1
|
Rioux AV, Nsimba-Batomene TR, Slimani S, Bergeron NAD, Gravel MAM, Schreiber SV, Fiola MJ, Haydock L, Garneau AP, Isenring P. Navigating the multifaceted intricacies of the Na +-Cl - cotransporter, a highly regulated key effector in the control of hydromineral homeostasis. Physiol Rev 2024; 104:1147-1204. [PMID: 38329422 PMCID: PMC11381001 DOI: 10.1152/physrev.00027.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 01/01/2024] [Accepted: 02/03/2024] [Indexed: 02/09/2024] Open
Abstract
The Na+-Cl- cotransporter (NCC; SLC12A3) is a highly regulated integral membrane protein that is known to exist as three splice variants in primates. Its primary role in the kidney is to mediate the cosymport of Na+ and Cl- across the apical membrane of the distal convoluted tubule. Through this role and the involvement of other ion transport systems, NCC allows the systemic circulation to reclaim a fraction of the ultrafiltered Na+, K+, Cl-, and Mg+ loads in exchange for Ca2+ and [Formula: see text]. The physiological relevance of the Na+-Cl- cotransport mechanism in humans is illustrated by several abnormalities that result from NCC inactivation through the administration of thiazides or in the setting of hereditary disorders. The purpose of the present review is to discuss the molecular mechanisms and overall roles of Na+-Cl- cotransport as the main topics of interest. On reading the narrative proposed, one will realize that the knowledge gained in regard to these themes will continue to progress unrelentingly no matter how refined it has now become.
Collapse
Affiliation(s)
- A V Rioux
- Department of Medicine, Nephrology Research Group, Laval University, Quebec City, Quebec, Canada
| | - T R Nsimba-Batomene
- Department of Medicine, Nephrology Research Group, Laval University, Quebec City, Quebec, Canada
| | - S Slimani
- Department of Medicine, Nephrology Research Group, Laval University, Quebec City, Quebec, Canada
| | - N A D Bergeron
- Department of Medicine, Nephrology Research Group, Laval University, Quebec City, Quebec, Canada
| | - M A M Gravel
- Department of Medicine, Nephrology Research Group, Laval University, Quebec City, Quebec, Canada
| | - S V Schreiber
- Department of Medicine, Nephrology Research Group, Laval University, Quebec City, Quebec, Canada
| | - M J Fiola
- Department of Medicine, Nephrology Research Group, Laval University, Quebec City, Quebec, Canada
| | - L Haydock
- Department of Medicine, Nephrology Research Group, Laval University, Quebec City, Quebec, Canada
- Service de Néphrologie-Transplantation Rénale Adultes, Hôpital Necker-Enfants Malades, AP-HP, INSERM U1151, Université Paris Cité, Paris, France
| | - A P Garneau
- Department of Medicine, Nephrology Research Group, Laval University, Quebec City, Quebec, Canada
- Service de Néphrologie-Transplantation Rénale Adultes, Hôpital Necker-Enfants Malades, AP-HP, INSERM U1151, Université Paris Cité, Paris, France
| | - P Isenring
- Department of Medicine, Nephrology Research Group, Laval University, Quebec City, Quebec, Canada
| |
Collapse
|
2
|
Wang Y, Li Y, Qiu Y, Shen M, Wang L, Shao J, Zhang F, Xu X, Zhang Z, Guo M, Zheng S. Artesunate Induces Ferroptosis in Hepatic Stellate Cells and Alleviates Liver Fibrosis via the ROCK1/ATF3 Axis. J Clin Transl Hepatol 2024; 12:36-51. [PMID: 38250467 PMCID: PMC10794272 DOI: 10.14218/jcth.2023.00162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 07/07/2023] [Accepted: 07/19/2023] [Indexed: 01/23/2024] Open
Abstract
BACKGROUND AND AIMS Development of fibrosis in chronic liver disease requires activation of hepatic stellate cells (HSCs) and leads to a poor outcome. Artesunate (Art) is an ester derivative of artemisinin that can induce ferroptosis in HSCs, and activated transcriptional factor 3 (ATF3) is an ATF/CREB transcription factor that is induced in response to stress. In this study, we examined the role of the Rho-associated protein kinase 1 (ROCK1)/ATF3 axis in Art-induced ferroptosis in HSCs. METHODS HSC activation and ferroptosis were studied in vitro by western blotting, polymerase chain reaction, immunofluorescence, and other assays. ATF3 electrophoretic mobility and ROCK1 protein stability were assayed by western blotting. Immunoprecipitation was used to detect the interaction of ROCK1 and ATF3, as well as ATF3 phosphorylation. A ubiquitination assay was used to verify ROCK1 degradation. Atf3-interfering and Rock1-overexpressing mice were constructed to validate the anti-hepatic fibrosis activity of Art in vivo. RESULTS Art induced ferroptosis in HSCs following glutathione-dependent antioxidant system inactivation resulting from nuclear accumulation of unphosphorylated ATF3 mediated by ROCK1-ubiquitination in vitro. Art also decreased carbon tetrachloride-induced liver fibrosis in mice, which was reversed by interfering with Atf3 or overexpressing Rock1. CONCLUSIONS The ROCK1/ATF3 axis was involved in liver fibrosis and regulation of ferroptosis, which provides an experimental basis for further study of Art for the treatment of liver fibrosis.
Collapse
Affiliation(s)
- Yingqian Wang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Yujia Li
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Yangling Qiu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Min Shen
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, Jiangsu, China
| | - Ling Wang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Jiangjuan Shao
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Feng Zhang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
- Jiangsu Key Laboratory of Therapeutic Material of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu China
| | - Xuefen Xu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Zili Zhang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
- Jiangsu Key Laboratory of Therapeutic Material of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu China
| | - Mei Guo
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Shizhong Zheng
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
- Jiangsu Key Laboratory of Therapeutic Material of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu China
| |
Collapse
|
3
|
Johnston JG, Welch AK, Cain BD, Sayeski PP, Gumz ML, Wingo CS. Aldosterone: Renal Action and Physiological Effects. Compr Physiol 2023; 13:4409-4491. [PMID: 36994769 PMCID: PMC11472823 DOI: 10.1002/cphy.c190043] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
Aldosterone exerts profound effects on renal and cardiovascular physiology. In the kidney, aldosterone acts to preserve electrolyte and acid-base balance in response to changes in dietary sodium (Na+ ) or potassium (K+ ) intake. These physiological actions, principally through activation of mineralocorticoid receptors (MRs), have important effects particularly in patients with renal and cardiovascular disease as demonstrated by multiple clinical trials. Multiple factors, be they genetic, humoral, dietary, or otherwise, can play a role in influencing the rate of aldosterone synthesis and secretion from the adrenal cortex. Normally, aldosterone secretion and action respond to dietary Na+ intake. In the kidney, the distal nephron and collecting duct are the main targets of aldosterone and MR action, which stimulates Na+ absorption in part via the epithelial Na+ channel (ENaC), the principal channel responsible for the fine-tuning of Na+ balance. Our understanding of the regulatory factors that allow aldosterone, via multiple signaling pathways, to function properly clearly implicates this hormone as central to many pathophysiological effects that become dysfunctional in disease states. Numerous pathologies that affect blood pressure (BP), electrolyte balance, and overall cardiovascular health are due to abnormal secretion of aldosterone, mutations in MR, ENaC, or effectors and modulators of their action. Study of the mechanisms of these pathologies has allowed researchers and clinicians to create novel dietary and pharmacological targets to improve human health. This article covers the regulation of aldosterone synthesis and secretion, receptors, effector molecules, and signaling pathways that modulate its action in the kidney. We also consider the role of aldosterone in disease and the benefit of mineralocorticoid antagonists. © 2023 American Physiological Society. Compr Physiol 13:4409-4491, 2023.
Collapse
Affiliation(s)
- Jermaine G Johnston
- Division of Nephrology, Hypertension and Renal Transplantation, Department of Medicine, University of Florida, Gainesville, Florida, USA
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, Florida, USA
- Nephrology Section, Veteran Administration Medical Center, North Florida/South Georgia Malcom Randall Department of Veterans Affairs Medical Center, Gainesville, Florida, USA
| | - Amanda K Welch
- Division of Nephrology, Hypertension and Renal Transplantation, Department of Medicine, University of Florida, Gainesville, Florida, USA
- Nephrology Section, Veteran Administration Medical Center, North Florida/South Georgia Malcom Randall Department of Veterans Affairs Medical Center, Gainesville, Florida, USA
| | - Brian D Cain
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, Florida, USA
| | - Peter P Sayeski
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, Florida, USA
| | - Michelle L Gumz
- Division of Nephrology, Hypertension and Renal Transplantation, Department of Medicine, University of Florida, Gainesville, Florida, USA
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, Florida, USA
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, Florida, USA
- Nephrology Section, Veteran Administration Medical Center, North Florida/South Georgia Malcom Randall Department of Veterans Affairs Medical Center, Gainesville, Florida, USA
| | - Charles S Wingo
- Division of Nephrology, Hypertension and Renal Transplantation, Department of Medicine, University of Florida, Gainesville, Florida, USA
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, Florida, USA
- Nephrology Section, Veteran Administration Medical Center, North Florida/South Georgia Malcom Randall Department of Veterans Affairs Medical Center, Gainesville, Florida, USA
| |
Collapse
|
4
|
Gallafassi E, Bezerra M, Rebouças N. Control of sodium and potassium homeostasis by renal distal convoluted tubules. Braz J Med Biol Res 2023; 56:e12392. [PMID: 36790288 PMCID: PMC9925193 DOI: 10.1590/1414-431x2023e12392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 12/17/2022] [Indexed: 02/12/2023] Open
Abstract
Distal convoluted tubules (DCT), which contain the Na-Cl cotransporter (NCC) inhibited by thiazide diuretics, undergo complex modulation to preserve Na+ and K+ homeostasis. The lysine kinases 1 and 4 (WNK1 and WNK4), identified as hyperactive in the hereditary disease pseudohypoaldosteronism type 2, are responsible for activation of NCC and consequent hypokalemia and hypertension. WNK4, highly expressed in DCT, activates the SPAK/OSR1 kinases, which phosphorylate NCC and other regulatory proteins and transporters in the distal nephron. WNK4 works as a chloride sensor through a Cl- binding site, which acts as an on/off switch at this kinase in response to changes of basolateral membrane electrical potential, the driving force of cellular Cl- efflux. High intracellular Cl- in hyperkalemia decreases NCC phosphorylation and low intracellular Cl- in hypokalemia increases NCC phosphorylation and activity, which makes plasma K+ concentration a central modulator of NCC and of K+ secretion. The WNK4 phosphorylation by cSrc or SGK1, activated by angiotensin II or aldosterone, respectively, is another relevant mechanism of NCC, ENaC, and ROMK modulation in states such as volume reduction, hyperkalemia, and hypokalemia. Loss of NCC function induces upregulation of electroneutral NaCl reabsorption by type B intercalated cells through the combined activity of pendrin and NDCBE, as demonstrated in double knockout mice (KO) animal models, Ncc/pendrin or Ncc/NDCBE. The analysis of ks-Nedd-4-2 KO animal models introduced the modulation of NEDD4-2 by intracellular Mg2+ activity as an important regulator of NCC, explaining the thiazide-induced persistent hypokalemia.
Collapse
Affiliation(s)
- E.A. Gallafassi
- Faculdade Israelita de Ciências da Saúde Albert Einstein, São Paulo, SP, Brasil
| | - M.B. Bezerra
- Faculdade Israelita de Ciências da Saúde Albert Einstein, São Paulo, SP, Brasil
| | - N.A. Rebouças
- Faculdade Israelita de Ciências da Saúde Albert Einstein, São Paulo, SP, Brasil
| |
Collapse
|
5
|
Carbajal-Contreras H, Gamba G, Castañeda-Bueno M. The serine-threonine protein phosphatases that regulate the thiazide-sensitive NaCl cotransporter. Front Physiol 2023; 14:1100522. [PMID: 36875042 PMCID: PMC9974657 DOI: 10.3389/fphys.2023.1100522] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 01/17/2023] [Indexed: 02/17/2023] Open
Abstract
The activity of the Na+-Cl- cotransporter (NCC) in the distal convoluted tubule (DCT) is finely tuned by phosphorylation networks involving serine/threonine kinases and phosphatases. While much attention has been paid to the With-No-lysine (K) kinase (WNK)- STE20-related Proline Alanine rich Kinase (SPAK)/Oxidative Stress Responsive kinase 1 (OSR1) signaling pathway, there remain many unanswered questions regarding phosphatase-mediated modulation of NCC and its interactors. The phosphatases shown to regulate NCC's activity, directly or indirectly, are protein phosphatase 1 (PP1), protein phosphatase 2A (PP2A), calcineurin (CN), and protein phosphatase 4 (PP4). PP1 has been suggested to directly dephosphorylate WNK4, SPAK, and NCC. This phosphatase increases its abundance and activity when extracellular K+ is increased, which leads to distinct inhibitory mechanisms towards NCC. Inhibitor-1 (I1), oppositely, inhibits PP1 when phosphorylated by protein kinase A (PKA). CN inhibitors, like tacrolimus and cyclosporin A, increase NCC phosphorylation, giving an explanation to the Familial Hyperkalemic Hypertension-like syndrome that affects some patients treated with these drugs. CN inhibitors can prevent high K+-induced dephosphorylation of NCC. CN can also dephosphorylate and activate Kelch-like protein 3 (KLHL3), thus decreasing WNK abundance. PP2A and PP4 have been shown in in vitro models to regulate NCC or its upstream activators. However, no studies in native kidneys or tubules have been performed to test their physiological role in NCC regulation. This review focuses on these dephosphorylation mediators and the transduction mechanisms possibly involved in physiological states that require of the modulation of the dephosphorylation rate of NCC.
Collapse
Affiliation(s)
- Héctor Carbajal-Contreras
- Department of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico.,PECEM (MD/PhD), Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Gerardo Gamba
- Department of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico.,PECEM (MD/PhD), Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico.,Molecular Physiology Unit, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - María Castañeda-Bueno
- Department of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| |
Collapse
|
6
|
The Post-Translational Modification Networking in WNK-Centric Hypertension Regulation and Electrolyte Homeostasis. Biomedicines 2022; 10:biomedicines10092169. [PMID: 36140271 PMCID: PMC9496095 DOI: 10.3390/biomedicines10092169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/26/2022] [Accepted: 08/27/2022] [Indexed: 11/17/2022] Open
Abstract
The with-no-lysine (WNK) kinase family, comprising four serine-threonine protein kinases (WNK1-4), were first linked to hypertension due to their mutations in association with pseudohypoaldosteronism type II (PHAII). WNK kinases regulate crucial blood pressure regulators, SPAK/OSR1, to mediate the post-translational modifications (PTMs) of their downstream ion channel substrates, such as sodium chloride co-transporter (NCC), epithelial sodium chloride (ENaC), renal outer medullary potassium channel (ROMK), and Na/K/2Cl co-transporters (NKCCs). In this review, we summarize the molecular pathways dysregulating the WNKs and their downstream target renal ion transporters. We summarize each of the genetic variants of WNK kinases and the small molecule inhibitors that have been discovered to regulate blood pressure via WNK-triggered PTM cascades.
Collapse
|
7
|
Wu A, Wolley MJ, Matthews A, Cowley D, Welling PA, Fenton RA, Stowasser M. In Primary Aldosteronism Acute Potassium Chloride Supplementation Suppresses Abundance and Phosphorylation of the Sodium-Chloride Cotransporter. KIDNEY360 2022; 3:1909-1923. [PMID: 36514401 PMCID: PMC9717638 DOI: 10.34067/kid.0003632022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 08/25/2022] [Indexed: 01/12/2023]
Abstract
Background Elevated abundance of sodium-chloride cotransporter (NCC) and phosphorylated NCC (pNCC) are potential markers of primary aldosteronism (PA), but these effects may be driven by hypokalemia. Methods We measured plasma potassium in patients with PA. If potassium was <4.0 mmol/L, patients were given sufficient oral potassium chloride (KCl) over 24 hours to achieve as close to 4.0 mmol/L as possible. Clinical chemistries were assessed, and urinary extracellular vesicles (uEVs) were examined to investigate effects on NCC. Results Among 21 patients with PA who received a median total dose of 6.0 g (2.4-16.8 g) of KCl, increases were observed in plasma potassium (from 3.4 to 4.0 mmol/L; P<0.001), aldosterone (from 305 to 558 pmol/L; P=0.01), and renin (from 1.2 to 2.5 mIU/L; P<0.001), whereas decreases were detected in uEV levels of NCC (median fold change(post/basal) [FC]=0.71 [0.09-1.99]; P=0.02), pT60-NCC (FC=0.84 [0.06-1.66]; P=0.05), and pT55/60-NCC (FC=0.67 [0.08-2.42]; P=0.02). By contrast, in 10 patients with PA who did not receive KCl, there were no apparent changes in plasma potassium, NCC abundance, and phosphorylation status, but increases were observed in plasma aldosterone (from 178 to 418 pmol/L; P=0.006) and renin (from 2.0 to 3.0 mU/L; P=0.009). Plasma potassium correlated inversely with uEV levels of NCC (R 2=0.11; P=0.01), pT60-NCC (R 2=0.11; P=0.01), and pT55/60-NCC (R 2=0.11; P=0.01). Conclusions Acute oral KCl loading replenished plasma potassium in patients with PA and suppressed NCC abundance and phosphorylation, despite a significant rise in plasma aldosterone. This supports the view that potassium supplementation in humans with PA overrides the aldosterone stimulatory effect on NCC. The increased plasma aldosterone in patients with PA without KCl supplementation may be due to aldosterone response to posture challenge.
Collapse
Affiliation(s)
- Aihua Wu
- Endocrine Hypertension Research Centre, The University of Queensland Diamantina Institute, Greenslopes and Princess Alexandra Hospitals, Brisbane, Australia
| | - Martin J. Wolley
- Endocrine Hypertension Research Centre, The University of Queensland Diamantina Institute, Greenslopes and Princess Alexandra Hospitals, Brisbane, Australia,Department of Nephrology, Royal Brisbane and Women’s Hospital, Brisbane, Australia
| | - Alexandra Matthews
- Endocrine Hypertension Research Centre, The University of Queensland Diamantina Institute, Greenslopes and Princess Alexandra Hospitals, Brisbane, Australia
| | - Diane Cowley
- Endocrine Hypertension Research Centre, The University of Queensland Diamantina Institute, Greenslopes and Princess Alexandra Hospitals, Brisbane, Australia
| | - Paul A. Welling
- Department of Medicine and Physiology, Johns Hopkins University, Baltimore, Maryland
| | | | - Michael Stowasser
- Endocrine Hypertension Research Centre, The University of Queensland Diamantina Institute, Greenslopes and Princess Alexandra Hospitals, Brisbane, Australia
| |
Collapse
|
8
|
Wu A, Wolley MJ, Wu Q, Cowley D, Palmfeldt J, Welling PA, Fenton RA, Stowasser M. Acute Intravenous NaCl and Volume Expansion Reduces Sodium-Chloride Cotransporter Abundance and Phosphorylation in Urinary Extracellular Vesicles. KIDNEY360 2022; 3:910-921. [PMID: 36128481 PMCID: PMC9438418 DOI: 10.34067/kid.0000362022] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 02/28/2022] [Indexed: 01/12/2023]
Abstract
Background Sodium chloride (NaCl) loading and volume expansion suppress the renin-angiotensin-aldosterone system to reduce renal tubular reabsorption of NaCl and water, but effects on the sodium-chloride cotransporter (NCC) and relevant renal transmembrane proteins that are responsible for this modulation in humans are less well investigated. Methods We used urinary extracellular vesicles (uEVs) as an indirect readout to assess renal transmembrane proteins involved in NaCl and water homeostasis in 44 patients with hypertension who had repeatedly raised aldosterone/renin ratios undergoing infusion of 2 L of 0.9% saline over 4 hours. Results When measured by mass spectrometry in 13 patients, significant decreases were observed in NCC (median fold change [FC]=0.70); pendrin (FC=0.84); AQP2 (FC=0.62); and uEV markers, including ALIX (FC=0.65) and TSG101 (FC=0.66). Immunoblotting reproduced the reduction in NCC (FC=0.54), AQP2 (FC=0.42), ALIX (FC=0.52), and TSG101 (FC=0.55) in the remaining 31 patients, and demonstrated a significant decrease in phosphorylated NCC (pNCC; FC=0.49). However, after correction for ALIX, the reductions in NCC (FC=0.90) and pNCC (FC=1.00) were no longer apparent, whereas the significant decrease in AQP2 persisted (FC=0.62). Conclusion We conclude that (1) decreases in NCC and pNCC, induced by acute NaCl loading and volume expansion, may be due to diluted post-test urines; (2) the lack of change of NCC and pNCC when corrected for ALIX, despite a fall in plasma aldosterone, may be due to the lack of change in plasma K+; and (3) the decrease in AQP2 may be due to a decrease in vasopressin in response to volume expansion.
Collapse
Affiliation(s)
- Aihua Wu
- Endocrine Hypertension Research Centre, University of Queensland Diamantina Institute, Greenslopes and Princess Alexandra Hospitals, Brisbane, Australia
| | - Martin J. Wolley
- Endocrine Hypertension Research Centre, University of Queensland Diamantina Institute, Greenslopes and Princess Alexandra Hospitals, Brisbane, Australia,Department of Nephrology, Royal Brisbane and Women’s Hospital, Brisbane, Australia
| | - Qi Wu
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Diane Cowley
- Endocrine Hypertension Research Centre, University of Queensland Diamantina Institute, Greenslopes and Princess Alexandra Hospitals, Brisbane, Australia
| | - Johan Palmfeldt
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Paul A. Welling
- Department of Medicine and Physiology, Johns Hopkins University, Baltimore, Maryland
| | | | - Michael Stowasser
- Endocrine Hypertension Research Centre, University of Queensland Diamantina Institute, Greenslopes and Princess Alexandra Hospitals, Brisbane, Australia
| |
Collapse
|
9
|
Al‐Qusairi L, Basquin D, Stifanelli M, Welling PA, Staub O. Does the early aldosterone-induced SGK1 play a role in early Kaliuresis? Physiol Rep 2022; 10:e15188. [PMID: 35224872 PMCID: PMC8883148 DOI: 10.14814/phy2.15188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/30/2021] [Accepted: 12/30/2021] [Indexed: 06/14/2023] Open
Abstract
Urinary K+ potassium excretion rapidly increases after a potassium-rich meal. The early aldosterone-induced sgk1 gene (encoding serum and glucocorticoid-induced kinase 1), activates potassium clearance, but the role of this kinase in the early activation of K+ secretion has not been clearly defined. Here, we challenged inducible renal-tubule-specific Sgk1Pax8 / LC1 knockout mice with an acute high-potassium load (HK:5%K+ ) and compared the physiological and molecular responses to control mice. We observe that urinary excretion after a K+ load over the first 3 h is not dependent on SGK1 but is coincident with the rapid dephosphorylation of the Na+ ,Cl- -cotransporter (NCC) to increase distal salt delivery. Molecular analyses indicate that whereas SGK1-mediated phosphorylation of the ubiquitin-protein ligase NEDD4-2 begins to increase by 3h, SGK1-dependent proteolytic activation of ENaC only becomes detectable after 6 h of HK intake. Consistent with SGK1-dependent ENaC activation via inhibition of NEDD4-2-mediated ubiquitylation, Sgk1Pax8 / LC1 mice are unable to efficiently inhibit NEDD4-2 or increase ENaC cleavage after 6 h of HK. Nevertheless, no defect in acute K+ balance was detected in the mutant mice after 6 h of HK. Moreover, we found that Sgk1Pax8 / LC1 mice reduce NCC phosphorylation and NCC-mediated salt absorption to a greater extent than control mice after a K+ load, promoting increased amiloride-sensitive Na+ -reabsorption via ENaC to maintain adequate kaliuresis. Together, these data indicate that: (a) during the early 3 h of HK intake, K+ excretion is SGK1-independent even under an extreme K+ challenge, (b) shortly after, SGK1 inhibits NEDD4-2 and activates ENaC to stimulate K+ -secretion, (c) SGK1-dependent phosphorylation of NCC occurs, acting more likely as a brake pedal to prevent excessive K+ loss.
Collapse
Affiliation(s)
- Lama Al‐Qusairi
- Division of NephrologyJohns Hopkins University School of MedicineBaltimoreUSA
- Department of Biomedical SciencesUniversity of LausanneLausanneSwitzerland
| | - Denis Basquin
- Department of PhysiologyUniversity of MarylandBaltimoreUSA
- Department of Biomedical SciencesUniversity of LausanneLausanneSwitzerland
| | - Matteo Stifanelli
- Department of Biomedical SciencesUniversity of LausanneLausanneSwitzerland
| | - Paul A. Welling
- Division of NephrologyJohns Hopkins University School of MedicineBaltimoreUSA
| | - Olivier Staub
- Department of Biomedical SciencesUniversity of LausanneLausanneSwitzerland
| |
Collapse
|
10
|
Bahrami A, Sathyapalan T, Sahebkar A. The Role of Interleukin-18 in the Development and Progression of Atherosclerosis. Curr Med Chem 2021; 28:1757-1774. [PMID: 32338205 DOI: 10.2174/0929867327666200427095830] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 03/14/2020] [Accepted: 04/28/2020] [Indexed: 11/22/2022]
Abstract
Atherosclerosis (AS), as a chronic inflammatory disorder of the cardiovascular system, is one of the leading causes of ischemic heart disease, stroke and peripheral vascular disease. There is growing evidence on the role of innate and adaptive immunity in the pathogenesis of atherosclerosis. Interleukin-18 is one of the novel proinflammatory cytokines involved in atherogenesis, atherosclerotic plaque instability and plaque rupture. In this review, we overview the findings of preclinical and clinical studies about the role and mechanism of action of IL-18 in the pathogenesis of AS, which could offer novel prognostic and therapeutic approaches.
Collapse
Affiliation(s)
- Afsane Bahrami
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Thozhukat Sathyapalan
- Academic Diabetes, Endocrinology and Metabolism, Hull York Medical School, University of Hull, Hull, United Kingdom
| | | |
Collapse
|
11
|
Erraez S, López-Mesa M, Gómez-Fernández P. Mineralcorticoid receptor blockers in chronic kidney disease. Nefrologia 2021; 41:258-275. [PMID: 36166243 DOI: 10.1016/j.nefroe.2021.08.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 10/17/2020] [Indexed: 06/16/2023] Open
Abstract
There are many experimental data supporting the involvement of aldosterone and mineralcorticoid receptor (MR) activation in the genesis and progression of chronic kidney disease (CKD) and cardiovascular damage. Many studies have shown that in diabetic and non-diabetic CKD, blocking the renin-angiotensin-aldosterone (RAAS) system with conversion enzyme inhibitors (ACEi) or angiotensin II receptor blockers (ARBs) decreases proteinuria, progression of CKD and mortality, but there is still a significant residual risk of developing these events. In subjects treated with ACEi or ARBs there may be an aldosterone breakthrough whose prevalence in subjects with CKD can reach 50%. Several studies have shown that in CKD, the aldosterone antagonists (spironolactone, eplerenone) added to ACEi or ARBs, reduce proteinuria, but increase the risk of hyperkalemia. Other studies in subjects treated with dialysis suggest a possible beneficial effect of antialdosteronic drugs on CV events and mortality. Newer potassium binders drugs can prevent/decrease hyperkalemia induced by RAAS blockade, and may reduce the high discontinuation rates or dose reduction of RAAS-blockers. The nonsteroidal MR blockers, with more potency and selectivity than the classic ones, reduce proteinuria and have a lower risk of hyperkalemia. Several clinical trials, currently underway, will determine the effect of classic MR blockers on CV events and mortality in subjects with stage 3b CKD and in dialysis patients, and whether in patients with type 2 diabetes mellitus and CKD, optimally treated and with high risk of CV and kidney events, the addition of finerenone to their treatment produces cardiorenal benefits. Large randomized trials have shown that sodium glucose type 2 cotransporter inhibitors (SGLT2i) reduce mortality and the development and progression of diabetic and nondiabetic CKD. There are pathophysiological arguments, which raise the possibility that the triple combination ACEi or ARBs, SGLT2i and aldosterone antagonist provide additional renal and cardiovascular protection.
Collapse
Affiliation(s)
- Sara Erraez
- Unidad de Factores de Riesgo Vascular, Nefrología, Hospital Universitario de Jerez, Jerez de la Frontera, Cádiz, Spain
| | | | - Pablo Gómez-Fernández
- Unidad de Factores de Riesgo Vascular, Nefrología, Hospital Universitario de Jerez, Jerez de la Frontera, Cádiz, Spain.
| |
Collapse
|
12
|
Guo Q, Zhang Y, Jiang GR, Zhang C. Decreased KLHL3 expression is involved in the activation of WNK-OSR1/SPAK-NCC cascade in type 1 diabetic mice. Pflugers Arch 2021; 473:185-196. [PMID: 33432425 DOI: 10.1007/s00424-020-02509-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 12/04/2020] [Accepted: 12/16/2020] [Indexed: 10/22/2022]
Abstract
Familial hyperkalemic hypertension (FHHt; also called pseudohypoaldosteronism type II) is a hereditary hypertensive disease which can be caused by mutations in four genes: WNK1 [with no lysine (K) 1], WNK4, Kelch-like3 (KLHL3), and cullin3 (CUL3). Decreased KLHL3 expression was identified as being involved in the pathogenesis of FHHt caused by cullin 3 disease mutations. Recent studies have revealed an increased WNK4 and hence Na-Cl cotransporter (NCC) activity in the db/db mice, resulting from PKC-mediated KLHL3 phosphorylation, which impairs the degradation of its substrate, WNK4. However, whether WNK4 and NCC were activated in type 1 diabetes still remains unclear. We created streptozotocin-induced type 1 diabetic mice and revealed that renal WNK-oxidative stress response kinase-1/STE20/SPS1-related proline alanine-rich kinase (OSR1/SPAK)-NCC cascade was activated, whereas KLHL3 expression was markedly decreased and CUL3 was heavily neddylated. Moreover, decreased KLHL3 was reversed and WNK1 and WNK4 abundance increased by MLN4924, a neddylation inhibitor. In vitro, our study also showed decreased KLHL3 abundance without any significant change in phosphorylated KLHL3 under high glucose exposure. These results indicate that decreased KLHL3 likely plays a role in the pathogenesis of renal sodium reabsorption in hyperglycemic conditions.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing/genetics
- Adaptor Proteins, Signal Transducing/metabolism
- Animals
- Blood Glucose/metabolism
- Blood Pressure
- Cullin Proteins/metabolism
- Diabetes Mellitus, Experimental/chemically induced
- Diabetes Mellitus, Experimental/genetics
- Diabetes Mellitus, Experimental/metabolism
- Diabetes Mellitus, Experimental/physiopathology
- Diabetes Mellitus, Type 1/chemically induced
- Diabetes Mellitus, Type 1/genetics
- Diabetes Mellitus, Type 1/metabolism
- Diabetes Mellitus, Type 1/physiopathology
- HEK293 Cells
- Humans
- Kidney/metabolism
- Kidney/physiopathology
- Male
- Mice, Inbred C57BL
- Microfilament Proteins/genetics
- Microfilament Proteins/metabolism
- Phosphorylation
- Protein Serine-Threonine Kinases/genetics
- Protein Serine-Threonine Kinases/metabolism
- Renal Reabsorption
- Signal Transduction
- Sodium/metabolism
- Solute Carrier Family 12, Member 3/metabolism
- Streptozocin
- Ubiquitination
- WNK Lysine-Deficient Protein Kinase 1/genetics
- WNK Lysine-Deficient Protein Kinase 1/metabolism
- Mice
Collapse
Affiliation(s)
- Qin Guo
- Department of Nephrology, Shanghai Xinhua Hospital, Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Ya Zhang
- Department of Nephrology, Shanghai Xinhua Hospital, Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Geng-Ru Jiang
- Department of Nephrology, Shanghai Xinhua Hospital, Jiao Tong University School of Medicine, Shanghai, 200092, China.
| | - Chong Zhang
- Department of Nephrology, Shanghai Xinhua Hospital, Jiao Tong University School of Medicine, Shanghai, 200092, China.
| |
Collapse
|
13
|
Murillo-de-Ozores AR, Rodríguez-Gama A, Carbajal-Contreras H, Gamba G, Castañeda-Bueno M. WNK4 kinase: from structure to physiology. Am J Physiol Renal Physiol 2021; 320:F378-F403. [PMID: 33491560 DOI: 10.1152/ajprenal.00634.2020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
With no lysine kinase-4 (WNK4) belongs to a serine-threonine kinase family characterized by the atypical positioning of its catalytic lysine. Despite the fact that WNK4 has been found in many tissues, the majority of its study has revolved around its function in the kidney, specifically as a positive regulator of the thiazide-sensitive NaCl cotransporter (NCC) in the distal convoluted tubule of the nephron. This is explained by the description of gain-of-function mutations in the gene encoding WNK4 that causes familial hyperkalemic hypertension. This disease is mainly driven by increased downstream activation of the Ste20/SPS1-related proline-alanine-rich kinase/oxidative stress responsive kinase-1-NCC pathway, which increases salt reabsorption in the distal convoluted tubule and indirectly impairs renal K+ secretion. Here, we review the large volume of information that has accumulated about different aspects of WNK4 function. We first review the knowledge on WNK4 structure and enumerate the functional domains and motifs that have been characterized. Then, we discuss WNK4 physiological functions based on the information obtained from in vitro studies and from a diverse set of genetically modified mouse models with altered WNK4 function. We then review in vitro and in vivo evidence on the different levels of regulation of WNK4. Finally, we go through the evidence that has suggested how different physiological conditions act through WNK4 to modulate NCC activity.
Collapse
Affiliation(s)
- Adrián Rafael Murillo-de-Ozores
- Department of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Tlalpan, Mexico City, Mexico.,Facultad de Medicina, Universidad Nacional Autónoma de México, Coyoacan, Mexico City, Mexico
| | | | - Héctor Carbajal-Contreras
- Department of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Tlalpan, Mexico City, Mexico.,Combined Studies Program in Medicine MD/PhD (PECEM), Facultad de Medicina, Universidad Nacional Autónoma de México, Coyoacan, Mexico City, Mexico, Mexico
| | - Gerardo Gamba
- Department of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Tlalpan, Mexico City, Mexico.,Molecular Physiology Unit, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Tlalpan, Mexico City, Mexico.,Combined Studies Program in Medicine MD/PhD (PECEM), Facultad de Medicina, Universidad Nacional Autónoma de México, Coyoacan, Mexico City, Mexico, Mexico
| | - María Castañeda-Bueno
- Department of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Tlalpan, Mexico City, Mexico.,Combined Studies Program in Medicine MD/PhD (PECEM), Facultad de Medicina, Universidad Nacional Autónoma de México, Coyoacan, Mexico City, Mexico, Mexico
| |
Collapse
|
14
|
Klug NR, Chechneva OV, Hung BY, O'Donnell ME. High glucose-induced effects on Na +-K +-2Cl - cotransport and Na +/H + exchange of blood-brain barrier endothelial cells: involvement of SGK1, PKCβII, and SPAK/OSR1. Am J Physiol Cell Physiol 2021; 320:C619-C634. [PMID: 33406028 DOI: 10.1152/ajpcell.00177.2019] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Hyperglycemia exacerbates edema formation and worsens neurological outcome in ischemic stroke. Edema formation in the early hours of stroke involves transport of ions and water across an intact blood-brain barrier (BBB), and swelling of astrocytes. We showed previously that high glucose (HG) exposures of 24 hours to 7 days increase abundance and activity of BBB Na+-K+-2Cl- cotransport (NKCC) and Na+/H+ exchange 1 (NHE1). Further, bumetanide and HOE-642 inhibition of these transporters significantly reduces edema and infarct following middle cerebral artery occlusion in hyperglycemic rats, suggesting that NKCC and NHE1 are effective therapeutic targets for reducing edema in hyperglycemic stroke. The mechanisms underlying hyperglycemia effects on BBB NKCC and NHE1 are not known. In the present study we investigated whether serum-glucocorticoid regulated kinase 1 (SGK1) and protein kinase C beta II (PKCβII) are involved in HG effects on BBB NKCC and NHE1. We found transient increases in phosphorylated SGK1 and PKCβII within the first hour of HG exposure, after 5-60 min for SGK1 and 5 min for PKCβII. However, no changes were observed in cerebral microvascular endothelial cell SGK1 or PKCβII abundance or phosphorylation (activity) after 24 or 48 h HG exposures. Further, we found that HG-induced increases in NKCC and NHE1 abundance were abolished by inhibition of SGK1 but not PKCβII, whereas the increases in NKCC and NHE activity were abolished by inhibition of either kinase. Finally, we found evidence that STE20/SPS1-related proline/alanine-rich kinase and oxidative stress-responsive kinase-1 (SPAK/OSR1) participate in the HG-induced effects on BBB NKCC.
Collapse
Affiliation(s)
- Nicholas R Klug
- Department of Physiology and Membrane Biology, University of California, Davis, California
| | - Olga V Chechneva
- Department of Physiology and Membrane Biology, University of California, Davis, California
| | - Benjamin Y Hung
- Department of Physiology and Membrane Biology, University of California, Davis, California
| | - Martha E O'Donnell
- Department of Physiology and Membrane Biology, University of California, Davis, California
| |
Collapse
|
15
|
Preston RA, Afshartous D, Caizapanta EV, Materson BJ, Rodco R, Alonso E, Alonso AB. Thiazide-Sensitive NCC (Sodium-Chloride Cotransporter) in Human Metabolic Syndrome: Sodium Sensitivity and Potassium-Induced Natriuresis. Hypertension 2021; 77:447-460. [PMID: 33390050 DOI: 10.1161/hypertensionaha.120.15933] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The thiazide-sensitive sodium-chloride cotransporter (NCC;SLC12A3) is central to sodium and blood pressure regulation. Metabolic syndrome induces NCC upregulation generating sodium-sensitive hypertension in experimental animal models. We tested the role of NCC in sodium sensitivity in hypertensive humans with metabolic syndrome. Conversely, oral potassium induces NCC downregulation producing potassium-induced natriuresis. We determined the time course and magnitude of potassium-induced natriuresis compared with the natriuresis following hydrochlorothiazide (HCTZ) as a reference standard. We studied 19 obese hypertensive humans with metabolic syndrome during 13-day inpatient confinement. We determined sodium sensitivity by change in 24-hour mean systolic pressure by automated monitor from days 5 (low sodium) to 10 (high sodium). We determined NCC activity by standard 50 mg HCTZ sensitivity test (day 11). We determined potassium-induced natriuresis following 35 mmol KCl (day 13). We determined (1) whether NCC activity was greater in sodium-sensitive versus sodium-resistant participants and correlated with sodium sensitivity and (2) time course and magnitude of potassium-induced natriuresis following 35 mmol KCl directly compared with 50 mg HCTZ. NCC activity was not greater in sodium-sensitive versus sodium-resistant humans and did not correlate with sodium sensitivity. Thirty-five-millimoles KCl produced a rapid natriuresis approximately half that of 50 mg HCTZ with a greater kaliuresis. Our investigation tested a key hypothesis regarding NCC activity in human hypertension and characterized potassium-induced natriuresis following 35 mmol KCl compared with 50 mg HCTZ. In obese hypertensive adults with metabolic syndrome ingesting a high-sodium diet, 35 mmol KCl had a net natriuretic effect approximately half that of 50 mg HCTZ.
Collapse
Affiliation(s)
- Richard A Preston
- From the Clinical Pharmacology Research Unit, Division of Clinical Pharmacology, Department of Medicine, Miller School of Medicine, University of Miami, FL (R.A.P., D.A., E.V.C., B.J.M., R.R., E.A., A.B.A.).,University of Miami Clinical and Translational Science Institutes, FL (R.A.P.).,Peggy and Harold Katz Family Drug Discovery Center, Miami, FL (R.A.P.)
| | - David Afshartous
- From the Clinical Pharmacology Research Unit, Division of Clinical Pharmacology, Department of Medicine, Miller School of Medicine, University of Miami, FL (R.A.P., D.A., E.V.C., B.J.M., R.R., E.A., A.B.A.)
| | - Evelyn V Caizapanta
- From the Clinical Pharmacology Research Unit, Division of Clinical Pharmacology, Department of Medicine, Miller School of Medicine, University of Miami, FL (R.A.P., D.A., E.V.C., B.J.M., R.R., E.A., A.B.A.)
| | - Barry J Materson
- From the Clinical Pharmacology Research Unit, Division of Clinical Pharmacology, Department of Medicine, Miller School of Medicine, University of Miami, FL (R.A.P., D.A., E.V.C., B.J.M., R.R., E.A., A.B.A.)
| | - Rolando Rodco
- From the Clinical Pharmacology Research Unit, Division of Clinical Pharmacology, Department of Medicine, Miller School of Medicine, University of Miami, FL (R.A.P., D.A., E.V.C., B.J.M., R.R., E.A., A.B.A.)
| | - Eileen Alonso
- From the Clinical Pharmacology Research Unit, Division of Clinical Pharmacology, Department of Medicine, Miller School of Medicine, University of Miami, FL (R.A.P., D.A., E.V.C., B.J.M., R.R., E.A., A.B.A.)
| | - Alberto B Alonso
- From the Clinical Pharmacology Research Unit, Division of Clinical Pharmacology, Department of Medicine, Miller School of Medicine, University of Miami, FL (R.A.P., D.A., E.V.C., B.J.M., R.R., E.A., A.B.A.)
| |
Collapse
|
16
|
[Mineralcorticoid receptor blockers in chronic kidney disease]. Nefrologia 2020; 41:258-275. [PMID: 33358451 DOI: 10.1016/j.nefro.2020.10.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 08/17/2020] [Accepted: 10/17/2020] [Indexed: 12/12/2022] Open
Abstract
There are many experimental data supporting the involvement of aldosterone and mineralcorticoid receptor (MR) activation in the genesis and progression of chronic kidney disease (CKD) and cardiovascular damage. Many studies have shown that in diabetic and non-diabetic CKD, blocking the renin- angiotensin-aldosterone (RAAS) system with conversion enzyme inhibitors (ACEi) or angiotensin II receptor blockers (ARBs) decreases proteinuria, progression of CKD and mortality, but there is still a significant residual risk of developing these events. In subjects treated with ACEi or ARBs there may be an aldosterone breakthrough whose prevalence in subjects with CKD can reach 50%. Several studies have shown that in CKD, the aldosterone antagonists (spironolactone, eplerenone) added to ACEi or ARBs, reduce proteinuria, but increase the risk of hyperkalemia. Other studies in subjects treated with dialysis suggest a possible beneficial effect of antialdosteronic drugs on CV events and mortality. Newer potassium binders drugs can prevent / decrease hyperkalemia induced by RAAS blockade, and may reduce the high discontinuation rates or dose reduction of RAAS-blockers. The nonsteroidal MR blockers, with more potency and selectivity than the classic ones, reduce proteinuria and have a lower risk of hyperkalemia. Several clinical trials, currently underway, will determine the effect of classic MR blockers on CV events and mortality in subjects with stage 3b CKD and in dialysis patients, and whether in patients with type 2 diabetes mellitus and CKD, optimally treated and with high risk of CV and kidney events, the addition of finerenone to their treatment produces cardiorenal benefits. Large randomized trials have shown that sodium glucose type 2 cotransporter inhibitors (SGLT2i) reduce mortality and the development and progression of diabetic and nondiabetic CKD. There are pathophysiological arguments, which raise the possibility that the triple combination ACEi or ARBs, SGLT2i and aldosterone antagonist provide additional renal and cardiovascular protection.
Collapse
|
17
|
Bovée DM, Cuevas CA, Zietse R, Danser AHJ, Mirabito Colafella KM, Hoorn EJ. Salt-sensitive hypertension in chronic kidney disease: distal tubular mechanisms. Am J Physiol Renal Physiol 2020; 319:F729-F745. [DOI: 10.1152/ajprenal.00407.2020] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Chronic kidney disease (CKD) causes salt-sensitive hypertension that is often resistant to treatment and contributes to the progression of kidney injury and cardiovascular disease. A better understanding of the mechanisms contributing to salt-sensitive hypertension in CKD is essential to improve these outcomes. This review critically explores these mechanisms by focusing on how CKD affects distal nephron Na+ reabsorption. CKD causes glomerulotubular imbalance with reduced proximal Na+ reabsorption and increased distal Na+ delivery and reabsorption. Aldosterone secretion further contributes to distal Na+ reabsorption in CKD and is not only mediated by renin and K+ but also by metabolic acidosis, endothelin-1, and vasopressin. CKD also activates the intrarenal renin-angiotensin system, generating intratubular angiotensin II to promote distal Na+ reabsorption. High dietary Na+ intake in CKD contributes to Na+ retention by aldosterone-independent activation of the mineralocorticoid receptor mediated through Rac1. High dietary Na+ also produces an inflammatory response mediated by T helper 17 cells and cytokines increasing distal Na+ transport. CKD is often accompanied by proteinuria, which contains plasmin capable of activating the epithelial Na+ channel. Thus, CKD causes both local and systemic changes that together promote distal nephron Na+ reabsorption and salt-sensitive hypertension. Future studies should address remaining knowledge gaps, including the relative contribution of each mechanism, the influence of sex, differences between stages and etiologies of CKD, and the clinical relevance of experimentally identified mechanisms. Several pathways offer opportunities for intervention, including with dietary Na+ reduction, distal diuretics, renin-angiotensin system inhibitors, mineralocorticoid receptor antagonists, and K+ or H+ binders.
Collapse
Affiliation(s)
- Dominique M. Bovée
- Division of Nephrology and Transplantation, Department of Internal Medicine, Erasmus MC, Erasmus University Medical Center, Rotterdam, The Netherlands
- Division of Vascular Medicine, Department of Internal Medicine, Erasmus MC, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Catharina A. Cuevas
- Division of Nephrology and Transplantation, Department of Internal Medicine, Erasmus MC, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Robert Zietse
- Division of Nephrology and Transplantation, Department of Internal Medicine, Erasmus MC, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - A. H. Jan Danser
- Division of Vascular Medicine, Department of Internal Medicine, Erasmus MC, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Katrina M. Mirabito Colafella
- Cardiovascular Disease Program, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia
- Department of Physiology, Monash University, Melbourne, Victoria, Australia
| | - Ewout J. Hoorn
- Division of Nephrology and Transplantation, Department of Internal Medicine, Erasmus MC, Erasmus University Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
18
|
Murillo-de-Ozores AR, Chávez-Canales M, de los Heros P, Gamba G, Castañeda-Bueno M. Physiological Processes Modulated by the Chloride-Sensitive WNK-SPAK/OSR1 Kinase Signaling Pathway and the Cation-Coupled Chloride Cotransporters. Front Physiol 2020; 11:585907. [PMID: 33192599 PMCID: PMC7606576 DOI: 10.3389/fphys.2020.585907] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 09/29/2020] [Indexed: 12/15/2022] Open
Abstract
The role of Cl- as an intracellular signaling ion has been increasingly recognized in recent years. One of the currently best described roles of Cl- in signaling is the modulation of the With-No-Lysine (K) (WNK) - STE20-Proline Alanine rich Kinase (SPAK)/Oxidative Stress Responsive Kinase 1 (OSR1) - Cation-Coupled Cl- Cotransporters (CCCs) cascade. Binding of a Cl- anion to the active site of WNK kinases directly modulates their activity, promoting their inhibition. WNK activation due to Cl- release from the binding site leads to phosphorylation and activation of SPAK/OSR1, which in turn phosphorylate the CCCs. Phosphorylation by WNKs-SPAK/OSR1 of the Na+-driven CCCs (mediating ions influx) promote their activation, whereas that of the K+-driven CCCs (mediating ions efflux) promote their inhibition. This results in net Cl- influx and feedback inhibition of WNK kinases. A wide variety of alterations to this pathway have been recognized as the cause of several human diseases, with manifestations in different systems. The understanding of WNK kinases as Cl- sensitive proteins has allowed us to better understand the mechanistic details of regulatory processes involved in diverse physiological phenomena that are reviewed here. These include cell volume regulation, potassium sensing and intracellular signaling in the renal distal convoluted tubule, and regulation of the neuronal response to the neurotransmitter GABA.
Collapse
Affiliation(s)
- Adrián Rafael Murillo-de-Ozores
- Department of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
- Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - María Chávez-Canales
- Unidad de Investigación UNAM-INC, Instituto Nacional de Cardiología Ignacio Chávez and Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Paola de los Heros
- Unidad de Investigación UNAM-INC, Research Division, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Gerardo Gamba
- Department of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
- Molecular Physiology Unit, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - María Castañeda-Bueno
- Department of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| |
Collapse
|
19
|
Hoorn EJ, Gritter M, Cuevas CA, Fenton RA. Regulation of the Renal NaCl Cotransporter and Its Role in Potassium Homeostasis. Physiol Rev 2020; 100:321-356. [PMID: 31793845 DOI: 10.1152/physrev.00044.2018] [Citation(s) in RCA: 111] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Daily dietary potassium (K+) intake may be as large as the extracellular K+ pool. To avoid acute hyperkalemia, rapid removal of K+ from the extracellular space is essential. This is achieved by translocating K+ into cells and increasing urinary K+ excretion. Emerging data now indicate that the renal thiazide-sensitive NaCl cotransporter (NCC) is critically involved in this homeostatic kaliuretic response. This suggests that the early distal convoluted tubule (DCT) is a K+ sensor that can modify sodium (Na+) delivery to downstream segments to promote or limit K+ secretion. K+ sensing is mediated by the basolateral K+ channels Kir4.1/5.1, a capacity that the DCT likely shares with other nephron segments. Thus, next to K+-induced aldosterone secretion, K+ sensing by renal epithelial cells represents a second feedback mechanism to control K+ balance. NCC’s role in K+ homeostasis has both physiological and pathophysiological implications. During hypovolemia, NCC activation by the renin-angiotensin system stimulates Na+ reabsorption while preventing K+ secretion. Conversely, NCC inactivation by high dietary K+ intake maximizes kaliuresis and limits Na+ retention, despite high aldosterone levels. NCC activation by a low-K+ diet contributes to salt-sensitive hypertension. K+-induced natriuresis through NCC offers a novel explanation for the antihypertensive effects of a high-K+ diet. A possible role for K+ in chronic kidney disease is also emerging, as epidemiological data reveal associations between higher urinary K+ excretion and improved renal outcomes. This comprehensive review will embed these novel insights on NCC regulation into existing concepts of K+ homeostasis in health and disease.
Collapse
Affiliation(s)
- Ewout J. Hoorn
- Department of Internal Medicine, Division of Nephrology and Transplantation, Erasmus Medical Center, University Medical Center Rotterdam, Rotterdam, The Netherlands; and Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Martin Gritter
- Department of Internal Medicine, Division of Nephrology and Transplantation, Erasmus Medical Center, University Medical Center Rotterdam, Rotterdam, The Netherlands; and Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Catherina A. Cuevas
- Department of Internal Medicine, Division of Nephrology and Transplantation, Erasmus Medical Center, University Medical Center Rotterdam, Rotterdam, The Netherlands; and Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Robert A. Fenton
- Department of Internal Medicine, Division of Nephrology and Transplantation, Erasmus Medical Center, University Medical Center Rotterdam, Rotterdam, The Netherlands; and Department of Biomedicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
20
|
Teulon J, Wang WH. Studying Na + and K + channels in aldosterone-sensitive distal nephrons. Methods Cell Biol 2019; 153:151-168. [PMID: 31395377 DOI: 10.1016/bs.mcb.2019.04.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Aldosterone-sensitive distal nephron (ASDN) including the distal convoluted tubule (DCT), connecting tubule (CNT) and collecting duct (CD) plays an important role in the regulation of hormone-dependent Na+ reabsorption and dietary K+-intake dependent K+ excretion. The major Na+ transporters in the ASDN are thiazide-sensitive Na-Cl cotransporter (NCC), epithelial Na+ channel (ENaC), pendrin/Na+-dependent Cl--bicarbonate exchanger (NDCBE). Whereas major K+ channels in the ASDN are Kir4.1 and Kir5.1 in the basolateral membrane; and Kir1.1 (ROMK) and Ca2+ activated big conductance K+ channel (BK) in the apical membrane. Although a variety of in vitro cell lines of the ASDN is available and these cell models have been employed for studying Na+ and K+ channels, the biophysical properties and the regulation of Na+ and K+ channels in vitro cell models may not be able to recapitulate those in vivo conditions. Thus, the studies performed in the native ASDN are essential for providing highly physiological relevant information and for understanding the Na+ and K+ transport in the ASDN. Here we provide a detailed methodology describing how to perform the electrophysiological measurement in the native DCT, CNT and cortical collecting duct (CCD).
Collapse
Affiliation(s)
- Jacques Teulon
- Sorbnne Université, Centre de recherches des Cordeliers UMR_S 1138, equipe 3, Paris, France.
| | - Wen-Hui Wang
- Department of Pharmacology, New York Medical College, Valhalla, NY, United States.
| |
Collapse
|
21
|
The interplay of renal potassium and sodium handling in blood pressure regulation: critical role of the WNK-SPAK-NCC pathway. J Hum Hypertens 2019; 33:508-523. [DOI: 10.1038/s41371-019-0170-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Revised: 12/18/2018] [Accepted: 01/03/2019] [Indexed: 12/19/2022]
|
22
|
Forrester SJ, Booz GW, Sigmund CD, Coffman TM, Kawai T, Rizzo V, Scalia R, Eguchi S. Angiotensin II Signal Transduction: An Update on Mechanisms of Physiology and Pathophysiology. Physiol Rev 2018; 98:1627-1738. [PMID: 29873596 DOI: 10.1152/physrev.00038.2017] [Citation(s) in RCA: 727] [Impact Index Per Article: 103.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The renin-angiotensin-aldosterone system plays crucial roles in cardiovascular physiology and pathophysiology. However, many of the signaling mechanisms have been unclear. The angiotensin II (ANG II) type 1 receptor (AT1R) is believed to mediate most functions of ANG II in the system. AT1R utilizes various signal transduction cascades causing hypertension, cardiovascular remodeling, and end organ damage. Moreover, functional cross-talk between AT1R signaling pathways and other signaling pathways have been recognized. Accumulating evidence reveals the complexity of ANG II signal transduction in pathophysiology of the vasculature, heart, kidney, and brain, as well as several pathophysiological features, including inflammation, metabolic dysfunction, and aging. In this review, we provide a comprehensive update of the ANG II receptor signaling events and their functional significances for potential translation into therapeutic strategies. AT1R remains central to the system in mediating physiological and pathophysiological functions of ANG II, and participation of specific signaling pathways becomes much clearer. There are still certain limitations and many controversies, and several noteworthy new concepts require further support. However, it is expected that rigorous translational research of the ANG II signaling pathways including those in large animals and humans will contribute to establishing effective new therapies against various diseases.
Collapse
Affiliation(s)
- Steven J Forrester
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University , Philadelphia, Pennsylvania ; Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center , Jackson, Mississippi ; Department of Pharmacology, Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa , Iowa City, Iowa ; and Duke-NUS, Singapore and Department of Medicine, Duke University Medical Center , Durham, North Carolina
| | - George W Booz
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University , Philadelphia, Pennsylvania ; Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center , Jackson, Mississippi ; Department of Pharmacology, Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa , Iowa City, Iowa ; and Duke-NUS, Singapore and Department of Medicine, Duke University Medical Center , Durham, North Carolina
| | - Curt D Sigmund
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University , Philadelphia, Pennsylvania ; Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center , Jackson, Mississippi ; Department of Pharmacology, Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa , Iowa City, Iowa ; and Duke-NUS, Singapore and Department of Medicine, Duke University Medical Center , Durham, North Carolina
| | - Thomas M Coffman
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University , Philadelphia, Pennsylvania ; Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center , Jackson, Mississippi ; Department of Pharmacology, Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa , Iowa City, Iowa ; and Duke-NUS, Singapore and Department of Medicine, Duke University Medical Center , Durham, North Carolina
| | - Tatsuo Kawai
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University , Philadelphia, Pennsylvania ; Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center , Jackson, Mississippi ; Department of Pharmacology, Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa , Iowa City, Iowa ; and Duke-NUS, Singapore and Department of Medicine, Duke University Medical Center , Durham, North Carolina
| | - Victor Rizzo
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University , Philadelphia, Pennsylvania ; Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center , Jackson, Mississippi ; Department of Pharmacology, Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa , Iowa City, Iowa ; and Duke-NUS, Singapore and Department of Medicine, Duke University Medical Center , Durham, North Carolina
| | - Rosario Scalia
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University , Philadelphia, Pennsylvania ; Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center , Jackson, Mississippi ; Department of Pharmacology, Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa , Iowa City, Iowa ; and Duke-NUS, Singapore and Department of Medicine, Duke University Medical Center , Durham, North Carolina
| | - Satoru Eguchi
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University , Philadelphia, Pennsylvania ; Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center , Jackson, Mississippi ; Department of Pharmacology, Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa , Iowa City, Iowa ; and Duke-NUS, Singapore and Department of Medicine, Duke University Medical Center , Durham, North Carolina
| |
Collapse
|
23
|
Kamel KS, Schreiber M, Halperin ML. Renal potassium physiology: integration of the renal response to dietary potassium depletion. Kidney Int 2018; 93:41-53. [PMID: 29102372 DOI: 10.1016/j.kint.2017.08.018] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 07/31/2017] [Accepted: 08/03/2017] [Indexed: 01/30/2023]
Abstract
We summarize the current understanding of the physiology of the renal handling of potassium (K+), and present an integrative view of the renal response to K+ depletion caused by dietary K+ restriction. This renal response involves contributions from different nephron segments, and aims to diminish the rate of excretion of K+ as a result of: decreasing the rate of electrogenic (and increasing the rate of electroneutral) reabsorption of sodium in the aldosterone-sensitive distal nephron (ASDN), decreasing the abundance of renal outer medullary K+ channels in the luminal membrane of principal cells in the ASDN, decreasing the flow rate in the ASDN, and increasing the reabsorption of K+ in the cortical and medullary collecting ducts. The implications of this physiology for the association between K+ depletion and hypertension, and K+ depletion and formation of calcium kidney stones are discussed.
Collapse
Affiliation(s)
- Kamel S Kamel
- Renal Division, St. Michael's Hospital, University of Toronto, Toronto, Ontario, Canada; Keenan Research Center, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada.
| | - Martin Schreiber
- Renal Division, St. Michael's Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Mitchell L Halperin
- Renal Division, St. Michael's Hospital, University of Toronto, Toronto, Ontario, Canada; Keenan Research Center, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada
| |
Collapse
|
24
|
Wu P, Gao ZX, Duan XP, Su XT, Wang MX, Lin DH, Gu R, Wang WH. AT2R (Angiotensin II Type 2 Receptor)-Mediated Regulation of NCC (Na-Cl Cotransporter) and Renal K Excretion Depends on the K Channel, Kir4.1. Hypertension 2018; 71:622-630. [PMID: 29483225 PMCID: PMC5843543 DOI: 10.1161/hypertensionaha.117.10471] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 10/26/2017] [Accepted: 12/21/2017] [Indexed: 02/02/2023]
Abstract
AT2R (AngII [angiotensin II] type 2 receptor) is expressed in the distal nephrons. The aim of the present study is to examine whether AT2R regulates NCC (Na-Cl cotransporter) and Kir4.1 of the distal convoluted tubule. AngII inhibited the basolateral 40 pS K channel (a Kir4.1/5.1 heterotetramer) in the distal convoluted tubule treated with losartan but not with PD123319. AT2R agonist also inhibits the K channel, indicating that AT2R was involved in tonic regulation of Kir4.1. The infusion of PD123319 stimulated the expression of tNCC (total NCC) and pNCC (phosphorylated NCC; Thr53) by a time-dependent way with the peak at 4 days. PD123319 treatment (4 days) stimulated the basolateral 40 pS K channel activity, augmented the basolateral K conductance, and increased the negativity of distal convoluted tubule membrane. The stimulation of Kir4.1 was essential for PD123319-induced increase in NCC because inhibiting AT2R increased the expression of tNCC and pNCC only in wild-type but not in the kidney-specific Kir4.1 knockout mice. Renal clearance study showed that thiazide-induced natriuretic effect was larger in PD123319-treated mice for 4 days than untreated mice. However, this effect was absent in kidney-specific Kir4.1 knockout mice which were also Na wasting under basal conditions. Finally, application of AT2R antagonist decreased the renal ability of K excretion and caused hyperkalemia in wild-type but not in kidney-specific Kir4.1 knockout mice. We conclude that AT2R-dependent regulation of NCC requires Kir4.1 in the distal convoluted tubule and that AT2R plays a role in stimulating K excretion by inhibiting Kir4.1 and NCC.
Collapse
Affiliation(s)
- Peng Wu
- From the Department of Pharmacology, New York Medical College, Valhalla (P.W., Z.-X.G., X.-T.S., M.-X.W., D.-H.L., W.-H.W.); and Department of Physiology, Harbin Medical University, China (X.-P.D., R.G.)
| | - Zhong-Xiuzi Gao
- From the Department of Pharmacology, New York Medical College, Valhalla (P.W., Z.-X.G., X.-T.S., M.-X.W., D.-H.L., W.-H.W.); and Department of Physiology, Harbin Medical University, China (X.-P.D., R.G.)
| | - Xin-Peng Duan
- From the Department of Pharmacology, New York Medical College, Valhalla (P.W., Z.-X.G., X.-T.S., M.-X.W., D.-H.L., W.-H.W.); and Department of Physiology, Harbin Medical University, China (X.-P.D., R.G.)
| | - Xiao-Tong Su
- From the Department of Pharmacology, New York Medical College, Valhalla (P.W., Z.-X.G., X.-T.S., M.-X.W., D.-H.L., W.-H.W.); and Department of Physiology, Harbin Medical University, China (X.-P.D., R.G.)
| | - Ming-Xiao Wang
- From the Department of Pharmacology, New York Medical College, Valhalla (P.W., Z.-X.G., X.-T.S., M.-X.W., D.-H.L., W.-H.W.); and Department of Physiology, Harbin Medical University, China (X.-P.D., R.G.)
| | - Dao-Hong Lin
- From the Department of Pharmacology, New York Medical College, Valhalla (P.W., Z.-X.G., X.-T.S., M.-X.W., D.-H.L., W.-H.W.); and Department of Physiology, Harbin Medical University, China (X.-P.D., R.G.)
| | - Ruimin Gu
- From the Department of Pharmacology, New York Medical College, Valhalla (P.W., Z.-X.G., X.-T.S., M.-X.W., D.-H.L., W.-H.W.); and Department of Physiology, Harbin Medical University, China (X.-P.D., R.G.)
| | - Wen-Hui Wang
- From the Department of Pharmacology, New York Medical College, Valhalla (P.W., Z.-X.G., X.-T.S., M.-X.W., D.-H.L., W.-H.W.); and Department of Physiology, Harbin Medical University, China (X.-P.D., R.G.).
| |
Collapse
|
25
|
Tutakhel OAZ, Bianchi F, Smits DA, Bindels RJM, Hoenderop JGJ, van der Wijst J. Dominant functional role of the novel phosphorylation site S811 in the human renal NaCl cotransporter. FASEB J 2018; 32:4482-4493. [PMID: 29547703 DOI: 10.1096/fj.201701047r] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The NaCl cotransporter (NCC) is essential for electrolyte homeostasis and control of blood pressure. The human SLC12A3 gene, which encodes NCC, gives rise to 3 isoforms, of which only the shortest isoform [NaCl cotransporter isoform 3 (NCC3)] has been studied extensively. All NCC isoforms share key phosphorylation sites at T55 and T60 that are essential mediators of NCC function. Recently, a novel phosphorylation site at S811 was identified in isoforms 1 and 2 [NaCl cotransporter splice variant (NCCSV)], which are only present in humans and higher primates. The aim of the current study, therefore, is to investigate the role of S811 phosphorylation in the regulation of NCC by a combination of biochemical and fluorescent microscopy analyses. We demonstrate that hypotonic low-chloride buffer increases S811 phosphorylation, whereas phosphorylation-deficient S811A mutant hinders phosphorylation at T55 and T60 in NCCSV and NCC3. NCCSV S811A impairs NCC3 activity in a dominant-negative fashion, although it does not affect plasma membrane abundance. This effect may be explained by the heterodimerization of NCCSV with NCC3. Taken together, our study highlights the dominant-negative effect of NCCSV on T55 and T60 phosphorylation and NCC activity. Here, we reveal a new function of NCCSV in humans that broadens the understanding on NCC regulation in blood pressure control.-Tutakhel, O. A. Z., Bianchi, F., Smits, D. A., Bindels, R. J. M., Hoenderop, J. G. J., van der Wijst, J. Dominant functional role of the novel phosphorylation site S811 in the human renal NaCl cotransporter.
Collapse
Affiliation(s)
- Omar A Z Tutakhel
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Frans Bianchi
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Daniël A Smits
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - René J M Bindels
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Joost G J Hoenderop
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Jenny van der Wijst
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
26
|
Aldosterone, SGK1, and ion channels in the kidney. Clin Sci (Lond) 2018; 132:173-183. [PMID: 29352074 PMCID: PMC5817097 DOI: 10.1042/cs20171525] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 12/15/2017] [Accepted: 12/19/2017] [Indexed: 12/14/2022]
Abstract
Hyperaldosteronism, a common cause of hypertension, is strongly connected to Na+, K+, and Mg2+ dysregulation. Owing to its steroidal structure, aldosterone is an active transcriptional modifier when bound to the mineralocorticoid receptor (MR) in cells expressing the enzyme 11β-hydroxysteroid dehydrogenase 2, such as those comprising the aldosterone-sensitive distal nephron (ASDN). One such up-regulated protein, the ubiquitous serum and glucocorticoid regulated kinase 1 (SGK1), has the capacity to modulate the surface expression and function of many classes of renal ion channels, including those that transport Na+ (ENaC), K+ (ROMK/BK), Ca2+ (TRPV4/5/6), Mg2+ (TRPM7/6), and Cl− (ClC-K, CFTR). Here, we discuss the mechanisms by which ASDN expressed channels are up-regulated by SGK1, while highlighting newly discovered pathways connecting aldosterone to nonselective cation channels that are permeable to Mg2+ (TRPM7) or Ca2+ (TRPV4).
Collapse
|
27
|
Abstract
PURPOSE OF REVIEW Abundant evidence supports that the NaCl cotransporter (NCC) activity is tightly regulated by the with-no-lysine (WNK) kinases. Here, we summarize the data regarding NCC regulation by WNKs, with a particular emphasis on WNK4. RECENT FINDINGS Several studies involving in-vivo and in-vitro models have provided paradoxical data regarding WNK4 regulation of the NCC. Although some studies show that WNK4 can activate the NCC, other equally compelling studies show that WNK4 inhibits the NCC. Recent studies have shown that WNK4 is regulated by the intracellular chloride concentration ([Cl]i), which could account for these paradoxical results. In conditions of high [Cl]i, WNK4 could act as an inhibitor via heterodimer formation with other WNKs. In contrast, when [Cl]i is low, WNK4 can activate Ste20-related, proline-alanine-rich kinase (SPAK)/oxidative stress responsive kinase 1 (OSR1) and thus the NCC. Modulation of WNK4 by [Cl]i has been shown to account for the potassium-sensing properties of the distal convoluted tubule. Other regulators of WNK4 include hormones and ubiquitination. SUMMARY Modulation of WNK4 activity by [Cl]i can account for its dual role on the NCC, and this has important physiological implications regarding the regulation of extracellular potassium concentration. Defective regulation of WNKs by ubiquitination explains most cases of familial hyperkalemic hypertension.
Collapse
|
28
|
Erben RG, Andrukhova O. FGF23-Klotho signaling axis in the kidney. Bone 2017; 100:62-68. [PMID: 27622885 DOI: 10.1016/j.bone.2016.09.010] [Citation(s) in RCA: 112] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2016] [Revised: 09/08/2016] [Accepted: 09/09/2016] [Indexed: 01/04/2023]
Abstract
Fibroblast growth factor-23 (FGF23) is a bone-derived hormone protecting against the potentially deleterious effects of hyperphosphatemia by suppression of phosphate reabsorption and of active vitamin D hormone synthesis in the kidney. The kidney is one of the main target organs of FGF23 signaling. The purpose of this review is to highlight the recent advances in the area of FGF23-Klotho signaling in the kidney. During recent years, it has become clear that FGF23 acts independently on proximal and distal tubular epithelium. In proximal renal tubules, FGF23 suppresses phosphate reabsorption by a Klotho dependent activation of extracellular signal-regulated kinase-1/2 (ERK1/2) and of serum/glucocorticoid-regulated kinase-1 (SGK1), leading to phosphorylation of the scaffolding protein Na+/H+ exchange regulatory cofactor (NHERF)-1 and subsequent internalization and degradation of sodium-phosphate cotransporters. In distal renal tubules, FGF23 augments calcium and sodium reabsorption by increasing the apical membrane expression of the epithelial calcium channel TRPV5 and of the sodium-chloride cotransporter NCC through a Klotho dependent activation of with-no-lysine kinase-4 (WNK4). In proximal and distal renal tubules, FGF receptor-1 is probably the dominant FGF receptor mediating the effects of FGF23 by forming a complex with membrane-bound Klotho in the basolateral membrane. The newly described sodium- and calcium-conserving functions of FGF23 may have major implications for the pathophysiology of diseases characterized by chronically increased circulating FGF23 concentrations such as chronic kidney disease.
Collapse
|
29
|
Tutakhel OAZ, Moes AD, Valdez-Flores MA, Kortenoeven MLA, Vrie MVD, Jeleń S, Fenton RA, Zietse R, Hoenderop JGJ, Hoorn EJ, Hilbrands L, Bindels RJM. NaCl cotransporter abundance in urinary vesicles is increased by calcineurin inhibitors and predicts thiazide sensitivity. PLoS One 2017; 12:e0176220. [PMID: 28430812 PMCID: PMC5400280 DOI: 10.1371/journal.pone.0176220] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 04/08/2017] [Indexed: 11/30/2022] Open
Abstract
Animal studies have shown that the calcineurin inhibitors (CNIs) cyclosporine and tacrolimus can activate the thiazide-sensitive NaCl cotransporter (NCC). A common side effect of CNIs is hypertension. Renal salt transporters such as NCC are excreted in urinary extracellular vesicles (uEVs) after internalization into multivesicular bodies. Human studies indicate that CNIs also increase NCC abundance in uEVs, but results are conflicting and no relationship with NCC function has been shown. Therefore, we investigated the effects of CsA and Tac on the abundance of both total NCC (tNCC) and phosphorylated NCC at Thr60 phosphorylation site (pNCC) in uEVs, and assessed whether NCC abundance in uEVs predicts the blood pressure response to thiazide diuretics. Our results show that in kidney transplant recipients treated with cyclosporine (n = 9) or tacrolimus (n = 23), the abundance of both tNCC and pNCC in uEVs is 4–5 fold higher than in CNI-free kidney transplant recipients (n = 13) or healthy volunteers (n = 6). In hypertensive kidney transplant recipients, higher abundances of tNCC and pNCC prior to treatment with thiazides predicted the blood pressure response to thiazides. During thiazide treatment, the abundance of pNCC in uEVs increased in responders (n = 10), but markedly decreased in non-responders (n = 8). Thus, our results show that CNIs increase the abundance of both tNCC and pNCC in uEVs, and these increases correlate with the blood pressure response to thiazides. This implies that assessment of NCC in uEVs could represent an alternate method to guide anti-hypertensive therapy in kidney transplant recipients.
Collapse
Affiliation(s)
- Omar A. Z. Tutakhel
- Department of Physiology, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Nijmegen, The Netherlands
| | - Arthur D. Moes
- Department of Internal Medicine, Nephrology and Transplantation, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Marco A. Valdez-Flores
- Department of Physiology, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Nijmegen, The Netherlands
- Programa Regional en Doctorado en Biotecnología, Universidad Autónoma de Sinaloa, Sinaloa, Mexico
| | - Marleen L. A. Kortenoeven
- Department of Biomedicine, Center for Interaction of Proteins in Epithelial Transport, Aarhus University, Aarhus, Denmark
| | - Mathijs v. D. Vrie
- Department of Nephrology, Radboud university medical center, Radboud Institute for Molecular Life Sciences, Nijmegen, The Netherlands
| | - Sabina Jeleń
- Department of Physiology, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Nijmegen, The Netherlands
| | - Robert A. Fenton
- Department of Biomedicine, Center for Interaction of Proteins in Epithelial Transport, Aarhus University, Aarhus, Denmark
| | - Robert Zietse
- Department of Internal Medicine, Nephrology and Transplantation, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Joost G. J. Hoenderop
- Department of Physiology, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Nijmegen, The Netherlands
| | - Ewout J. Hoorn
- Department of Internal Medicine, Nephrology and Transplantation, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Luuk Hilbrands
- Department of Nephrology, Radboud university medical center, Radboud Institute for Molecular Life Sciences, Nijmegen, The Netherlands
| | - René J. M. Bindels
- Department of Physiology, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Nijmegen, The Netherlands
- * E-mail:
| |
Collapse
|
30
|
Phosphorylation by PKC and PKA regulate the kinase activity and downstream signaling of WNK4. Proc Natl Acad Sci U S A 2017; 114:E879-E886. [PMID: 28096417 DOI: 10.1073/pnas.1620315114] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
With-no-lysine kinase 4 (WNK4) regulates electrolyte homeostasis and blood pressure. WNK4 phosphorylates the kinases SPAK (Ste20-related proline alanine-rich kinase) and OSR1 (oxidative stress responsive kinase), which then phosphorylate and activate the renal Na-Cl cotransporter (NCC). WNK4 levels are regulated by binding to Kelch-like 3, targeting WNK4 for ubiquitylation and degradation. Phosphorylation of Kelch-like 3 by PKC or PKA downstream of AngII or vasopressin signaling, respectively, abrogates binding. We tested whether these pathways also affect WNK4 phosphorylation and activity. By tandem mass spectrometry and use of phosphosite-specific antibodies, we identified five WNK4 sites (S47, S64, S1169, S1180, S1196) that are phosphorylated downstream of AngII signaling in cultured cells and in vitro by PKC and PKA. Phosphorylation at S64 and S1196 promoted phosphorylation of the WNK4 kinase T-loop at S332, which is required for kinase activation, and increased phosphorylation of SPAK. Volume depletion induced phosphorylation of these sites in vivo, predominantly in the distal convoluted tubule. Thus, AngII, in addition to increasing WNK4 levels, also modulates WNK4 kinase activity via phosphorylation of sites outside the kinase domain.
Collapse
|
31
|
Rashmi P, Colussi G, Ng M, Wu X, Kidwai A, Pearce D. Glucocorticoid-induced leucine zipper protein regulates sodium and potassium balance in the distal nephron. Kidney Int 2017; 91:1159-1177. [PMID: 28094030 DOI: 10.1016/j.kint.2016.10.038] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Revised: 10/06/2016] [Accepted: 10/27/2016] [Indexed: 01/21/2023]
Abstract
Glucocorticoid induced leucine zipper protein (GILZ) is an aldosterone-regulated protein that controls sodium transport in cultured kidney epithelial cells. Mice lacking GILZ have been reported previously to have electrolyte abnormalities. However, the mechanistic basis has not been explored. Here we provide evidence supporting a role for GILZ in modulating the balance of renal sodium and potassium excretion by regulating the sodium-chloride cotransporter (NCC) activity in the distal nephron. Gilz-/- mice have a higher plasma potassium concentration and lower fractional excretion of potassium than wild type mice. Furthermore, knockout mice are more sensitive to NCC inhibition by thiazides than are the wild type mice, and their phosphorylated NCC expression is higher. Despite increased NCC activity, knockout mice do not have higher blood pressure than wild type mice. However, during sodium deprivation, knockout mice come into sodium balance more quickly, than do the wild type, without a significant increase in plasma renin activity. Upon prolonged sodium restriction, knockout mice develop frank hyperkalemia. Finally, in HEK293T cells, exogenous GILZ inhibits NCC activity at least in part by inhibiting SPAK phosphorylation. Thus, GILZ promotes potassium secretion by inhibiting NCC and enhancing distal sodium delivery to the epithelial sodium channel. Additionally, Gilz-/- mice have features resembling familial hyperkalemic hypertension, a human disorder that manifests with hyperkalemia associated variably with hypertension.
Collapse
Affiliation(s)
- Priyanka Rashmi
- Division of Nephrology, Department of Medicine, University of California, San Francisco, California, USA
| | - GianLuca Colussi
- Department of Experimental and Clinical Medical Sciences, University of Udine, Udine, Italy
| | - Michael Ng
- Division of Nephrology, Department of Medicine, University of California, San Francisco, California, USA
| | - Xinhao Wu
- Division of Nephrology, Department of Medicine, University of California, San Francisco, California, USA
| | - Atif Kidwai
- Division of Nephrology, Department of Medicine, University of California, San Francisco, California, USA
| | - David Pearce
- Division of Nephrology, Department of Medicine, University of California, San Francisco, California, USA.
| |
Collapse
|
32
|
Ong GSY, Young MJ. Mineralocorticoid regulation of cell function: the role of rapid signalling and gene transcription pathways. J Mol Endocrinol 2017; 58:R33-R57. [PMID: 27821439 DOI: 10.1530/jme-15-0318] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 11/06/2016] [Indexed: 12/22/2022]
Abstract
The mineralocorticoid receptor (MR) and mineralocorticoids regulate epithelial handling of electrolytes, and induces diverse effects on other tissues. Traditionally, the effects of MR were ascribed to ligand-receptor binding and activation of gene transcription. However, the MR also utilises a number of intracellular signalling cascades, often by transactivating unrelated receptors, to change cell function more rapidly. Although aldosterone is the physiological mineralocorticoid, it is not the sole ligand for MR. Tissue-selective and mineralocorticoid-specific effects are conferred through the enzyme 11β-hydroxysteroid dehydrogenase 2, cellular redox status and properties of the MR itself. Furthermore, not all aldosterone effects are mediated via MR, with implication of the involvement of other membrane-bound receptors such as GPER. This review will describe the ligands, receptors and intracellular mechanisms available for mineralocorticoid hormone and receptor signalling and illustrate their complex interactions in physiology and disease.
Collapse
Affiliation(s)
- Gregory S Y Ong
- Cardiovascular Endocrinology LaboratoryCentre for Endocrinology and Metabolism, Hudson Institute of Medical Research, Clayton, Victoria, Australia
- Department of MedicineSchool of Clinical Sciences, Monash University, Clayton, Victoria, Australia
| | - Morag J Young
- Cardiovascular Endocrinology LaboratoryCentre for Endocrinology and Metabolism, Hudson Institute of Medical Research, Clayton, Victoria, Australia
- Department of PhysiologySchool of Biomedical Sciences, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
33
|
Hadchouel J, Ellison DH, Gamba G. Regulation of Renal Electrolyte Transport by WNK and SPAK-OSR1 Kinases. Annu Rev Physiol 2016; 78:367-89. [PMID: 26863326 DOI: 10.1146/annurev-physiol-021115-105431] [Citation(s) in RCA: 154] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The discovery of four genes responsible for pseudohypoaldosteronism type II, or familial hyperkalemic hypertension, which features arterial hypertension with hyperkalemia and metabolic acidosis, unmasked a complex multiprotein system that regulates electrolyte transport in the distal nephron. Two of these genes encode the serine-threonine kinases WNK1 and WNK4. The other two genes [kelch-like 3 (KLHL3) and cullin 3 (CUL3)] form a RING-type E3-ubiquitin ligase complex that modulates WNK1 and WNK4 abundance. WNKs regulate the activity of the Na(+):Cl(-) cotransporter (NCC), the epithelial sodium channel (ENaC), the renal outer medullary potassium channel (ROMK), and other transport pathways. Interestingly, the modulation of NCC occurs via the phosphorylation by WNKs of other serine-threonine kinases known as SPAK-OSR1. In contrast, the process of regulating the channels is independent of SPAK-OSR1. We present a review of the remarkable advances in this area in the past 10 years.
Collapse
Affiliation(s)
- Juliette Hadchouel
- INSERM UMR970, Paris Cardiovascular Research Center, 75015 Paris, France.,Faculty of Medicine, Paris Descartes University, Sorbonne Paris Cité, 75006 Paris, France
| | - David H Ellison
- Oregon Clinical and Translational Research Institute, Oregon Health & Science University, Portland, Oregon 97239
| | - Gerardo Gamba
- Molecular Physiology Unit, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, and Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Tlalpan, Mexico City 14080, Mexico;
| |
Collapse
|
34
|
Abstract
Fibroblast growth factor-23 (FGF23) is a bone-derived hormone known to suppress phosphate reabsorption and vitamin D hormone production in the kidney. Klotho was originally discovered as an anti-aging factor, but the functional role of Klotho is still a controversial issue. Three major functions have been proposed, a hormonal function of soluble Klotho, an enzymatic function as glycosidase, and the function as an obligatory co-receptor for FGF23 signaling. The purpose of this review is to highlight the recent advances in the area of FGF23 and Klotho signaling in the kidney, in the parathyroid gland, in the cardiovascular system, in bone, and in the central nervous system. During recent years, major new functions of FGF23 and Klotho have been discovered in these organ systems. Based on these novel findings, FGF23 has emerged as a pleiotropic endocrine and auto-/paracrine factor influencing not only mineral metabolism but also cardiovascular function.
Collapse
|
35
|
Lou Y, Zhang F, Luo Y, Wang L, Huang S, Jin F. Serum and Glucocorticoid Regulated Kinase 1 in Sodium Homeostasis. Int J Mol Sci 2016; 17:ijms17081307. [PMID: 27517916 PMCID: PMC5000704 DOI: 10.3390/ijms17081307] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 08/02/2016] [Accepted: 08/03/2016] [Indexed: 12/13/2022] Open
Abstract
The ubiquitously expressed serum and glucocorticoid regulated kinase 1 (SGK1) is tightly regulated by osmotic and hormonal signals, including glucocorticoids and mineralocorticoids. Recently, SGK1 has been implicated as a signal hub for the regulation of sodium transport. SGK1 modulates the activities of multiple ion channels and carriers, such as epithelial sodium channel (ENaC), voltage-gated sodium channel (Nav1.5), sodium hydrogen exchangers 1 and 3 (NHE1 and NHE3), sodium-chloride symporter (NCC), and sodium-potassium-chloride cotransporter 2 (NKCC2); as well as the sodium-potassium adenosine triphosphatase (Na+/K+-ATPase) and type A natriuretic peptide receptor (NPR-A). Accordingly, SGK1 is implicated in the physiology and pathophysiology of Na+ homeostasis. Here, we focus particularly on recent findings of SGK1’s involvement in Na+ transport in renal sodium reabsorption, hormone-stimulated salt appetite and fluid balance and discuss the abnormal SGK1-mediated Na+ reabsorption in hypertension, heart disease, edema with diabetes, and embryo implantation failure.
Collapse
Affiliation(s)
- Yiyun Lou
- Department of Reproductive Endocrinology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, Zhejiang, China.
- Department of Gynaecology, Hangzhou Hospital of Traditional Chinese Medicine, Hangzhou 310007, Zhejiang, China.
| | - Fan Zhang
- Department of Reproductive Endocrinology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, Zhejiang, China.
| | - Yuqin Luo
- Department of Reproductive Endocrinology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, Zhejiang, China.
| | - Liya Wang
- Department of Reproductive Endocrinology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, Zhejiang, China.
| | - Shisi Huang
- Department of Reproductive Endocrinology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, Zhejiang, China.
| | - Fan Jin
- Department of Reproductive Endocrinology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, Zhejiang, China.
- Key Laboratory of Reproductive Genetics, National Ministry of Education (Zhejiang University), Women's Reproductive Healthy Laboratory of Zhejiang Province, Hangzhou 310058, Zhejiang, China.
| |
Collapse
|
36
|
Pavlov TS, Levchenko V, Ilatovskaya DV, Moreno C, Staruschenko A. Renal sodium transport in renin-deficient Dahl salt-sensitive rats. J Renin Angiotensin Aldosterone Syst 2016; 17:17/3/1470320316653858. [PMID: 27443990 PMCID: PMC5100984 DOI: 10.1177/1470320316653858] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2016] [Accepted: 05/15/2016] [Indexed: 01/01/2023] Open
Abstract
Objective: The Dahl salt-sensitive rat is a well-established model of salt-sensitive hypertension. The goal of this study was to assess the expression and activity of renal sodium channels and transporters in the renin-deficient salt-sensitive rat. Methods: Renin knockout (Ren−/−) rats created on the salt-sensitive rat background were used to investigate the role of renin in the regulation of ion transport in salt-sensitive hypertension. Western blotting and patch-clamp analyses were utilized to assess the expression level and activity of Na+ transporters. Results: It has been described previously that Ren−/− rats exhibit severe kidney underdevelopment, polyuria, and lower body weight and blood pressure compared to their wild-type littermates. Here we found that renin deficiency led to decreased expression of sodium-hydrogen antiporter (NHE3), the Na+/H+ exchanger involved in Na+ absorption in the proximal tubules, but did not affect the expression of Na-K-Cl cotransporter (NKCC2), the main transporter in the loop of Henle. In the distal nephron, the expression of sodium chloride cotransporter (NCC) was lower in Ren−/− rats. Single-channel patch clamp analysis detected decreased ENaC activity in Ren−/− rats which was mediated via changes in the channel open probability. Conclusion: These data illustrate that renin deficiency leads to significant dysregulation of ion transporters.
Collapse
Affiliation(s)
| | | | | | - Carol Moreno
- Department of Physiology, Medical College of Wisconsin, USA Cardiovascular and Metabolic Diseases, MedImmune, Cambridge, UK
| | - Alexander Staruschenko
- Department of Physiology, Medical College of Wisconsin, USA Cardiovascular Center, Medical College of Wisconsin, USA
| |
Collapse
|
37
|
Dbouk HA, Huang CL, Cobb MH. Hypertension: the missing WNKs. Am J Physiol Renal Physiol 2016; 311:F16-27. [PMID: 27009339 PMCID: PMC4967160 DOI: 10.1152/ajprenal.00358.2015] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 03/16/2016] [Indexed: 12/23/2022] Open
Abstract
The With no Lysine [K] (WNK) family of enzymes are central in the regulation of blood pressure. WNKs have been implicated in hereditary hypertension disorders, mainly through control of the activity and levels of ion cotransporters and channels. Actions of WNKs in the kidney have been heavily investigated, and recent studies have provided insight into not only the regulation of these enzymes but also how mutations in WNKs and their interacting partners contribute to hypertensive disorders. Defining the roles of WNKs in the cardiovascular system will provide clues about additional mechanisms by which WNKs can regulate blood pressure. This review summarizes recent developments in the regulation of the WNK signaling cascade and its role in regulation of blood pressure.
Collapse
Affiliation(s)
- Hashem A Dbouk
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas; and
| | - Chou-Long Huang
- Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Melanie H Cobb
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas; and
| |
Collapse
|
38
|
Savas Ü, Wei S, Hsu MH, Falck JR, Guengerich FP, Capdevila JH, Johnson EF. 20-Hydroxyeicosatetraenoic Acid (HETE)-dependent Hypertension in Human Cytochrome P450 (CYP) 4A11 Transgenic Mice: NORMALIZATION OF BLOOD PRESSURE BY SODIUM RESTRICTION, HYDROCHLOROTHIAZIDE, OR BLOCKADE OF THE TYPE 1 ANGIOTENSIN II RECEPTOR. J Biol Chem 2016; 291:16904-19. [PMID: 27298316 DOI: 10.1074/jbc.m116.732297] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Indexed: 11/06/2022] Open
Abstract
Male and female homozygous 129/Sv mice carrying four copies of the human cytochrome P450 4A11 gene (CYP4A11) under control of its native promoter (B-129/Sv-4A11(+/+)) develop hypertension (142 ± 8 versus 113 ± 7 mm Hg systolic blood pressure (BP)), and exhibit increased 20-hydroxyeicosatetraenoic acid (20-HETE) in kidney and urine. The hypertension is reversible by a low-sodium diet and by the CYP4A inhibitor HET0016. B-129/Sv-4A11(+/+) mice display an 18% increase of plasma potassium (p < 0.02), but plasma aldosterone, angiotensin II (ANGII), and renin activities are unchanged. This phenotype resembles human genetic disorders with elevated activity of the sodium chloride co-transporter (NCC) and, accordingly, NCC abundance is increased by 50% in transgenic mice, and NCC levels are normalized by HET0016. ANGII is known to increase NCC abundance, and renal mRNA levels of its precursor angiotensinogen are increased 2-fold in B-129/Sv-4A11(+/+), and blockade of the ANGII receptor type 1 with losartan normalizes BP. A pro-hypertensive role for 20-HETE was implicated by normalization of BP and reversal of renal angiotensin mRNA increases by administration of the 20-HETE antagonists 2-((6Z,15Z)-20-hydroxyicosa-6,15-dienamido)acetate or (S)-2-((6Z,15Z)-20-hydroxyicosa-6,15-dienamido)succinate. SGK1 expression is also increased in B-129/Sv-4A11(+/+) mice and paralleled increases seen for NCC. Losartan, HET0016, and 20-HETE antagonists each normalized SGK1 mRNA expression. These results point to a potential 20-HETE dependence of intrarenal angiotensinogen production and ANGII receptor type 1 activation that are associated with increases in NCC and SGK1 and identify elevated P450 4A11 activity and 20-HETE as potential risk factors for salt-sensitive human hypertension by perturbation of the renal renin-angiotensin axis.
Collapse
Affiliation(s)
- Üzen Savas
- From the Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, California 92037
| | | | - Mei-Hui Hsu
- From the Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, California 92037
| | - John R Falck
- the Department of Biochemistry, The University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 75390
| | - F Peter Guengerich
- Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, and
| | | | - Eric F Johnson
- From the Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, California 92037,
| |
Collapse
|
39
|
Abstract
PURPOSE OF REVIEW Fibroblast growth factor-23 (FGF23) is a bone-derived hormone known to suppress phosphate reabsorption in the kidney. The purpose of this review was to highlight the recent advances in the area of FGF23-regulated solute transport in the kidney. RECENT FINDINGS Recent evidence suggests that FGF23 suppresses phosphate reabsorption in renal proximal tubular epithelium by a Klotho-dependent, FGF receptor (FGFR)-1 and FGFR4-mediated signaling mechanism that may also involve Janus kinase 3. Moreover, it was recently established that FGF23 signaling in the distal renal tubule targets with-no-lysine kinase-4 (WNK4), a key molecule in the regulation of solute transport in the distal nephron. By targeting WNK4, FGF23 has been shown to increase the membrane abundance of the epithelial calcium channel TRPV5 and of the sodium-chloride cotransporter NCC, resulting in augmented renal calcium and sodium reabsorption. SUMMARY Significant progress has been made in the further characterization of the signaling pathways involved in the FGF23-induced inhibition of phosphate transport in proximal tubular epithelium, and major new functions of FGF23 in solute transport have been discovered in distal renal tubules. The calcium- and sodium-conserving functions of FGF23 may have major implications for the pathophysiology of cardiovascular diseases. VIDEO ABSTRACT.
Collapse
|
40
|
Al-Qusairi L, Basquin D, Roy A, Stifanelli M, Rajaram RD, Debonneville A, Nita I, Maillard M, Loffing J, Subramanya AR, Staub O. Renal tubular SGK1 deficiency causes impaired K+ excretion via loss of regulation of NEDD4-2/WNK1 and ENaC. Am J Physiol Renal Physiol 2016; 311:F330-42. [PMID: 27009335 DOI: 10.1152/ajprenal.00002.2016] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2016] [Accepted: 03/21/2016] [Indexed: 11/22/2022] Open
Abstract
The stimulation of postprandial K(+) clearance involves aldosterone-independent and -dependent mechanisms. In this context, serum- and glucocorticoid-induced kinase (SGK)1, a ubiquitously expressed kinase, is one of the primary aldosterone-induced proteins in the aldosterone-sensitive distal nephron. Germline inactivation of SGK1 suggests that this kinase is fundamental for K(+) excretion under conditions of K(+) load, but the specific role of renal SGK1 remains elusive. To avoid compensatory mechanisms that may occur during nephrogenesis, we used inducible, nephron-specific Sgk1(Pax8/LC1) mice to assess the role of renal tubular SGK1 in K(+) regulation. Under a standard diet, these animals exhibited normal K(+) handling. When challenged by a high-K(+) diet, they developed severe hyperkalemia accompanied by a defect in K(+) excretion. Molecular analysis revealed reduced neural precursor cell expressed developmentally downregulated protein (NEDD)4-2 phosphorylation and total expression. γ-Epithelial Na(+) channel (ENaC) expression and α/γENaC proteolytic processing were also decreased in mutant mice. Moreover, with no lysine kinase (WNK)1, which displayed in control mice punctuate staining in the distal convoluted tubule and diffuse distribution in the connecting tubule/cortical colleting duct, was diffused in the distal convoluted tubule and less expressed in the connecting tubule/collecting duct of Sgk(Pax8/LC1) mice. Moreover, Ste20-related proline/alanine-rich kinase phosphorylation, and Na(+)-Cl(-) cotransporter phosphorylation/apical localization were reduced in mutant mice. Consistent with the altered WNK1 expression, increased renal outer medullary K(+) channel apical localization was observed. In conclusion, our data suggest that renal tubular SGK1 is important in the regulation of K(+) excretion via the control of NEDD4-2, WNK1, and ENaC.
Collapse
Affiliation(s)
- Lama Al-Qusairi
- Department of Pharmacology and Toxicology, University of Lausanne, Lausanne, Switzerland; National Centre of Competence in Research "Kidney.ch," Lausanne, Switzerland
| | - Denis Basquin
- Department of Pharmacology and Toxicology, University of Lausanne, Lausanne, Switzerland; National Centre of Competence in Research "Kidney.ch," Lausanne, Switzerland
| | - Ankita Roy
- Department of Medicine, University of Pittsburgh School of Medicine and Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, Pennsylvania
| | - Matteo Stifanelli
- Department of Pharmacology and Toxicology, University of Lausanne, Lausanne, Switzerland
| | - Renuga Devi Rajaram
- Department of Pharmacology and Toxicology, University of Lausanne, Lausanne, Switzerland
| | - Anne Debonneville
- Department of Pharmacology and Toxicology, University of Lausanne, Lausanne, Switzerland
| | - Izabela Nita
- Department of Pharmacology and Toxicology, University of Lausanne, Lausanne, Switzerland
| | - Marc Maillard
- Service of Nephrology, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Johannes Loffing
- Institute of Anatomy, University of Zurich, Zurich, Switzerland; and National Centre of Competence in Research "Kidney.ch," Lausanne, Switzerland
| | - Arohan R Subramanya
- Department of Medicine, University of Pittsburgh School of Medicine and Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, Pennsylvania
| | - Olivier Staub
- Department of Pharmacology and Toxicology, University of Lausanne, Lausanne, Switzerland; National Centre of Competence in Research "Kidney.ch," Lausanne, Switzerland
| |
Collapse
|
41
|
The Role of Epithelial Sodium Channel ENaC and the Apical Cl-/HCO3- Exchanger Pendrin in Compensatory Salt Reabsorption in the Setting of Na-Cl Cotransporter (NCC) Inactivation. PLoS One 2016; 11:e0150918. [PMID: 26963391 PMCID: PMC4786216 DOI: 10.1371/journal.pone.0150918] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 02/18/2016] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND The absence of NCC does not cause significant salt wasting in NCC deficient mice under basal conditions. We hypothesized that ENaC and pendrin play important roles in compensatory salt absorption in the setting of NCC inactivation, and their inhibition and/or downregulation can cause significant salt wasting in NCC KO mice. METHODS WT and NCC KO mice were treated with a daily injection of either amiloride, an inhibitor of ENaC, or acetazolamide (ACTZ), a blocker of salt and bicarbonate reabsorption in the proximal tubule and an inhibitor of carbonic anhydrases in proximal tubule and intercalated cells, or a combination of acetazolamide plus amiloride for defined durations. Animals were subjected to daily balance studies. At the end of treatment, kidneys were harvested and examined. Blood samples were collected for electrolytes and acid base analysis. RESULTS Amiloride injection significantly increased the urine output (UO) in NCC KO mice (from 1.3 ml/day before to 2.5 ml/day after amiloride, p<0.03, n = 4) but caused only a slight change in UO in WT mice (p>0.05). The increase in UO in NCC KO mice was associated with a significant increase in sodium excretion (from 0.25 mmol/24 hrs at baseline to 0.35 mmol/24 hrs after amiloride injection, p<0.05, n = 4). Daily treatment with ACTZ for 6 days resulted in >80% reduction of kidney pendrin expression in both WT and NCC KO mice. However, ACTZ treatment noticeably increased urine output and salt excretion only in NCC KO mice (with urine output increasing from a baseline of 1.1 ml/day to 2.3 ml/day and sodium excretion increasing from 0.22 mmole/day before to 0.31 mmole/day after ACTZ) in NCC KO mice; both parameters were significantly higher than in WT mice. Western blot analysis demonstrated significant enhancement in ENaC expression in medulla and cortex of NCC KO and WT mice in response to ACTZ injection for 6 days, and treatment with amiloride in ACTZ-pretreated mice caused a robust increase in salt excretion in both NCC KO and WT mice. Pendrin KO mice did not display a significant increase in urine output or salt excretion after treatment with amiloride or ACTZ. CONCLUSION 1. ENaC plays an important role in salt reabsorption in NCC KO mice. 2. NCC contributes to compensatory salt reabsorption in the setting of carbonic anhydrase inhibition, which is associated with increased delivery of salt from the proximal tubule and the down regulation of pendrin. 3. ENaC is upregulated by ACTZ treatment and its inhibition by amiloride causes significant diuresis in NCC KO and WT mice. Despite being considered mild agents individually, we propose that the combination of acetazolamide and amiloride in the setting of NCC inhibition (i.e., hydrochlorothiazide) will be a powerful diuretic regimen.
Collapse
|
42
|
Abstract
The impaired capacity of the kidney to excrete sodium plays an essential role in the development of hypertension. Adrenal corticosteroids control renal handling of sodium by regulating tubular sodium reabsorption in the distal nephron where both mineralocorticoid receptors (MR) and glucocorticoid receptors are expressed. In addition, cell type- and segment-specific expression of 11β-HSD2 and sodium transporters such as Na-Cl cotransporter (NCC), epithelial sodium channel (ENaC), and pendrin/Na(+)-driven Cl(-)/HCO3 (-) exchanger (NDCBE) builds a distinctive model of sodium transport in the aldosterone-sensitive distal nephron. Aberrant MR activation in the distal nephron triggers salt-sensitive hypertension and hypokalemia through inappropriate sodium reabsorption and potassium secretion. However, MR activity is not necessarily modulated by the ligand alone. Recently, several lines of evidence revealed alternative mechanisms that regulate the activity of MR in a ligand-independent manner or through ligand binding modulation. This review summarizes the disorders related to MR activation in individual tubular cells and highlights the renal mechanism of salt-sensitive hypertension and new approaches for the prevention and treatment of this disease.
Collapse
Affiliation(s)
- Nobuhiro Ayuzawa
- Department of Clinical Epigenetics, Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8904, Japan
| | | |
Collapse
|
43
|
Tutakhel OAZ, Jeleń S, Valdez-Flores M, Dimke H, Piersma SR, Jimenez CR, Deinum J, Lenders JW, Hoenderop JGJ, Bindels RJM. Alternative splice variant of the thiazide-sensitive NaCl cotransporter: a novel player in renal salt handling. Am J Physiol Renal Physiol 2016; 310:F204-16. [DOI: 10.1152/ajprenal.00429.2015] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 10/31/2015] [Indexed: 11/22/2022] Open
Abstract
The thiazide-sensitive NaCl cotransporter (NCC) is an important pharmacological target in the treatment of hypertension. The human SLC12A3 gene, encoding NCC, gives rise to three isoforms. Only the third isoform has been extensively investigated. The aim of the present study was, therefore, to establish the abundance and localization of the almost identical isoforms 1 and 2 (NCC1/2) in the human kidney and to determine their functional properties and regulation in physiological conditions. Immunohistochemical analysis of NCC1/2 in the human kidney revealed that NCC1/2 localizes to the apical plasma membrane of the distal convoluted tubule. Importantly, NCC1/2 mRNA constitutes ∼44% of all NCC isoforms in the human kidney. Functional analysis performed in the Xenopus laevis oocyte revealed that thiazide-sensitive 22Na+ transport of NCC1 was significantly increased compared with NCC3. Mimicking a constitutively active phosphorylation site at residue 811 (S811D) in NCC1 further augmented Na+ transport, while a nonphosphorylatable variant (S811A) of NCC1 prevented this enhanced response. Analysis of human urinary exosomes demonstrated that water loading in human subjects significantly reduces the abundance of NCC1/2 in urinary exosomes. The present study highlights that previously underrepresented NCC1/2 is a fully functional thiazide-sensitive NaCl-transporting protein. Being significantly expressed in the kidney, it may constitute a unique route of renal NaCl reabsorption and could, therefore, play an important role in blood pressure regulation.
Collapse
Affiliation(s)
- Omar A. Z. Tutakhel
- Department of Physiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Sabina Jeleń
- Department of Physiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Marco Valdez-Flores
- Department of Physiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Henrik Dimke
- Department of Cardiovascular and Renal Research, University of Southern Denmark, Odense, Denmark
| | - Sander R. Piersma
- OncoProteomics Laboratory, Department of Medical Oncology, VU University Medical Center, Amsterdam, The Netherlands
| | - Connie R. Jimenez
- OncoProteomics Laboratory, Department of Medical Oncology, VU University Medical Center, Amsterdam, The Netherlands
| | - Jaap Deinum
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Jacques W. Lenders
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Medicine III, University Hospital Carl Gustav Carus, Technische Universität, Dresden, Germany; and
| | - Joost G. J. Hoenderop
- Department of Physiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - René J. M. Bindels
- Department of Physiology, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
44
|
Chronic Metabolic Acidosis Activates Renal Tubular Sodium Chloride Cotransporter through Angiotension II-dependent WNK4-SPAK Phosphorylation Pathway. Sci Rep 2016; 6:18360. [PMID: 26728390 PMCID: PMC4700450 DOI: 10.1038/srep18360] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 11/16/2015] [Indexed: 12/30/2022] Open
Abstract
The mechanism by which chronic metabolic acidosis (CMA) regulates sodium (Na(+))-chloride (Cl(-)) cotransporter (NCC) in the renal distal convoluted tubules remains unexplored. We examined the role of STE20/SPS1-related proline/alanine-rich kinase (SPAK) and with-no-lysine kinase 4 (WNK4) on expression of NCC in mouse models of CMA. CMA was induced by NH4Cl in wild type mice (WTA mice), SPAK, and WNK4 knockout mice. The quantities of Ncc mRNA, expression of total NCC, phosphorylated (p)-NCC, SPAK and WNK4 in the kidneys as well as NCC inhibition with hydrochlorothiazide and Na(+) balance were evaluated. Relative to WT mice, WTA mice had similar levels of Ncc mRNA, but increased expression of total and p-NCC, SPAK, and WNK4 and an exaggerated response to hydrochlorothiazide which could not be observed in SPAK or WNK4 knockout mice with CMA. In WTA mice, increased plasma renin activity, aldosterone and angiotensin II concentrations accompanied by a significantly negative Na(+) balance. High Na(+) diet abolished the enhanced NCC expression in WTA mice. Furthermore, an angiotensin II type 1 receptor blocker rather than a mineralocorticoid receptor antagonist exerted a marked inhibition on Na(+) reabsorption and NCC phosphorylation in WTA mice. CMA increases WNK4-SPAK-dependent NCC phosphorylation and appears to be secondary to previous natriuresis with volume-dependent angiotensin II activation.
Collapse
|
45
|
Rojas-Vega L, Gamba G. Mini-review: regulation of the renal NaCl cotransporter by hormones. Am J Physiol Renal Physiol 2016; 310:F10-4. [DOI: 10.1152/ajprenal.00354.2015] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The renal thiazide-sensitive NaCl cotransporter, NCC, is the major pathway for salt reabsorption in the distal convoluted tubule. The activity of this cotransporter is critical for regulation of several physiological variables such as blood pressure, serum potassium, acid base metabolism, and urinary calcium excretion. Therefore, it is not surprising that numerous hormone-signaling pathways regulate NCC activity to maintain homeostasis. In this review, we will provide an overview of the most recent evidence on NCC modulation by aldosterone, angiotensin II, vasopressin, glucocorticoids, insulin, norepinephrine, estradiol, progesterone, prolactin, and parathyroid hormone.
Collapse
Affiliation(s)
- Lorena Rojas-Vega
- Molecular Physiology Unit, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico; and
- Department of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Gerardo Gamba
- Molecular Physiology Unit, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico; and
- Department of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| |
Collapse
|
46
|
Zhou X, Chen K, Wang Y, Schuman M, Lei H, Sun Z. Antiaging Gene Klotho Regulates Adrenal CYP11B2 Expression and Aldosterone Synthesis. J Am Soc Nephrol 2015; 27:1765-76. [PMID: 26471128 DOI: 10.1681/asn.2015010093] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Accepted: 08/27/2015] [Indexed: 12/11/2022] Open
Abstract
Deficiency of the antiaging gene Klotho (KL) induces renal damage and hypertension through unknown mechanisms. In this study, we assessed whether KL regulates expression of CYP11B2, a key rate-limiting enzyme in aldosterone synthesis, in adrenal glands. We found that haplodeficiency of KL(+/-) in mice increased the plasma level of aldosterone by 16 weeks of age, which coincided with spontaneous and persistent elevation of BP. Blockade of aldosterone actions by eplerenone reversed KL deficiency-induced hypertension and attenuated the kidney damage. Protein expression of CYP11B2 was upregulated in adrenal cortex of KL(+/-) mice. KL and CYP11B2 proteins colocalized in adrenal zona glomerulosa cells. Silencing of KL upregulated and overexpression of KL downregulated CYP11B2 expression in human adrenocortical cells. Notably, silencing of KL decreased expression of SF-1, a negative transcription factor of CYP11B2, but increased phosphorylation of ATF2, a positive transcription factor of CYP11B2, which may contribute to upregulation of CYP11B2 expression. Therefore, these results show that KL regulates adrenal CYP11B2 expression. KL deficiency-induced spontaneous hypertension and kidney damage may be partially attributed to the upregulation of CYP11B2 expression and aldosterone synthesis.
Collapse
Affiliation(s)
- Xiaoli Zhou
- Department of Cardiology, First Affiliated Hospital, Chongqing Medical University, Chongqing, China; and Department of Physiology, College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Kai Chen
- Department of Physiology, College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Yongjun Wang
- Department of Physiology, College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Mariano Schuman
- Department of Physiology, College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Han Lei
- Department of Cardiology, First Affiliated Hospital, Chongqing Medical University, Chongqing, China; and
| | - Zhongjie Sun
- Department of Physiology, College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| |
Collapse
|
47
|
Abstract
PURPOSE OF REVIEW NEDD4-2 is an ubiquitin-protein ligase that was originally identified as an interactor of the epithelial Na+ channel (ENaC); this interaction is defective in Liddle's syndrome, causing elevated ENaC activity and salt-sensitive hypertension. In this review we aim to highlight progress achieved in recent years demonstrating that NEDD4-2 is involved in the control of Na+ transporters that are different from ENaC, but which also play a role in salt-sensitive hypertension. RECENT FINDINGS It has been shown that NEDD4-2 interacts with ubiquitylates and negatively regulates the thiazide-sensitive NCC (Na+,Cl- -cotransporter), both in vitro and in vivo in inducible, nephron-specific Nedd4-2 knockout mice. Moreover, evidence has been provided that NEDD4-2 is also involved in the regulation of human NHE3 (Na+,H+-exchanger 3) and NKCC2 (Na+,K+,2Cl- -cotransporter 2). SUMMARY The emerging role of NEDD4-2 in the regulation of different Na+ transporters along the nephron and the identification of human polymorphisms in the NEDD4-2 gene (Nedd4L) related to salt-sensitive hypertension makes this ubiquitin-protein ligase an interesting target for the development of antihypertensive drugs.
Collapse
|
48
|
Roles of Akt and SGK1 in the Regulation of Renal Tubular Transport. BIOMED RESEARCH INTERNATIONAL 2015; 2015:971697. [PMID: 26491696 PMCID: PMC4600925 DOI: 10.1155/2015/971697] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Accepted: 09/06/2015] [Indexed: 01/31/2023]
Abstract
A serine/threonine kinase Akt is a key mediator in various signaling pathways including regulation of renal tubular transport. In proximal tubules, Akt mediates insulin signaling via insulin receptor substrate 2 (IRS2) and stimulates sodium-bicarbonate cotransporter (NBCe1), resulting in increased sodium reabsorption. In insulin resistance, the IRS2 in kidney cortex is exceptionally preserved and may mediate the stimulatory effect of insulin on NBCe1 to cause hypertension in diabetes via sodium retention. Likewise, in distal convoluted tubules and cortical collecting ducts, insulin-induced Akt phosphorylation mediates several hormonal signals to enhance sodium-chloride cotransporter (NCC) and epithelial sodium channel (ENaC) activities, resulting in increased sodium reabsorption. Serum- and glucocorticoid-inducible kinase 1 (SGK1) mediates aldosterone signaling. Insulin can stimulate SGK1 to exert various effects on renal transporters. In renal cortical collecting ducts, SGK1 regulates the expression level of ENaC through inhibition of its degradation. In addition, SGK1 and Akt cooperatively regulate potassium secretion by renal outer medullary potassium channel (ROMK). Moreover, sodium-proton exchanger 3 (NHE3) in proximal tubules is possibly activated by SGK1. This review focuses on recent advances in understanding of the roles of Akt and SGK1 in the regulation of renal tubular transport.
Collapse
|
49
|
Roy A, Al-Qusairi L, Donnelly BF, Ronzaud C, Marciszyn AL, Gong F, Chang YPC, Butterworth MB, Pastor-Soler NM, Hallows KR, Staub O, Subramanya AR. Alternatively spliced proline-rich cassettes link WNK1 to aldosterone action. J Clin Invest 2015; 125:3433-48. [PMID: 26241057 DOI: 10.1172/jci75245] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Accepted: 06/11/2015] [Indexed: 11/17/2022] Open
Abstract
The thiazide-sensitive NaCl cotransporter (NCC) is important for renal salt handling and blood-pressure homeostasis. The canonical NCC-activating pathway consists of With-No-Lysine (WNK) kinases and their downstream effector kinases SPAK and OSR1, which phosphorylate NCC directly. The upstream mechanisms that connect physiological stimuli to this system remain obscure. Here, we have shown that aldosterone activates SPAK/OSR1 via WNK1. We identified 2 alternatively spliced exons embedded within a proline-rich region of WNK1 that contain PY motifs, which bind the E3 ubiquitin ligase NEDD4-2. PY motif-containing WNK1 isoforms were expressed in human kidney, and these isoforms were efficiently degraded by the ubiquitin proteasome system, an effect reversed by the aldosterone-induced kinase SGK1. In gene-edited cells, WNK1 deficiency negated regulatory effects of NEDD4-2 and SGK1 on NCC, suggesting that WNK1 mediates aldosterone-dependent activity of the WNK/SPAK/OSR1 pathway. Aldosterone infusion increased proline-rich WNK1 isoform abundance in WT mice but did not alter WNK1 abundance in hypertensive Nedd4-2 KO mice, which exhibit high baseline WNK1 and SPAK/OSR1 activity toward NCC. Conversely, hypotensive Sgk1 KO mice exhibited low WNK1 expression and activity. Together, our findings indicate that the proline-rich exons are modular cassettes that convert WNK1 into a NEDD4-2 substrate, thereby linking aldosterone and other NEDD4-2-suppressing antinatriuretic hormones to NCC phosphorylation status.
Collapse
|
50
|
Qi Y, Wang X, Rose KL, MacDonald WH, Zhang B, Schey KL, Luther JM. Activation of the Endogenous Renin-Angiotensin-Aldosterone System or Aldosterone Administration Increases Urinary Exosomal Sodium Channel Excretion. J Am Soc Nephrol 2015; 27:646-56. [PMID: 26113616 DOI: 10.1681/asn.2014111137] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Accepted: 04/22/2015] [Indexed: 01/01/2023] Open
Abstract
Urinary exosomes secreted by multiple cell types in the kidney may participate in intercellular signaling and provide an enriched source of kidney-specific proteins for biomarker discovery. Factors that alter the exosomal protein content remain unknown. To determine whether endogenous and exogenous hormones modify urinary exosomal protein content, we analyzed samples from 14 mildly hypertensive patients in a crossover study during a high-sodium (HS, 160 mmol/d) diet and low-sodium (LS, 20 mmol/d) diet to activate the endogenous renin-angiotensin-aldosterone system. We further analyzed selected exosomal protein content in a separate cohort of healthy persons receiving intravenous aldosterone (0.7 μg/kg per hour for 10 hours) versus vehicle infusion. The LS diet increased plasma renin activity and aldosterone concentration, whereas aldosterone infusion increased only aldosterone concentration. Protein analysis of paired urine exosome samples by liquid chromatography-tandem mass spectrometry-based multidimensional protein identification technology detected 2775 unique proteins, of which 316 exhibited significantly altered abundance during LS diet. Sodium chloride cotransporter (NCC) and α- and γ-epithelial sodium channel (ENaC) subunits from the discovery set were verified using targeted multiple reaction monitoring mass spectrometry quantified with isotope-labeled peptide standards. Dietary sodium restriction or acute aldosterone infusion similarly increased urine exosomal γENaC[112-122] peptide concentrations nearly 20-fold, which correlated with plasma aldosterone concentration and urinary Na/K ratio. Urine exosomal NCC and αENaC concentrations were relatively unchanged during these interventions. We conclude that urinary exosome content is altered by renin-angiotensin-aldosterone system activation. Urinary measurement of exosomal γENaC[112-122] concentration may provide a useful biomarker of ENaC activation in future clinical studies.
Collapse
Affiliation(s)
| | | | | | | | | | | | - James M Luther
- Division of Clinical Pharmacology, Department of Medicine, Division of Nephrology, Department of Medicine, and Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee
| |
Collapse
|