1
|
Adelon J, Abolhassani H, Esenboga S, Fouyssac F, Cagdas D, Tezcan I, Kuskonmaz B, Cetinkaya D, Suarez F, Mahdaviani SA, Plassart S, Mathieu AL, Fabien N, Malcus C, Morfin-Sherpa F, Billaud G, Tusseau M, Benezech S, Walzer T, De Villartay JP, Bertrand Y, Belot A. Human DNA-dependent protein kinase catalytic subunit deficiency: A comprehensive review and update. J Allergy Clin Immunol 2024; 154:1300-1312. [PMID: 38977084 DOI: 10.1016/j.jaci.2024.06.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 06/24/2024] [Accepted: 06/28/2024] [Indexed: 07/10/2024]
Abstract
BACKGROUND DNA-dependent protein kinase catalytic subunit (DNA-PKcs) has an essential role in the non-homologous end-joining pathway that repairs DNA double-strand breaks in V(D)J recombination involved in the expression of T- and B-cell receptors. Whereas homozygous mutations in Prkdc define the Scid mouse, a model that has been widely used in biology, human mutations in PRKDC are extremely rare and the disease spectrum has not been described so far. OBJECTIVES To provide an update on the genetics, clinical spectrum, immunological profile, and therapy of DNA-PKcs deficiency in human. METHODS The clinical, biological, and treatment data from the 6 cases published to date and from 1 new patient were obtained and analyzed. Rubella PCR was performed on available granuloma material. RESULTS We report on 7 patients; 6 patients displayed the autosomal recessive p.L3062R mutation in PRKDC-encoding DNA-PKcs. Atypical severe combined immunodeficiency with inflammatory lesions, granulomas, and autoimmunity was the predominant clinical manifestation (n = 5 of 7). Rubella viral strain was detected in the granuloma of 1 patient over the 2 tested. T-cell counts, including naive CD4+CD45RA+ T cells and T-cell function were low at diagnosis for 6 patients. For most patients with available values, naive CD4+CD45RA+ T cells decreased over time (n = 5 of 6). Hematopoietic stem cell transplantation was performed in 5 patients, of whom 4 are still alive without transplant-related morbidity. Sustained T- and B-cell reconstitution was observed, respectively, for 4 and 3 patients, after a median follow-up of 8 years (range 3-16 years). CONCLUSIONS DNA-PKcs deficiency mainly manifests as an inflammatory disease with granuloma and autoimmune features, along with severe infections.
Collapse
Affiliation(s)
- Jihane Adelon
- Department of Pediatric Immunology and Hematology, Institut d'Hématologie et d'Oncologie Pédiatrique, Lyon, France; Hospices Civils de Lyon, Lyon, France.
| | - Hassan Abolhassani
- Division of Immunology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden; Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Science, Tehran, Iran
| | - Saliha Esenboga
- Department of Pediatric Immunology, Ihsan Dogramacı Children's Hospital, Hacettepe University, Ankara, Turkey
| | - Fanny Fouyssac
- Department of Pediatric Oncology, Children's Hospital, Nancy, France
| | - Deniz Cagdas
- Department of Pediatric Immunology, Ihsan Dogramacı Children's Hospital, Hacettepe University, Ankara, Turkey
| | - Ilhan Tezcan
- Department of Pediatric Immunology, Ihsan Dogramacı Children's Hospital, Hacettepe University, Ankara, Turkey
| | - Barıs Kuskonmaz
- Department of Pediatric Hematology, Ihsan Dogramacı Children's Hospital, Hacettepe University, Ankara, Turkey
| | - Duygu Cetinkaya
- Department of Pediatric Hematology, Ihsan Dogramacı Children's Hospital, Hacettepe University, Ankara, Turkey
| | - Felipe Suarez
- Laboratory of Cellular and Molecular Mechanisms of Hematological Disorders and Therapeutical Implications, INSERM UMR1163/CNRS URL 8254, Paris, France; French National Center for Primary Immunodeficiencies, Necker University Hospital, AP-HP, Paris, France; INSERM UMR1163, Imagine Institut, Sorbonne Paris Cité, Paris, France; Department of Hematology, Hôpital Universitaire Necker-Enfants Malades, Assistance Publique des Hôpitaux de Paris, Paris, France; Université Paris Cité, Paris, France
| | - Seyed Alireza Mahdaviani
- Pediatric Respiratory Diseases Research Centre, National Research Institute of Tuberculosis and Lung Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Samira Plassart
- Centre de Références Maladies Rares, Rhumatismes inflammatoires et les maladies Auto-Immunes Systémiques rares de l'Enfant (RAISE), Lyon, France
| | - Anne-Laure Mathieu
- Centre de Références Maladies Rares, Rhumatismes inflammatoires et les maladies Auto-Immunes Systémiques rares de l'Enfant (RAISE), Lyon, France; Centre International de Recherche en Infectiologie (CIRI), Institut National de la Santé et de la Recherche Médicale (INSERM) U1111, Centre National de la Recherche Scientifique Unité Mixte de Recherche (UMR) 5308, École Normale Supérieure de Lyon, Université Claude Bernard Lyon, Lyon, France
| | - Nicole Fabien
- Department of Immunology, Centre Hospitalier Lyon Sud, Hospices Civils de Lyon, Pierre-Benite, France
| | - Christophe Malcus
- Department of Immunology, Hôpital Edouard Herriot, Hospices Civils de Lyon, Lyon, France
| | - Florence Morfin-Sherpa
- Laboratoire de Virologie, Institut des Agents Infectieux, Hospices Civils de Lyon, Groupement Hospitalier Nord, Lyon, France; Laboratoire Virologie et Pathologies humaines (VirPath),Centre International de Recherche en Infectiologie (CIRI), Institut National de la Santé et de la Recherche Médicale (INSERM) U1111, Centre National de la Recherche Scientifique Unité Mixte de Recherche (UMR) 5308, École Normale Supérieure de Lyon, Université Claude Bernard Lyon, Lyon, France
| | - Geneviève Billaud
- Laboratoire de Virologie, Institut des Agents Infectieux, Hospices Civils de Lyon, Groupement Hospitalier Nord, Lyon, France
| | - Maud Tusseau
- Hospices Civils de Lyon, Lyon, France; Centre International de Recherche en Infectiologie (CIRI), Institut National de la Santé et de la Recherche Médicale (INSERM) U1111, Centre National de la Recherche Scientifique Unité Mixte de Recherche (UMR) 5308, École Normale Supérieure de Lyon, Université Claude Bernard Lyon, Lyon, France; Service de Génétique, Groupe Hospitalier Est, Hospices Civils de Lyon, Bron, France
| | - Sarah Benezech
- Department of Pediatric Immunology and Hematology, Institut d'Hématologie et d'Oncologie Pédiatrique, Lyon, France; Hospices Civils de Lyon, Lyon, France; Centre International de Recherche en Infectiologie (CIRI), Institut National de la Santé et de la Recherche Médicale (INSERM) U1111, Centre National de la Recherche Scientifique Unité Mixte de Recherche (UMR) 5308, École Normale Supérieure de Lyon, Université Claude Bernard Lyon, Lyon, France
| | - Thierry Walzer
- Centre International de Recherche en Infectiologie (CIRI), Institut National de la Santé et de la Recherche Médicale (INSERM) U1111, Centre National de la Recherche Scientifique Unité Mixte de Recherche (UMR) 5308, École Normale Supérieure de Lyon, Université Claude Bernard Lyon, Lyon, France
| | - Jean-Pierre De Villartay
- Laboratory "Genome Dynamics in the Immune System" INSERM UMR 1163, Imagine Institute, Université de Paris Cité, Paris, France
| | - Yves Bertrand
- Department of Pediatric Immunology and Hematology, Institut d'Hématologie et d'Oncologie Pédiatrique, Lyon, France; Hospices Civils de Lyon, Lyon, France
| | - Alexandre Belot
- Hospices Civils de Lyon, Lyon, France; Centre de Références Maladies Rares, Rhumatismes inflammatoires et les maladies Auto-Immunes Systémiques rares de l'Enfant (RAISE), Lyon, France; Centre International de Recherche en Infectiologie (CIRI), Institut National de la Santé et de la Recherche Médicale (INSERM) U1111, Centre National de la Recherche Scientifique Unité Mixte de Recherche (UMR) 5308, École Normale Supérieure de Lyon, Université Claude Bernard Lyon, Lyon, France; Department of Pediatrics Nephrology, Rheumatology, and Dermatology, Hôpital Femme-Mère-Enfant, Bron, France.
| |
Collapse
|
2
|
Tam A, Mercier BD, Thomas RM, Tizpa E, Wong IG, Shi J, Garg R, Hampel H, Gray SW, Williams T, Bazan JG, Li YR. Moving the Needle Forward in Genomically-Guided Precision Radiation Treatment. Cancers (Basel) 2023; 15:5314. [PMID: 38001574 PMCID: PMC10669735 DOI: 10.3390/cancers15225314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 10/06/2023] [Accepted: 10/13/2023] [Indexed: 11/26/2023] Open
Abstract
Radiation treatment (RT) is a mainstay treatment for many types of cancer. Recommendations for RT and the radiation plan are individualized to each patient, taking into consideration the patient's tumor pathology, staging, anatomy, and other clinical characteristics. Information on germline mutations and somatic tumor mutations is at present rarely used to guide specific clinical decisions in RT. Many genes, such as ATM, and BRCA1/2, have been identified in the laboratory to confer radiation sensitivity. However, our understanding of the clinical significance of mutations in these genes remains limited and, as individual mutations in such genes can be rare, their impact on tumor response and toxicity remains unclear. Current guidelines, including those from the National Comprehensive Cancer Network (NCCN), provide limited guidance on how genetic results should be integrated into RT recommendations. With an increasing understanding of the molecular underpinning of radiation response, genomically-guided RT can inform decisions surrounding RT dose, volume, concurrent therapies, and even omission to further improve oncologic outcomes and reduce risks of toxicities. Here, we review existing evidence from laboratory, pre-clinical, and clinical studies with regard to how genetic alterations may affect radiosensitivity. We also summarize recent data from clinical trials and explore potential future directions to utilize genetic data to support clinical decision-making in developing a pathway toward personalized RT.
Collapse
Affiliation(s)
- Andrew Tam
- Department of Radiation Oncology, City of Hope Comprehensive Cancer Center, 1500 E Duarte Rd., Duarte, CA 91010, USA; (A.T.); (B.D.M.); (R.M.T.); (E.T.); (I.G.W.); (J.S.); (R.G.); (T.W.)
| | - Benjamin D. Mercier
- Department of Radiation Oncology, City of Hope Comprehensive Cancer Center, 1500 E Duarte Rd., Duarte, CA 91010, USA; (A.T.); (B.D.M.); (R.M.T.); (E.T.); (I.G.W.); (J.S.); (R.G.); (T.W.)
- Department of Medical Oncology & Therapeutics Research, City of Hope Comprehensive Cancer Center, 1500 E Duarte Rd., Duarte, CA 91010, USA; (H.H.); (S.W.G.)
| | - Reeny M. Thomas
- Department of Radiation Oncology, City of Hope Comprehensive Cancer Center, 1500 E Duarte Rd., Duarte, CA 91010, USA; (A.T.); (B.D.M.); (R.M.T.); (E.T.); (I.G.W.); (J.S.); (R.G.); (T.W.)
| | - Eemon Tizpa
- Department of Radiation Oncology, City of Hope Comprehensive Cancer Center, 1500 E Duarte Rd., Duarte, CA 91010, USA; (A.T.); (B.D.M.); (R.M.T.); (E.T.); (I.G.W.); (J.S.); (R.G.); (T.W.)
| | - Irene G. Wong
- Department of Radiation Oncology, City of Hope Comprehensive Cancer Center, 1500 E Duarte Rd., Duarte, CA 91010, USA; (A.T.); (B.D.M.); (R.M.T.); (E.T.); (I.G.W.); (J.S.); (R.G.); (T.W.)
| | - Juncong Shi
- Department of Radiation Oncology, City of Hope Comprehensive Cancer Center, 1500 E Duarte Rd., Duarte, CA 91010, USA; (A.T.); (B.D.M.); (R.M.T.); (E.T.); (I.G.W.); (J.S.); (R.G.); (T.W.)
| | - Rishabh Garg
- Department of Radiation Oncology, City of Hope Comprehensive Cancer Center, 1500 E Duarte Rd., Duarte, CA 91010, USA; (A.T.); (B.D.M.); (R.M.T.); (E.T.); (I.G.W.); (J.S.); (R.G.); (T.W.)
| | - Heather Hampel
- Department of Medical Oncology & Therapeutics Research, City of Hope Comprehensive Cancer Center, 1500 E Duarte Rd., Duarte, CA 91010, USA; (H.H.); (S.W.G.)
| | - Stacy W. Gray
- Department of Medical Oncology & Therapeutics Research, City of Hope Comprehensive Cancer Center, 1500 E Duarte Rd., Duarte, CA 91010, USA; (H.H.); (S.W.G.)
| | - Terence Williams
- Department of Radiation Oncology, City of Hope Comprehensive Cancer Center, 1500 E Duarte Rd., Duarte, CA 91010, USA; (A.T.); (B.D.M.); (R.M.T.); (E.T.); (I.G.W.); (J.S.); (R.G.); (T.W.)
| | - Jose G. Bazan
- Department of Radiation Oncology, City of Hope Comprehensive Cancer Center, 1500 E Duarte Rd., Duarte, CA 91010, USA; (A.T.); (B.D.M.); (R.M.T.); (E.T.); (I.G.W.); (J.S.); (R.G.); (T.W.)
| | - Yun R. Li
- Department of Radiation Oncology, City of Hope Comprehensive Cancer Center, 1500 E Duarte Rd., Duarte, CA 91010, USA; (A.T.); (B.D.M.); (R.M.T.); (E.T.); (I.G.W.); (J.S.); (R.G.); (T.W.)
- Department of Cancer Genetics and Epigenetics, City of Hope National Medical Center, Duarte, CA 91010, USA
- Division of Quantitative Medicine & Systems Biology, Translational Genomics Research Institute, 445 N. Fifth Street, Phoenix, AZ 85022, USA
| |
Collapse
|
3
|
He J, Tian X, Luo T, Zou R, Yin Z, Chen K, Zhu C, He X. Allogeneic hematopoietic stem cell transplantation corrects ligase IV deficiency. Transpl Immunol 2023; 80:101897. [PMID: 37437665 DOI: 10.1016/j.trim.2023.101897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 07/02/2023] [Accepted: 07/07/2023] [Indexed: 07/14/2023]
Abstract
BACKGROUND Mutations in the DNA ligase IV (LIG4) gene cause a rare autosomal recessive disorder called LIG4 deficiency syndrome. The LIG4 deficiency is featured by severe disorders, including combined immunodeficiency disease, special face ("bird-head-like" face), developmental delays, pancytopenia, and radiosensitivity. Currently there are no curative treatment options except potentially by performing a hematopoietic stem cell transplantation (HSCT). CASE PRESENTATION Here we reported the clinical course of a 4 and 1/2-year-old Chinese female with LIG4-deficiency featured with pancytopenia, severe growth retardation (weight of 13.5 kg, < 3rd percentile), length of 100 cm (<2d percentile), head circumference of 46 cm (<3rd percentile), and mild microcephaly. Despite regular IVIG administrations (5 g, once a month), the patient's thrombocytopenia had progressed. Eventually, the patient received HSCT that successfully normalized the LIG4 syndrome associated pancytopenia and corrected the LIG4 mutation. Despite progress the patient succumbed to thrombotic microangiopathy more than 3 months after HSCT. CONCLUSIONS This case reports an example of partially successful HSCT as a treatment option for LIG4 syndrome. It is possible that individual factors influence the therapeutic effect of HSCT in LIG4 deficiency.
Collapse
Affiliation(s)
- Jing He
- Department of Hematology and Oncology, Children's Medical Center, Hunan Provincial People's Hospital/The First Affiliated Hospital of Hunan Normal University, Changsha, China
| | - Xin Tian
- Department of Hematology and Oncology, Children's Medical Center, Hunan Provincial People's Hospital/The First Affiliated Hospital of Hunan Normal University, Changsha, China
| | - Tong Luo
- Department of Hematology and Oncology, Children's Medical Center, Hunan Provincial People's Hospital/The First Affiliated Hospital of Hunan Normal University, Changsha, China
| | - Runying Zou
- Department of Hematology and Oncology, Children's Medical Center, Hunan Provincial People's Hospital/The First Affiliated Hospital of Hunan Normal University, Changsha, China
| | - Zexi Yin
- Department of Hematology and Oncology, Children's Medical Center, Hunan Provincial People's Hospital/The First Affiliated Hospital of Hunan Normal University, Changsha, China
| | - Keke Chen
- Department of Hematology and Oncology, Children's Medical Center, Hunan Provincial People's Hospital/The First Affiliated Hospital of Hunan Normal University, Changsha, China
| | - Chengguang Zhu
- Department of Hematology and Oncology, Children's Medical Center, Hunan Provincial People's Hospital/The First Affiliated Hospital of Hunan Normal University, Changsha, China
| | - Xiangling He
- Department of Hematology and Oncology, Children's Medical Center, Hunan Provincial People's Hospital/The First Affiliated Hospital of Hunan Normal University, Changsha, China.
| |
Collapse
|
4
|
Jauch AJ, Bignucolo O, Seki S, Ghraichy M, Delmonte OM, von Niederhäusern V, Higgins R, Ghosh A, Nishizawa M, Tanaka M, Baldrich A, Köppen J, Hirsiger JR, Hupfer R, Ehl S, Rensing-Ehl A, Hopfer H, Prince SS, Daley SR, Marquardsen FA, Meyer BJ, Tamm M, Daikeler TD, Diesch T, Kühne T, Helbling A, Berkemeier C, Heijnen I, Navarini AA, Trück J, de Villartay JP, Oxenius A, Berger CT, Hess C, Notarangelo LD, Yamamoto H, Recher M. Autoimmunity and immunodeficiency associated with monoallelic LIG4 mutations via haploinsufficiency. J Allergy Clin Immunol 2023; 152:500-516. [PMID: 37004747 PMCID: PMC10529397 DOI: 10.1016/j.jaci.2023.03.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 02/24/2023] [Accepted: 03/06/2023] [Indexed: 04/03/2023]
Abstract
BACKGROUND Biallelic mutations in LIG4 encoding DNA-ligase 4 cause a rare immunodeficiency syndrome manifesting as infant-onset life-threatening and/or opportunistic infections, skeletal malformations, radiosensitivity and neoplasia. LIG4 is pivotal during DNA repair and during V(D)J recombination as it performs the final DNA-break sealing step. OBJECTIVES This study explored whether monoallelic LIG4 missense mutations may underlie immunodeficiency and autoimmunity with autosomal dominant inheritance. METHODS Extensive flow-cytometric immune-phenotyping was performed. Rare variants of immune system genes were analyzed by whole exome sequencing. DNA repair functionality and T-cell-intrinsic DNA damage tolerance was tested with an ensemble of in vitro and in silico tools. Antigen-receptor diversity and autoimmune features were characterized by high-throughput sequencing and autoantibody arrays. Reconstitution of wild-type versus mutant LIG4 were performed in LIG4 knockout Jurkat T cells, and DNA damage tolerance was subsequently assessed. RESULTS A novel heterozygous LIG4 loss-of-function mutation (p.R580Q), associated with a dominantly inherited familial immune-dysregulation consisting of autoimmune cytopenias, and in the index patient with lymphoproliferation, agammaglobulinemia, and adaptive immune cell infiltration into nonlymphoid organs. Immunophenotyping revealed reduced naive CD4+ T cells and low TCR-Vα7.2+ T cells, while T-/B-cell receptor repertoires showed only mild alterations. Cohort screening identified 2 other nonrelated patients with the monoallelic LIG4 mutation p.A842D recapitulating clinical and immune-phenotypic dysregulations observed in the index family and displaying T-cell-intrinsic DNA damage intolerance. Reconstitution experiments and molecular dynamics simulations categorize both missense mutations as loss-of-function and haploinsufficient. CONCLUSIONS This study provides evidence that certain monoallelic LIG4 mutations may cause human immune dysregulation via haploinsufficiency.
Collapse
Affiliation(s)
- Annaïse J Jauch
- Immunodeficiency Laboratory, Department of Biomedicine, University of Basel and University Hospital of Basel, Basel, Switzerland
| | | | - Sayuri Seki
- AIDS Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Marie Ghraichy
- Division of Immunology and Children's Research Center, University Children's Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Ottavia M Delmonte
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Valentin von Niederhäusern
- Division of Immunology and Children's Research Center, University Children's Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Rebecca Higgins
- Division of Dermatology and Dermatology Laboratory, Department of Biomedicine, University of Basel and University Hospital of Basel, Basel, Switzerland
| | - Adhideb Ghosh
- Division of Dermatology and Dermatology Laboratory, Department of Biomedicine, University of Basel and University Hospital of Basel, Basel, Switzerland; Competence Center for Personalized Medicine, University of Zürich/Eidgenössische Technische Hochschule, Zurich, Switzerland
| | - Masako Nishizawa
- AIDS Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Mariko Tanaka
- Department of Pathology, The University of Tokyo, Tokyo, Japan
| | - Adrian Baldrich
- Immunodeficiency Laboratory, Department of Biomedicine, University of Basel and University Hospital of Basel, Basel, Switzerland
| | - Julius Köppen
- Immunodeficiency Laboratory, Department of Biomedicine, University of Basel and University Hospital of Basel, Basel, Switzerland
| | - Julia R Hirsiger
- Translational Immunology, Department of Biomedicine, University of Basel and University Hospital of Basel, Basel, Switzerland
| | - Robin Hupfer
- Immunodeficiency Laboratory, Department of Biomedicine, University of Basel and University Hospital of Basel, Basel, Switzerland
| | - Stephan Ehl
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center, Faculty for Medicine, University of Freiburg, Freiburg, Germany
| | - Anne Rensing-Ehl
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center, Faculty for Medicine, University of Freiburg, Freiburg, Germany
| | - Helmut Hopfer
- Institute for Pathology, University Hospital Basel, Basel, Switzerland
| | | | - Stephen R Daley
- Centre for Immunology and Infection Control, School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Queensland
| | - Florian A Marquardsen
- Immunodeficiency Laboratory, Department of Biomedicine, University of Basel and University Hospital of Basel, Basel, Switzerland
| | - Benedikt J Meyer
- Immunodeficiency Laboratory, Department of Biomedicine, University of Basel and University Hospital of Basel, Basel, Switzerland
| | - Michael Tamm
- Department of Pneumology, University Hospital Basel, Basel, Switzerland
| | - Thomas D Daikeler
- Department of Rheumatology, University Hospital Basel, Basel, Switzerland; University Center for Immunology, University Hospital Basel, Basel, Switzerland
| | - Tamara Diesch
- Division of Pediatric Oncology/Hematology, University Children's Hospital Basel, Basel, Switzerland
| | - Thomas Kühne
- Division of Pediatric Oncology/Hematology, University Children's Hospital Basel, Basel, Switzerland
| | - Arthur Helbling
- Division of Allergology and clinical Immunology, Department of Pneumology and Allergology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Caroline Berkemeier
- Division Medical Immunology, Laboratory Medicine, University of Basel and University Hospital of Basel, Basel, Switzerland
| | - Ingmar Heijnen
- Division Medical Immunology, Laboratory Medicine, University of Basel and University Hospital of Basel, Basel, Switzerland
| | - Alexander A Navarini
- Division of Dermatology and Dermatology Laboratory, Department of Biomedicine, University of Basel and University Hospital of Basel, Basel, Switzerland; University Center for Immunology, University Hospital Basel, Basel, Switzerland
| | - Johannes Trück
- Division of Immunology and Children's Research Center, University Children's Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Jean-Pierre de Villartay
- Laboratory of Genome Dynamics in the Immune System, Institut National de la Santé et de la Recherche Médicale Unité Mixte de Recherché 1163, Université Paris Descartes Sorbonne Paris Cité, Institut Imagine, Paris, France
| | - Annette Oxenius
- Institute of Microbiology, Eidgenössische Technische Hochschule, Zurich, Switzerland
| | - Christoph T Berger
- Translational Immunology, Department of Biomedicine, University of Basel and University Hospital of Basel, Basel, Switzerland; University Center for Immunology, University Hospital Basel, Basel, Switzerland
| | - Christoph Hess
- University Center for Immunology, University Hospital Basel, Basel, Switzerland; Immunobiology Laboratory, Department of Biomedicine, University of Basel and University Hospital of Basel, Basel, Switzerland; Cambridge Institute of Therapeutic Immunology and Infectious Disease, Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Luigi D Notarangelo
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Hiroyuki Yamamoto
- Immunodeficiency Laboratory, Department of Biomedicine, University of Basel and University Hospital of Basel, Basel, Switzerland; AIDS Research Center, National Institute of Infectious Diseases, Tokyo, Japan.
| | - Mike Recher
- Immunodeficiency Laboratory, Department of Biomedicine, University of Basel and University Hospital of Basel, Basel, Switzerland; University Center for Immunology, University Hospital Basel, Basel, Switzerland.
| |
Collapse
|
5
|
Pala F, Notarangelo LD, Bosticardo M. Inborn errors of immunity associated with defects of thymic development. Pediatr Allergy Immunol 2022; 33:e13832. [PMID: 36003043 PMCID: PMC11077434 DOI: 10.1111/pai.13832] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/29/2022] [Accepted: 07/07/2022] [Indexed: 12/18/2022]
Abstract
The main function of the thymus is to support the establishment of a wide repertoire of T lymphocytes capable of eliminating foreign pathogens, yet tolerant to self-antigens. Thymocyte development in the thymus is dependent on the interaction with thymic stromal cells, a complex mixture of cells comprising thymic epithelial cells (TEC), mesenchymal and endothelial cells. The exchange of signals between stromal cells and thymocytes is referred to as "thymic cross-talk". Genetic defects affecting either side of this interaction result in defects in thymic development that ultimately lead to a decreased output of T lymphocytes to the periphery. In the present review, we aim at providing a summary of inborn errors of immunity (IEI) characterized by T-cell lymphopenia due to defects of the thymic stroma, or to hematopoietic-intrinsic defects of T-cell development, with a special focus on recently discovered disorders. Additionally, we review the novel diagnostic tools developed to discover and study new genetic causes of IEI due to defects in thymic development. Finally, we discuss therapeutic approaches to correct thymic defects that are currently available, in addition to potential novel therapies that could be applied in the future.
Collapse
Affiliation(s)
- Francesca Pala
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Luigi D Notarangelo
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Marita Bosticardo
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
6
|
van Schouwenburg PA, van der Burg M, IJspeert H. NGS-Based B-Cell Receptor Repertoire AnalysisRepertoire analyses in the Context of Inborn Errors of Immunity. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2022; 2453:169-190. [PMID: 35622327 DOI: 10.1007/978-1-0716-2115-8_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Inborn errors of immunity (IEI) are genetic defects that can affect both the innate and the adaptive immune system. Patients with IEI usually present with recurrent infections, but many also suffer from immune dysregulation, autoimmunity, and malignancies.Inborn errors of the immune system can cause defects in the development and selection of the B-cell receptor (BCR ) repertoire. Patients with IEI can have a defect in one of the key processes of immune repertoire formation like V(D)J recombination, somatic hypermutation (SHM), class switch recombination (CSR), or (pre-)BCR signalling and proliferation. However, also other genetic defects can lead to quantitative and qualitative differences in the immune repertoire.In this chapter, we will give an overview of protocols that can be used to study the immune repertoire in patients with IEI, provide considerations to take into account before setting up experiments, and discuss analysis of the immune repertoire data using Antigen Receptor Galaxy (ARGalaxy).
Collapse
Affiliation(s)
- Pauline A van Schouwenburg
- Department of Pediatrics, Laboratory for Pediatric Immunology, Willem-Alexander Children's Hospital, Leiden University Medical Center, Leiden, The Netherlands
| | - Mirjam van der Burg
- Department of Pediatrics, Laboratory for Pediatric Immunology, Willem-Alexander Children's Hospital, Leiden University Medical Center, Leiden, The Netherlands
| | - Hanna IJspeert
- Department of Immunology, Laboratory Medical Immunology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands.
- Academic Center for Rare Immunological Diseases (RIDC), Erasmus University Medical Center, Rotterdam, The Netherlands.
| |
Collapse
|
7
|
Luo X, Liu Q, Jiang J, Tang W, Ding Y, Zhou L, Yu J, Tang X, An Y, Zhao X. Characterization of a Cohort of Patients With LIG4 Deficiency Reveals the Founder Effect of p.R278L, Unique to the Chinese Population. Front Immunol 2021; 12:695993. [PMID: 34630384 PMCID: PMC8498043 DOI: 10.3389/fimmu.2021.695993] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 09/06/2021] [Indexed: 01/13/2023] Open
Abstract
DNA ligase IV (LIG4) deficiency is an extremely rare autosomal recessive primary immunodeficiency disease caused by mutations in LIG4. Patients suffer from a broad spectrum of clinical problems, including microcephaly, growth retardation, developmental delay, dysmorphic facial features, combined immunodeficiency, and a predisposition to autoimmune diseases and malignancy. In this study, the clinical, molecular, and immunological characteristics of 15 Chinese patients with LIG4 deficiency are summarized in detail. p.R278L (c.833G>T) is a unique mutation site present in the majority of Chinese cases. We conducted pedigree and haplotype analyses to examine the founder effect of this mutation site in China. This suggests that implementation of protocols for genetic diagnosis and for genetic counseling of affected pedigrees is essential. Also, the search might help determine the migration pathways of populations with Asian ancestry.
Collapse
Affiliation(s)
- Xianze Luo
- National Clinical Research Center for Child Health and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Qing Liu
- National Clinical Research Center for Child Health and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Jinqiu Jiang
- National Clinical Research Center for Child Health and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Wenjing Tang
- National Clinical Research Center for Child Health and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, China.,Department of Rheumatism and Immunology, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Yuan Ding
- National Clinical Research Center for Child Health and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, China.,Department of Healthy Examination Center, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Lina Zhou
- National Clinical Research Center for Child Health and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Jie Yu
- National Clinical Research Center for Child Health and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,Department of Hematological Oncology, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Xuemei Tang
- National Clinical Research Center for Child Health and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, China.,Department of Rheumatism and Immunology, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Yunfei An
- National Clinical Research Center for Child Health and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, China.,Department of Rheumatism and Immunology, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaodong Zhao
- National Clinical Research Center for Child Health and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, China.,Department of Rheumatism and Immunology, Children's Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
8
|
Schoenaker MHD, Takada S, van Deuren M, Dommering CJ, Henriët SSV, Pico I, Vogel WV, Weemaes CMR, Willemsen MAAP, van der Burg M, Kaanders JHAM. Considerations for radiotherapy in Bloom Syndrome: A case series. Eur J Med Genet 2021; 64:104293. [PMID: 34352413 DOI: 10.1016/j.ejmg.2021.104293] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 07/12/2021] [Accepted: 07/21/2021] [Indexed: 01/17/2023]
Abstract
Bloom Syndrome (BS) is a genetic DNA repair disorder, caused by mutations in the BLM gene. The clinical phenotype includes growth retardation, immunodeficiency and a strong predisposition to different types of malignancies. Treatment of malignancies in BS patients with radiotherapy or chemotherapy is believed to be associated with increased toxicity, but clinical and laboratory data are lacking. We collected clinical data of two Dutch BS patients with solid tumors. Both were treated with radiotherapy before the diagnosis BS was made and tolerated this treatment well. In addition, we collected fibroblasts from BS patients to perform in vitro clonogenic survival assays to determine radiosensitivity. BS fibroblasts showed less radiosensitivity than the severely radiosensitive Artemis fibroblasts. Moreover, studies of double strand break kinetics by counting 53BP1 foci after irradiation showed similar patterns compared to healthy controls. In combination, the clinical cases and laboratory experiments are valuable information in the discussion whether radiotherapy is absolutely contraindicated in BS, which is the Case in other DNA repair syndromes like Ataxia Telangiectasia and Artemis.
Collapse
Affiliation(s)
- M H D Schoenaker
- Department of Pediatric Neurology, Amalia Children's Hospital, Radboud University Medical Center, Nijmegen, the Netherlands; Laboratory for Immunology, Department of Pediatrics, Leiden University Medical Center, Leiden, the Netherlands.
| | - S Takada
- Laboratory for Immunology, Department of Pediatrics, Leiden University Medical Center, Leiden, the Netherlands
| | - M van Deuren
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, the Netherlands
| | - C J Dommering
- Department of Clinical Genetics, Amsterdam UMC, Vrije Universiteit Amsterdam, HV Amsterdam, the Netherlands
| | - S S V Henriët
- Pediatric Infectious Diseases and Immunology, Amalia Children's Hospital, Radboud University Medical Center, Nijmegen, the Netherlands
| | - I Pico
- Laboratory for Immunology, Department of Pediatrics, Leiden University Medical Center, Leiden, the Netherlands
| | - W V Vogel
- Department of Radiation Oncology, Netherlands Cancer Institute/Antoni van Leeuwenhoek, Amsterdam, the Netherlands; Department of Nuclear Medicine, Netherlands Cancer Institute/Antoni van Leeuwenhoek, Amsterdam, the Netherlands
| | - C M R Weemaes
- Pediatric Infectious Diseases and Immunology, Amalia Children's Hospital, Radboud University Medical Center, Nijmegen, the Netherlands
| | - M A A P Willemsen
- Department of Pediatric Neurology, Amalia Children's Hospital, Radboud University Medical Center, Nijmegen, the Netherlands
| | - M van der Burg
- Laboratory for Immunology, Department of Pediatrics, Leiden University Medical Center, Leiden, the Netherlands
| | - J H A M Kaanders
- Department of Radiation Oncology, Radboud University Medical Center, Nijmegen, the Netherlands
| |
Collapse
|
9
|
ATM: Translating the DNA Damage Response to Adaptive Immunity. Trends Immunol 2021; 42:350-365. [PMID: 33663955 DOI: 10.1016/j.it.2021.02.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 01/22/2021] [Accepted: 02/01/2021] [Indexed: 12/20/2022]
Abstract
ATM is often dubbed the master regulator of the DNA double stranded break (DSB) response. Since proper induction and repair of DNA DSBs forms the core of immunological diversity, it is surprising that patients with ataxia telangiectasia generally have a mild immunodeficiency in contrast to other DSB repair syndromes. In this review, we address this discrepancy by delving into the functions of ATM in DSB repair and cell cycle control and translate these to adaptive immunity. We conclude that ATM, despite its myriad functions, is not an absolute requirement for acquiring sufficient levels of immunological diversity to prevent severe viral and opportunistic infections. There is, however, a more clinically pronounced antibody deficiency in ataxia telangiectasia due to disturbed class switch recombination.
Collapse
|
10
|
Maddi ER, Raghavan SC, Natesh R. Hypomorphic mutations in human DNA ligase IV lead to compromised DNA binding efficiency, hydrophobicity and thermal stability. Protein Eng Des Sel 2021; 34:6135054. [PMID: 33586762 DOI: 10.1093/protein/gzab001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 12/12/2020] [Accepted: 12/30/2020] [Indexed: 11/13/2022] Open
Abstract
Studies have shown that Lig4 syndrome mutations in DNA ligase IV (LigIV) are compromised in its function with residual level of double strand break ligation activity in vivo. It was speculated that Lig4 syndrome mutations adversely affect protein folding and stability. Though there are crystal structures of LigIV, there are no reports of crystal structures of Lig4 syndrome mutants and their biophysical characterization to date. Here, we have examined the conformational states, thermal stability, hydrophobicity and DNA binding efficiency of human DNA LigIV wild type and its hypomorphic mutants by far-UV circular dichroism, tyrosine and tryptophan fluorescence, and 1-anilino-8-naphthalene-sulfonate binding, dynamic light scattering, size exclusion chromatography, multi-angle light scattering and electrophoretic mobility shift assay. We show here that LigIV hypomorphic mutants have reduced DNA-binding efficiency, a shift in secondary structure content from the helical to random coil, marginal reduction in their thermal stability and increased hydrophobicity as compared to the wild-type LigIV.
Collapse
Affiliation(s)
- Eswar Reddy Maddi
- School of Biology, Indian Institute of Science Education and Research Thiruvananthapuram, Thiruvananthapuram, Kerala 695551, India
| | - Sathees C Raghavan
- Department of Biochemistry, Indian Institute of Science, Bangalore 560 012, India
| | - Ramanathan Natesh
- School of Biology, Indian Institute of Science Education and Research Thiruvananthapuram, Thiruvananthapuram, Kerala 695551, India
| |
Collapse
|
11
|
Houghton BC, Booth C. Gene Therapy for Primary Immunodeficiency. Hemasphere 2021; 5:e509. [PMID: 33403354 PMCID: PMC7773329 DOI: 10.1097/hs9.0000000000000509] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 10/21/2020] [Indexed: 12/27/2022] Open
Abstract
Over the past 3 decades, there has been significant progress in refining gene therapy technologies and procedures. Transduction of hematopoietic stem cells ex vivo using lentiviral vectors can now create a highly effective therapeutic product, capable of reconstituting many different immune system dysfunctions when reinfused into patients. Here, we review the key developments in the gene therapy landscape for primary immune deficiency, from an experimental therapy where clinical efficacy was marred by adverse events, to a commercialized product with enhanced safety and efficacy. We also discuss progress being made in preclinical studies for challenging disease targets and emerging gene editing technologies that are showing promising results, particularly for conditions where gene regulation is important for efficacy.
Collapse
Affiliation(s)
- Benjamin C. Houghton
- Molecular and Cellular Immunology, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Claire Booth
- Molecular and Cellular Immunology, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
- Department of Paediatric Immunology, Great Ormond Street NHS Foundation Trust, London, United Kingdom
| |
Collapse
|
12
|
Garrelfs MR, Takada S, Kamsteeg EJ, Pegge S, Mancini G, Engelen M, van de Warrenburg B, Rennings A, van Gaalen J, Peters I, Weemaes C, van der Burg M, Willemsen MA. The Phenotypic Spectrum of PNKP-Associated Disease and the Absence of Immunodeficiency and Cancer Predisposition in a Dutch Cohort. Pediatr Neurol 2020; 113:26-32. [PMID: 32980744 DOI: 10.1016/j.pediatrneurol.2020.07.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 07/19/2020] [Accepted: 07/23/2020] [Indexed: 11/26/2022]
Abstract
BACKGROUND We aimed to expand the number of currently known pathogenic PNKP mutations, to study the phenotypic spectrum, including radiological characteristics and genotype-phenotype correlations, and to assess whether immunodeficiency and increased cancer risk are part of the DNA repair disorder caused by mutations in the PNKP gene. METHODS We evaluated nine patients with PNKP mutations. A neurological history and examination was obtained. All patients had undergone neuroimaging and genetic testing as part of the prior diagnostic process. Laboratory measurements included potential biomarkers, and, in the context of a DNA repair disorder, we performed a detailed immunologic evaluation, including B cell repertoire analysis. RESULTS We identified three new mutations in the PNKP gene and confirm the phenotypic spectrum of PNKP-associated disease, ranging from microcephaly, seizures, and developmental delay to ataxia with oculomotor apraxia type 4. Irrespective of the phenotype, alpha-fetoprotein is a biochemical marker and increases with age and progression of the disease. On neuroimaging, (progressive) cerebellar atrophy was a universal feature. No clinical signs of immunodeficiency were present, and immunologic assessment was unremarkable. One patient developed cancer, but this was attributed to a concurrent von Hippel-Lindau mutation. CONCLUSIONS Immunodeficiency and cancer predisposition do not appear to be part of PNKP-associated disease, contrasting many other DNA repair disorders. Furthermore, our study illustrates that the previously described syndromes microcephaly, seizures, and developmental delay, and ataxia with oculomotor apraxia type 4, represent the extremes of an overlapping spectrum of disease. Cerebellar atrophy and elevated serum alpha-fetoprotein levels are early diagnostic findings across the entire phenotypical spectrum.
Collapse
Affiliation(s)
- Mark R Garrelfs
- Department of Pediatrics, Radboud University Medical Center, Nijmegen, the Netherlands.
| | - Sanami Takada
- Laboratory for Immunology, Department of Pediatrics, Leiden University Medical Center, Leiden, the Netherlands
| | - Erik-Jan Kamsteeg
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Sjoert Pegge
- Department of Radiology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Grazia Mancini
- Department of Clinical Genetics, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Marc Engelen
- Department of Pediatric Neurology, Amsterdam University Medical Center, Amsterdam, the Netherlands
| | - Bart van de Warrenburg
- Department of Neurology, Donders Institute for Brain, Cognition, and Behaviour, Nijmegen, the Netherlands
| | - Alexander Rennings
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Judith van Gaalen
- Department of Neurology, Donders Institute for Brain, Cognition, and Behaviour, Nijmegen, the Netherlands
| | - Ivo Peters
- Department of Neurology, Donders Institute for Brain, Cognition, and Behaviour, Nijmegen, the Netherlands
| | - Corry Weemaes
- Department of Pediatrics, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Mirjam van der Burg
- Laboratory for Immunology, Department of Pediatrics, Leiden University Medical Center, Leiden, the Netherlands
| | - Michèl A Willemsen
- Department of Pediatrics, Radboud University Medical Center, Nijmegen, the Netherlands; Department of Pediatric Neurology, Radboud University Medical Center, Amalia Children's Hospital and Donders Institute for Brain, Cognition and Behavior, Nijmegen, the Netherlands
| |
Collapse
|
13
|
Gerasimou P, Koumas L, Miltiadous A, Kyprianou I, Chi J, Gavrielidou R, Socratous E, Loizou L, Papachristodoulou E, Karaoli E, Loizos A, Anastasiadou V, Costeas P. The rare DNA ligase IV syndrome: A case report. HUMAN PATHOLOGY: CASE REPORTS 2020. [DOI: 10.1016/j.ehpc.2020.200442] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
14
|
Silva JMF, Jones A, Sibson K, Bibi S, Jeggo P, Woodbine L, Ahsan G, Gilmour KC, Rao K, Chiesa R, Lucchini G, Veys P, Worth A, Amrolia PJ. Haematopoietic Stem Cell Transplantation for DNA Ligase 1 Deficiency. J Clin Immunol 2020; 41:238-242. [PMID: 33025376 DOI: 10.1007/s10875-020-00871-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 09/16/2020] [Indexed: 10/23/2022]
Affiliation(s)
- Juliana M F Silva
- Department of Bone Marrow Transplantation, Great Ormond Street Hospital for Children NHS Trust, London, UK
| | - Alison Jones
- Department of Immunology, Camelia Botnar Laboratories, Great Ormond Street Hospital NHS Trust, London, UK
| | - Keith Sibson
- Department of Haematology, Great Ormond Street Hospital NHS Trust, London, UK
| | - Shahnaz Bibi
- Regional Molecular Genetics Laboratory, Great Ormond Street Hospital NHS Trust, London, UK
| | - Penny Jeggo
- Genome Damage and Stability Centre, University of Sussex, Science Park Road, Falmer, Brighton, BN19RQ, UK
| | - Lisa Woodbine
- Genome Damage and Stability Centre, University of Sussex, Science Park Road, Falmer, Brighton, BN19RQ, UK
| | - Gulrukh Ahsan
- Department of Immunology, Camelia Botnar Laboratories, Great Ormond Street Hospital NHS Trust, London, UK
| | - Kimberly C Gilmour
- Department of Immunology, Camelia Botnar Laboratories, Great Ormond Street Hospital NHS Trust, London, UK
| | - Kanchan Rao
- Department of Bone Marrow Transplantation, Great Ormond Street Hospital for Children NHS Trust, London, UK
| | - Robert Chiesa
- Department of Bone Marrow Transplantation, Great Ormond Street Hospital for Children NHS Trust, London, UK
| | - Giovanna Lucchini
- Department of Bone Marrow Transplantation, Great Ormond Street Hospital for Children NHS Trust, London, UK
| | - Paul Veys
- Department of Bone Marrow Transplantation, Great Ormond Street Hospital for Children NHS Trust, London, UK
| | - Austen Worth
- Department of Bone Marrow Transplantation, Great Ormond Street Hospital for Children NHS Trust, London, UK.,Molecular Immunology Unit, Institute of Child Health, University College London, London, UK
| | - Persis J Amrolia
- Department of Bone Marrow Transplantation, Great Ormond Street Hospital for Children NHS Trust, London, UK.
| |
Collapse
|
15
|
Abstract
PURPOSE OF REVIEW The most serious DNA damage, DNA double strand breaks (DNA-dsb), leads to mutagenesis, carcinogenesis or apoptosis if left unrepaired. Non-homologous end joining (NHEJ) is the principle repair pathway employed by mammalian cells to repair DNA-dsb. Several proteins are involved in this pathway, defects in which can lead to human disease. This review updates on the most recent information available for the specific diseases associated with the pathway. RECENT FINDINGS A new member of the NHEJ pathway, PAXX, has been identified, although no human disease has been associated with it. The clinical phenotypes of Artemis, DNA ligase 4, Cernunnos-XLF and DNA-PKcs deficiency have been extended. The role of haematopoietic stem cell transplantation, following reduced intensity conditioning chemotherapy, for many of these diseases is being advanced. In the era of newborn screening, urgent genetic diagnosis is necessary to correctly target appropriate treatment for patients with DNA-dsb repair disorders.
Collapse
Affiliation(s)
- Mary A Slatter
- Paediatric Immunology and Haematopoietic Stem Cell Transplantation, Great North Children's Hospital, Clinical Resource Building, Floor 4, Block 2, Newcastle upon Tyne, UK
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Andrew R Gennery
- Paediatric Immunology and Haematopoietic Stem Cell Transplantation, Great North Children's Hospital, Clinical Resource Building, Floor 4, Block 2, Newcastle upon Tyne, UK.
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK.
| |
Collapse
|
16
|
Sun B, Chen Q, Wang Y, Liu D, Hou J, Wang W, Ying W, Hui X, Zhou Q, Sun J, Wang X. LIG4 syndrome: clinical and molecular characterization in a Chinese cohort. Orphanet J Rare Dis 2020; 15:131. [PMID: 32471509 PMCID: PMC7257218 DOI: 10.1186/s13023-020-01411-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 05/18/2020] [Indexed: 01/11/2023] Open
Abstract
Background DNA Ligase IV (LIG4) syndrome is a rare disease with few reports to date. Patients suffer from a broad spectrum of clinical features, including microcephaly, growth retardation, developmental delay, dysmorphic facial features, combined immunodeficiency, and malignancy predisposition. There may be a potential association between genotypes and phenotypes. We investigated the characteristics of LIG4 syndrome in a Chinese cohort. Results All seven patients had growth restriction. Most patients (6/7) had significant microcephaly (< − 3 SD). Recurrent bacterial infections of the lungs and intestines were the most common symptoms. One patient had myelodysplastic syndromes. One patient presented with an inflammatory bowel disease (IBD)-like phenotype. Patients presented with combined immunodeficiency. The proportions of naïve CD4+ and naïve CD8+ T cells decreased notably in five patients. All patients harbored compound heterozygous mutations in the LIG4 gene, which consisted of a missense mutation (c.833G > T, p.R278L) and a deletion shift mutation, primarily c.1271_1275delAAAGA (p.K424Rfs*20). Two other deletion mutations, c.1144_1145delCT and c.1277_1278delAA, were novel. Patients with p.K424Rfs*20/p.R278 may have milder dysmorphism but more significant IgA/IgM deficiency compared to the frequently reported genotype p.R814X/p.K424Rfs*20. One patient underwent umbilical cord blood stem cell transplantation (UCBSCT) but died. Conclusions The present study reported the clinical and molecular characteristics of a Chinese cohort with LIG4 syndrome, and the results further expand the phenotypic and genotypic spectrum and our understanding of genotype-to-phenotype correlations in LIG4 syndrome.
Collapse
Affiliation(s)
- Bijun Sun
- Department of Clinical Immunology, Children's Hospital of Fudan University, 399 Wanyuan Road, Shanghai, 201102, China
| | - Qiuyu Chen
- Department of Clinical Immunology, Children's Hospital of Fudan University, 399 Wanyuan Road, Shanghai, 201102, China
| | - Ying Wang
- Department of Clinical Immunology, Children's Hospital of Fudan University, 399 Wanyuan Road, Shanghai, 201102, China
| | - Danru Liu
- Department of Clinical Immunology, Children's Hospital of Fudan University, 399 Wanyuan Road, Shanghai, 201102, China
| | - Jia Hou
- Department of Clinical Immunology, Children's Hospital of Fudan University, 399 Wanyuan Road, Shanghai, 201102, China
| | - Wenjie Wang
- Department of Clinical Immunology, Children's Hospital of Fudan University, 399 Wanyuan Road, Shanghai, 201102, China
| | - Wenjing Ying
- Department of Clinical Immunology, Children's Hospital of Fudan University, 399 Wanyuan Road, Shanghai, 201102, China
| | - Xiaoying Hui
- Department of Clinical Immunology, Children's Hospital of Fudan University, 399 Wanyuan Road, Shanghai, 201102, China
| | - Qinhua Zhou
- Department of Clinical Immunology, Children's Hospital of Fudan University, 399 Wanyuan Road, Shanghai, 201102, China
| | - Jinqiao Sun
- Department of Clinical Immunology, Children's Hospital of Fudan University, 399 Wanyuan Road, Shanghai, 201102, China.
| | - Xiaochuan Wang
- Department of Clinical Immunology, Children's Hospital of Fudan University, 399 Wanyuan Road, Shanghai, 201102, China.
| |
Collapse
|
17
|
Wu Z, Subramanian N, Jacobsen EM, Laib Sampaio K, van der Merwe J, Hönig M, Mertens T. NK Cells from RAG- or DCLRE1C-Deficient Patients Inhibit HCMV. Microorganisms 2019; 7:microorganisms7110546. [PMID: 31717670 PMCID: PMC6920872 DOI: 10.3390/microorganisms7110546] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 11/07/2019] [Accepted: 11/08/2019] [Indexed: 11/18/2022] Open
Abstract
The recombination-activating genes (RAGs) and the DNA cross-link repair 1C gene (DCLRE1C) encode the enzymes RAG1, RAG2 and Artemis. They are critical components of the V(D)J recombination machinery. V(D)J recombination is well known as a prerequisite for the development and antigen diversity of T and B cells. New findings suggested that RAG deficiency impacts the cellular fitness and function of murine NK cells. It is not known whether NK cells from severe combined immunodeficiency (SCID) patients with defective RAGs or DCLRE1C (RAGs−/DCLRE1C−-NK) are active against virus infections. Here, we evaluated the anti-HCMV activity of RAGs−/DCLRE1C−-NK cells. NK cells from six SCID patients were functional in inhibiting HCMV transmission between cells in vitro. We also investigated the expansion of HCMV-induced NK cell subset in the RAG- or DCLRE1C-deficient patients. A dynamic expansion of NKG2C+ NK cells in one RAG-2-deficient patient was observed post HCMV acute infection. Our study firstly reveals the antiviral activity of human RAGs−/ DCLRE1C−-NK cells.
Collapse
Affiliation(s)
- Zeguang Wu
- Institute of Virology, Ulm University Medical Center, D-89081 Ulm, Germany
| | | | - Eva-Maria Jacobsen
- Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, D-89081 Ulm, Germany
| | | | | | - Manfred Hönig
- Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, D-89081 Ulm, Germany
| | - Thomas Mertens
- Institute of Virology, Ulm University Medical Center, D-89081 Ulm, Germany
- Correspondence: ; Tel.: +49-731-500-65101; Fax: +49-731-500-65102
| |
Collapse
|
18
|
Schober S, Schilbach K, Doering M, Cabanillas Stanchi KM, Holzer U, Kasteleiner P, Schittenhelm J, Schaefer JF, Mueller I, Lang P, Handgretinger R. Allogeneic hematopoietic stem cell transplantation in two brothers with DNA ligase IV deficiency: a case report and review of the literature. BMC Pediatr 2019; 19:346. [PMID: 31604460 PMCID: PMC6788020 DOI: 10.1186/s12887-019-1724-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 09/16/2019] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND DNA ligase IV deficiency is a rare autosomal recessive disorder caused by hypomorphic mutations in the DNA ligase IV (LIG4) gene. DNA ligase IV is an essential protein for the development of a healthy immune system as well as for the protection of genomic integrity. Apart from typical stigmata, patients with DNA ligase IV deficiency are characterized by progressive bone marrow failure and a predisposition to malignancy. To our knowledge this reported case is the first description of two brothers with ligase IV deficiency who are treated with different hematopoietic stem cell transplantation (HSCT) regimens resulting in vastly divergent outcomes. CASE PRESENTATION The cases of two brothers suffering from severe recurrent infections and growth retardation are described. The laboratory findings showed pancytopenia with significant lymphopenia. The two boys were diagnosed with DNA ligase IV deficiency, associated with severe combined immunodeficiency (SCID). Both patients received HSCT from two different matched unrelated donors (MUD) at the age of 33 and 18 months. The older brother succumbed post-transplant due to fatal side-effects 143 days after allogeneic HSCT. The younger brother - conditioned with a different regimen - received a T cell depleted graft 4 months later. No severe side-effects occurred, neither post-transplant nor in the following years. Ten years after HSCT the patient is well off, living a normal life and attending a regular high school. His immune system is fully reconstituted, resulting in a maximum of T cell receptor (TCR) diversity, which is a prerequisite for immune competence. However, he still suffers from microcephaly, dwarfism and dystrophy. CONCLUSIONS This case report gives an example of a successful HSCT as a treatment option in a genetic disorder such as ligase IV deficiency, using a rather mild conditioning regimen. Further studies are required to determine the viability and efficacy of this treatment option.
Collapse
Affiliation(s)
- Sarah Schober
- Department I - General Pediatrics, Hematology/Oncology, University Children's Hospital Tuebingen, Hoppe-Seyler-Str.1, 72076, Tuebingen, Germany
| | - Karin Schilbach
- Department I - General Pediatrics, Hematology/Oncology, University Children's Hospital Tuebingen, Hoppe-Seyler-Str.1, 72076, Tuebingen, Germany
| | - Michaela Doering
- Department I - General Pediatrics, Hematology/Oncology, University Children's Hospital Tuebingen, Hoppe-Seyler-Str.1, 72076, Tuebingen, Germany
| | - Karin M Cabanillas Stanchi
- Department I - General Pediatrics, Hematology/Oncology, University Children's Hospital Tuebingen, Hoppe-Seyler-Str.1, 72076, Tuebingen, Germany
| | - Ursula Holzer
- Department I - General Pediatrics, Hematology/Oncology, University Children's Hospital Tuebingen, Hoppe-Seyler-Str.1, 72076, Tuebingen, Germany
| | - Patrick Kasteleiner
- Department I - General Pediatrics, Hematology/Oncology, University Children's Hospital Tuebingen, Hoppe-Seyler-Str.1, 72076, Tuebingen, Germany
| | - Jens Schittenhelm
- Department of Neuropathology, Institute of Pathology and Neuropathology, Eberhard-Karls University Tuebingen, Calwer Str. 3, 72074, Tuebingen, Germany
| | - Juergen F Schaefer
- Department of Diagnostic and Interventional Radiology, University Hospital Tuebingen, Hoppe-Seyler-Str. 3, 72076, Tuebingen, Germany
| | - Ingo Mueller
- Division for Pediatric Stem Cell Transplantation and Immunology, Clinic for Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Martinistr, 52, 20246, Hamburg, Germany
| | - Peter Lang
- Department I - General Pediatrics, Hematology/Oncology, University Children's Hospital Tuebingen, Hoppe-Seyler-Str.1, 72076, Tuebingen, Germany
| | - Rupert Handgretinger
- Department I - General Pediatrics, Hematology/Oncology, University Children's Hospital Tuebingen, Hoppe-Seyler-Str.1, 72076, Tuebingen, Germany.
| |
Collapse
|
19
|
Kumrah R, Vignesh P, Patra P, Singh A, Anjani G, Saini P, Sharma M, Kaur A, Rawat A. Genetics of severe combined immunodeficiency. Genes Dis 2019; 7:52-61. [PMID: 32181275 PMCID: PMC7063414 DOI: 10.1016/j.gendis.2019.07.004] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 07/07/2019] [Accepted: 07/09/2019] [Indexed: 01/19/2023] Open
Abstract
Severe Combined Immunodeficiency (SCID) is an inherited group of rare, life-threatening disorders due to the defect in T cell development and function. Clinical manifestations are characterised by recurrent and severe bacterial, viral, and fungal opportunistic infections that start from early infancy period. Haematopoietic stem cell transplantation (HSCT) is the treatment of choice. The pattern of inheritance of SCID may be X-linked or autosomal recessive. Though the diagnosis of SCID is usually established by flow cytometry-based tests, genetic diagnosis is often needed for genetic counselling, prognostication, and modification of pre-transplant chemotherapeutic agents. This review aims to highlight the genetic aspects of SCID.
Collapse
Affiliation(s)
- Rajni Kumrah
- Allergy Immunology Unit, Department of Pediatrics, Advanced Pediatrics Centre, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Pandiarajan Vignesh
- Allergy Immunology Unit, Department of Pediatrics, Advanced Pediatrics Centre, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Pratap Patra
- Allergy Immunology Unit, Department of Pediatrics, Advanced Pediatrics Centre, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Ankita Singh
- Allergy Immunology Unit, Department of Pediatrics, Advanced Pediatrics Centre, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Gummadi Anjani
- Allergy Immunology Unit, Department of Pediatrics, Advanced Pediatrics Centre, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Poonam Saini
- Allergy Immunology Unit, Department of Pediatrics, Advanced Pediatrics Centre, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Madhubala Sharma
- Allergy Immunology Unit, Department of Pediatrics, Advanced Pediatrics Centre, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Anit Kaur
- Allergy Immunology Unit, Department of Pediatrics, Advanced Pediatrics Centre, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Amit Rawat
- Allergy Immunology Unit, Department of Pediatrics, Advanced Pediatrics Centre, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
20
|
Chen SH, Yu X. Human DNA ligase IV is able to use NAD+ as an alternative adenylation donor for DNA ends ligation. Nucleic Acids Res 2019; 47:1321-1334. [PMID: 30496552 PMCID: PMC6379666 DOI: 10.1093/nar/gky1202] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 11/09/2018] [Accepted: 11/15/2018] [Indexed: 12/29/2022] Open
Abstract
All the eukaryotic DNA ligases are known to use adenosine triphosphate (ATP) for DNA ligation. Here, we report that human DNA ligase IV, a key enzyme in DNA double-strand break (DSB) repair, is able to use NAD+ as a substrate for double-stranded DNA ligation. In the in vitro ligation assays, we show that the recombinant Ligase IV can use both ATP and NAD+ for DNA ligation. For NAD+-mediated ligation, the BRCA1 C-terminal (BRCT) domain of Ligase IV recognizes NAD+ and facilitates the adenylation of Ligase IV, the first step of ligation. Although XRCC4, the functional partner of Ligase IV, is not required for the NAD+-mediated adenylation, it regulates the transfer of AMP moiety from Ligase IV to the DNA end. Moreover, cancer-associated mutation in the BRCT domain of Ligase IV disrupts the interaction with NAD+, thus abolishes the NAD+-mediated adenylation of Ligase IV and DSB ligation. Disrupting the NAD+ recognition site in the BRCT domain impairs non-homologous end joining (NHEJ) in cell. Taken together, our study reveals that in addition to ATP, Ligase IV may use NAD+ as an alternative adenylation donor for NHEJ repair and maintaining genomic stability.
Collapse
Affiliation(s)
- Shih-Hsun Chen
- Department of Cancer Genetics & Epigenetics, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA
| | - Xiaochun Yu
- Department of Cancer Genetics & Epigenetics, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA
| |
Collapse
|
21
|
Staines Boone AT, Chinn IK, Alaez-Versón C, Yamazaki-Nakashimada MA, Carrillo-Sánchez K, García-Cruz MDLLH, Poli MC, González Serrano ME, Medina Torres EA, Muzquiz Zermeño D, Forbes LR, Espinosa-Rosales FJ, Espinosa-Padilla SE, Orange JS, Lugo Reyes SO. Failing to Make Ends Meet: The Broad Clinical Spectrum of DNA Ligase IV Deficiency. Case Series and Review of the Literature. Front Pediatr 2019; 6:426. [PMID: 30719430 PMCID: PMC6348249 DOI: 10.3389/fped.2018.00426] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 12/21/2018] [Indexed: 12/31/2022] Open
Abstract
DNA repair defects are inborn errors of immunity that result in increased apoptosis and oncogenesis. DNA Ligase 4-deficient patients suffer from a wide range of clinical manifestations since early in life, including: microcephaly, dysmorphic facial features, growth failure, developmental delay, mental retardation; hip dysplasia, and other skeletal malformations; as well as a severe combined immunodeficiency, radiosensitivity, and progressive bone marrow failure; or, they may present later in life with hematological neoplasias that respond catastrophically to chemo- and radiotherapy; or, they could be asymptomatic. We describe the clinical, laboratory, and genetic features of five Mexican patients with LIG4 deficiency, together with a review of 36 other patients available in PubMed Medline. Four out of five of our patients are dead from lymphoma or bone marrow failure, with severe infection and massive bleeding; the fifth patient is asymptomatic despite a persistent CD4+ lymphopenia. Most patients reported in the literature are microcephalic females with growth failure, sinopulmonary infections, hypogammaglobulinemia, very low B-cells, and radiosensitivity; while bone marrow failure and malignancy may develop at a later age. Dysmorphic facial features, congenital hip dysplasia, chronic liver disease, gradual pancytopenia, lymphoma or leukemia, thrombocytopenia, and gastrointestinal bleeding have been reported as well. Most mutations are compound heterozygous, and all of them are hypomorphic, with two common truncating mutations accounting for the majority of patients. Stem-cell transplantation after reduced intensity conditioning regimes may be curative.
Collapse
Affiliation(s)
| | - Ivan K. Chinn
- Center for Human Immunobiology, Texas Children's Hospital, Houston, TX, United States
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, United States
| | - Carmen Alaez-Versón
- Genomic Diagnostic Laboratory at the National Institute for Genomic Medicine (INMEGEN), Mexico City, Mexico
| | | | - Karol Carrillo-Sánchez
- Genomic Diagnostic Laboratory at the National Institute for Genomic Medicine (INMEGEN), Mexico City, Mexico
| | | | - M. Cecilia Poli
- Center for Human Immunobiology, Texas Children's Hospital, Houston, TX, United States
- Universidad del Desarrollo, Clínica Alemana de Santiago, Santiago de Chile, Chile
| | | | - Edgar A. Medina Torres
- Immunodeficiencies Research Unit at the National Institute of Pediatrics (INP), Mexico City, Mexico
| | - David Muzquiz Zermeño
- Immunology Department at Hospital de Especialidades, UMAE 25 IMSS, Monterrey, Mexico
| | - Lisa R. Forbes
- Center for Human Immunobiology, Texas Children's Hospital, Houston, TX, United States
- Department of Pediatrics, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, United States
| | - Francisco J. Espinosa-Rosales
- Immunodeficiencies Research Unit at the National Institute of Pediatrics (INP), Mexico City, Mexico
- Mexican Foundation for Girls and Boys with Primary Immunodeficiencies (FUMENI, AC), Huixquilucan, Mexico
| | - Sara E. Espinosa-Padilla
- Immunodeficiencies Research Unit at the National Institute of Pediatrics (INP), Mexico City, Mexico
| | - Jordan S. Orange
- Center for Human Immunobiology, Texas Children's Hospital, Houston, TX, United States
- Department of Pediatrics, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, United States
| | - Saul Oswaldo Lugo Reyes
- Immunodeficiencies Research Unit at the National Institute of Pediatrics (INP), Mexico City, Mexico
| |
Collapse
|
22
|
Taskiran EZ, Sonmez HE, Kosukcu C, Tavukcuoglu E, Yazici G, Esendagli G, Batu ED, Kiper POS, Bilginer Y, Alikasifoglu M, Ozen S. A Novel Missense LIG4 Mutation in a Patient With a Phenotype Mimicking Behçet's Disease. J Clin Immunol 2019; 39:99-105. [PMID: 30617623 DOI: 10.1007/s10875-018-0587-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Accepted: 12/27/2018] [Indexed: 01/15/2023]
Abstract
DNA ligase IV (LIG4) syndrome is a rare autosomal recessive disorder, manifesting with variable immune deficiency, growth failure, predisposition to malignancy, and cellular sensitivity to ionizing radiation. The facial features are subtle and variable, as well. Herein, we described an 18-year-old boy, the first child of consanguineous parents who presented with Behçet's disease (BD)-like phenotype, developmental delay, and dysembryoplastic neuroepithelial tumor (DNET). Whole-exome sequencing revealed a homozygous p.Arg871His (c.2612G > A) mutation in LIG4. To date, 35 cases have been reported with LIG4 syndrome. Peripheral blood mononuclear cells of the patient displayed notable sensitivity to ionizing radiation. Flow cytometric annexin V-propidium iodide (PI) and eFluor670 proliferation assays showed accelerated radiation-induced apoptosis and diminished proliferation, respectively. To our knowledge, this is the first case presenting with a BD-like phenotype. This case provides further evidence that rare monogenic defects could be the underlying cause of atypical presentations of some well-described disorders. Moreover, this clinical report further expands the phenotypical spectrum of LIG4 deficiency.
Collapse
Affiliation(s)
- Ekim Z Taskiran
- Department of Medical Genetics, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Hafize E Sonmez
- Department of Pediatrics, Division of Rheumatology, Hacettepe University Faculty of Medicine, 06100, Ankara, Turkey
| | - Can Kosukcu
- Department of Bioinformatics, Institute of Health Sciences, Hacettepe University, Ankara, Turkey
| | - Ece Tavukcuoglu
- Department of Basic Oncology, Hacettepe University Cancer Institute, Ankara, Turkey
| | - Gozde Yazici
- Faculty of Medicine, Department of Radiation Oncology, Hacettepe University, Ankara, Turkey
| | - Gunes Esendagli
- Department of Basic Oncology, Hacettepe University Cancer Institute, Ankara, Turkey
| | - Ezgi D Batu
- Department of Pediatrics, Division of Rheumatology, Hacettepe University Faculty of Medicine, 06100, Ankara, Turkey
| | - Pelin O S Kiper
- Department of Pediatrics, Division of Pediatric Genetics, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Yelda Bilginer
- Department of Pediatrics, Division of Rheumatology, Hacettepe University Faculty of Medicine, 06100, Ankara, Turkey
| | - Mehmet Alikasifoglu
- Department of Medical Genetics, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Seza Ozen
- Department of Pediatrics, Division of Rheumatology, Hacettepe University Faculty of Medicine, 06100, Ankara, Turkey.
| |
Collapse
|
23
|
Wolska-Kuśnierz B, Gennery AR. Hematopoietic Stem Cell Transplantation for DNA Double Strand Breakage Repair Disorders. Front Pediatr 2019; 7:557. [PMID: 32010653 PMCID: PMC6974535 DOI: 10.3389/fped.2019.00557] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 12/20/2019] [Indexed: 11/25/2022] Open
Abstract
The ubiquitous presence of enzymes required for repair of DNA double strand breaks renders patients with defects in these pathways susceptible to immunodeficiency, an increased risk of infection, autoimmunity, bone marrow failure and malignancies, which are commonly associated with Epstein Barr virus (EBV) infection. Treatment of malignancies is particularly difficult, as the nature of the systemic defect means that patients are sensitive to chemotherapy and radiotherapy. Increasing numbers of patients with Nijmegen Breakage syndrome, Ligase 4 deficiency and Cernunnos-XLF deficiency have been successfully transplanted. Best results are obtained with the use of reduced intensity conditioning. Patients with ataxia-telangiectasia have particularly poor outcomes and the best treatment approach for these patients is still to be determined.
Collapse
Affiliation(s)
| | - Andrew R Gennery
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom.,Paediatric Stem Cell Transplant Unit, Great North Children's Hospital, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
24
|
Maffucci P, Chavez J, Jurkiw TJ, O’Brien PJ, Abbott JK, Reynolds PR, Worth A, Notarangelo LD, Felgentreff K, Cortes P, Boisson B, Radigan L, Cobat A, Dinakar C, Ehlayel M, Ben-Omran T, Gelfand EW, Casanova JL, Cunningham-Rundles C. Biallelic mutations in DNA ligase 1 underlie a spectrum of immune deficiencies. J Clin Invest 2018; 128:5489-5504. [PMID: 30395541 PMCID: PMC6264644 DOI: 10.1172/jci99629] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 09/04/2018] [Indexed: 12/30/2022] Open
Abstract
We report the molecular, cellular, and clinical features of 5 patients from 3 kindreds with biallelic mutations in the autosomal LIG1 gene encoding DNA ligase 1. The patients exhibited hypogammaglobulinemia, lymphopenia, increased proportions of circulating γδT cells, and erythrocyte macrocytosis. Clinical severity ranged from a mild antibody deficiency to a combined immunodeficiency requiring hematopoietic stem cell transplantation. Using engineered LIG1-deficient cell lines, we demonstrated chemical and radiation defects associated with the mutant alleles, which variably impaired the DNA repair pathway. We further showed that these LIG1 mutant alleles are amorphic or hypomorphic, and exhibited variably decreased enzymatic activities, which lead to premature release of unligated adenylated DNA. The variability of the LIG1 genotypes in the patients was consistent with that of their immunological and clinical phenotypes. These data suggest that different forms of autosomal recessive, partial DNA ligase 1 deficiency underlie an immunodeficiency of variable severity.
Collapse
Affiliation(s)
- Patrick Maffucci
- Division of Clinical Immunology, Departments of Medicine and Pediatrics, and
- Graduate School of Biomedical Sciences, Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Jose Chavez
- Division of Clinical Immunology, Departments of Medicine and Pediatrics, and
| | - Thomas J. Jurkiw
- Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan, USA
| | - Patrick J. O’Brien
- Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan, USA
| | - Jordan K. Abbott
- Immunodeficiency Diagnosis and Treatment Program, Department of Pediatrics, National Jewish Health, Denver, Colorado, USA
| | - Paul R. Reynolds
- Immunodeficiency Diagnosis and Treatment Program, Department of Pediatrics, National Jewish Health, Denver, Colorado, USA
| | - Austen Worth
- Department of Pediatric Medicine, Great Ormond Street Hospital for Children, London, United Kingdom
| | - Luigi D. Notarangelo
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Kerstin Felgentreff
- Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Ulm, Germany
| | - Patricia Cortes
- Department of Molecular, Cellular and Biomedical Science, CUNY School of Medicine, City College of New York, New York, New York, USA
| | - Bertrand Boisson
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, New York, USA
- Paris Descartes University, Imagine Institute, Paris, France
| | - Lin Radigan
- Division of Clinical Immunology, Departments of Medicine and Pediatrics, and
| | - Aurélie Cobat
- Paris Descartes University, Imagine Institute, Paris, France
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
| | - Chitra Dinakar
- Allergy, Asthma & Immunodeficiency, Division of Pulmonary and Critical Care Medicine, Department of Medicine, Stanford University, Stanford, California, USA
| | - Mohammad Ehlayel
- Section of Pediatric Allergy-Immunology, Department of Pediatrics, Weill Cornell Medical College, Hamad Medical Corporation, Doha, Qatar
| | - Tawfeg Ben-Omran
- Department of Clinical and Metabolic Genetics, Department of Pediatrics, Weill Cornell Medical College, Hamad Medical Corporation, Doha, Qatar
| | - Erwin W. Gelfand
- Immunodeficiency Diagnosis and Treatment Program, Department of Pediatrics, National Jewish Health, Denver, Colorado, USA
| | - Jean-Laurent Casanova
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, New York, USA
- Paris Descartes University, Imagine Institute, Paris, France
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- Howard Hughes Medical Institute, New York, New York, USA
- Pediatric Hematology-Immunology Unit, Necker Hospital for Sick Children, Paris, France
| | - Charlotte Cunningham-Rundles
- Division of Clinical Immunology, Departments of Medicine and Pediatrics, and
- Graduate School of Biomedical Sciences, Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
25
|
Abstract
Proper regulation of the immune system is required for protection against pathogens and preventing autoimmune disorders. Inborn errors of the immune system due to inherited or de novo germline mutations can lead to the loss of protective immunity, aberrant immune homeostasis, and the development of autoimmune disease, or combinations of these. Forward genetic screens involving clinical material from patients with primary immunodeficiencies (PIDs) can vary in severity from life-threatening disease affecting multiple cell types and organs to relatively mild disease with susceptibility to a limited range of pathogens or mild autoimmune conditions. As central mediators of innate and adaptive immune responses, T cells are critical orchestrators and effectors of the immune response. As such, several PIDs result from loss of or altered T cell function. PID-associated functional defects range from complete absence of T cell development to uncontrolled effector cell activation. Furthermore, the gene products of known PID causal genes are involved in diverse molecular pathways ranging from T cell receptor signaling to regulators of protein glycosylation. Identification of the molecular and biochemical cause of PIDs can not only guide the course of treatment for patients, but also inform our understanding of the basic biology behind T cell function. In this chapter, we review PIDs with known genetic causes that intrinsically affect T cell function with particular focus on perturbations of biochemical pathways.
Collapse
Affiliation(s)
- William A Comrie
- Molecular Development of the Immune System Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States; Clinical Genomics Program, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, MD, United States
| | - Michael J Lenardo
- Molecular Development of the Immune System Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States; Clinical Genomics Program, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, MD, United States.
| |
Collapse
|
26
|
IJspeert H, van Schouwenburg PA, van Zessen D, Pico-Knijnenburg I, Stubbs AP, van der Burg M. Antigen Receptor Galaxy: A User-Friendly, Web-Based Tool for Analysis and Visualization of T and B Cell Receptor Repertoire Data. THE JOURNAL OF IMMUNOLOGY 2017; 198:4156-4165. [PMID: 28416602 DOI: 10.4049/jimmunol.1601921] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 03/13/2017] [Indexed: 11/19/2022]
Abstract
Antigen Receptor Galaxy (ARGalaxy) is a Web-based tool for analyses and visualization of TCR and BCR sequencing data of 13 species. ARGalaxy consists of four parts: the demultiplex tool, the international ImMunoGeneTics information system (IMGT) concatenate tool, the immune repertoire pipeline, and the somatic hypermutation (SHM) and class switch recombination (CSR) pipeline. Together they allow the analysis of all different aspects of the immune repertoire. All pipelines can be run independently or combined, depending on the available data and the question of interest. The demultiplex tool allows data trimming and demultiplexing, whereas with the concatenate tool multiple IMGT/HighV-QUEST output files can be merged into a single file. The immune repertoire pipeline is an extended version of our previously published ImmunoGlobulin Galaxy (IGGalaxy) virtual machine that was developed to visualize V(D)J gene usage. It allows analysis of both BCR and TCR rearrangements, visualizes CDR3 characteristics (length and amino acid usage) and junction characteristics, and calculates the diversity of the immune repertoire. Finally, ARGalaxy includes the newly developed SHM and CSR pipeline to analyze SHM and/or CSR in BCR rearrangements. It analyzes the frequency and patterns of SHM, Ag selection (including BASELINe), clonality (Change-O), and CSR. The functionality of the ARGalaxy tool is illustrated in several clinical examples of patients with primary immunodeficiencies. In conclusion, ARGalaxy is a novel tool for the analysis of the complete immune repertoire, which is applicable to many patient groups with disturbances in the immune repertoire such as autoimmune diseases, allergy, and leukemia, but it can also be used to address basic research questions in repertoire formation and selection.
Collapse
Affiliation(s)
- Hanna IJspeert
- Department of Immunology, Erasmus University Medical Center, 3015 CN Rotterdam, the Netherlands; and
| | | | - David van Zessen
- Department of Immunology, Erasmus University Medical Center, 3015 CN Rotterdam, the Netherlands; and.,Department of Bioinformatics, Erasmus University Medical Center, 3015 CE Rotterdam, the Netherlands
| | - Ingrid Pico-Knijnenburg
- Department of Immunology, Erasmus University Medical Center, 3015 CN Rotterdam, the Netherlands; and
| | - Andrew P Stubbs
- Department of Bioinformatics, Erasmus University Medical Center, 3015 CE Rotterdam, the Netherlands
| | - Mirjam van der Burg
- Department of Immunology, Erasmus University Medical Center, 3015 CN Rotterdam, the Netherlands; and
| |
Collapse
|
27
|
Outcome of hematopoietic cell transplantation for DNA double-strand break repair disorders. J Allergy Clin Immunol 2017; 141:322-328.e10. [PMID: 28392333 DOI: 10.1016/j.jaci.2017.02.036] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 01/25/2017] [Accepted: 02/06/2017] [Indexed: 01/19/2023]
Abstract
BACKGROUND Rare DNA breakage repair disorders predispose to infection and lymphoreticular malignancies. Hematopoietic cell transplantation (HCT) is curative, but coadministered chemotherapy or radiotherapy is damaging because of systemic radiosensitivity. We collected HCT outcome data for Nijmegen breakage syndrome, DNA ligase IV deficiency, Cernunnos-XRCC4-like factor (Cernunnos-XLF) deficiency, and ataxia-telangiectasia (AT). METHODS fludarabine or less and 40 mg/kg cyclophosphamide or less were used. RESULTS Fifty-five new, 14 updated, and 18 previously published patients were analyzed. Median age at HCT was 48 months (range, 1.5-552 months). Twenty-nine patients underwent transplantation for infection, 21 had malignancy, 13 had bone marrow failure, 13 received pre-emptive transplantation, 5 had multiple indications, and 6 had no information. Twenty-two received MAC, 59 received RIC, and 4 were infused; information was unavailable for 2 patients. Seventy-three of 77 patients with DNA ligase IV deficiency, Cernunnos-XLF deficiency, or Nijmegen breakage syndrome received conditioning. Survival was 53 (69%) of 77 and was worse for those receiving MAC than for those receiving RIC (P = .006). Most deaths occurred early after transplantation, suggesting poor tolerance of conditioning. Survival in patients with AT was 25%. Forty-one (49%) of 83 patients experienced acute GvHD, which was less frequent in those receiving RIC compared with those receiving MAC (26/56 [46%] vs 12/21 [57%], P = .45). Median follow-up was 35 months (range, 2-168 months). No secondary malignancies were reported during 15 years of follow-up. Growth and developmental delay remained after HCT; immune-mediated complications resolved. CONCLUSION RIC HCT resolves DNA repair disorder-associated immunodeficiency. Long-term follow-up is required for secondary malignancy surveillance. Routine HCT for AT is not recommended.
Collapse
|
28
|
Fadda A, Butt F, Tomei S, Deola S, Lo B, Robay A, Al-Shakaki A, Al-Hajri N, Crystal R, Kambouris M, Wang E, Marincola FM, Fakhro KA, Cugno C. Two hits in one: whole genome sequencing unveils LIG4 syndrome and urofacial syndrome in a case report of a child with complex phenotype. BMC MEDICAL GENETICS 2016; 17:84. [PMID: 27855655 PMCID: PMC5114772 DOI: 10.1186/s12881-016-0346-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 11/10/2016] [Indexed: 01/03/2023]
Abstract
Background Ligase IV syndrome, a hereditary disease associated with compromised DNA damage response mechanisms, and Urofacial syndrome, caused by an impairment of neural cell signaling, are both rare genetic disorders, whose reports in literature are limited. We describe the first case combining both disorders in a specific phenotype. Case presentation We report a case of a 7-year old girl presenting with a complex phenotype characterized by multiple congenital abnormalities and dysmorphic features, microcephaly, short stature, combined immunodeficiency and severe vesicoureteral reflux. Whole Genome Sequencing was performed and a novel ligase IV homozygous missense c.T1312C/p.Y438H mutation was detected, and is believed to be responsible for most of the clinical features of the child, except vesicoureteral reflux which has not been previously described for ligase IV deficiency. However, we observed a second rare damaging (nonsense) homozygous mutation (c.C2125T/p.R709X) in the leucine-rich repeats and immunoglobulin-like domains 2 gene that encodes a protein implicated in neural cell signaling and oncogenesis. Interestingly, this mutation has recently been reported as pathogenic and causing urofacial syndrome, typically displaying vesicoureteral reflux. Thus, this second mutation completes the missing genetic explanation for this intriguing clinical puzzle. We verified that both mutations fit an autosomal recessive inheritance model due to extensive consanguinity. Conclusions We successfully identified a novel ligase IV mutation, causing ligase IV syndrome, and an additional rare leucine-rich repeats and immunoglobulin-like domains 2 gene nonsense mutation, in the context of multiple autosomal recessive conditions due to extensive consanguinity. This work demonstrates the utility of Whole Genome Sequencing data in clinical diagnosis in such cases where the combination of multiple rare phenotypes results in very intricate clinical pictures. It also reports a novel causative mutation and a clinical phenotype, which will help in better defining the essential features of both ligase IV and leucine-rich repeats and immunoglobulin-like domains 2 deficiency syndromes. Electronic supplementary material The online version of this article (doi:10.1186/s12881-016-0346-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Abeer Fadda
- Biomedical Informatics Division, Research Branch, Sidra Medical and Research Center, Doha, Qatar
| | - Fiza Butt
- Hamad Medical Corporation, Doha, Qatar
| | - Sara Tomei
- Division of Translational Medicine, Research Branch, Sidra Medical and Research Center, Doha, Qatar
| | - Sara Deola
- Division of Translational Medicine, Research Branch, Sidra Medical and Research Center, Doha, Qatar
| | - Bernice Lo
- Division of Translational Medicine, Research Branch, Sidra Medical and Research Center, Doha, Qatar
| | - Amal Robay
- Weill Cornell Medicine in Qatar, Doha, Qatar
| | | | | | | | - Marios Kambouris
- Division of Genetics, Department of Pathology, Sidra Medical and Research Center, Doha, Qatar.,Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
| | - Ena Wang
- Division of Translational Medicine, Research Branch, Sidra Medical and Research Center, Doha, Qatar
| | - Francesco M Marincola
- Division of Translational Medicine, Research Branch, Sidra Medical and Research Center, Doha, Qatar
| | - Khalid A Fakhro
- Division of Translational Medicine, Research Branch, Sidra Medical and Research Center, Doha, Qatar.,Weill Cornell Medicine in Qatar, Doha, Qatar
| | - Chiara Cugno
- Division of Translational Medicine, Research Branch, Sidra Medical and Research Center, Doha, Qatar. .,SIDRA Medical and Research Center, Clinical Research Center, Out-Patient Clinic, Al Luqta Street, Education City, North Campus Qatar Foundation, PO Box 26999, Doha, Qatar.
| |
Collapse
|
29
|
Altmann T, Gennery AR. DNA ligase IV syndrome; a review. Orphanet J Rare Dis 2016; 11:137. [PMID: 27717373 PMCID: PMC5055698 DOI: 10.1186/s13023-016-0520-1] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 09/27/2016] [Indexed: 12/22/2022] Open
Abstract
DNA ligase IV deficiency is a rare primary immunodeficiency, LIG4 syndrome, often associated with other systemic features. DNA ligase IV is part of the non-homologous end joining mechanism, required to repair DNA double stranded breaks. Ubiquitously expressed, it is required to prevent mutagenesis and apoptosis, which can result from DNA double strand breakage caused by intracellular events such as DNA replication and meiosis or extracellular events including damage by reactive oxygen species and ionising radiation. Within developing lymphocytes, DNA ligase IV is required to repair programmed DNA double stranded breaks induced during lymphocyte receptor development. Patients with hypomorphic mutations in LIG4 present with a range of phenotypes, from normal to severe combined immunodeficiency. All, however, manifest sensitivity to ionising radiation. Commonly associated features include primordial growth failure with severe microcephaly and a spectrum of learning difficulties, marrow hypoplasia and a predisposition to lymphoid malignancy. Diagnostic investigations include immunophenotyping, and testing for radiosensitivity. Some patients present with microcephaly as a predominant feature, but seemingly normal immunity. Treatment is mainly supportive, although haematopoietic stem cell transplantation has been used in a few cases.
Collapse
Affiliation(s)
- Thomas Altmann
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Andrew R Gennery
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK. .,Great North Children's Hospital, Newcastle upon Tyne, UK.
| |
Collapse
|
30
|
Extremotolerant tardigrade genome and improved radiotolerance of human cultured cells by tardigrade-unique protein. Nat Commun 2016; 7:12808. [PMID: 27649274 PMCID: PMC5034306 DOI: 10.1038/ncomms12808] [Citation(s) in RCA: 224] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2015] [Accepted: 08/03/2016] [Indexed: 12/17/2022] Open
Abstract
Tardigrades, also known as water bears, are small aquatic animals. Some tardigrade species tolerate almost complete dehydration and exhibit extraordinary tolerance to various physical extremes in the dehydrated state. Here we determine a high-quality genome sequence of Ramazzottius varieornatus, one of the most stress-tolerant tardigrade species. Precise gene repertoire analyses reveal the presence of a small proportion (1.2% or less) of putative foreign genes, loss of gene pathways that promote stress damage, expansion of gene families related to ameliorating damage, and evolution and high expression of novel tardigrade-unique proteins. Minor changes in the gene expression profiles during dehydration and rehydration suggest constitutive expression of tolerance-related genes. Using human cultured cells, we demonstrate that a tardigrade-unique DNA-associating protein suppresses X-ray-induced DNA damage by ∼40% and improves radiotolerance. These findings indicate the relevance of tardigrade-unique proteins to tolerability and tardigrades could be a bountiful source of new protection genes and mechanisms. Tardigrades are resistant to extreme environmental conditions including dehydration, radiation and the vacuum of space. Here the authors present a high-quality genome which displays minimal horizontal gene transfer, and identify the unique tardigrade protein Dsup which suppresses DNA damage.
Collapse
|
31
|
Abstract
Severe combined immunodeficiency disorders represent pediatric emergencies due to absence of adaptive immune responses to infections. The conditions result from either intrinsic defects in T-cell development (ie, severe combined immunodeficiency disease [SCID]) or congenital athymia (eg, complete DiGeorge anomaly). Hematopoietic stem cell transplant provides the only clinically approved cure for SCID, although gene therapy research trials are showing significant promise. For greatest survival, patients should undergo transplant before 3.5 months of age and before the onset of infections. Newborn screening programs have yielded successful early identification and treatment of infants with SCID and congenital athymia in the United States.
Collapse
|
32
|
XLF deficiency results in reduced N-nucleotide addition during V(D)J recombination. Blood 2016; 128:650-9. [PMID: 27281794 DOI: 10.1182/blood-2016-02-701029] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 05/31/2016] [Indexed: 12/12/2022] Open
Abstract
Repair of DNA double-strand breaks (DSBs) by the nonhomologous end-joining pathway (NHEJ) is important not only for repair of spontaneous breaks but also for breaks induced in developing lymphocytes during V(D)J (variable [V], diversity [D], and joining [J] genes) recombination of their antigen receptor loci to create a diverse repertoire. Mutations in the NHEJ factor XLF result in extreme sensitivity for ionizing radiation, microcephaly, and growth retardation comparable to mutations in LIG4 and XRCC4, which together form the NHEJ ligation complex. However, the effect on the immune system is variable (mild to severe immunodeficiency) and less prominent than that seen in deficiencies of NHEJ factors ARTEMIS and DNA-dependent protein kinase catalytic subunit, with defects in the hairpin opening step, which is crucial and unique for V(D)J recombination. Therefore, we aimed to study the role of XLF during V(D)J recombination. We obtained clinical data from 9 XLF-deficient patients and performed immune phenotyping and antigen receptor repertoire analysis of immunoglobulin (Ig) and T-cell receptor (TR) rearrangements, using next-generation sequencing in 6 patients. The results were compared with XRCC4 and LIG4 deficiency. Both Ig and TR rearrangements showed a significant decrease in the number of nontemplated (N) nucleotides inserted by terminal deoxynucleotidyl transferase, which resulted in a decrease of 2 to 3 amino acids in the CDR3. Such a reduction in the number of N-nucleotides has a great effect on the junctional diversity, and thereby on the total diversity of the Ig and TR repertoire. This shows that XLF has an important role during V(D)J recombination in creating diversity of the repertoire by stimulating N-nucleotide insertion.
Collapse
|
33
|
Ligase-4 Deficiency Causes Distinctive Immune Abnormalities in Asymptomatic Individuals. J Clin Immunol 2016; 36:341-53. [PMID: 27063650 DOI: 10.1007/s10875-016-0266-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 03/07/2016] [Indexed: 01/01/2023]
Abstract
PURPOSE DNA Ligase 4 (LIG4) is a key factor in the non-homologous end-joining (NHEJ) DNA double-strand break repair pathway needed for V(D)J recombination and the generation of the T cell receptor and immunoglobulin molecules. Defects in LIG4 result in a variable syndrome of growth retardation, pancytopenia, combined immunodeficiency, cellular radiosensitivity, and developmental delay. METHODS We diagnosed a patient with LIG4 syndrome by radiosensitivity testing on peripheral blood cells, and established that two of her four healthy siblings carried the same compound heterozygous LIG4 mutations. An extensive analysis of the immune phenotype, cellular radiosensitivity, telomere length, and T and B cell antigen receptor repertoire was performed in all siblings. RESULTS In the three genotypically affected individuals, variable severities of radiosensitivity, alterations of T and B cell counts with an increased percentage of memory cells, and hypogammaglobulinemia, were noticed. Analysis of T and B cell antigen receptor repertoires demonstrated increased usage of alternative microhomology-mediated end-joining (MHMEJ) repair, leading to diminished N nucleotide addition and shorter CDR3 length. However, overall repertoire diversity was preserved. CONCLUSIONS We demonstrate that LIG4 syndrome presents with high clinical variability even within the same family, and that distinctive immunologic abnormalities may be observed also in yet asymptomatic individuals.
Collapse
|
34
|
Jiang J, Tang W, An Y, Tang M, Wu J, Qin T, Zhao X. Molecular and immunological characterization of DNA ligase IV deficiency. Clin Immunol 2016; 163:75-83. [PMID: 26762768 DOI: 10.1016/j.clim.2015.12.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Revised: 12/29/2015] [Accepted: 12/31/2015] [Indexed: 11/28/2022]
Abstract
DNA ligase IV (LIG4) deficiency is an extremely rare autosomal recessive primary immunodeficiency disease caused by the LIG4 mutation. To date, fewer than 30 cases of patients have been reported worldwide. No reversion mutations have been previously identified in LIG4. This study enrolled seven Chinese patients with LIG4 deficiency who presented with combined immunodeficiency, microcephaly, and growth retardation. One patient (P1) acquired non-Hodgkin lymphoma. Four patients had impaired T cell proliferation function and skewed T cell receptor diversity. Five novel mutations in LIG4 and a potential hotspot mutation (c.833G>T; p.R278L) in the Chinese population were identified. TA cloning analysis of T cells, NK cells, granulocytes, and oral mucosa cells in P6 revealed wild-type clones and clones that contained both maternally and paternally inherited mutations, indicating possible somatic reversion which need further investigation since no functional or protein assays were possible for all the patients died and no cell lines were available.
Collapse
Affiliation(s)
- Jinqiu Jiang
- Division of Immunology, Children's Hospital of Chongqing Medical University, China
| | - Wenjing Tang
- Division of Immunology, Children's Hospital of Chongqing Medical University, China
| | - Yunfei An
- Division of Immunology, Children's Hospital of Chongqing Medical University, China; Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, China; Research Center for Immunologic and Infectious diseases, Children's Hospital of Chongqing Medical University, Chongqing 400014, China.
| | - Maozhi Tang
- Division of Immunology, Children's Hospital of Chongqing Medical University, China
| | - Junfeng Wu
- Division of Immunology, Children's Hospital of Chongqing Medical University, China
| | - Tao Qin
- Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, China
| | - Xiaodong Zhao
- Division of Immunology, Children's Hospital of Chongqing Medical University, China; Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, China; Research Center for Immunologic and Infectious diseases, Children's Hospital of Chongqing Medical University, Chongqing 400014, China.
| |
Collapse
|
35
|
Gatz SA, Salles D, Jacobsen EM, Dörk T, Rausch T, Aydin S, Surowy H, Volcic M, Vogel W, Debatin KM, Stütz AM, Schwarz K, Pannicke U, Hess T, Korbel JO, Schulz AS, Schumacher J, Wiesmüller L. MCM3AP and POMP Mutations Cause a DNA-Repair and DNA-Damage-Signaling Defect in an Immunodeficient Child. Hum Mutat 2015; 37:257-68. [PMID: 26615982 DOI: 10.1002/humu.22939] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2015] [Accepted: 11/17/2015] [Indexed: 01/22/2023]
Abstract
Immunodeficiency patients with DNA repair defects exhibit radiosensitivity and proneness to leukemia/lymphoma formation. Though progress has been made in identifying the underlying mutations, in most patients the genetic basis is unknown. Two de novo mutated candidate genes, MCM3AP encoding germinal center-associated nuclear protein (GANP) and POMP encoding proteasome maturation protein (POMP), were identified by whole-exome sequencing (WES) and confirmed by Sanger sequencing in a child with complex phenotype displaying immunodeficiency, genomic instability, skin changes, and myelodysplasia. GANP was previously described to promote B-cell maturation by nuclear targeting of activation-induced cytidine deaminase (AID) and to control AID-dependent hyperrecombination. POMP is required for 20S proteasome assembly and, thus, for efficient NF-κB signaling. Patient-derived cells were characterized by impaired homologous recombination, moderate radio- and cross-linker sensitivity associated with accumulation of damage, impaired DNA damage-induced NF-κB signaling, and reduced nuclear AID levels. Complementation by wild-type (WT)-GANP normalized DNA repair and WT-POMP rescued defective NF-κB signaling. In conclusion, we identified for the first time mutations in MCM3AP and POMP in an immunodeficiency patient. These mutations lead to cooperative effects on DNA recombination and damage signaling. Digenic/polygenic mutations may constitute a novel genetic basis in immunodeficiency patients with DNA repair defects.
Collapse
Affiliation(s)
- Susanne A Gatz
- Department of Pediatrics and Adolescent Medicine, Ulm University, Ulm, D-89075, Germany
| | - Daniela Salles
- Department of Obstetrics and Gynecology, Ulm University, Ulm, D-89075, Germany
| | - Eva-Maria Jacobsen
- Department of Pediatrics and Adolescent Medicine, Ulm University, Ulm, D-89075, Germany
| | - Thilo Dörk
- Gynecology Research Unit, Hannover Medical School, Hannover, D-30625, Germany
| | - Tobias Rausch
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Heidelberg, D-69117, Germany
| | - Sevtap Aydin
- Department of Obstetrics and Gynecology, Ulm University, Ulm, D-89075, Germany
| | - Harald Surowy
- Department of Human Genetics, Ulm University, Ulm, D-89081, Germany
| | - Meta Volcic
- Department of Obstetrics and Gynecology, Ulm University, Ulm, D-89075, Germany
| | - Walther Vogel
- Department of Human Genetics, Ulm University, Ulm, D-89081, Germany
| | - Klaus-Michael Debatin
- Department of Pediatrics and Adolescent Medicine, Ulm University, Ulm, D-89075, Germany
| | - Adrian M Stütz
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Heidelberg, D-69117, Germany
| | - Klaus Schwarz
- Institute of Transfusion Medicine, Ulm University and Institute for Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Service Baden-Württemberg - Hessen, Ulm, D-89081, Germany
| | - Ulrich Pannicke
- Institute of Transfusion Medicine, Ulm University and Institute for Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Service Baden-Württemberg - Hessen, Ulm, D-89081, Germany
| | - Timo Hess
- Institute of Human Genetics, Biomedical Center, University of Bonn, Bonn, D-53127, Germany
| | - Jan O Korbel
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Heidelberg, D-69117, Germany
| | - Ansgar S Schulz
- Department of Pediatrics and Adolescent Medicine, Ulm University, Ulm, D-89075, Germany
| | - Johannes Schumacher
- Institute of Human Genetics, Biomedical Center, University of Bonn, Bonn, D-53127, Germany
| | - Lisa Wiesmüller
- Department of Obstetrics and Gynecology, Ulm University, Ulm, D-89075, Germany
| |
Collapse
|
36
|
Park J, Welner RS, Chan MY, Troppito L, Staber PB, Tenen DG, Yan CT. The DNA Ligase IV Syndrome R278H Mutation Impairs B Lymphopoiesis via Error-Prone Nonhomologous End-Joining. THE JOURNAL OF IMMUNOLOGY 2015; 196:244-55. [PMID: 26608917 DOI: 10.4049/jimmunol.1403099] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2015] [Accepted: 10/22/2015] [Indexed: 11/19/2022]
Abstract
Hypomorphic mutations in the nonhomologous end-joining (NHEJ) DNA repair protein DNA ligase IV (LIG4) lead to immunodeficiency with varying severity. In this study, using a murine knock-in model, we investigated the mechanisms underlying abnormalities in class switch recombination (CSR) associated with the human homozygous Lig4 R278H mutation. Previously, we found that despite the near absence of Lig4 end-ligation activity and severely reduced mature B cell numbers, Lig4(R278H/R278H) (Lig4(R/R)) mice exhibit only a partial CSR block, producing near normal IgG1 and IgE but substantially reduced IgG3, IgG2b, and IgA serum levels. In this study, to address the cause of these abnormalities, we assayed CSR in Lig4(R/R) B cells generated via preassembled IgH and IgK V region exons (HL). This revealed that Lig4(R278H) protein levels while intact exhibited a higher turnover rate during activation of switching to IgG3 and IgG2b, as well as delays in CSR kinetics associated with defective proliferation during activation of switching to IgG1 and IgE. Activated Lig4(R/R)HL B cells consistently accumulated high frequencies of activation-induced cytidine deaminase-dependent IgH locus chromosomal breaks and translocations and were more prone to apoptosis, effects that appeared to be p53-independent, as p53 deficiency did not markedly influence these events. Importantly, NHEJ instead of alternative end-joining (A-EJ) was revealed as the predominant mechanism catalyzing robust CSR. Defective CSR was linked to failed NHEJ and residual A-EJ access to unrepaired double-strand breaks. These data firmly demonstrate that Lig4(R278H) activity renders NHEJ to be more error-prone, and they predict increased error-prone NHEJ activity and A-EJ suppression as the cause of the defective B lymphopoiesis in Lig4 patients.
Collapse
Affiliation(s)
- Jihye Park
- Department of Pathology, Beth Israel Deaconess Medical Center, Boston, MA 02215; Broad Institute of MIT and Harvard, Cambridge, MA 02142; and
| | - Robert S Welner
- Harvard Stem Cell Institute, Harvard Medical School, Boston, MA 02115
| | - Mei-Yee Chan
- Department of Pathology, Beth Israel Deaconess Medical Center, Boston, MA 02215
| | - Logan Troppito
- Department of Pathology, Beth Israel Deaconess Medical Center, Boston, MA 02215
| | - Philipp B Staber
- Harvard Stem Cell Institute, Harvard Medical School, Boston, MA 02115
| | - Daniel G Tenen
- Harvard Stem Cell Institute, Harvard Medical School, Boston, MA 02115
| | - Catherine T Yan
- Department of Pathology, Beth Israel Deaconess Medical Center, Boston, MA 02215; Broad Institute of MIT and Harvard, Cambridge, MA 02142; and Harvard Stem Cell Institute, Harvard Medical School, Boston, MA 02115
| |
Collapse
|
37
|
Palendira U, Rickinson AB. Primary immunodeficiencies and the control of Epstein-Barr virus infection. Ann N Y Acad Sci 2015; 1356:22-44. [PMID: 26415106 DOI: 10.1111/nyas.12937] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Revised: 08/14/2015] [Accepted: 08/16/2015] [Indexed: 12/23/2022]
Abstract
Human primary immunodeficiency (PID) states, where mutations in single immune system genes predispose individuals to certain infectious agents and not others, are experiments of nature that hold important lessons for the immunologist. The number of genetically defined PIDs is rising rapidly, as is the opportunity to learn from them. Epstein-Barr virus (EBV), a human herpesvirus, has long been of interest because of its complex interaction with the immune system. Thus, it causes both infectious mononucleosis (IM), an immunopathologic disease associated with exaggerated host responses, and at least one malignancy, EBV-positive lymphoproliferative disease, when those responses are impaired. Here, we describe the full range of PIDs currently linked with an increased risk of EBV-associated disease. These provide examples where IM-like immunopathology is fatally exaggerated, and others where responses impaired at the stage of induction, expansion, or effector function predispose to malignancy. Current evidence from this rapidly moving field supports the view that lesions in both natural killer cell and T cell function can lead to EBV pathology.
Collapse
Affiliation(s)
- Umaimainthan Palendira
- Centenary Institute, Newtown, New South Wales, Australia
- Discipline of Medicine, Sydney Medical School, University of Sydney, NSW, Australia
| | - Alan B Rickinson
- Cancer Sciences and Centre for Human Virology, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
38
|
Fischer A, Notarangelo LD, Neven B, Cavazzana M, Puck JM. Severe combined immunodeficiencies and related disorders. Nat Rev Dis Primers 2015; 1:15061. [PMID: 27189259 DOI: 10.1038/nrdp.2015.61] [Citation(s) in RCA: 134] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Severe combined immunodeficiencies (SCIDs) comprise a group of rare, monogenic diseases that are characterized by an early onset and a profound block in the development of T lymphocytes. Given that adaptive immunity is abrogated, patients with SCID are prone to recurrent infections caused by both non-opportunistic and opportunistic pathogens, leading to early death unless immunity can be restored. Several molecular defects causing SCIDs have been identified, along with many other defects causing profound, albeit incomplete, T cell immunodeficiencies; the latter are referred to as atypical SCIDs or combined immunodeficiencies. The pathophysiology of many of these conditions has now been characterized. Early, accurate and precise diagnosis combined with the ongoing implementation of newborn screening have enabled major advances in the care of infants with SCID, including better outcomes of allogeneic haematopoietic stem cell transplantation. Gene therapy is also becoming an effective option. Further advances and a progressive extension of the indications for gene therapy can be expected in the future. The assessment of long-term outcomes of patients with SCID is now a major challenge, with a view to evaluating the quality and sustainability of immune restoration, the risks of sequelae and the ability to relieve the non-haematopoietic syndromic manifestations that accompany some of these conditions.
Collapse
Affiliation(s)
- Alain Fischer
- Paris Descartes - Sorbonne Paris Cité University, Imagine Institute, 75015 Paris, France.,Immunology and Pediatric Hematology Department, Assistance Publique-Hôpitaux de Paris, Paris, France.,INSERM UMR 1163, Paris, France.,Collège de France, Paris, France
| | - Luigi D Notarangelo
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Bénédicte Neven
- Paris Descartes - Sorbonne Paris Cité University, Imagine Institute, 75015 Paris, France.,Immunology and Pediatric Hematology Department, Assistance Publique-Hôpitaux de Paris, Paris, France.,INSERM UMR 1163, Paris, France
| | - Marina Cavazzana
- Paris Descartes - Sorbonne Paris Cité University, Imagine Institute, 75015 Paris, France.,INSERM UMR 1163, Paris, France.,Biotherapy Department, Necker Children's Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France.,Biotherapy Clinical Investigation Center, Groupe Hospitalier Universitaire Ouest, Assistance Publique-Hôpitaux de Paris, INSERM, Paris, France
| | - Jennifer M Puck
- Division of Allergy, Immunology and Blood and Marrow Transplantation, Department of Pediatrics, University of California at San Francisco, San Francisco, California, USA
| |
Collapse
|
39
|
Wiekmeijer AS, Pike-Overzet K, IJspeert H, Brugman MH, Wolvers-Tettero ILM, Lankester AC, Bredius RGM, van Dongen JJM, Fibbe WE, Langerak AW, van der Burg M, Staal FJT. Identification of checkpoints in human T-cell development using severe combined immunodeficiency stem cells. J Allergy Clin Immunol 2015; 137:517-526.e3. [PMID: 26441229 DOI: 10.1016/j.jaci.2015.08.022] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Revised: 08/12/2015] [Accepted: 08/14/2015] [Indexed: 01/10/2023]
Abstract
BACKGROUND Severe combined immunodeficiency (SCID) represents congenital disorders characterized by a deficiency of T cells caused by arrested development in the thymus. Yet the nature of these developmental blocks has remained elusive because of the difficulty of taking thymic biopsy specimens from affected children. OBJECTIVE We sought to identify the stages of arrest in human T-cell development caused by various major types of SCID. METHODS We performed transplantation of SCID CD34(+) bone marrow stem/progenitor cells into an optimized NSG xenograft mouse model, followed by detailed phenotypic and molecular characterization using flow cytometry, immunoglobulin and T-cell receptor spectratyping, and deep sequencing of immunoglobulin heavy chain (IGH) and T-cell receptor δ (TRD) loci. RESULTS Arrests in T-cell development caused by mutations in IL-7 receptor α (IL7RA) and IL-2 receptor γ (IL2RG) were observed at the most immature thymocytes much earlier than expected based on gene expression profiling of human thymocyte subsets and studies with corresponding mouse mutants. T-cell receptor rearrangements were functionally required at the CD4(-)CD8(-)CD7(+)CD5(+) stage given the developmental block and extent of rearrangements in mice transplanted with Artemis-SCID cells. The xenograft model used is not informative for adenosine deaminase-SCID, whereas hypomorphic mutations lead to less severe arrests in development. CONCLUSION Transplanting CD34(+) stem cells from patients with SCID into a xenograft mouse model provides previously unattainable insight into human T-cell development and functionally identifies the arrest in thymic development caused by several SCID mutations.
Collapse
Affiliation(s)
- Anna-Sophia Wiekmeijer
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands
| | - Karin Pike-Overzet
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands
| | - Hanna IJspeert
- Department of Immunology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Martijn H Brugman
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Arjan C Lankester
- Department of Pediatrics, Leiden University Medical Center, Leiden, The Netherlands
| | - Robbert G M Bredius
- Department of Pediatrics, Leiden University Medical Center, Leiden, The Netherlands
| | - Jacques J M van Dongen
- Department of Immunology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Willem E Fibbe
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands
| | - Anton W Langerak
- Department of Immunology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Mirjam van der Burg
- Department of Immunology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Frank J T Staal
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands.
| |
Collapse
|
40
|
Bonilla FA, Khan DA, Ballas ZK, Chinen J, Frank MM, Hsu JT, Keller M, Kobrynski LJ, Komarow HD, Mazer B, Nelson RP, Orange JS, Routes JM, Shearer WT, Sorensen RU, Verbsky JW, Bernstein DI, Blessing-Moore J, Lang D, Nicklas RA, Oppenheimer J, Portnoy JM, Randolph CR, Schuller D, Spector SL, Tilles S, Wallace D. Practice parameter for the diagnosis and management of primary immunodeficiency. J Allergy Clin Immunol 2015; 136:1186-205.e1-78. [PMID: 26371839 DOI: 10.1016/j.jaci.2015.04.049] [Citation(s) in RCA: 450] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Revised: 04/18/2015] [Accepted: 04/23/2015] [Indexed: 02/07/2023]
Abstract
The American Academy of Allergy, Asthma & Immunology (AAAAI) and the American College of Allergy, Asthma & Immunology (ACAAI) have jointly accepted responsibility for establishing the "Practice parameter for the diagnosis and management of primary immunodeficiency." This is a complete and comprehensive document at the current time. The medical environment is a changing environment, and not all recommendations will be appropriate for all patients. Because this document incorporated the efforts of many participants, no single individual, including those who served on the Joint Task Force, is authorized to provide an official AAAAI or ACAAI interpretation of these practice parameters. Any request for information about or an interpretation of these practice parameters by the AAAAI or ACAAI should be directed to the Executive Offices of the AAAAI, the ACAAI, and the Joint Council of Allergy, Asthma & Immunology. These parameters are not designed for use by pharmaceutical companies in drug promotion.
Collapse
|
41
|
Alkhairy OK, Perez-Becker R, Driessen GJ, Abolhassani H, van Montfrans J, Borte S, Choo S, Wang N, Tesselaar K, Fang M, Bienemann K, Boztug K, Daneva A, Mechinaud F, Wiesel T, Becker C, Dückers G, Siepermann K, van Zelm MC, Rezaei N, van der Burg M, Aghamohammadi A, Seidel MG, Niehues T, Hammarström L. Novel mutations in TNFRSF7/CD27: Clinical, immunologic, and genetic characterization of human CD27 deficiency. J Allergy Clin Immunol 2015; 136:703-712.e10. [DOI: 10.1016/j.jaci.2015.02.022] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Revised: 02/04/2015] [Accepted: 02/06/2015] [Indexed: 01/30/2023]
|
42
|
Tamura S, Higuchi K, Tamaki M, Inoue C, Awazawa R, Mitsuki N, Nakazawa Y, Mishima H, Takahashi K, Kondo O, Imai K, Morio T, Ohara O, Ogi T, Furukawa F, Inoue M, Yoshiura KI, Kanazawa N. Novel compound heterozygous DNA ligase IV mutations in an adolescent with a slowly-progressing radiosensitive-severe combined immunodeficiency. Clin Immunol 2015; 160:255-60. [PMID: 26172957 DOI: 10.1016/j.clim.2015.07.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Revised: 07/05/2015] [Accepted: 07/06/2015] [Indexed: 11/18/2022]
Abstract
We herein describe a case of a 17-year-old boy with intractable common warts, short stature, microcephaly and slowly-progressing pancytopenia. Simultaneous quantification of T-cell receptor recombination excision circles (TREC) and immunoglobulin κ-deleting recombination excision circles (KREC) suggested very poor generation of both T-cells and B-cells. By whole exome sequencing, novel compound heterozygous mutations were identified in the patient's DNA ligase IV (LIG4) gene. The diagnosis of LIG4 syndrome was confirmed by delayed DNA double-strand break repair kinetics in γ-irradiated fibroblasts from the patient and their restoration by an introduction of wild-type LIG4. Although the patient received allogeneic hematopoietic stem cell transplantation from his haploidentical mother, he unfortunately expired due to an insufficiently reconstructed immune system. An earlier definitive diagnosis using TREC/KREC quantification and whole exome sequencing would thereby allow earlier intervention, which would be essential for improving long-term survival in similar cases with slowly-progressing LIG4 syndrome masked in adolescents.
Collapse
Affiliation(s)
- Shinobu Tamura
- Department of Hematology and Oncology, Kinan Hospital, Wakayama, Japan
| | - Kohei Higuchi
- Department of Hematology and Oncology, Osaka Medical Center and Research Institute for Maternal and Child Health, Osaka, Japan
| | - Masaharu Tamaki
- Department of Hematology and Oncology, Kinan Hospital, Wakayama, Japan
| | | | - Ryoko Awazawa
- Department of Dermatology, University of the Ryukyus, Okinawa, Japan
| | - Noriko Mitsuki
- Department of Pediatrics, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yuka Nakazawa
- Nagasaki University Research Centre for Genomic Instability and Carcinogenesis, Nagasaki University, Nagasaki, Japan; Department of Genome Repair, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan; Department of Genetics, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan
| | - Hiroyuki Mishima
- Department of Human Genetics, Atomic Bomb Disease Institute, Nagasaki University, Nagasaki, Japan
| | - Kenzo Takahashi
- Department of Dermatology, University of the Ryukyus, Okinawa, Japan
| | - Osamu Kondo
- Department of Hematology and Oncology, Osaka Medical Center and Research Institute for Maternal and Child Health, Osaka, Japan
| | - Kohsuke Imai
- Department of Pediatrics, Tokyo Medical and Dental University, Tokyo, Japan
| | - Tomohiro Morio
- Department of Pediatrics, Tokyo Medical and Dental University, Tokyo, Japan
| | - Osamu Ohara
- Department of Technology Development, Kazusa DNA Research Institute, Kisarazu, Japan
| | - Tomoo Ogi
- Nagasaki University Research Centre for Genomic Instability and Carcinogenesis, Nagasaki University, Nagasaki, Japan; Department of Genome Repair, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan; Department of Genetics, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan
| | - Fukumi Furukawa
- Department of Dermatology, Wakayama Medical University, Wakayama, Japan
| | - Masami Inoue
- Department of Hematology and Oncology, Osaka Medical Center and Research Institute for Maternal and Child Health, Osaka, Japan
| | - Koh-ichiro Yoshiura
- Department of Human Genetics, Atomic Bomb Disease Institute, Nagasaki University, Nagasaki, Japan
| | - Nobuo Kanazawa
- Department of Dermatology, Wakayama Medical University, Wakayama, Japan.
| |
Collapse
|
43
|
Lobachevsky P, Woodbine L, Hsiao KC, Choo S, Fraser C, Gray P, Smith J, Best N, Munforte L, Korneeva E, Martin RF, Jeggo PA, Martin OA. Evaluation of Severe Combined Immunodeficiency and Combined Immunodeficiency Pediatric Patients on the Basis of Cellular Radiosensitivity. J Mol Diagn 2015; 17:560-75. [PMID: 26151233 DOI: 10.1016/j.jmoldx.2015.05.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 04/12/2015] [Accepted: 05/06/2015] [Indexed: 01/12/2023] Open
Abstract
Pediatric patients with severe or nonsevere combined immunodeficiency have increased susceptibility to severe, life-threatening infections and, without hematopoietic stem cell transplantation, may fail to thrive. A subset of these patients have the radiosensitive (RS) phenotype, which may necessitate conditioning before hematopoietic stem cell transplantation, and this conditioning includes radiomimetic drugs, which may significantly affect treatment response. To provide statistical criteria for classifying cellular response to ionizing radiation as the measure of functional RS screening, we analyzed the repair capacity and survival of ex vivo irradiated primary skin fibroblasts from five dysmorphic and/or developmentally delayed pediatric patients with severe combined immunodeficiency and combined immunodeficiency. We developed a mathematical framework for the analysis of γ histone 2A isoform X foci kinetics to quantitate DNA-repair capacity, thus establishing crucial criteria for identifying RS. The results, presented in a diagram showing each patient as a point in a 2D RS map, were in agreement with findings from the assessment of cellular RS by clonogenic survival and from the genetic analysis of factors involved in the nonhomologous end-joining repair pathway. We provide recommendations for incorporating into clinical practice the functional assays and genetic analysis used for establishing RS status before conditioning. This knowledge would enable the selection of the most appropriate treatment regimen, reducing the risk for severe therapy-related adverse effects.
Collapse
Affiliation(s)
- Pavel Lobachevsky
- Molecular Radiation Biology Laboratory, Peter MacCallum Cancer Centre, East Melbourne, Victoria, Australia; The Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Victoria, Australia
| | - Lisa Woodbine
- Sussex Centre for Genome Damage and Stability, University of Sussex-Falmer, Brighton, United Kingdom
| | - Kuang-Chih Hsiao
- Department of Allergy and Immunology, Royal Children's Hospital, Melbourne, Victoria, Australia
| | - Sharon Choo
- Department of Allergy and Immunology, Royal Children's Hospital, Melbourne, Victoria, Australia
| | - Chris Fraser
- Oncology Unit, Children's Health Services, Queensland Health, Herston, Queensland, Australia
| | - Paul Gray
- Department of Immunology and Infectious Diseases, Sydney Children's Hospital, Sydney, New South Wales, Australia
| | - Jai Smith
- Molecular Radiation Biology Laboratory, Peter MacCallum Cancer Centre, East Melbourne, Victoria, Australia; The Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Victoria, Australia
| | - Nickala Best
- Molecular Radiation Biology Laboratory, Peter MacCallum Cancer Centre, East Melbourne, Victoria, Australia
| | - Laura Munforte
- Molecular Radiation Biology Laboratory, Peter MacCallum Cancer Centre, East Melbourne, Victoria, Australia
| | - Elena Korneeva
- Sussex Centre for Genome Damage and Stability, University of Sussex-Falmer, Brighton, United Kingdom
| | - Roger F Martin
- Molecular Radiation Biology Laboratory, Peter MacCallum Cancer Centre, East Melbourne, Victoria, Australia; The Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Victoria, Australia
| | - Penny A Jeggo
- Sussex Centre for Genome Damage and Stability, University of Sussex-Falmer, Brighton, United Kingdom
| | - Olga A Martin
- Molecular Radiation Biology Laboratory, Peter MacCallum Cancer Centre, East Melbourne, Victoria, Australia; The Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Victoria, Australia; Division of Radiation Oncology and Cancer Imaging, Peter MacCallum Cancer Centre, East Melbourne, Victoria, Australia.
| |
Collapse
|
44
|
Cowan MJ, Gennery AR. Radiation-sensitive severe combined immunodeficiency: The arguments for and against conditioning before hematopoietic cell transplantation--what to do? J Allergy Clin Immunol 2015; 136:1178-85. [PMID: 26055221 DOI: 10.1016/j.jaci.2015.04.027] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Revised: 02/01/2015] [Accepted: 04/06/2015] [Indexed: 10/23/2022]
Abstract
Defects in DNA cross-link repair 1C (DCLRE1C), protein kinase DNA activated catalytic polypeptide (PRKDC), ligase 4 (LIG4), NHEJ1, and NBS1 involving the nonhomologous end-joining (NHEJ) DNA repair pathway result in radiation-sensitive severe combined immunodeficiency (SCID). Results of hematopoietic cell transplantation for radiation-sensitive SCID suggest that minimizing exposure to alkylating agents and ionizing radiation is important for optimizing survival and minimizing late effects. However, use of preconditioning with alkylating agents is associated with a greater likelihood of full T- and B-cell reconstitution compared with no conditioning or immunosuppression alone. A reduced-intensity regimen using fludarabine and low-dose cyclophosphamide might be effective for patients with LIG4, NHEJ1, and NBS1 defects, although more data are needed to confirm these findings and characterize late effects. For patients with mutations in DCLRE1C (Artemis-deficient SCID), there is no optimal approach that uses standard dose-alkylating agents without significant late effects. Until nonchemotherapy agents, such as anti-CD45 or anti-CD117, become available, options include minimizing exposure to alkylators, such as single-agent low-dose targeted busulfan, or achieving T-cell reconstitution, followed several years later with a conditioning regimen to restore B-cell immunity. Gene therapy for these disorders will eventually remove the issues of rejection and graft-versus-host disease. Prospective multicenter studies are needed to evaluate these approaches in this rare but highly vulnerable patient population.
Collapse
Affiliation(s)
- Morton J Cowan
- Allergy Immunology and Blood and Marrow Transplant Division, University of California San Francisco Benioff Children's Hospital, San Francisco, Calif.
| | - Andrew R Gennery
- Paediatric Immunology Department, Great North Children's Hospital, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
45
|
Li M, Yu X. The role of poly(ADP-ribosyl)ation in DNA damage response and cancer chemotherapy. Oncogene 2015; 34:3349-56. [PMID: 25220415 PMCID: PMC4362780 DOI: 10.1038/onc.2014.295] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Revised: 07/31/2014] [Accepted: 08/01/2014] [Indexed: 12/12/2022]
Abstract
DNA damage is a deleterious threat, but occurs daily in all types of cells. In response to DNA damage, poly(ADP-ribosyl)ation, a unique post-translational modification, is immediately catalyzed by poly(ADP-ribose) polymerases (PARPs) at DNA lesions, which facilitates DNA damage repair. Recent studies suggest that poly(ADP-ribosyl)ation is one of the first steps of cellular DNA damage response and governs early DNA damage response pathways. Suppression of DNA damage-induced poly(ADP-ribosyl)ation by PARP inhibitors impairs early DNA damage response events. Moreover, PARP inhibitors are emerging as anti-cancer drugs in phase III clinical trials for BRCA-deficient tumors. In this review, we discuss recent findings on poly(ADP-ribosyl)ation in DNA damage response as well as the molecular mechanism by which PARP inhibitors selectively kill tumor cells with BRCA mutations.
Collapse
Affiliation(s)
- Mo Li
- Reproductive Medical Center, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China
- Division of Molecular Medicine and Genetics, Department of Internal Medicine, University of Michigan Medical School, 1150 W. Medical Center Drive, 5560 MSRBII, Ann Arbor, Michigan, 48109, USA
| | - Xiaochun Yu
- Division of Molecular Medicine and Genetics, Department of Internal Medicine, University of Michigan Medical School, 1150 W. Medical Center Drive, 5560 MSRBII, Ann Arbor, Michigan, 48109, USA
| |
Collapse
|
46
|
Rahman SH, Kuehle J, Reimann C, Mlambo T, Alzubi J, Maeder ML, Riedel H, Fisch P, Cantz T, Rudolph C, Mussolino C, Joung JK, Schambach A, Cathomen T. Rescue of DNA-PK Signaling and T-Cell Differentiation by Targeted Genome Editing in a prkdc Deficient iPSC Disease Model. PLoS Genet 2015; 11:e1005239. [PMID: 26000857 PMCID: PMC4441453 DOI: 10.1371/journal.pgen.1005239] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 04/26/2015] [Indexed: 12/22/2022] Open
Abstract
In vitro disease modeling based on induced pluripotent stem cells (iPSCs) provides a powerful system to study cellular pathophysiology, especially in combination with targeted genome editing and protocols to differentiate iPSCs into affected cell types. In this study, we established zinc-finger nuclease-mediated genome editing in primary fibroblasts and iPSCs generated from a mouse model for radiosensitive severe combined immunodeficiency (RS-SCID), a rare disorder characterized by cellular sensitivity to radiation and the absence of lymphocytes due to impaired DNA-dependent protein kinase (DNA-PK) activity. Our results demonstrate that gene editing in RS-SCID fibroblasts rescued DNA-PK dependent signaling to overcome radiosensitivity. Furthermore, in vitro T-cell differentiation from iPSCs was employed to model the stage-specific T-cell maturation block induced by the disease causing mutation. Genetic correction of the RS-SCID iPSCs restored T-lymphocyte maturation, polyclonal V(D)J recombination of the T-cell receptor followed by successful beta-selection. In conclusion, we provide proof that iPSC-based in vitro T-cell differentiation is a valuable paradigm for SCID disease modeling, which can be utilized to investigate disorders of T-cell development and to validate gene therapy strategies for T-cell deficiencies. Moreover, this study emphasizes the significance of designer nucleases as a tool for generating isogenic disease models and their future role in producing autologous, genetically corrected transplants for various clinical applications. Due to the limited availability and lifespan of some primary cells, in vitro disease modeling with induced pluripotent stem cells (iPSCs) offers a valuable complementation to in vivo studies. The goal of our study was to establish an in vitro disease model for severe combined immunodeficiency (SCID), a group of inherited disorders of the immune system characterized by the lack of T-lymphocytes. To this end, we generated iPSCs from fibroblasts of a radiosensitive SCID (RS-SCID) mouse model and established a protocol to recapitulate T-lymphopoiesis from iPSCs in vitro. We used designer nucleases to edit the underlying mutation in prkdc, the gene encoding DNA-PKcs, and demonstrated that genetic correction of the disease locus rescued DNA-PK dependent signaling, restored normal radiosensitivity, and enabled T-cell maturation and polyclonal T-cell receptor recombination. We hence provide proof that the combination of two promising technology platforms, iPSCs and designer nucleases, with a protocol to generate T-cells in vitro, represents a powerful paradigm for SCID disease modeling and the evaluation of therapeutic gene editing strategies. Furthermore, our system provides a basis for further development of iPSC-derived cell products with the potential for various clinical applications, including infusions of in vitro derived autologous T-cells to stabilize patients after hematopoietic stem cell transplantation.
Collapse
Affiliation(s)
- Shamim H. Rahman
- Institute for Cell and Gene Therapy, University Medical Center Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency, University Medical Center Freiburg, Freiburg, Germany
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
| | - Johannes Kuehle
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
| | - Christian Reimann
- Institute for Cell and Gene Therapy, University Medical Center Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency, University Medical Center Freiburg, Freiburg, Germany
| | - Tafadzwa Mlambo
- Institute for Cell and Gene Therapy, University Medical Center Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency, University Medical Center Freiburg, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, Freiburg, Germany
| | - Jamal Alzubi
- Institute for Cell and Gene Therapy, University Medical Center Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency, University Medical Center Freiburg, Freiburg, Germany
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
| | - Morgan L. Maeder
- Molecular Pathology Unit, Massachusetts General Hospital, Charlestown, Massachusetts, United States of America
- Department of Pathology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Heimo Riedel
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
- Department of Biochemistry and Mary Babb Randolph Cancer Center, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, West Virginia, United States of America
| | - Paul Fisch
- Institute of Pathology, University Medical Center Freiburg, Freiburg, Germany
| | - Tobias Cantz
- Translational Hepatology and Stem Cell Biology, REBIRTH cluster of excellence, Hannover Medical School, Hannover, Germany
| | - Cornelia Rudolph
- Institute for Cellular and Molecular Pathology, Hannover Medical School, Hannover, Germany
| | - Claudio Mussolino
- Institute for Cell and Gene Therapy, University Medical Center Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency, University Medical Center Freiburg, Freiburg, Germany
| | - J. Keith Joung
- Molecular Pathology Unit, Massachusetts General Hospital, Charlestown, Massachusetts, United States of America
- Department of Pathology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Axel Schambach
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
- * E-mail: (AS); (TC)
| | - Toni Cathomen
- Institute for Cell and Gene Therapy, University Medical Center Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency, University Medical Center Freiburg, Freiburg, Germany
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
- * E-mail: (AS); (TC)
| |
Collapse
|
47
|
de Bruin C, Mericq V, Andrew SF, van Duyvenvoorde HA, Verkaik NS, Losekoot M, Porollo A, Garcia H, Kuang Y, Hanson D, Clayton P, van Gent DC, Wit JM, Hwa V, Dauber A. An XRCC4 splice mutation associated with severe short stature, gonadal failure, and early-onset metabolic syndrome. J Clin Endocrinol Metab 2015; 100:E789-98. [PMID: 25742519 PMCID: PMC4422886 DOI: 10.1210/jc.2015-1098] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
CONTEXT Severe short stature can be caused by defects in numerous biological processes including defects in IGF-1 signaling, centromere function, cell cycle control, and DNA damage repair. Many syndromic causes of short stature are associated with medical comorbidities including hypogonadism and microcephaly. OBJECTIVE To identify an underlying genetic etiology in two siblings with severe short stature and gonadal failure. DESIGN Clinical phenotyping, genetic analysis, complemented by in vitro functional studies of the candidate gene. SETTING An academic pediatric endocrinology clinic. PATIENTS OR OTHER PARTICIPANTS Two adult siblings (male patient [P1] and female patient 2 [P2]) presented with a history of severe postnatal growth failure (adult heights: P1, -6.8 SD score; P2, -4 SD score), microcephaly, primary gonadal failure, and early-onset metabolic syndrome in late adolescence. In addition, P2 developed a malignant gastrointestinal stromal tumor at age 28. INTERVENTION(S) Single nucleotide polymorphism microarray and exome sequencing. RESULTS Combined microarray analysis and whole exome sequencing of the two affected siblings and one unaffected sister identified a homozygous variant in XRCC4 as the probable candidate variant. Sanger sequencing and mRNA studies revealed a splice variant resulting in an in-frame deletion of 23 amino acids. Primary fibroblasts (P1) showed a DNA damage repair defect. CONCLUSIONS In this study we have identified a novel pathogenic variant in XRCC4, a gene that plays a critical role in non-homologous end-joining DNA repair. This finding expands the spectrum of DNA damage repair syndromes to include XRCC4 deficiency causing severe postnatal growth failure, microcephaly, gonadal failure, metabolic syndrome, and possibly tumor predisposition.
Collapse
Affiliation(s)
- Christiaan de Bruin
- Cincinnati Center for Growth Disorders (C.d.B., S.F.A., V.H., A.D.), Division of Endocrinology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229; Institute of Maternal and Child Research (V.M.), Faculty of Medicine, University of Chile, 226-3 Santiago, Chile; Laboratory for Diagnostic Genome Analysis (H.A.v.D., M.L.), Department of Clinical Genetics, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; Department of Genetics (N.S.V., D.C.v.G.), Erasmus MC, 3015 CE Rotterdam, The Netherlands; Center for Autoimmune Genomics and Etiology (A.P.), Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229; Pediatrics Division (H.G.), Faculty of Medicine, Pontificia Universidad Catolica de Chile Santiago, 340 Santiago, Chile; Division of Developmental Biology (Y.K.), Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229; Institute of Human Development (D.H., P.C.), University of Manchester and Manchester Academic Health Sciences Centre, Manchester M13 9PL, United Kingdom; and Department of Pediatrics (J.M.W.), Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
IJspeert H, Wentink M, van Zessen D, Driessen GJ, Dalm VASH, van Hagen MP, Pico-Knijnenburg I, Simons EJ, van Dongen JJM, Stubbs AP, van der Burg M. Strategies for B-cell receptor repertoire analysis in primary immunodeficiencies: from severe combined immunodeficiency to common variable immunodeficiency. Front Immunol 2015; 6:157. [PMID: 25904919 PMCID: PMC4389565 DOI: 10.3389/fimmu.2015.00157] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Accepted: 03/23/2015] [Indexed: 01/08/2023] Open
Abstract
The antigen receptor repertoires of B- and T-cells form the basis of the adaptive immune response. The repertoires should be sufficiently diverse to recognize all possible pathogens. However, careful selection is needed to prevent responses to self or harmless antigens. Limited antigen receptor repertoire diversity leads to immunodeficiency, whereas unselected or misdirected repertoires can result in autoimmunity. The antigen receptor repertoire harbors information about abnormalities in many immunological disorders. Recent developments in next generation sequencing allow the analysis of the antigen receptor repertoire in much greater detail than ever before. Analyzing the antigen receptor repertoire in patients with mutations in genes responsible for the generation of the antigen receptor repertoire will give new insights into repertoire formation and selection. In this perspective, we describe strategies and considerations for analysis of the naive and antigen-selected B-cell repertoires in primary immunodeficiency patients with a focus on severe combined immunodeficiency and common variable immunodeficiency.
Collapse
Affiliation(s)
- Hanna IJspeert
- Department of Immunology, Erasmus MC, University Medical Center Rotterdam , Rotterdam , Netherlands
| | - Marjolein Wentink
- Department of Immunology, Erasmus MC, University Medical Center Rotterdam , Rotterdam , Netherlands
| | - David van Zessen
- Department of Immunology, Erasmus MC, University Medical Center Rotterdam , Rotterdam , Netherlands ; Department of Bioinformatics, Erasmus MC, University Medical Center Rotterdam , Rotterdam , Netherlands
| | - Gertjan J Driessen
- Department of Pediatrics, Erasmus MC, University Medical Center Rotterdam , Rotterdam , Netherlands
| | - Virgil A S H Dalm
- Department of Immunology, Erasmus MC, University Medical Center Rotterdam , Rotterdam , Netherlands
| | - Martin P van Hagen
- Department of Immunology, Erasmus MC, University Medical Center Rotterdam , Rotterdam , Netherlands
| | - Ingrid Pico-Knijnenburg
- Department of Immunology, Erasmus MC, University Medical Center Rotterdam , Rotterdam , Netherlands
| | - Erik J Simons
- Department of Immunology, Erasmus MC, University Medical Center Rotterdam , Rotterdam , Netherlands
| | - Jacques J M van Dongen
- Department of Immunology, Erasmus MC, University Medical Center Rotterdam , Rotterdam , Netherlands
| | - Andrew P Stubbs
- Department of Bioinformatics, Erasmus MC, University Medical Center Rotterdam , Rotterdam , Netherlands
| | - Mirjam van der Burg
- Department of Immunology, Erasmus MC, University Medical Center Rotterdam , Rotterdam , Netherlands
| |
Collapse
|
49
|
Mutations in the NHEJ component XRCC4 cause primordial dwarfism. Am J Hum Genet 2015; 96:412-24. [PMID: 25728776 DOI: 10.1016/j.ajhg.2015.01.013] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Accepted: 01/16/2015] [Indexed: 11/20/2022] Open
Abstract
Non-homologous end joining (NHEJ) is a key cellular process ensuring genome integrity. Mutations in several components of the NHEJ pathway have been identified, often associated with severe combined immunodeficiency (SCID), consistent with the requirement for NHEJ during V(D)J recombination to ensure diversity of the adaptive immune system. In contrast, we have recently found that biallelic mutations in LIG4 are a common cause of microcephalic primordial dwarfism (MPD), a phenotype characterized by prenatal-onset extreme global growth failure. Here we provide definitive molecular genetic evidence supported by biochemical, cellular, and immunological data for mutations in XRCC4, encoding the obligate binding partner of LIG4, causing MPD. We report the identification of biallelic mutations in XRCC4 in five families. Biochemical and cellular studies demonstrate that these alterations substantially decrease XRCC4 protein levels leading to reduced cellular ligase IV activity. Consequently, NHEJ-dependent repair of ionizing-radiation-induced DNA double-strand breaks is compromised in XRCC4 cells. Similarly, immunoglobulin junctional diversification is impaired in cells. However, immunoglobulin levels are normal, and individuals lack overt signs of immunodeficiency. Additionally, in contrast to individuals with LIG4 mutations, pancytopenia leading to bone marrow failure has not been observed. Hence, alterations that alter different NHEJ proteins give rise to a phenotypic spectrum, from SCID to extreme growth failure, with deficiencies in certain key components of this repair pathway predominantly exhibiting growth deficits, reflecting differential developmental requirements for NHEJ proteins to support growth and immune maturation.
Collapse
|
50
|
Picard C, Moshous D, Fischer A. The Genetic and Molecular Basis of Severe Combined Immunodeficiency. CURRENT PEDIATRICS REPORTS 2014. [DOI: 10.1007/s40124-014-0070-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|