1
|
Kim HS, Kim MH, Jeon BY, Jang YK, Kim JK, Song HK, Kim K. Deep Sea Minerals Ameliorate Dermatophagoides Farinae- or 2,4-Dinitrochlorobenzene-Induced Atopic Dermatitis-like Skin Lesions in NC/Nga Mice. Biomedicines 2025; 13:861. [PMID: 40299438 PMCID: PMC12024790 DOI: 10.3390/biomedicines13040861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 03/19/2025] [Accepted: 03/21/2025] [Indexed: 04/30/2025] Open
Abstract
Background: Chronic pruritus and inflammatory skin lesions, characterized by high recurrence, are hallmarks of atopic dermatitis (AD). Despite its increasing prevalence, the development of therapeutic agents for AD remains limited. This study aimed to evaluate the therapeutic effects of deep sea minerals (DSMs) in mist and cream formulations on the development of AD-like skin lesions in NC/Nga mice exposed to either Dermatophagoides farinae body extract (Dfb) or 2,4-dinitrochlorobenzene (DNCB). Methods: To induce AD, 100 mg of Biostir AD cream containing crude Dfb or 200 µL of DNCB (1%) was topically applied to the dorsal skin of NC/Nga mice. Additionally, 200 µL of deep sea mineral mist (DSMM) and 10 mg of deep sea mineral cream (DSMC) were applied daily to the dorsal skin for 4 weeks. AD was assessed through visual observations, clinical scoring of skin severity, serological tests, and histological analysis. Results: Visual and clinical evaluations revealed that DSMs inhibited the formation of AD-like skin lesions. DSMs also significantly affected trans-epidermal water loss and erythema. Treatment with DSMs resulted in reduced serum levels of IgE, IFN-γ, and IL-4. Histological analysis indicated that DSMs decreased skin thickness. Immunostaining for the CD4 antigen demonstrated a reduced infiltration of CD4+ T cells, which drive the Th2 response in AD, following DSM treatment. Conclusions: In conclusion, the cream formulation of DSMs showed better results than the mist formulation. These results suggest that DSMs may be an effective treatment for AD-like skin lesions, especially in cream formulation.
Collapse
Affiliation(s)
- Hyo Sang Kim
- College of Veterinary Medicine, Kyungpook National University, Daegu 41566, Republic of Korea; (H.S.K.); (M.H.K.)
| | - Myeong Hwan Kim
- College of Veterinary Medicine, Kyungpook National University, Daegu 41566, Republic of Korea; (H.S.K.); (M.H.K.)
| | - Byeong Yeob Jeon
- Qualified Bio & Minerals Co., Ltd., Seoul 06752, Republic of Korea; (B.Y.J.); (Y.K.J.)
| | - You Kyung Jang
- Qualified Bio & Minerals Co., Ltd., Seoul 06752, Republic of Korea; (B.Y.J.); (Y.K.J.)
| | - Jeong Ki Kim
- MEDI Co., Ltd., Okcheon-eup 29040, Chungcheongbuk-do, Republic of Korea;
| | - Hyun Keun Song
- MEDI Co., Ltd., Okcheon-eup 29040, Chungcheongbuk-do, Republic of Korea;
| | - Kilsoo Kim
- College of Veterinary Medicine, Kyungpook National University, Daegu 41566, Republic of Korea; (H.S.K.); (M.H.K.)
| |
Collapse
|
2
|
Guo H, Yuan H, Yu Y, Sun J, Sun Y, Tang Y, Zheng F. Role of skin-homing t-cells in recurrent episodes of atopic dermatitis: a review. Front Immunol 2025; 16:1489277. [PMID: 40040698 PMCID: PMC11876967 DOI: 10.3389/fimmu.2025.1489277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Accepted: 01/30/2025] [Indexed: 03/06/2025] Open
Abstract
Atopic dermatitis (AD) is a chronic relapsing disease with complex pathogenesis. Among them, inflammation is one of the primary pathogenesis of AD. AD is characterized by infiltration of lymphocytes into the skin's dermis, and the skin homing of lymphocytes plays an essential role in the recurrence of AD. Currently, there is more and more evidence to support this view. This article reviews the relevant role of T lymphocyte skin-homing-related molecules in the recurrence of AD to provide a reference for the cure of AD.
Collapse
Affiliation(s)
- Huimin Guo
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Huimin Yuan
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
- Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Yanru Yu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Jingwei Sun
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Yan Sun
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Yang Tang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Fengjie Zheng
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
3
|
Shim KS, Kim HJ, Ji KY, Jung DH, Park SH, Song HK, Kim T, Kim KM. Rosmarinic Acid Ameliorates Dermatophagoides farinae Extract-Induced Atopic Dermatitis-like Skin Inflammation by Activating the Nrf2/HO-1 Signaling Pathway. Int J Mol Sci 2024; 25:12737. [PMID: 39684446 DOI: 10.3390/ijms252312737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 11/21/2024] [Accepted: 11/22/2024] [Indexed: 12/18/2024] Open
Abstract
Atopic dermatitis (AD) is one of the most common chronic inflammatory skin diseases. AD pathogenesis is associated with increased oxidative stress, impairment of the skin barrier, and activation of the immune response. Rosmarinic acid (RA), a caffeic acid ester, is known for its anti-inflammatory and antioxidant properties. However, the effects of RA on Dermatophagoides farinae extract (DfE)-induced AD-like skin inflammation, as well as its ability to regulate oxidative stress through the Nrf2/HO-1 pathway in TNF-α/IFN-γ-treated keratinocytes, remain unclear. We investigated RA activity in a DfE-induced AD-like skin inflammation mouse model and IFN-γ/TNF-α-stimulated keratinocytes. We found that RA attenuates DfE-induced inflammation by decreasing dermatitis scores and serum inflammatory marker levels and mast cell infiltration. Additionally, RA significantly suppressed IFN-γ/TNF-α-induced chemokine production in keratinocytes and reduced Th cytokine levels in concanavalin A-stimulated splenocytes. Importantly, RA also increased Nrf2/HO-1 expression in TNF-α/IFN-γ-treated keratinocytes. In conclusion, this study demonstrated that RA effectively alleviates DfE-induced AD-like skin lesions by reducing the levels of inflammatory cytokines and chemokines. Furthermore, RA promotes Nrf2/HO-1 signaling in keratinocytes, which may help mitigate DfE-induced oxidative stress, thereby alleviating AD-like skin inflammation. These findings highlight the potential of RA as a therapeutic agent for treating AD and other skin inflammation.
Collapse
Affiliation(s)
- Ki-Shuk Shim
- KM Convergence Research Division, Korea Institute of Oriental Medicine, Yuseong-daero 1672, Yuseong-gu, Daejeon 34054, Republic of Korea
| | - Hye Jin Kim
- KM Convergence Research Division, Korea Institute of Oriental Medicine, Yuseong-daero 1672, Yuseong-gu, Daejeon 34054, Republic of Korea
| | - Kon-Young Ji
- KM Convergence Research Division, Korea Institute of Oriental Medicine, Yuseong-daero 1672, Yuseong-gu, Daejeon 34054, Republic of Korea
| | - Dong Ho Jung
- KM Convergence Research Division, Korea Institute of Oriental Medicine, Yuseong-daero 1672, Yuseong-gu, Daejeon 34054, Republic of Korea
| | - Sun Haeng Park
- KM Convergence Research Division, Korea Institute of Oriental Medicine, Yuseong-daero 1672, Yuseong-gu, Daejeon 34054, Republic of Korea
| | - Hyun-Kyung Song
- Practical Research Division, Honam National Institute of Biological Resources, Gohadoan-gil 99, Mokpo 58762, Republic of Korea
| | - Taesoo Kim
- KM Convergence Research Division, Korea Institute of Oriental Medicine, Yuseong-daero 1672, Yuseong-gu, Daejeon 34054, Republic of Korea
| | - Ki Mo Kim
- KM Convergence Research Division, Korea Institute of Oriental Medicine, Yuseong-daero 1672, Yuseong-gu, Daejeon 34054, Republic of Korea
| |
Collapse
|
4
|
Simmons J, Gallo RL. The Central Roles of Keratinocytes in Coordinating Skin Immunity. J Invest Dermatol 2024; 144:2377-2398. [PMID: 39115524 PMCID: PMC11920965 DOI: 10.1016/j.jid.2024.06.1280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 06/06/2024] [Accepted: 06/14/2024] [Indexed: 10/25/2024]
Abstract
The function of keratinocytes (KCs) to form a barrier and produce cytokines is well-known, but recent progress has revealed many different roles for KCs in regulation of skin immunity. In this review, we provide an update on the current understanding of how KCs communicate with microbes, immunocytes, neurons, and other cells to form an effective immune barrier. We catalog the large list of genes and metabolites of KCs that participate in host defense and discuss the mechanisms of immune crosstalk, addressing how KCs simultaneously form a physical barrier, communicate with fibroblasts, and control immune signals. Overall, the signals sent and received by KCs are an exciting group of therapeutic targets to explore in the treatment of dermatologic disorders.
Collapse
Affiliation(s)
- Jared Simmons
- Department of Dermatology, School of Medicine, University of California San Diego, La Jolla, California, USA
| | - Richard L Gallo
- Department of Dermatology, School of Medicine, University of California San Diego, La Jolla, California, USA.
| |
Collapse
|
5
|
Asbóth D, Bánfi B, Kocsis D, Erdő F. Rodent models of dermatological disorders. Ital J Dermatol Venerol 2024; 159:303-317. [PMID: 38287740 DOI: 10.23736/s2784-8671.23.07700-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2024]
Abstract
To assess the possible beneficial effects of drugs and drug candidates, different dermatological disease models are available in rodents. These models are able to mimic one or more characteristic features of the disorders, but not completely recapitulate the pathogenesis of the human skin diseases. Therefore, to improve the technology many new models have been developed both by genetic engineering and by chemical or physical induction. Currently the in vivo rodent models provide the physiologically most relevant approach to produce the pathology related to the majority of dermatological diseases. In this short review some widely used animal techniques (psoriasis, allergic contact dermatitis, atopic dermatitis, wound healing, melanoma and non-melanoma type skin cancers and UV erythema) are shown which are currently applied in pharmacological, pharmacokinetic, pharmaceutical and dermatological research. First the main points of the human pathomechanism are shown and afterwards the rodent models are briefly discussed. Finally critical evaluation is provided by the authors. However, according to the 3R rule the number of experimental animals is strongly suggested to be reduced, therefore the advanced in vitro and ex vivo techniques become more and more important contrary to in vivo preclinical methods also in dermatological research. As it is described in the outlook section, although the 2D/3D in vitro and skin on-a-chip techniques are promising and have many advantages they are not able to completely substitute the animal models in their vascular, immunological, secretory and neural complexity.
Collapse
Affiliation(s)
- Dorottya Asbóth
- Pediatric Dermatology Center, Szent János Center Hospital in North Buda, Budapest, Hungary
| | - Barnabás Bánfi
- Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Budapest, Hungary
- Faculty of Science, Eötvös Loránd University, Budapest, Hungary
| | - Dorottya Kocsis
- Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Budapest, Hungary
| | - Franciska Erdő
- Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Budapest, Hungary -
| |
Collapse
|
6
|
Saito-Sasaki N, Sawada Y. S100 Proteins in the Pathogenesis of Psoriasis and Atopic Dermatitis. Diagnostics (Basel) 2023; 13:3167. [PMID: 37891988 PMCID: PMC10606049 DOI: 10.3390/diagnostics13203167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/03/2023] [Accepted: 10/07/2023] [Indexed: 10/29/2023] Open
Abstract
The skin, the outermost layer of the human body, is exposed to various external stimuli that cause inflammatory skin reactions. These external stimulants trigger external epithelial cell damage and the release of intracellular substances. Following cellular damage or death, intracellular molecules are released that enhance tissue inflammation. As an important substance released from damaged cells, the S100 protein is a low-molecular-weight acidic protein with two calcium-binding sites and EF-hand motif domains. S100 proteins are widely present in systemic organs and interact with other proteins. Recent studies revealed the involvement of S100 in cutaneous inflammatory disorders, psoriasis, and atopic dermatitis. This review provides detailed information on the interactions among various S100 proteins in inflammatory diseases.
Collapse
Affiliation(s)
| | - Yu Sawada
- Department of Dermatology, University of Occupational and Environmental Health, Kitakyushu 807-8555, Japan;
| |
Collapse
|
7
|
Involvement of Atopic Dermatitis in the Development of Systemic Inflammatory Diseases. Int J Mol Sci 2022; 23:ijms232113445. [PMID: 36362231 PMCID: PMC9658023 DOI: 10.3390/ijms232113445] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 10/29/2022] [Accepted: 11/01/2022] [Indexed: 11/06/2022] Open
Abstract
The skin is recognized as a peripheral lymphoid organ that plays an essential defensive action against external environmental stimuli. However, continuous stimulation of these factors causes chronic inflammation at the local site and occasionally causes tissue damage. Chronic inflammation is recognized as a trigger for systemic organ inflammation. Atopic dermatitis (AD) is a chronic inflammatory skin disease that is influenced by various external environmental factors, such as dry conditions, chemical exposure, and microorganisms. The pathogenesis of AD involves various Th2 and proinflammatory cytokines. Recently updated studies have shown that atopic skin-derived cytokines influence systemic organ function and oncogenesis. In this review, we focus on AD’s influence on the development of systemic inflammatory diseases and malignancies.
Collapse
|
8
|
Sanjel B, Shim WS. The contribution of mouse models to understanding atopic dermatitis. Biochem Pharmacol 2022; 203:115177. [PMID: 35843300 DOI: 10.1016/j.bcp.2022.115177] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 07/08/2022] [Accepted: 07/11/2022] [Indexed: 12/28/2022]
Abstract
Atopic dermatitis (AD) is a dermatological disease accompanied by dry and cracked skin with severe pruritus. Although various therapeutic strategies have been introduced to alleviate AD, it remains challenging to cure the disorder. To achieve such a goal, understanding the pathophysiological mechanisms of AD is a prerequisite, requiring mouse models that properly reflect the AD phenotypes. Currently, numerous AD mouse models have been established, but each model has its own advantages and weaknesses. In this review, we categorized and summarized mouse models of AD and described their characteristics from a researcher's perspective.
Collapse
Affiliation(s)
- Babina Sanjel
- College of Pharmacy, Gachon University, Hambangmoero 191, Yeonsu-gu, Incheon 21936, Republic of Korea; Gachon Institute of Pharmaceutical Sciences, Hambangmoero 191, Yeonsu-gu, Incheon 21936, Republic of Korea
| | - Won-Sik Shim
- College of Pharmacy, Gachon University, Hambangmoero 191, Yeonsu-gu, Incheon 21936, Republic of Korea; Gachon Institute of Pharmaceutical Sciences, Hambangmoero 191, Yeonsu-gu, Incheon 21936, Republic of Korea.
| |
Collapse
|
9
|
Elias PM. Optimizing emollient therapy for skin barrier repair in atopic dermatitis. Ann Allergy Asthma Immunol 2022; 128:505-511. [PMID: 35065300 PMCID: PMC9979622 DOI: 10.1016/j.anai.2022.01.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/13/2022] [Accepted: 01/14/2022] [Indexed: 12/28/2022]
Abstract
OBJECTIVE We compared the principal characteristics of over-the-counter moisturizers with physiological lipid-based barrier repair therapy (BRT). DATA SOURCES An extended literature reported that moisturizers are considered standard ancillary therapy for anti-inflammatory skin disorders such as atopic dermatitis (AD). Additional studies have found that physiological lipid-based BRT can comprise effective, stand-alone therapy for pediatric AD. RESULTS Not all moisturizers are beneficial-some negatively impact skin function, and in doing so, they risk inducing or exacerbating inflammation in patients with AD. The frequent self-reported occurrences of sensitive skin in patients with AD could reflect the potential toxicity of such formulations. A still unanswered question is whether improper formulations could also prove to be counterproductive in other types of sensitive skin, such as rosacea. In contrast, we found how physiological lipid-based BRT (when comprised of the 3 key stratum corneum lipids in sufficient quantities and at an appropriate molar ratio) can correct the barrier abnormality, thereby reducing inflammation in AD and possibly in other inflammatory dermatoses, such as adult eczemas and possibly even psoriasis. CONCLUSION We provide guidelines for the appropriate dispensation of moisturizers and physiological lipid-based, BRT for the treatment of AD. Both over-the-counter (Atopalm) and prescription (EpiCeram) products are available in the United States with these characteristics.
Collapse
Affiliation(s)
- Peter M Elias
- Department of Dermatology, University of California (UC) San Francisco and Veteran Affairs (VA) Medical Center, San Francisco, California.
| |
Collapse
|
10
|
Alsabbagh M, Ismaeel A. The role of cytokines in atopic dermatitis: a breakthrough in immunopathogenesis and treatment. ACTA DERMATOVENEROLOGICA ALPINA PANNONICA ET ADRIATICA 2022. [DOI: 10.15570/actaapa.2022.3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
11
|
Nakayama T, Morimoto K, Uchiyama K, Kusahana E, Washida N, Azegami T, Kanda T, Yoshida T, Itoh H. Serum thymus and activation-regulated chemokine level is associated with the severity of chronic kidney disease-associated pruritus in patients undergoing peritoneal dialysis. Perit Dial Int 2022; 42:415-424. [PMID: 35296169 DOI: 10.1177/08968608221085432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Thymus and activation-regulated chemokine (TARC), which induces a Th2-dominated inflammation, is a well-known biomarker that reflects the severity of atopic dermatitis. The present study aimed to evaluate TARC as a Th2-associated marker with chronic kidney disease-associated pruritus (CKD-aP) in patients with peritoneal dialysis (PD). METHODS This single-centre cross-sectional study included patients who underwent PD in our hospital between August 2020 and July 2021. The severity and impaired quality of life (QOL) of CKD-aP were assessed using the visual analogue scale (VAS) and Japanese version of the 5-D itch scale (5D-J), respectively. RESULTS A total of 48 patients with PD were included in the present study. Age and dialysis vintage were (mean ± SD) 64.8 ± 12.0 year and (median (IQR)) 38.5 (11.5-91.5) month, respectively. VAS and 5D-J scores were 3.3 ± 2.0 and 10.5 (9.0-12.0), respectively. Serum TARC level was 481.5 (278.9-603.4) pg/mL (upper limits of normal 450 pg/mL) and significantly correlated with VAS (r = 0.39, p = 0.006) and 5D-J score (r = 0.37, p = 0.009). Multivariate linear analysis revealed that higher serum TARC level was significantly associated with VAS (p < 0.001) and 5D-J score (p < 0.001). Furthermore, the serum brain natriuretic peptide level tended to be associated with VAS (p = 0.060) and 5D-J score (p = 0.029). CONCLUSION Serum TARC level is an independent predictor of the severity and impaired QOL of CKD-aP in patients with PD, and TARC might be involved in the pathogenesis of CKD-aP.
Collapse
Affiliation(s)
- Takashin Nakayama
- Division of Endocrinology, Metabolism, and Nephrology, Department of Internal Medicine, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Kohkichi Morimoto
- Apheresis and Dialysis Center, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Kiyotaka Uchiyama
- Division of Endocrinology, Metabolism, and Nephrology, Department of Internal Medicine, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Ei Kusahana
- Division of Endocrinology, Metabolism, and Nephrology, Department of Internal Medicine, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Naoki Washida
- Division of Endocrinology, Metabolism, and Nephrology, Department of Internal Medicine, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan.,Department of Nephrology, International University of Health and Welfare School of Medicine, Narita, Chiba, Japan
| | - Tatsuhiko Azegami
- Division of Endocrinology, Metabolism, and Nephrology, Department of Internal Medicine, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan.,Keio University Health Center, Yokohama-shi, Kanagawa, Japan
| | - Takeshi Kanda
- Division of Endocrinology, Metabolism, and Nephrology, Department of Internal Medicine, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Tadashi Yoshida
- Apheresis and Dialysis Center, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Hiroshi Itoh
- Division of Endocrinology, Metabolism, and Nephrology, Department of Internal Medicine, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| |
Collapse
|
12
|
Kogawa K, Minakawa S, Matsuzaki Y, Okamoto A, Ogasawara S, Saito N, Sawamura D. Correlation between lactate dehydrogenase and other laboratory data in patients with atopic dermatitis. JOURNAL OF CUTANEOUS IMMUNOLOGY AND ALLERGY 2022. [DOI: 10.1002/cia2.12225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- Kazuhito Kogawa
- Department of Dermatology Hirosaki University Graduate School of Medicine Hirosaki Japan
| | - Satoko Minakawa
- Department of Dermatology Hirosaki University Graduate School of Medicine Hirosaki Japan
- Department of Clinical Laboratory Hirosaki University Hospital Aomori Japan
| | - Yasushi Matsuzaki
- Department of Dermatology Hirosaki University Graduate School of Medicine Hirosaki Japan
| | - Asumi Okamoto
- Department of Clinical Laboratory Hirosaki University Hospital Aomori Japan
| | - Shu Ogasawara
- Department of Clinical Laboratory Hirosaki University Hospital Aomori Japan
| | - Norihiro Saito
- Department of Clinical Laboratory Hirosaki University Hospital Aomori Japan
| | - Daisuke Sawamura
- Department of Dermatology Hirosaki University Graduate School of Medicine Hirosaki Japan
| |
Collapse
|
13
|
Oh JH, Kim SH, Kwon OK, Kim JH, Oh SR, Han SB, Park JW, Ahn KS. Purpurin suppresses atopic dermatitis via TNF-α/IFN-γ-induced inflammation in HaCaT cells. Int J Immunopathol Pharmacol 2022; 36:3946320221111135. [PMID: 35794850 PMCID: PMC9274433 DOI: 10.1177/03946320221111135] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 06/14/2022] [Indexed: 11/23/2022] Open
Abstract
OBJECTIVE We investigated whether purpurin inhibits various pathways of inflammation leading to atopic dermatitis. INTRODUCTION 1,2,4-Trihydroxyanthraquinone, commonly called purpurin, is an anthraquinone that is a naturally occurring red/yellow dye. Purpurin is a highly antioxidative anthraquinone and previous studies have reported antibacterial, anti-tumor, and anti-oxidation activities in cells and animals. However, the skin inflammatory inhibition activity mechanism study of purpurin has not been elucidated in vitro. METHODS In this study, we investigated the anti-inflammatory activity of purpurin in HaCaT (human keratinocyte) cell lines stimulated with a mixture of tumor necrosis factor-alpha (TNF-α)/Interferon-gamma (IFN-γ). The inhibitory effect of Purpurin on cytokines (IL-6, IL-8, and IL-1β) and chemokine (TARC, MDC, and RANTES) was confirmed by ELISA and RT-qPCR. We investigated each signaling pathway and the action of inhibitors through western blots. RESULTS The expression levels of cytokines and chemokines were dose-dependently suppressed by purpurin treatment in TNF-α/IFN-γ-induced HaCaT cells from ELISA and real-time PCR. Purpurin also inhibited protein kinase B (AKT), mitogen-activated protein kinase (MAPKs), and nuclear factor kappa-light-chain-enhancer of activated B (NF-κB) activation in TNF-α/IFN-γ-stimulated HaCaT cells. Additionally, there was a synergistic effect when purpurin and inhibitor were applied together, and inflammation was dramatically reduced. CONCLUSION Therefore, these results demonstrate that purpurin exhibits anti-inflammatory and anti-atopic dermatitis activity in HaCaT cells.
Collapse
Affiliation(s)
- Jae-Hoon Oh
- Natural Medicine Research Center, Korea Research Institute of Bioscience and
Biotechnology, Cheongju-si, Republic of Korea
- College of Pharmacy, Chungbuk National University, Cheongju-si, Republic of Korea
| | - Seung-Ho Kim
- Natural Medicine Research Center, Korea Research Institute of Bioscience and
Biotechnology, Cheongju-si, Republic of Korea
- College of Pharmacy, Chungbuk National University, Cheongju-si, Republic of Korea
| | - Ok-Kyoung Kwon
- Natural Medicine Research Center, Korea Research Institute of Bioscience and
Biotechnology, Cheongju-si, Republic of Korea
| | - Jung-Hee Kim
- Natural Medicine Research Center, Korea Research Institute of Bioscience and
Biotechnology, Cheongju-si, Republic of Korea
| | - Sei-Ryang Oh
- Natural Medicine Research Center, Korea Research Institute of Bioscience and
Biotechnology, Cheongju-si, Republic of Korea
| | - Sang-Bae Han
- College of Pharmacy, Chungbuk National University, Cheongju-si, Republic of Korea
| | - Ji-Won Park
- Natural Medicine Research Center, Korea Research Institute of Bioscience and
Biotechnology, Cheongju-si, Republic of Korea
| | - Kyung-Seop Ahn
- Natural Medicine Research Center, Korea Research Institute of Bioscience and
Biotechnology, Cheongju-si, Republic of Korea
| |
Collapse
|
14
|
Repeated α-GalCer Administration Induces a Type 2 Cytokine-Biased iNKT Cell Response and Exacerbates Atopic Skin Inflammation in Vα14 Tg NC/Nga Mice. Biomedicines 2021; 9:biomedicines9111619. [PMID: 34829848 PMCID: PMC8615984 DOI: 10.3390/biomedicines9111619] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 10/12/2021] [Accepted: 10/29/2021] [Indexed: 01/05/2023] Open
Abstract
We have previously shown that Vα14 TCR Tg (Vα14Tg) NC/Nga (NC) mice contain increased numbers of double-negative (DN) invariant natural killer T (iNKT) cells that protect against spontaneous development of atopic dermatitis (AD). iNKT cells can regulate immune responses by producing various cytokines such as IFNγ and IL4 rapidly upon stimulation with α-galactosylceramide (α-GalCer), a prototypical iNKT cell agonist. However, the precise role of α-GalCer-activated iNKT cells in AD development remains unclear. Therefore, we examined whether repeated activation of iNKT cells with α-GalCer can regulate the pathogenesis of AD in Vα14Tg NC mice. We found that Vα14Tg NC mice injected repeatedly with α-GalCer display exacerbated AD symptoms (e.g., a higher clinical score, IgE hyperproduction, and increased numbers of splenic mast cells and neutrophils) compared with vehicle-injected Vα14Tg NC mice. Moreover, the severity of AD pathogenesis in α-GalCer-injected Vα14Tg NC mice correlated with increased Th2 cells but reduced Th1 and Foxp3+ Treg cells. Furthermore, the resulting alterations in the Th1/Th2 and Treg/Th2 balance were strongly associated with a biased expansion of type 2 cytokine-deviated iNKT cells in α-GalCer-treated Vα14Tg NC mice. Collectively, our results have demonstrated the adverse effect of repeated α-GalCer treatment on skin inflammation mediated by type 2 immunity.
Collapse
|
15
|
Salvianolic Acid A Suppresses DNCB-Induced Atopic Dermatitis-Like Symptoms in BALB/c Mice. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:7902592. [PMID: 34691223 PMCID: PMC8531767 DOI: 10.1155/2021/7902592] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Accepted: 10/07/2021] [Indexed: 12/12/2022]
Abstract
Prevalence of atopic dermatitis (AD), a chronic, pruritic, and relapsing inflammatory skin disorder, is growing. Because available therapeutics is limited, immune regulators from natural resources could be helpful for treating AD symptoms. The root of Salvia miltiorrhiza Bunge (Lamiaceae) has been studied for the treatment of inflammatory diseases, including dermatologic disorders in Korea. This study examined the effect of salvianolic acid A on AD-like symptoms. Sensitization on the dorsal skin and repeated application on the ears with 2,4-dinitrochlorobenzene (DNCB) were performed in BALB/c mice to induce AD-like skin lesions. After induction of atopic dermatitis, salvianolic acid A (5 and 10 mg/kg) or dexamethasone (10 mg/kg) were administrated via intraperitoneal injection for 3 weeks. Salvianolic acid A suppressed DNCB-induced AD-like symptoms like ear skin hypertrophy and decreased mast cell infiltration into skin lesions. Salvianolic acid A not only reduced DNCB-induced increase of serum IgE but also lowered levels of the Th2 cytokines (IL-4 and IL-13), Th1 cytokine (interferon-γ), and Th17 cytokine (IL-17A). Furthermore, salvianolic acid A blocked DNCB-induced lymph node enlargement. In summary, these results suggest that salvianolic acid A might have a therapeutic potential for the treatment of AD.
Collapse
|
16
|
Pilna H, Hajkova V, Knitlova J, Liskova J, Elsterova J, Melkova Z. Vaccinia Virus Expressing Interferon Regulatory Factor 3 Induces Higher Protective Immune Responses against Lethal Poxvirus Challenge in Atopic Organism. Viruses 2021; 13:1986. [PMID: 34696416 PMCID: PMC8539567 DOI: 10.3390/v13101986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 09/24/2021] [Accepted: 09/28/2021] [Indexed: 11/18/2022] Open
Abstract
Vaccinia virus (VACV) is an enveloped DNA virus from the Orthopoxvirus family, various strains of which were used in the successful eradication campaign against smallpox. Both original and newer VACV-based replicating vaccines reveal a risk of serious complications in atopic individuals. VACV encodes various factors interfering with host immune responses at multiple levels. In atopic skin, the production of type I interferon is compromised, while VACV specifically inhibits the phosphorylation of the Interferon Regulatory Factor 3 (IRF-3) and expression of interferons. To overcome this block, we generated a recombinant VACV-expressing murine IRF-3 (WR-IRF3) and characterized its effects on virus growth, cytokine expression and apoptosis in tissue cultures and in spontaneously atopic Nc/Nga and control Balb/c mice. Further, we explored the induction of protective immune responses against a lethal dose of wild-type WR, the surrogate of smallpox. We demonstrate that the overexpression of IRF-3 by WR-IRF3 increases the expression of type I interferon, modulates the expression of several cytokines and induces superior protective immune responses against a lethal poxvirus challenge in both Nc/Nga and Balb/c mice. Additionally, the results may be informative for design of other virus-based vaccines or for therapy of different viral infections.
Collapse
Affiliation(s)
- Hana Pilna
- Department of Immunology and Microbiology, First Faculty of Medicine, Charles University, Studnickova 7, 128 00 Prague 2, Czech Republic; (H.P.); (V.H.); (J.K.); (J.L.); (J.E.)
- BIOCEV, Biotechnology and Biomedicine Center of the Academy of Sciences and Charles University in Vestec, Průmyslová 595, 252 50 Vestec, Czech Republic
| | - Vera Hajkova
- Department of Immunology and Microbiology, First Faculty of Medicine, Charles University, Studnickova 7, 128 00 Prague 2, Czech Republic; (H.P.); (V.H.); (J.K.); (J.L.); (J.E.)
- BIOCEV, Biotechnology and Biomedicine Center of the Academy of Sciences and Charles University in Vestec, Průmyslová 595, 252 50 Vestec, Czech Republic
| | - Jarmila Knitlova
- Department of Immunology and Microbiology, First Faculty of Medicine, Charles University, Studnickova 7, 128 00 Prague 2, Czech Republic; (H.P.); (V.H.); (J.K.); (J.L.); (J.E.)
| | - Jana Liskova
- Department of Immunology and Microbiology, First Faculty of Medicine, Charles University, Studnickova 7, 128 00 Prague 2, Czech Republic; (H.P.); (V.H.); (J.K.); (J.L.); (J.E.)
| | - Jana Elsterova
- Department of Immunology and Microbiology, First Faculty of Medicine, Charles University, Studnickova 7, 128 00 Prague 2, Czech Republic; (H.P.); (V.H.); (J.K.); (J.L.); (J.E.)
| | - Zora Melkova
- Department of Immunology and Microbiology, First Faculty of Medicine, Charles University, Studnickova 7, 128 00 Prague 2, Czech Republic; (H.P.); (V.H.); (J.K.); (J.L.); (J.E.)
- BIOCEV, Biotechnology and Biomedicine Center of the Academy of Sciences and Charles University in Vestec, Průmyslová 595, 252 50 Vestec, Czech Republic
| |
Collapse
|
17
|
Skullcapflavone II Suppresses TNF-α/IFN-γ-Induced TARC, MDC, and CTSS Production in HaCaT Cells. Int J Mol Sci 2021; 22:ijms22126428. [PMID: 34208434 PMCID: PMC8233710 DOI: 10.3390/ijms22126428] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/07/2021] [Accepted: 06/10/2021] [Indexed: 12/29/2022] Open
Abstract
Skullcapflavone II (SFII), a flavonoid derived from Scutellaria baicalensis, has been reported to have anti-inflammatory properties. However, its therapeutic potential for skin inflammatory diseases and its mechanism are unknown. Therefore, this study aimed to investigate the effect of SFII on TNF-α/IFN-γ-induced atopic dermatitis (AD)-associated cytokines, such as thymus- and activation-regulated chemokine (TARC) and macrophage-derived chemokine (MDC). Co-stimulation with TNF-α/IFN-γ in HaCaT cells is a well-established model for induction of pro-inflammatory cytokines. We treated cells with SFII prior to TNF-α/IFN-γ-stimulation and confirmed that it significantly inhibited TARC and MDC expression at the mRNA and protein levels. Additionally, SFII also inhibited the expression of cathepsin S (CTSS), which is associated with itching in patients with AD. Using specific inhibitors, we demonstrated that STAT1, NF-κB, and p38 MAPK mediate TNF-α/IFN-γ-induced TARC and MDC, as well as CTSS expression. Finally, we confirmed that SFII significantly suppressed TNF-α/IFN-γ-induced phosphorylation of STAT1, NF-κB, and p38 MAPK. Taken together, our study indicates that SFII inhibits TNF-α/IFN-γ-induced TARC, MDC, and CTSS expression by regulating STAT1, NF-κB, and p38 MAPK signaling pathways.
Collapse
|
18
|
Kader HA, Azeem M, Jwayed SA, Al-Shehhi A, Tabassum A, Ayoub MA, Hetta HF, Waheed Y, Iratni R, Al-Dhaheri A, Muhammad K. Current Insights into Immunology and Novel Therapeutics of Atopic Dermatitis. Cells 2021; 10:1392. [PMID: 34200009 PMCID: PMC8226506 DOI: 10.3390/cells10061392] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/01/2021] [Accepted: 06/02/2021] [Indexed: 02/07/2023] Open
Abstract
Atopic dermatitis (AD) is one of the most prevalent inflammatory disease among non-fatal skin diseases, affecting up to one fifth of the population in developed countries. AD is characterized by recurrent pruritic and localized eczema with seasonal fluctuations. AD initializes the phenomenon of atopic march, during which infant AD patients are predisposed to progressive secondary allergies such as allergic rhinitis, asthma, and food allergies. The pathophysiology of AD is complex; onset of the disease is caused by several factors, including strong genetic predisposition, disrupted epidermal barrier, and immune dysregulation. AD was initially characterized by defects in the innate immune system and a vigorous skewed adaptive Th2 response to environmental agents; there are compelling evidences that the disorder involves multiple immune pathways. Symptomatic palliative treatment is the only strategy to manage the disease and restore skin integrity. Researchers are trying to more precisely define the contribution of different AD genotypes and elucidate the role of various immune axes. In this review, we have summarized the current knowledge about the roles of innate and adaptive immune responsive cells in AD. In addition, current and novel treatment strategies for the management of AD are comprehensively described, including some ongoing clinical trials and promising therapeutic agents. This information will provide an asset towards identifying personalized targets for better therapeutic outcomes.
Collapse
Affiliation(s)
- Hidaya A. Kader
- Department of Biology, College of Science, UAE University, Al Ain 15551, United Arab Emirates; (H.A.K.); (S.A.J.); (A.A.-S.); (M.A.A.); (R.I.)
| | - Muhammad Azeem
- Department of Pathology, University of Würzburg, 97080 Würzburg, Germany;
| | - Suhib A. Jwayed
- Department of Biology, College of Science, UAE University, Al Ain 15551, United Arab Emirates; (H.A.K.); (S.A.J.); (A.A.-S.); (M.A.A.); (R.I.)
| | - Aaesha Al-Shehhi
- Department of Biology, College of Science, UAE University, Al Ain 15551, United Arab Emirates; (H.A.K.); (S.A.J.); (A.A.-S.); (M.A.A.); (R.I.)
| | - Attia Tabassum
- Department of Dermatology, Mayo Hospital, Lahore 54000, Pakistan;
| | - Mohammed Akli Ayoub
- Department of Biology, College of Science, UAE University, Al Ain 15551, United Arab Emirates; (H.A.K.); (S.A.J.); (A.A.-S.); (M.A.A.); (R.I.)
| | - Helal F. Hetta
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Assiut University, Assiut 71515, Egypt;
| | - Yasir Waheed
- Foundation University Medical College, Foundation University Islamabad, Islamabad 44000, Pakistan;
| | - Rabah Iratni
- Department of Biology, College of Science, UAE University, Al Ain 15551, United Arab Emirates; (H.A.K.); (S.A.J.); (A.A.-S.); (M.A.A.); (R.I.)
| | - Ahmed Al-Dhaheri
- Department of Dermatology, Tawam Hospital, Al Ain 15551, United Arab Emirates;
| | - Khalid Muhammad
- Department of Biology, College of Science, UAE University, Al Ain 15551, United Arab Emirates; (H.A.K.); (S.A.J.); (A.A.-S.); (M.A.A.); (R.I.)
| |
Collapse
|
19
|
Matsui K, Nakamura M, Obana N. Effects of Josamycin on Scratching Behavior in NC/Nga Mice with Atopic Dermatitis-Like Skin Lesions. Biol Pharm Bull 2021; 44:798-803. [PMID: 34078811 DOI: 10.1248/bpb.b20-00976] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Our previous study showed that chronic skin colonization by Staphylococcus aureus exacerbated atopic dermatitis (AD) and that control of such skin colonization using antibiotic ointment might relieve AD-related skin inflammation. However, the role of S. aureus colonization in the pruritus accompanying AD was not elucidated. The aim of the present study was to evaluate the effect of topically applied josamycin, a macrolide antibiotic, on the scratching behavior of NC/Nga mice with AD-like skin lesions. Josamycin (0.1%) was topically administered to NC/Nga mice with AD-like skin lesions induced by a mite antigen, Dermatophagoides farinae extract, and the therapeutic effects of josamycin were assessed by measurement of the skin severity score, S. aureus colonization, scratching count, and interleukin (IL)-31 mRNA expression in the skin lesions. Topical treatment with josamycin ointment significantly suppressed the increase of the skin severity score in NC/Nga mice. This suppressive effect was associated with decreases in the S. aureus count on the lesioned skin, scratching behavior of mice and IL-31 mRNA expression in the lesions. The present results show that the severity of AD-like skin inflammation in NC/Nga mice is correlated with the level of S. aureus colonization and subsequent IL-31 production in the skin. Therefore, topical application of josamycin to AD lesions colonized by S. aureus would be beneficial for control of AD by eliminating superficially located S. aureus and by suppressing the IL-31-induced scratching behavior.
Collapse
Affiliation(s)
- Katsuhiko Matsui
- Department of Clinical Immunology, Meiji Pharmaceutical University
| | - Midori Nakamura
- Department of Clinical Immunology, Meiji Pharmaceutical University
| | - Noriko Obana
- Department of Clinical Immunology, Meiji Pharmaceutical University
| |
Collapse
|
20
|
Kim YH, Kang MS, Kim TH, Jeong Y, Ahn JO, Choi JH, Chung JY. Anti-Inflammatory and Immune Modulatory Effects of Synbio-Glucan in an Atopic Dermatitis Mouse Model. Nutrients 2021; 13:nu13041090. [PMID: 33810608 PMCID: PMC8067118 DOI: 10.3390/nu13041090] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 03/22/2021] [Accepted: 03/23/2021] [Indexed: 12/14/2022] Open
Abstract
Many trials have been conducted to treat atopic dermatitis (AD), but these therapies are generally unsuccessful because of their insufficiency or side effects. This study examined the efficacy of β-glucan derived from oats with fermented probiotics (called Synbio-glucan) on an AD-induced mouse model. For the experiment, Nc/Nga mice were exposed to a house dust mite extract (HDM) to induce AD. The mice were placed in one of four groups: positive control group, Synbio-glucan topical treatment group, Synbio-glucan dietary treatment group, and Synbio-glucan topical + dietary treatment group. The experiment revealed no significant difference in the serum IgE concentration among the groups. Serum cytokine antibody arrays showed that genes related to the immune response were enriched. A significant difference in the skin lesion scores was observed between the groups. Compared to the control group tissue, skin lesions were alleviated in the Synbio-glucan topical treatment group and Synbio-glucan dietary treatment group. Interestingly, almost normal structures were observed within the skin lesions in the Synbio-glucan topical + dietary treatment group. Overall, the β-glucan extracted from oats and fermented probiotic mixture is effective in treating atopic dermatitis.
Collapse
Affiliation(s)
- Yoon-Hwan Kim
- Department of Veterinary Internal Medicine and Institute of Veterinary Science, College of Veterinary Medicine, Kangwon National University, Chuncheon-si 24341, Korea; (Y.-H.K.); (Y.J.); (J.-O.A.)
| | - Min Soo Kang
- Department of Veterinary Anatomy and Institute of Veterinary Science, College of Veterinary Medicine, Kangwon National University, Chuncheon-si 24341, Korea; (M.S.K.); (T.H.K.)
| | - Tae Hyeong Kim
- Department of Veterinary Anatomy and Institute of Veterinary Science, College of Veterinary Medicine, Kangwon National University, Chuncheon-si 24341, Korea; (M.S.K.); (T.H.K.)
| | - Yunho Jeong
- Department of Veterinary Internal Medicine and Institute of Veterinary Science, College of Veterinary Medicine, Kangwon National University, Chuncheon-si 24341, Korea; (Y.-H.K.); (Y.J.); (J.-O.A.)
| | - Jin-Ok Ahn
- Department of Veterinary Internal Medicine and Institute of Veterinary Science, College of Veterinary Medicine, Kangwon National University, Chuncheon-si 24341, Korea; (Y.-H.K.); (Y.J.); (J.-O.A.)
| | - Jung Hoon Choi
- Department of Veterinary Anatomy and Institute of Veterinary Science, College of Veterinary Medicine, Kangwon National University, Chuncheon-si 24341, Korea; (M.S.K.); (T.H.K.)
- Correspondence: (J.H.C.); (J.-Y.C.); Tel.: +82-33-250-8682 (J.H.C.); +82-33-250-8656 (J.-Y.C.)
| | - Jin-Young Chung
- Department of Veterinary Internal Medicine and Institute of Veterinary Science, College of Veterinary Medicine, Kangwon National University, Chuncheon-si 24341, Korea; (Y.-H.K.); (Y.J.); (J.-O.A.)
- Correspondence: (J.H.C.); (J.-Y.C.); Tel.: +82-33-250-8682 (J.H.C.); +82-33-250-8656 (J.-Y.C.)
| |
Collapse
|
21
|
Holm JG, Hurault G, Agner T, Clausen ML, Kezic S, Tanaka RJ, Thomsen SF. Immunoinflammatory Biomarkers in Serum Are Associated with Disease Severity in Atopic Dermatitis. Dermatology 2021; 237:513-520. [PMID: 33730733 DOI: 10.1159/000514503] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 01/16/2021] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND A growing body of evidence links various biomarkers to atopic dermatitis (AD). Still, little is known about the association of specific biomarkers to disease characteristics and severity in AD. OBJECTIVE To explore the relationship between various immunological markers in the serum and disease severity in a hospital cohort of AD patients. METHODS Outpatients with AD referred to the Department of Dermatology, Bispebjerg Hospital, Copenhagen, Denmark, were divided into groups based on disease severity (SCORAD). Serum levels of a preselected panel of immunoinflammatory biomarkers were tested for association with disease characteristics. Two machine learning models were developed to predict SCORAD from the measured biomarkers. RESULTS A total of 160 patients with AD were included; 53 (33.1%) with mild, 73 (45.6%) with moderate, and 34 (21.3%) with severe disease. Mean age was 29.2 years (range 6-70 years) and 84 (52.5%) were females. Numerous biomarkers showed a statistically significant correlation with SCORAD, with the strongest correlations seen for CCL17/thymus and activation-regulated chemokine (chemokine ligand-17/TARC) and CCL27/cutaneous T cell-attracting-chemokine (CTACK; Spearman R of 0.50 and 0.43, respectively, p < 0.001). Extrinsic AD patients were more likely to have higher mean SCORAD (p < 0.001), CCL17 (p < 0.001), CCL26/eotaxin-3 (p < 0.001), and eosinophil count (p < 0.001) than intrinsic AD patients. Predictive models for SCORAD identified CCL17, CCL27, serum total IgE, IL-33, and IL-5 as the most important predictors for SCORAD, but with weaker associations than single cytokines. CONCLUSIONS Specific immunoinflammatory biomarkers in the serum, mainly of the Th2 pathway, are correlated with disease severity in patients with AD. Predictive models identified biomarkers associated with disease severity but this finding warrants further investigation.
Collapse
Affiliation(s)
- Jesper Grønlund Holm
- Department of Dermato-Venereology, Bispebjerg Hospital, University of Copenhagen, Copenhagen, Denmark,
| | - Guillem Hurault
- Department of Bioengineering, Faculty of Engineering, Imperial College, London, United Kingdom
| | - Tove Agner
- Department of Dermato-Venereology, Bispebjerg Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Maja Lisa Clausen
- Department of Dermato-Venereology, Bispebjerg Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Sanja Kezic
- Coronel Institute, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Reiko J Tanaka
- Department of Bioengineering, Faculty of Engineering, Imperial College, London, United Kingdom
| | - Simon Francis Thomsen
- Department of Dermato-Venereology, Bispebjerg Hospital, University of Copenhagen, Copenhagen, Denmark.,Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
22
|
Siraitia grosvenorii Residual Extract Attenuates Atopic Dermatitis by Regulating Immune Dysfunction and Skin Barrier Abnormality. Nutrients 2020; 12:nu12123638. [PMID: 33256152 PMCID: PMC7759927 DOI: 10.3390/nu12123638] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 11/23/2020] [Accepted: 11/23/2020] [Indexed: 01/21/2023] Open
Abstract
Atopic dermatitis is a persistent inflammatory skin disorder. Siraitia grosvenorii fruits (monk fruit or nahangwa in Korean, NHG) are used as a natural sweetener and as a traditional medicine for the treatment of asthma and bronchitis. We evaluated the activity of S. grosvenorii residual extract (NHGR) on allergic inflammation of atopic dermatitis in a Dermatophagoides farinae mite antigen extract (DfE)-treated NC/Nga murine model and in vitro. Oral administration of NHGR significantly reduced epidermal hyperplasia and inflammatory cell infiltration in the skin lesions of DfE-induced atopic dermatitis, as well as the dermatitis severity score. NHGR reduced serum immunoglobulin E levels. Splenic concentrations of IFN-γ, interleukin (IL)-4, IL-5, and IL-13 were reduced by NHGR administration. Immunohistofluorescence staining showed that NHGR administration increased the protein levels of claudin-1, SIRT1, and filaggrin in atopic dermatitis skin lesions. In addition, NHGR inhibited the phosphorylation of mitogen-activated protein kinases and decreased filaggrin and chemokine protein expression in TNF-α/IFN-γ-induced human keratinocytes. Moreover, NHGR also inhibited histamine in mast cells. The quantitative analysis of NHGR revealed the presence of grosvenorine, kaempferitrin, and mogrosides. These results demonstrate that NHGR may be an efficient therapeutic agent for the treatment of atopic dermatitis.
Collapse
|
23
|
Moniz T, Costa Lima SA, Reis S. Human skin models: From healthy to disease-mimetic systems; characteristics and applications. Br J Pharmacol 2020; 177:4314-4329. [PMID: 32608012 PMCID: PMC7484561 DOI: 10.1111/bph.15184] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 06/15/2020] [Accepted: 06/18/2020] [Indexed: 12/17/2022] Open
Abstract
Skin drug delivery is an emerging route in drug development, leading to an urgent need to understand the behaviour of active pharmaceutical ingredients within the skin. Given, As one of the body's first natural defences, the barrier properties of skin provide an obstacle to the successful outcome of any skin drug therapy. To elucidate the mechanisms underlying this barrier, reductionist strategies have designed several models with different levels of complexity, using non-biological and biological components. Besides the detail of information and resemblance to human skin in vivo, offered by each in vitro model, the technical and economic efforts involved must also be considered when selecting the most suitable model. This review provides an outline of the commonly used skin models, including healthy and diseased conditions, in-house developed and commercialized models, their advantages and limitations, and an overview of the new trends in skin-engineered models.
Collapse
Affiliation(s)
- Tânia Moniz
- LAQV, REQUIMTE, Departamento de Ciências Químicas, Faculdade de FarmáciaUniversidade do PortoPortoPortugal
| | - Sofia A. Costa Lima
- LAQV, REQUIMTE, Departamento de Ciências Químicas, Faculdade de FarmáciaUniversidade do PortoPortoPortugal
| | - Salette Reis
- LAQV, REQUIMTE, Departamento de Ciências Químicas, Faculdade de FarmáciaUniversidade do PortoPortoPortugal
| |
Collapse
|
24
|
Patrick GJ, Archer NK, Miller LS. Which Way Do We Go? Complex Interactions in Atopic Dermatitis Pathogenesis. J Invest Dermatol 2020; 141:274-284. [PMID: 32943210 DOI: 10.1016/j.jid.2020.07.006] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 07/02/2020] [Accepted: 07/06/2020] [Indexed: 02/07/2023]
Abstract
Atopic dermatitis (AD) is a common, chronic, inflammatory skin condition characterized by recurrent and pruritic skin eruptions. Multiple factors contribute to the pathogenesis of AD, including skin barrier dysfunction, microbial dysbiosis, and immune dysregulation. Interactions among these factors form a complex, multidirectional network that can reinforce atopic skin disease but can also be ameliorated by targeted therapies. This review summarizes the complex interactions among contributing factors in AD and the implications on disease development and therapeutic interventions.
Collapse
Affiliation(s)
- Garrett J Patrick
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Nathan K Archer
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Lloyd S Miller
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; Janssen Research and Development, Spring House, Pennsylvania, USA.
| |
Collapse
|
25
|
Dijkhoff IM, Drasler B, Karakocak BB, Petri-Fink A, Valacchi G, Eeman M, Rothen-Rutishauser B. Impact of airborne particulate matter on skin: a systematic review from epidemiology to in vitro studies. Part Fibre Toxicol 2020; 17:35. [PMID: 32711561 PMCID: PMC7382801 DOI: 10.1186/s12989-020-00366-y] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 07/14/2020] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Air pollution is killing close to 5 million people a year, and harming billions more. Air pollution levels remain extremely high in many parts of the world, and air pollution-associated premature deaths have been reported for urbanized areas, particularly linked to the presence of airborne nano-sized and ultrafine particles. MAIN TEXT To date, most of the research studies did focus on the adverse effects of air pollution on the human cardiovascular and respiratory systems. Although the skin is in direct contact with air pollutants, their damaging effects on the skin are still under investigation. Epidemiological data suggested a correlation between exposure to air pollutants and aggravation of symptoms of chronic immunological skin diseases. In this study, a systematic literature review was conducted to understand the current knowledge on the effects of airborne particulate matter on human skin. It aims at providing a deeper understanding of the interactions between air pollutants and skin to further assess their potential risks for human health. CONCLUSION Particulate matter was shown to induce a skin barrier dysfunction and provoke the formation of reactive oxygen species through direct and indirect mechanisms, leading to oxidative stress and induced activation of the inflammatory cascade in human skin. Moreover, a positive correlation was reported between extrinsic aging and atopic eczema relative risk with increasing particulate matter exposure.
Collapse
Affiliation(s)
- Irini M Dijkhoff
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, CH-1700, Fribourg, Switzerland
| | - Barbara Drasler
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, CH-1700, Fribourg, Switzerland
| | - Bedia Begum Karakocak
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, CH-1700, Fribourg, Switzerland
| | - Alke Petri-Fink
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, CH-1700, Fribourg, Switzerland
| | - Giuseppe Valacchi
- Department of Biomedical and Specialist Surgical Sciences, University of Ferrara, Ferrara, Italy
- Department of Animal Sciences, PHHI NCRC, North Carolina State University, Kannapolis, NC, USA
| | | | - Barbara Rothen-Rutishauser
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, CH-1700, Fribourg, Switzerland.
| |
Collapse
|
26
|
Ha Y, Lee WH, Jeong J, Park M, Ko JY, Kwon OW, Lee J, Kim YJ. Pyropia yezoensis Extract Suppresses IFN-Gamma- and TNF-Alpha-Induced Proinflammatory Chemokine Production in HaCaT Cells via the Down-Regulation of NF-κB. Nutrients 2020; 12:nu12051238. [PMID: 32349358 PMCID: PMC7285056 DOI: 10.3390/nu12051238] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 04/22/2020] [Accepted: 04/25/2020] [Indexed: 12/15/2022] Open
Abstract
Pyropia yezoensis, a red alga, is popular and harvested a lot in East Asia and is famous for its medicinal properties attributable to its bioactive compounds including amino acids (porphyra-334 and shinorine, etc.), polysaccharides, phytosterols, and pigments, but its anti-inflammatory effect and mechanism of anti-atopic dermatitis (AD) have not been elucidated. In this study, we investigate the anti-AD effect of P. yezoensis extract (PYE) on mRNA and protein levels of the pro-inflammatory chemokines, thymus, and activation-regulated chemokine (TARC/CCL17) and macrophage-derived chemokine (MDC/CCL22), in human HaCaT keratinocyte cells treated to interferon (IFN)-γ or tumor necrosis factor (TNF)-α (10 ng/mL each). The effect of the PYE on extracellular signal-regulated kinase (ERK) and other mitogen-activated protein kinases (MAPKs) was related to its suppression of TARC and MDC production by blocking NF-κB activation in HaCaT cells. Furthermore, astaxanthin and xanthophyll from P. yezoensis were identified as anti-AD candidate compounds. These results suggest that the PYE may improve AD and contained two carotenoids by regulating pro-inflammatory chemokines.
Collapse
Affiliation(s)
- Yuna Ha
- Research Institute of Basic Sciences, Incheon National University, Incheon 22012, Korea; (Y.H.); (W.-H.L.); (J.J.); (M.P.); (J.-Y.K.); (O.W.K.)
- Department of Cosmetic Science and Management, Graduate School, Incheon National University, Incheon 22012, Korea
| | - Won-Hwi Lee
- Research Institute of Basic Sciences, Incheon National University, Incheon 22012, Korea; (Y.H.); (W.-H.L.); (J.J.); (M.P.); (J.-Y.K.); (O.W.K.)
- Department of Marine Sciences, Incheon National University, Incheon 22012, Korea
| | - JaeWoo Jeong
- Research Institute of Basic Sciences, Incheon National University, Incheon 22012, Korea; (Y.H.); (W.-H.L.); (J.J.); (M.P.); (J.-Y.K.); (O.W.K.)
- Department of Cosmetic Science and Management, Graduate School, Incheon National University, Incheon 22012, Korea
| | - Mira Park
- Research Institute of Basic Sciences, Incheon National University, Incheon 22012, Korea; (Y.H.); (W.-H.L.); (J.J.); (M.P.); (J.-Y.K.); (O.W.K.)
| | - Ju-Young Ko
- Research Institute of Basic Sciences, Incheon National University, Incheon 22012, Korea; (Y.H.); (W.-H.L.); (J.J.); (M.P.); (J.-Y.K.); (O.W.K.)
| | - Oh Wook Kwon
- Research Institute of Basic Sciences, Incheon National University, Incheon 22012, Korea; (Y.H.); (W.-H.L.); (J.J.); (M.P.); (J.-Y.K.); (O.W.K.)
| | - Jongsung Lee
- Department of Genetic Engineering, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon City 164-19, Gyunggi Do, Korea
- Correspondence: (J.L); (Y.-J.K.); Tel.: +82-32-835-8861 (Y.-J.K.)
| | - Youn-Jung Kim
- Research Institute of Basic Sciences, Incheon National University, Incheon 22012, Korea; (Y.H.); (W.-H.L.); (J.J.); (M.P.); (J.-Y.K.); (O.W.K.)
- Department of Cosmetic Science and Management, Graduate School, Incheon National University, Incheon 22012, Korea
- Department of Marine Sciences, Incheon National University, Incheon 22012, Korea
- Correspondence: (J.L); (Y.-J.K.); Tel.: +82-32-835-8861 (Y.-J.K.)
| |
Collapse
|
27
|
Antipruritic Effects of Kappa Opioid Receptor Agonists: Evidence from Rodents to Humans. Handb Exp Pharmacol 2020; 271:275-292. [PMID: 33296031 DOI: 10.1007/164_2020_420] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Centrally administered bombesin induces scratching and grooming in rats. These behaviors were blocked by early benzomorphan kappa opioid receptor (KOR) agonists as reported by Gmerek and Cowan in 1984. This was the first evidence that KORs may be involved in the sensation of itch-like behaviors. Subsequent development of additional animal models for acute and chronic itch has led to important discoveries since then. For example, it was found that (a) gastrin-releasing peptide (GRP), natriuretic polypeptide b and their cognate receptors are keys for the transmission of itch sensation at the spinal cord level, (b) dynorphins (Dyns), the endogenous KOR agonists, work as inhibitory neuromodulators of itch at the spinal cord level, (c) in a mouse model for acute itch, certain KOR antagonists elicit scratching, (d) in mouse models of acute or chronic itch, KOR agonists (e.g., U50,488, nalfurafine, CR 845, nalbuphine) suppress scratching induced by different pruritogens, and (e) nalfurafine, CR 845, and nalbuphine are in the clinic or in clinical trials for pruritus associated with chronic kidney disease and chronic liver disease, as well as pruritus in chronic skin diseases.
Collapse
|
28
|
Kim J. Low-intensity tower climbing resistance exercise reduces experimentally induced atopic dermatitis in mice. J Exerc Rehabil 2019; 15:518-525. [PMID: 31523671 PMCID: PMC6732538 DOI: 10.12965/jer.1938276.138] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 06/19/2019] [Indexed: 11/23/2022] Open
Abstract
In general, exercise can help improve overall health and prevent diseases. However, individuals with atopic dermatitis (AD) often lose the desire for physical exercise owing to itching caused by sweating. In the present study, we have evaluated the effect of low-intensity tower climbing resistance exercise (TCRE) on Dermatophagoides farinae extract (DFE; house dust mite extract)- and 2,4-dinitrochlorobenzene-induced AD-like skin lesions in a BALB/c model. Histopathological examination showed reduced thickness of the epidermis/dermis and dermal infiltration of inflammatory cells in the ears. TCRE downregulated serum Ig levels and suppressed mRNA expression of pro-inflammatory cytokines in the ear tissue, and reduced the size and weight of draining lymph nodes (dLNs) and nondraining lymph nodes (ndLNs), along with expression of pro-inflammatory cytokines in CD4+ T cells from dLNs and ndLNs. Taken together, we showed that low-intensity TCRE reduced AD symptoms. These results will help improve treatment of AD, and will be of interest to dermatologists as well as to patients with AD.
Collapse
Affiliation(s)
- Jooyoung Kim
- Department of Anatomy, School of Medicine, Kyungpook National University, Daegu, Korea
| |
Collapse
|
29
|
Yin J, Kim HH, Hwang IH, Kim DH, Lee MW. Anti-Inflammatory Effects of Phenolic Compounds Isolated from Quercus Mongolica Fisch. ex Ledeb. on UVB-Irradiated Human Skin Cells. Molecules 2019; 24:molecules24173094. [PMID: 31454971 PMCID: PMC6749265 DOI: 10.3390/molecules24173094] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 08/23/2019] [Accepted: 08/23/2019] [Indexed: 12/21/2022] Open
Abstract
Quercus mongolica Fisch. ex Ledeb. (QM) has been used as an oriental traditional medicine to relieve hemorrhoids, fever, and enteritis. We screened the inhibitory activities of the extracts and compounds (1–6) isolated from QM on the production of inflammatory cytokines and chemokines to evaluate their anti-inflammatory activities. Further, we evaluated the expression levels of cytokines, chemokines, and immune factors on pedunculagin (PC, 1), which was selected from isolated compounds (1–6) because of its potential anti-inflammation effect. Additionally, we evaluated whether the inflammation mitigation effects of PC (1) following UVB exposure in keratinocytes occurred because of nuclear factor (NF)-κB and signal transducer and activator of transcription (STAT)/Janus kinase (JAK) activation. PC (1) remarkably suppressed interleukin (IL)-6, IL-10, IL-13, and monocyte chemoattractant protein-1 (MCP-1) mRNA expression and reduced the mRNA expression level of Cyclooxygenase-2 (COX-2) and also reduced the phosphorylation of p38 mitogen-activated protein kinases (p38), c-Jun N-terminal kinase (JNK), and extracellular signal-regulated kinase (ERK) in a concentration-dependent manner.
Collapse
Affiliation(s)
- Jun Yin
- Department of Pharmacognosy and Natural product-derived Medicine, College of Pharmacy, Chung-Ang University, Seoul 156-756, Korea
| | - Han Hyuk Kim
- Department of Pharmacognosy and Natural product-derived Medicine, College of Pharmacy, Chung-Ang University, Seoul 156-756, Korea
| | - In Hyeok Hwang
- Department of Pharmacognosy and Natural product-derived Medicine, College of Pharmacy, Chung-Ang University, Seoul 156-756, Korea
| | - Dong Hee Kim
- R&D Department Applied Product Development Team, Traditional Korean Medicine Technology Division, 94, Hwarang-ro(Gapje-dong), Gyeongsan-si, Gyeongsangbuk-do 38540, Korea
| | - Min Won Lee
- Department of Pharmacognosy and Natural product-derived Medicine, College of Pharmacy, Chung-Ang University, Seoul 156-756, Korea.
| |
Collapse
|
30
|
Park JH, Ahn EK, Ko HJ, Lee JY, Hwang SM, Ko S, Oh JS. Korean red ginseng water extract alleviates atopic dermatitis-like inflammatory responses by negative regulation of mitogen-activated protein kinase signaling pathway in vivo. Biomed Pharmacother 2019; 117:109066. [PMID: 31226639 DOI: 10.1016/j.biopha.2019.109066] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 05/28/2019] [Accepted: 05/31/2019] [Indexed: 12/15/2022] Open
Abstract
Atopic dermatitis (AD) is a chronic inflammatory skin disease. Korean red ginseng is a Korean traditional medicine. In this study, we estimated the effects of Korean red ginseng water extract (RGE) in the 1-chloro-2,4-dinitrobenzene (DNCB)-induced BALB/c mouse model which develops AD-like lesions. After RGE administration (100, 200, and 400 mg/kg) to DNCB-induced mice there were improvements in the dermatitis score and skin pH, a decrease in trans-epidermal water loss, and improved skin hydration. RGE also significantly inhibited eosinophil infiltration, increased filaggrin protein levels, and decreased serum IgE levels, epidermal thickness, mast cell infiltration, and ceramidase release. Compared with that in DNCB-induced mice, RGE effectively decreased the mRNA expression levels of interleukin-6 (IL-6), thymic stromal lymphopoietin (TSLP), and tumor necrosis factor-α (TNF-α), as well as the protein level of thymus and activation-regulated chemokine (TARC). These inhibitory RGE effects are mediated by inhibiting the phosphorylation of mitogen-activated protein kinases (MAPKs), including extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK), and p38 MAPK. Furthermore, we confirmed that RGE suppresses interferon-γ (IFN-γ) and TNF-α-induced expression of macrophage-derived chemokine (MDC) and TARC genes in human keratinocyte (HaCaT) cells. Taken together, these results demonstrate that RGE may exert anti-atopic related to responses by suppression the expression of inflammatory mediators, cytokines, and chemokines via downregulation of MAPK signaling pathways, suggesting that RGE may be an effective therapeutic approach for prevention of AD-like disease.
Collapse
Affiliation(s)
- Ju-Hyoung Park
- College of Pharmacy, Dankook University, Dandae-ro 119, Dongnam, Cheonan, Chungnam, 31116, Republic of Korea
| | - Eun-Kyung Ahn
- Bio-Center, Gyeonggido Business and Science Accelerator, Gwanggyo-ro 147, Yeoungtong, Suwon, Gyeonggi, 16229, Republic of Korea
| | - Hye-Jin Ko
- Bio-Center, Gyeonggido Business and Science Accelerator, Gwanggyo-ro 147, Yeoungtong, Suwon, Gyeonggi, 16229, Republic of Korea
| | - Jae Yeon Lee
- Bio-Center, Gyeonggido Business and Science Accelerator, Gwanggyo-ro 147, Yeoungtong, Suwon, Gyeonggi, 16229, Republic of Korea
| | - Seung-Mi Hwang
- Institute of Jinan Red Ginseng, 41 Hongsamhanbang-ro, Jinan-eup, Jinan-gun, Jeonbuk, 55442, Republic of Korea
| | - SeonMi Ko
- Institute of Jinan Red Ginseng, 41 Hongsamhanbang-ro, Jinan-eup, Jinan-gun, Jeonbuk, 55442, Republic of Korea
| | - Joa Sub Oh
- College of Pharmacy, Dankook University, Dandae-ro 119, Dongnam, Cheonan, Chungnam, 31116, Republic of Korea.
| |
Collapse
|
31
|
Ohno T, Miyasaka Y, Kuga M, Ushida K, Matsushima M, Kawabe T, Kikkawa Y, Mizuno M, Takahashi M. Mouse NC/Jic strain provides novel insights into host genetic factors for malaria research. Exp Anim 2019; 68:243-255. [PMID: 30880305 PMCID: PMC6699971 DOI: 10.1538/expanim.18-0185] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Malaria is caused by Plasmodium parasites and is one of the most
life-threatening infectious diseases in humans. Infection can result in severe
complications such as cerebral malaria, acute lung injury/acute respiratory distress
syndrome, and acute renal injury. These complications are mainly caused by P.
falciparum infection and are major causes of death associated with malaria.
There are a few species of rodent-infective malaria parasites, and mice infected with such
parasites are now widely used for screening candidate drugs and vaccines and for studying
host immune responses and pathogenesis associated with disease-related complications. We
found that mice of the NC/Jic strain infected with rodent malarial parasites exhibit
distinctive disease-related complications such as cerebral malaria and nephrotic syndrome,
in addition to a rapid increase in parasitemia. Here, we focus on the analysis of host
genetic factors that affect malarial pathogenesis and describe the characteristic
features, utility, and future prospects for exploitation of the NC/Jic strain as a novel
mouse model for malaria research.
Collapse
Affiliation(s)
- Tamio Ohno
- Division of Experimental Animals, Graduate School of Medicine, Nagoya University, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi 466-8550, Japan
| | - Yuki Miyasaka
- Division of Experimental Animals, Graduate School of Medicine, Nagoya University, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi 466-8550, Japan
| | - Masako Kuga
- Division of Experimental Animals, Graduate School of Medicine, Nagoya University, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi 466-8550, Japan
| | - Kaori Ushida
- Department of Pathology, Graduate School of Medicine, Nagoya University, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi 466-8550, Japan
| | - Miyoko Matsushima
- Department of Pathophysiological Laboratory Sciences, Graduate School of Medicine, Nagoya University, 1-1-20 Daikou-minami, Higashi-ku, Nagoya, Aichi 461-8673, Japan
| | - Tsutomu Kawabe
- Department of Pathophysiological Laboratory Sciences, Graduate School of Medicine, Nagoya University, 1-1-20 Daikou-minami, Higashi-ku, Nagoya, Aichi 461-8673, Japan
| | - Yoshiaki Kikkawa
- Mammalian Genetics Project, Department of Genome Medicine, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan
| | - Masashi Mizuno
- Renal Replacement Therapy, Graduate School of Medicine, Nagoya University, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi 466-8550, Japan
| | - Masahide Takahashi
- Department of Pathology, Graduate School of Medicine, Nagoya University, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi 466-8550, Japan
| |
Collapse
|
32
|
Choi EJ, Ryu YB, Tang Y, Kim BR, Lee WS, Debnath T, Fan M, Kim EK, Lee HS. Effect of cinnamamides on atopic dermatitis through regulation of IL-4 in CD4 + cells. J Enzyme Inhib Med Chem 2019. [PMID: 30727775 PMCID: PMC6366421 DOI: 10.1080/14756366.2019.1569647] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
This study aimed to evaluate the effects of cinnamamides on atopic dermatitis (AD) and the mechanisms underlying these effects. To this end, the actions of two cinnamamides, (E)-3-(4-hydroxyphenyl)-N-phenylethyl acrylamide (NCT) and N-trans-coumaroyltyramine (NCPA), were determined on AD by orally administering them to mice. Oral administration of the cinnamamides ameliorated the increase in epidermal and dermal thickness as well as mast cell infiltration. Cinnamamides suppressed serum immunoglobulin (Ig) levels and expression of T-helper (Th)1/Th2 cytokines. Moreover, cinnamamides suppressed interleukin (IL)-4, which plays a crucial role in preparing naïve clusters of differentiation (CD)4+ T cells, and decreased the cervical lymph node size and weight. Interestingly, in almost all cases, NCPA exhibited higher anti-AD activity compared to NCT. These results strongly indicate that NCPA may have potential as an anti-AD agent, and further mechanistic comparative studies of NCT and NCPA are required to determine the cause of differences in biological activity.
Collapse
Affiliation(s)
- Eun-Ju Choi
- a Department of Physical Education, College of Education , Daegu Catholic University , Gyeongsan , Republic of Korea
| | - Young Bae Ryu
- b Natural Product Material Research Center, Korea Research Institute of Bioscience and Biotechnology , Jeongeup , Republic of Korea
| | - Yujiao Tang
- c Division of Food Bioscience, College of Biomedical and Health Sciences , Konkuk University , Chungju , Republic of Korea.,d Changchun University of Science and Technology , Changchun , China
| | - Bo Ram Kim
- b Natural Product Material Research Center, Korea Research Institute of Bioscience and Biotechnology , Jeongeup , Republic of Korea
| | - Woo Song Lee
- b Natural Product Material Research Center, Korea Research Institute of Bioscience and Biotechnology , Jeongeup , Republic of Korea
| | - Trishna Debnath
- e Department of Food Science and Biotechnology , Dongguk University , Goyang , Republic of Korea
| | - Meiqi Fan
- c Division of Food Bioscience, College of Biomedical and Health Sciences , Konkuk University , Chungju , Republic of Korea
| | - Eun-Kyung Kim
- c Division of Food Bioscience, College of Biomedical and Health Sciences , Konkuk University , Chungju , Republic of Korea
| | - Hyun-Su Lee
- f College of Pharmacy , Keimyung University , Daegu , Republic of Korea
| |
Collapse
|
33
|
Iizumi K, Kawasaki H, Shigenaga A, Tominaga M, Otsu A, Kamo A, Kamata Y, Takamori K, Yamakura F. Tryptophan nitration of immunoglobulin light chain as a new possible biomarker for atopic dermatitis. J Clin Biochem Nutr 2018; 63:197-204. [PMID: 30487669 PMCID: PMC6252303 DOI: 10.3164/jcbn.18-53] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 05/03/2018] [Indexed: 12/29/2022] Open
Abstract
To reduce the incidence and severity of atopic dermatitis, detection and treatment at an early stage are urgently required, but no effective biomarker has been reported. In this study, we attempted to detect a candidate biomarker of early stage atopic dermatitis by focusing on the levels of nitrated residues in the plasma proteins of atopic dermatitis model mice (NC/Nga mice). We found that the immunoglobulin (Ig) light chain was more highly nitrated in the plasma of the animal model than that of control mice. Western blot analysis showed a statistically significant difference between the 6-nitrotryptophan content of the Ig light chain in the NC/Nga mice before onset of atopic dermatitis symptoms and that of the control mice. LC-ESI-MS/MS analysis demonstrated that these light chains contained nitrotryptophan (Trp56) and nitrotyrosine (Tyr66). Immunofluorescence staining revealed a significant increase in manganese superoxide dismutase and inducible nitric oxide synthase production in the skin lesions of the NC/Nga mice. Furthermore, we found protein-bound 6-nitrotryptophan and 3-nitrotyrosine only in the lesioned skin, where their signals partially overlapped with the IgG signal. Our findings suggest that the 6-nitrotryptophan content of Ig light chains could be a new biomarker for detecting early stage atopic dermatitis.
Collapse
Affiliation(s)
- Kyoichi Iizumi
- Juntendo University Faculty of Health and Sports Science, 1-1 Hirakagakuendai, Inzai, Chiba 270-1695, Japan
| | - Hiroaki Kawasaki
- Institute for Environmental and Gender-Specific Medicine, Juntendo University Graduate School of Medicine, 2-1-1 Tomioka, Urayasu, Chiba 279-0021, Japan
| | - Ayako Shigenaga
- Institute of Health Sports Science & Medicine, Juntendo University, 1-1 Hirakagakuendai, Inzai, Chiba 270-1695, Japan
| | - Mitsutoshi Tominaga
- Institute for Environmental and Gender-Specific Medicine, Juntendo University Graduate School of Medicine, 2-1-1 Tomioka, Urayasu, Chiba 279-0021, Japan
| | - Ayaka Otsu
- Institute for Environmental and Gender-Specific Medicine, Juntendo University Graduate School of Medicine, 2-1-1 Tomioka, Urayasu, Chiba 279-0021, Japan
| | - Atsuko Kamo
- Juntendo University Faculty of Healthcare and Nursing, 2-1-1 Takasu, Urayasu, Chiba 279-0023, Japan
| | - Yayoi Kamata
- Institute for Environmental and Gender-Specific Medicine, Juntendo University Graduate School of Medicine, 2-1-1 Tomioka, Urayasu, Chiba 279-0021, Japan
| | - Kenji Takamori
- Institute for Environmental and Gender-Specific Medicine, Juntendo University Graduate School of Medicine, 2-1-1 Tomioka, Urayasu, Chiba 279-0021, Japan
| | - Fumiyuki Yamakura
- Juntendo University Faculty of International Liberal Arts, 2-1-1, Bunkyo, Hongo, Tokyo 113-8424, Japan
| |
Collapse
|
34
|
McAleer MA, Jakasa I, Hurault G, Sarvari P, McLean WHI, Tanaka RJ, Kezic S, Irvine AD. Systemic and stratum corneum biomarkers of severity in infant atopic dermatitis include markers of innate and T helper cell-related immunity and angiogenesis. Br J Dermatol 2018; 180:586-596. [PMID: 30132823 PMCID: PMC6446820 DOI: 10.1111/bjd.17088] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/18/2018] [Indexed: 01/01/2023]
Abstract
Background Biomarkers of atopic dermatitis (AD) are largely lacking, especially in infant AD. Those that have been examined to date have focused mostly on serum cytokines, with few on noninvasive biomarkers in the skin. Objectives We aimed to explore biomarkers obtainable from noninvasive sampling of infant skin. We compared these with plasma biomarkers and structural and functional measures of the skin barrier. Methods We recruited 100 infants at first presentation with AD, who were treatment naive to topical or systemic anti‐inflammatory therapies, and 20 healthy children. We sampled clinically unaffected skin by tape stripping the stratum corneum (SC). Multiple cytokines and chemokines and natural moisturizing factor were measured in the SC and plasma. We recorded disease severity and skin barrier function. Results Nineteen SC and 12 plasma biomarkers showed significant differences between healthy and AD skin. Some biomarkers were common to both the SC and plasma, and others were compartment specific. Identified biomarkers of AD severity included T helper 2‐skewed markers [interleukin (IL)‐13, CCL17, CCL22, IL‐5]; markers of innate activation (IL‐18, IL‐1α, IL1β, CXCL8) and angiogenesis (Flt‐1, vascular endothelial growth factor); and others (soluble intercellular adhesion molecule‐1, soluble vascular cell adhesion molecule‐1, IL‐16, IL‐17A). Conclusions We identified clinically relevant biomarkers of AD, including novel markers, easily sampled and typed in infants. These markers may provide objective assessment of disease severity and suggest new therapeutic targets, or response measurement targets for AD. Future studies will be required to determine whether these biomarkers, seen in very early AD, can predict disease outcomes or comorbidities. What's already known about this topic? Atopic dermatitis is a clinically heterogeneous condition with multiple clinical manifestations and a complex pathogenesis. Systemic biomarkers of severity have been identified in adults, but are less well defined in children. Biomarkers from the skin compartment have been based on biopsies to date.
What does this study add? Noninvasive sampling can detect clinically relevant biomarkers in AD skin. These biomarkers may be useful for disease stratification, and provide insights into the pathogenesis of infant AD. Innate immune activation is important in the epidermis in infantile AD.
What is the translational message? Noninvasive biomarkers can yield significant insights into infantile AD. They identify innate activation, the T helper 2 pathway and angiogenesis as important pathways in this condition.
Respond to this article Linked Comment:Hijnen. Br J Dermatol 2019; 180:455–456. Plain language summary available online
Collapse
Affiliation(s)
- M A McAleer
- National Children's Research Centre, Our Lady's Children's Hospital, Crumlin, Dublin 12, Ireland.,Paediatric Dermatology, Our Lady's Children's Hospital, Crumlin, Dublin 12, Ireland
| | - I Jakasa
- Laboratory for Analytical Chemistry, Department of Chemistry and Biochemistry, Faculty of Food Technology and Biotechnology, University of Zagreb, Zagreb, Croatia
| | - G Hurault
- Department of Bioengineering, Imperial College London, London, U.K
| | - P Sarvari
- Department of Bioengineering, Imperial College London, London, U.K
| | - W H I McLean
- Dermatology and Genetic Medicine, University of Dundee, Dundee, U.K
| | - R J Tanaka
- Department of Bioengineering, Imperial College London, London, U.K
| | - S Kezic
- Amsterdam UMC, University of Amsterdam, Coronel Institute of Occupational Health, Amsterdam Public Health research institute, Meibergdreef 9, Amsterdam, the Netherlands
| | - A D Irvine
- National Children's Research Centre, Our Lady's Children's Hospital, Crumlin, Dublin 12, Ireland.,Paediatric Dermatology, Our Lady's Children's Hospital, Crumlin, Dublin 12, Ireland.,Clinical Medicine, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
35
|
Han NR, Moon PD, Kim HM, Jeong HJ. Cordycepin ameliorates skin inflammation in a DNFB-challenged murine model of atopic dermatitis. Immunopharmacol Immunotoxicol 2018; 40:401-407. [DOI: 10.1080/08923973.2018.1510964] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Na-Ra Han
- Department of Pharmacology, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Phil-Dong Moon
- Center for Converging Humanities, Kyung Hee University, Seoul, Republic of Korea
| | - Hyung-Min Kim
- Department of Pharmacology, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Hyun-Ja Jeong
- Department of Food Science & Technology and Research Institute for Basic Science, Hoseo University, Chungnam, Republic of Korea
| |
Collapse
|
36
|
Kopecki Z, Stevens NE, Chong HT, Yang GN, Cowin AJ. Flightless I Alters the Inflammatory Response and Autoantibody Profile in an OVA-Induced Atopic Dermatitis Skin-Like Disease. Front Immunol 2018; 9:1833. [PMID: 30147695 PMCID: PMC6095979 DOI: 10.3389/fimmu.2018.01833] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 07/25/2018] [Indexed: 01/14/2023] Open
Abstract
Atopic dermatitis (AD) is a chronic pruritic inflammatory skin disease characterized by excessive inflammation and disrupted skin barrier function. Although the etiology of AD is not completely understood, clinical and basic studies suggest increasing involvement of autoantibodies against intracellular proteins. An actin remodeling protein, Flightless I (Flii), has been shown to promote development of inflammatory mediated skin conditions and impairment of skin barrier development and function. Here, we sought to determine the effect of altering Flii expression on the development of AD and its contribution to autoimmune aspects of inflammatory skin conditions. Ovalbumin (OVA)-induced AD skin-like disease was induced in Flii heterozygous (Flii+/−), wild-type (Flii+/+), and Flii transgenic (FliiTg/Tg) mice by epicutaneous exposure to OVA for 3 weeks; each week was separated by 2-week resting period. Reduced Flii expression resulted in decreased disease severity and tissue inflammation as determined by histology, lymphocytic, and mast cell infiltrate and increased anti-inflammatory IL-10 cytokine levels and a marked IFN-γ Th1 response. In contrast, Flii over-expression lead to a Th2 skewed response characterized by increased pro-inflammatory TNF-α cytokine production, Th2 chemokine levels, and Th2 cell numbers. Sera from OVA-induced AD skin-like disease Flii+/− mice showed a decreased level of autoreactivity while sera from FliiTg/Tg mice counterparts showed an altered autoantibody profile with strong nuclear localization favoring development of a more severe disease. These findings demonstrate autoimmune responses in this model of OVA-induced AD-like skin disease and suggest that Flii is a novel target, whose manipulation could be a potential approach for the treatment of patients with AD.
Collapse
Affiliation(s)
- Zlatko Kopecki
- Regenerative Medicine, Future Industries Institute, University of South Australia, Adelaide, SA, Australia
| | - Natalie E Stevens
- Regenerative Medicine, Future Industries Institute, University of South Australia, Adelaide, SA, Australia
| | - Heng T Chong
- Regenerative Medicine, Future Industries Institute, University of South Australia, Adelaide, SA, Australia
| | - Gink N Yang
- Regenerative Medicine, Future Industries Institute, University of South Australia, Adelaide, SA, Australia
| | - Allison J Cowin
- Regenerative Medicine, Future Industries Institute, University of South Australia, Adelaide, SA, Australia
| |
Collapse
|
37
|
Han NR, Moon PD, Yoo MS, Ryu KJ, Kim HM, Jeong HJ. Regulatory effects of chrysophanol, a bioactive compound of AST2017-01 in a mouse model of 2,4-dinitrofluorobenzene-induced atopic dermatitis. Int Immunopharmacol 2018; 62:220-226. [PMID: 30025384 DOI: 10.1016/j.intimp.2018.06.046] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 06/11/2018] [Accepted: 06/29/2018] [Indexed: 12/22/2022]
Abstract
The aim of this study is to determine whether AST2017-01 which consists of Rumex crispus and Cordyceps militaris would improve atopic dermatitis (AD). We analyzed anti-AD effects of AST2017-01 and chrysophanol, a bioactive compound of AST2017-01, using a 2,4-dinitrofluorobenzene-induced AD murine model. AST2017-01 and chrysophanol relieved clinical severity in AD-like skin lesions and significantly decreased scratching behavior. The thickness of epidermis and infiltration of inflammatory cells in AD-like skin lesions were reduced by AST2017-01 or chrysophanol. AST2017-01 and chrysophanol significantly suppressed the levels of histamine, immunoglobulin E, thymic stromal lymphopoietin (TSLP), interleukin (IL)-4, IL-6, and tumor necrosis factor-α in serum of AD mice. The protein levels of TSLP, intercellular adhesion molecule-1, and macrophage inflammatory protein 2 were significantly inhibited in the skin lesions. The mRNA expressions of TSLP, thymus and activation-regulated chemokine/CCL17, and C-C chemokine receptor 3 were inhibited in the skin lesions by AST2017-01 or chrysophanol. In addition, AST2017-01 and chrysophanol significantly suppressed the expressions and activities of caspase-1 in the skin lesions. Taken together, these results suggest that AST2017-01 has beneficial effects on AD and may be used as a health functional food in AD.
Collapse
Affiliation(s)
- Na-Ra Han
- Department of Pharmacology, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Phil-Dong Moon
- Department of Pharmacology, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Min-Sun Yoo
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Ka-Jung Ryu
- Department of Pharmacology, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Hyung-Min Kim
- Department of Pharmacology, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea.
| | - Hyun-Ja Jeong
- Department of Food Science & Technology, Hoseo University, 20, Hoseo-ro 79 beon-gil, Baebang-eup, Asan, Chungcheongnam-do 31499, Republic of Korea.
| |
Collapse
|
38
|
Kawahara T, Hanzawa N, Sugiyama M. Effect of Lactobacillus strains on thymus and chemokine expression in keratinocytes and development of atopic dermatitis-like symptoms. Benef Microbes 2018; 9:643-652. [PMID: 29798706 DOI: 10.3920/bm2017.0162] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Lactobacillus strains, a major group of lactic acid bacteria, are representative food microorganisms that have many potential beneficial effects via their interactions with immune and intestinal epithelial cells. However, little is known about the effect of Lactobacillus strains on atopic dermatitis via keratinocytes, which comprise the physical barrier of the skin. In this study, we report that Lactobacillus strains have a significant suppressive effect on tumour necrosis factor (TNF)-α-induced expression and production of thymus and activation-regulated chemokine (TARC), a T helper 2 cell chemokine responsible for atopic dermatitis, in human keratinocytes. An RNA interference study showed that the effect of Lactobacillus reuteri strain Japan Collection of Microorganisms (JCM) 1112, the most suppressive strain, depended on the presence of Toll-like receptor 2 and the induction of A20 (also known as TNF-α-induced protein 3) and cylindromatosis in HaCaT cells. Topical application of a water-soluble extract of homogenised JCM 1112 cells significantly suppressed the development of house dust mite-induced atopic skin lesions and TARC expression at the lesion sites in NC/Nga mice. Our study provides new insights into the use of Lactobacillus strains as suppressive agents against keratinocyte-involved atopic inflammation of the skin.
Collapse
Affiliation(s)
- T Kawahara
- 1 Faculty of Agriculture, Shinshu University, 8304 Minamiminowa, Kamiina, Nagano 399-4598, Japan.,2 Department of Interdisciplinary Genome Sciences and Cell Metabolism, Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research (IBS-ICCER) Shinshu University, 8304 Minamiminowa, Kamiina, Nagano 399-4598, Japan
| | - N Hanzawa
- 1 Faculty of Agriculture, Shinshu University, 8304 Minamiminowa, Kamiina, Nagano 399-4598, Japan
| | - M Sugiyama
- 1 Faculty of Agriculture, Shinshu University, 8304 Minamiminowa, Kamiina, Nagano 399-4598, Japan
| |
Collapse
|
39
|
Nomura T, Honda T, Kabashima K. Multipolarity of cytokine axes in the pathogenesis of atopic dermatitis in terms of age, race, species, disease stage and biomarkers. Int Immunol 2018. [DOI: 10.1093/intimm/dxy015] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Affiliation(s)
- Takashi Nomura
- Department of Dermatology, Kyoto University Graduate School of Medicine, Sakyo-ku, Kyoto 606-8326, Japan
| | - Tetsuya Honda
- Department of Dermatology, Kyoto University Graduate School of Medicine, Sakyo-ku, Kyoto 606-8326, Japan
| | - Kenji Kabashima
- Department of Dermatology, Kyoto University Graduate School of Medicine, Sakyo-ku, Kyoto 606-8326, Japan
- Singapore Immunology Network (SIgN) and Institute of Medical Biology (IMB), Agency for Science, Technology and Research (A*STAR), Biopolis, Singapore
| |
Collapse
|
40
|
Park JW, Lee HS, Lim Y, Paik JH, Kwon OK, Kim JH, Paryanto I, Yunianto P, Choi S, Oh SR, Ahn KS. Rhododendron album Blume extract inhibits TNF-α/IFN-γ-induced chemokine production via blockade of NF-κB and JAK/STAT activation in human epidermal keratinocytes. Int J Mol Med 2018. [PMID: 29532855 DOI: 10.3892/ijmm.2018.3556] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Rhododendron album Blume (RA) has traditionally been used as an herbal medicine and is considered to have anti‑inflammatory properties. It is a well‑known medicine for treatment of allergic or atopic diseases. In the present study, the biological effects of an RA methanol extract (RAME) on inflammation were investigated in tumor necrosis factor‑α (TNF‑α)/interferon‑γ (IFN‑γ)‑stimulated human keratinocytes. The present study aimed to investigate the potential mechanisms by which RAME inhibited TNF‑α/IFN‑γ‑induced expression of chemokines [thymus‑ and activation-regulated chemokine (TARC) and macrophage‑derived chemokine (MDC)] and cytokines [interleukin (IL)‑6 and IL‑8] through the nuclear factor‑κB (NF‑κB) pathway in human keratinocytes. The effects of RAME treatment on cell viability were investigated in TNF‑α/IFN‑γ‑stimulated HaCaT cells. The expression of TARC, MDC, IL‑6 and IL‑8 was assessed using reverse transcription‑quantitative polymerase chain reaction analysis or ELISA, and its effect on the inhibitory mitogen-activated protein kinase pathway was also studied using western blot analysis. TNF‑α/IFN‑γ induced the expression of IL‑6, IL‑8, TARC and MDC in a dose‑dependent manner through NF‑κB and Janus kinase/signal transducers and activators of transcription (JAK/STAT) activation. Notably, treatment with RAME significantly suppressed TNF-α/IFN-γ-induced expression of IL‑6, IL‑8, TARC, and MDC. In addition, RAME treatment inhibited the activation of NF‑κB and the JAK/STAT pathway in TNF‑α/IFN‑γ‑induced HaCaT cells. These results suggest that RAME decreases the production of chemokines and pro‑inflammatory cytokines by suppressing the NF‑κB and the JAK/STAT pathways. Consequently, RAME may potentially be used for treatment of atopic dermatitis.
Collapse
Affiliation(s)
- Ji-Won Park
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Chungbuk 28116, Republic of Korea
| | - Han-Sol Lee
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Chungbuk 28116, Republic of Korea
| | - Yourim Lim
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Chungbuk 28116, Republic of Korea
| | - Jin-Hyub Paik
- International Biological Material Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
| | - Ok-Kyoung Kwon
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Chungbuk 28116, Republic of Korea
| | - Jung-Hee Kim
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Chungbuk 28116, Republic of Korea
| | - Imam Paryanto
- Center for Pharmaceutical and Medical Technology, Kawasan Puspiptek Serpong, LAPTIAB, Tangerang, Banten 15314, Indonesia
| | - Prasetyawan Yunianto
- Center for Pharmaceutical and Medical Technology, Kawasan Puspiptek Serpong, LAPTIAB, Tangerang, Banten 15314, Indonesia
| | - Sangho Choi
- International Biological Material Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
| | - Sei-Ryang Oh
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Chungbuk 28116, Republic of Korea
| | - Kyung-Seop Ahn
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Chungbuk 28116, Republic of Korea
| |
Collapse
|
41
|
Löwa A, Jevtić M, Gorreja F, Hedtrich S. Alternatives to animal testing in basic and preclinical research of atopic dermatitis. Exp Dermatol 2018; 27:476-483. [PMID: 29356091 DOI: 10.1111/exd.13498] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/12/2018] [Indexed: 12/29/2022]
Abstract
Atopic dermatitis (AD) is a chronic inflammatory skin disease of increasing prevalence, especially in industrialized countries. Roughly 25% of the children and 1%-3% of adults are affected. Although significant progress has been made in the understanding of the pathogenesis of AD, many aspects remain poorly understood. Moreover, there is a pressing need for improved therapeutic options. Studies to elucidate the pathophysiological pathways of AD and to identify novel therapeutic targets over the last few decades have been conducted almost exclusively in animal models. However, in vitro approaches such as 3D skin disease models have recently emerged due to an increasing awareness of distinct interspecies-related differences that hamper the effective translation of results from animal models to humans. In addition, there is growing political and social pressure to develop alternatives to animal models according to the 3Rs principle (reduction, refinement and replacement of animal models).
Collapse
Affiliation(s)
- Anna Löwa
- Institute for Pharmacy, Pharmacology & Toxicology, Freie Universität Berlin, Berlin, Germany
| | - Marijana Jevtić
- Institute for Pharmacy, Pharmacology & Toxicology, Freie Universität Berlin, Berlin, Germany
| | - Frida Gorreja
- Örebro University, School of Health and Medical Sciences, Örebro University, Orebro, Sweden
| | - Sarah Hedtrich
- Institute for Pharmacy, Pharmacology & Toxicology, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
42
|
Fukuyama T, Martel BC, Linder KE, Ehling S, Ganchingco JR, Bäumer W. Hypochlorous acid is antipruritic and anti-inflammatory in a mouse model of atopic dermatitis. Clin Exp Allergy 2017; 48:78-88. [DOI: 10.1111/cea.13045] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 08/10/2017] [Accepted: 09/21/2017] [Indexed: 12/27/2022]
Affiliation(s)
- T. Fukuyama
- Department of Molecular Biomedical Sciences; College of Veterinary Medicine; North Carolina State University; Raleigh NC USA
| | - B. C. Martel
- Department of Molecular Biomedical Sciences; College of Veterinary Medicine; North Carolina State University; Raleigh NC USA
| | - K. E. Linder
- Department of Population Health and Pathology; College of Veterinary Medicine; North Carolina State University; Raleigh NC USA
| | - S. Ehling
- Department of Molecular Biomedical Sciences; College of Veterinary Medicine; North Carolina State University; Raleigh NC USA
| | - J. R. Ganchingco
- Department of Molecular Biomedical Sciences; College of Veterinary Medicine; North Carolina State University; Raleigh NC USA
| | - W. Bäumer
- Department of Molecular Biomedical Sciences; College of Veterinary Medicine; North Carolina State University; Raleigh NC USA
- Department of Veterinary Medicine; Institute of Pharmacology and Toxicology; Freie Universität Berlin; Berlin Germany
| |
Collapse
|
43
|
Kim WH, An HJ, Kim JY, Gwon MG, Gu H, Lee SJ, Park JY, Park KD, Han SM, Kim MK, Park KK. Apamin inhibits TNF-α- and IFN-γ-induced inflammatory cytokines and chemokines via suppressions of NF-κB signaling pathway and STAT in human keratinocytes. Pharmacol Rep 2017; 69:1030-1035. [PMID: 28958612 DOI: 10.1016/j.pharep.2017.04.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 03/26/2017] [Accepted: 04/11/2017] [Indexed: 01/23/2023]
Abstract
BACKGROUND Atopic dermatitis (AD) is identified by an increase in infiltrations of several inflammatory cells including type 2 helper (Th2) lymphocytes. Th2-related chemokines such as thymus and activation-regulated chemokine (TARC/CCL17) and macrophage-derived chemokine (MDC/CCL22), and pro-inflammatory cytokines including interleukin (IL)-1β and IL-6 are considered to play a crucial role in AD. Tumor necrosis factor (TNF)-α- and interferon (IFN)-γ induce the inflammatory condition through production of TARC, MDC, IL-1β and IL-6, and activations of related transcription factors, such as nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) and signal transducer and activator of transcription (STAT) in keratinocytes. Apamin, a peptide component of bee venom, has been reported its beneficial activities in various diseases. However, anti-inflammatory effects of apamin on inflammatory condition in keratinocytes have not been explored. Therefore, the present study aimed to demonstrate the anti-inflammatory effect of apamin on TNF-α- and IFN-γ-induced inflammatory condition in keratinocytes. METHODS HaCaT was used as human keratinocytes cell line. Cell Counting Kit-8 was performed to measure a cytotoxicity of apamin. The effects of apamin on TNF-α-/IFN-γ-induced inflammatory condition were determined by real-time PCR and Western blot analysis. Further, NF-κB signaling pathways, STAT1, and STAT3 were analyzed by Western blot and immunofluorescence. RESULTS Apamin ameliorated the inflammatory condition through suppression of Th2-related chemokines and pro-inflammatory cytokines. Further, apamin down-regulated the activations of NF-κB signaling pathways and STATs in HaCaT cells. CONCLUSIONS These results suggest that apamin has therapeutic effect on AD through improvement of inflammatory condition.
Collapse
Affiliation(s)
- Woon-Hae Kim
- Department of Pathology, College of Medicine, Catholic University of Daegu, 33, Duryugongwon-ro 17-gil, Nam-gu, Daegu 42472, Republic of Korea.
| | - Hyun-Jin An
- Department of Pathology, College of Medicine, Catholic University of Daegu, 33, Duryugongwon-ro 17-gil, Nam-gu, Daegu 42472, Republic of Korea.
| | - Jung-Yeon Kim
- Department of Pathology, College of Medicine, Catholic University of Daegu, 33, Duryugongwon-ro 17-gil, Nam-gu, Daegu 42472, Republic of Korea.
| | - Mi-Gyeong Gwon
- Department of Pathology, College of Medicine, Catholic University of Daegu, 33, Duryugongwon-ro 17-gil, Nam-gu, Daegu 42472, Republic of Korea.
| | - Hyemin Gu
- Department of Pathology, College of Medicine, Catholic University of Daegu, 33, Duryugongwon-ro 17-gil, Nam-gu, Daegu 42472, Republic of Korea.
| | - Sun-Jae Lee
- Department of Pathology, College of Medicine, Catholic University of Daegu, 33, Duryugongwon-ro 17-gil, Nam-gu, Daegu 42472, Republic of Korea.
| | - Ji Y Park
- Department of Pathology, College of Medicine, Catholic University of Daegu, 33, Duryugongwon-ro 17-gil, Nam-gu, Daegu 42472, Republic of Korea.
| | - Kyung-Duck Park
- Department of Dermatology, College of Medicine, Catholic University of Daegu, 33, Duryugongwon-ro 17-gil, Nam-gu, Daegu 42472, Republic of Korea.
| | - Sang-Mi Han
- Department of Agricultural Biology, National Academy of Agricultural Science, Rural Development Administration, 300, Nongsaengmyeong-ro, Wansan-gu, Jeonju-si, Jeollabuk-do 54875, Republic of Korea.
| | - Min-Kyung Kim
- Department of Pathology, College of Medicine, Dongguk University, 123, Dongdae-ro, Gyeongju-si, Gyeongsangbuk-do 38066, Republic of Korea.
| | - Kwan-Kyu Park
- Department of Pathology, College of Medicine, Catholic University of Daegu, 33, Duryugongwon-ro 17-gil, Nam-gu, Daegu 42472, Republic of Korea.
| |
Collapse
|
44
|
Martel BC, Lovato P, Bäumer W, Olivry T. Translational Animal Models of Atopic Dermatitis for Preclinical Studies. THE YALE JOURNAL OF BIOLOGY AND MEDICINE 2017; 90:389-402. [PMID: 28955179 PMCID: PMC5612183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
There is a medical need to develop new treatments for patients suffering from atopic dermatitis (AD). To improve the discovery and testing of novel treatments, relevant animal models for AD are needed. Generally, these animal models mimic different aspects of the pathophysiology of human AD, such as skin barrier defects and Th2 immune bias with additional Th1 and Th22, and in some populations Th17, activation. However, the pathomechanistic characterization and pharmacological validation of these animal models are generally incomplete. In this paper, we review animal models of AD in the context of preclinical use and their possible translation to the human disease. Most of these models use mice, but we will also critically evaluate dog models of AD, as increasing information on disease mechanism show their likely relevance for the human disease.
Collapse
Affiliation(s)
- Britta C. Martel
- LEO Pharma A/S, Ballerup, Denmark,Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
| | | | - Wolfgang Bäumer
- Department of Molecular Biological Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA,Comparative Medicine Institute, North Carolina State University, Raleigh, NC, USA
| | - Thierry Olivry
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA,Comparative Medicine Institute, North Carolina State University, Raleigh, NC, USA,To whom all correspondence should be addressed: Thierry Olivry, Department of Clinical Sciences, College of Veterinary Medicine, 1060 William Moore Drive, Raleigh, NC, 27607, E-mail:
| |
Collapse
|
45
|
Kabashima K, Nomura T. Revisiting murine models for atopic dermatitis and psoriasis with multipolar cytokine axes. Curr Opin Immunol 2017; 48:99-107. [PMID: 28915378 DOI: 10.1016/j.coi.2017.08.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 07/18/2017] [Accepted: 08/16/2017] [Indexed: 12/18/2022]
Abstract
Atopic dermatitis (AD) and psoriasis are one of the common skin diseases. Animal models are a powerful tool to analyze these diseases, which are complicated by multiple cytokine pathways. However, many discrepancies between the human diseases and murine models have been noticed. Therefore, investigators should be aware of the differences between the murine AD models and human AD when translating murine data to human skin diseases. This review highlights the differences between the inflammatory profiles between murine models and human diseases focusing on AD and psoriasis.
Collapse
Affiliation(s)
- Kenji Kabashima
- Department of Dermatology, Kyoto University Graduate School of Medicine, 54 Shogoin-Kawahara, Sakyoku, Kyoto 606-8507, Japan; Singapore Immunology Network (SIgN) and Institute of Medical Biology, Agency for Science, Technology and Research (A*STAR), Biopolis, Singapore.
| | - Takashi Nomura
- Department of Dermatology, Kyoto University Graduate School of Medicine, 54 Shogoin-Kawahara, Sakyoku, Kyoto 606-8507, Japan
| |
Collapse
|
46
|
Kim CG, Lee JE, Jeong DG, Lee YH, Park SI, Lee DG, Han CH, Kang SJ, Song CH, Choi SH, Lee YJ, Ku SK. Bathing effects of east saline groundwater concentrates on allergic (atopic) dermatitis-like skin lesions induced by 2,4-dinitrochlorobenzene in hairless mice. Exp Ther Med 2017; 13:3448-3466. [PMID: 28587425 PMCID: PMC5450751 DOI: 10.3892/etm.2017.4397] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 03/06/2017] [Indexed: 01/06/2023] Open
Abstract
In the present study, it was evaluated whether east saline groundwater concentration solution (ESGWc) exerted a favorable inhibitory effect on 2,4-dinitrochlorobenzene (DNCB)-induced allergic/atopic-like dermatitis (AD). AD was induced and boosted by sensitization with DNCB via topical application on the dorsal back skins. Mice with DNCB-induced AD were bathed in 100-, 200- and 400-fold diluted ESGWc. After 6 weeks bathing, changes to body weight, clinical skin severity scores, scratching behavior, serum total immunoglobulin (Ig)E levels, submandibular lymph node and spleen weights, splenic cytokine levels, skin cytokine mRNA expressions, antioxidant defense systems and superoxide anion productions were recorded to determine the effects of bathing on the histopathology of dorsal back skin tissues. All DNCB-induced mice demonstrated that the induction of AD through IgE-mediated hypersensitivities, oxidative stresses, activation of MMP and apoptosis of keratinocytes resulted in no significant differences in body weight between the different groups at each time point following initial sensitization. However, markers of DNCB-induced AD were significantly inhibited (P<0.05) in a concentration-dependent manner following bathing in all concentrations of ESGWc. The results obtained in the present study suggest that bathing in ESGWc may have favorable protective effects against DNCB-induced AD due to favorable systemic and local immunomodulatory effects, active cytoprotective anti-apoptotic effects, inhibitory effects of matrix metalloproteinase activity, and anti-inflammatory and antioxidative effects.
Collapse
Affiliation(s)
- Choong-Gon Kim
- Biological Oceanography and Marine Biology Division, KIOST, Ansan, Gyeonggi 15627, Republic of Korea
| | - Ji-Eun Lee
- The Medical Research Center for Globalization of Herbal Medicine, Daegu Haany University, Gyeongsan, Gyeongsangbuk-do 38610, Republic of Korea.,Department of Anatomy and Histology, College of Korean Medicine, Daegu Haany University, Gyeongsan, Gyeongsangbuk-do 38610, Republic of Korea
| | - Da-Geum Jeong
- Biological Oceanography and Marine Biology Division, KIOST, Ansan, Gyeonggi 15627, Republic of Korea
| | - Youn-Ho Lee
- Biological Oceanography and Marine Biology Division, KIOST, Ansan, Gyeonggi 15627, Republic of Korea
| | - Sang-In Park
- The Medical Research Center for Globalization of Herbal Medicine, Daegu Haany University, Gyeongsan, Gyeongsangbuk-do 38610, Republic of Korea.,Department of Anatomy and Histology, College of Korean Medicine, Daegu Haany University, Gyeongsan, Gyeongsangbuk-do 38610, Republic of Korea
| | - Dae-Geon Lee
- The Medical Research Center for Globalization of Herbal Medicine, Daegu Haany University, Gyeongsan, Gyeongsangbuk-do 38610, Republic of Korea.,Department of Anatomy and Histology, College of Korean Medicine, Daegu Haany University, Gyeongsan, Gyeongsangbuk-do 38610, Republic of Korea
| | - Chang-Hyun Han
- Department of Medical History and Literature Group, Korea Institute of Oriental Medicine, Daejeon 34054, Republic of Korea
| | - Su-Jin Kang
- The Medical Research Center for Globalization of Herbal Medicine, Daegu Haany University, Gyeongsan, Gyeongsangbuk-do 38610, Republic of Korea.,Department of Preventive Medicine, College of Korean Medicine, Daegu Haany University, Gyeongsan, Gyeongsangbuk-do 38610, Republic of Korea
| | - Chang-Hyun Song
- The Medical Research Center for Globalization of Herbal Medicine, Daegu Haany University, Gyeongsan, Gyeongsangbuk-do 38610, Republic of Korea.,Department of Anatomy and Histology, College of Korean Medicine, Daegu Haany University, Gyeongsan, Gyeongsangbuk-do 38610, Republic of Korea
| | - Seong-Hun Choi
- Department of Anatomy and Histology, College of Korean Medicine, Daegu Haany University, Gyeongsan, Gyeongsangbuk-do 38610, Republic of Korea
| | - Young-Joon Lee
- The Medical Research Center for Globalization of Herbal Medicine, Daegu Haany University, Gyeongsan, Gyeongsangbuk-do 38610, Republic of Korea.,Department of Preventive Medicine, College of Korean Medicine, Daegu Haany University, Gyeongsan, Gyeongsangbuk-do 38610, Republic of Korea
| | - Sae-Kwang Ku
- The Medical Research Center for Globalization of Herbal Medicine, Daegu Haany University, Gyeongsan, Gyeongsangbuk-do 38610, Republic of Korea.,Department of Anatomy and Histology, College of Korean Medicine, Daegu Haany University, Gyeongsan, Gyeongsangbuk-do 38610, Republic of Korea
| |
Collapse
|
47
|
Theobroma cacao extract attenuates the development of Dermatophagoides farinae-induced atopic dermatitis-like symptoms in NC/Nga mice. Food Chem 2017; 216:19-26. [DOI: 10.1016/j.foodchem.2016.07.141] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Revised: 07/23/2016] [Accepted: 07/26/2016] [Indexed: 11/24/2022]
|
48
|
Kawahara T, Tsutsui K, Nakanishi E, Inoue T, Hamauzu Y. Effect of the topical application of an ethanol extract of quince seeds on the development of atopic dermatitis-like symptoms in NC/Nga mice. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017; 17:80. [PMID: 28137259 PMCID: PMC5282862 DOI: 10.1186/s12906-017-1606-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 01/26/2017] [Indexed: 11/18/2022]
Abstract
Background Quince (Cydonia oblonga Miller) is a deciduous shrub belonging to the Rosaceae family. Quince seed extract has long been used as a cosmetic ingredient for its moisturizing effect. However, little is known about whether quince seed extract has therapeutic effects on keratinocyte-associated skin inflammation. Methods In the present study, we investigated the effect of the topical application of ethanol extract of quince seeds (QSEtE) on atopic dermatitis (AD) symptoms in NC/Nga mice. The direct effect of QSEtE on keratinocytes was evaluated using the human keratinocyte cell line HaCaT. Results The preliminary application of QSEtE markedly reduced house dust mite allergen-induced skin lesions. The expression of thymus- and activation-regulated chemokine (TARC) in dorsal skin was downregulated. QSEtE directly suppressed the expression and production of TARC in HaCaT cells. Conclusions The results suggest that the topical application of QSEtE is effective in preventing the onset of and ameliorating the atopic symptoms of keratinocyte-associated skin inflammation by suppressing TARC production in keratinocytes.
Collapse
|
49
|
Dimerized Translationally Controlled Tumor Protein-Binding Peptide Ameliorates Atopic Dermatitis in NC/Nga Mice. Int J Mol Sci 2017; 18:ijms18020256. [PMID: 28134765 PMCID: PMC5343792 DOI: 10.3390/ijms18020256] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 12/22/2016] [Accepted: 01/13/2017] [Indexed: 01/20/2023] Open
Abstract
Our previous study showed that dimerized translationally controlled tumor protein (dTCTP) plays a role in the pathogenesis of allergic diseases, such as asthma and allergic rhinitis. A 7-mer peptide, called dTCTP-binding peptide 2 (dTBP2), binds to dTCTP and inhibits its cytokine-like effects. We therefore examined the protective effects of dTBP2 in house dust mite-induced atopic dermatitis (AD)-like skin lesions in Nishiki-nezumi Cinnamon/Nagoya (NC/Nga) mice. We found that topical administration of dTBP2 significantly reduced the AD-like skin lesions formation and mast cell infiltration in NC/Nga mice, similarly to the response seen in the Protopic (tacrolimus)-treated group. Treatment with dTBP2 also decreased the serum levels of IgE and reduced IL-17A content in skin lesions and inhibited the expression of mRNAs of interleukin IL-4, IL-5, IL-6, IL-13, macrophage-derived chemokine (MDC), thymus and activation-regulated chemokine (TARC) and thymic stromal lymphopoietin (TSLP). These findings indicate that dTBP2 not only inhibits the release of Th2 cytokine but also suppresses the production of proinflammatory cytokines in AD-like skin lesions in NC/Nga mice, by inhibiting TCTP dimer, in allergic responses. Therefore, dTCTP is a therapeutic target for AD and dTBP2 appears to have a potential role in the treatment of AD.
Collapse
|
50
|
Park HJ, Jang YJ, Yim JH, Lee HK, Pyo S. Ramalin Isolated from Ramalina Terebrata Attenuates Atopic Dermatitis-like Skin Lesions in Balb/c Mice and Cutaneous Immune Responses in Keratinocytes and Mast Cells. Phytother Res 2016; 30:1978-1987. [PMID: 27558640 DOI: 10.1002/ptr.5703] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 07/27/2016] [Accepted: 07/28/2016] [Indexed: 01/18/2023]
Abstract
Atopic dermatitis (AD) is a chronic inflammatory skin disease that involves eczematous skin lesions with pruritic erythematous papules. In this study, we investigated the mitigating effects of ramalin, a component of the Antarctic lichen Ramalina terebrata against AD in vivo and in vitro. Oral administration of ramalin lessened scratching behaviors and significantly reduced both serum immunoglobulin E and IL-4 levels, and mRNA levels of IL-4 and IL-10 in AD-induced Balb/c mice. In vitro, treatment with ramalin produced significantly less inflammatory chemokines and cytokines, including TARC, MCP-1, RANTES, and IL-8 in TNF-α-stimulated HaCaT cells. In addition, ramalin inhibited the activation of nuclear factor-kappa B as well as the phosphorylation of mitogen-activated protein kinases (MAPK). Furthermore, ramalin treatment resulted in decreased production of β-hexosaminidase and proinflammatory cytokines IL-4, IL-6, and TNF-α in 2,4 dinitrophenyl-human serum albumin-stimulated RBL-2H3 cells through blocking MAPK signaling pathways. The results suggest that ramalin modulates the production of immune mediators by inhibiting the nuclear factor-kappa B and MAPK signaling pathways. Taken together, ramalin effectively attenuated the development of AD and promoted the mitigating effects on Th2 cell-mediated immune responses and the production of inflammatory mediators in mast cells and keratinocytes. Thus, ramalin may be a potential therapeutic agent for AD. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Hye-Jin Park
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Korea
| | - Yeon Jeong Jang
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Korea
| | - Joung-Han Yim
- Polar BioCenter, Korea Polar Research Institute, Incheon, 21990, Korea
| | - Hong-Kum Lee
- Polar BioCenter, Korea Polar Research Institute, Incheon, 21990, Korea
| | - Suhkneung Pyo
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Korea
| |
Collapse
|