon Uribe and Clínica Medellin, Medellin, Colombia
| | - Fabio Rotondo
- Division of NeurosurgeryDepartment of SurgeryDivision of PathologyDepartment of Laboratory Medicine, St Michael's Hospital, 30 Bond Street, Toronto, Ontario, M5B 1W8 CanadaDepartment of NeurosurgeryHospital Pablo Tobon Uribe and Clínica Medellin, Medellin, Colombia
| | - Antonio Di Ieva
- Division of NeurosurgeryDepartment of SurgeryDivision of PathologyDepartment of Laboratory Medicine, St Michael's Hospital, 30 Bond Street, Toronto, Ontario, M5B 1W8 CanadaDepartment of NeurosurgeryHospital Pablo Tobon Uribe and Clínica Medellin, Medellin, Colombia
| | - Luis V Syro
- Division of NeurosurgeryDepartment of SurgeryDivision of PathologyDepartment of Laboratory Medicine, St Michael's Hospital, 30 Bond Street, Toronto, Ontario, M5B 1W8 CanadaDepartment of NeurosurgeryHospital Pablo Tobon Uribe and Clínica Medellin, Medellin, Colombia
| | - Henriett Butz
- Division of NeurosurgeryDepartment of SurgeryDivision of PathologyDepartment of Laboratory Medicine, St Michael's Hospital, 30 Bond Street, Toronto, Ontario, M5B 1W8 CanadaDepartment of NeurosurgeryHospital Pablo Tobon Uribe and Clínica Medellin, Medellin, Colombia
| | - Michael D Cusimano
- Division of NeurosurgeryDepartment of SurgeryDivision of PathologyDepartment of Laboratory Medicine, St Michael's Hospital, 30 Bond Street, Toronto, Ontario, M5B 1W8 CanadaDepartment of NeurosurgeryHospital Pablo Tobon Uribe and Clínica Medellin, Medellin, Colombia
| | - Kalman Kovacs
- Division of NeurosurgeryDepartment of SurgeryDivision of PathologyDepartment of Laboratory Medicine, St Michael's Hospital, 30 Bond Street, Toronto, Ontario, M5B 1W8 CanadaDepartment of NeurosurgeryHospital Pablo Tobon Uribe and Clínica Medellin, Medellin, Colombia
| |
Collapse
|
19
|
Narayanan KB, Ali M, Barclay BJ, Cheng Q(S, D’Abronzo L, Dornetshuber-Fleiss R, Ghosh PM, Gonzalez Guzman MJ, Lee TJ, Leung PS, Li L, Luanpitpong S, Ratovitski E, Rojanasakul Y, Romano MF, Romano S, Sinha RK, Yedjou C, Al-Mulla F, Al-Temaimi R, Amedei A, Brown DG, Ryan EP, Colacci AM, Hamid RA, Mondello C, Raju J, Salem HK, Woodrick J, Scovassi A, Singh N, Vaccari M, Roy R, Forte S, Memeo L, Kim SY, Bisson WH, Lowe L, Park HH. Disruptive environmental chemicals and cellular mechanisms that confer resistance to cell death. Carcinogenesis 2015; 36 Suppl 1:S89-S110. [PMID: 26106145 PMCID: PMC4565614 DOI: 10.1093/carcin/bgv032] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2014] [Revised: 01/28/2015] [Accepted: 02/03/2015] [Indexed: 12/12/2022] Open
Abstract
Cell death is a process of dying within biological cells that are ceasing to function. This process is essential in regulating organism development, tissue homeostasis, and to eliminate cells in the body that are irreparably damaged. In general, dysfunction in normal cellular death is tightly linked to cancer progression. Specifically, the up-regulation of pro-survival factors, including oncogenic factors and antiapoptotic signaling pathways, and the down-regulation of pro-apoptotic factors, including tumor suppressive factors, confers resistance to cell death in tumor cells, which supports the emergence of a fully immortalized cellular phenotype. This review considers the potential relevance of ubiquitous environmental chemical exposures that have been shown to disrupt key pathways and mechanisms associated with this sort of dysfunction. Specifically, bisphenol A, chlorothalonil, dibutyl phthalate, dichlorvos, lindane, linuron, methoxychlor and oxyfluorfen are discussed as prototypical chemical disruptors; as their effects relate to resistance to cell death, as constituents within environmental mixtures and as potential contributors to environmental carcinogenesis.
Collapse
Affiliation(s)
- Kannan Badri Narayanan
- Department of Chemistry and Biochemistry, Yeungnam University, Gyeongsan 712-749, South Korea
- Sultan Zainal Abidin University, Malaysia
- Plant Biotechnologies Inc, St. Albert AB, Canada
- Computer Science Department, Southern Illinois University, Carbondale, IL 62901, USA
- Department of Urology, University of California Davis, Sacramento, CA 95817, USA
- Department of Pharmacology and Toxicology, University of Vienna, Austria
- University of Puerto Rico, Medical Sciences Campus, School of Public Health, Nutrition Program, San Juan Puerto Rico 00936-5067, USA
- Department of Anatomy, College of Medicine, Yeungnam University, Daegu, 705-717, South Korea
- School of Biomedical Science, The Chinese University Of Hong Kong, Hong Kong, China
- Siriraj Center of Excellence for Stem Cell Research, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
- Department of Otolaryngology/Head and Neck Surgery, Head and Neck Cancer Research Division, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
- Department of Pharmaceutical Sciences, Mary Babb Randolph Cancer Center, West Virginia University, Morgantown, WV 26506, USA
- Department of Molecular Medicine and Medical Biotechnology, Federico II University of Naples, 80131 Naples, Italy
- Department of Molecular and Experimental Medicine, MEM 180, The Scripps Research Institute, La Jolla, CA 92037, USA
- Department of Biology, Jackson State University, Jackson, MS 39217, USA
- Department of Pathology, Kuwait University, Safat 13110, Kuwait
- Department of Experimental and Clinical Medicine, University of Firenze, Firenze, 50134, Italy
- Department of Environmental and Radiological Health Sciences, Colorado state University/ Colorado School of Public Health, Fort Collins, CO 80523-1680, USA
- Center for Environmental Carcinogenesis and Risk Assessment, Environmental Protection and Health Prevention Agency, Bologna, 40126, Italy
- Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor 43400, Malaysia
- Institute of Molecular Genetics, National Research Council, Pavia, 27100, Italy
- Toxicology Research Division, Bureau of Chemical Safety Food Directorate, Health Products and Food Branch Health Canada, Ottawa, Ontario, K1A0K9, Canada
- Urology Department, Kasr Al-Ainy School of Medicine, Cairo University, El Manial, Cairo, 12515, Egypt
- Molecular Oncology Program, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington DC, 20057, USA
- Advenced Molecular Science Research Centre, King George’s Medical University, Lucknow, Uttar Pradesh, 226003, India
- Mediterranean Institute of Oncology, Viagrande, 95029, Italy
- Department of Internal Medicine, Korea Cancer Center Hospital, Seoul 139-706, South Korea
- Environmental and Molecular Toxicology, Environmental Health Science Center, Oregon State University, Corvallis, OR 97331, USA and
- Getting to Know Cancer, Truro, Nova Scotia, Canada
| | - Manaf Ali
- Sultan Zainal Abidin University, Malaysia
| | | | - Qiang (Shawn) Cheng
- Computer Science Department, Southern Illinois University, Carbondale, IL 62901, USA
| | - Leandro D’Abronzo
- Department of Urology, University of California Davis, Sacramento, CA 95817, USA
| | | | - Paramita M. Ghosh
- Department of Urology, University of California Davis, Sacramento, CA 95817, USA
| | - Michael J. Gonzalez Guzman
- University of Puerto Rico, Medical Sciences Campus, School of Public Health, Nutrition Program, San Juan Puerto Rico 00936-5067, USA
| | - Tae-Jin Lee
- Department of Anatomy, College of Medicine, Yeungnam University, Daegu, 705-717, South Korea
| | - Po Sing Leung
- School of Biomedical Science, The Chinese University Of Hong Kong, Hong Kong, China
| | - Lin Li
- School of Biomedical Science, The Chinese University Of Hong Kong, Hong Kong, China
| | - Suidjit Luanpitpong
- Siriraj Center of Excellence for Stem Cell Research, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Edward Ratovitski
- Department of Otolaryngology/Head and Neck Surgery, Head and Neck Cancer Research Division, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Yon Rojanasakul
- Department of Pharmaceutical Sciences, Mary Babb Randolph Cancer Center, West Virginia University, Morgantown, WV 26506, USA
| | - Maria Fiammetta Romano
- Department of Molecular Medicine and Medical Biotechnology, Federico II University of Naples, 80131 Naples, Italy
| | - Simona Romano
- Department of Molecular Medicine and Medical Biotechnology, Federico II University of Naples, 80131 Naples, Italy
| | - Ranjeet K. Sinha
- Department of Molecular and Experimental Medicine, MEM 180, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Clement Yedjou
- Department of Biology, Jackson State University, Jackson, MS 39217, USA
| | - Fahd Al-Mulla
- Department of Pathology, Kuwait University, Safat 13110, Kuwait
| | | | - Amedeo Amedei
- Department of Experimental and Clinical Medicine, University of Firenze, Firenze, 50134, Italy
| | - Dustin G. Brown
- Department of Environmental and Radiological Health Sciences, Colorado state University/ Colorado School of Public Health, Fort Collins, CO 80523-1680, USA
| | - Elizabeth P. Ryan
- Department of Environmental and Radiological Health Sciences, Colorado state University/ Colorado School of Public Health, Fort Collins, CO 80523-1680, USA
| | - Anna Maria Colacci
- Center for Environmental Carcinogenesis and Risk Assessment, Environmental Protection and Health Prevention Agency, Bologna, 40126, Italy
| | - Roslida A. Hamid
- Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor 43400, Malaysia
| | - Chiara Mondello
- Institute of Molecular Genetics, National Research Council, Pavia, 27100, Italy
| | - Jayadev Raju
- Toxicology Research Division, Bureau of Chemical Safety Food Directorate, Health Products and Food Branch Health Canada, Ottawa, Ontario, K1A0K9, Canada
| | - Hosni K. Salem
- Urology Department, Kasr Al-Ainy School of Medicine, Cairo University, El Manial, Cairo, 12515, Egypt
| | - Jordan Woodrick
- Molecular Oncology Program, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington DC, 20057, USA
| | - A.Ivana Scovassi
- Institute of Molecular Genetics, National Research Council, Pavia, 27100, Italy
| | - Neetu Singh
- Advenced Molecular Science Research Centre, King George’s Medical University, Lucknow, Uttar Pradesh, 226003, India
| | - Monica Vaccari
- Center for Environmental Carcinogenesis and Risk Assessment, Environmental Protection and Health Prevention Agency, Bologna, 40126, Italy
| | - Rabindra Roy
- Molecular Oncology Program, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington DC, 20057, USA
| | - Stefano Forte
- Mediterranean Institute of Oncology, Viagrande, 95029, Italy
| | - Lorenzo Memeo
- Mediterranean Institute of Oncology, Viagrande, 95029, Italy
| | - Seo Yun Kim
- Department of Internal Medicine, Korea Cancer Center Hospital, Seoul 139-706, South Korea
| | - William H. Bisson
- Environmental and Molecular Toxicology, Environmental Health Science Center, Oregon State University, Corvallis, OR 97331, USA and
| | - Leroy Lowe
- Getting to Know Cancer, Truro, Nova Scotia, Canada
| | - Hyun Ho Park
- *To whom correspondence should be addressed. Tel: +82 53 810 3015; Fax: +82 53 810 4619;
| |
Collapse
|
20
|
Roles of autophagy induced by natural compounds in prostate cancer. BIOMED RESEARCH INTERNATIONAL 2015; 2015:121826. [PMID: 25821782 PMCID: PMC4364006 DOI: 10.1155/2015/121826] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Accepted: 12/23/2014] [Indexed: 02/07/2023]
Abstract
Autophagy is a homeostatic mechanism through which intracellular organelles and proteins are degraded and recycled in response to increased metabolic demand or stress. Autophagy dysfunction is often associated with many diseases, including cancer. Because of its role in tumorigenesis, autophagy can represent a new therapeutic target for cancer treatment.
Prostate cancer (PCa) is one of the most common cancers in aged men. The evidence on alterations of autophagy related genes and/or protein levels in PCa cells suggests a potential implication of autophagy in PCa onset and progression. The use of natural compounds, characterized by low toxicity to normal tissue associated with specific anticancer effects at physiological levels in vivo, is receiving increasing attention for prevention and/or treatment of PCa. Understanding the mechanism of action of these compounds could be crucial for the development of new therapeutic or chemopreventive options. In this review we focus on the current evidence showing the capacity of natural compounds to exert their action through autophagy modulation in PCa cells.
Collapse
|
21
|
Wang N, Feng Y. Elaborating the role of natural products-induced autophagy in cancer treatment: achievements and artifacts in the state of the art. BIOMED RESEARCH INTERNATIONAL 2015; 2015:934207. [PMID: 25821829 PMCID: PMC4363717 DOI: 10.1155/2015/934207] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/13/2014] [Revised: 09/29/2014] [Accepted: 10/02/2014] [Indexed: 12/12/2022]
Abstract
Autophagy is a homeostatic process that is highly conserved across different types of mammalian cells. Autophagy is able to relieve tumor cell from nutrient and oxidative stress during the rapid expansion of cancer. Excessive and sustained autophagy may lead to cell death and tumor shrinkage. It was shown in literature that many anticancer natural compounds and extracts could initiate autophagy in tumor cells. As summarized in this review, the tumor suppressive action of natural products-induced autophagy may lead to cell senescence, provoke apoptosis-independent cell death, and complement apoptotic cell death by robust or target-specific mechanisms. In some cases, natural products-induced autophagy could protect tumor cells from apoptotic death. Technical variations in detecting autophagy affect data quality, and study focus should be made on elaborating the role of autophagy in deciding cell fate. In vivo study monitoring of autophagy in cancer treatment is expected to be the future direction. The clinical-relevant action of autophagy-inducing natural products should be highlighted in future study. As natural products are an important resource in discovery of lead compound of anticancer drug, study on the role of autophagy in tumor suppressive effect of natural products continues to be necessary and emerging.
Collapse
Affiliation(s)
- Ning Wang
- School of Chinese Medicine, The University of Hong Kong, 10 Sassoon Road, Pokfulam, Hong Kong
- The University of Hong Kong-Shenzhen Institute of Research and Innovation (HKU-SIRI), Shenzhen 518057, China
| | - Yibin Feng
- School of Chinese Medicine, The University of Hong Kong, 10 Sassoon Road, Pokfulam, Hong Kong
- The University of Hong Kong-Shenzhen Institute of Research and Innovation (HKU-SIRI), Shenzhen 518057, China
| |
Collapse
|
22
|
Netea-Maier RT, Klück V, Plantinga TS, Smit JWA. Autophagy in thyroid cancer: present knowledge and future perspectives. Front Endocrinol (Lausanne) 2015; 6:22. [PMID: 25741318 PMCID: PMC4332359 DOI: 10.3389/fendo.2015.00022] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2014] [Accepted: 02/05/2015] [Indexed: 01/01/2023] Open
Abstract
Thyroid cancer is the most common endocrine malignancy. Despite having a good prognosis in the majority of cases, when the tumor is dedifferentiated it does no longer respond to conventional treatment with radioactive iodine, the prognosis worsens significantly. Treatment options for advanced, dedifferentiated disease are limited and do not cure the disease. Autophagy, a process of self-digestion in which damaged molecules or organelles are degraded and recycled, has emerged as an important player in the pathogenesis of different diseases, including cancer. The role of autophagy in thyroid cancer pathogenesis is not yet elucidated. However, the available data indicate that autophagy is involved in several steps of thyroid tumor initiation and progression as well as in therapy resistance and therefore could be exploited for therapeutic applications. The present review summarizes the most recent data on the role of autophagy in the pathogenesis of thyroid cancer and we will provide a perspective on how this process can be targeted for potential therapeutic approaches and could be further explored in the context of multimodality treatment in cancer and personalized medicine.
Collapse
Affiliation(s)
- Romana T. Netea-Maier
- Department of Medicine, Division of Endocrinology, Radboud University Nijmegen Medical Center, Nijmegen, Netherlands
| | - Viola Klück
- Department of Medicine, Division of Endocrinology, Radboud University Nijmegen Medical Center, Nijmegen, Netherlands
| | - Theo S. Plantinga
- Department of Medicine, Division of Endocrinology, Radboud University Nijmegen Medical Center, Nijmegen, Netherlands
| | - Johannes W. A. Smit
- Department of Medicine, Division of Endocrinology, Radboud University Nijmegen Medical Center, Nijmegen, Netherlands
- *Correspondence: Johannes W. A. Smit, Department of Medicine, Division of Endocrinology, Radboud University Nijmegen Medical Center, Geert Grooteplein 8, PO Box 9101, Nijmegen 6500 HB, Netherlands e-mail:
| |
Collapse
|
23
|
Grasso D, Vaccaro MI. Macroautophagy and the oncogene-induced senescence. Front Endocrinol (Lausanne) 2014; 5:157. [PMID: 25324830 PMCID: PMC4179625 DOI: 10.3389/fendo.2014.00157] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Accepted: 09/16/2014] [Indexed: 12/12/2022] Open
Abstract
The oncogene-induced senescence is emerging as a potent tumor suppressor mechanism and as a possible therapeutic target. Macroautophagy is intimately linked to the senescence condition setup, although its role has not been elucidated yet. Here, we discuss up-to-date concepts of senescence-related macroautophagy and evaluate the current trend of this growing research field, which has relevance in future perspectives toward therapeutic options against cancer.
Collapse
Affiliation(s)
- Daniel Grasso
- Institute of Biochemistry and Molecular Medicine, National Council for Scientific and Technological Research, Department of Pathophysiology, School of Pharmacy and Biochemistry, University of Buenos Aires, Buenos Aires, Argentina
| | - Maria I. Vaccaro
- Institute of Biochemistry and Molecular Medicine, National Council for Scientific and Technological Research, Department of Pathophysiology, School of Pharmacy and Biochemistry, University of Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
24
|
Autophagy and non-alcoholic fatty liver disease. BIOMED RESEARCH INTERNATIONAL 2014; 2014:120179. [PMID: 25295245 PMCID: PMC4175790 DOI: 10.1155/2014/120179] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2014] [Accepted: 07/30/2014] [Indexed: 02/07/2023]
Abstract
Autophagy, or cellular self-digestion, is a catabolic process that targets cell constituents including damaged organelles, unfolded proteins, and intracellular pathogens to lysosomes for degradation. Autophagy is crucial for development, differentiation, survival, and homeostasis. Important links between the regulation of autophagy and liver complications associated with obesity, non-alcoholic fatty liver disease (NAFLD), have been reported. The spectrum of these hepatic abnormalities extends from isolated steatosis to non-alcoholic steatohepatitis (NASH), steatofibrosis, which sometimes leads to cirrhosis, and hepatocellular carcinoma. NAFLD is one of the three main causes of cirrhosis and increases the risk of liver-related death and hepatocellular carcinoma. The pathophysiological mechanisms of the progression of a normal liver to steatosis and then more severe disease are complex and still unclear. The regulation of the autophagic flux, a dynamic response, and the knowledge of the role of autophagy in specific cells including hepatocytes, hepatic stellate cells, immune cells, and hepatic cancer cells have been extensively studied these last years. This review will provide insight into the current understanding of autophagy and its role in the evolution of the hepatic complications associated with obesity, from steatosis to hepatocellular carcinoma.
Collapse
|
25
|
Gonzalez CD, Alvarez S, Ropolo A, Rosenzvit C, Gonzalez Bagnes MF, Vaccaro MI. Autophagy, Warburg, and Warburg reverse effects in human cancer. BIOMED RESEARCH INTERNATIONAL 2014; 2014:926729. [PMID: 25197670 PMCID: PMC4145381 DOI: 10.1155/2014/926729] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Accepted: 07/24/2014] [Indexed: 12/15/2022]
Abstract
Autophagy is a highly regulated-cell pathway for degrading long-lived proteins as well as for clearing cytoplasmic organelles. Autophagy is a key contributor to cellular homeostasis and metabolism. Warburg hypothesized that cancer growth is frequently associated with a deviation of a set of energy generation mechanisms to a nonoxidative breakdown of glucose. This cellular phenomenon seems to rely on a respiratory impairment, linked to mitochondrial dysfunction. This mitochondrial dysfunction results in a switch to anaerobic glycolysis. It has been recently suggested that epithelial cancer cells may induce the Warburg effect in neighboring stromal fibroblasts in which autophagy was activated. These series of observations drove to the proposal of a putative reverse Warburg effect of pathophysiological relevance for, at least, some tumor phenotypes. In this review we introduce the autophagy process and its regulation and its selective pathways and role in cancer cell metabolism. We define and describe the Warburg effect and the newly suggested "reverse" hypothesis. We also discuss the potential value of modulating autophagy with several pharmacological agents able to modify the Warburg effect. The association of the Warburg effect in cancer and stromal cells to tumor-related autophagy may be of relevance for further development of experimental therapeutics as well as for cancer prevention.
Collapse
Affiliation(s)
- Claudio D. Gonzalez
- Institute of Biochemistry and Molecular Medicine, National Council for Scientific and Technological Research, School of Pharmacy and Biochemistry, University of Buenos Aires, Junin 956 p5, 1113 Buenos Aires, Argentina
- Department of Pharmacology, CEMIC University Institute, 1113 Buenos Aires, Argentina
| | - Silvia Alvarez
- Institute of Biochemistry and Molecular Medicine, National Council for Scientific and Technological Research, School of Pharmacy and Biochemistry, University of Buenos Aires, Junin 956 p5, 1113 Buenos Aires, Argentina
| | - Alejandro Ropolo
- Institute of Biochemistry and Molecular Medicine, National Council for Scientific and Technological Research, School of Pharmacy and Biochemistry, University of Buenos Aires, Junin 956 p5, 1113 Buenos Aires, Argentina
| | - Carla Rosenzvit
- Department of Pharmacology, CEMIC University Institute, 1113 Buenos Aires, Argentina
| | | | - Maria I. Vaccaro
- Institute of Biochemistry and Molecular Medicine, National Council for Scientific and Technological Research, School of Pharmacy and Biochemistry, University of Buenos Aires, Junin 956 p5, 1113 Buenos Aires, Argentina
| |
Collapse
|
26
|
Abstract
Autophagy is crucial for cellular homeostasis and plays important roles in tumorigenesis. FIP200 is an essential autophagy gene that promotes mammary tumorigenesis. Here, Wei et al. find that ablation of FIP200 reduces growth of established tumors. p62 knockdown or deficiency in established FIP200-null tumors dramatically impairs tumor growth, and this is associated with the up-regulated activation of the NF-κB pathway by p62. This study demonstrates that p62 and autophagy synergize to promote tumor growth. Autophagy is crucial for cellular homeostasis and plays important roles in tumorigenesis. FIP200 (FAK family-interacting protein of 200 kDa) is an essential autophagy gene required for autophagy induction, functioning in the ULK1–ATG13–FIP200 complex. Our previous studies showed that conditional knockout of FIP200 significantly suppressed mammary tumorigenesis, which was accompanied by accumulation of p62 in tumor cells. However, it is not clear whether FIP200 is also required for maintaining tumor growth and how the increased p62 level affects the growth in autophagy-deficient FIP200-null tumors in vivo. Here, we describe a new system to delete FIP200 in transformed mouse embryonic fibroblasts as well as mammary tumor cells following their transplantation and show that ablation of FIP200 significantly reduced growth of established tumors in vivo. Using similar strategies, we further showed that either p62 knockdown or p62 deficiency in established FIP200-null tumors dramatically impaired tumor growth. The stimulation of tumor growth by p62 accumulation in FIP200-null tumors is associated with the up-regulated activation of the NF-κB pathway by p62. Last, we showed that overexpression of the autophagy master regulator TFEBS142A increased the growth of established tumors, which correlated with the increased autophagy of the tumor cells. Together, our studies demonstrate that p62 and autophagy synergize to promote tumor growth, suggesting that inhibition of both pathways could be more effective than targeting either alone for cancer therapy.
Collapse
Affiliation(s)
- Huijun Wei
- Division of Molecular Medicine and Genetics, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan 48109, USA; Ohio State University Comprehensive Cancer Center, Columbus, Ohio 43210, USA
| | - Chenran Wang
- Division of Molecular Medicine and Genetics, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan 48109, USA; Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan 48109, USA; Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, Ohio 45267, USA
| | - Carlo M Croce
- Ohio State University Comprehensive Cancer Center, Columbus, Ohio 43210, USA
| | - Jun-Lin Guan
- Division of Molecular Medicine and Genetics, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan 48109, USA; Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan 48109, USA; Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, Ohio 45267, USA
| |
Collapse
|
27
|
Ding Y, Kim SL, Lee SY, Koo JK, Wang Z, Choi ME. Autophagy regulates TGF-β expression and suppresses kidney fibrosis induced by unilateral ureteral obstruction. J Am Soc Nephrol 2014; 25:2835-46. [PMID: 24854279 DOI: 10.1681/asn.2013101068] [Citation(s) in RCA: 226] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Autophagy is an evolutionarily conserved process that cells use to degrade and recycle cellular proteins and remove damaged organelles. During the past decade, there has been a growing interest in defining the basic cellular mechanism of autophagy and its roles in health and disease. However, the functional role of autophagy in kidney fibrosis remains poorly understood. Here, using GFP-LC3 transgenic mice, we show that autophagy is induced in renal tubular epithelial cells (RTECs) of obstructed kidneys after unilateral ureteral obstruction (UUO). Deletion of LC3B (LC3(-/-) mice) resulted in increased collagen deposition and increased mature profibrotic factor TGF-β levels in obstructed kidneys. Beclin 1 heterozygous (beclin 1(+/-)) mice also displayed increased collagen deposition in the obstructed kidneys after UUO. We also show that TGF-β1 induces autophagy in primary mouse RTECs and human renal proximal tubular epithelial (HK-2) cells. LC3 deficiency resulted in increased levels of mature TGF-β in primary RTECs. Under conditions of TGF-β1 stimulation and autoinduction, inhibition of autolysosomal protein degradation by bafilomycin A1 increased mature TGF-β protein levels without alterations in TGF-β1 mRNA. These data suggest a novel intracellular mechanism by which mature TGF-β1 protein levels may be regulated in RTECs through autophagic degradation, which suppresses kidney fibrosis induced by UUO. The dual functions of TGF-β1, as an inducer of TGF-β1 autoinduction and an inducer of autophagy and TGF-β degradation, underscore the multifunctionality of TGF-β1.
Collapse
Affiliation(s)
- Yan Ding
- Renal Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts; Division of Nephrology and Hypertension, Weill Cornell Medical College, New York, New York; and
| | - Sung ll Kim
- Renal Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts; Division of Nephrology and Hypertension, Weill Cornell Medical College, New York, New York; and
| | - So-Young Lee
- Renal Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts; Department of Internal Medicine, Bundang CHA Medical Center, CHA University School of Medicine, Seongnam, South Korea
| | - Ja Kun Koo
- Division of Nephrology and Hypertension, Weill Cornell Medical College, New York, New York; and
| | - Zhibo Wang
- Renal Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Mary E Choi
- Renal Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts; Division of Nephrology and Hypertension, Weill Cornell Medical College, New York, New York; and
| |
Collapse
|
28
|
Lőrincz P, Lakatos Z, Maruzs T, Szatmári Z, Kis V, Sass M. Atg6/UVRAG/Vps34-containing lipid kinase complex is required for receptor downregulation through endolysosomal degradation and epithelial polarity during Drosophila wing development. BIOMED RESEARCH INTERNATIONAL 2014; 2014:851349. [PMID: 25006588 PMCID: PMC4074780 DOI: 10.1155/2014/851349] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Accepted: 04/01/2014] [Indexed: 11/18/2022]
Abstract
Atg6 (Beclin 1 in mammals) is a core component of the Vps34 PI3K (III) complex, which promotes multiple vesicle trafficking pathways. Atg6 and Vps34 form two distinct PI3K (III) complexes in yeast and mammalian cells, either with Atg14 or with UVRAG. The functions of these two complexes are not entirely clear, as both Atg14 and UVRAG have been suggested to regulate both endocytosis and autophagy. In this study, we performed a microscopic analysis of UVRAG, Atg14, or Atg6 loss-of-function cells in the developing Drosophila wing. Both autophagy and endocytosis are seriously impaired and defective endolysosomes accumulate upon loss of Atg6. We show that Atg6 is required for the downregulation of Notch and Wingless signaling pathways; thus it is essential for normal wing development. Moreover, the loss of Atg6 impairs cell polarity. Atg14 depletion results in autophagy defects with no effect on endocytosis or cell polarity, while the silencing of UVRAG phenocopies all but the autophagy defect of Atg6 depleted cells. Thus, our results indicate that the UVRAG-containing PI3K (III) complex is required for receptor downregulation through endolysosomal degradation and for the establishment of proper cell polarity in the developing wing, while the Atg14-containing complex is involved in autophagosome formation.
Collapse
Affiliation(s)
- Péter Lőrincz
- Department of Anatomy, Cell and Developmental Biology, Eotvos Lorand University, Budapest 1117, Hungary
| | - Zsolt Lakatos
- Department of Anatomy, Cell and Developmental Biology, Eotvos Lorand University, Budapest 1117, Hungary
| | - Tamás Maruzs
- Department of Anatomy, Cell and Developmental Biology, Eotvos Lorand University, Budapest 1117, Hungary
| | - Zsuzsanna Szatmári
- Department of Anatomy, Cell and Developmental Biology, Eotvos Lorand University, Budapest 1117, Hungary
| | - Viktor Kis
- Department of Anatomy, Cell and Developmental Biology, Eotvos Lorand University, Budapest 1117, Hungary
| | - Miklós Sass
- Department of Anatomy, Cell and Developmental Biology, Eotvos Lorand University, Budapest 1117, Hungary
| |
Collapse
|
29
|
Abstract
The BECN1 gene encodes the Beclin-1 protein, which is a well-established regulator of the autophagic pathway. It is a mammalian orthologue of the ATG6 gene in yeast and was one of the first identified mammalian autophagy-associated genes. Beclin-1 interacts with a number of binding partners in the cell which can lead to either activation (eg, via PI3KC3/Vps34, Ambra 1, UV radiation resistance-associated gene) or inhibition (eg, via Bcl-2, Rubicon) of the autophagic pathway. Apart from its role as a regulator of autophagy, it is also shown to effect important biological processes in the cell such as apoptosis and embryogenesis. Beclin-1 has also been implicated to play a critical role in the pathology of a variety of disease states including cancer, neurological disorders (eg, Alzheimer's disease, Parkinson's disease) and viral infections. Thus, understanding the functions of Beclin-1 and its interactions with other cellular components will aid in its development as an important therapeutic target for future drug development.
Collapse
Affiliation(s)
- Sumit Sahni
- Molecular Pharmacology and Pathology Program, Department of Pathology, Bosch Institute, Blackburn Building (D06), University of Sydney, Sydney, New South Wales, Australia
| | - Angelica M Merlot
- Molecular Pharmacology and Pathology Program, Department of Pathology, Bosch Institute, Blackburn Building (D06), University of Sydney, Sydney, New South Wales, Australia
| | - Sukriti Krishan
- Molecular Pharmacology and Pathology Program, Department of Pathology, Bosch Institute, Blackburn Building (D06), University of Sydney, Sydney, New South Wales, Australia
| | - Patric J Jansson
- Molecular Pharmacology and Pathology Program, Department of Pathology, Bosch Institute, Blackburn Building (D06), University of Sydney, Sydney, New South Wales, Australia
| | - Des R Richardson
- Molecular Pharmacology and Pathology Program, Department of Pathology, Bosch Institute, Blackburn Building (D06), University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
30
|
Zarzynska JM. Two faces of TGF-beta1 in breast cancer. Mediators Inflamm 2014; 2014:141747. [PMID: 24891760 PMCID: PMC4033515 DOI: 10.1155/2014/141747] [Citation(s) in RCA: 166] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Revised: 04/16/2014] [Accepted: 04/24/2014] [Indexed: 12/14/2022] Open
Abstract
Breast cancer (BC) is potentially life-threatening malignancy that still causes high mortality among women. Scientific research in this field is focused on deeper understanding of pathogenesis and progressing of BC, in order to develop relevant diagnosis and improve therapeutic treatment. Multifunctional cytokine TGF- β 1 is one of many factors that have a direct influence on BC pathophysiology. Expression of TGF- β 1, induction of canonical and noncanonical signaling pathways, and mutations in genes encoding TGF- β 1 and its receptors are correlated with oncogenic activity of this cytokine. In early stages of BC this cytokine inhibits epithelial cell cycle progression and promotes apoptosis, showing tumor suppressive effects. However, in late stages, TGF- β 1 is linked with increased tumor progression, higher cell motility, cancer invasiveness, and metastasis. It is also involved in cancer microenvironment modification and promotion of epithelial to mesenchymal transition (EMT). This review summarizes the current knowledge on the phenomenon called "TGF- β 1 paradox", showing that better understanding of TGF- β 1 functions can be a step towards development of new therapeutic approaches. According to current knowledge several drugs against TGF- β 1 have been developed and are either in nonclinical or in early stages of clinical investigation.
Collapse
Affiliation(s)
- Joanna Magdalena Zarzynska
- Department of Food Hygiene and Public Health, Faculty of Veterinary Medicine, WULS-SGGW, Nowoursynowska 159, 02-776 Warsaw, Poland
| |
Collapse
|
31
|
Titone R, Morani F, Follo C, Vidoni C, Mezzanzanica D, Isidoro C. Epigenetic control of autophagy by microRNAs in ovarian cancer. BIOMED RESEARCH INTERNATIONAL 2014; 2014:343542. [PMID: 24877083 PMCID: PMC4022060 DOI: 10.1155/2014/343542] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Accepted: 04/14/2014] [Indexed: 12/22/2022]
Abstract
Autophagy is a lysosomal-driven catabolic process that contributes to the preservation of cell homeostasis through the regular elimination of cellular damaged, aged, and redundant molecules and organelles. Autophagy plays dual opposite roles in cancer: on one hand it prevents carcinogenesis; on the other hand it confers an advantage to cancer cells to survive under prohibitive conditions. Autophagy has been implicated in ovarian cancer aggressiveness and in ovarian cancer cell chemoresistance and dormancy. Small noncoding microRNAs (miRNAs) regulate gene expression at posttranscriptional level, thus playing an important role in many aspects of cell pathophysiology, including cancerogenesis and cancer progression. Certain miRNAs have recently emerged as important epigenetic modulators of autophagy in cancer cells. The mRNA of several autophagy-related genes contains, in fact, the target sequence for miRNAs belonging to different families, with either oncosuppressive or oncogenic activities. MiRNA profiling studies have identified some miRNAs aberrantly expressed in ovarian cancer tissues that can impact autophagy. In addition, plasma and stroma cell-derived miRNAs in tumour-bearing patients can regulate the expression of relevant autophagy genes in cancer cells. The present review focuses on the potential implications of miRNAs regulating autophagy in ovarian cancer pathogenesis and progression.
Collapse
Affiliation(s)
- Rossella Titone
- Laboratory of Molecular Pathology, Department of Health Sciences, Centro di Biotecnologie per la Ricerca Medica Applicata, Università del Piemonte Orientale, Via P. Solaroli 17, 28100 Novara, Italy
| | - Federica Morani
- Laboratory of Molecular Pathology, Department of Health Sciences, Centro di Biotecnologie per la Ricerca Medica Applicata, Università del Piemonte Orientale, Via P. Solaroli 17, 28100 Novara, Italy
| | - Carlo Follo
- Laboratory of Molecular Pathology, Department of Health Sciences, Centro di Biotecnologie per la Ricerca Medica Applicata, Università del Piemonte Orientale, Via P. Solaroli 17, 28100 Novara, Italy
| | - Chiara Vidoni
- Laboratory of Molecular Pathology, Department of Health Sciences, Centro di Biotecnologie per la Ricerca Medica Applicata, Università del Piemonte Orientale, Via P. Solaroli 17, 28100 Novara, Italy
| | - Delia Mezzanzanica
- Unit of Molecular Therapies, Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy
| | - Ciro Isidoro
- Laboratory of Molecular Pathology, Department of Health Sciences, Centro di Biotecnologie per la Ricerca Medica Applicata, Università del Piemonte Orientale, Via P. Solaroli 17, 28100 Novara, Italy
| |
Collapse
|
32
|
mTOR in viral hepatitis and hepatocellular carcinoma: function and treatment. BIOMED RESEARCH INTERNATIONAL 2014; 2014:735672. [PMID: 24804240 PMCID: PMC3996896 DOI: 10.1155/2014/735672] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Accepted: 03/07/2014] [Indexed: 12/15/2022]
Abstract
As the fifth most common cancer in men and the eighth most common cancer in women, hepatocellular carcinoma (HCC) is the leading cause of cancer-related deaths worldwide, with standard chemotherapy and radiation being minimally effective in prolonging survival. Virus hepatitis, particularly HBV and HCV infection is the most prominent risk factor for HCC development. Mammalian target of rapamycin (mTOR) pathway is activated in viral hepatitis and HCC. mTOR inhibitors have been tested successfully in clinical trials for their antineoplastic potency and well tolerability. Treatment with mTOR inhibitor alone or in combination with cytotoxic drugs or targeted therapy drug scan significantly reduces HCC growth and improves clinical outcome, indicating that mTOR inhibition is a promising strategy for the clinical management of HCC.
Collapse
|
33
|
He S, Wu SH, Hu JL, Wen FF, Sun CB. Significance of expression of autophagy related factors beclin1 and mTOR in malignant transformation of colorectal adenoma. Shijie Huaren Xiaohua Zazhi 2014; 22:920-926. [DOI: 10.11569/wcjd.v22.i7.920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the significance of expression of autophagy regulatory molecules beclin1 and mTOR in the malignant transformation of colorectal adenoma.
METHODS: Immunohistochemistry was used to detect the expression of beclin1, mTOR and LC3-B in 30 cases of normal colorectal mucosa, 60 cases of low-grade intraepithelial neoplasia (LGIN), 60 cases of high-grade intraepithelial neoplasia (HGIN) and 80 cases of colorectal carcinoma.
RESULTS: The expression of both beclin1 and LC3-B in colorectal cancer was significantly higher than that in LGIN and normal mucosa (P < 0.05), but there was no significant difference in the expression of beclin1 between colorectal cancer and HGIN (P > 0.05). The expression of mTOR in colorectal cancer was significantly higher than that in normal mucosa, LGIN and HGIN (P < 0.05), but no significant difference was found between LGIN and HGIN. In colorectal cancer, the expression of both beclin1 and LC3-B was related to tumor size; the expression of mTOR was associated with tumor size and depth of invasion; the expression of beclin1, mTOR and LC3-B in LGIN and HGIN was not related to clinicopathologic characteristics. There was a positive correlation between the expression of beclin1 and LC3-B in LGIN, HGIN and colorectal carcinoma (r = 0.390, 0.306, 0.443, P < 0.05). The expression of mTOR was not related to that of LC3-B in LGIN, but mTOR expression was positively associated with LC3-B expression in both HGIN and colorectal cancer (r = 0.284, 0.223, P < 0.05).
CONCLUSION: Autophagy may play a critical role in the malignant transformation of colorectal adenoma.
Collapse
|
34
|
Choi JH, Cho YS, Ko YH, Hong SU, Park JH, Lee MA. Absence of autophagy-related proteins expression is associated with poor prognosis in patients with colorectal adenocarcinoma. Gastroenterol Res Pract 2014; 2014:179586. [PMID: 24723943 PMCID: PMC3960741 DOI: 10.1155/2014/179586] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Accepted: 01/21/2014] [Indexed: 12/15/2022] Open
Abstract
Background/Aim. Autophagy, a cellular degradation process, has paradoxical roles in tumorigenesis and the progression of human cancers. The aim of this study was to investigate the expression levels of autophagy-related proteins in colorectal cancer (CRC) and to evaluate their prognostic significance. Methods. This study is a retrospective review of immunohistochemical and clinicopathological data. All specimens evaluated were obtained from 263 patients with colorectal cancer who had undergone surgery between November 1996 and August 2007. The primary outcomes measured were the expression levels of three autophagy-related proteins (ATG5, BECN1/Beclin 1, and Microtubule-associated protein 1 light chain 3B (LC3B)) by immunohistochemistry and its association in clinicopathological parameters and patient survival. Results. The autophagy-related protein expression frequencies were 65.1% (151/232) for ATG5, 71.3% (174/244) for BECN1, and 74.7% (186/249) for LC3B for the 263 patients. Correlation between the expression of autophagy-related proteins was significant for all protein pairs. Multivariate analysis showed that negative LC3B expression and absence of autophagy-related proteins expression were independently associated with poor prognosis. Conclusion. Absence of autophagy-related proteins expression is associated with poor clinical outcome in CRC, suggesting that these proteins have potential uses as novel prognostic markers.
Collapse
Affiliation(s)
- Ji Hye Choi
- Department of Biomedical Science, The Catholic University of Korea College of Medicine, Seoul 137-701, Republic of Korea
| | - Young-Seok Cho
- Department of Internal Medicine, Uijeongbu St. Mary's Hospital, The Catholic University of Korea College of Medicine, Uijeongbu 480-717, Republic of Korea
| | - Yoon Ho Ko
- Department of Internal Medicine, Uijeongbu St. Mary's Hospital, The Catholic University of Korea College of Medicine, Uijeongbu 480-717, Republic of Korea
| | - Soon Uk Hong
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 138-736, Republic of Korea
| | - Jin Hee Park
- Department of Biomedical Science, The Catholic University of Korea College of Medicine, Seoul 137-701, Republic of Korea
| | - Myung Ah Lee
- Department of Internal Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea College of Medicine, Seoul 137-701, Republic of Korea
| |
Collapse
|
35
|
Morani F, Titone R, Pagano L, Galetto A, Alabiso O, Aimaretti G, Isidoro C. Autophagy and thyroid carcinogenesis: genetic and epigenetic links. Endocr Relat Cancer 2014; 21:R13-29. [PMID: 24163390 DOI: 10.1530/erc-13-0271] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Thyroid cancer is the most common cancer of the endocrine system and is responsible for the majority of deaths from endocrine malignancies. Although a large proportion of thyroid cancers belong to well differentiated histologic subtypes, which in general show a good prognosis after surgery and radioiodine ablation, the treatment of radio-resistant papillary-type, of undifferentiated anaplastic, and of medullary-type thyroid cancers remains unsatisfactory. Autophagy is a vesicular process for the lysosomal degradation of protein aggregates and of damaged or redundant organelles. Autophagy plays an important role in cell homeostasis, and there is evidence that this process is dysregulated in cancer cells. Recent in vitro preclinical studies have indicated that autophagy is involved in the cytotoxic response to chemotherapeutics in thyroid cancer cells. Indeed, several oncogenes and oncosuppressor genes implicated in thyroid carcinogenesis also play a role in the regulation of autophagy. In addition, some epigenetic modulators involved in thyroid carcinogenesis also influence autophagy. In this review, we highlight the genetic and epigenetic factors that mechanistically link thyroid carcinogenesis and autophagy, thus substantiating the rationale for an autophagy-targeted therapy of aggressive and radio-chemo-resistant thyroid cancers.
Collapse
Affiliation(s)
- Federica Morani
- Laboratory of Molecular Pathology, Department of Health SciencesUnit of Clinical Endocrinology Unit of Oncology, Department of Translational Medicine, Università del Piemonte Orientale 'A. Avogadro', Via Solaroli 17, 28100 Novara, Italy
| | | | | | | | | | | | | |
Collapse
|
36
|
Yang L, Su T, Lv D, Xie F, Liu W, Cao J, Sheikh IA, Qin X, Li L, Chen L. ERK1/2 mediates lung adenocarcinoma cell proliferation and autophagy induced by apelin-13. Acta Biochim Biophys Sin (Shanghai) 2014; 46:100-11. [PMID: 24374773 DOI: 10.1093/abbs/gmt140] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The aim of this study was to investigate the role of apelin in the cell proliferation and autophagy of lung adenocarcinoma. The over-expression of APJ in lung adenocarcinoma was detected by immunohistochemistry, while plasma apelin level in lung cancer patients was measured by enzyme-linked immunosorbent assay. Our findings revealed that apelin-13 significantly increased the phosphorylation of ERK1/2, the expression of cyclin D1, microtubule-associated protein 1 light chain 3A/B (LC3A/B), and beclin1, and confirmed that apelin-13 promoted A549 cell proliferation and induced A549 cell autophagy via ERK1/2 signaling. Moreover, there are pores on the surface of human lung adenocarcinoma cell line A549 and apelin-13 causes cell surface smooth and glossy as observed under atomic force microscopy. These results suggested that ERK1/2 signaling pathway mediates apelin-13-induced lung adenocarcinoma cell proliferation and autophagy. Under our experimental condition, autophagy associated with 3-methyladenine was not involved in cell proliferation.
Collapse
Affiliation(s)
- Li Yang
- Learning Key Laboratory for Pharmaco-proteomics, Institute of Pharmacy and Pharmacology, University of South China, Hengyang 421001, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Ávalos Y, Canales J, Bravo-Sagua R, Criollo A, Lavandero S, Quest AFG. Tumor suppression and promotion by autophagy. BIOMED RESEARCH INTERNATIONAL 2014; 2014:603980. [PMID: 25328887 PMCID: PMC4189854 DOI: 10.1155/2014/603980] [Citation(s) in RCA: 137] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Accepted: 09/03/2014] [Indexed: 12/12/2022]
Abstract
Autophagy is a highly regulated catabolic process that involves lysosomal degradation of proteins and organelles, mostly mitochondria, for the maintenance of cellular homeostasis and reduction of metabolic stress. Problems in the execution of this process are linked to different pathological conditions, such as neurodegeneration, aging, and cancer. Many of the proteins that regulate autophagy are either oncogenes or tumor suppressor proteins. Specifically, tumor suppressor genes that negatively regulate mTOR, such as PTEN, AMPK, LKB1, and TSC1/2 stimulate autophagy while, conversely, oncogenes that activate mTOR, such as class I PI3K, Ras, Rheb, and AKT, inhibit autophagy, suggesting that autophagy is a tumor suppressor mechanism. Consistent with this hypothesis, the inhibition of autophagy promotes oxidative stress, genomic instability, and tumorigenesis. Nevertheless, autophagy also functions as a cytoprotective mechanism under stress conditions, including hypoxia and nutrient starvation, that promotes tumor growth and resistance to chemotherapy in established tumors. Here, in this brief review, we will focus the discussion on this ambiguous role of autophagy in the development and progression of cancer.
Collapse
Affiliation(s)
- Yenniffer Ávalos
- 1Laboratory of Cellular Communication, Advanced Center for Chronic Diseases (ACCDiS) and Center for Molecular Studies of the Cell, Program in Cell and Molecular Biology, Biomedical Sciences Institute (ICBM), Faculty of Medicine, University of Chile, 8380492 Santiago, Chile
- 2Laboratory of Molecular Signal Transduction, Advanced Center for Chronic Diseases (ACCDiS) and Center for Molecular Studies of the Cell, Faculty of Chemical and Pharmaceutical Sciences & Faculty of Medicine, University of Chile, 8380492 Santiago, Chile
| | - Jimena Canales
- 1Laboratory of Cellular Communication, Advanced Center for Chronic Diseases (ACCDiS) and Center for Molecular Studies of the Cell, Program in Cell and Molecular Biology, Biomedical Sciences Institute (ICBM), Faculty of Medicine, University of Chile, 8380492 Santiago, Chile
| | - Roberto Bravo-Sagua
- 1Laboratory of Cellular Communication, Advanced Center for Chronic Diseases (ACCDiS) and Center for Molecular Studies of the Cell, Program in Cell and Molecular Biology, Biomedical Sciences Institute (ICBM), Faculty of Medicine, University of Chile, 8380492 Santiago, Chile
- 2Laboratory of Molecular Signal Transduction, Advanced Center for Chronic Diseases (ACCDiS) and Center for Molecular Studies of the Cell, Faculty of Chemical and Pharmaceutical Sciences & Faculty of Medicine, University of Chile, 8380492 Santiago, Chile
| | - Alfredo Criollo
- 3Research Institute of Dental Science, Faculty of Dentistry, University of Chile, 8380492 Santiago, Chile
| | - Sergio Lavandero
- 2Laboratory of Molecular Signal Transduction, Advanced Center for Chronic Diseases (ACCDiS) and Center for Molecular Studies of the Cell, Faculty of Chemical and Pharmaceutical Sciences & Faculty of Medicine, University of Chile, 8380492 Santiago, Chile
- 4Department of Internal Medicine, Cardiology Division, University of Texas Southwestern Medical Center, Dallas, TX 75235, USA
- *Sergio Lavandero: and
| | - Andrew F. G. Quest
- 1Laboratory of Cellular Communication, Advanced Center for Chronic Diseases (ACCDiS) and Center for Molecular Studies of the Cell, Program in Cell and Molecular Biology, Biomedical Sciences Institute (ICBM), Faculty of Medicine, University of Chile, 8380492 Santiago, Chile
- *Andrew F. G. Quest:
| |
Collapse
|
38
|
Cheng Y, Ren X, Hait WN, Yang JM. Therapeutic targeting of autophagy in disease: biology and pharmacology. Pharmacol Rev 2013; 65:1162-97. [PMID: 23943849 PMCID: PMC3799234 DOI: 10.1124/pr.112.007120] [Citation(s) in RCA: 197] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Autophagy, a process of self-digestion of the cytoplasm and organelles through which cellular components are recycled for reuse or energy production, is an evolutionarily conserved response to metabolic stress found in eukaryotes from yeast to mammals. It is noteworthy that autophagy is also associated with various pathophysiologic conditions in which this cellular process plays either a cytoprotective or cytopathic role in response to a variety of stresses such as metabolic, inflammatory, neurodegenerative, and therapeutic stress. It is now generally believed that modulating the activity of autophagy through targeting specific regulatory molecules in the autophagy machinery may impact disease processes, thus autophagy may represent a new pharmacologic target for drug development and therapeutic intervention of various human disorders. Induction or inhibition of autophagy using small molecule compounds has shown promise in the treatment of diseases such as cancer. Depending on context, induction or suppression of autophagy may exert therapeutic effects via promoting either cell survival or death, two major events targeted by therapies for various disorders. A better understanding of the biology of autophagy and the pharmacology of autophagy modulators has the potential for facilitating the development of autophagy-based therapeutic interventions for several human diseases.
Collapse
Affiliation(s)
- Yan Cheng
- Department of Pharmacology and Penn State Hershey Cancer Institute, Pennsylvania State University College of Medicine and Milton S Hershey Medical Center, 500 University Drive, Hershey, PA 17033, USA
| | | | | | | |
Collapse
|
39
|
Role of the Crosstalk between Autophagy and Apoptosis in Cancer. JOURNAL OF ONCOLOGY 2013; 2013:102735. [PMID: 23840208 PMCID: PMC3687500 DOI: 10.1155/2013/102735] [Citation(s) in RCA: 215] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Accepted: 03/24/2013] [Indexed: 12/14/2022]
Abstract
Autophagy and apoptosis are catabolic pathways essential for organismal homeostasis. Autophagy is normally a cell-survival pathway involving the degradation and recycling of obsolete, damaged, or harmful macromolecular assemblies; however, excess autophagy has been implicated in type II cell death. Apoptosis is the canonical programmed cell death pathway. Autophagy and apoptosis have now been shown to be interconnected by several molecular nodes of crosstalk, enabling the coordinate regulation of degradation by these pathways. Normally, autophagy and apoptosis are both tumor suppressor pathways. Autophagy fulfils this role as it facilitates the degradation of oncogenic molecules, preventing development of cancers, while apoptosis prevents the survival of cancer cells. Consequently, defective or inadequate levels of either autophagy or apoptosis can lead to cancer. However, autophagy appears to have a dual role in cancer, as it has now been shown that autophagy also facilitates the survival of tumor cells in stress conditions such as hypoxic or low-nutrition environments. Here we review the multiple molecular mechanisms of coordination of autophagy and apoptosis and the role of the proteins involved in this crosstalk in cancer. A comprehensive understanding of the interconnectivity of autophagy and apoptosis is essential for the development of effective cancer therapeutics.
Collapse
|
40
|
de Conti A, Tryndyak V, Koturbash I, Heidor R, Kuroiwa-Trzmielina J, Ong TP, Beland FA, Moreno FS, Pogribny IP. The chemopreventive activity of the butyric acid prodrug tributyrin in experimental rat hepatocarcinogenesis is associated with p53 acetylation and activation of the p53 apoptotic signaling pathway. Carcinogenesis 2013; 34:1900-6. [PMID: 23568954 DOI: 10.1093/carcin/bgt124] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The reversibility of non-genotoxic phenotypic alterations has been explored in order to develop novel preventive and therapeutic approaches for cancer control. Previously, it has been demonstrated that histone deacetylase (HDAC) inhibitor tributyrin, a butyric acid prodrug, to have chemopreventive effects on rat hepatocarcinogenesis. The goal of this study was to determine molecular mechanisms associated with the chemopreventive activity of tributyrin. Male Wistar rats were allocated randomly to untreated control group and two experimental groups. Rats in the experimental group 1 were treated with maltodextrin (3g/kg body wt), and rats in experimental group 2 were treated with tributyrin (2g/kg body wt) daily for 8 weeks. Two weeks after treatment initiation, rats from experimental groups were subjected to a 'resistant hepatocyte' model of hepatocarcinogenesis. Treatment with tributyrin resulted in lower HDAC activity and Hdac3 and Hdac4 gene expression, and an increase of histone H3 lysine 9 and 18 and histone H4 lysine 16 acetylation as compared with the experimental group 1. In addition to the increase in histone acetylation, tributyrin caused an increase in the acetylation of the nuclear p53 protein. These changes were accompanied by a normalization of the p53-signaling network, particularly by the upregulation of pro-apoptotic genes, and a consequent increase of apoptosis and autophagy in the livers of tributyrin-treated rats. These results indicate that the chemopreventive activity of tributyrin may be related to an increase of histone and p53 acetylation, which could lead to the induction of the p53 apoptotic pathway.
Collapse
Affiliation(s)
- Aline de Conti
- Department of Food and Experimental Nutrition, Laboratory of Diet, Nutrition and Cancer, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Zhu BS, Yu LY, Zhao K, Wu YY, Cheng XL, Wu Y, Zhong FY, Gong W, Chen Q, Xing CG. Effects of small interfering RNA inhibit Class I phosphoinositide 3-kinase on human gastric cancer cells. World J Gastroenterol 2013; 19:1760-9. [PMID: 23555164 PMCID: PMC3607752 DOI: 10.3748/wjg.v19.i11.1760] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Revised: 09/19/2012] [Accepted: 12/25/2012] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the effects of small interfering RNA (siRNA)-mediated inhibition of Class I phosphoinositide 3-kinase (Class I PI3K) signal transduction on the proliferation, apoptosis, and autophagy of gastric cancer SGC7901 and MGC803 cells.
METHODS: We constructed the recombinant replication adenovirus PI3K(I)-RNA interference (RNAi)-green fluorescent protein (GFP) and control adenovirus NC-RNAi-GFP, and infected it into human gastric cancer cells. MTT assay was used to determine the growth rate of the gastric cancer cells. Activation of autophagy was monitored with monodansylcadaverine (MDC) staining after adenovirus PI3K(I)-RNAi-GFP and control adenovirus NC-RNAi-GFP treatment. Immunofluorescence staining was used to detect the expression of microtubule-associated protein 1 light chain 3 (LC3). Mitochondrial membrane potential was measured using the fluorescent probe JC-1. The expression of autophagy was monitored with MDC, LC3 staining, and transmission electron microscopy. Western blotting was used to detect p53, Beclin-1, Bcl-2, and LC3 protein expression in the culture supernatant.
RESULTS: The viability of gastric cancer cells was inhibited after siRNA targeting to the Class I PI3K blocked Class I PI3K signal pathway. MTT assays revealed that, after SGC7901 cancer cells were treated with adenovirus PI3K(I)-RNAi-GFP, the rate of inhibition reached 27.48% ± 2.71% at 24 h, 41.92% ± 2.02% at 48 h, and 50.85% ± 0.91% at 72 h. After MGC803 cancer cells were treated with adenovirus PI3K(I)-RNAi-GFP, the rate of inhibition reached 24.39% ± 0.93% at 24 h, 47.00% ± 0.87% at 48 h, and 70.30% ± 0.86% at 72 h (P < 0.05 compared to control group). It was determined that when 50 MOI, the transfection efficiency was 95% ± 2.4%. Adenovirus PI3K(I)-RNAi-GFP (50 MOI) induced mitochondrial dysfunction and activated cell apoptosis in SGC7901 cells, and the results described here prove that RNAi of Class I PI3K induced apoptosis in SGC7901 cells. The results showed that adenovirus PI3K(I)-RNAi-GFP transfection induced punctate distribution of LC3 immunoreactivity, indicating increased formation of autophagosomes. The results showed that the basal level of Beclin-1 and LC3 protein in SGC7901 cells was low. After incubating with adenovirus PI3K(I)-RNAi-GFP (50 MOI), Beclin-1, LC3, and p53 protein expression was significantly increased from 24 to 72 h. We also found that Bcl-2 protein expression down-regulated with the treatment of adenovirus PI3K(I)-RNAi-GFP (50 MOI). A number of isolated membranes, possibly derived from ribosome-free endoplasmic reticulum, were seen. These isolated membranes were elongated and curved to engulf a cytoplasmic fraction and organelles. We used transmission electron microscopy to identify ultrastructural changes in SGC7901 cells after adenovirus PI3K(I)-RNAi-GFP (50 MOI) treatment. Control cells showed a round shape and contained normal-looking organelles, nucleus, and chromatin, while adenovirus PI3K(I)-RNAi-GFP (50 MOI)-treated cells exhibited the typical signs of autophagy.
CONCLUSION: After the Class I PI3K signaling pathway has been blocked by siRNA, the proliferation of cells was inhibited and the apoptosis of gastric cancer cells was enhanced.
Collapse
|
42
|
Sionov RV. MicroRNAs and Glucocorticoid-Induced Apoptosis in Lymphoid Malignancies. ISRN HEMATOLOGY 2013; 2013:348212. [PMID: 23431463 PMCID: PMC3569899 DOI: 10.1155/2013/348212] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2012] [Accepted: 11/14/2012] [Indexed: 12/20/2022]
Abstract
The initial response of lymphoid malignancies to glucocorticoids (GCs) is a critical parameter predicting successful treatment. Although being known as a strong inducer of apoptosis in lymphoid cells for almost a century, the signaling pathways regulating the susceptibility of the cells to GCs are only partly revealed. There is still a need to develop clinical tests that can predict the outcome of GC therapy. In this paper, I discuss important parameters modulating the pro-apoptotic effects of GCs, with a specific emphasis on the microRNA world comprised of small players with big impacts. The journey through the multifaceted complexity of GC-induced apoptosis brings forth explanations for the differential treatment response and raises potential strategies for overcoming drug resistance.
Collapse
Affiliation(s)
- Ronit Vogt Sionov
- The Department of Biochemistry and Molecular Biology, The Institute for Medical Research-Israel-Canada, Hadassah Medical School, The Hebrew University of Jerusalem, Ein-Kerem, 91120 Jerusalem, Israel
| |
Collapse
|
43
|
Gundara JS, Zhao J, Robinson BG, Sidhu SB. Oncophagy: harnessing regulation of autophagy in cancer therapy. Endocr Relat Cancer 2012; 19:R281-95. [PMID: 23082009 DOI: 10.1530/erc-12-0325] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Autophagy is an increasingly well-characterised process of cell component auto-digestion and recycling thought necessary for cellular subsistence. As we gain a more thorough understanding of the mechanisms underlying autophagy, its relevance to human disease and therapeutic potential are being clarified. This review summarises the evidence implicating autophagy in the pathogenesis and potential treatment of malignant disease. In addition, we explore the molecular role of microRNAs as key regulators in what we propose should now become known as 'oncophagy'.
Collapse
Affiliation(s)
- Justin S Gundara
- Cancer Genetics, Kolling Institute of Medical Research, University of Sydney, Pacific Highway, St Leonards, Sydney, New South Wales 2065, Australia
| | | | | | | |
Collapse
|
44
|
Affiliation(s)
- Itay Koren
- Department of Molecular Genetics. Weizmann Institute of Science, Rehovot 76100, Israel.
| | | |
Collapse
|
45
|
|
46
|
Autophagy: more than a nonselective pathway. Int J Cell Biol 2012; 2012:219625. [PMID: 22666256 PMCID: PMC3362037 DOI: 10.1155/2012/219625] [Citation(s) in RCA: 108] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Accepted: 02/07/2012] [Indexed: 12/11/2022] Open
Abstract
Autophagy is a catabolic pathway conserved among eukaryotes that allows cells to rapidly eliminate large unwanted structures such as aberrant protein aggregates, superfluous or damaged organelles, and invading pathogens. The hallmark of this transport pathway is the sequestration of the cargoes that have to be degraded in the lysosomes by double-membrane vesicles called autophagosomes. The key actors mediating the biogenesis of these carriers are the autophagy-related genes (ATGs). For a long time, it was assumed that autophagy is a bulk process. Recent studies, however, have highlighted the capacity of this pathway to exclusively eliminate specific structures and thus better fulfil the catabolic necessities of the cell. We are just starting to unveil the regulation and mechanism of these selective types of autophagy, but what it is already clearly emerging is that structures targeted to destruction are accurately enwrapped by autophagosomes through the action of specific receptors and adaptors. In this paper, we will briefly discuss the impact that the selective types of autophagy have had on our understanding of autophagy.
Collapse
|
47
|
Novel Insights into the Interplay between Apoptosis and Autophagy. Int J Cell Biol 2012; 2012:317645. [PMID: 22496691 PMCID: PMC3312193 DOI: 10.1155/2012/317645] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2011] [Accepted: 12/31/2011] [Indexed: 12/19/2022] Open
Abstract
For several decades, apoptosis has taken center stage as the principal mechanism of programmed cell death (type I cell death) in mammalian tissues. Autophagic cell death (type II) is characterized by the massive accumulation of autophagic vacuoles in the cytoplasm of cells. The autophagic process is activated as an adaptive response to a variety of extracellular and intracellular stresses, including nutrient deprivation, hormonal or therapeutic treatment, pathogenic infection, aggregated and misfolded proteins, and damaged organelles. Increasing evidence indicates that autophagy is associated with a number of pathological processes, including cancer. The regulation of autophagy in cancer cells is complex since it can enhance cancer cell survival in response to certain stresses, while it can also act to suppress the initiation of cancer growth. This paper focused on recent advances regarding autophagy in cancer and the techniques currently available to manipulate autophagy.
Collapse
|
48
|
Affiliation(s)
- Ravi K Amaravadi
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
49
|
Abstract
Macroautophagy (referred to hereafter as autophagy) is a highly regulated cellular process that serves to remove damaged proteins and organelles from the cell. Autophagy contributes to an array of normal and pathological processes, and has recently emerged as a key regulator of multiple aspects of cancer biology. The role of autophagy in cancer is complex and is likely dependent on tumor type, stage, and genetic context. This complexity is illustrated by the identification of settings where autophagy acts potently to either promote or inhibit tumorigenesis. In this review, I discuss the underlying basis for these opposing functions and propose a model suggesting a dynamic role for autophagy in malignancy. Collectively, the data point to autophagy as serving as a barrier to limit tumor initiation. Once neoplastic lesions are established, it appears that adaptive changes occur that now result in positive roles for autophagy in malignant progression and in subsequent tumor maintenance. Remarkably, constitutive activation of autophagy is critical for continued growth of some tumors, serving to both reduce oxidative stress and provide key intermediates to sustain cell metabolism. Autophagy is also induced in response to cancer therapies where it can function as a survival mechanism that limits drug efficacy. These findings have inspired significant interest in applying anti-autophagy therapies as an entirely new approach to cancer treatment. It is now apparent that aberrant control of autophagy is among the key hallmarks of cancer. While much needs to be learned about the regulation and context-dependent biological functions of autophagy, it seems clear that modulation of this process will be an attractive avenue for future cancer therapeutic approaches.
Collapse
Affiliation(s)
- Alec C Kimmelman
- Division of Genomic Stability and DNA Repair, Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts 02115, USA.
| |
Collapse
|
50
|
Wei H, Wei S, Gan B, Peng X, Zou W, Guan JL. Suppression of autophagy by FIP200 deletion inhibits mammary tumorigenesis. Genes Dev 2011; 25:1510-27. [PMID: 21764854 DOI: 10.1101/gad.2051011] [Citation(s) in RCA: 317] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Autophagy is a conserved cellular process for bulk degradation of intracellular protein and organelles in lysosomes. In contrast to elegant studies of beclin1 using mouse models and cultured cells demonstrating a tumor suppression function for autophagy, knockout of other essential autophagy proteins such as ATG5, ATG7, or FIP200 (FAK family-interacting protein of 200 kDa) in various tissues did not lead to malignant tumor development in vivo. Here, we report that inhibition of autophagy by FIP200 ablation suppresses mammary tumor initiation and progression in a mouse model of breast cancer driven by the PyMT oncogene. Deletion of FIP200 resulted in multiple autophagy defects including accumulation of ubiquitinated protein aggregates and p62/SQSTM1, deficient LC3 conversion, and increased number of mitochondria with abnormal morphology in tumor cells. FIP200 deletion did not affect apoptosis of mammary tumor cells or Ras-transformed mouse embryonic fibroblasts (MEFs), but significantly reduced their proliferation in both systems. We also observed a reduced glycolysis and cyclin D1 expression in FIP200-null mammary tumor cells and transformed MEFs. In addition, gene profiling studies revealed significantly elevated expression of interferon (IFN)-responsive genes in the early tumors of FIP200 conditional knockout mice, which was accompanied by increased infiltration of effector T cells in the tumor microenvironment triggered by an increased production of chemokines including CXCL10 in FIP200-null tumor cells. Together, these data provide strong evidence for a protumorigenesis role of autophagy in oncogene-induced tumors in vivo and suggest FIP200 as a potential target for cancer therapy.
Collapse
Affiliation(s)
- Huijun Wei
- Division of Molecular Medicine and Genetics, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, USA
| | | | | | | | | | | |
Collapse
|