1
|
Takiguchi K, Yokoi K, Murase D, Yokota M, Kawabata K, Takahashi Y, Minami S, Nakamura S, Yoshimori T, Watanabe R, Fujimoto M, Tanemura A. Significant Role of Autophagy in Melanosomal Degradation of Dermal Macrophages: Therapeutic Insight Regarding Hyperpigmentation with Uncertain Etiology. J Invest Dermatol 2025; 145:1229-1233.e6. [PMID: 39332604 DOI: 10.1016/j.jid.2024.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 08/31/2024] [Accepted: 09/05/2024] [Indexed: 09/29/2024]
Affiliation(s)
| | - Kazunori Yokoi
- Department of Dermatology, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Daiki Murase
- Biological Science Research, Kao, Odawara, Japan.
| | | | | | | | - Satoshi Minami
- Department of Genetics, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Shuhei Nakamura
- Department of Biochemistry, Nara Medical University, Kashihara, Japan
| | - Tamotsu Yoshimori
- Department of Genetics, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Rei Watanabe
- Department of Dermatology, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Manabu Fujimoto
- Department of Dermatology, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Atsushi Tanemura
- Department of Dermatology, Graduate School of Medicine, Osaka University, Suita, Japan
| |
Collapse
|
2
|
Lim YW, Quinn R, Bharti K, Ferrer M, Zarkoob H, Song MJ. Development of immunocompetent full thickness skin tissue constructs to model skin fibrosis for high-throughput drug screening. Biofabrication 2024; 17:015033. [PMID: 39622178 PMCID: PMC11638742 DOI: 10.1088/1758-5090/ad998c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 10/30/2024] [Accepted: 12/02/2024] [Indexed: 12/14/2024]
Abstract
The lack of the immune component in most of the engineered skin models remains a challenge to study the interplay between different immune and non-immune cell types of the skin. Immunocompetent humanin vitroskin models offer potential advantages in recapitulatingin vivolike behavior which can serve to accelerate translational research and therapeutics development for skin diseases. Here we describe a three-dimensional human full-thickness skin (FTS) equivalent incorporating polarized M1 and M2 macrophages from human peripheral CD14+monocytes. This macrophage-incorporated FTS model demonstrates discernible immune responses with physiologically relevant cytokine production and macrophage plasticity under homeostatic and lipopolysaccharide stimulation conditions. M2-incorporated FTS recapitulates skin fibrosis phenotypes with transforming growth factor-β1 treatment as reflected by significant collagen deposition and myofibroblast expression, demonstrating a M2 potentiation effect. In conclusion, we successfully biofabricated an immunocompetent FTS with functional macrophages in a high-throughput (HT) amenable format. This model is the first step towards a HT-assay platform to develop new therapeutics for skin diseases.
Collapse
Affiliation(s)
- Yi Wei Lim
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850, United States of America
| | - Russell Quinn
- National Eye Institute, National Institutes of Health, Bethesda, MD 20814, United States of America
| | - Kapil Bharti
- National Eye Institute, National Institutes of Health, Bethesda, MD 20814, United States of America
| | - Marc Ferrer
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850, United States of America
| | - Hoda Zarkoob
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850, United States of America
| | - Min Jae Song
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850, United States of America
| |
Collapse
|
3
|
Lee SH, Sacks DL. Resilience of dermis resident macrophages to inflammatory challenges. Exp Mol Med 2024; 56:2105-2112. [PMID: 39349826 PMCID: PMC11542019 DOI: 10.1038/s12276-024-01313-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/24/2024] [Accepted: 07/04/2024] [Indexed: 10/03/2024] Open
Abstract
The skin serves as a complex barrier organ populated by tissue-resident macrophages (TRMs), which play critical roles in defense, homeostasis, and tissue repair. This review examines the functions of dermis resident TRMs in different inflammatory settings, their embryonic origins, and their long-term self-renewal capabilities. We highlight the M2-like phenotype of dermal TRMs and their specialized functions in perivascular and perineuronal niches. Their interactions with type 2 immune cells, autocrine cytokines such as IL-10, and their phagocytic clearance of apoptotic cells have been explored as mechanisms for M2-like dermal TRM self-maintenance and function. In conclusion, we address the need to bridge murine models with human studies, with the possibility of targeting TRMs to promote skin immunity or restrain cutaneous pathology.
Collapse
Affiliation(s)
- Sang Hun Lee
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - David L Sacks
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
4
|
Di Raimondo C, Lozzi F, Di Domenico PP, Paganini C, Campione E, Galluzzo M, Bianchi L. Blastic Plasmacytoid Dendritic Cell Neoplasm, from a Dermatological Point of View. Int J Mol Sci 2024; 25:7099. [PMID: 39000208 PMCID: PMC11240932 DOI: 10.3390/ijms25137099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/25/2024] [Accepted: 06/26/2024] [Indexed: 07/16/2024] Open
Abstract
Blastic plasmacytoid dendritic cell neoplasm (BPDCN) is an aggressive hematological malignancy derived from the precursors of plasmacytoid dendritic cells. Although disease awareness has increased over time, BPDCN represents a rare disease with an aggressive clinical course and a dismal prognosis. Due to the overlap in clinical and histological features with a large spectrum of inflammatory and neoplastic diseases, BPDCN is difficult to diagnose. Furthermore, given the rarity of the disease, treatment options for BPDCN are limited, sometimes changing by practitioner and hospitals. Treatment options range from conventional chemotherapy to the recently approved biologic agent tagraxofusp and stem cell transplantation. Therefore, a multidisciplinary approach with coordination among dermatologists, pathologists, and hematologists is ultimately imperative to reach the correct diagnosis and management of BPDCN.
Collapse
Affiliation(s)
- Cosimo Di Raimondo
- Dermatology Unit, Fondazione Policlinico Tor Vergata, 00133 Rome, Italy (L.B.)
| | - Flavia Lozzi
- Department of Systems Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy
| | | | - Claudia Paganini
- Department of Systems Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy
| | - Elena Campione
- Dermatology Unit, Fondazione Policlinico Tor Vergata, 00133 Rome, Italy (L.B.)
- Department of Systems Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy
| | - Marco Galluzzo
- Dermatology Unit, Fondazione Policlinico Tor Vergata, 00133 Rome, Italy (L.B.)
- Department of Systems Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy
| | - Luca Bianchi
- Dermatology Unit, Fondazione Policlinico Tor Vergata, 00133 Rome, Italy (L.B.)
- Department of Systems Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy
| |
Collapse
|
5
|
Abel TR, Kosarek NN, Parvizi R, Jarnagin H, Torres GM, Bhandari R, Huang M, Toledo DM, Smith A, Popovich D, Mariani MP, Yang H, Wood T, Garlick J, Pioli PA, Whitfield ML. Single-cell epigenomic dysregulation of Systemic Sclerosis fibroblasts via CREB1/EGR1 axis in self-assembled human skin equivalents. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.22.586316. [PMID: 38585776 PMCID: PMC10996484 DOI: 10.1101/2024.03.22.586316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Systemic sclerosis (SSc) is an autoimmune disease characterized by skin fibrosis, internal organ involvement and vascular dropout. We previously developed and phenotypically characterized an in vitro 3D skin-like tissue model of SSc, and now analyze the transcriptomic (scRNA-seq) and epigenetic (scATAC-seq) characteristics of this model at single-cell resolution. SSc 3D skin-like tissues were fabricated using autologous fibroblasts, macrophages, and plasma from SSc patients or healthy control (HC) donors. SSc tissues displayed increased dermal thickness and contractility, as well as increased α-SMA staining. Single-cell transcriptomic and epigenomic analyses identified keratinocytes, macrophages, and five populations of fibroblasts (labeled FB1 - 5). Notably, FB1 APOE-expressing fibroblasts were 12-fold enriched in SSc tissues and were characterized by high EGR1 motif accessibility. Pseudotime analysis suggests that FB1 fibroblasts differentiate from a TGF-β1-responsive fibroblast population and ligand-receptor analysis indicates that the FB1 fibroblasts are active in macrophage crosstalk via soluble ligands including FGF2 and APP. These findings provide characterization of the 3D skin-like model at single cell resolution and establish that it recapitulates subsets of fibroblasts and macrophage phenotypes observed in skin biopsies.
Collapse
|
6
|
Huang L, Yang S, Yu X, Fang F, Zhu L, Wang L, Zhang X, Yang C, Qian Q, Zhu T. Association of different cell types and inflammation in early acne vulgaris. Front Immunol 2024; 15:1275269. [PMID: 38357543 PMCID: PMC10864487 DOI: 10.3389/fimmu.2024.1275269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 01/17/2024] [Indexed: 02/16/2024] Open
Abstract
Acne vulgaris, one of the most common skin diseases, is a chronic cutaneous inflammation of the upper pilosebaceous unit (PSU) with complex pathogenesis. Inflammation plays a central role in the pathogenesis of acne vulgaris. During the inflammatory process, the innate and adaptive immune systems are coordinately activated to induce immune responses. Understanding the infiltration and cytokine secretion of differential cells in acne lesions, especially in the early stages of inflammation, will provide an insight into the pathogenesis of acne. The purpose of this review is to synthesize the association of different cell types with inflammation in early acne vulgaris and provide a comprehensive understanding of skin inflammation and immune responses.
Collapse
Affiliation(s)
- Lei Huang
- Department of Dermatology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Shuyun Yang
- Department of Dermatology, The People’s Hospital of Baoshan, Baoshan, Yunnan, China
| | - Xiuqin Yu
- Department of Dermatology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Fumin Fang
- Department of Dermatology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Liping Zhu
- Department of Dermatology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Lu Wang
- Department of Dermatology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Xiaoping Zhang
- Department of Dermatology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Changzhi Yang
- Department of Dermatology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Qihong Qian
- Department of Dermatology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Tingting Zhu
- Department of Dermatology, The First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
7
|
Hölken JM, Friedrich K, Merkel M, Blasius N, Engels U, Buhl T, Mewes KR, Vierkotten L, Teusch NE. A human 3D immune competent full-thickness skin model mimicking dermal dendritic cell activation. Front Immunol 2023; 14:1276151. [PMID: 38022577 PMCID: PMC10657825 DOI: 10.3389/fimmu.2023.1276151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 10/12/2023] [Indexed: 12/01/2023] Open
Abstract
We have integrated dermal dendritic cell surrogates originally generated from the cell line THP-1 as central mediators of the immune reaction in a human full-thickness skin model. Accordingly, sensitizer treatment of THP-1-derived CD14-, CD11c+ immature dendritic cells (iDCs) resulted in the phosphorylation of p38 MAPK in the presence of 1-chloro-2,4-dinitrobenzene (DNCB) (2.6-fold) as well as in degradation of the inhibitor protein kappa B alpha (IκBα) upon incubation with NiSO4 (1.6-fold). Furthermore, NiSO4 led to an increase in mRNA levels of IL-6 (2.4-fold), TNF-α (2-fold) and of IL-8 (15-fold). These results were confirmed on the protein level, with even stronger effects on cytokine release in the presence of NiSO4: Cytokine secretion was significantly increased for IL-8 (147-fold), IL-6 (11.8-fold) and IL-1β (28.8-fold). Notably, DNCB treatment revealed an increase for IL-8 (28.6-fold) and IL-1β (5.6-fold). Importantly, NiSO4 treatment of isolated iDCs as well as of iDCs integrated as dermal dendritic cell surrogates into our full-thickness skin model (SM) induced the upregulation of the adhesion molecule clusters of differentiation (CD)54 (iDCs: 1.2-fold; SM: 1.3-fold) and the co-stimulatory molecule and DC maturation marker CD86 (iDCs ~1.4-fold; SM:~1.5-fold) surface marker expression. Noteworthy, the expression of CD54 and CD86 could be suppressed by dexamethasone treatment on isolated iDCs (CD54: 1.3-fold; CD86: 2.1-fold) as well as on the tissue-integrated iDCs (CD54: 1.4-fold; CD86: 1.6-fold). In conclusion, we were able to integrate THP-1-derived iDCs as functional dermal dendritic cell surrogates allowing the qualitative identification of potential sensitizers on the one hand, and drug candidates that potentially suppress sensitization on the other hand in a 3D human skin model corresponding to the 3R principles ("replace", "reduce" and "refine").
Collapse
Affiliation(s)
- Johanna Maria Hölken
- Institute of Pharmaceutical Biology and Biotechnology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Katja Friedrich
- Institute of Pharmaceutical Biology and Biotechnology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Marion Merkel
- Alternative Methods and Tissue Engineering, Henkel AG & Co. KGaA, Düsseldorf, Germany
| | - Nelli Blasius
- Alternative Methods and Tissue Engineering, Henkel AG & Co. KGaA, Düsseldorf, Germany
| | - Ursula Engels
- Alternative Methods and Tissue Engineering, Henkel AG & Co. KGaA, Düsseldorf, Germany
| | - Timo Buhl
- Department of Dermatology, Venereology and Allergology, University Medical Center Göttingen, Göttingen, Germany
| | - Karsten Rüdiger Mewes
- Alternative Methods and Tissue Engineering, Henkel AG & Co. KGaA, Düsseldorf, Germany
| | - Lars Vierkotten
- Alternative Methods and Tissue Engineering, Henkel AG & Co. KGaA, Düsseldorf, Germany
| | - Nicole Elisabeth Teusch
- Institute of Pharmaceutical Biology and Biotechnology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
8
|
Reali E, Ferrari D. From the Skin to Distant Sites: T Cells in Psoriatic Disease. Int J Mol Sci 2023; 24:15707. [PMID: 37958689 PMCID: PMC10648543 DOI: 10.3390/ijms242115707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 10/23/2023] [Accepted: 10/25/2023] [Indexed: 11/15/2023] Open
Abstract
Human skin has long been known as a protective organ, acting as a mechanical barrier towards the external environment. More recent is the acquisition that in addition to this fundamental role, the complex architecture of the skin hosts a variety of immune and non-immune cells playing preeminent roles in immunological processes aimed at blocking infections, tumor progression and migration, and elimination of xenobiotics. On the other hand, dysregulated or excessive immunological response into the skin leads to autoimmune reactions culminating in a variety of skin pathological manifestations. Among them is psoriasis, a multifactorial, immune-mediated disease with a strong genetic basis. Psoriasis affects 2-3% of the population; it is associated with cardiovascular comorbidities, and in up to 30% of the cases, with psoriatic arthritis. The pathogenesis of psoriasis is due to the complex interplay between the genetic background of the patient, environmental factors, and both innate and adaptive responses. Moreover, an autoimmune component and the comprehension of the mechanisms linking chronic skin inflammation with systemic and joint manifestations in psoriatic patients is still a major challenge. The understanding of these mechanisms may offer a valuable chance to find targetable molecules to treat the disease and prevent its progression to severe systemic conditions.
Collapse
Affiliation(s)
- Eva Reali
- Department of Translational Medicine, University of Ferrara, 44100 Ferrara, Italy
| | - Davide Ferrari
- Department of Life Science and Biotechnology, University of Ferrara, 44100 Ferrara, Italy
| |
Collapse
|
9
|
Álvarez B, Revilla C, Poderoso T, Ezquerra A, Domínguez J. Porcine Macrophage Markers and Populations: An Update. Cells 2023; 12:2103. [PMID: 37626913 PMCID: PMC10453229 DOI: 10.3390/cells12162103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/04/2023] [Accepted: 08/17/2023] [Indexed: 08/27/2023] Open
Abstract
Besides its importance as a livestock species, pig is increasingly being used as an animal model for biomedical research. Macrophages play critical roles in immunity to pathogens, tissue development, homeostasis and tissue repair. These cells are also primary targets for replication of viruses such as African swine fever virus, classical swine fever virus, and porcine respiratory and reproductive syndrome virus, which can cause huge economic losses to the pig industry. In this article, we review the current status of knowledge on porcine macrophages, starting by reviewing the markers available for their phenotypical characterization and following with the characteristics of the main macrophage populations described in different organs, as well as the effect of polarization conditions on their phenotype and function. We will also review available cell lines suitable for studies on the biology of porcine macrophages and their interaction with pathogens.
Collapse
Affiliation(s)
| | | | | | - Angel Ezquerra
- Departamento de Biotecnología, CSIC INIA, Ctra. De La Coruña, km7.5, 28040 Madrid, Spain; (B.Á.); (C.R.); (T.P.); (J.D.)
| | | |
Collapse
|
10
|
Beaujean M, Uijen RF, Langereis JD, Boccara D, Dam D, Soria A, Veldhuis G, Adam L, Bonduelle O, van der Wel NN, Luirink J, Pedruzzi E, Wissink J, de Jonge MI, Combadière B. The immunological effects of intradermal particle-based vaccine delivery using a novel microinjection needle studied in a human skin explant model. Vaccine 2023; 41:2270-2279. [PMID: 36870875 DOI: 10.1016/j.vaccine.2023.02.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 01/27/2023] [Accepted: 02/13/2023] [Indexed: 03/06/2023]
Abstract
For intradermal (ID) immunisation, novel needle-based delivery systems have been proposed as a better alternative to the Mantoux method. However, the penetration depth of needles in the human skin and its effect on immune cells residing in the different layers of the skin has not been analyzed. A novel and user-friendly silicon microinjection needle (Bella-muTM) has been developed, which allows for a perpendicular injection due to its short needle length (1.4-1.8 mm) and ultrashort bevel. We aimed to characterize the performance of this microinjection needle in the context of the delivery of a particle-based outer membrane vesicle (OMV) vaccine using an ex vivo human skin explant model. We compared the needles of 1.4 and 1.8 mm with the conventional Mantoux method to investigate the depth of vaccine injection and the capacity of the skin antigen-presenting cell (APC) to phagocytose the OMVs. The 1.4 mm needle deposited the antigen closer to the epidermis than the 1.8 mm needle or the Mantoux method. Consequently, activation of epidermal Langerhans cells was significantly higher as determined by dendrite shortening. We found that five different subsets of dermal APCs are able to phagocytose the OMV vaccine, irrespective of the device or injection method. ID delivery using the 1.4 mm needle of a OMV-based vaccine allowed epidermal and dermal APC targeting, with superior activation of Langerhans cells. This study indicates that the use of a microinjection needle improves the delivery of vaccines in the human skin.
Collapse
Affiliation(s)
- Manon Beaujean
- Sorbonne Université, Inserm U1135, Centre d'Immunologie et des Maladies Infectieuses (Cimi), Paris, France
| | - Rienke F Uijen
- Laboratory of Medical Immunology, Radboud Center for Infectious Diseases, Radboud Institute for Molecular Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Jeroen D Langereis
- Laboratory of Medical Immunology, Radboud Center for Infectious Diseases, Radboud Institute for Molecular Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - David Boccara
- Sorbonne Université, Inserm U1135, Centre d'Immunologie et des Maladies Infectieuses (Cimi), Paris, France; Hôpital Saint Louis, Reconstructive and Cosmetic and Burn, Paris, France
| | - Denise Dam
- U-Needle B.V., Enschede, the Netherlands
| | - Angèle Soria
- Sorbonne Université, Inserm U1135, Centre d'Immunologie et des Maladies Infectieuses (Cimi), Paris, France; Service de Dermatologie et d'Allergologie, Hôpital Tenon, Paris HUEP, APHP, Paris, France
| | | | - Lucille Adam
- Sorbonne Université, Inserm U1135, Centre d'Immunologie et des Maladies Infectieuses (Cimi), Paris, France
| | - Olivia Bonduelle
- Sorbonne Université, Inserm U1135, Centre d'Immunologie et des Maladies Infectieuses (Cimi), Paris, France
| | - Nicole N van der Wel
- Department of Medical Biology, Electron Microscopy Center Amsterdam, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Joen Luirink
- Department of Molecular Microbiology, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit, De Boelelaan, 1085, 1081 HV Amsterdam, the Netherlands
| | - Eric Pedruzzi
- Sorbonne Université, Inserm U1135, Centre d'Immunologie et des Maladies Infectieuses (Cimi), Paris, France
| | | | - Marien I de Jonge
- Laboratory of Medical Immunology, Radboud Center for Infectious Diseases, Radboud Institute for Molecular Sciences, Radboud University Medical Center, Nijmegen, the Netherlands.
| | - Behazine Combadière
- Sorbonne Université, Inserm U1135, Centre d'Immunologie et des Maladies Infectieuses (Cimi), Paris, France
| |
Collapse
|
11
|
St John AL, Rathore APS, Ginhoux F. New perspectives on the origins and heterogeneity of mast cells. Nat Rev Immunol 2023; 23:55-68. [PMID: 35610312 DOI: 10.1038/s41577-022-00731-2] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/25/2022] [Indexed: 01/06/2023]
Abstract
Mast cells are immune cells of the haematopoietic lineage that are now thought to have multifaceted functions during homeostasis and in various disease states. Furthermore, while mast cells have been known for a long time to contribute to allergic disease in adults, recent studies, mainly in mice, have highlighted their early origins during fetal development and potential for immune functions, including allergic responses, in early life. Our understanding of the imprinting of mast cells by particular tissues of residence and their potential for regulatory interactions with organ systems such as the peripheral immune, nervous and vascular systems is also rapidly evolving. Here, we discuss the origins of mast cells and their diverse and plastic phenotypes that are influenced by tissue residence. We explore how divergent phenotypes and functions might result from both their hard-wired 'nature' defined by their ontogeny and the 'nurture' they receive within specialized tissue microenvironments.
Collapse
Affiliation(s)
- Ashley L St John
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore.
- Department of Pathology, Duke University Medical Center, Durham, NC, USA.
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
- SingHealth Duke-NUS Global Health Institute, Singapore, Singapore.
| | - Abhay P S Rathore
- Department of Pathology, Duke University Medical Center, Durham, NC, USA
| | - Florent Ginhoux
- Singapore Immunology Network, A*STAR, Singapore, Singapore.
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Translational Immunology Institute, SingHealth Duke-NUS Academic Medical Centre, Singapore, Singapore.
| |
Collapse
|
12
|
Yu J, Zhao Q, Wang X, Zhou H, Hu J, Gu L, Hu Y, Zeng F, Zhao F, Yue C, Zhou P, Li G, Li Y, Wu W, Zhou Y, Li J. Pathogenesis, multi-omics research, and clinical treatment of psoriasis. J Autoimmun 2022; 133:102916. [PMID: 36209691 DOI: 10.1016/j.jaut.2022.102916] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 09/08/2022] [Accepted: 09/12/2022] [Indexed: 11/07/2022]
Abstract
Psoriasis is a common inflammatory skin disease involving interactions between keratinocytes and immune cells that significantly affects the quality of life. It is characterized by hyperproliferation and abnormal differentiation of keratinocytes and excessive infiltration of immune cells in the dermis and epidermis. The immune mechanism underlying this disease has been elucidated in the past few years. Research shows that psoriasis is regulated by the complex interactions among immune cells, such as keratinocytes, dendritic cells, T lymphocytes, neutrophils, macrophages, natural killer cells, mast cells, and other immune cells. An increasing number of signaling pathways have been found to be involved in the pathogenesis of psoriasis, which has prompted the search for new treatment targets. In the past decades, studies on the pathogenesis of psoriasis have focused on the development of targeted and highly effective therapies. In this review, we have discussed the relationship between various types of immune cells and psoriasis and summarized the major signaling pathways involved in the pathogenesis of psoriasis, including the PI3K/AKT/mTOR, JAK-STAT, JNK, and WNT pathways. In addition, we have discussed the results of the latest omics research on psoriasis and the epigenetics of the disease, which provide insights regarding its pathogenesis and therapeutic prospects; we have also summarized its treatment strategies and observations of clinical trials. In this paper, the various aspects of psoriasis are described in detail, and the limitations of the current treatment methods are emphasized. It is necessary to improve and innovate treatment methods from the molecular level of pathogenesis, and further provide new ideas for the treatment and research of psoriasis.
Collapse
Affiliation(s)
- Jiadong Yu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, and Collaborative Innovation Center for Biotherapy, 1 Keyuan 4th Road, Gaopeng Street, High Technological Development Zone, Chengdu, Sichuan, 610041, China
| | - Qixiang Zhao
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, and Collaborative Innovation Center for Biotherapy, 1 Keyuan 4th Road, Gaopeng Street, High Technological Development Zone, Chengdu, Sichuan, 610041, China
| | - Xiaoyan Wang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, and Collaborative Innovation Center for Biotherapy, 1 Keyuan 4th Road, Gaopeng Street, High Technological Development Zone, Chengdu, Sichuan, 610041, China
| | - Hong Zhou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, and Collaborative Innovation Center for Biotherapy, 1 Keyuan 4th Road, Gaopeng Street, High Technological Development Zone, Chengdu, Sichuan, 610041, China
| | - Jing Hu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, and Collaborative Innovation Center for Biotherapy, 1 Keyuan 4th Road, Gaopeng Street, High Technological Development Zone, Chengdu, Sichuan, 610041, China
| | - Linna Gu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, and Collaborative Innovation Center for Biotherapy, 1 Keyuan 4th Road, Gaopeng Street, High Technological Development Zone, Chengdu, Sichuan, 610041, China
| | - Yawen Hu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, and Collaborative Innovation Center for Biotherapy, 1 Keyuan 4th Road, Gaopeng Street, High Technological Development Zone, Chengdu, Sichuan, 610041, China
| | - Fanlian Zeng
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, and Collaborative Innovation Center for Biotherapy, 1 Keyuan 4th Road, Gaopeng Street, High Technological Development Zone, Chengdu, Sichuan, 610041, China
| | - Fulei Zhao
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, and Collaborative Innovation Center for Biotherapy, 1 Keyuan 4th Road, Gaopeng Street, High Technological Development Zone, Chengdu, Sichuan, 610041, China
| | - Chengcheng Yue
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, and Collaborative Innovation Center for Biotherapy, 1 Keyuan 4th Road, Gaopeng Street, High Technological Development Zone, Chengdu, Sichuan, 610041, China
| | - Pei Zhou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, and Collaborative Innovation Center for Biotherapy, 1 Keyuan 4th Road, Gaopeng Street, High Technological Development Zone, Chengdu, Sichuan, 610041, China
| | - Guolin Li
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, and Collaborative Innovation Center for Biotherapy, 1 Keyuan 4th Road, Gaopeng Street, High Technological Development Zone, Chengdu, Sichuan, 610041, China
| | - Ya Li
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, and Collaborative Innovation Center for Biotherapy, 1 Keyuan 4th Road, Gaopeng Street, High Technological Development Zone, Chengdu, Sichuan, 610041, China
| | - Wenling Wu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, and Collaborative Innovation Center for Biotherapy, 1 Keyuan 4th Road, Gaopeng Street, High Technological Development Zone, Chengdu, Sichuan, 610041, China
| | - Yifan Zhou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, and Collaborative Innovation Center for Biotherapy, 1 Keyuan 4th Road, Gaopeng Street, High Technological Development Zone, Chengdu, Sichuan, 610041, China
| | - Jiong Li
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, and Collaborative Innovation Center for Biotherapy, 1 Keyuan 4th Road, Gaopeng Street, High Technological Development Zone, Chengdu, Sichuan, 610041, China.
| |
Collapse
|
13
|
Neuwirth T, Knapp K, Stary G. (Not) Home alone: Antigen presenting cell - T Cell communication in barrier tissues. Front Immunol 2022; 13:984356. [PMID: 36248804 PMCID: PMC9556809 DOI: 10.3389/fimmu.2022.984356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 09/13/2022] [Indexed: 11/30/2022] Open
Abstract
Priming of T cells by antigen presenting cells (APCs) is essential for T cell fate decisions, enabling T cells to migrate to specific tissues to exert their effector functions. Previously, these interactions were mainly explored using blood-derived cells or animal models. With great advances in single cell RNA-sequencing techniques enabling analysis of tissue-derived cells, it has become clear that subsets of APCs are responsible for priming and modulating heterogeneous T cell effector responses in different tissues. This composition of APCs and T cells in tissues is essential for maintaining homeostasis and is known to be skewed in infection and inflammation, leading to pathological T cell responses. This review highlights the commonalities and differences of T cell priming and subsequent effector function in multiple barrier tissues such as the skin, intestine and female reproductive tract. Further, we provide an overview of how this process is altered during tissue-specific infections which are known to cause chronic inflammation and how this knowledge could be harnessed to modify T cell responses in barrier tissue.
Collapse
Affiliation(s)
- Teresa Neuwirth
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Katja Knapp
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Georg Stary
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria
| |
Collapse
|
14
|
Martinek J, Lin J, Kim KI, Wang VG, Wu TC, Chiorazzi M, Boruchov H, Gulati A, Seeniraj S, Sun L, Marches F, Robson P, Rongvaux A, Flavell RA, George J, Chuang JH, Banchereau J, Palucka K. Transcriptional profiling of macrophages in situ in metastatic melanoma reveals localization-dependent phenotypes and function. Cell Rep Med 2022; 3:100621. [PMID: 35584631 PMCID: PMC9133468 DOI: 10.1016/j.xcrm.2022.100621] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 11/29/2021] [Accepted: 04/04/2022] [Indexed: 02/01/2023]
Abstract
Modulation of immune function at the tumor site could improve patient outcomes. Here, we analyze patient samples of metastatic melanoma, a tumor responsive to T cell-based therapies, and find that tumor-infiltrating T cells are primarily juxtaposed to CD14+ monocytes/macrophages rather than melanoma cells. Using immunofluorescence-guided laser capture microdissection, we analyze transcriptomes of CD3+ T cells, CD14 + monocytes/macrophages, and melanoma cells in non-dissociated tissue. Stromal CD14+ cells display a specific transcriptional signature distinct from CD14+ cells within tumor nests. This signature contains LY75, a gene linked with antigen capture and regulation of tolerance and immunity in dendritic cells (DCs). When applied to TCGA cohorts, this gene set can distinguish patients with significantly prolonged survival in metastatic cutaneous melanoma and other cancers. Thus, the stromal CD14+ cell signature represents a candidate biomarker and suggests that reprogramming of stromal macrophages to acquire DC function may offer a therapeutic opportunity for metastatic cancers.
Collapse
Affiliation(s)
- Jan Martinek
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | - Jianan Lin
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | - Kyung In Kim
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | - Victor G Wang
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA; Department of Genetics and Genome Sciences, UConn Health, Farmington, CT, USA
| | - Te-Chia Wu
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | - Michael Chiorazzi
- Department of Immunobiology, Yale University School of Medicine, Howard Hughes Medical Institute, New Haven, CT, USA
| | - Hannah Boruchov
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | - Ananya Gulati
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | | | - Lili Sun
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | | | - Paul Robson
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA; Department of Genetics and Genome Sciences, UConn Health, Farmington, CT, USA
| | - Anthony Rongvaux
- Fred Hutchinson Cancer Research Center, Program in Immunology, Seattle, WA, USA
| | - Richard A Flavell
- Department of Immunobiology, Yale University School of Medicine, Howard Hughes Medical Institute, New Haven, CT, USA
| | - Joshy George
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | - Jeffrey H Chuang
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | | | - Karolina Palucka
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA; Department of Genetics and Genome Sciences, UConn Health, Farmington, CT, USA.
| |
Collapse
|
15
|
Pazos MD, Hu Y, Elani Y, Browning KL, Jiang N, Yetisen AK. Tattoo Inks for Optical Biosensing in Interstitial Fluid. Adv Healthc Mater 2021; 10:e2101238. [PMID: 34510804 DOI: 10.1002/adhm.202101238] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 08/20/2021] [Indexed: 12/11/2022]
Abstract
The persistence of traditional tattoo inks presents an advantage for continuous and long-term health monitoring in point of care devices. The replacement of tattoo pigments with optical biosensors aims a promising alternative for monitoring blood biomarkers. Tattoo inks functionalization enables the control of interstitial biomarkers with correlated concentrations in plasma, to diagnose diseases, evaluate progression, and prevent complications associated with physio pathological disorders or medication mismatches. The specific biomarkers in interstitial fluid provide a new source of information, especially for skin diseases. The study of tattoo inks displays insufficient regulation in their composition, a lack of reports of the related complications, and a need for further studies on their degradation kinetics. This review focuses on tattoo optical biosensors for monitoring dermal interstitial biomarkers and discusses the clinical advantages and main challenges for in vivo implantation. Tattoo functionalization provides a minimally invasive, reversible, biocompatible, real-time sensing with long-term permanence and multiplexing capabilities for the control, diagnosis, and prevention of illness; it enables self-controlling management by the patient, but also the possibility of sending the records to the doctor.
Collapse
Affiliation(s)
- Martalu D Pazos
- Department of Chemical Engineering, South Kensington Campus, Imperial College London, London, SW7 2AZ, UK
- Leo Foundation Center for Cutaneous Drug Delivery, Department of Pharmacy, Copenhagen University, Copenhagen, 2100, Denmark
| | - Yubing Hu
- Department of Chemical Engineering, South Kensington Campus, Imperial College London, London, SW7 2AZ, UK
| | - Yuval Elani
- Department of Chemical Engineering, South Kensington Campus, Imperial College London, London, SW7 2AZ, UK
| | - Kathryn L Browning
- Leo Foundation Center for Cutaneous Drug Delivery, Department of Pharmacy, Copenhagen University, Copenhagen, 2100, Denmark
| | - Nan Jiang
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Ali K Yetisen
- Department of Chemical Engineering, South Kensington Campus, Imperial College London, London, SW7 2AZ, UK
| |
Collapse
|
16
|
Eliasse Y, Leveque E, Garidou L, Battut L, McKenzie B, Nocera T, Redoules D, Espinosa E. IL-17 + Mast Cell/T Helper Cell Axis in the Early Stages of Acne. Front Immunol 2021; 12:740540. [PMID: 34650562 PMCID: PMC8506309 DOI: 10.3389/fimmu.2021.740540] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 09/02/2021] [Indexed: 12/19/2022] Open
Abstract
Acne is a multifactorial disease driven by physiological changes occurring during puberty in the pilosebaceous unit (PSU) that leads to sebum overproduction and a dysbiosis involving notably Cutibacterium acnes. These changes in the PSU microenvironment lead to a shift from a homeostatic to an inflammatory state. Indeed, immunohistochemical analyses have revealed that inflammation and lymphocyte infiltration can be detected even in the infraclinical acneic stages, highlighting the importance of the early stages of the disease. In this study, we utilized a robust multi-pronged approach that included flow cytometry, confocal microscopy, and bioinformatics to comprehensively characterize the evolution of the infiltrating and resident immune cell populations in acneic lesions, beginning in the early stages of their development. Using a discovery cohort of 15 patients, we demonstrated that the composition of immune cell infiltrate is highly dynamic in nature, with the relative abundance of different cell types changing significantly as a function of clinical lesion stage. Within the stages examined, we identified a large population of CD69+ CD4+ T cells, several populations of activated antigen presenting cells, and activated mast cells producing IL-17. IL-17+ mast cells were preferentially located in CD4+ T cell rich areas and we showed that activated CD4+ T cells license mast cells to produce IL-17. Our study reveals that mast cells are the main IL-17 producers in the early stage of acne, underlying the importance of targeting the IL-17+ mast cell/T helper cell axis in therapeutic approaches.
Collapse
Affiliation(s)
- Yoan Eliasse
- Inserm, U1037, Centre de Recherche en Cancérologie de Toulouse (CRCT), Toulouse, France.,Université de Toulouse, Université Paul Sabatier, Toulouse, France
| | - Edouard Leveque
- Inserm, U1037, Centre de Recherche en Cancérologie de Toulouse (CRCT), Toulouse, France.,Université de Toulouse, Université Paul Sabatier, Toulouse, France
| | - Lucile Garidou
- Department of Pharmacology, Pierre Fabre Dermo-Cosmétique, Toulouse, France
| | - Louise Battut
- Inserm, U1037, Centre de Recherche en Cancérologie de Toulouse (CRCT), Toulouse, France.,Université de Toulouse, Université Paul Sabatier, Toulouse, France
| | - Brienne McKenzie
- Inserm, U1037, Centre de Recherche en Cancérologie de Toulouse (CRCT), Toulouse, France.,Université de Toulouse, Université Paul Sabatier, Toulouse, France
| | - Thérèse Nocera
- Clinical Evaluation Center, Pierre Fabre Dermo-Cosmétique, Toulouse, France.,Dermatology Department, University Hospital Larrey, Toulouse, France
| | - Daniel Redoules
- Department of Pharmacology, Pierre Fabre Dermo-Cosmétique, Toulouse, France
| | - Eric Espinosa
- Inserm, U1037, Centre de Recherche en Cancérologie de Toulouse (CRCT), Toulouse, France.,Université de Toulouse, Université Paul Sabatier, Toulouse, France
| |
Collapse
|
17
|
Transglutaminase 2 moderates the expansion of mouse abdominal aortic aneurysms. JVS Vasc Sci 2021; 2:95-109. [PMID: 34617062 PMCID: PMC8489235 DOI: 10.1016/j.jvssci.2021.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 04/01/2021] [Indexed: 11/23/2022] Open
Abstract
Objective Previously published work has indicated that transcripts encoding transglutaminase 2 (TG2) increase markedly in a rat model of abdominal aortic aneurysm. This study determines whether TG2 and the related TG, factor XIII-A (FXIII-A), protect against aortic aneurysm development in mice. Methods C57BL/6J wild-type, Tgm2 -/- knockout, F13a1 -/- knockout, and Tgm2 -/- /F13a1 -/- double knockout mice were subjected to laparotomy and periaortic application of CaCl2. Results Tgm2 -/- mice showed slightly greater aortic dilatation at 6 weeks after treatment when compared with wild type. However, vessels from Tgm2 -/- mice, but not wild-type mice, continued to dilate up to 6 months after injury and by 24 weeks, a greater number of Tgm2 -/- mice had developed aneurysms (16/17 vs 10/19; P = .008). Laparotomy resulted in a high death rate in F13a1 -/- knockout mice, more frequently from cardiac complications than from hemorrhage, but among F13a1 -/- mice that survived for 6 weeks after CaCl2 treatment, abdominal aortic aneurysm diameter was unaltered relative to wild-type mice. Laparotomy resulted in a higher death rate among Tgm2 -/- /F13a1 -/- double knockout mice, owing to an increased frequency of delayed bleeding. Surprisingly, Tgm2 -/- /F13a1 -/- double knockout mice showed a trend toward decreased dilatation of the aorta 6 weeks after injury, and this finding was replicated in Tgm2 -/- /F13a1 -/- mice subjected to carotid artery injury. Levels of transcripts encoding TG2 were not increased in the aortas of injured wild-type or F13a1 -/- knockout mice relative to uninjured mice, although changes in the levels of other transcripts accorded with previous descriptions of the CaCl2 aneurysm model in mice. Conclusions Knockout of Tgm2, but not F13a1 exacerbates aortic dilatation, suggesting that TG2 confers protection. However, levels of TG2 messenger RNA are not acutely elevated after injury. FXIII-A plays a role in preventing postoperative damage after laparotomy, confirming previous reports that it prevents distal organ damage after trauma. TG2 promotes wound healing after surgery and, in its absence, the bleeding diathesis associated with FXIII-A deficiency is further exposed.
Collapse
|
18
|
A Guttate Psoriasis That Tends to Spare Three Tattoos: A Macrophage Liaison. Case Rep Dermatol Med 2021; 2021:9448636. [PMID: 34552797 PMCID: PMC8452437 DOI: 10.1155/2021/9448636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Accepted: 09/06/2021] [Indexed: 11/17/2022] Open
Abstract
Induction of new psoriasis sites was reported in only a small amount of psoriasis patients undergoing tattooing, despite the intuitive belief that tattoo trauma might awaken the disease due to the isomorphic phenomenon of Koebner. In this case report, we discuss a patient who presented with a remarkable sparing of his three tattoo sites during a guttate psoriasis flare-up that was unrelated to tattooing. The spatial concordance of tattoo and psoriasis lesions was analyzed on clinical pictures of tattoo sites taken during the psoriasis episode. For the quantification of the spatial distribution of the psoriasis lesions, Voronoi diagrams were generated, and coefficients of variation and the two-sample t-test were employed to compare the distributions of Voronoi patch sizes in different settings. Compared to skin areas without tattoos, a tattoo introduced a higher variation in the sizes of the Voronoi patches centered around psoriasis lesions. Based on our findings, we would like to discuss the possible role of macrophages as the key cellular link in the complex pathophysiologic relationship between tattooing/tattoo and psoriasis. Taking into account the relationship of autophagy and psoriasis lesions, we propose the hypothesis that tattoos represent a “psoriasis-hostile” tissue environment pertained by a population of LAP active M2-polarized macrophages. Further clinical studies of the relationship of psoriasis lesions to the tattooed skin are needed and may provide important insights into the role of macrophages in the pathogenesis of psoriasis.
Collapse
|
19
|
Nakai K. Multiple roles of macrophage in skin. J Dermatol Sci 2021; 104:2-10. [PMID: 34493430 DOI: 10.1016/j.jdermsci.2021.08.008] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 07/28/2021] [Accepted: 08/30/2021] [Indexed: 01/26/2023]
Abstract
More than 100 years have passed since Elie Metchnikoff discovered macrophage. Over the recent decade, attracting information about macrophage polarization have been reported. This is because many molecules have been identified as markers of macrophage polarization. Additionally, mechanistic insights have been demonstrated by experiments with various stimuli-induced macrophage polarization. Historically and simply, macrophages are divided into M1 (classically activated) and M2 (alternatively activated). However, some of them are not specific yet. Studies in the field of cardiology revealed the plasticity of macrophages and their subsets are divided into details: Mhem, MHb, Mox and M4 macrophages. M2 macrophages were further divided in M2a, M2b, M2c and M2d. There appears to be more phenotypes of macrophages. However, there still lack studies in dermatological field. This review summarizes the spectrum of macrophage activation and finding about various roles of macrophages in the dermatological field.
Collapse
Affiliation(s)
- Kozo Nakai
- Department of Dermatology, Osaka City University Graduate School of Medicine, Osaka, Japan.
| |
Collapse
|
20
|
Tseng JC, Chang YC, Huang CM, Hsu LC, Chuang TH. Therapeutic Development Based on the Immunopathogenic Mechanisms of Psoriasis. Pharmaceutics 2021; 13:pharmaceutics13071064. [PMID: 34371756 PMCID: PMC8308930 DOI: 10.3390/pharmaceutics13071064] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 07/01/2021] [Accepted: 07/07/2021] [Indexed: 12/16/2022] Open
Abstract
Psoriasis, a complex inflammatory autoimmune skin disorder that affects 2–3% of the global population, is thought to be genetically predetermined and induced by environmental and immunological factors. In the past decades, basic and clinical studies have significantly expanded knowledge on the molecular, cellular, and immunological mechanisms underlying the pathogenesis of psoriasis. Based on these pathogenic mechanisms, the current disease model emphasizes the role of aberrant Th1 and Th17 responses. Th1 and Th17 immune responses are regulated by a complex network of different cytokines, including TNF-α, IL-17, and IL-23; signal transduction pathways downstream to the cytokine receptors; and various activated transcription factors, including NF-κB, interferon regulatory factors (IRFs), and signal transducer and activator of transcriptions (STATs). The biologics developed to specifically target the cytokines have achieved a better efficacy and safety for the systemic management of psoriasis compared with traditional treatments. Nevertheless, the current therapeutics can only alleviate the symptoms; there is still no cure for psoriasis. Therefore, the development of more effective, safe, and affordable therapeutics for psoriasis is important. In this review, we discussed the current trend of therapeutic development for psoriasis based on the recent discoveries in the immune modulation of the inflammatory response in psoriasis.
Collapse
Affiliation(s)
- Jen-Chih Tseng
- Immunology Research Center, National Health Research Institutes, Zhunan, Miaoli 35053, Taiwan;
| | - Yung-Chi Chang
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei 10002, Taiwan;
| | - Chun-Ming Huang
- Department of Biomedical Sciences and Engineering, National Central University, Taoyuan 32001, Taiwan;
| | - Li-Chung Hsu
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei 10002, Taiwan;
- Center of Precision Medicine, College of Medicine, National Taiwan University, Taipei 10002, Taiwan
- Correspondence: (L.-C.H.); (T.-H.C.); Tel.: +886-2-2312-3456 (ext. 65700) (L.-C.H.); +886-37-246-166 (ext. 37611) (T.-H.C.)
| | - Tsung-Hsien Chuang
- Immunology Research Center, National Health Research Institutes, Zhunan, Miaoli 35053, Taiwan;
- Correspondence: (L.-C.H.); (T.-H.C.); Tel.: +886-2-2312-3456 (ext. 65700) (L.-C.H.); +886-37-246-166 (ext. 37611) (T.-H.C.)
| |
Collapse
|
21
|
Leboux RJT, Schipper P, van Capel TMM, Kong L, van der Maaden K, Kros A, Jiskoot W, de Jong EC, Bouwstra JA. Antigen Uptake After Intradermal Microinjection Depends on Antigen Nature and Formulation, but Not on Injection Depth. FRONTIERS IN ALLERGY 2021; 2:642788. [PMID: 35386985 PMCID: PMC8974696 DOI: 10.3389/falgy.2021.642788] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 03/01/2021] [Indexed: 12/12/2022] Open
Abstract
The skin is an attractive alternative administration route for allergy vaccination, as the skin is rich in dendritic cells (DCs) and is easily accessible. In the skin multiple subsets of DCs with distinct roles reside at different depths. In this study antigen (=allergen for allergy) formulations were injected in ex vivo human skin in a depth-controlled manner by using a hollow microneedle injection system. Biopsies were harvested at the injection site, which were then cultured for 72 h. Subsequently, the crawled-out cells were collected from the medium and analyzed with flow cytometry. Intradermal administration of ovalbumin (OVA, model antigen) solution at various depths in the skin did not affect the migration and maturation of DCs. OVA was taken up efficiently by the DCs, and this was not affected by the injection depth. In contrast, Bet v 1, the major allergen in birch pollen allergy, was barely taken up by dermal DCs (dDCs). Antigens were more efficiently taken up by CD14+ dDCs than CD1a+ dDCs, which in turn were more efficient at taken up antigen than Langerhans cells. Subsequently, both OVA and Bet v 1 were formulated in cationic and anionic liposomes, which altered antigen uptake drastically following intradermal microinjection. While OVA uptake was reduced by formulation in liposomes, Bet v 1 uptake in dDCs was increased by encapsulation in both cationic and anionic liposomes. This highlights the potential use of liposomes as adjuvant in intradermal allergy vaccine delivery. In conclusion, we observed that antigen uptake after intradermal injection was not affected by injection depth, but varied between different antigens and formulation.
Collapse
Affiliation(s)
- Romain J. T. Leboux
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden, Netherlands
| | - Pim Schipper
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden, Netherlands
| | - Toni M. M. van Capel
- Department of Experimental Immunology, Academic Medical Center, Amsterdam, Netherlands
| | - Lily Kong
- Division of Supramolecular Chemistry, Leiden Institute of Chemistry, Leiden University, Leiden, Netherlands
- Tongji School of Pharmacy, HuaZhong University of Science and Technology, Wuhan, China
| | - Koen van der Maaden
- Tumor Immunology Group, Department of Immunology, Leiden University Medical Center, Leiden, Netherlands
- TECO Development GmbH, Rheinbach, Germany
| | - Alexander Kros
- Division of Supramolecular Chemistry, Leiden Institute of Chemistry, Leiden University, Leiden, Netherlands
| | - Wim Jiskoot
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden, Netherlands
| | - Esther C. de Jong
- Department of Experimental Immunology, Academic Medical Center, Amsterdam, Netherlands
- Esther C. de Jong
| | - Joke A. Bouwstra
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden, Netherlands
- *Correspondence: Joke A. Bouwstra
| |
Collapse
|
22
|
Radiofrequency Irradiation Modulates TRPV1-Related Burning Sensation in Rosacea. Molecules 2021; 26:molecules26051424. [PMID: 33800730 PMCID: PMC7961329 DOI: 10.3390/molecules26051424] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/26/2021] [Accepted: 03/03/2021] [Indexed: 12/27/2022] Open
Abstract
Rosacea is a skin inflammatory condition that is accompanied by not only redness and flushing but also unseen symptoms, such as burning, stinging, and itching. TRPV1 expression in UVB-exposed skin can lead to a painful burning sensation. Upregulated TRPV1 expression helps release neuropeptides, including calcitonin gene-related peptide, pituitary adenylate cyclase-activating polypeptide, and vasoactive intestinal peptide, which can activate macrophage and inflammatory molecules. In this study, we found that radiofrequency (RF) irradiation reduced TRPV1 activation and neuropeptide expression in a UVB-exposed in vivo model and UVB- or heat-treated in an in vitro model. RF irradiation attenuated neuropeptide-induced macrophage activation and inflammatory molecule expression. Interestingly, the burning sensation in the skin of UVB-exposed mice and patients with rosacea was significantly decreased by RF irradiation. These results can provide experimental and molecular evidence on the effective use of RF irradiation for the burning sensation in patients with rosacea.
Collapse
|
23
|
Jardine L, Cytlak U, Gunawan M, Reynolds G, Green K, Wang XN, Pagan S, Paramitha M, Lamb CA, Long AK, Hurst E, Nair S, Jackson GH, Publicover A, Bigley V, Haniffa M, Simpson AJ, Collin M. Donor monocyte-derived macrophages promote human acute graft-versus-host disease. J Clin Invest 2021; 130:4574-4586. [PMID: 32453711 PMCID: PMC7456218 DOI: 10.1172/jci133909] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 05/19/2020] [Indexed: 12/16/2022] Open
Abstract
Myelopoiesis is invariably present and contributes to pathology in animal models of graft-versus-host disease (GVHD). In humans, a rich inflammatory infiltrate bearing macrophage markers has also been described in histological studies. In order to determine the origin, functional properties, and role in pathogenesis of these cells, we isolated single-cell suspensions from acute cutaneous GVHD and subjected them to genotype, transcriptome, and in vitro functional analysis. A donor-derived population of CD11c+CD14+ cells was the dominant population of all leukocytes in GVHD. Surface phenotype and NanoString gene expression profiling indicated the closest steady-state counterpart of these cells to be monocyte-derived macrophages. In GVHD, however, there was upregulation of monocyte antigens SIRPα and S100A8/9 transcripts associated with leukocyte trafficking, pattern recognition, antigen presentation, and costimulation. Isolated GVHD macrophages stimulated greater proliferation and activation of allogeneic T cells and secreted higher levels of inflammatory cytokines than their steady-state counterparts. In HLA-matched mixed leukocyte reactions, we also observed differentiation of activated macrophages with a similar phenotype. These exhibited cytopathicity to a keratinocyte cell line and mediated pathological damage to skin explants independently of T cells. Together, these results define the origin, functional properties, and potential pathogenic roles of human GVHD macrophages.
Collapse
Affiliation(s)
- Laura Jardine
- Human Dendritic Cell Laboratory, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom.,Northern Centre for Bone Marrow Transplantation and.,NIHR Newcastle Biomedical Research Centre, Freeman Hospital, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom
| | - Urszula Cytlak
- Human Dendritic Cell Laboratory, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Merry Gunawan
- Human Dendritic Cell Laboratory, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Gary Reynolds
- NIHR Newcastle Biomedical Research Centre, Freeman Hospital, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom.,Institute of Cellular Medicine and
| | - Kile Green
- Human Dendritic Cell Laboratory, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
| | | | - Sarah Pagan
- Human Dendritic Cell Laboratory, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Maharani Paramitha
- Human Dendritic Cell Laboratory, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Christopher A Lamb
- NIHR Newcastle Biomedical Research Centre, Freeman Hospital, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom.,Institute of Cellular Medicine and
| | - Anna K Long
- NIHR Newcastle Biomedical Research Centre, Freeman Hospital, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom.,Institute of Cellular Medicine and
| | - Erin Hurst
- Northern Centre for Bone Marrow Transplantation and
| | - Smeera Nair
- Northern Centre for Bone Marrow Transplantation and
| | - Graham H Jackson
- Northern Centre for Bone Marrow Transplantation and.,Northern Institute of Cancer Research, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Amy Publicover
- Human Dendritic Cell Laboratory, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom.,Northern Centre for Bone Marrow Transplantation and.,NIHR Newcastle Biomedical Research Centre, Freeman Hospital, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom
| | - Venetia Bigley
- Human Dendritic Cell Laboratory, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom.,Northern Centre for Bone Marrow Transplantation and.,NIHR Newcastle Biomedical Research Centre, Freeman Hospital, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom
| | - Muzlifah Haniffa
- NIHR Newcastle Biomedical Research Centre, Freeman Hospital, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom.,Institute of Cellular Medicine and
| | - A J Simpson
- NIHR Newcastle Biomedical Research Centre, Freeman Hospital, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom.,Institute of Cellular Medicine and
| | - Matthew Collin
- Human Dendritic Cell Laboratory, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom.,Northern Centre for Bone Marrow Transplantation and.,NIHR Newcastle Biomedical Research Centre, Freeman Hospital, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
24
|
Factor XIII-A in Diseases: Role Beyond Blood Coagulation. Int J Mol Sci 2021; 22:ijms22031459. [PMID: 33535700 PMCID: PMC7867190 DOI: 10.3390/ijms22031459] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/25/2021] [Accepted: 01/28/2021] [Indexed: 12/28/2022] Open
Abstract
Multidisciplinary research from the last few decades has revealed that Factor XIII subunit A (FXIII-A) is not only involved in blood coagulation, but may have roles in various diseases. Here, we aim to summarize data from studies involving patients with mutations in the F13A1 gene, performed in FXIII-A knock-out mice models, clinical and histological studies assessing correlations between diseases severity and FXIII-A levels, as well as from in vitro experiments. By providing a complex overview on its possible role in wound healing, chronic inflammatory bowel diseases, athe-rosclerosis, rheumatoid arthritis, chronic inflammatory lung diseases, chronic rhinosinusitis, solid tumors, hematological malignancies, and obesity, we also demonstrate how the field evolved from using FXIII-A as a marker to accept and understand its active role in inflammatory and malignant diseases.
Collapse
|
25
|
Oulee A, Ma F, Teles RMB, de Andrade Silva BJ, Pellegrini M, Klechevsky E, Harman AN, Rhodes JW, Modlin RL. Identification of Genes Encoding Antimicrobial Proteins in Langerhans Cells. Front Immunol 2021; 12:695373. [PMID: 34512625 PMCID: PMC8426439 DOI: 10.3389/fimmu.2021.695373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 08/06/2021] [Indexed: 12/03/2022] Open
Abstract
Langerhans cells (LCs) reside in the epidermis where they are poised to mount an antimicrobial response against microbial pathogens invading from the outside environment. To elucidate potential pathways by which LCs contribute to host defense, we mined published LC transcriptomes deposited in GEO and the scientific literature for genes that participate in antimicrobial responses. Overall, we identified 31 genes in LCs that encode proteins that contribute to antimicrobial activity, ten of which were cross-validated in at least two separate experiments. Seven of these ten antimicrobial genes encode chemokines, CCL1, CCL17, CCL19, CCL2, CCL22, CXCL14 and CXCL2, which mediate both antimicrobial and inflammatory responses. Of these, CCL22 was detected in seven of nine transcriptomes and by PCR in cultured LCs. Overall, the antimicrobial genes identified in LCs encode proteins with broad antibacterial activity, including against Staphylococcus aureus, which is the leading cause of skin infections. Thus, this study illustrates that LCs, consistent with their anatomical location, are programmed to mount an antimicrobial response against invading pathogens in skin.
Collapse
Affiliation(s)
- Aislyn Oulee
- Division of Dermatology, Department of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Feiyang Ma
- Division of Dermatology, Department of Medicine, University of California, Los Angeles, Los Angeles, CA, United States.,Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, United States.,Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA, United States
| | - Rosane M B Teles
- Division of Dermatology, Department of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Bruno J de Andrade Silva
- Division of Dermatology, Department of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Matteo Pellegrini
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA, United States
| | - Eynav Klechevsky
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, United States
| | - Andrew N Harman
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, NSW, Australia.,School of Medical Sciences, Faculty of Medicine and Health Sydney, The University of Sydney, Westmead, NSW, Australia
| | - Jake W Rhodes
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, NSW, Australia.,School of Medical Sciences, Faculty of Medicine and Health Sydney, The University of Sydney, Westmead, NSW, Australia
| | - Robert L Modlin
- Division of Dermatology, Department of Medicine, University of California, Los Angeles, Los Angeles, CA, United States.,Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
26
|
Liu Q, Zaba LC, Satpathy AT, Longmire M, Zhang W, Li K, Granja J, Guo C, Lin J, Li R, Tolentino K, Kania G, Distler O, Fiorentino D, Chung L, Qu K, Chang HY. Chromatin accessibility landscapes of skin cells in systemic sclerosis nominate dendritic cells in disease pathogenesis. Nat Commun 2020; 11:5843. [PMID: 33203843 PMCID: PMC7672105 DOI: 10.1038/s41467-020-19702-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 10/27/2020] [Indexed: 12/23/2022] Open
Abstract
Systemic sclerosis (SSc) is a disease at the intersection of autoimmunity and fibrosis. However, the epigenetic regulation and the contributions of diverse cell types to SSc remain unclear. Here we survey, using ATAC-seq, the active DNA regulatory elements of eight types of primary cells in normal skin from healthy controls, as well as clinically affected and unaffected skin from SSc patients. We find that accessible DNA elements in skin-resident dendritic cells (DCs) exhibit the highest enrichment of SSc-associated single-nucleotide polymorphisms (SNPs) and predict the degrees of skin fibrosis in patients. DCs also have the greatest disease-associated changes in chromatin accessibility and the strongest alteration of cell-cell interactions in SSc lesions. Lastly, data from an independent cohort of patients with SSc confirm a significant increase of DCs in lesioned skin. Thus, the DCs epigenome links inherited susceptibility and clinically apparent fibrosis in SSc skin, and can be an important driver of SSc pathogenesis.
Collapse
Affiliation(s)
- Qian Liu
- Department of Oncology, The First Affiliated Hospital of USTC, Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230021, China
| | - Lisa C Zaba
- Center for Personal Dynamic Regulomes, Stanford University School of Medicine, Stanford, CA, USA
- Department of Dermatology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Ansuman T Satpathy
- Center for Personal Dynamic Regulomes, Stanford University School of Medicine, Stanford, CA, USA
| | - Michelle Longmire
- Center for Personal Dynamic Regulomes, Stanford University School of Medicine, Stanford, CA, USA
- Department of Dermatology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Wen Zhang
- Department of Oncology, The First Affiliated Hospital of USTC, Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230021, China
| | - Kun Li
- Department of Oncology, The First Affiliated Hospital of USTC, Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230021, China
| | - Jeffrey Granja
- Center for Personal Dynamic Regulomes, Stanford University School of Medicine, Stanford, CA, USA
- Department of Dermatology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Chuang Guo
- Department of Oncology, The First Affiliated Hospital of USTC, Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230021, China
| | - Jun Lin
- Department of Oncology, The First Affiliated Hospital of USTC, Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230021, China
| | - Rui Li
- Center for Personal Dynamic Regulomes, Stanford University School of Medicine, Stanford, CA, USA
- Department of Dermatology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Karen Tolentino
- Center for Personal Dynamic Regulomes, Stanford University School of Medicine, Stanford, CA, USA
- Department of Dermatology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Gabriela Kania
- Department of Rheumatology, University Hospital Zurich, Zurich, Switzerland
| | - Oliver Distler
- Department of Rheumatology, University Hospital Zurich, Zurich, Switzerland
| | - David Fiorentino
- Department of Dermatology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Lorinda Chung
- Department of Dermatology, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Division of Rheumatology, Department of Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Kun Qu
- Department of Oncology, The First Affiliated Hospital of USTC, Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230021, China.
- CAS Center for Excellence in Molecular Cell Sciences, University of Science and Technology of China, Hefei, 230027, China.
- School of Data Sciences, University of Science and Technology of China, Hefei, 230027, China.
| | - Howard Y Chang
- Center for Personal Dynamic Regulomes, Stanford University School of Medicine, Stanford, CA, USA.
- Department of Dermatology, Stanford University School of Medicine, Stanford, CA, 94305, USA.
| |
Collapse
|
27
|
Rojahn TB, Vorstandlechner V, Krausgruber T, Bauer WM, Alkon N, Bangert C, Thaler FM, Sadeghyar F, Fortelny N, Gernedl V, Rindler K, Elbe-Bürger A, Bock C, Mildner M, Brunner PM. Single-cell transcriptomics combined with interstitial fluid proteomics defines cell type-specific immune regulation in atopic dermatitis. J Allergy Clin Immunol 2020; 146:1056-1069. [PMID: 32344053 DOI: 10.1016/j.jaci.2020.03.041] [Citation(s) in RCA: 131] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 02/10/2020] [Accepted: 03/27/2020] [Indexed: 02/09/2023]
Abstract
BACKGROUND Atopic dermatitis (AD) is the most common chronic inflammatory skin disease, but its complex pathogenesis is only insufficiently understood, resulting in still limited treatment options. OBJECTIVE We sought to characterize AD on both transcriptomic and proteomic levels in humans. METHODS We used skin suction blistering, a painless and nonscarring procedure that can simultaneously sample skin cells and interstitial fluid. We then compared results with conventional biopsies. RESULTS Suction blistering captured epidermal and most immune cells equally well as biopsies, except for mast cells and nonmigratory CD163+ macrophages that were only present in biopsy isolates. Using single-cell RNA sequencing, we found comparable transcriptional profiles of key inflammatory pathways between blister and biopsy AD, but suction blistering was superior in cell-specific resolution for high-abundance transcripts (KRT1/KRT10, KRT16/KRT6A, S100A8/S100A9), which showed some background signals in biopsy isolates. Compared with healthy controls, we found characteristic upregulation of AD-typical cytokines such as IL13 and IL22 in Th2 and Th22 cells, respectively, but we also discovered these mediators in proliferating T cells and natural killer T cells, that also expressed the antimicrobial cytokine IL26. Overall, not T cells, but myeloid cells were most strongly enriched in AD, and we found dendritic cell (CLEC7A, amphiregulin/AREG, EREG) and macrophage products (CCL13) among the top upregulated proteins in AD blister fluid proteomic analyses. CONCLUSION These data show that by using cutting-edge technology, suction blistering offers several advantages over conventional biopsies, including better transcriptomic resolution of skin cells, combined with proteomic information from interstitial fluid, unraveling novel inflammatory players that shape the cellular and proteomic microenvironment of AD.
Collapse
Affiliation(s)
- Thomas B Rojahn
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Vera Vorstandlechner
- Department of Dermatology, Medical University of Vienna, Vienna, Austria; Department of Surgery, Research Laboratory for Thoracic Surgery, Medical University of Vienna, Vienna, Austria
| | - Thomas Krausgruber
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Wolfgang M Bauer
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Natalia Alkon
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Christine Bangert
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Felix M Thaler
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Farzaneh Sadeghyar
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Nikolaus Fortelny
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Victoria Gernedl
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Katharina Rindler
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | | | - Christoph Bock
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria; Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Michael Mildner
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Patrick M Brunner
- Department of Dermatology, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
28
|
Abstract
Myo/Nog cells were discovered in the chick embryo epiblast. Their expression of MyoD reflects a commitment to the skeletal muscle lineage and capacity to differentiate into myofibroblasts. Release of Noggin by Myo/Nog cells is essential for normal morphogenesis. Myo/Nog cells rapidly respond to wounding in the skin and eyes. In this report, we present evidence suggesting that Myo/Nog cells phagocytose tattoo ink in tissue sections of human skin and engulf cell corpses in cultures of anterior human lens tissue and magnetic beads injected into the anterior chamber of mice in vivo. Myo/Nog cells are distinct from macrophages in the skin and eyes indicated by the absence of labeling with an antibody to ionized calcium binding adaptor molecule 1. In addition to their primary roles as regulators of BMP signaling and progenitors of myofibroblasts, Myo/Nog cells behave as nonprofessional phagocytes defined as cells whose primary functions are unrelated to phagocytosis but are capable of engulfment.
Collapse
|
29
|
Folate Receptor β (FRβ) Expression in Tissue-Resident and Tumor-Associated Macrophages Associates with and Depends on the Expression of PU.1. Cells 2020; 9:cells9061445. [PMID: 32532019 PMCID: PMC7349916 DOI: 10.3390/cells9061445] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 06/02/2020] [Accepted: 06/08/2020] [Indexed: 02/07/2023] Open
Abstract
As macrophages exhibit a huge functional plasticity under homeostasis and pathological conditions, they have become a therapeutic target for chronic inflammatory diseases. Hence, the identification of macrophage subset-specific markers is a requisite for the development of macrophage-directed therapeutic interventions. In this regard, the macrophage-specific Folate Receptor β (FRβ, encoded by the FOLR2 gene) has been already validated as a target for molecular delivery in cancer as well as in macrophage-targeting therapeutic strategies for chronic inflammatory pathologies. We now show that the transcriptome of human macrophages from healthy and inflamed tissues (tumor; rheumatoid arthritis, RA) share a significant over-representation of the “anti-inflammatory gene set”, which defines the gene profile of M-CSF-dependent IL-10-producing human macrophages (M-MØ). More specifically, FOLR2 expression has been found to strongly correlate with the expression of M-MØ-specific genes in tissue-resident macrophages, tumor-associated macrophages (TAM) and macrophages from inflamed synovium, and also correlates with the presence of the PU.1 transcription factor. In fact, PU.1-binding elements are found upstream of the first exon of FOLR2 and most M-MØ-specific- and TAM-specific genes. The functional relevance of PU.1 binding was demonstrated through analysis of the proximal regulatory region of the FOLR2 gene, whose activity was dependent on a cluster of PU.1-binding sequences. Further, siRNA-mediated knockdown established the importance of PU.1 for FOLR2 gene expression in myeloid cells. Therefore, we provide evidence that FRβ marks tissue-resident macrophages as well as macrophages within inflamed tissues, and its expression is dependent on PU.1.
Collapse
|
30
|
Adam L, Tchitchek N, Todorova B, Rosenbaum P, Joly C, Poux C, Chapon C, Spetz AL, Ustav M, Le Grand R, Martinon F. Innate Molecular and Cellular Signature in the Skin Preceding Long-Lasting T Cell Responses after Electroporated DNA Vaccination. THE JOURNAL OF IMMUNOLOGY 2020; 204:3375-3388. [PMID: 32385135 DOI: 10.4049/jimmunol.1900517] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 04/09/2020] [Indexed: 12/21/2022]
Abstract
DNA vaccines delivered with electroporation (EP) have shown promising results in preclinical models and are evaluated in clinical trials. In this study, we aim to characterize early mechanisms occurring in the skin after intradermal injection and EP of the auxoGTUmultiSIV DNA vaccine in nonhuman primates. First, we show that EP acts as an adjuvant by enhancing local inflammation, notably via granulocytes, monocytes/macrophages, and CD1aint-expressing cell recruitment. EP also induced Langerhans cell maturation, illustrated by CD86, CD83, and HLA-DR upregulation and their migration out of the epidermis. Second, we demonstrate the crucial role of the DNA vaccine in soluble factors release, such as MCP-1 or IL-15. Transcriptomic analysis showed that EP played a major role in gene expression changes postvaccination. However, the DNA vaccine is required to strongly upregulate several genes involved in inflammatory responses (e.g., Saa4), cell migration (e.g., Ccl3, Ccl5, or Cxcl10), APC activation (e.g., Cd86), and IFN-inducible genes (e.g., Ifit3, Ifit5, Irf7, Isg15, orMx1), illustrating an antiviral response signature. Also, AIM-2, a cytosolic DNA sensor, appeared to be strongly upregulated only in the presence of the DNA vaccine and trends to positively correlate with several IFN-inducible genes, suggesting the potential role of AIM-2 in vaccine sensing and the subsequent innate response activation leading to strong adaptive T cell responses. Overall, these results demonstrate that a combined stimulation of the immune response, in which EP and the auxoGTUmultiSIV vaccine triggered different components of the innate immunity, led to strong and persistent cellular recall responses.
Collapse
Affiliation(s)
- Lucille Adam
- Immunology of Viral Infections and Autoimmune Diseases, Infectious Disease Models and Innovative Therapies Department, Commissariat à l'Energie Atomique et aux Energies Alternatives, Université Paris-Sud 11, INSERM U1184, 92265 Fontenay-aux-Roses, France
| | - Nicolas Tchitchek
- Immunology of Viral Infections and Autoimmune Diseases, Infectious Disease Models and Innovative Therapies Department, Commissariat à l'Energie Atomique et aux Energies Alternatives, Université Paris-Sud 11, INSERM U1184, 92265 Fontenay-aux-Roses, France
| | - Biliana Todorova
- Immunology of Viral Infections and Autoimmune Diseases, Infectious Disease Models and Innovative Therapies Department, Commissariat à l'Energie Atomique et aux Energies Alternatives, Université Paris-Sud 11, INSERM U1184, 92265 Fontenay-aux-Roses, France
| | - Pierre Rosenbaum
- Immunology of Viral Infections and Autoimmune Diseases, Infectious Disease Models and Innovative Therapies Department, Commissariat à l'Energie Atomique et aux Energies Alternatives, Université Paris-Sud 11, INSERM U1184, 92265 Fontenay-aux-Roses, France
| | - Candie Joly
- Immunology of Viral Infections and Autoimmune Diseases, Infectious Disease Models and Innovative Therapies Department, Commissariat à l'Energie Atomique et aux Energies Alternatives, Université Paris-Sud 11, INSERM U1184, 92265 Fontenay-aux-Roses, France
| | - Candice Poux
- Immunology of Viral Infections and Autoimmune Diseases, Infectious Disease Models and Innovative Therapies Department, Commissariat à l'Energie Atomique et aux Energies Alternatives, Université Paris-Sud 11, INSERM U1184, 92265 Fontenay-aux-Roses, France
| | - Catherine Chapon
- Immunology of Viral Infections and Autoimmune Diseases, Infectious Disease Models and Innovative Therapies Department, Commissariat à l'Energie Atomique et aux Energies Alternatives, Université Paris-Sud 11, INSERM U1184, 92265 Fontenay-aux-Roses, France
| | - Anna-Lena Spetz
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, SE-106 91 Stockholm, Sweden; and
| | - Mart Ustav
- Institute of Technology, University of Tartu, 50411 Tartu, Estonia
| | - Roger Le Grand
- Immunology of Viral Infections and Autoimmune Diseases, Infectious Disease Models and Innovative Therapies Department, Commissariat à l'Energie Atomique et aux Energies Alternatives, Université Paris-Sud 11, INSERM U1184, 92265 Fontenay-aux-Roses, France
| | - Frédéric Martinon
- Immunology of Viral Infections and Autoimmune Diseases, Infectious Disease Models and Innovative Therapies Department, Commissariat à l'Energie Atomique et aux Energies Alternatives, Université Paris-Sud 11, INSERM U1184, 92265 Fontenay-aux-Roses, France;
| |
Collapse
|
31
|
Barboza TC, Sotto MN, Kanashiro-Galo L, de Brito AC, Duarte MIS, Quaresma JAS, Pagliari C. M2-Polarized Macrophages Determine Human Cutaneous Lesions in Lacaziosis. Mycopathologia 2020; 185:477-483. [PMID: 32378114 PMCID: PMC7201388 DOI: 10.1007/s11046-020-00450-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 04/20/2020] [Indexed: 11/17/2022]
Abstract
Lacaziosis is a cutaneous chronic mycosis caused by Lacazia loboi. Macrophages are important cells in the host immune response in fungal infections. The macrophage population exhibits strong plasticity that varies according to the stimuli in the microenvironment of lesions M1 profile promotes a Th1 pattern of cytokines and a microbicidal function and M2 is related to Th2 cytokines and immunomodulatory response. We investigated the population of M1 and M2 polarized macrophages in human cutaneous lesions. A total of 27 biopsies from human lesions were submitted to an immunohistochemistry protocol using antibodies to detect M1 and M2 macrophages (Arginase-1, CD163, iNOS, RBP-J and cMAF). We could observe high number of cells expressing Arginase1, CD163 and c-MAF that correspond to elements of the M2 profile of macrophage, over iNOS and RBP-J (elements of the M1 profile). The results suggest a predominant phenotype of M2 macrophages, which have an immunomodulatory role and probably contributing to chronicity of Lacaziosis.
Collapse
Affiliation(s)
- Tania Cristina Barboza
- Laboratório da Disciplina de Patologia de Moléstias Transmissíveis, Departamento de Patologia, Faculdade de Medicina, Universidade de São Paulo, Av Dr Arnaldo, 455, sala 1118, São Paulo, SP, CEP 01246-903, Brazil.,Programa de Pós-graduação em Ciências da Saúde, Instituto de Assistência Médica ao Servidor Público Estadual - SP, São Paulo, SP, Brazil
| | - Mirian Nacagami Sotto
- Laboratório da Disciplina de Patologia de Moléstias Transmissíveis, Departamento de Patologia, Faculdade de Medicina, Universidade de São Paulo, Av Dr Arnaldo, 455, sala 1118, São Paulo, SP, CEP 01246-903, Brazil
| | - Luciane Kanashiro-Galo
- Laboratório da Disciplina de Patologia de Moléstias Transmissíveis, Departamento de Patologia, Faculdade de Medicina, Universidade de São Paulo, Av Dr Arnaldo, 455, sala 1118, São Paulo, SP, CEP 01246-903, Brazil
| | | | - Maria Irma Seixas Duarte
- Laboratório da Disciplina de Patologia de Moléstias Transmissíveis, Departamento de Patologia, Faculdade de Medicina, Universidade de São Paulo, Av Dr Arnaldo, 455, sala 1118, São Paulo, SP, CEP 01246-903, Brazil
| | | | - Carla Pagliari
- Laboratório da Disciplina de Patologia de Moléstias Transmissíveis, Departamento de Patologia, Faculdade de Medicina, Universidade de São Paulo, Av Dr Arnaldo, 455, sala 1118, São Paulo, SP, CEP 01246-903, Brazil. .,Programa de Pós-graduação em Ciências da Saúde, Instituto de Assistência Médica ao Servidor Público Estadual - SP, São Paulo, SP, Brazil.
| |
Collapse
|
32
|
Ju HJ, Eun SH, Lee HN, Lee JH, Kim GM, Bae JM. Micropigmentation for vitiligo on light to moderately colored skin: Updated evidence from a clinical and animal study. J Dermatol 2020; 47:464-469. [PMID: 32124487 DOI: 10.1111/1346-8138.15282] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Accepted: 02/03/2020] [Indexed: 12/12/2022]
Abstract
Micropigmentation, also termed medical tattooing, can be a useful alternative treatment for patients with vitiligo who are resistant to conventional treatments. To assess the benefits and risks of micropigmentation in the treatment of refractory vitiligo, 25 lesions of 14 patients with vitiligo (Fitzpatrick skin types III and IV) were subjected to micropigmentation using an electric tattooing machine between December 2018 and March 2019. The procedure was repeated until satisfactory results were obtained. Treatment response was assessed by color matching of the treated lesion and surrounding skin using a 4-point scale (poor, fair, good and excellent). Excellent color matching was achieved in 80% (20/25) of cases after a median of three (range, 1-5) treatment sessions. Procedure-associated pain was considerable, but no anesthetic injection was needed. Immediate erythema and swelling were noticed after each procedure, but resolved within a few days. Overall, the treatment was tolerable. This study was limited by a small sample, no control group and a short follow-up period. This study revealed that micropigmentation was beneficial for patients with refractory vitiligo who had light to moderately colored skin. Pigment selection, implantation depth and selection of body parts amenable to treatment were critical.
Collapse
Affiliation(s)
- Hyun Jeong Ju
- Department of Dermatology, St Vincent's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Sung Hye Eun
- Department of Dermatology, St Vincent's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Han Na Lee
- Department of Dermatology, St Vincent's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Ji Hae Lee
- Department of Dermatology, St Vincent's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Gyong Moon Kim
- Department of Dermatology, St Vincent's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Jung Min Bae
- Department of Dermatology, St Vincent's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| |
Collapse
|
33
|
Adaptive immune responses to primary and secondary dengue virus infections. Nat Rev Immunol 2019; 19:218-230. [PMID: 30679808 DOI: 10.1038/s41577-019-0123-x] [Citation(s) in RCA: 188] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Dengue is the leading mosquito-borne viral illness infecting humans. Owing to the circulation of multiple serotypes, global expansion of the disease and recent gains in vaccination coverage, pre-existing immunity to dengue virus is abundant in the human population, and secondary dengue infections are common. Here, we contrast the mechanisms initiating and sustaining adaptive immune responses during primary infection with the immune pathways that are pre-existing and reactivated during secondary dengue. We also discuss new developments in our understanding of the contributions of CD4+ T cells, CD8+ T cells and antibodies to immunity and memory recall. Memory recall may lead to protective or pathological outcomes, and understanding of these processes will be key to developing or refining dengue vaccines to be safe and effective.
Collapse
|
34
|
Lu Y, Xu W, Gu Y, Chang X, Wei G, Rong Z, Qin L, Chen X, Zhou F. Non-small Cell Lung Cancer Cells Modulate the Development of Human CD1c + Conventional Dendritic Cell Subsets Mediated by CD103 and CD205. Front Immunol 2019; 10:2829. [PMID: 31921114 PMCID: PMC6914740 DOI: 10.3389/fimmu.2019.02829] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 11/18/2019] [Indexed: 12/13/2022] Open
Abstract
Advanced non-small cell lung cancer (NSCLC) leads to a high death rate in patients and is a major threat to human health. NSCLC induces an immune suppressive microenvironment and escapes from immune surveillance in vivo. At present, the molecular mechanisms of NSCLC immunopathogenesis and the immune suppressive microenvironment induced by NSCLC have not been fully elucidated. Here, we focus on the effect of NSCLC cells on the development and differentiation of human CD1c+ conventional dendritic cell (DC) subsets mediated by CD205 and CD103. The peripheral blood mononuclear cells (PBMCs) were isolated from NSCLC patients and healthy donors. DCs were induced and cocultured with primary NSCLC cells or tumor cell line H1299. DCs without incubation with tumor cells are control. The protein expression of costimulatory molecules such as CD80 and CD86, HLA-DR, pro-/anti-inflammatory cytokines such as IL-10 and IL-12, and CD205 and CD103 on CD1c+ DCs was detected by flow cytometry. Our data revealed two new subpopulations of human CD1c+ DCs (CD1c+CD205+CD103+ and CD1c+CD205+CD103− DC) in healthy donors and NSCLC patients. NSCLC cells modulate the development of the CD1c+CD205+CD103+ DC and CD1c+CD205+CD103− DC subpopulations in vitro and ex vivo. NSCLC cells also suppress the expression of signal molecules such as CD40, CD80, CD86, and HLA-DR on CD1c+ DCs. In addition, the production of pro-inflammatory cytokines, including IL-12 and IL-23, is downregulated by NSCLC cells; however, the secretion of anti-inflammatory cytokines, such as IL-10 and IL-27, by CD1c+ DCs is upregulated by NSCLC cells. Our results suggest that NSCLC cells may induce immune tolerogenic DCs, which block DC-mediated anti-tumor immunity in NSCLC patients. Our data may be helpful in revealing new cellular mechanisms related to the induction of tolerogenic CD1c+ DCs by NSCLCs and the development of an immune suppressive microenvironment that causes tumor cells to escape immune surveillance. Our results indicate a potential role for CD1c+ DC subsets mediated by CD205 and CD103 in DC-mediated immunotherapy to target NSCLC in the future.
Collapse
Affiliation(s)
- Yong Lu
- Department of Experimental and Clinical Immunology, CAS Lamvac Biotech Co., Ltd., Guangzhou, China
| | - Wenlong Xu
- Department of Experimental and Clinical Immunology, CAS Lamvac Biotech Co., Ltd., Guangzhou, China
| | - Yanli Gu
- Department of Experimental and Clinical Immunology, CAS Lamvac Biotech Co., Ltd., Guangzhou, China
| | - Xu Chang
- Department of Experimental and Clinical Immunology, CAS Lamvac Biotech Co., Ltd., Guangzhou, China
| | - Guojian Wei
- Department of Experimental and Clinical Immunology, CAS Lamvac Biotech Co., Ltd., Guangzhou, China
| | - Zhien Rong
- Department of Experimental and Clinical Immunology, CAS Lamvac Biotech Co., Ltd., Guangzhou, China
| | - Li Qin
- Department of Experimental and Clinical Immunology, CAS Lamvac Biotech Co., Ltd., Guangzhou, China
| | - Xiaoping Chen
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Department of Experimental and Clinical Immunology, CAS Lamvac Biotech Co., Ltd., Guangzhou, China.,Center of Infection and Immunity, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Fang Zhou
- Department of Experimental and Clinical Immunology, CAS Lamvac Biotech Co., Ltd., Guangzhou, China
| |
Collapse
|
35
|
Chambers ES, Vukmanovic-Stejic M. Skin barrier immunity and ageing. Immunology 2019; 160:116-125. [PMID: 31709535 DOI: 10.1111/imm.13152] [Citation(s) in RCA: 255] [Impact Index Per Article: 42.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 11/06/2019] [Accepted: 11/07/2019] [Indexed: 12/24/2022] Open
Abstract
The skin is the outermost layer of the body with an extensive surface area of approximately 1·8 m2 , and is the first line of defence against a multitude of external pathogens and environmental insults. The skin also has important homeostatic functions such as reducing water loss and contributing to thermoregulation of the body. The structure of the skin and its cellular composition work in harmony to prevent infections and to deal with physical and chemical challenges from the outside world. In this review, we discuss how the structural cells such as keratinocytes, fibroblasts and adipocytes contribute to barrier immunity. We also discuss specialized immune cells that are resident in steady-state skin including mononuclear phagocytes, such as Langerhans cells, dermal macrophages and dermal dendritic cells in addition to the resident memory T cells. Ageing results in an increased incidence of cancer and skin infections. As we age, the skin structure changes with thinning of the epidermis and dermis, increased water loss, and fragmentation of collagen and elastin. In addition, the skin immune composition is altered with reduced Langerhans cells, decreased antigen-specific immunity and increased regulatory populations such as Foxp3+ regulatory T cells. Together, these alterations result in decreased barrier immunity in the elderly, explaining in part their increased susceptiblity to cancer and infections.
Collapse
Affiliation(s)
- Emma S Chambers
- Division of Infection and Immunity, University College London, London, UK
| | | |
Collapse
|
36
|
Kuninaka Y, Ishida Y, Nosaka M, Shimada E, Kimura A, Ozaki M, Hata S, Michiue T, Yamamoto H, Furukawa F, Eisenmenger W, Kondo T. Forensic pathological study on temporal appearance of dendritic cells in skin wounds. Int J Legal Med 2019; 134:597-601. [PMID: 31792610 DOI: 10.1007/s00414-019-02185-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 10/15/2019] [Indexed: 02/07/2023]
Abstract
Dendritic cells (DCs) can essentially contribute to innate and adaptive immune system in various organs. A double-color immunofluorescence analysis was carried out with anti-CD11c and -HLA-DRα antibodies to detect DCs in 53 skin wounds (their postinfliction intervals: group I, 0-3 days; group II, 4-7 days; group III, 9-14 days; and group IV, 17-21 days). CD11c+HLA-DRα+ DCs were first observed in skin wounds with postinfliction intervals of 3 days, and the DC numbers were found to be elevated in skin wounds with the subsequent increase in postinfliction intervals. Semi-quantitative morphometric analyses showed that the DC number was the highest in the 12-day-old wound. More than 50 DCs were present in 8 of 10 samples (80%) in group II and 14 of 16 samples (87.5%) in group III, and there was no difference between the two groups. Thus, the presence of DCs in a skin wound was possibly estimated as postinfliction intervals of at least 3 days. Furthermore, when a skin wound contained > 50 DCs, its age would be judged as 4-14 days. Collectively, the appearance of DCs in human skin wounds may provide useful information in determining the age of a wound.
Collapse
Affiliation(s)
- Yumi Kuninaka
- Department of Forensic Medicine, Wakayama Medical University, 811-1 Kimiidera, Wakayama, 641-8509, Japan
| | - Yuko Ishida
- Department of Forensic Medicine, Wakayama Medical University, 811-1 Kimiidera, Wakayama, 641-8509, Japan
| | - Mizuho Nosaka
- Department of Forensic Medicine, Wakayama Medical University, 811-1 Kimiidera, Wakayama, 641-8509, Japan
| | - Emi Shimada
- Department of Forensic Medicine, Wakayama Medical University, 811-1 Kimiidera, Wakayama, 641-8509, Japan
| | - Akihiko Kimura
- Department of Forensic Medicine, Wakayama Medical University, 811-1 Kimiidera, Wakayama, 641-8509, Japan
| | - Mitsunori Ozaki
- Department of Neurological Surgery, Wakayama Medical University, 811-1 Kimiidera, Wakayama, 641-8509, Japan
| | - Satoshi Hata
- Department of Forensic Medicine, Wakayama Medical University, 811-1 Kimiidera, Wakayama, 641-8509, Japan
| | - Tomomi Michiue
- Department of Forensic Medicine, Wakayama Medical University, 811-1 Kimiidera, Wakayama, 641-8509, Japan
| | - Hiroki Yamamoto
- Department of Forensic Medicine, Wakayama Medical University, 811-1 Kimiidera, Wakayama, 641-8509, Japan
| | - Fukumi Furukawa
- Department of Forensic Medicine, Wakayama Medical University, 811-1 Kimiidera, Wakayama, 641-8509, Japan
| | - Wolfgang Eisenmenger
- Institute of Legal Medicine, University of Munich, Nuβbaumstraβe 26, 80336, Munich, Germany
| | - Toshikazu Kondo
- Department of Forensic Medicine, Wakayama Medical University, 811-1 Kimiidera, Wakayama, 641-8509, Japan.
| |
Collapse
|
37
|
Amon L, Lehmann CHK, Baranska A, Schoen J, Heger L, Dudziak D. Transcriptional control of dendritic cell development and functions. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2019; 349:55-151. [PMID: 31759434 DOI: 10.1016/bs.ircmb.2019.10.001] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Dendritic cells (DCs) are major regulators of adaptive immunity, as they are not only capable to induce efficient immune responses, but are also crucial to maintain peripheral tolerance and thereby inhibit autoimmune reactions. DCs bridge the innate and the adaptive immune system by presenting peptides of self and foreign antigens as peptide MHC complexes to T cells. These properties render DCs as interesting target cells for immunomodulatory therapies in cancer, but also autoimmune diseases. Several subsets of DCs with special properties and functions have been described. Recent achievements in understanding transcriptional programs on single cell level, together with the generation of new murine models targeting specific DC subsets, advanced our current understanding of DC development and function. Thus, DCs arise from precursor cells in the bone marrow with distinct progenitor cell populations splitting the monocyte populations and macrophage populations from the DC lineage, which upon lineage commitment can be separated into conventional cDC1, cDC2, and plasmacytoid DCs (pDCs). The DC populations harbor intrinsic programs enabling them to react for specific pathogens in dependency on the DC subset, and thereby orchestrate T cell immune responses. Similarities, but also varieties, between human and murine DC subpopulations are challenging, and will require further investigation of human specimens under consideration of the influence of the tissue micromilieu and DC subset localization in the future.
Collapse
Affiliation(s)
- Lukas Amon
- Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| | - Christian H K Lehmann
- Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| | - Anna Baranska
- Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| | - Janina Schoen
- Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| | - Lukas Heger
- Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| | - Diana Dudziak
- Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany.
| |
Collapse
|
38
|
Intradermal vaccination prevents anti-MOG autoimmune encephalomyelitis in macaques. EBioMedicine 2019; 47:492-505. [PMID: 31492559 PMCID: PMC6796575 DOI: 10.1016/j.ebiom.2019.08.052] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 08/21/2019] [Accepted: 08/23/2019] [Indexed: 12/28/2022] Open
Abstract
Background Autoimmune demyelinating diseases (ADD) are a major cause of neurological disability due to autoreactive cellular and humoral immune responses against brain antigens. A cure for chronic ADD could be obtained by appropriate immunomodulation. Methods We implemented a preclinical scheme to foster immune tolerance to myelin oligodendrocyte glycoprotein (MOG), in a cynomolgus-macaque model of experimental autoimmune encephalomyelitis (EAE), in which administration of recombinant human MOG (rhMOG) elicits brain inflammation mediated by MOG-autoreactive CD4+ lymphocytes and anti-MOG IgG. For immunotherapy, we used a recombinant antibody (Ab) directed against the dendritic cell-asialoglycoprotein receptor (DC-ASGPR) fused either to MOG or a control antigen PSA (prostate-specific antigen). Findings rhMOG and the anti-DC-ASGPR-MOG were respectively detected in CD1a+ DCs or CD163+ cells in the skin of macaques. Intradermal administration of anti-DC-ASGPR-MOG, but not control anti-DC-ASGPR-PSA, was protective against EAE. The treatment prevented the CD4+ T cell activation and proinflammatory cytokine production observed in controls. Moreover, the administration of anti-DC-ASGPR-MOG induced MOG-specific CD4+CD25+FOXP3+CD39+ regulatory lymphocytes and favoured an upsurge in systemic TGFβ and IL-8 upon rhMOG re-administration in vivo. Interpretation We show that the delivery of an anti-DC-ASGPR-MOG allows antigen-specific adaptive immune modulation to prevent the breach of immune tolerance to MOG. Our findings pave the way for therapeutic vaccines for long-lasting remission to grave encephalomyelitis with identified autoantigens, such as ADD associated with anti-MOG autoantibodies. Fund Work supported by the French ANR (ANR-11-INBS-0008 and ANR-10-EQPX-02-01), NIH (NIH 1 R01 AI 105066), the Baylor Scott and White Healthcare System funding and Roche Research Collaborative grants.
Collapse
|
39
|
Kwak EJ, Hong JY, Kim MN, Kim SY, Kim SH, Park CO, Kim KW, Lee CG, Elias JA, Jee HM, Sohn MH. Chitinase 3-like 1 drives allergic skin inflammation via Th2 immunity and M2 macrophage activation. Clin Exp Allergy 2019; 49:1464-1474. [PMID: 31397016 DOI: 10.1111/cea.13478] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 07/15/2019] [Accepted: 08/01/2019] [Indexed: 12/16/2022]
Abstract
BACKGROUND Atopic dermatitis (AD) is a chronic inflammatory skin disorder characterized by defective skin barrier and Th2 immune responses. Chitinase 3-like 1 (CHI3L1), also known as breast regression protein 39 (BRP-39) in mice and human homologue YKL-40, plays important roles in Th2 inflammation and allergen sensitization. CHI3L1 has been implicated in a variety of diseases including asthma characterized by inflammation, apoptosis and tissue remodelling, but its role in AD remains elusive. OBJECTIVE The aim of this study was to investigate the role of CHI3L1 in the development and progression of AD. RESULTS We investigated YKL-40 levels in the serum and skin of AD patients by ELISA and immunofluorescence, respectively. Using a murine model of AD induced by ovalbumin (OVA), we investigated Th2 immune responses, M2 macrophage activation and skin barrier gene expression using wild-type (WT) and BRP-39 null mutant (BRP-39-/- ) mice. YKL-40 level was significantly increased in serum of AD patients. In addition, both mRNA and protein expression levels of BRP-39 were higher in OVA-sensitized WT mice than in control mice. OVA-sensitized BRP-39-/- mice showed decreased epidermal thickness, lower total serum IgE, Th2 cytokine levels and CD4+ effector T cell populations than OVA-sensitized WT mice. Induction of BRP-39 was dominant in dermal macrophages. BRP-39 deficiency was found to be involved in M2 macrophage activation. Consistently, the YKL-40 level in the skin of AD patients was higher than in normal subjects and it was expressed in dermal macrophages. BRP-39 deficiency attenuated dysregulation of skin barrier and tight junction genes. CONCLUSIONS AND CLINICAL RELEVANCE These findings demonstrate that CHI3L1 mediates the development of AD induced by OVA, affecting Th2 inflammation, M2 macrophage activation and skin barrier function.
Collapse
Affiliation(s)
- Eun Ji Kwak
- Department of Pediatrics, Severance Hospital, Institute of Allergy, Institute for Immunology and Immunological Diseases, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
| | - Jung Yeon Hong
- Department of Pediatrics, Severance Hospital, Institute of Allergy, Institute for Immunology and Immunological Diseases, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
| | - Mi Na Kim
- Department of Pediatrics, Severance Hospital, Institute of Allergy, Institute for Immunology and Immunological Diseases, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
| | - Soo Yeon Kim
- Department of Pediatrics, Severance Hospital, Institute of Allergy, Institute for Immunology and Immunological Diseases, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
| | - Seo Hyeong Kim
- Department of Dermatology and Cutaneous Biology Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Chang Ook Park
- Department of Dermatology and Cutaneous Biology Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Kyung Won Kim
- Department of Pediatrics, Severance Hospital, Institute of Allergy, Institute for Immunology and Immunological Diseases, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
| | - Chun Geun Lee
- Molecular Microbiology and Immunology, Brown University, Providence, RI, USA.,Department of Internal Medicine, Hanyang University, Seoul, Korea
| | - Jack A Elias
- Molecular Microbiology and Immunology, Brown University, Providence, RI, USA
| | - Hye Mi Jee
- Department of Pediatrics, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam, Korea
| | - Myung Hyun Sohn
- Department of Pediatrics, Severance Hospital, Institute of Allergy, Institute for Immunology and Immunological Diseases, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
40
|
Abstract
Macrophages are a heterogeneous group of cells that are capable of carrying out distinct functions in different tissues, as well as in different locations within a given tissue. Some of these tissue macrophages lie on, or close to, the outer (abluminal) surface of blood vessels and perform several crucial activities at this interface between the tissue and the blood. In steady-state tissues, these perivascular macrophages maintain tight junctions between endothelial cells and limit vessel permeability, phagocytose potential pathogens before they enter tissues from the blood and restrict inappropriate inflammation. They also have a multifaceted role in diseases such as cancer, Alzheimer disease, multiple sclerosis and type 1 diabetes. Here, we examine the important functions of perivascular macrophages in various adult tissues and describe how these functions are perturbed in a broad array of pathological conditions.
Collapse
|
41
|
Cipitelli MDC, Amâncio Paiva I, Badolato-Corrêa J, de-Oliveira-Pinto LM. Influence of chemokines on the endothelial permeability and cellular transmigration during dengue. Immunol Lett 2019; 212:88-97. [PMID: 31181280 DOI: 10.1016/j.imlet.2019.06.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 05/24/2019] [Accepted: 06/06/2019] [Indexed: 01/31/2023]
Abstract
During a pathogenic infection, an inflammatory process is triggered in which several inflammatory mediators, such as cytokines, chemokines, growth factors, complement system components, nitric oxide, and others induce integrity alteration on the endothelial barrier. Chemokines are responsible for regulating leukocyte trafficking under homeostatic conditions as well as activating immune system cells under inflammatory conditions. They are crucial molecules in the early stages of infection, leading to the recruitment of immune cells, namely neutrophils, monocytes, natural killer (NK) cells, natural killer T cells (NKT), dendritic cells (DC), T lymphocytes and all cells expressing chemokine receptors for inflammatory sites. Other functions, such as collagen production, tissue repair, a proliferation of hematopoietic precursors and angiogenesis, are also performed by these molecules. Chemokines, amongst inflammatory mediators, play a key role in dengue immunopathogenesis. Dengue fever is a disease caused by the dengue virus (DENV). It is characterized by a broad spectrum of clinical manifestations ranging from asymptomatic cases to mild and severe symptomatic ones. As for the latter, the appearance of hemorrhagic manifestations and changes in vascular permeability may lead the patient to develop cavitary effusions, organ involvement, and even death. As chemokines exert an influence on various homeostatic and inflammatory processes, acting vigorously on vascular endothelial activation and cell migration, the main purpose of this chapter is to discuss the influence of chemokines on the alteration of endothelial permeability and migration of T lymphocytes in DENV infection.
Collapse
Affiliation(s)
- Márcio da Costa Cipitelli
- Laboratory of Viral Immunology, Oswaldo Cruz Institute, Oswaldo Cruz Fundation, Rio de Janeiro, Brazil
| | - Iury Amâncio Paiva
- Laboratory of Viral Immunology, Oswaldo Cruz Institute, Oswaldo Cruz Fundation, Rio de Janeiro, Brazil
| | - Jéssica Badolato-Corrêa
- Laboratory of Viral Immunology, Oswaldo Cruz Institute, Oswaldo Cruz Fundation, Rio de Janeiro, Brazil
| | | |
Collapse
|
42
|
Guttman-Yassky E, Zhou L, Krueger JG. The skin as an immune organ: Tolerance versus effector responses and applications to food allergy and hypersensitivity reactions. J Allergy Clin Immunol 2019; 144:362-374. [PMID: 30954522 DOI: 10.1016/j.jaci.2019.03.021] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 02/22/2019] [Accepted: 03/27/2019] [Indexed: 01/06/2023]
Abstract
Skin is replete with immunocompetent cells that modulate signaling pathways to maintain a salubrious immunogenic/tolerogenic balance. This fertile immune environment plays a significant role in the development of allergic responses and sensitivities, but the mechanisms underlying these pathways have been underappreciated and underused with respect to developing therapeutics. Among the complex repertoire of cells that promote tolerogenic pathways in the periphery, 2 key classes include dendritic cells and regulatory T (Treg) cells. Immature dendritic cells are the first line of defense, patrolling the periphery, sampling antigens, and secreting cytokines that suppress immune cells and promote the survival of Treg cells. Skin-homing Treg cells also play a critical role in mitigating the reactivity of immune cells, secreting high levels of cytokines that promote tolerance. Therapeutic approaches that capitalize on our knowledge of the rich cellular and molecular environment are emerging and show great promise. We will discuss the advantages and challenges of 5 such strategies and how these therapies might mitigate the atopic march by facilitating tolerance. We conclude that skin is a multifaceted structure that provides a fertile ground for therapeutic discovery. Accordingly, ongoing work in this domain will no doubt continue to deliver exciting progress for improved health outcomes.
Collapse
Affiliation(s)
- Emma Guttman-Yassky
- Laboratory of Inflammatory Skin Diseases, Department of Dermatology, Icahn School of Medicine at Mount Sinai Medical Center, New York, NY.
| | - Lisa Zhou
- Columbia University Medical Center, New York, NY
| | - James G Krueger
- Laboratory for Investigative Dermatology, The Rockefeller University, New York, NY
| |
Collapse
|
43
|
Rathore APS, St John AL. Immune responses to dengue virus in the skin. Open Biol 2019; 8:rsob.180087. [PMID: 30135238 PMCID: PMC6119867 DOI: 10.1098/rsob.180087] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 07/13/2018] [Indexed: 12/12/2022] Open
Abstract
Dengue virus (DENV) causes infection in humans and current estimates place 40% of the world population at risk for contracting disease. There are four DENV serotypes that induce a febrile illness, which can develop into a severe and life-threatening disease in some cases, characterized primarily by vascular dysregulation. As a mosquito-borne infection, the skin is the initial site of DENV inoculation and also where primary host immune responses are initiated. This review discusses the early immune response to DENV in the skin by both infection target cells such as dendritic cells and by immune sentinels such as mast cells. We provide an overview of the mechanisms of immune sensing and functional immune responses that have been shown to aid clearance of DENV in vivo. Finally, we discuss factors that can influence the immune response to DENV in the skin, such as mosquito saliva, which is co-injected with virus during natural route infection, and pre-existing immunity to other DENV serotypes or to related flaviviruses.
Collapse
Affiliation(s)
- Abhay P S Rathore
- Department of Pathology, Duke University Medical Center, Durham, NC, USA
| | - Ashley L St John
- Program in Emerging Infectious Diseases, Duke-National University of Singapore, Republic of Singapore .,Department of Pathology, Duke University Medical Center, Durham, NC, USA.,Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Republic of Singapore
| |
Collapse
|
44
|
Solano-Gálvez SG, Tovar-Torres SM, Tron-Gómez MS, Weiser-Smeke AE, Álvarez-Hernández DA, Franyuti-Kelly GA, Tapia-Moreno M, Ibarra A, Gutiérrez-Kobeh L, Vázquez-López R. Human Dendritic Cells: Ontogeny and Their Subsets in Health and Disease. Med Sci (Basel) 2018; 6:medsci6040088. [PMID: 30297662 PMCID: PMC6313400 DOI: 10.3390/medsci6040088] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 09/13/2018] [Accepted: 10/04/2018] [Indexed: 12/14/2022] Open
Abstract
Dendritic cells (DCs) are a type of cells derived from bone marrow that represent 1% or less of the total hematopoietic cells of any lymphoid organ or of the total cell count of the blood or epithelia. Dendritic cells comprise a heterogeneous population of cells localized in different tissues where they act as sentinels continuously capturing antigens to present them to T cells. Dendritic cells are uniquely capable of attracting and activating naïve CD4+ and CD8+ T cells to initiate and modulate primary immune responses. They have the ability to coordinate tolerance or immunity depending on their activation status, which is why they are also considered as the orchestrating cells of the immune response. The purpose of this review is to provide a general overview of the current knowledge on ontogeny and subsets of human dendritic cells as well as their function and different biological roles.
Collapse
Affiliation(s)
- Sandra Georgina Solano-Gálvez
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico.
| | - Sonia Margarita Tovar-Torres
- Departamento de Microbiología, Centro de Investigación en Ciencias de la Salud, Facultad de Ciencias de la Salud (CICSA), Universidad Anáhuac México Campus Norte, Estado de México 52786, Mexico.
| | - María Sofía Tron-Gómez
- Departamento de Microbiología, Centro de Investigación en Ciencias de la Salud, Facultad de Ciencias de la Salud (CICSA), Universidad Anáhuac México Campus Norte, Estado de México 52786, Mexico.
| | - Ariane Estrella Weiser-Smeke
- Departamento de Microbiología, Centro de Investigación en Ciencias de la Salud, Facultad de Ciencias de la Salud (CICSA), Universidad Anáhuac México Campus Norte, Estado de México 52786, Mexico.
| | - Diego Abelardo Álvarez-Hernández
- Departamento de Microbiología, Centro de Investigación en Ciencias de la Salud, Facultad de Ciencias de la Salud (CICSA), Universidad Anáhuac México Campus Norte, Estado de México 52786, Mexico.
| | | | | | - Antonio Ibarra
- Coordinación del Centro de Investigación en Ciencias de la Salud, Facultad de Ciencias de la Salud (CICSA), Universidad Anáhuac México Campus Norte, Estado de México 52786, Mexico.
| | - Laila Gutiérrez-Kobeh
- Unidad de Investigación UNAM-INC, División Investigación, Facultad de Medicina, Universidad Nacional Autónoma de México-Instituto Nacional de Cardiología "Ignacio Chávez", Mexico City 14080, Mexico.
| | - Rosalino Vázquez-López
- Departamento de Microbiología, Centro de Investigación en Ciencias de la Salud, Facultad de Ciencias de la Salud (CICSA), Universidad Anáhuac México Campus Norte, Estado de México 52786, Mexico.
| |
Collapse
|
45
|
Chakraborty A, Boer JC, Selomulya C, Plebanski M, Royce SG. Insights into endotoxin-mediated lung inflammation and future treatment strategies. Expert Rev Respir Med 2018; 12:941-955. [PMID: 30221563 DOI: 10.1080/17476348.2018.1523009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
INTRODUCTION Airway inflammatory disorders are prevalent diseases in need of better management and new therapeutics. Immunotherapies offer a solution to the problem of corticosteroid resistance. Areas covered: The current review focuses on lipopolysaccharide (Gram-negative bacterial endotoxin)-mediated inflammation in the lung and the animal models used to study related diseases. Endotoxin-induced lung pathology is usually initiated by antigen presenting cells (APC). We will discuss different subsets of APC including lung dendritic cells and macrophages, and their role in responding to endotoxin and environmental challenges. Expert commentary: The pharmacotherapeutic considerations to combat airway inflammation should cost-effectively improve quality of life with sustainable and safe strategies. Selectively targeting APCs in the lung offer the potential for a promising new strategy for the better management and treatment of inflammatory lung disease.
Collapse
Affiliation(s)
- Amlan Chakraborty
- a Department of Chemical Engineering , Monash University , Clayton , Australia.,b Department of Immunology and Pathology , Central Clinical School, Monash University , Melbourne , Australia
| | - Jennifer C Boer
- b Department of Immunology and Pathology , Central Clinical School, Monash University , Melbourne , Australia
| | - Cordelia Selomulya
- a Department of Chemical Engineering , Monash University , Clayton , Australia
| | - Magdalena Plebanski
- b Department of Immunology and Pathology , Central Clinical School, Monash University , Melbourne , Australia.,c School of Health and Biomedical Sciences and Enabling Capability platforms, Biomedical and Health Innovation , RMIT University , Melbourne , Australia
| | - Simon G Royce
- d Central Clinical School , Monash University , Clayton , Victoria , Australia.,e Department of Pharmacology , Monash University , Clayton , Australia
| |
Collapse
|
46
|
van Ee TJ, Van Acker HH, van Oorschot TG, Van Tendeloo VF, Smits EL, Bakdash G, Schreibelt G, de Vries IJM. BDCA1+CD14+ Immunosuppressive Cells in Cancer, a Potential Target? Vaccines (Basel) 2018; 6:E65. [PMID: 30235890 PMCID: PMC6161086 DOI: 10.3390/vaccines6030065] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 09/17/2018] [Accepted: 09/18/2018] [Indexed: 12/22/2022] Open
Abstract
Dendritic cell (DC) vaccines show promising effects in cancer immunotherapy. However, their efficacy is affected by a number of factors, including (1) the quality of the DC vaccine and (2) tumor immune evasion. The recently characterized BDCA1+CD14+ immunosuppressive cells combine both aspects; their presence in DC vaccines may directly hamper vaccine efficacy, whereas, in patients, BDCA1+CD14+ cells may suppress the induced immune response in an antigen-specific manner systemically and at the tumor site. We hypothesize that BDCA1+CD14+ cells are present in a broad spectrum of cancers and demand further investigation to reveal treatment opportunities and/or improvement for DC vaccines. In this review, we summarize the findings on BDCA1+CD14+ cells in solid cancers. In addition, we evaluate the presence of BDCA1+CD14+ cells in leukemic cancers. Preliminary results suggest that the presence of BDCA1+CD14+ cells correlates with clinical features of acute and chronic myeloid leukemia. Future research focusing on the differentiation from monocytes towards BDCA1+CD14+ cells could reveal more about their cell biology and clinical significance. Targeting these cells in cancer patients may improve the outcome of cancer immunotherapy.
Collapse
Affiliation(s)
- Thomas J van Ee
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboudumc, Nijmegen 6525 GA, The Netherlands.
| | - Heleen H Van Acker
- Laboratory of Experimental Hematology, University of Antwerp, Antwerp 2000, Belgium.
| | - Tom G van Oorschot
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboudumc, Nijmegen 6525 GA, The Netherlands.
| | - Viggo F Van Tendeloo
- Laboratory of Experimental Hematology, University of Antwerp, Antwerp 2000, Belgium.
| | - Evelien L Smits
- Laboratory of Experimental Hematology, University of Antwerp, Antwerp 2000, Belgium.
- Center for Oncological Research, University of Antwerp, Antwerp 2000, Belgium.
| | - Ghaith Bakdash
- Allergic Inflammation Discovery Performance Unit, Respiratory Therapy Area, GlaxoSmithKline, Stevenage SG1 2NY, UK.
| | - Gerty Schreibelt
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboudumc, Nijmegen 6525 GA, The Netherlands.
| | - I Jolanda M de Vries
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboudumc, Nijmegen 6525 GA, The Netherlands.
- Department of Medical Oncology; Radboud Institute for Molecular Life Sciences, Radboudumc, Nijmegen 6525 GA, The Netherlands.
| |
Collapse
|
47
|
Phenotypic and functional changes of GM-CSF differentiated human macrophages following exposure to apoptotic neutrophils. Cell Immunol 2018; 331:93-99. [DOI: 10.1016/j.cellimm.2018.06.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 05/28/2018] [Accepted: 06/06/2018] [Indexed: 01/12/2023]
|
48
|
Abstract
The maintenance of macrophage populations, role of environmental cues in shaping their physiology, and the response of resident cells to perturbation are critical factors in tissue homeostasis with implications for many pathological scenarios. Pigment-containing cells of the dermis are the latest to come under the scrutiny of a mouse-induced depletion model.
Collapse
Affiliation(s)
- Matthew Collin
- Human Dendritic Cell Lab, Institute of Cellular Medicine, Newcastle NIHR Biomedical Research Centre, Newcastle University and Newcastle upon Tyne Hospitals, Newcastle upon Tyne, England, UK
| |
Collapse
|
49
|
Baranska A, Shawket A, Jouve M, Baratin M, Malosse C, Voluzan O, Vu Manh TP, Fiore F, Bajénoff M, Benaroch P, Dalod M, Malissen M, Henri S, Malissen B. Unveiling skin macrophage dynamics explains both tattoo persistence and strenuous removal. J Exp Med 2018; 215:1115-1133. [PMID: 29511065 PMCID: PMC5881467 DOI: 10.1084/jem.20171608] [Citation(s) in RCA: 104] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 12/14/2017] [Accepted: 02/06/2018] [Indexed: 12/24/2022] Open
Abstract
Here we describe a new mouse model that exploits the pattern of expression of the high-affinity IgG receptor (CD64) and allows diphtheria toxin (DT)-mediated ablation of tissue-resident macrophages and monocyte-derived cells. We found that the myeloid cells of the ear skin dermis are dominated by DT-sensitive, melanin-laden cells that have been missed in previous studies and correspond to macrophages that have ingested melanosomes from neighboring melanocytes. Those cells have been referred to as melanophages in humans. We also identified melanophages in melanocytic melanoma. Benefiting of our knowledge on melanophage dynamics, we determined the identity, origin, and dynamics of the skin myeloid cells that capture and retain tattoo pigment particles. We showed that they are exclusively made of dermal macrophages. Using the possibility to delete them, we further demonstrated that tattoo pigment particles can undergo successive cycles of capture-release-recapture without any tattoo vanishing. Therefore, congruent with dermal macrophage dynamics, long-term tattoo persistence likely relies on macrophage renewal rather than on macrophage longevity.
Collapse
Affiliation(s)
- Anna Baranska
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université, INSERM, CNRS UMR, Marseille, France
| | - Alaa Shawket
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université, INSERM, CNRS UMR, Marseille, France
| | | | - Myriam Baratin
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université, INSERM, CNRS UMR, Marseille, France
| | - Camille Malosse
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université, INSERM, CNRS UMR, Marseille, France
| | - Odessa Voluzan
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université, INSERM, CNRS UMR, Marseille, France
| | - Thien-Phong Vu Manh
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université, INSERM, CNRS UMR, Marseille, France
| | - Frédéric Fiore
- Centre d'Immunophénomique, Aix Marseille Université, INSERM, CNRS, Marseille, France
| | - Marc Bajénoff
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université, INSERM, CNRS UMR, Marseille, France
| | | | - Marc Dalod
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université, INSERM, CNRS UMR, Marseille, France
| | - Marie Malissen
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université, INSERM, CNRS UMR, Marseille, France.,Centre d'Immunophénomique, Aix Marseille Université, INSERM, CNRS, Marseille, France
| | - Sandrine Henri
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université, INSERM, CNRS UMR, Marseille, France
| | - Bernard Malissen
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université, INSERM, CNRS UMR, Marseille, France .,Centre d'Immunophénomique, Aix Marseille Université, INSERM, CNRS, Marseille, France
| |
Collapse
|
50
|
Schultze JL, Aschenbrenner AC. Systems immunology allows a new view on human dendritic cells. Semin Cell Dev Biol 2018; 86:15-23. [PMID: 29448068 DOI: 10.1016/j.semcdb.2018.02.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2017] [Revised: 11/23/2017] [Accepted: 02/10/2018] [Indexed: 01/12/2023]
Abstract
As the most important antigen-presenting cells, dendritic cells connect the innate and adaptive part of our immune system and play a pivotal role in our course of action against invading pathogens as well as during successful vaccination. Immunologists have therefore studied these cells in great detail using flow cytometry-based analyses, in vitro assays and in vivo models, both in murine models and in humans. Albeit, sophisticated, classical immunological, and molecular approaches were often unable to unequivocally determine the subpopulation structure of the dendritic cell lineage and not surprisingly, conflicting results about dendritic cell subsets co-existed throughout the last decades. With the advent of systems approaches and the most recent introduction of -omics approaches on the single cell level combined with multi-colour flow cytometry or mass cytometry, we now enter an era allowing us to define cell population structures with an unprecedented precision. We will report here on the most recent studies applying these technologies to human dendritic cells. Proper delineation of and definition of molecular signatures for the different human dendritic cell subsets will greatly facilitate studying these cells in the future: understanding their function under physiological as well as pathological conditions.
Collapse
Affiliation(s)
- Joachim L Schultze
- Genomics and Immunoregulation, Life & Medical Sciences (LIMES) Institute, University of Bonn, Carl-Troll-Str. 31, 53115 Bonn, Germany; Platform for Single Cell Genomics and Epigenomics, German Center for Neurodegenerative Diseases and University of Bonn, Sigmund-Freud-Str. 27, 53175 Bonn, Germany.
| | - Anna C Aschenbrenner
- Genomics and Immunoregulation, Life & Medical Sciences (LIMES) Institute, University of Bonn, Carl-Troll-Str. 31, 53115 Bonn, Germany.
| |
Collapse
|