1
|
Jiang Y, Wang Z, Li W, Ma T, Li M, Wu S, Lin E, Flader KE, Ma M, Chang M, Li H, Wang W, Lu J. Enhanced delivery of camptothecin to colorectal carcinoma using a tumor-penetrating peptide targeting p32. Acta Biomater 2025:S1742-7061(25)00361-7. [PMID: 40379119 DOI: 10.1016/j.actbio.2025.05.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 04/04/2025] [Accepted: 05/13/2025] [Indexed: 05/19/2025]
Abstract
Camptothesome, a sphingomyelin (SM)-conjugated camptothecin (CPT) vesicular nanotherapeutic, addresses the poor solubility and lactone instability of CPT while enhancing drug loading, pharmacokinetics, and tumor distribution compared to CPT physically entrapped in conventional liposomes. Despite these improvements, the tumor uptake remains limited. To further enhance the tumor delivery efficiency and minimize the off-target distribution, we functionalize Camptothesome with the LinTT1 peptide, a CendR motif, which binds to overexpressed p32 proteins on tumor cell surface, initiating effective transcytosis for deep tumor penetration. Via systematic screening, the optimal peptide ratio on Camptothesome is identified. LinTT1/Camptothesome significantly increases cancer cell uptake without affecting normal cell internalization, resulting in enhanced anti-colorectal cancer cells activity. Additionally, decorating Camptothesome with the LinTT1 cell-penetrating peptide enables effective transcytosis via a Golgi-dependent intracellular trafficking mechanism, significantly improving the intratumoral delivery while reducing distribution to normal tissues. In a human HCT116 xenograft colorectal cancer (CRC) mouse model, LinTT1/Camptothesome demonstrates superior antitumor efficacy compared to both Camptothesome and Onivyde by upregulating cleaved caspase-3 and γH2AX. Our study substantiates the potential of leveraging a tumor-penetrating peptide to enhance the tumor delivery efficiency of Camptothesome, maximizing its therapeutic index for improved treatment of human CRC. STATEMENT OF SIGNIFICANCE: Despite the improved tumor delivery achieved by Camptothesome, its tumor distribution and penetration remain limited. This is because the enhanced permeability and retention effect only facilitates nanotherapeutic distribution to tumor periphery through leaky vasculature. The C-end Rule (CendR) motif-neuropilin receptor system enhances tumor-homing peptides by binding to cellular surface receptors, triggering transcytosis. Herein, LinTT1, the most potent CendR peptide that binds to the overexpressed p32 receptor on cancer cells, was effectively engineered onto Camptothesome using thiol-maleimide lipid chemistry. The LinTT1/Camptothesome significantly enhanced tumor uptake and penetration while minimizing accumulation in normal tissues, demonstrating remarkable anticancer efficacy in a human xenograft colorectal cancer model. Our findings highlight the critical role of tumor-homing peptides in unlocking the full therapeutic potential of Camptothesome.
Collapse
Affiliation(s)
- Yanhao Jiang
- Skaggs Pharmaceutical Sciences Center, Department of Pharmacology & Toxicology, R. Ken Coit College of Pharmacy, The University of Arizona, 1703 East Mabel Street, Tucson, AZ 85721, United States
| | - Zhiren Wang
- Skaggs Pharmaceutical Sciences Center, Department of Pharmacology & Toxicology, R. Ken Coit College of Pharmacy, The University of Arizona, 1703 East Mabel Street, Tucson, AZ 85721, United States
| | - Wenpan Li
- Skaggs Pharmaceutical Sciences Center, Department of Pharmacology & Toxicology, R. Ken Coit College of Pharmacy, The University of Arizona, 1703 East Mabel Street, Tucson, AZ 85721, United States
| | - Teng Ma
- Skaggs Pharmaceutical Sciences Center, Department of Pharmacology & Toxicology, R. Ken Coit College of Pharmacy, The University of Arizona, 1703 East Mabel Street, Tucson, AZ 85721, United States
| | - Mengwen Li
- Skaggs Pharmaceutical Sciences Center, Department of Pharmacology & Toxicology, R. Ken Coit College of Pharmacy, The University of Arizona, 1703 East Mabel Street, Tucson, AZ 85721, United States
| | - Shuang Wu
- Skaggs Pharmaceutical Sciences Center, Department of Pharmacology & Toxicology, R. Ken Coit College of Pharmacy, The University of Arizona, 1703 East Mabel Street, Tucson, AZ 85721, United States
| | - Ethan Lin
- Skaggs Pharmaceutical Sciences Center, Department of Pharmacology & Toxicology, R. Ken Coit College of Pharmacy, The University of Arizona, 1703 East Mabel Street, Tucson, AZ 85721, United States
| | - Karlie Elizabeth Flader
- Skaggs Pharmaceutical Sciences Center, Department of Pharmacology & Toxicology, R. Ken Coit College of Pharmacy, The University of Arizona, 1703 East Mabel Street, Tucson, AZ 85721, United States
| | - Mengjiao Ma
- Skaggs Pharmaceutical Sciences Center, Department of Pharmacology & Toxicology, R. Ken Coit College of Pharmacy, The University of Arizona, 1703 East Mabel Street, Tucson, AZ 85721, United States
| | - Mengyang Chang
- Skaggs Pharmaceutical Sciences Center, Department of Pharmacology & Toxicology, R. Ken Coit College of Pharmacy, The University of Arizona, 1703 East Mabel Street, Tucson, AZ 85721, United States
| | - Hongmin Li
- Skaggs Pharmaceutical Sciences Center, Department of Pharmacology & Toxicology, R. Ken Coit College of Pharmacy, The University of Arizona, 1703 East Mabel Street, Tucson, AZ 85721, United States
| | - Wei Wang
- Skaggs Pharmaceutical Sciences Center, Department of Pharmacology & Toxicology, R. Ken Coit College of Pharmacy, The University of Arizona, 1703 East Mabel Street, Tucson, AZ 85721, United States
| | - Jianqin Lu
- Skaggs Pharmaceutical Sciences Center, Department of Pharmacology & Toxicology, R. Ken Coit College of Pharmacy, The University of Arizona, 1703 East Mabel Street, Tucson, AZ 85721, United States; Clinical and Translational Oncology Program, The University of Arizona Cancer Center, Tucson, AZ 85721, United States; BIO5 Institute, The University of Arizona, Tucson, AZ 85721, United States; Southwest Environmental Health Sciences Center, The University of Arizona, Tucson 85721, United States.
| |
Collapse
|
2
|
Pereira-Silva M, Veiga F, Paiva-Santos AC, Concheiro A, Alvarez-Lorenzo C. Biomimetic nanosystems for pancreatic cancer therapy: A review. J Control Release 2025; 383:113824. [PMID: 40348133 DOI: 10.1016/j.jconrel.2025.113824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 04/29/2025] [Accepted: 05/05/2025] [Indexed: 05/14/2025]
Abstract
Pancreatic cancer (PC) is a highly lethal and aggressive malignancy, currently one of the leading causes of cancer-related deaths worldwide, in both women and men. PC is highly resistant to standard chemotherapy (CT) because its immunosuppressive and hypoxic tumor microenvironment and a dense desmoplastic stroma compartment extensively limit drug accessibility and perfusion. Although CT is one of the main therapeutic strategies for PC management contributing to tumor eradication through a cytotoxic effect, CT is associated with a poor pharmacokinetic profile and provokes deleterious systemic toxicity. This low efficacy-poor safety scenario urgently calls for innovative and highly specific therapeutic strategies to counteract this urgent clinical challenge. Nanotechnology-based precision materials for cancer may help improve drug stability and minimize the systemic cytotoxic effects by increasing drug tumor accumulation and also enabling controlled release, but several drawbacks still persist, such as the poor targeting efficiency. In the last few years increased attention has been paid to bioinspired nanosystems that can mimic either partially or totally biological systems, including lipid layers as suitable stealth coatings resembling the composition of cell membranes, lipoprotein- and blood protein-based nanosystems, and cell membrane-derived systems, such as extracellular vesicles, cell membrane nanovesicles and cell membrane-coated nanosystems, which display intrinsic cancer-targeting abilities, enhanced biocompatibility, decreased immunogenicity, and prolonged blood circulation profile. This review covers the recent breakthroughs on advanced biomimetic PC-targeted nanosystems, focusing on their design, properties and applications as innovative, multifunctional and versatile tools paving the way to improved PC diagnosis and treatment.
Collapse
Affiliation(s)
- Miguel Pereira-Silva
- Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, 3000-548 Coimbra, Portugal; REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, 3000-548 Coimbra, Portugal; Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma, Facultad de Farmacia, Instituto de Materiales (iMATUS) and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain.
| | - Francisco Veiga
- Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, 3000-548 Coimbra, Portugal; REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Ana Cláudia Paiva-Santos
- Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, 3000-548 Coimbra, Portugal; REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Angel Concheiro
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma, Facultad de Farmacia, Instituto de Materiales (iMATUS) and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Carmen Alvarez-Lorenzo
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma, Facultad de Farmacia, Instituto de Materiales (iMATUS) and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain.
| |
Collapse
|
3
|
Belyaev IB, Griaznova OY, Yaremenko AV, Deyev SM, Zelepukin IV. Beyond the EPR effect: Intravital microscopy analysis of nanoparticle drug delivery to tumors. Adv Drug Deliv Rev 2025; 219:115550. [PMID: 40021012 DOI: 10.1016/j.addr.2025.115550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 02/18/2025] [Accepted: 02/18/2025] [Indexed: 03/03/2025]
Abstract
Delivery of nanoparticles (NPs) to solid tumors has long relied on enhanced permeability and retention (EPR) effect, involving permeation of NPs through a leaky vasculature with prolonged retention by reduced lymphatic drainage in tumor. Recent research studies and clinical data challenge EPR concept, revealing alternative pathways and approaches of NP delivery. The area was significantly impacted by the implementation of intravital optical microscopy, unraveling delivery mechanisms at cellular level in vivo. This review presents analysis of the reasons for EPR heterogeneity in tumors and describes non-EPR based concepts for drug delivery, which can supplement the current paradigm. One of the approaches is targeting tumor endothelium by NPs with subsequent intravascular drug release and gradient-driven drug transport to tumor interstitium. Others exploit various immune cells for tumor infiltration and breaking endothelial barriers. Finally, we discuss the involvement of active transcytosis through endothelial cells in NP delivery. This review aims to inspire further understanding of the process of NP extravasation in tumors and provide insights for developing next-generation nanomedicines with improved delivery.
Collapse
Affiliation(s)
- Iaroslav B Belyaev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, Russia; Eindhoven University of Technology, Eindhoven 5600 MB, the Netherlands
| | - Olga Yu Griaznova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, Russia
| | | | - Sergey M Deyev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, Russia
| | - Ivan V Zelepukin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, Russia; Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala 75123, Sweden.
| |
Collapse
|
4
|
Xue Q, Wang W, Liu J, Wang D, Zhang T, Shen T, Liu X, Wang X, Shao X, Zhou W, Fang X. LRPPRC confers enhanced oxidative phosphorylation metabolism in triple-negative breast cancer and represents a therapeutic target. J Transl Med 2025; 23:372. [PMID: 40133967 PMCID: PMC11938637 DOI: 10.1186/s12967-024-05946-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 12/06/2024] [Indexed: 03/27/2025] Open
Abstract
BACKGROUND Triple-negative breast cancer (TNBC) is a highly malignant tumor that requires effective therapeutic targets and drugs. Oxidative phosphorylation (OXPHOS) is a metabolic vulnerability of TNBC, but the molecular mechanism responsible for the enhanced OXPHOS remains unclear. The current strategies that target the electronic transfer function of OXPHOS cannot distinguish tumor cells from normal cells. Investigating the mechanism underlying OXPHOS regulation and developing corresponding therapy strategies for TNBC is of great significance. METHODS Immunohistochemistry and sequencing data reanalysis were used to investigate LRPPRC expression in TNBC. In vitro and in vivo assays were applied to investigate the roles of LRPPRC in TNBC progression. RT-qPCR, immunoblotting, and Seahorse XF assay were used to examine LRPPRC's functions in the expression of OXPHOS subunits and energy metabolism. In vitro and in vivo functional assays were used to test the therapeutic effect of gossypol acetate (GAA), a traditional gynecological drug, on LRPPRC suppression and OXPOHS inhibition. RESULTS LRPPRC was specifically overexpressed in TNBC. LRPPRC knockdown suppressed the proliferation, metastasis, and tumor formation of TNBC cells. LRPPRC enhanced OXPHOS metabolism by increasing the expression of OXPHOS complex subunits encoded by the mitochondrial genome. GAA inhibited OXPHOS metabolism by directly binding LRPPRC, causing LRPPRC degradation, and downregulating the expression of OXPHOS complex subunits encoded by the mitochondrial genome. GAA administration suppressed TNBC cell proliferation, metastasis in vitro, and tumor formation in vivo. CONCLUSIONS This work demonstrated a new regulatory pathway of TNBC to promote the expression of mitochondrial genes by upregulating the nuclear gene LRPPRC, resulting in increased OXPHOS. We also suggested a promising therapeutic target LRPPRC for TNBC, and its inhibitor, the traditional gynecological medicine GAA, presented significant antitumor activity.
Collapse
Affiliation(s)
- Qiqi Xue
- Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, 310018, Zhejiang, China
- Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Wenxi Wang
- Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, 310018, Zhejiang, China
| | - Jie Liu
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, 310018, Zhejiang, China
| | - Dachi Wang
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, 310018, Zhejiang, China
| | - Tianyu Zhang
- Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, 310018, Zhejiang, China
| | - Tingting Shen
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, 310018, Zhejiang, China
| | - Xiangsheng Liu
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, 310018, Zhejiang, China
| | - Xiaojia Wang
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, 310018, Zhejiang, China
- Zhejiang Cancer Hospital, Hangzhou, 310022, China
| | - Xiying Shao
- Zhejiang Cancer Hospital, Hangzhou, 310022, China.
| | - Wei Zhou
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, 310018, Zhejiang, China.
| | - Xiaohong Fang
- Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China.
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, 310018, Zhejiang, China.
- Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.
| |
Collapse
|
5
|
Arroyo-Nogales A, Plaza-Palomo G, González-Larre J, Jiménez-Falcao S, Baeza A. Silicasomes in Oncology: From Conventional Chemotherapy to Combined Immunotherapy. Molecules 2025; 30:1257. [PMID: 40142031 PMCID: PMC11945772 DOI: 10.3390/molecules30061257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 02/21/2025] [Accepted: 03/04/2025] [Indexed: 03/28/2025] Open
Abstract
The use of nanoparticles as drug carriers in oncology has evolved from their traditional role as chemotherapy carriers to their application in immunotherapy, exploiting not only their passive accumulation in solid tumors but also their ability to interact with immune cells. Silicasomes are highly versatile nanoplatforms composed of a mesoporous silica core whose external surface is coated with a lipid bilayer that allows the co-delivery of therapeutic agents having different chemical natures (small molecules, proteins, enzymes, or oligonucleotides, among others). Herein, cutting-edge advances carried out in the development and application of silicasomes are presented, providing a general description of the performance of these nanotransporters. Additionally, the specific load of chemotherapeutic drugs is explored, followed by a discussion of the immunotherapeutic application of silicasomes and the combination of different therapeutic strategies, including theragnosis, in a single silicasome platform, highlighting the enormous potential of these nanosystems.
Collapse
Affiliation(s)
| | | | | | | | - Alejandro Baeza
- Materials and Aerospace Production Department, Superior Technic School of Aeronautics and Space Engineering, Politechnic University of Madrid Department Materiales y Producción Aeroespacial, ETSI Aeronáutica y del Espacio, Universidad Politécnica de Madrid, 28040 Madrid, Spain; (A.A.-N.); (G.P.-P.); (J.G.-L.); (S.J.-F.)
| |
Collapse
|
6
|
Winning A, Sietsema WK, Buck KK, Linsmeier A, Wiczling P. Population Pharmacokinetic Modeling of Certepetide in Human Subjects With Metastatic Pancreatic Ductal Adenocarcinoma. Clin Pharmacol Drug Dev 2025; 14:240-251. [PMID: 39789733 PMCID: PMC11905876 DOI: 10.1002/cpdd.1502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 12/02/2024] [Indexed: 01/12/2025]
Abstract
Certepetide (aka LSTA1 and CEND-1) is a novel cyclic tumor-targeting internalizing arginyl glycylaspartic acid peptide being developed to treat solid tumors. Certepetide is designed to overcome existing challenges in treating solid tumors by delivering co-administered anticancer drugs into the tumor while selectively depleting immunosuppressive T cells, enhancing cytotoxic T cells in the tumor microenvironment, and inhibiting the metastatic cascade. A population pharmacokinetic (PK) analysis was conducted to characterize the concentration-time profile of patients with metastatic exocrine pancreatic cancer receiving certepetide in combination with nab-paclitaxel and gemcitabine, and to investigate the effects of clinically relevant covariates on PK parameters. The PK of certepetide was characterized by a 2-compartment model with linear elimination and a proportional residual error structure. Body weight and baseline creatinine clearance (CrCL) were found to have statistically significant effects on central and peripheral volume (Vc and Vp) and clearance (CL) parameters, respectively, during model development and were included as covariate effects in the final PK model. Forest plots demonstrated a potentially clinically meaningful impact of high body weight (100 kg) on certepetide exposure (steady-state maximum concentration [Cmax,ss] and area under the concentration-time curve [AUCss]), as well as low and high CrCL (50 and 150 mL/min) on AUCss. Exposure predictions illustrated a relationship between certepetide exposure (AUCss) and renal function, with increasing exposure and decreasing CL of certepetide observed with worsening renal function. Modeling will strengthen the understanding of certepetide's PKs and will inform dose optimization in ongoing drug development activities.
Collapse
Affiliation(s)
- Alex Winning
- Department of Pharmacometrics ModelingA2‐Ai LLCAnn ArborMIUSA
| | | | - Kristen K. Buck
- Research and DevelopmentLisata Therapeutics, Inc.Basking RidgeNJUSA
| | | | - Pawel Wiczling
- Department of Pharmacometrics ModelingA2‐Ai LLCAnn ArborMIUSA
- Department of Biopharmaceutics and PharmacodynamicsMedical University of GdańskGdańskPoland
| |
Collapse
|
7
|
Zhang Q, Wang J, Chen Z, Qin H, Zhang Q, Tian B, Li X. Transcytosis: an effective mechanism to enhance nanoparticle extravasation and infiltration through biological barriers. Biomed Mater 2025; 20:022003. [PMID: 39788078 DOI: 10.1088/1748-605x/ada85e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Accepted: 01/09/2025] [Indexed: 01/12/2025]
Abstract
Nanoparticles (NPs)1have been explored as drugs carriers for treating tumors and central nervous system (CNS)2diseases and for oral administration. However, they lack satisfactory clinical efficacy due to poor extravasation and infiltration through biological barriers to target tissues. Most clinical antitumor NPs have been designed based on enhanced permeability and retention effects which are insufficient and heterogeneous in human tumors. The tight junctions33TJs: tight junctionsof the blood-brain barrier44BBB: blood-brain barrierand the small intestinal epithelium severely impede NPs from being transported into the CNS and blood circulation, respectively. By contrast, transcytosis enables NPs to bypass these physiological barriers and enhances their infiltration into target tissues by active transport. Here, we systematically review the mechanisms and putative application of NP transcytosis for targeting tumor and CNS tissues, explore oral NP administration, and propose future research directions in the field of NP transcytosis.
Collapse
Affiliation(s)
- Qianyi Zhang
- Department of Orthopedics, Zhongshan Hospital, Fudan University, Shanghai 200032, People's Republic of China
| | - Jiamian Wang
- Department of Neurosurgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200120, People's Republic of China
| | - Zhiyang Chen
- Department of Orthopedics, Zhongshan Hospital, Fudan University, Shanghai 200032, People's Republic of China
| | - Hao Qin
- Department of Orthopedics, Zhongshan Hospital, Fudan University, Shanghai 200032, People's Republic of China
| | - Qichen Zhang
- Department of Orthopedics, Zhongshan Hospital, Fudan University, Shanghai 200032, People's Republic of China
| | - Bo Tian
- Department of Orthopedics, Zhongshan Hospital, Fudan University, Shanghai 200032, People's Republic of China
| | - Xilei Li
- Department of Orthopedics, Zhongshan Hospital, Fudan University, Shanghai 200032, People's Republic of China
| |
Collapse
|
8
|
Liu T, Liang X, Liu W, Yang S, Cui T, Yan F, Li Z. iRGD-Targeted Biosynthetic Nanobubbles for Ultrasound Molecular Imaging of Osteosarcoma. Int J Nanomedicine 2025; 20:791-805. [PMID: 39867315 PMCID: PMC11760272 DOI: 10.2147/ijn.s494151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 01/04/2025] [Indexed: 01/28/2025] Open
Abstract
Purpose Osteosarcoma is the most common primary malignant tumor of the bone. However, there is a lack of effective means for early diagnosis due to the heterogeneity of tumors and the complexity of tumor microenvironment. αvβ3 integrin, a crucial role in the growth and spread of tumors, is not only an effective biomarker for cancer angiogenesis, but also highly expressed in many tumor cells. Here, we selected it as the imaging target and fabricated iRGD-sGVs acoustic probe for the early-stage diagnosis of osteosarcoma. Materials and Methods Biological nanoscale gas vesicles (sGVs) were extracted from Serratia 39006. Their morphology was analyzed with phase contrast and transmission electron microscopes. Particle size and zeta potential were measured by a Zetasizer. iRGD-targeted molecular probes (iRGD-sGVs) were prepared by coupling iRGD to sGVs via Mal-PEG2000-NHS. Targeting efficiency of iRGD-sGVs was evaluated using flow cytometry and confocal microscopy on endothelial and K7M2 osteosarcoma cells. In vivo contrast-enhanced ultrasound imaging of iRGD-sGVs was performed in osteosarcoma-bearing mice, and the expression of avβ3 in osteosarcoma was detected through immunofluorescence staining assay. Biocompatibility of sGVs was assessed by hemolysis tests, CCK8 cytotoxicity assays, blood biochemical tests, and HE staining. Results sGVs from Serratia.39006 have smaller particle size (about 160 nm). Our in vitro and in vivo experiments showed the specifically binding ability of iRGD-sGVs to both vascular endothelial cells and tumor cells, producing the stronger and longer acoustic signals in tumors in comparison with the control probe. Immunofluorescence staining results indicated iRGD-sGVs were co-localized with highly expressed αvβ3 in tumor vasculature and osteosarcoma cells. Biocompatibility analysis showed no significant cytotoxicity of iRGD-sGVs to mice. Conclusion Our study provides a new strategy for early diagnosis of osteosarcoma.
Collapse
Affiliation(s)
- Tingting Liu
- Department of Ultrasound, The second People’s Hospital of Shenzhen, The First Affiliated Hospital of Shenzhen University, Shenzhen, 518061, People’s Republic of China
- Graduate School, Guangxi University of Chinese Medicine, Nanning, 530200, People’s Republic of China
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, People’s Republic of China
| | - Xiaoxin Liang
- Department of Ultrasound, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, People’s Republic of China
| | - Wei Liu
- School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People’s Republic of China
| | - Shuai Yang
- Department of Clinical and Research, Shenzhen Mindray Bio-Medical Electronics Co, Ltd, Shenzhen, 518055, People’s Republic of China
| | - Tao Cui
- Medical Imaging center, Shenzhen Yunshan Yunli Hospital, Shenzhen, 518055, People’s Republic of China
| | - Fei Yan
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, People’s Republic of China
| | - Zhenzhou Li
- Department of Ultrasound, The second People’s Hospital of Shenzhen, The First Affiliated Hospital of Shenzhen University, Shenzhen, 518061, People’s Republic of China
- Graduate School, Guangxi University of Chinese Medicine, Nanning, 530200, People’s Republic of China
| |
Collapse
|
9
|
Qin M, Feng Z, Meng H. Enhanced transcytosis and retention (ETR) effect. Sci Bull (Beijing) 2024; 69:3640-3643. [PMID: 39389865 DOI: 10.1016/j.scib.2024.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Affiliation(s)
- Mengmeng Qin
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Zhenhan Feng
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huan Meng
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China.
| |
Collapse
|
10
|
Martin JD, Mpekris F, Chauhan VP, Martin MR, Walsh ME, Stuber MD, McDonald DM, Yuan F, Stylianopoulos T, Jain RK. Fixation alters the physical properties of tumor tissue that regulate nanomedicine transport. Drug Deliv 2024; 31:2430528. [PMID: 39568143 PMCID: PMC11583359 DOI: 10.1080/10717544.2024.2430528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 11/06/2024] [Accepted: 11/11/2024] [Indexed: 11/22/2024] Open
Abstract
To have the desired therapeutic effect, nanomedicines and macromolecular medications must move from the site of injection to the site of action, without having adverse effects. Transvascular transport is a critical step of this navigation, as exemplified by the Enhanced Permeability and Retention (EPR) effect in solid tumors, not found in normal organs. Numerous studies have concluded that passive, diffusion- and convection-based transport predominates over active, cellular mechanisms in this effect. However, recent work using a new approach reevaluated this principle by comparing tumors with or without fixation and concluded the opposite. Here, we address the controversy generated by this new approach by reporting evidence from experimental investigations and computer simulations that separate the contributions of active and passive transport. Our findings indicate that tissue fixation reduces passive transport as well as active transport, indicating the need for new methods to distinguish the relative contributions of passive and active transport.
Collapse
Affiliation(s)
| | - Fotios Mpekris
- Cancer Biophysics Laboratory, Department of Mechanical and Manufacturing Engineering, University of Cyprus, Nicosia, Cyprus
| | - Vikash P. Chauhan
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | | | - Megan E. Walsh
- Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Matthew D. Stuber
- Process Systems and Operations Research Laboratory, Department of Chemical and Biomolecular Engineering, University of Connecticut, Storrs, CT, USA
| | - Donald M. McDonald
- Helen Diller Family Comprehensive Cancer Center, Department of Anatomy, University of California, San Francisco, CA, USA
| | - Fan Yuan
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Triantafyllos Stylianopoulos
- Cancer Biophysics Laboratory, Department of Mechanical and Manufacturing Engineering, University of Cyprus, Nicosia, Cyprus
| | - Rakesh K. Jain
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
11
|
Wang C, Shen Z, Chen Y, Wang Y, Zhou X, Chen X, Li Y, Zhang P, Zhang Q. Research Progress on Cyclic-Peptide Functionalized Nanoparticles for Tumor-Penetrating Delivery. Int J Nanomedicine 2024; 19:12633-12652. [PMID: 39624118 PMCID: PMC11609414 DOI: 10.2147/ijn.s487303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 11/14/2024] [Indexed: 01/03/2025] Open
Abstract
A key challenge in cancer treatment is the effective delivery of drugs into deep regions of tumor tissues, which are impermeable due to abnormal vascular network, increased interstitial fluid pressure (IFP), abundant extra cellular matrix (ECM), and heterogeneity of tumor cells. Cyclic peptides have been used for the surface engineering of nanoparticles to enhance the tumor-penetrating efficacy of drugs. Compared with other surface ligands, cyclic peptides are more easily produced by automated chemical synthesis, and they are featured by their higher binding affinity with their targets, tumor selectivity, stability against degradation, and low toxicity. In this review, different types of cyclic peptides, their physicochemical properties and their in vivo pharmacokinetics are introduced. Next, the progress of cyclic peptide-functionalized drug delivery nanodevices is updated, and the mechanism underlying the tumor-penetrating properties of cyclic peptide-functionalized drug delivery nanodevices is discussed.
Collapse
Affiliation(s)
- Chenkai Wang
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, People’s Republic of China
- Urology & Nephrology Center, Department of Urology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, 310014, People’s Republic of China
| | - Zefan Shen
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, People’s Republic of China
- Urology & Nephrology Center, Department of Urology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, 310014, People’s Republic of China
| | - Yiyang Chen
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, People’s Republic of China
- Urology & Nephrology Center, Department of Urology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, 310014, People’s Republic of China
| | - Yifan Wang
- Urology & Nephrology Center, Department of Urology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, 310014, People’s Republic of China
| | - Xuanyi Zhou
- Urology & Nephrology Center, Department of Urology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, 310014, People’s Republic of China
| | - Xinyi Chen
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, People’s Republic of China
| | - Yuhang Li
- Urology & Nephrology Center, Department of Urology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, 310014, People’s Republic of China
| | - Pu Zhang
- Urology & Nephrology Center, Department of Urology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, 310014, People’s Republic of China
| | - Qi Zhang
- Urology & Nephrology Center, Department of Urology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, 310014, People’s Republic of China
| |
Collapse
|
12
|
Ruoslahti E. My scientific journey to and through extracellular matrix. Matrix Biol 2024; 133:57-63. [PMID: 39151809 DOI: 10.1016/j.matbio.2024.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/29/2024] [Accepted: 08/12/2024] [Indexed: 08/19/2024]
Abstract
This article recounts my journey as a scientist in the early days of extracellular matrix research through the discovery of fibronectin, the RGD sequence as a key recognition motif in fibronectin and other adhesion proteins, and isolation and cloning of integrins. I also discuss more recent work on identification of molecular "zip codes" by in vivo screening of peptide libraries expressed on phage, which led us right back to RGD and integrins. Many disease-specific zip codes have turned out to be based on altered expression of extracellular matrix molecules and integrins. Homing peptides and antibodies recognizing zip code molecules are being used in drug delivery applications, some of which have advanced into clinical trials.
Collapse
Affiliation(s)
- Erkki Ruoslahti
- Sanford Burnham Prebys Medical Discovery Institute La Jolla, California and Impilo Therapeutics, Inc., San Diego, CA, USA.
| |
Collapse
|
13
|
Wang Q, Liang T, Yang W, Xu Y, Qin C, Han H, Zhou X, Wang Y, Wang Z, Hu N. A smart tablet-phone-based high-performance pancreatic cancer cell biosensing system for drug screening. Talanta 2024; 278:126484. [PMID: 38941810 DOI: 10.1016/j.talanta.2024.126484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/17/2024] [Accepted: 06/25/2024] [Indexed: 06/30/2024]
Abstract
Exploring more efficient pancreatic cancer drug screening platforms is of significant importance for accelerating the drug development process. In this study, we developed a high-sensitivity bioluminescence system based on smartphones and smart tablets, and constructed a pancreatic cancer drug screening platform (PCDSP) by combining the pancreatic cancer cell sensing model (PCCSM) on the multiwell plates (MTP). A smart tablet was used as the light source and a smartphone as the colorimetric sensing device. The smartphone dynamically controls the color and brightness displayed on the smart tablet to achieve lower LOD and wider detection ranges. We constructed PCCSM for 24 h, 48 h, and 72 h , and performed colorimetric experiments using both PCDSP and a commercial plate reader (CPR). The results showed that the PCDSP had a lower LOD than that of CPR. Moreover, PCDSP even exhibited a lower LOD for 24 h PCCSM testing compared to CPR for 48 h PCCSM testing, effectively shortening the drug evaluation process. Additionally, the PCDSP offers higher portability and efficiency compared with CPR, making it a promising platform for efficient pancreatic cancer drug screening.
Collapse
Affiliation(s)
- Qiang Wang
- Department of General Surgery, Tiantai People's Hospital of Zhejiang Province (Tiantai Branch of Zhejiang Provincial People's Hospital), Hangzhou Medical College, Taizhou, 317200, Zhejiang, China
| | - Tao Liang
- Laboratory Medicine Center, Department of Transfusion Medicine, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, 310014, China; Department of Chemistry, Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 310058, China
| | - Wenjian Yang
- Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, Zhejiang, 310024, China
| | - Youjian Xu
- Department of General Surgery, Tiantai People's Hospital of Zhejiang Province (Tiantai Branch of Zhejiang Provincial People's Hospital), Hangzhou Medical College, Taizhou, 317200, Zhejiang, China
| | - Chunlian Qin
- Department of Chemistry, Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 310058, China
| | - Haote Han
- Department of Chemistry, Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 310058, China.
| | - Xiyang Zhou
- Department of General Surgery, Tiantai People's Hospital of Zhejiang Province (Tiantai Branch of Zhejiang Provincial People's Hospital), Hangzhou Medical College, Taizhou, 317200, Zhejiang, China.
| | - Yingwei Wang
- Department of Laboratory Medicine, Tiantai People's Hospital of Zhejiang Province (Tiantai Branch of Zhejiang Provincial People's Hospital), Hangzhou Medical College, Taizhou, 317200, Zhejiang, China.
| | - Zhen Wang
- Department of General Surgery, Tiantai People's Hospital of Zhejiang Province (Tiantai Branch of Zhejiang Provincial People's Hospital), Hangzhou Medical College, Taizhou, 317200, Zhejiang, China; Laboratory Medicine Center, Department of Transfusion Medicine, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, 310014, China.
| | - Ning Hu
- Department of Chemistry, Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 310058, China; General Surgery Department, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Children's Health, Hangzhou, 310052, China.
| |
Collapse
|
14
|
Grunberger JW, Dobrovolskaia MA, Ghandehari H. Immunological properties of silica nanoparticles: a structure-activity relationship study. Nanotoxicology 2024; 18:542-564. [PMID: 39282894 PMCID: PMC11581911 DOI: 10.1080/17435390.2024.2401448] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 09/01/2024] [Accepted: 09/03/2024] [Indexed: 11/22/2024]
Abstract
Silica nanoparticles are increasingly considered for drug delivery applications. These applications require an understanding of their biocompatibility, including their interactions with the immune system. However, systematic studies for silica nanoparticle immunological safety profiles are lacking. To fill this gap, we conducted an in vitro study investigating various aspects of silica nanoparticles' interactions with blood and immune cells. Four types of silica nanoparticles with variations in size and porosity were studied. These included nonporous Stöber silica nanoparticles with average diameters of approximately 50 and 100 nm (SNP50 and SNP100), mesoporous silica nanoparticles of approximately 100 nm (Meso100), and hollow mesoporous silica nanoparticles of approximately 100 nm (HMSNP100) in diameter, respectively. The hematological compatibility was assessed using hemolysis, complement activation, platelet aggregation, and plasma coagulation assays. The effects of nanoparticles on immune cell function were studied using in vitro phagocytosis, chemotaxis, natural killer cell cytotoxicity, leukocyte proliferation, human lymphocyte activation, colony-forming unit granulocyte-macrophage, and leukocyte procoagulant activity assays. The in vitro findings suggest that at high concentrations, corresponding to the in vivo human dose of 40 mg/kg, silica nanoparticles demonstrated an array of immunotoxic effects that depended on their physicochemical properties. However, all types of silica nanoparticles studied were not immunotoxic at concentrations corresponding to lower doses (≤ 8 mg/kg) comparable to that of nanocarriers in other nanomedicines currently used in the clinic. These findings are promising for using silica nanoparticles for the systemic delivery of bioactive and imaging agents.
Collapse
Affiliation(s)
- Jason William Grunberger
- Utah Center for Nanomedicine, Department of Molecular Pharmaceutics, University of Utah, Salt Lake City, UT, USA
| | - Marina A Dobrovolskaia
- Nanotechnology Characterization Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research Sponsored by the National Cancer Institute, Frederick, MD, USA
| | - Hamidreza Ghandehari
- Utah Center for Nanomedicine, Department of Molecular Pharmaceutics, University of Utah, Salt Lake City, UT, USA
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
15
|
Longobardi G, Moore TL, Conte C, Ungaro F, Satchi‐Fainaro R, Quaglia F. Polyester nanoparticles delivering chemotherapeutics: Learning from the past and looking to the future to enhance their clinical impact in tumor therapy. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2024; 16:e1990. [PMID: 39217459 PMCID: PMC11670051 DOI: 10.1002/wnan.1990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/20/2024] [Accepted: 07/23/2024] [Indexed: 09/04/2024]
Abstract
Polymeric nanoparticles (NPs), specifically those comprised of biodegradable and biocompatible polyesters, have been heralded as a game-changing drug delivery platform. In fact, poly(α-hydroxy acids) such as polylactide (PLA), poly(lactide-co-glycolide) (PLGA), and poly(ε-caprolactone) (PCL) have been heavily researched in the past three decades as the material basis of polymeric NPs for drug delivery applications. As materials, these polymers have found success in resorbable sutures, biodegradable implants, and even monolithic, biodegradable platforms for sustained release of therapeutics (e.g., proteins and small molecules) and diagnostics. Few fields have gained more attention in drug delivery through polymeric NPs than cancer therapy. However, the clinical translational of polymeric nanomedicines for treating solid tumors has not been congruent with the fervor or funding in this particular field of research. Here, we attempt to provide a comprehensive snapshot of polyester NPs in the context of chemotherapeutic delivery. This includes a preliminary exploration of the polymeric nanomedicine in the cancer research space. We examine the various processes for producing polyester NPs, including methods for surface-functionalization, and related challenges. After a detailed overview of the multiple factors involved with the delivery of NPs to solid tumors, the crosstalk between particle design and interactions with biological systems is discussed. Finally, we report state-of-the-art approaches toward effective delivery of NPs to tumors, aiming at identifying new research areas and re-evaluating the reasons why some research avenues have underdelivered. We hope our effort will contribute to a better understanding of the gap to fill and delineate the future research work needed to bring polyester-based NPs closer to clinical application. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Therapeutic Approaches and Drug Discovery > Emerging Technologies.
Collapse
Affiliation(s)
| | - Thomas Lee Moore
- Department of PharmacyUniversity of Naples Federico IINaplesItaly
| | - Claudia Conte
- Department of PharmacyUniversity of Naples Federico IINaplesItaly
| | - Francesca Ungaro
- Department of PharmacyUniversity of Naples Federico IINaplesItaly
| | - Ronit Satchi‐Fainaro
- Department of Physiology and Pharmacology, Faculty of MedicineTel Aviv UniversityTel AvivIsrael
- Sagol School of NeurosciencesTel Aviv UniversityTel AvivIsrael
| | - Fabiana Quaglia
- Department of PharmacyUniversity of Naples Federico IINaplesItaly
| |
Collapse
|
16
|
Chenab KK, Malektaj H, Nadinlooie AAR, Mohammadi S, Zamani-Meymian MR. Intertumoral and intratumoral barriers as approaches for drug delivery and theranostics to solid tumors using stimuli-responsive materials. Mikrochim Acta 2024; 191:541. [PMID: 39150483 DOI: 10.1007/s00604-024-06583-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 07/15/2024] [Indexed: 08/17/2024]
Abstract
The solid tumors provide a series of biological barriers in cellular microenvironment for designing drug delivery methods based on advanced stimuli-responsive materials. These intertumoral and intratumoral barriers consist of perforated endotheliums, tumor cell crowding, vascularity, lymphatic drainage blocking effect, extracellular matrix (ECM) proteins, hypoxia, and acidosis. Triggering opportunities have been drawn for solid tumor therapies based on single and dual stimuli-responsive drug delivery systems (DDSs) that not only improved drug targeting in deeper sites of the tumor microenvironments, but also facilitated the antitumor drug release efficiency. Single and dual stimuli-responsive materials which are known for their lowest side effects can be categorized in 17 main groups which involve to internal and external stimuli anticancer drug carriers in proportion to microenvironments of targeted solid tumors. Development of such drug carriers can circumvent barriers in clinical trial studies based on their superior capabilities in penetrating into more inaccessible sites of the tumor tissues. In recent designs, key characteristics of these DDSs such as fast response to intracellular and extracellular factors, effective cytotoxicity with minimum side effect, efficient permeability, and rate and location of drug release have been discussed as core concerns of designing paradigms of these materials.
Collapse
Affiliation(s)
- Karim Khanmohammadi Chenab
- Department of Chemistry, Iran University of Science and Technology, Tehran, P.O. Box 16846-13114, Iran
- Department of Physics, Iran University of Science and Technology, Tehran, P.O. Box 16846-13114, Iran
| | - Haniyeh Malektaj
- Department of Materials and Production, Aalborg University, Fibigerstraede 16, 9220, Aalborg, Denmark
| | | | | | | |
Collapse
|
17
|
Schmithals C, Kakoschky B, Denk D, von Harten M, Klug JH, Hintermann E, Dropmann A, Hamza E, Jacomin AC, Marquardt JU, Zeuzem S, Schirmacher P, Herrmann E, Christen U, Vogl TJ, Waidmann O, Dooley S, Finkelmeier F, Piiper A. Tumour-specific activation of a tumour-blood transport improves the diagnostic accuracy of blood tumour markers in mice. EBioMedicine 2024; 105:105178. [PMID: 38889481 PMCID: PMC11237870 DOI: 10.1016/j.ebiom.2024.105178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 04/12/2024] [Accepted: 05/17/2024] [Indexed: 06/20/2024] Open
Abstract
BACKGROUND The accuracy of blood-based early tumour recognition is compromised by signal production at non-tumoral sites, low amount of signal produced by small tumours, and variable tumour production. Here we examined whether tumour-specific enhancement of vascular permeability by the particular tumour homing peptide, iRGD, which carries dual function of binding to integrin receptors overexpressed in the tumour vasculature and is known to promote extravasation via neuropilin-1 receptor upon site-specific cleavage, might be useful to improve blood-based tumour detection by inducing a yet unrecognised vice versa tumour-to-blood transport. METHODS To detect an iRGD-induced tumour-to-blood transport, we examined the effect of intravenously injected iRGD on blood levels of α-fetoprotein (AFP) and autotaxin in several mouse models of hepatocellular carcinoma (HCC) or in mice with chronic liver injury without HCC, and on prostate-specific antigen (PSA) levels in mice with prostate cancer. FINDINGS Intravenously injected iRGD rapidly and robustly elevated the blood levels of AFP in several mouse models of HCC, but not in mice with chronic liver injury. The effect was primarily seen in mice with small tumours and normal basal blood AFP levels, was attenuated by an anti-neuropilin-1 antibody, and depended on the concentration gradient between tumour and blood. iRGD treatment was also able to increase blood levels of autotaxin in HCC mice, and of PSA in mice with prostate cancer. INTERPRETATION We conclude that iRGD induces a tumour-to-blood transport in a tumour-specific fashion that has potential of improving diagnosis of early stage cancer. FUNDING Deutsche Krebshilfe, DKTK, LOEWE-Frankfurt Cancer Institute.
Collapse
Affiliation(s)
- Christian Schmithals
- Goethe University Frankfurt, University Hospital, Medical Clinic 1, Frankfurt am Main, Germany
| | - Bianca Kakoschky
- Goethe University Frankfurt, University Hospital, Medical Clinic 1, Frankfurt am Main, Germany
| | - Dominic Denk
- Goethe University Frankfurt, University Hospital, Medical Clinic 1, Frankfurt am Main, Germany; Frankfurt Cancer Institute, Goethe University Frankfurt, University Hospital, Frankfurt am Main, Germany
| | - Maike von Harten
- Goethe University Frankfurt, University Hospital, Medical Clinic 1, Frankfurt am Main, Germany
| | - Jan Henrik Klug
- Goethe University Frankfurt, University Hospital, Medical Clinic 1, Frankfurt am Main, Germany
| | - Edith Hintermann
- Pharmazentrum Frankfurt / ZAFES, Goethe University Frankfurt, University Hospital, Frankfurt am Main, Germany
| | - Anne Dropmann
- Molecular Hepatology-Alcohol Associated Diseases, Department of Medicine II, Medical Faculty Mannheim, University of Heidelberg, Germany
| | - Eman Hamza
- Goethe University Frankfurt, University Hospital, Medical Clinic 1, Frankfurt am Main, Germany; Suez University, Faculty of Science, Zoology Department, Suez, Egypt
| | - Anne Claire Jacomin
- Frankfurt Cancer Institute, Goethe University Frankfurt, University Hospital, Frankfurt am Main, Germany; Institute of Biochemistry II, Faculty of Medicine, Goethe University, Frankfurt am Main, Germany
| | - Jens U Marquardt
- Department of Medicine I, University Medical Centre Schleswig-Holstein - Campus Lübeck, Lübeck, Germany
| | - Stefan Zeuzem
- Goethe University Frankfurt, University Hospital, Medical Clinic 1, Frankfurt am Main, Germany; German Cancer Consortium (DKTK), Partner Site Frankfurt/M., a Partnership Between DKFZ and University Hospital Frankfurt/M., Germany
| | | | - Eva Herrmann
- Goethe University Frankfurt, University Hospital, Institute of Biostatistics and Mathematical Modelling, Germany
| | - Urs Christen
- Pharmazentrum Frankfurt / ZAFES, Goethe University Frankfurt, University Hospital, Frankfurt am Main, Germany
| | - Thomas J Vogl
- Goethe University Frankfurt, University Hospital, Institute for Diagnostic and Interventional Radiology, Germany
| | - Oliver Waidmann
- Goethe University Frankfurt, University Hospital, Medical Clinic 1, Frankfurt am Main, Germany; Centrum für Hämatologie und Onkologie Bethanien, Frankfurt/Main, Germany
| | - Steven Dooley
- Molecular Hepatology-Alcohol Associated Diseases, Department of Medicine II, Medical Faculty Mannheim, University of Heidelberg, Germany
| | - Fabian Finkelmeier
- Goethe University Frankfurt, University Hospital, Medical Clinic 1, Frankfurt am Main, Germany; Frankfurt Cancer Institute, Goethe University Frankfurt, University Hospital, Frankfurt am Main, Germany
| | - Albrecht Piiper
- Goethe University Frankfurt, University Hospital, Medical Clinic 1, Frankfurt am Main, Germany; Frankfurt Cancer Institute, Goethe University Frankfurt, University Hospital, Frankfurt am Main, Germany; German Cancer Consortium (DKTK), Partner Site Frankfurt/M., a Partnership Between DKFZ and University Hospital Frankfurt/M., Germany.
| |
Collapse
|
18
|
Zhou H, Wang W, Cai Z, Jia ZY, Li YY, He W, Li C, Zhang BL. Injectable hybrid hydrogels enable enhanced combination chemotherapy and roused anti-tumor immunity in the synergistic treatment of pancreatic ductal adenocarcinoma. J Nanobiotechnology 2024; 22:353. [PMID: 38902759 PMCID: PMC11191229 DOI: 10.1186/s12951-024-02646-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 06/16/2024] [Indexed: 06/22/2024] Open
Abstract
Chemotherapy and immunotherapy have shown no significant outcome for unresectable pancreatic ductal adenocarcinoma (PDAC). Multi-drug combination therapy has become a consensus in clinical trials to explore how to arouse anti-tumor immunity and meanwhile overcome the poorly tumoricidal effect and the stroma barrier that greatly hinders drug penetration. To address this challenge, a comprehensive strategy is proposed to fully utilize both the ferroptotic vulnerability of PDAC to potently irritate anti-tumor immunity and the desmoplasia-associated focal adhesion kinase (FAK) to wholly improve the immunosuppressive microenvironment via sustained release of drugs in an injectable hydrogel for increasing drug penetration in tumor location and averting systematic toxicity. The injectable hydrogel ED-M@CS/MC is hybridized with micelles loaded with erastin that exclusively induces ferroptosis and a FAK inhibitor defactinib for inhibiting stroma formation, and achieves sustained release of the drugs for up to 12 days. With only a single intratumoral injection, the combination treatment with erastin and defactinib produces further anti-tumor performance both in xenograft and KrasG12D-engineered primary PDAC mice and synergistically promotes the infiltration of CD8+ cytotoxic T cells and the reduction of type II macrophages. The findings may provide a novel promising strategy for the clinical treatment of PDAC.
Collapse
Affiliation(s)
- Hao Zhou
- Department of Pharmaceutics, School of Pharmacy, Fourth Military Medical University, Xi'an, 710032, China
| | - Wei Wang
- Department of Pharmaceutics, School of Pharmacy, Fourth Military Medical University, Xi'an, 710032, China
| | - Zedong Cai
- Department of Pharmaceutics, School of Pharmacy, Fourth Military Medical University, Xi'an, 710032, China
| | - Zhou-Yan Jia
- Department of Pharmaceutics, School of Pharmacy, Fourth Military Medical University, Xi'an, 710032, China
| | - Yu-Yao Li
- Department of Pharmaceutics, School of Pharmacy, Fourth Military Medical University, Xi'an, 710032, China
| | - Wei He
- Key Laboratory of Pharmacology of the State Administration of Traditional Chinese Medicine, Fourth Military Medical University, Xi'an, 710032, China.
- Department of Chemistry, School of Pharmacy, Fourth Military Medical University, Xi'an, 710032, China.
| | - Chen Li
- Key Laboratory of Pharmacology of the State Administration of Traditional Chinese Medicine, Fourth Military Medical University, Xi'an, 710032, China
| | - Bang-Le Zhang
- Department of Pharmaceutics, School of Pharmacy, Fourth Military Medical University, Xi'an, 710032, China.
- Key Laboratory of Pharmacology of the State Administration of Traditional Chinese Medicine, Fourth Military Medical University, Xi'an, 710032, China.
| |
Collapse
|
19
|
Li X, Zhong H, Zheng S, Mu J, Yu N, Guo S. Tumor-penetrating iRGD facilitates penetration of poly(floxuridine-ketal)-based nanomedicine for enhanced pancreatic cancer therapy. J Control Release 2024; 369:444-457. [PMID: 38575076 DOI: 10.1016/j.jconrel.2024.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/12/2024] [Accepted: 04/01/2024] [Indexed: 04/06/2024]
Abstract
Efficient intratumoral penetration is essential for nanomedicine to eradicate pancreatic tumors. Although nanomedicine can enter the perivascular space of pancreatic tumors, their access to distal tumor cells, aloof from the vessels, remains a formidable challenge. Here, we synthesized an acid-activatable macromolecular prodrug of floxuridine (FUDR)-poly(FUDR-ketal), engineered a micellar nanomedicine of FUDR, and intravenously co-administered the nanomedicine with the tumor-penetrating peptide iRGD for enhanced treatment of pancreatic tumor. A FUDR-derived mono-isopropenyl ether was synthesized and underwent self-addition polymerization to afford the hydrophobic poly(FUDR-ketal), which was subsequently co-assembled with amphiphilic DSPE-mPEG into the micellar nanomedicine with size of 12 nm and drug content of 56.8 wt% using nanoprecipitation technique. The acetone-based ketal-linked poly(FUDR-ketal) was triggered by acid to release FUDR to inhibit cell proliferation. In an orthotopic pancreatic tumor model derived from KPC (KrasLSL-G12D/+; Trp53LSL-R172H/+; Pdx1-Cre) cells that overexpress neuropilin-1 (NRP-1) receptor, iRGD improved penetration of FUDR nanomedicine into tumor parenchyma and potentiated the therapeutic efficacy. Our nanoplatform, along with iRGD, thus appears to be promising for efficient penetration and activation of acid-responsive nanomedicines for enhanced pancreatic cancer therapy.
Collapse
Affiliation(s)
- Xingwei Li
- Key Laboratory of Functional Polymer Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Haiping Zhong
- Key Laboratory of Functional Polymer Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Shujing Zheng
- Key Laboratory of Functional Polymer Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Jingqing Mu
- Key Laboratory of Functional Polymer Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, China; Tianjin Aier Eye Hospital, Tianjin 300190, China
| | - Na Yu
- Key Laboratory of Functional Polymer Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, China; Jingjinji National Center of Technology Innovation, Beijing 100094, China.
| | - Shutao Guo
- Key Laboratory of Functional Polymer Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, China.
| |
Collapse
|
20
|
Xue X, Wang X, Pang M, Yu L, Qian J, Li X, Tian M, Lu C, Xiao C, Liu Y. An exosomal strategy for targeting cancer-associated fibroblasts mediated tumors desmoplastic microenvironments. J Nanobiotechnology 2024; 22:196. [PMID: 38644492 PMCID: PMC11032607 DOI: 10.1186/s12951-024-02452-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 04/01/2024] [Indexed: 04/23/2024] Open
Abstract
Tumors desmoplastic microenvironments are characterized by abundant stromal cells and extracellular matrix (ECM) deposition. Cancer-associated fibroblasts (CAFs), as the most abundant of all stromal cells, play significant role in mediating microenvironments, which not only remodel ECM to establish unique pathological barriers to hinder drug delivery in desmoplastic tumors, but also talk with immune cells and cancer cells to promote immunosuppression and cancer stem cells-mediated drug resistance. Thus, CAFs mediated desmoplastic microenvironments will be emerging as promising strategy to treat desmoplastic tumors. However, due to the complexity of microenvironments and the heterogeneity of CAFs in such tumors, an effective deliver system should be fully considered when designing the strategy of targeting CAFs mediated microenvironments. Engineered exosomes own powerful intercellular communication, cargoes delivery, penetration and targeted property of desired sites, which endow them with powerful theranostic potential in desmoplastic tumors. Here, we illustrate the significance of CAFs in tumors desmoplastic microenvironments and the theranostic potential of engineered exosomes targeting CAFs mediated desmoplastic microenvironments in next generation personalized nano-drugs development.
Collapse
Affiliation(s)
- Xiaoxia Xue
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Xiangpeng Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Mingshi Pang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Liuchunyang Yu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Jinxiu Qian
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Xiaoyu Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Meng Tian
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Cheng Lu
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Cheng Xiao
- Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing, 100029, China.
| | - Yuanyan Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China.
| |
Collapse
|
21
|
Sarkar Lotfabadi A, Abadi B, Rezaei N. Biomimetic nanotechnology for cancer immunotherapy: State of the art and future perspective. Int J Pharm 2024; 654:123923. [PMID: 38403091 DOI: 10.1016/j.ijpharm.2024.123923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 02/11/2024] [Accepted: 02/18/2024] [Indexed: 02/27/2024]
Abstract
Cancer continues to be a significant worldwide cause of mortality. This underscores the urgent need for novel strategies to complement and overcome the limitations of conventional therapies, such as imprecise targeting and drug resistance. Cancer Immunotherapy utilizes the body's immune system to target malignant cells, reducing harm to healthy tissue. Nevertheless, the efficacy of immunotherapy exhibits variation across individuals and has the potential to induce autoimmune responses. Biomimetic nanoparticles (bNPs) have transformative potential in cancer immunotherapy, promising improved accurate targeting, immune system activation, and resistance mechanisms, while also reducing the occurrence of systemic autoimmune side effects. This integration offers opportunities for personalized medicine and better therapeutic outcomes. Despite considerable potential, bNPs face barriers like insufficient targeting, restricted biological stability, and interactions within the tumor microenvironment. The resolution of these concerns is crucial in order to expedite the integration of bNPs from the research setting into clinical therapeutic uses. In addition, optimizing manufacturing processes and reducing bNP-related costs are essential for practical implementation. The present research introduces comprehensive classifications of bNPs as well as recent achievements in their application in cancer immunotherapies, emphasizing the need to address barriers for swift clinical integration.
Collapse
Affiliation(s)
- Alireza Sarkar Lotfabadi
- Department of Cellular and Molecular Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran; Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Banafshe Abadi
- Herbal and Traditional Medicines Research Center, Kerman University of Medical Sciences, Kerman, Iran; Brain Cancer Research Core (BCRC), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Nima Rezaei
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran; Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran; Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
22
|
Liu J, Cabral H, Mi P. Nanocarriers address intracellular barriers for efficient drug delivery, overcoming drug resistance, subcellular targeting and controlled release. Adv Drug Deliv Rev 2024; 207:115239. [PMID: 38437916 DOI: 10.1016/j.addr.2024.115239] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/16/2024] [Accepted: 02/27/2024] [Indexed: 03/06/2024]
Abstract
The cellular barriers are major bottlenecks for bioactive compounds entering into cells to accomplish their biological functions, which limits their biomedical applications. Nanocarriers have demonstrated high potential and benefits for encapsulating bioactive compounds and efficiently delivering them into target cells by overcoming a cascade of intracellular barriers to achieve desirable therapeutic and diagnostic effects. In this review, we introduce the cellular barriers ahead of drug delivery and nanocarriers, as well as summarize recent advances and strategies of nanocarriers for increasing internalization with cells, promoting intracellular trafficking, overcoming drug resistance, targeting subcellular locations and controlled drug release. Lastly, the future perspectives of nanocarriers for intracellular drug delivery are discussed, which mainly focus on potential challenges and future directions. Our review presents an overview of intracellular drug delivery by nanocarriers, which may encourage the future development of nanocarriers for efficient and precision drug delivery into a wide range of cells and subcellular targets.
Collapse
Affiliation(s)
- Jing Liu
- Department of Radiology, Huaxi MR Research Center (HMRRC), State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, No.17 South Renmin Road, Chengdu, Sichuan 610041, China
| | - Horacio Cabral
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
| | - Peng Mi
- Department of Radiology, Huaxi MR Research Center (HMRRC), State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, No.17 South Renmin Road, Chengdu, Sichuan 610041, China.
| |
Collapse
|
23
|
Meng S, Hara T, Sato H, Tatekawa S, Tsuji Y, Saito Y, Hamano Y, Arao Y, Gotoh N, Ogawa K, Ishii H. Revealing neuropilin expression patterns in pancreatic cancer: From single‑cell to therapeutic opportunities (Review). Oncol Lett 2024; 27:113. [PMID: 38304169 PMCID: PMC10831399 DOI: 10.3892/ol.2024.14247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 10/13/2023] [Indexed: 02/03/2024] Open
Abstract
Pancreatic cancer, one of the most fatal types of human cancers, includes several non-epithelial and stromal components, such as activated fibroblasts, vascular cells, neural cells and immune cells, that are involved in different cancers. Vascular endothelial cell growth factor 165 receptors 1 [neuropilin-1 (NRP-1)] and 2 (NRP-2) play a role in the biological behaviors of pancreatic cancer and may appear as potential therapeutic targets. The NRP family of proteins serve as co-receptors for vascular endothelial growth factor, transforming growth factor β, hepatocyte growth factor, fibroblast growth factor, semaphorin 3, epidermal growth factor, insulin-like growth factor and platelet-derived growth factor. Investigations of mechanisms that involve the NRP family of proteins may help develop novel approaches for overcoming therapy resistance in pancreatic cancer. The present review aimed to provide an in-depth exploration of the multifaceted roles of the NRP family of proteins in pancreatic cancer, including recent findings from single-cell analysis conducted within the context of pancreatic adenocarcinoma, which revealed the intricate involvement of NRP proteins at the cellular level. Through these efforts, the present study endeavored to further reveal their relationships with different biological processes and their potential as therapeutic targets in various treatment modalities, offering novel perspectives and directions for the treatment of pancreatic cancer.
Collapse
Affiliation(s)
- Sikun Meng
- Department of Medical Data Science, Center of Medical Innovation and Translational Research, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Tomoaki Hara
- Department of Medical Data Science, Center of Medical Innovation and Translational Research, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Hiromichi Sato
- Department of Medical Data Science, Center of Medical Innovation and Translational Research, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Shotaro Tatekawa
- Department of Radiation Oncology, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Yoshiko Tsuji
- Department of Medical Data Science, Center of Medical Innovation and Translational Research, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Yoshiko Saito
- Department of Medical Data Science, Center of Medical Innovation and Translational Research, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Yumiko Hamano
- Department of Medical Data Science, Center of Medical Innovation and Translational Research, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Yasuko Arao
- Department of Medical Data Science, Center of Medical Innovation and Translational Research, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Noriko Gotoh
- Division of Cancer Cell Biology, Cancer Research Institute of Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan
| | - Kazuhiko Ogawa
- Department of Radiation Oncology, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Hideshi Ishii
- Department of Medical Data Science, Center of Medical Innovation and Translational Research, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| |
Collapse
|
24
|
Singh T, Kim TW, Murthy ASN, Paul M, Sepay N, Jeong Kong H, Sung Ryu J, Rim Koo N, Yoon S, Song KH, Jun Baek M, Jeon S, Im J. Tumor-homing peptide iRGD-conjugate enhances tumor accumulation of camptothecin for colon cancer therapy. Eur J Med Chem 2024; 265:116050. [PMID: 38128233 DOI: 10.1016/j.ejmech.2023.116050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 12/05/2023] [Accepted: 12/11/2023] [Indexed: 12/23/2023]
Abstract
Poor intracellular uptake of therapeutics in the tumor parenchyma is a key issue in cancer therapy. We describe a novel approach to enhance tumor targeting and achieve targeted delivery of camptothecin (CPT) based on a tumor-homing internalizing RGD peptide (iRGD). We synthesized an iRGD-camptothecin conjugate (iRGD-CPT) covalently coupled by a heterobifunctional linker and evaluated its in vitro and in vivo activity in human colon cancer cells. In vitro studies revealed that iRGD-CPT penetrated cells efficiently and reduced colon cancer cell viability to a significantly greater extent at micromolar concentrations than did the parent drug. Furthermore, iRGD-CPT showed high distribution toward tumor tissue, effectively suppressed tumor progression, and showed enhanced antitumor effects relative to the parent drug in a mouse model, demonstrating that iRGD-CPT is effective in vivo cancer treatment. These results suggest that intracellular delivery of CPT via the iRGD peptide is a promising drug delivery strategy that will facilitate the development of CPT derivatives and prodrugs with improved efficacy.
Collapse
Affiliation(s)
- Tejinder Singh
- Department of Electronic Materials, Devices, and Equipment Engineering, Soonchunhyang University, Asan, 31538, Republic of Korea
| | - Tae Wan Kim
- Department of Medical Life Science, Soonchunhyang University, Asan, 31538, Republic of Korea
| | - Akula S N Murthy
- Department of Electronic Materials, Devices, and Equipment Engineering, Soonchunhyang University, Asan, 31538, Republic of Korea
| | - Mohuya Paul
- Department of Electronic Materials, Devices, and Equipment Engineering, Soonchunhyang University, Asan, 31538, Republic of Korea
| | - Nasim Sepay
- Department of Electronic Materials, Devices, and Equipment Engineering, Soonchunhyang University, Asan, 31538, Republic of Korea
| | - Hye Jeong Kong
- Department of Medical Life Science, Soonchunhyang University, Asan, 31538, Republic of Korea
| | - Jae Sung Ryu
- Department of Medical Life Science, Soonchunhyang University, Asan, 31538, Republic of Korea
| | - Na Rim Koo
- Department of Electronic Materials, Devices, and Equipment Engineering, Soonchunhyang University, Asan, 31538, Republic of Korea
| | - Sujeong Yoon
- Department of Electronic Materials, Devices, and Equipment Engineering, Soonchunhyang University, Asan, 31538, Republic of Korea
| | - Keon-Hyoung Song
- Department of Pharmaceutical Engineering, Soonchunhyang University, Asan, 31538, Republic of Korea
| | - Moo Jun Baek
- Department of Surgery, College of Medicine, Soonchunhyang University Cheonan Hospital, Cheonan, 31151, Republic of Korea
| | - Seob Jeon
- Department of Obstetrics and Gynecology, College of Medicine, Soonchunhyang University Cheonan Hospital, Cheonan, 31151, Republic of Korea.
| | - Jungkyun Im
- Department of Electronic Materials, Devices, and Equipment Engineering, Soonchunhyang University, Asan, 31538, Republic of Korea; Department of Chemical Engineering, Soonchunhyang University, Asan, 31538, Republic of Korea.
| |
Collapse
|
25
|
Luo L, Wang X, Liao YP, Xu X, Chang CH, Nel AE. Reprogramming the pancreatic cancer stroma and immune landscape by a silicasome nanocarrier delivering nintedanib, a protein tyrosine kinase inhibitor. NANO TODAY 2024; 54:102058. [PMID: 38681872 PMCID: PMC11044875 DOI: 10.1016/j.nantod.2023.102058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/01/2024]
Abstract
The prevailing desmoplastic stroma and immunosuppressive microenvironment within pancreatic ductal adenocarcinoma (PDAC) pose substantial challenges to therapeutic intervention. Despite the potential of protein tyrosine kinase (PTK) inhibitors in mitigating the desmoplastic stromal response and enhancing the immune milieu, their efficacy is curtailed by suboptimal pharmacokinetics (PK) and insufficient tumor penetration. To surmount these hurdles, we have pioneered a novel strategy, employing lipid bilayer-coated mesoporous silica nanoparticles (termed "silicasomes") as a carrier for the delivery of Nintedanib. Nintedanib, a triple PTK inhibitor that targets vascular endothelial growth factor, platelet-derived growth factor and fibroblast growth factor receptors, was encapsulated in the pores of silicasomes via a remote loading mechanism for weak bases. This innovative approach not only enhanced pharmacokinetics and intratumor drug concentrations but also orchestrated a transformative shift in the desmoplastic and immune landscape in a robust orthotopic KRAS-mediated pancreatic carcinoma (KPC) model. Our results demonstrate attenuation of vascular density and collagen content through encapsulated Nintedanib treatment, concomitant with significant augmentation of the CD8+/FoxP3+ T-cell ratio. This remodeling was notably correlated with tumor regression in the KPC model. Strikingly, the synergy between encapsulated Nintedanib and anti-PD-1 immunotherapy further potentiated the antitumor effect. Both free and encapsulated Nintedanib induced a transcriptional upregulation of PD-L1 via the extracellular signal-regulated kinase (ERK) pathway. In summary, our pioneering approach involving the silicasome carrier not only improved antitumor angiogenesis but also profoundly reshaped the desmoplastic stromal and immune landscape within PDAC. These insights hold excellent promise for the development of innovative combinatorial strategies in PDAC therapy.
Collapse
Affiliation(s)
- Lijia Luo
- Division of Nanomedicine, Department of Medicine, University of California, Los Angeles, CA 90095, USA
- California NanoSystems Institute, University of California, Los Angeles, CA 90095, USA
| | - Xiang Wang
- Division of Nanomedicine, Department of Medicine, University of California, Los Angeles, CA 90095, USA
- California NanoSystems Institute, University of California, Los Angeles, CA 90095, USA
| | - Yu-Pei Liao
- Division of Nanomedicine, Department of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Xiao Xu
- Division of Nanomedicine, Department of Medicine, University of California, Los Angeles, CA 90095, USA
- California NanoSystems Institute, University of California, Los Angeles, CA 90095, USA
| | - Chong Hyun Chang
- California NanoSystems Institute, University of California, Los Angeles, CA 90095, USA
| | - Andre E. Nel
- Division of Nanomedicine, Department of Medicine, University of California, Los Angeles, CA 90095, USA
- California NanoSystems Institute, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
26
|
He S, Fang Y, Wu M, Zhang P, Gao F, Hu H, Sheng C, Dong G. Enhanced Tumor Targeting and Penetration of Proteolysis-Targeting Chimeras through iRGD Peptide Conjugation: A Strategy for Precise Protein Degradation in Breast Cancer. J Med Chem 2023; 66:16828-16842. [PMID: 38055861 DOI: 10.1021/acs.jmedchem.3c01539] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2023]
Abstract
Proteolysis-targeting chimeras (PROTACs) have recently emerged as a promising technology for drug development. However, poor water solubility, limited tissue selectivity, and inadequate tumor penetration pose significant challenges for PROTAC-based therapies in cancer treatment. Herein, we developed an iRGD-PROTAC conjugation strategy utilizing tumor-penetrating cyclic peptide iRGD (CRGDK/RGPD/EC) to deliver PROTACs deep into breast cancer tissues. As a conceptual validation study, iRGD peptides were conjugated with a bromodomain-containing protein 4 (BRD4) PROTAC through a GSH-responsive linker. The resulting iRGD-PROTAC conjugate iPR showed enhanced water solubility, tumor-targeting capability, and penetration within tumor tissues, resulting in increased antibreast cancer efficacy in animal models and patient-derived organoids. This study demonstrates the advantages of combining iRGD and PROTACs in improving drug delivery and highlights the importance of tissue selectivity and penetration ability in PROTAC-based therapeutics.
Collapse
Affiliation(s)
- Shipeng He
- Institute of Translational Medicine,Shanghai University, 99 Shangda Road, Shanghai 200444, China
| | - Yuxin Fang
- The Center for Basic Research and Innovation of Medicine and Pharmacy (MOE), School of Pharmacy, Second Military Medical University (Naval Medical University), 325 Guohe Road, Shanghai 200433, China
| | - Minghao Wu
- Institute of Translational Medicine,Shanghai University, 99 Shangda Road, Shanghai 200444, China
| | - Peifeng Zhang
- The Center for Basic Research and Innovation of Medicine and Pharmacy (MOE), School of Pharmacy, Second Military Medical University (Naval Medical University), 325 Guohe Road, Shanghai 200433, China
| | - Fei Gao
- Institute of Translational Medicine,Shanghai University, 99 Shangda Road, Shanghai 200444, China
| | - Honggang Hu
- Institute of Translational Medicine,Shanghai University, 99 Shangda Road, Shanghai 200444, China
| | - Chunquan Sheng
- The Center for Basic Research and Innovation of Medicine and Pharmacy (MOE), School of Pharmacy, Second Military Medical University (Naval Medical University), 325 Guohe Road, Shanghai 200433, China
| | - Guoqiang Dong
- The Center for Basic Research and Innovation of Medicine and Pharmacy (MOE), School of Pharmacy, Second Military Medical University (Naval Medical University), 325 Guohe Road, Shanghai 200433, China
| |
Collapse
|
27
|
Wang L, Zhang T, Zheng Y, Li Y, Tang X, Chen Q, Mao W, Li W, Liu X, Zhu J. Combination of irinotecan silicasome nanoparticles with radiation therapy sensitizes immunotherapy by modulating the activation of the cGAS/STING pathway for colorectal cancer. Mater Today Bio 2023; 23:100809. [PMID: 37779919 PMCID: PMC10540048 DOI: 10.1016/j.mtbio.2023.100809] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 09/07/2023] [Accepted: 09/19/2023] [Indexed: 10/03/2023] Open
Abstract
Our previous clinical trial (Identifier: NCT02605265) revealed that addition of irinotecan (IRIN) to neoadjuvant chemoradiotherapy for rectal cancer could improve the curative effect. However, the adverse effects caused by IRIN limited the wide application of IRIN chemoradiotherapy. This study aimed to explore the mechanism under the synergistic effects of IRIN plus radiation therapy in colorectal cancer (CRC) cells and optimization of IRIN delivery via a silicasome nanocarrier in vivo. Our results revealed that compared with single IRIN or radiation treatment, IRIN combined with radiation therapy remarkably activated the intracellular cGAS/STING pathway, and promoted the expression levels of major histocompatibility complex class I (MHC-I) and programmed death ligand 1 (PD-L1). Further, a silicasome (mesoporous silica nanoparticle coated with lipid bilayer) nanocarrier was utilized to improve the delivery of IRIN with enhanced efficacy and reduced side effects. In the MC38 CRC syngeneic tumor model, IRIN silicasome combined with radiation therapy demonstrated a greater antitumor efficacy than free IRIN plus radiation therapy. Flow cytometry showed the increased number of CD4+ T cells, CD8+ T cells, and dendritic cells (DCs) in tumor in the IRIN silicasome plus radiation group. The immunofluorescence staining further confirmed the activated immune microenvironment with the elevated interferon-γ (IFN-γ) deposition. Besides, the antitumor effect of IRIN silicasome plus radiation therapy was synergistically enhanced by anti-PD-1 immunotherapy. These findings indicated that the combination of IRIN silicasome with radiation therapy could sensitize immunotherapy by manipulating the cGAS/STING pathway serving as a new strategy for CRC treatment.
Collapse
Affiliation(s)
- Lu Wang
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China
- Zhejiang Key Laboratory of Radiation Oncology, Hangzhou, Zhejiang, 310022, China
| | - Tianyu Zhang
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Yile Zheng
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Yuting Li
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China
| | - Xiyuan Tang
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China
- Zhejiang Key Laboratory of Radiation Oncology, Hangzhou, Zhejiang, 310022, China
| | - Qianping Chen
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China
- Zhejiang Key Laboratory of Radiation Oncology, Hangzhou, Zhejiang, 310022, China
| | - Wei Mao
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China
- Zhejiang Key Laboratory of Radiation Oncology, Hangzhou, Zhejiang, 310022, China
| | - Weiwei Li
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China
- Zhejiang Key Laboratory of Radiation Oncology, Hangzhou, Zhejiang, 310022, China
| | - Xiangsheng Liu
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China
- Zhejiang Key Laboratory of Radiation Oncology, Hangzhou, Zhejiang, 310022, China
| | - Ji Zhu
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China
- Zhejiang Key Laboratory of Radiation Oncology, Hangzhou, Zhejiang, 310022, China
| |
Collapse
|
28
|
Fard D, Giraudo E, Tamagnone L. Mind the (guidance) signals! Translational relevance of semaphorins, plexins, and neuropilins in pancreatic cancer. Trends Mol Med 2023; 29:817-829. [PMID: 37598000 DOI: 10.1016/j.molmed.2023.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 07/19/2023] [Accepted: 07/19/2023] [Indexed: 08/21/2023]
Abstract
Pancreatic cancer is a major cause of demise worldwide. Although key associated genetic changes have been discovered, disease progression is sustained by pathogenic mechanisms that are poorly understood at the molecular level. In particular, the tissue microenvironment of pancreatic adenocarcinoma (PDAC) is usually characterized by high stromal content, scarce recruitment of immune cells, and the presence of neuronal fibers. Semaphorins and their receptors, plexins and neuropilins, comprise a wide family of regulatory signals that control neurons, endothelial and immune cells, embryo development, and normal tissue homeostasis, as well as the microenvironment of human tumors. We focus on the role of these molecular signals in pancreatic cancer progression, as revealed by experimental research and clinical studies, including novel approaches for cancer treatment.
Collapse
Affiliation(s)
- Damon Fard
- Università Cattolica del Sacro Cuore, Department of Life Sciences and Public Health, Rome, Italy
| | - Enrico Giraudo
- Department of Science and Drug Technology, University of Turin, Turin, Italy; Candiolo Cancer Institute, FPO IRCCS, Candiolo, Turin, Italy
| | - Luca Tamagnone
- Università Cattolica del Sacro Cuore, Department of Life Sciences and Public Health, Rome, Italy; Fondazione Policlinico Gemelli, IRCCS, Rome, Italy.
| |
Collapse
|
29
|
Zhou Q, Xiang J, Qiu N, Wang Y, Piao Y, Shao S, Tang J, Zhou Z, Shen Y. Tumor Abnormality-Oriented Nanomedicine Design. Chem Rev 2023; 123:10920-10989. [PMID: 37713432 DOI: 10.1021/acs.chemrev.3c00062] [Citation(s) in RCA: 60] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/17/2023]
Abstract
Anticancer nanomedicines have been proven effective in mitigating the side effects of chemotherapeutic drugs. However, challenges remain in augmenting their therapeutic efficacy. Nanomedicines responsive to the pathological abnormalities in the tumor microenvironment (TME) are expected to overcome the biological limitations of conventional nanomedicines, enhance the therapeutic efficacies, and further reduce the side effects. This Review aims to quantitate the various pathological abnormalities in the TME, which may serve as unique endogenous stimuli for the design of stimuli-responsive nanomedicines, and to provide a broad and objective perspective on the current understanding of stimuli-responsive nanomedicines for cancer treatment. We dissect the typical transport process and barriers of cancer drug delivery, highlight the key design principles of stimuli-responsive nanomedicines designed to tackle the series of barriers in the typical drug delivery process, and discuss the "all-into-one" and "one-for-all" strategies for integrating the needed properties for nanomedicines. Ultimately, we provide insight into the challenges and future perspectives toward the clinical translation of stimuli-responsive nanomedicines.
Collapse
Affiliation(s)
- Quan Zhou
- Zhejiang Key Laboratory of Smart Biomaterials and Center for Bionanoengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
- Department of Cell Biology, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Jiajia Xiang
- Zhejiang Key Laboratory of Smart Biomaterials and Center for Bionanoengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
- Department of Cell Biology, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Nasha Qiu
- Zhejiang Key Laboratory of Smart Biomaterials and Center for Bionanoengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
| | - Yechun Wang
- Department of Cell Biology, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Ying Piao
- Zhejiang Key Laboratory of Smart Biomaterials and Center for Bionanoengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
| | - Shiqun Shao
- Zhejiang Key Laboratory of Smart Biomaterials and Center for Bionanoengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
| | - Jianbin Tang
- Zhejiang Key Laboratory of Smart Biomaterials and Center for Bionanoengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
| | - Zhuxian Zhou
- Zhejiang Key Laboratory of Smart Biomaterials and Center for Bionanoengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
| | - Youqing Shen
- Zhejiang Key Laboratory of Smart Biomaterials and Center for Bionanoengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
- State Key Laboratory of Chemical Engineering, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
30
|
Shang L, Xie Q, Yang C, Kong L, Zhang Z. Extracellular Vesicles Facilitate the Transportation of Nanoparticles within and between Cells for Enhanced Tumor Therapy. ACS APPLIED MATERIALS & INTERFACES 2023; 15:42378-42394. [PMID: 37658814 DOI: 10.1021/acsami.3c10237] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
The interaction between nanoparticles and cells is closely associated with the therapeutic effects of nanomedicine. Nanoparticles could be transported among cells, but the process-related mechanism remains to be further explored. In this study, it was found that endocytosed cationic polymer nanoparticles (cNPs) could be excreted in an extracellular vesicle (EV)-coated form (cNP@EVs). It was deduced that cNPs may pass through early endosomes, multivesicular bodies (MVBs), and autophagic MVBs within cells. Moreover, a high level of autophagy facilitated the exocytosis process. Since EVs were the effective vehicles for conveying biological information and substances, cNP@EVs were proved to be efficient forms for the intercellular transportation of nanoparticles and have the potential as efficient biomimetic drug delivery systems. These properties endowed cNP@EVs with deep penetration and enhanced antitumor activity. Our findings provided a proof-of-concept for understanding the transfer process of nanoparticles among cells and may help us to further utilize EV-mediated transportation of nanoparticles, therefore, expanding its clinical application.
Collapse
Affiliation(s)
- Lihuan Shang
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Qi Xie
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Conglian Yang
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Li Kong
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Zhiping Zhang
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China
- National Engineering Research Center for Nanomedicine, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Engineering Research Centre for Novel Drug Delivery System, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
31
|
Izci M, Maksoudian C, Gonçalves F, Pérez Gilabert I, Rios Luci C, Bolea-Fernandez E, Vanhaecke F, Manshian BB, Soenen SJ. The Efficacy of Nanoparticle Delivery to Hypoxic Solid Tumors by ciRGD Co-Administration Depends on Neuropilin-1 and Neutrophil Levels. Adv Healthc Mater 2023; 12:e2300594. [PMID: 37247322 DOI: 10.1002/adhm.202300594] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 05/02/2023] [Indexed: 05/31/2023]
Abstract
The ability to improve nanoparticle delivery to solid tumors is an actively studied domain, where various mechanisms are looked into. In previous work, the authors have looked into nanoparticle size, tumor vessel normalization, and disintegration, and here it is aimed to continue this work by performing an in-depth mechanistic study on the use of ciRGD peptide co-administration. Using a multiparametric approach, it is observed that ciRGD can improve nanoparticle delivery to the tumor itself, but also to tumor cells specifically better than vessel normalization strategies. The effect depends on the level of tumor perfusion, hypoxia, neutrophil levels, and vessel permeability. This work shows that upon characterizing tumors for these parameters, conditions can be selected that can optimally benefit from ciRGD co-administration as a means to improve NP delivery to solid tumors.
Collapse
Affiliation(s)
- Mukaddes Izci
- NanoHealth and Optical Imaging Group, Department of Imaging and Pathology, KU Leuven Herestraat 49, Leuven, B3000, Belgium
| | - Christy Maksoudian
- NanoHealth and Optical Imaging Group, Department of Imaging and Pathology, KU Leuven Herestraat 49, Leuven, B3000, Belgium
| | - Filipa Gonçalves
- NanoHealth and Optical Imaging Group, Department of Imaging and Pathology, KU Leuven Herestraat 49, Leuven, B3000, Belgium
| | - Irati Pérez Gilabert
- NanoHealth and Optical Imaging Group, Department of Imaging and Pathology, KU Leuven Herestraat 49, Leuven, B3000, Belgium
| | - Carla Rios Luci
- NanoHealth and Optical Imaging Group, Department of Imaging and Pathology, KU Leuven Herestraat 49, Leuven, B3000, Belgium
| | - Eduardo Bolea-Fernandez
- Atomic & Mass Spectrometry - A&MS research group, Department of Chemistry, Ghent University, Campus Sterre, Krijgslaan 281-S12, Ghent, 9000, Belgium
| | - Frank Vanhaecke
- Atomic & Mass Spectrometry - A&MS research group, Department of Chemistry, Ghent University, Campus Sterre, Krijgslaan 281-S12, Ghent, 9000, Belgium
| | - Bella B Manshian
- Translational Cell and Tissue Research Unit, Department of Imaging and Pathology, KU Leuven Herestraat 49, Leuven, B3000, Belgium
- Leuven Cancer Research Institute, Faculty of Medical Sciences, KU Leuven, Herestraat 49, Leuven, B3000, Belgium
| | - Stefaan J Soenen
- NanoHealth and Optical Imaging Group, Department of Imaging and Pathology, KU Leuven Herestraat 49, Leuven, B3000, Belgium
- Leuven Cancer Research Institute, Faculty of Medical Sciences, KU Leuven, Herestraat 49, Leuven, B3000, Belgium
| |
Collapse
|
32
|
Hicks MR, Liu X, Young CS, Saleh K, Ji Y, Jiang J, Emami MR, Mokhonova E, Spencer MJ, Meng H, Pyle AD. Nanoparticles systemically biodistribute to regenerating skeletal muscle in DMD. J Nanobiotechnology 2023; 21:303. [PMID: 37641124 PMCID: PMC10463982 DOI: 10.1186/s12951-023-01994-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 07/09/2023] [Indexed: 08/31/2023] Open
Abstract
Skeletal muscle disease severity can often progress asymmetrically across muscle groups and heterogeneously within tissues. An example is Duchenne Muscular Dystrophy (DMD) in which lack of dystrophin results in devastating skeletal muscle wasting in some muscles whereas others are spared or undergo hypertrophy. An efficient, non-invasive approach to identify sites of asymmetry and degenerative lesions could enable better patient monitoring and therapeutic targeting of disease. In this study, we utilized a versatile intravenously injectable mesoporous silica nanoparticle (MSNP) based nanocarrier system to explore mechanisms of biodistribution in skeletal muscle of mdx mouse models of DMD including wildtype, dystrophic, and severely dystrophic mice. Moreover, MSNPs could be imaged in live mice and whole muscle tissues enabling investigation of how biodistribution is altered by different types of muscle pathology such as inflammation or fibrosis. We found MSNPs were tenfold more likely to aggregate within select mdx muscles relative to wild type, such as gastrocnemius and quadriceps. This was accompanied by decreased biodistribution in off-target organs. We found the greatest factor affecting preferential delivery was the regenerative state of the dystrophic skeletal muscle with the highest MSNP abundance coinciding with the regions showing the highest level of embryonic myosin staining and intramuscular macrophage uptake. To demonstrate, muscle regeneration regulated MSNP distribution, we experimentally induced regeneration using barium chloride which resulted in a threefold increase of intravenously injected MSNPs to sites of regeneration 7 days after injury. These discoveries provide the first evidence that nanoparticles have selective biodistribution to skeletal muscle in DMD to areas of active regeneration and that nanoparticles could enable diagnostic and selective drug delivery in DMD skeletal muscle.
Collapse
Affiliation(s)
- Michael R Hicks
- Department of Microbiology, Immunology and Medical Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
- Eli and Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, Los Angeles, CA, USA
- Department of Physiology and Biophysics, University of California Irvine, Irvine, CA, USA
| | - Xiangsheng Liu
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
- California Nanosystems Institute at UCLA, Los Angeles, CA, USA
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, Zhejiang, China
| | - Courtney S Young
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
- MyoGene Bio, San Diego, CA, USA
| | - Kholoud Saleh
- Department of Microbiology, Immunology and Medical Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Ying Ji
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Jinhong Jiang
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
- California Nanosystems Institute at UCLA, Los Angeles, CA, USA
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, Zhejiang, China
| | - Michael R Emami
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Ekaterina Mokhonova
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Melissa J Spencer
- Eli and Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, Los Angeles, CA, USA.
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA.
| | - Huan Meng
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA.
- California Nanosystems Institute at UCLA, Los Angeles, CA, USA.
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing, China.
| | - April D Pyle
- Department of Microbiology, Immunology and Medical Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA.
- Eli and Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, Los Angeles, CA, USA.
| |
Collapse
|
33
|
Fan D, Cao Y, Cao M, Wang Y, Cao Y, Gong T. Nanomedicine in cancer therapy. Signal Transduct Target Ther 2023; 8:293. [PMID: 37544972 PMCID: PMC10404590 DOI: 10.1038/s41392-023-01536-y] [Citation(s) in RCA: 217] [Impact Index Per Article: 108.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 05/31/2023] [Accepted: 06/04/2023] [Indexed: 08/08/2023] Open
Abstract
Cancer remains a highly lethal disease in the world. Currently, either conventional cancer therapies or modern immunotherapies are non-tumor-targeted therapeutic approaches that cannot accurately distinguish malignant cells from healthy ones, giving rise to multiple undesired side effects. Recent advances in nanotechnology, accompanied by our growing understanding of cancer biology and nano-bio interactions, have led to the development of a series of nanocarriers, which aim to improve the therapeutic efficacy while reducing off-target toxicity of the encapsulated anticancer agents through tumor tissue-, cell-, or organelle-specific targeting. However, the vast majority of nanocarriers do not possess hierarchical targeting capability, and their therapeutic indices are often compromised by either poor tumor accumulation, inefficient cellular internalization, or inaccurate subcellular localization. This Review outlines current and prospective strategies in the design of tumor tissue-, cell-, and organelle-targeted cancer nanomedicines, and highlights the latest progress in hierarchical targeting technologies that can dynamically integrate these three different stages of static tumor targeting to maximize therapeutic outcomes. Finally, we briefly discuss the current challenges and future opportunities for the clinical translation of cancer nanomedicines.
Collapse
Affiliation(s)
- Dahua Fan
- Shunde Women and Children's Hospital, Guangdong Medical University, Foshan, 528300, China.
- Department of Neurology, Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen, 518035, China.
| | - Yongkai Cao
- Department of Neurology, Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen, 518035, China
| | - Meiqun Cao
- Department of Neurology, Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen, 518035, China
| | - Yajun Wang
- Shunde Women and Children's Hospital, Guangdong Medical University, Foshan, 528300, China
| | | | - Tao Gong
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610064, China.
| |
Collapse
|
34
|
Barkovich KJ, Zhao Z, Steinmetz NF. iRGD-targeted Physalis Mottle Virus-like Nanoparticles for Targeted Cancer Delivery. SMALL SCIENCE 2023; 3:2300067. [PMID: 38465197 PMCID: PMC10923535 DOI: 10.1002/smsc.202300067] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 05/28/2023] [Indexed: 03/12/2024] Open
Abstract
Nanomedicine provides a promising platform for the molecular treatment of disease. An ongoing challenge in nanomedicine is the targeted delivery of intravenously administered nanoparticles to particular tissues, which is of special interest in cancer. In this study, we show that the conjugation of iRGD peptides, which specifically target tumor neovasculature, to the surface of Physalis mottle virus (PhMV)-like nanoparticles leads to rapid cellular uptake in vitro and tumor homing in vivo. We then show that iRGD-targeted PhMV loaded with the chemotherapeutic doxorubicin shows increased potency in a murine flank xenograft model of cancer. Our results validate that PhMV-like nanoparticles can be targeted to tumors through iRGD-peptide conjugation and suggest that iRGD-PhMV provides a promising platform for the targeted delivery of molecular cargo to tumors.
Collapse
Affiliation(s)
| | - Zhongchao Zhao
- Department of NanoEngineeringUniversity of California, San DiegoSan DiegoCA92093USA
- Center for Nano-ImmunoEngineeringUniversity of California, San DiegoSan DiegoCA92093USA
| | - Nicole F. Steinmetz
- Department of RadiologyUniversity of California, San DiegoSan DiegoCA92093USA
- Department of NanoEngineeringUniversity of California, San DiegoSan DiegoCA92093USA
- Center for Nano-ImmunoEngineeringUniversity of California, San DiegoSan DiegoCA92093USA
- Department of BioengineeringUniversity of California, San DiegoSan DiegoCA92093USA
- Institute for Materials Discovery and DesignUniversity of California, San DiegoSan DiegoCA92093USA
- Moores Cancer CenterUniversity of California, San DiegoSan DiegoCA92093USA
- Center for Engineering in Cancer, Institute for Engineering in MedicineUniversity of California, San DiegoSan DiegoCA92093USA
| |
Collapse
|
35
|
Azizi M, Jahanban-Esfahlan R, Samadian H, Hamidi M, Seidi K, Dolatshahi-Pirouz A, Yazdi AA, Shavandi A, Laurent S, Be Omide Hagh M, Kasaiyan N, Santos HA, Shahbazi MA. Multifunctional nanostructures: Intelligent design to overcome biological barriers. Mater Today Bio 2023; 20:100672. [PMID: 37273793 PMCID: PMC10232915 DOI: 10.1016/j.mtbio.2023.100672] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 04/24/2023] [Accepted: 05/18/2023] [Indexed: 06/06/2023] Open
Abstract
Over the past three decades, nanoscience has offered a unique solution for reducing the systemic toxicity of chemotherapy drugs and for increasing drug therapeutic efficiency. However, the poor accumulation and pharmacokinetics of nanoparticles are some of the key reasons for their slow translation into the clinic. The is intimately linked to the non-biological nature of nanoparticles and the aberrant features of solid cancer, which together significantly compromise nanoparticle delivery. New findings on the unique properties of tumors and their interactions with nanoparticles and the human body suggest that, contrary to what was long-believed, tumor features may be more mirage than miracle, as the enhanced permeability and retention based efficacy is estimated to be as low as 1%. In this review, we highlight the current barriers and available solutions to pave the way for approved nanoformulations. Furthermore, we aim to discuss the main solutions to solve inefficient drug delivery with the use of nanobioengineering of nanocarriers and the tumor environment. Finally, we will discuss the suggested strategies to overcome two or more biological barriers with one nanocarrier. The variety of design formats, applications and implications of each of these methods will also be evaluated.
Collapse
Affiliation(s)
- Mehdi Azizi
- Department of Tissue Engineering and Biomaterials, School of Advanced Medical Sciences and Technologies, Hamadan University of Medical Sciences, Hamadan, Iran
- Dental Implants Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Rana Jahanban-Esfahlan
- Department of Medical Biotechnology, School of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hadi Samadian
- Dental Implants Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
- Department of Molecular Medicine, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Masoud Hamidi
- Université Libre de Bruxelles (ULB), École Polytechnique de Bruxelles-BioMatter Unit, Avenue F.D. Roosevelt, 50 - CP 165/61, 1050, Brussels, Belgium
| | - Khaled Seidi
- Department of Medical Biotechnology, School of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Amirhossein Ahmadieh Yazdi
- Department of Molecular Medicine, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Amin Shavandi
- Université Libre de Bruxelles (ULB), École Polytechnique de Bruxelles-BioMatter Unit, Avenue F.D. Roosevelt, 50 - CP 165/61, 1050, Brussels, Belgium
| | - Sophie Laurent
- General, Organic and Biomedical Chemistry Unit, Faculty of Medicine and Pharmacy, Research Institute for Health Sciences and Technology, University of Mons – UMONS, Mons, Belgium
| | - Mahsa Be Omide Hagh
- Immunology Research Center, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nahid Kasaiyan
- Department of Nephrology and Hypertension, University Medical Center Utrecht, 3508 GA, Utrecht, Netherlands
| | - Hélder A. Santos
- Department of Biomedical Engineering, University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, Netherlands
- W.J. Kolff Institute for Biomedical Engineering and Materials Science, University of Groningen, University Medical Center Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, Netherlands
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, FI-00014, Helsinki, Finland
| | - Mohammad-Ali Shahbazi
- Department of Biomedical Engineering, University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, Netherlands
- W.J. Kolff Institute for Biomedical Engineering and Materials Science, University of Groningen, University Medical Center Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, Netherlands
| |
Collapse
|
36
|
Saifi MA, Sathish G, Bazaz MR, Godugu C. Exploration of tumor penetrating peptide iRGD as a potential strategy to enhance tumor penetration of cancer nanotherapeutics. Biochim Biophys Acta Rev Cancer 2023; 1878:188895. [PMID: 37037389 DOI: 10.1016/j.bbcan.2023.188895] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 04/04/2023] [Accepted: 04/05/2023] [Indexed: 04/12/2023]
Abstract
Cancer therapy continues to be a huge challenge as most chemotherapeutic agents exert serious adverse effects on healthy organs. Chemotherapeutic agents lack selective targeting and even the existing target specific therapies are failing due to poor distribution into the tumor microenvironment. Nanotechnology offers multiple advantages to address the limitations encountered by conventional therapy. However, the delivery of nanotherapeutics to tumor tissue has not improved over the years partly due to the poor and inadequate distribution of nanotherapeutics into deeper tumor regions resulting in resistance and relapse. To curb the penetration concerns, iRGD was explored and found to be highly effective in improving the delivery of cancer nanomedicine. The preclinical observations are highly encouraging; however, the clinical translation is at a nascent stage. Based on this, we have made an elaborative effort to give a detailed account of various promising applications of iRGD to increase anticancer and tumor imaging potential. Importantly, we have comprehensively discussed the shortcomings and uncertainties associated with the clinical translation of iRGD-based therapeutic approaches and future directions.
Collapse
Affiliation(s)
- Mohd Aslam Saifi
- Department of Biological Sciences (Regulatory Toxicology), National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, India
| | - Gauri Sathish
- Department of Biological Sciences (Regulatory Toxicology), National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, India
| | - Mohd Rabi Bazaz
- Department of Biological Sciences (Pharmacology and Toxicology), National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, India
| | - Chandraiah Godugu
- Department of Biological Sciences (Regulatory Toxicology), National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, India.
| |
Collapse
|
37
|
Dong S, Feng Z, Ma R, Zhang T, Jiang J, Li Y, Zhang Y, Li S, Liu X, Liu X, Meng H. Engineered Design of a Mesoporous Silica Nanoparticle-Based Nanocarrier for Efficient mRNA Delivery in Vivo. NANO LETTERS 2023; 23:2137-2147. [PMID: 36881967 DOI: 10.1021/acs.nanolett.2c04486] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
We have developed tailor-designed mesoporous silica nanoparticles (MSNPs) specifically for delivering mRNA. Our unique assembly protocol involves premixing mRNA with a cationic polymer and then electrostatically binding it to the MSNP surface. Since the key physicochemical parameters of MSNPs could influence the biological outcome, we also investigated the roles of size, porosity, surface topology, and aspect ratio on the mRNA delivery. These efforts allow us to identify the best-performing carrier, which was able to achieve efficient cellular uptake and intracellular escape while delivering a luciferase mRNA in mice. The optimized carrier remained stable and active for at least 7 days after being stored at 4 °C and was able to enable tissue-specific mRNA expression, particularly in the pancreas and mesentery after intraperitoneal injection. The optimized carrier was further manufactured in a larger batch size and found to be equally efficient in delivering mRNA in mice and rats, without any obvious toxicity.
Collapse
Affiliation(s)
- Shuwen Dong
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology, Beijing 100190, China
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Zhenhan Feng
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology, Beijing 100190, China
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Runpu Ma
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
- College of Life Sciences, Tianjin University, Tianjin 300072, China
| | - Tianyu Zhang
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Jinhong Jiang
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Yibo Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yumo Zhang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology, Beijing 100190, China
| | - Silu Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology, Beijing 100190, China
| | - Xiao Liu
- Department of Gastroenterology, Beijing Hospital, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, National Center of Gerontology, Beijing 100730, China
| | - Xiangsheng Liu
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huan Meng
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
38
|
Järveläinen HA, Schmithals C, von Harten M, Kakoschky B, Vogl TJ, Harris S, Henson C, Bullen-Clerkson G, Piiper A. Assessment of the Pharmacokinetics, Disposition, and Duration of Action of the Tumour-Targeting Peptide CEND-1. Int J Mol Sci 2023; 24:5700. [PMID: 36982773 PMCID: PMC10053770 DOI: 10.3390/ijms24065700] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/13/2023] [Accepted: 03/15/2023] [Indexed: 03/19/2023] Open
Abstract
CEND-1 (iRGD) is a bifunctional cyclic peptide that can modulate the solid tumour microenvironment, enhancing the delivery and therapeutic index of co-administered anti-cancer agents. This study explored CEND-1's pharmacokinetic (PK) properties pre-clinically and clinically, and assessed CEND-1 distribution, tumour selectivity and duration of action in pre-clinical tumour models. Its PK properties were assessed after intravenous infusion of CEND-1 at various doses in animals (mice, rats, dogs and monkeys) and patients with metastatic pancreatic cancer. To assess tissue disposition, [3H]-CEND-1 radioligand was administered intravenously to mice bearing orthotopic 4T1 mammary carcinoma, followed by tissue measurement using quantitative whole-body autoradiography or quantitative radioactivity analysis. The duration of the tumour-penetrating effect of CEND-1 was evaluated by assessing tumour accumulation of Evans blue and gadolinium-based contrast agents in hepatocellular carcinoma (HCC) mouse models. The plasma half-life was approximately 25 min in mice and 2 h in patients following intravenous administration of CEND-1. [3H]-CEND-1 localised to the tumour and several healthy tissues shortly after administration but was cleared from most healthy tissues by 3 h. Despite the rapid systemic clearance, tumours retained significant [3H]-CEND-1 several hours post-administration. In mice with HCC, the tumour penetration activity remained elevated for at least 24 h after the injection of a single dose of CEND-1. These results indicate a favourable in vivo PK profile of CEND-1 and a specific and sustained tumour homing and tumour penetrability. Taken together, these data suggest that even single injections of CEND-1 may elicit long-lasting tumour PK improvements for co-administered anti-cancer agents.
Collapse
Affiliation(s)
- Harri A. Järveläinen
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, 00014 Helsinki, Finland
| | - Christian Schmithals
- Department of Medicine 1, University Hospital Frankfurt, 60590 Frankfurt, Germany
| | - Maike von Harten
- Department of Medicine 1, University Hospital Frankfurt, 60590 Frankfurt, Germany
| | - Bianca Kakoschky
- Department of Medicine 1, University Hospital Frankfurt, 60590 Frankfurt, Germany
| | - Thomas J. Vogl
- Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, 60590 Frankfurt, Germany
| | - Stephen Harris
- Department of Metabolism, Pharmaron UK, Pegasus Way, Crown Business Park, Rushden, Northamptonshire NN10 6ER, UK
| | - Claire Henson
- Department of Metabolism, Pharmaron UK, Pegasus Way, Crown Business Park, Rushden, Northamptonshire NN10 6ER, UK
| | - Gemma Bullen-Clerkson
- Department of Metabolism, Pharmaron UK, Pegasus Way, Crown Business Park, Rushden, Northamptonshire NN10 6ER, UK
| | - Albrecht Piiper
- Department of Medicine 1, University Hospital Frankfurt, 60590 Frankfurt, Germany
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| |
Collapse
|
39
|
Agbaria M, Jbara-Agbaria D, Grad E, Ben-David-Naim M, Aizik G, Golomb G. Nanoparticles of VAV1 siRNA combined with LL37 peptide for the treatment of pancreatic cancer. J Control Release 2023; 355:312-326. [PMID: 36736910 DOI: 10.1016/j.jconrel.2023.01.084] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/10/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is among the leading causes of cancer-related death, and it is highly resistant to therapy owing to its unique extracellular matrix. VAV1 protein, overexpressed in several cancer diseases including pancreatic cancer (PC), increases tumor proliferation and enhances metastases formation, which are associated with decreased survival. We hypothesized that an additive anti-tumor effect could be obtained by co-encapsulating in PLGA nanoparticles (NPs), the negatively charged siRNA against VAV1 (siVAV1) with the positively charged anti-tumor LL37 peptide, as a counter-ion. Several types of NPs were formulated and were characterized for their physicochemical properties, cellular internalization, and bioactivity in vitro. NPs' biodistribution, toxicity, and bioactivity were examined in a mice PDAC model. An optimal siVAV1 formulation (siVAV1-LL37 NPs) was characterized with desirable physicochemical properties in terms of nano-size, low polydispersity index (PDI), neutral surface charge, high siVAV1 encapsulation efficiency, spherical shape, and long-term shelf-life stability. Cell assays demonstrated rapid engulfment by PC cells, a specific and significant dose-dependent proliferation inhibition, as well as knockdown of VAV1 mRNA levels and migration inhibition in VAV1+ cells. Treatment with siVAV1-LL37 NPs in the mice PDAC model revealed marked accumulation of NPs in the liver and in the tumor, resulting in an increased survival rate following suppression of tumor growth and metastases, mediated via the knockdown of both VAV1 mRNA and protein levels. This proof-of-concept study validates our hypothesis of an additive effect in the treatment of PC facilitated by co-encapsulating siVAV1 in NPs with LL37 serving a dual role as a counter ion as well as an anti-tumor agent.
Collapse
Affiliation(s)
- Majd Agbaria
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112001, Israel
| | - Doaa Jbara-Agbaria
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112001, Israel
| | - Etty Grad
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112001, Israel
| | - Meital Ben-David-Naim
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112001, Israel
| | - Gil Aizik
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112001, Israel
| | - Gershon Golomb
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112001, Israel; The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel.
| |
Collapse
|
40
|
Yang XY, Lu YF, Xu JX, Du YZ, Yu RS. Recent Advances in Well-Designed Therapeutic Nanosystems for the Pancreatic Ductal Adenocarcinoma Treatment Dilemma. Molecules 2023; 28:molecules28031506. [PMID: 36771172 PMCID: PMC9920782 DOI: 10.3390/molecules28031506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 01/26/2023] [Accepted: 01/31/2023] [Indexed: 02/08/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a highly malignant tumor with an extremely poor prognosis and low survival rate. Due to its inconspicuous symptoms, PDAC is difficult to diagnose early. Most patients are diagnosed in the middle and late stages, losing the opportunity for surgery. Chemotherapy is the main treatment in clinical practice and improves the survival of patients to some extent. However, the improved prognosis is associated with higher side effects, and the overall prognosis is far from satisfactory. In addition to resistance to chemotherapy, PDAC is significantly resistant to targeted therapy and immunotherapy. The failure of multiple treatment modalities indicates great dilemmas in treating PDAC, including high molecular heterogeneity, high drug resistance, an immunosuppressive microenvironment, and a dense matrix. Nanomedicine shows great potential to overcome the therapeutic barriers of PDAC. Through the careful design and rational modification of nanomaterials, multifunctional intelligent nanosystems can be obtained. These nanosystems can adapt to the environment's needs and compensate for conventional treatments' shortcomings. This review is focused on recent advances in the use of well-designed nanosystems in different therapeutic modalities to overcome the PDAC treatment dilemma, including a variety of novel therapeutic modalities. Finally, these nanosystems' bottlenecks in treating PDAC and the prospect of future clinical translation are briefly discussed.
Collapse
Affiliation(s)
- Xiao-Yan Yang
- Department of Radiology, Second Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou 310009, China
| | - Yuan-Fei Lu
- Department of Radiology, Second Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou 310009, China
| | - Jian-Xia Xu
- Department of Radiology, The Second Affiliated Hospital of Zhejiang Chinese Medical University, 318 Chaowang Road, Hangzhou 310005, China
| | - Yong-Zhong Du
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
- Correspondence: (Y.-Z.D.); (R.-S.Y.); Tel.: +86-571-88208435 (Y.-Z.D.); +86-571-87783925 (R.-S.Y.)
| | - Ri-Sheng Yu
- Department of Radiology, Second Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou 310009, China
- Correspondence: (Y.-Z.D.); (R.-S.Y.); Tel.: +86-571-88208435 (Y.-Z.D.); +86-571-87783925 (R.-S.Y.)
| |
Collapse
|
41
|
Raza F, Evans L, Motallebi M, Zafar H, Pereira-Silva M, Saleem K, Peixoto D, Rahdar A, Sharifi E, Veiga F, Hoskins C, Paiva-Santos AC. Liposome-based diagnostic and therapeutic applications for pancreatic cancer. Acta Biomater 2023; 157:1-23. [PMID: 36521673 DOI: 10.1016/j.actbio.2022.12.013] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 12/02/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022]
Abstract
Pancreatic cancer is one of the harshest and most challenging cancers to treat, often labeled as incurable. Chemotherapy continues to be the most popular treatment yet yields a very poor prognosis. The main barriers such as inefficient drug penetration and drug resistance, have led to the development of drug carrier systems. The benefits, ease of fabrication and modification of liposomes render them as ideal future drug delivery systems. This review delves into the versatility of liposomes to achieve various mechanisms of treatment for pancreatic cancer. Not only are there benefits of loading chemotherapy drugs and targeting agents onto liposomes, as well as mRNA combined therapy, but liposomes have also been exploited for immunotherapy and can be programmed to respond to photothermal therapy. Multifunctional liposomal formulations have demonstrated significant pre-clinical success. Functionalising drug-encapsulated liposomes has resulted in triggered drug release, specific targeting, and remodeling of the tumor environment. Suppressing tumor progression has been achieved, due to their ability to more efficiently and precisely deliver chemotherapy. Currently, no multifunctional surface-modified liposomes are clinically approved for pancreatic cancer thus we aim to shed light on the trials and tribulations and progress so far, with the hope for liposomal therapy in the future and improved patient outcomes. STATEMENT OF SIGNIFICANCE: Considering that conventional treatments for pancreatic cancer are highly associated with sub-optimal performance and systemic toxicity, the development of novel therapeutic strategies holds outmost relevance for pancreatic cancer management. Liposomes are being increasingly considered as promising nanocarriers for providing not only an early diagnosis but also effective, highly specific, and safer treatment, improving overall patient outcome. This manuscript is the first in the last 10 years that revises the advances in the application of liposome-based formulations in bioimaging, chemotherapy, phototherapy, immunotherapy, combination therapies, and emergent therapies for pancreatic cancer management. Prospective insights are provided regarding several advantages resulting from the use of liposome technology in precision strategies, fostering new ideas for next-generation diagnosis and targeted therapies of pancreatic cancer.
Collapse
Affiliation(s)
- Faisal Raza
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Lauren Evans
- Pure and Applied Chemistry, University of Strathclyde, 99 George Street, Glasgow, G1 1RD, UK
| | - Mahzad Motallebi
- Immunology Board for Transplantation And Cell-based Therapeutics (Immuno_TACT), Universal Scientific Education and Research Network (USERN), Tehran 7616911319, Iran; Nanomedicine Research Association (NRA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Hajra Zafar
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Miguel Pereira-Silva
- Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Azinhaga Sta. Comba, 3000-548 Coimbra, Portugal; LAQV, REQUIMTE, Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Azinhaga Sta. Comba, 3000-548 Coimbra, Portugal
| | - Kalsoom Saleem
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad 45320, Pakistan
| | - Diana Peixoto
- Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Azinhaga Sta. Comba, 3000-548 Coimbra, Portugal; LAQV, REQUIMTE, Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Azinhaga Sta. Comba, 3000-548 Coimbra, Portugal
| | - Abbas Rahdar
- Department of Physics, University of Zabol, Zabol 98613-35856, Iran
| | - Esmaeel Sharifi
- Cancer Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Francisco Veiga
- Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Azinhaga Sta. Comba, 3000-548 Coimbra, Portugal; LAQV, REQUIMTE, Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Azinhaga Sta. Comba, 3000-548 Coimbra, Portugal
| | - Clare Hoskins
- Pure and Applied Chemistry, University of Strathclyde, 99 George Street, Glasgow, G1 1RD, UK
| | - Ana Cláudia Paiva-Santos
- Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Azinhaga Sta. Comba, 3000-548 Coimbra, Portugal; LAQV, REQUIMTE, Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Azinhaga Sta. Comba, 3000-548 Coimbra, Portugal.
| |
Collapse
|
42
|
Wu X, Guo H, Zhao J, Wei Y, Li YX, Pang HB. Identification of an ALK-2 inhibitor as an agonist for intercellular exchange and tumor delivery of nanomaterial. ADVANCED THERAPEUTICS 2023; 6:2200173. [PMID: 36818419 PMCID: PMC9937035 DOI: 10.1002/adtp.202200173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Indexed: 11/08/2022]
Abstract
Inefficient extravasation and penetration in solid tissues hinder the clinical outcome of nanoparticles (NPs). Recent studies have shown that the extravasation and penetration of NPs in solid tumor was mostly achieved via an active transcellular route. For this transport process, numerous efforts have been devoted to elucidate the endocytosis and subcellular trafficking of NPs. However, how they exit from one cell and re-enter into neighboring ones (termed intercellular exchange) remains poorly understood. We previously developed cellular assays that exclusively quantify the intercellular exchange of NPs in vitro. Our study showed that a significant portion of NPs are transferred inside extracellular vesicles (EVs). Pharmacological inhibition of EV biogenesis significantly reduced the tumor accumulation and vascular penetration of both inorganic and organic NPs in vivo. Intrigued by this result, we performed here a manual chemical screen with our assay, which identified that LDN-214117 (an inhibitor for activin receptor-like kinase-2, ALK-2) is an agonist of NP intercellular exchange. We further showed that LDN-214117 regulates the intercellular exchange by increasing the EV biogenesis. Mechanistic investigation showed that LDN-214117 functions via BMP (bone morphogenetic protein)-MAPK (mitogen-activated protein kinase) signaling pathway to increase EV biogenesis. We further demonstrated that LDN-214117 treatment in vivo enhanced the tumor accumulation and vascular penetration of a variety of NPs in multiple tumor models, which improves their antitumor efficacy. Overall, we showcase here the identification of a novel chemical compound with our intercellular exchange assays to modulate EV biogenesis and EV-mediated transport, thus boosting up the delivery and therapeutic efficacy of nanomaterial.
Collapse
Affiliation(s)
- Xian Wu
- Department of Pharmaceutics, University of Minnesota, Minneapolis, MN, USA
| | - Hong Guo
- Department of Pharmaceutics, University of Minnesota, Minneapolis, MN, USA
| | - Jiaqi Zhao
- Department of Pharmaceutics, University of Minnesota, Minneapolis, MN, USA
| | - Yushuang Wei
- Department of Pharmaceutics, University of Minnesota, Minneapolis, MN, USA
| | - Yue-Xuan Li
- Department of Pharmaceutics, University of Minnesota, Minneapolis, MN, USA
| | - Hong-Bo Pang
- Department of Pharmaceutics, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
43
|
Cheng X, Xie Q, Sun Y. Advances in nanomaterial-based targeted drug delivery systems. Front Bioeng Biotechnol 2023; 11:1177151. [PMID: 37122851 PMCID: PMC10133513 DOI: 10.3389/fbioe.2023.1177151] [Citation(s) in RCA: 93] [Impact Index Per Article: 46.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 03/31/2023] [Indexed: 05/02/2023] Open
Abstract
Nanomaterial-based drug delivery systems (NBDDS) are widely used to improve the safety and therapeutic efficacy of encapsulated drugs due to their unique physicochemical and biological properties. By combining therapeutic drugs with nanoparticles using rational targeting pathways, nano-targeted delivery systems were created to overcome the main drawbacks of conventional drug treatment, including insufficient stability and solubility, lack of transmembrane transport, short circulation time, and undesirable toxic effects. Herein, we reviewed the recent developments in different targeting design strategies and therapeutic approaches employing various nanomaterial-based systems. We also discussed the challenges and perspectives of smart systems in precisely targeting different intravascular and extravascular diseases.
Collapse
|
44
|
Wan Z, Huang H, West RE, Zhang M, Zhang B, Cai X, Zhang Z, Luo Z, Chen Y, Zhang Y, Xie W, Yang D, Nolin TD, Wang J, Li S, Sun J. Overcoming pancreatic cancer immune resistance by codelivery of CCR2 antagonist using a STING-activating gemcitabine-based nanocarrier. MATERIALS TODAY (KIDLINGTON, ENGLAND) 2023; 62:33-50. [PMID: 38239407 PMCID: PMC10795849 DOI: 10.1016/j.mattod.2022.11.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2024]
Abstract
STING agonist has recently gained much attention for cancer treatment, but the therapeutic potential of STING agonist is hampered by STING-associated tumor immune resistance. In this work, guided by both bioinformatics and computer modeling, we rationally designed a "one stone hits two birds" nanoparticle-based strategy to simultaneously activate STING innate immune response while eliminating STING-associated immune resistance for the treatment of pancreatic ductal adenocarcinoma (PDAC). We discovered that the ultra-small sized micellar system based on gemcitabine-conjugated polymer (PGEM), which showed superior capacity of penetration in pancreatic tumor spheroid model and orthotopic tumor model, could serve as a novel "STING agonist". The activation of STING signaling in dendritic cells (DCs) by PGEM increased both innate nature killer (NK) and adaptive anti-tumor T cell response. However, activation of STING signaling by PGEM in tumor cells also drove the induction of chemokines CCL2 and CCL7, resulting in immune resistance by recruiting tumor associated macrophage (TAM) and myeloid-derived suppressor cells (MDSCs). Through the combination of computer modeling and experimental screening, we developed a dual delivery modality by incorporating a CCR2 (the receptor shared by both CCL2 and CCL7) antagonist PF-6309 (PF) into PGEM micellar system. Our studies demonstrated that PGEM/PF formulation significantly reduced pancreatic tumor burden and induced potent anti-tumor immunity through reversing the CCL2/CCL7-mediated immunosuppression. Moreover, PGEM/PF sensitized PDAC tumors to anti-PD-1 therapy, leading to complete suppression/eradication of the tumors. Our work has shed light to the multi-faceted role of STING activation and provided a novel immunotherapy regimen to maximize the benefit of STING activation for PDAC treatment. In addition, this work paved a new way for bioinformatics and computer modeling-guided rational design of nanomedicine.
Collapse
Affiliation(s)
- Zhuoya Wan
- Center for Pharmacogenetics, Department of Pharmaceutical Science, University of Pittsburgh School of Pharmacy, Pittsburgh, PA, USA
| | - Haozhe Huang
- Center for Pharmacogenetics, Department of Pharmaceutical Science, University of Pittsburgh School of Pharmacy, Pittsburgh, PA, USA
| | - Raymond E West
- Department of Pharmacy and Therapeutics, University of Pittsburgh School of Pharmacy, Pittsburgh, PA, USA
| | - Min Zhang
- Center for Pharmacogenetics, Department of Pharmaceutical Science, University of Pittsburgh School of Pharmacy, Pittsburgh, PA, USA
| | - Bei Zhang
- Center for Pharmacogenetics, Department of Pharmaceutical Science, University of Pittsburgh School of Pharmacy, Pittsburgh, PA, USA
| | - Xinran Cai
- Center for Pharmacogenetics, Department of Pharmaceutical Science, University of Pittsburgh School of Pharmacy, Pittsburgh, PA, USA
| | - Ziqian Zhang
- Center for Pharmacogenetics, Department of Pharmaceutical Science, University of Pittsburgh School of Pharmacy, Pittsburgh, PA, USA
| | - Zhangyi Luo
- Center for Pharmacogenetics, Department of Pharmaceutical Science, University of Pittsburgh School of Pharmacy, Pittsburgh, PA, USA
| | - Yuang Chen
- Center for Pharmacogenetics, Department of Pharmaceutical Science, University of Pittsburgh School of Pharmacy, Pittsburgh, PA, USA
| | - Yue Zhang
- Center for Pharmacogenetics, Department of Pharmaceutical Science, University of Pittsburgh School of Pharmacy, Pittsburgh, PA, USA
| | - Wen Xie
- Center for Pharmacogenetics, Department of Pharmaceutical Science, University of Pittsburgh School of Pharmacy, Pittsburgh, PA, USA
| | - Da Yang
- Center for Pharmacogenetics, Department of Pharmaceutical Science, University of Pittsburgh School of Pharmacy, Pittsburgh, PA, USA
| | - Thomas D Nolin
- Department of Pharmacy and Therapeutics, University of Pittsburgh School of Pharmacy, Pittsburgh, PA, USA
| | - Junmei Wang
- Department of Pharmaceutical Sciences and Computational Chemical Genomics Screening Center, University of Pittsburgh School of Pharmacy, Pittsburgh, PA, USA
| | - Song Li
- Center for Pharmacogenetics, Department of Pharmaceutical Science, University of Pittsburgh School of Pharmacy, Pittsburgh, PA, USA
| | - Jingjing Sun
- Center for Pharmacogenetics, Department of Pharmaceutical Science, University of Pittsburgh School of Pharmacy, Pittsburgh, PA, USA
| |
Collapse
|
45
|
He Y, Zhou M, Li S, Gong Z, Yan F, Liu H. Ultrasound Molecular Imaging of Neovascularization for Evaluation of Endometrial Receptivity Using Magnetic iRGD-Modified Lipid-Polymer Hybrid Microbubbles. Int J Nanomedicine 2022; 17:5869-5881. [PMID: 36483520 PMCID: PMC9726466 DOI: 10.2147/ijn.s359065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 06/01/2022] [Indexed: 10/11/2023] Open
Abstract
BACKGROUND Angiogenesis plays an important role in endometrial receptivity, determining the response of the endometrium to the blastocyst at the early stage of embryo implantation. During the application of assisted reproduction technologies, it is very important to evaluate the status of uterine angiogenesis before deciding on embryo implantation. Targeted microbubbles (MBs)-based ultrasound molecular imaging (UMI) can noninvasively detect the expression status of biomarkers at the molecular level, thereby being a potential diagnosis strategy for various diseases and their therapeutic evaluation. METHODS The iRGD-lipopeptide (DSPE-PEG2000-iRGD) conjugate was prepared with iRGD peptides and DSPE-PEG2000-maleimide through the Michael-type addition reaction. Then, the magnetic iRGD-modified lipid-polymer hybrid MBs (Mag-iLPMs) were prepared with the double-emulsification-solvent-evaporation method. Magnetic targeting of Mag-iLPMs was confirmed under the microscope, followed by a rectangular magnet. Next, the in vitro targeted binding of MBs to murine brain-derived endothelial cells.3 (bEnd.3) and human umbilical vein endothelial cells (HUVEC) were evaluated. The ratio of MBs binding to bEnd.3 and HUVEC at the same field was also compared. For in vivo studies, bolus injections of targeted or control MBs were randomly administrated to non-pregnant or pregnant rats on day 5. Then, the uteri were imaged using a VisualSonics Vevo 2100 ultrasound system (Fujifilm VisualSonics Inc., Ontario, Canada) equipped with a high-frequency transducer. Ultrasonic imaging signals were acquired from Mag-iLPMs, and compared with Mag-LPMs, iLPMs, and LPMs. RESULTS The Mag-iLPMs showed excellent performance in ultrasound contrast imaging and binding affinity to target cells. Using the magnetic field, 10.5- and 12.47-fold higher binding efficiency to bEnd.3 and HUVEC were achieved compared to non-magnetic iLPMs, respectively. Significantly enhanced UMI signals were also observed in the uteri of rats intravenously injected pregnant rats (6.58-fold higher than rats injected with iLPMs). CONCLUSION We provided a powerful ultrasonic molecular functional imaging tool for uterine angiogenesis evaluation before embryonic implantation.
Collapse
Affiliation(s)
- Yanni He
- Department of Ultrasound, Institute of Ultrasound in Musculoskeletal Sports Medicine, Guangdong Second Provincial General Hospital, Guangzhou, 510317, People’s Republic of China
| | - Meijun Zhou
- Department of Ultrasound, Institute of Ultrasound in Musculoskeletal Sports Medicine, Guangdong Second Provincial General Hospital, Guangzhou, 510317, People’s Republic of China
| | - Sushu Li
- Department of Ultrasound, Institute of Ultrasound in Musculoskeletal Sports Medicine, Guangdong Second Provincial General Hospital, Guangzhou, 510317, People’s Republic of China
| | - Zheli Gong
- Department of Ultrasound, The People’s Hospital of Hunan Province, Changsha, 410061, People’s Republic of China
| | - Fei Yan
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, People’s Republic of China
| | - Hongmei Liu
- Department of Ultrasound, Institute of Ultrasound in Musculoskeletal Sports Medicine, Guangdong Second Provincial General Hospital, Guangzhou, 510317, People’s Republic of China
| |
Collapse
|
46
|
Chen JR, Zhao JT, Xie ZZ. Integrin-mediated cancer progression as a specific target in clinical therapy. Biomed Pharmacother 2022; 155:113745. [DOI: 10.1016/j.biopha.2022.113745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/17/2022] [Accepted: 09/21/2022] [Indexed: 11/15/2022] Open
|
47
|
Zhao JF, Zou FL, Zhu JF, Huang C, Bu FQ, Zhu ZM, Yuan RF. Nano-drug delivery system for pancreatic cancer: A visualization and bibliometric analysis. Front Pharmacol 2022; 13:1025618. [PMID: 36330100 PMCID: PMC9622975 DOI: 10.3389/fphar.2022.1025618] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 09/22/2022] [Indexed: 12/24/2022] Open
Abstract
Background: Nano drug delivery system (NDDS) can significantly improve the delivery and efficacy of drugs against pancreatic cancer (PC) in many ways. The purpose of this study is to explore the related research fields of NDDS for PC from the perspective of bibliometrics. Methods: Articles and reviews on NDDS for PC published between 2003 and 2022 were obtained from the Web of Science Core Collection. CiteSpace, VOSviewer, R-bibliometrix, and Microsoft Excel were comprehensively used for bibliometric and visual analysis. Results: A total of 1329 papers on NDDS for PC were included. The number of papers showed an upward trend over the past 20 years. The United States contributed the most papers, followed by China, and India. Also, the United States had the highest number of total citations and H-index. The institution with the most papers was Chinese Acad Sci, which was also the most important in international institutional cooperation. Professors Couvreur P and Kazuoka K made great achievements in this field. JOURNAL OF CONTROLLED RELEASE published the most papers and was cited the most. The topics related to the tumor microenvironment such as "tumor microenvironment", "tumor penetration", "hypoxia", "exosome", and "autophagy", PC treatment-related topics such as "immunotherapy", "combination therapy", "alternating magnetic field/magnetic hyperthermia", and "ultrasound", and gene therapy dominated by "siRNA" and "miRNA" were the research hotspots in the field of NDDS for PC. Conclusion: This study systematically uncovered a holistic picture of the performance of NDDS for PC-related literature over the past 20 years. We provided scholars to understand key information in this field with the perspective of bibliometrics, which we believe may greatly facilitate future research in this field.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Rong-Fa Yuan
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
48
|
Zhou Q, Li J, Xiang J, Shao S, Zhou Z, Tang J, Shen Y. Transcytosis-enabled active extravasation of tumor nanomedicine. Adv Drug Deliv Rev 2022; 189:114480. [PMID: 35952830 DOI: 10.1016/j.addr.2022.114480] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 07/11/2022] [Accepted: 08/01/2022] [Indexed: 01/24/2023]
Abstract
Extravasation is the first step for nanomedicines in circulation to reach targeted solid tumors. Traditional nanomedicines have been designed to extravasate into tumor interstitium through the interendothelial gaps previously assumed rich in tumor blood vessels, i.e., the enhanced permeability and retention (EPR) effect. While the EPR effect has been validated in animal xenograft tumor models, accumulating evidence implies that the EPR effect is very limited and highly heterogeneous in human tumors, leading to highly unpredictable and inefficient extravasation and thus limited therapeutic efficacy of nanomedicines, including those approved in clinics. Enabling EPR-independent extravasation is the key to develop new generation of nanomedicine with enhanced efficacy. Transcytosis of tumor endothelial cells can confer nanomedicines to actively extravasate into solid tumors without relying on the EPR effect. Here, we review and prospectthe development of transcytosis-inducing nanomedicines, in hope of providing instructive insights for design of nanomedicines that can undergo selective transcellular transport across tumor endothelial cells, and thus inspiring the development of next-generation nanomedicines for clinical translation.
Collapse
Affiliation(s)
- Quan Zhou
- Key Laboratory of Smart Biomaterials of Zhejiang Province and Center for Bionanoengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China; Department of Cell Biology, School of Basic Medical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Junjun Li
- Department of Cell Biology, School of Basic Medical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jiajia Xiang
- Key Laboratory of Smart Biomaterials of Zhejiang Province and Center for Bionanoengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China; Key Laboratory of Biomass Chemical Engineering of the Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China; ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou 311215, China
| | - Shiqun Shao
- Key Laboratory of Smart Biomaterials of Zhejiang Province and Center for Bionanoengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China; Key Laboratory of Biomass Chemical Engineering of the Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China; ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou 311215, China
| | - Zhuxian Zhou
- Key Laboratory of Smart Biomaterials of Zhejiang Province and Center for Bionanoengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China; Key Laboratory of Biomass Chemical Engineering of the Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Jianbin Tang
- Key Laboratory of Smart Biomaterials of Zhejiang Province and Center for Bionanoengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China; Key Laboratory of Biomass Chemical Engineering of the Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China; ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou 311215, China.
| | - Youqing Shen
- Key Laboratory of Smart Biomaterials of Zhejiang Province and Center for Bionanoengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China; Key Laboratory of Biomass Chemical Engineering of the Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China.
| |
Collapse
|
49
|
Dean A, Gill S, McGregor M, Broadbridge V, Järveläinen HA, Price T. Dual αV-integrin and neuropilin-1 targeting peptide CEND-1 plus nab-paclitaxel and gemcitabine for the treatment of metastatic pancreatic ductal adenocarcinoma: a first-in-human, open-label, multicentre, phase 1 study. Lancet Gastroenterol Hepatol 2022; 7:943-951. [PMID: 35803294 DOI: 10.1016/s2468-1253(22)00167-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 05/10/2022] [Accepted: 05/11/2022] [Indexed: 10/17/2022]
Abstract
BACKGROUND CEND-1 is a novel cyclic peptide that targets αV integrins and neuropilin-1 and enhances tumour delivery of co-administered anticancer drugs. We investigated the safety, tolerability, and biological activity of CEND-1 in patients with metastatic pancreatic ductal adenocarcinoma in combination with nab-paclitaxel and gemcitabine. METHODS This open-label, multicentre, phase 1 study, conducted at three hospitals in Australia, enrolled participants aged 18 years or older with histologically confirmed metastatic pancreatic ductal adenocarcinoma who had one or more lesions measurable on MRI or CT, an Eastern Cooperative Oncology Group performance status score of 0 or 1, and a life expectancy of at least 3 months. Exclusion criteria included previous chemotherapy and brain metastases or other malignancy (unless receiving curative intent). There was no randomisation or masking. CEND-1 monotherapy was given as an intravenous fluid bolus on day 1 of a run-in phase of 7 days (0·2-3·2 mg/kg) followed by CEND-1 plus intravenous gemcitabine (1000 mg/m2) and nab-paclitaxel (125 mg/m2) on days 1, 8, and 15 of 28-day treatment cycles until disease progression. The primary safety endpoints were incidence, severity, and duration of treatment-emergent and treatment-related adverse events; overall survival; and clinical laboratory results, which were all assessed in the safety population. This study is registered with ClinicalTrials.gov, NCT03517176, and the Australian New Zealand Clinical Trials Registry, ACTRN12618000804280. FINDINGS Between Aug 13, 2018, and Nov 30, 2019, 31 patients were enrolled (eight in the dose-escalation phase [cohort 1a] and 23 in the expansion phase [cohort 1b]). Two patients were excluded from the efficacy population. No CEND-1 dose-limiting toxicities were observed in the safety population (n=31). The most common grade 3 or 4 events were neutropenia (17 [55%] patients), anaemia (eight [26%]), leukopenia (five [16%]), and pulmonary embolism (four [13%]). Serious adverse events occurred in 22 (71%) patients, mostly related to disease progression. Ten deaths occurred during the study due to progression of metastatic pancreatic cancer (n=9) and a left middle cerebral artery stroke (n=1). In the efficacy population (n=29), 17 (59%) patients had an objective response, including one complete response and 16 partial responses. After a median follow-up of 26 months (IQR 24-30), median overall survival was 13·2 months (95% CI 9·7-22·5). INTERPRETATION CEND-1 with nab-paclitaxel and gemcitabine has an acceptable safety profile, with no dose-limiting toxicities and encouraging activity. Adverse events were generally consistent with those seen with nab-paclitaxel and gemcitabine. Further randomised trials to determine the efficacy of CEND-1 are warranted. FUNDING DrugCendR Australia Pty.
Collapse
Affiliation(s)
- Andrew Dean
- Bendat Family Comprehensive Cancer Centre, St John of God Subiaco Hospital, Subiaco, WA, Australia.
| | - Sanjeev Gill
- Department of Medical Oncology, Alfred Health, Melbourne, VIC, Australia
| | - Mark McGregor
- Department of Medical Oncology, The Queen Elizabeth Hospital, Adelaide, SA, Australia
| | - Vy Broadbridge
- Department of Medical Oncology, The Queen Elizabeth Hospital, Adelaide, SA, Australia
| | - Harri A Järveläinen
- DrugCendR Australia Pty, Collingwood, VIC, Australia; Department of Food Hygiene and Environmental Health, University of Helsinki, Helsinki, Finland
| | - Timothy Price
- Department of Medical Oncology, The Queen Elizabeth Hospital, Adelaide, SA, Australia
| |
Collapse
|
50
|
Wu J, Guo Z, Ni W, Feng Y, Guo X, Meng M, Yuan Y, Lin L, Chen J, Tian H, Chen X. Novel Cocktail Therapy Based on a Nanocarrier with an Efficient Transcytosis Property Reverses the Dynamically Deteriorating Tumor Microenvironment for Enhanced Immunotherapy. NANO LETTERS 2022; 22:7220-7229. [PMID: 35994713 DOI: 10.1021/acs.nanolett.2c02724] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The immune checkpoint blockade (ICB) faces a low response rate in clinical cancer treatment. Chemotherapy could enhance the response rate of the ICB, but patients would suffer from side effects. The off-target toxicity could be reduced by loading the chemotherapeutic agent through nanocarriers. Therefore, we developed a polymeric carrier for doxorubicin (DOX) loading to form DOX nanoparticles (DOX NPs), which were spatiotemporally responsive to the tumor microenvironment (TME). DOX NPs had an efficient transcytosis property for deep tumor infiltration and sustained drug release ability. Unfortunately, a binary therapy of DOX NPs and ICB induces tumor adaptive resistance and causes dynamic deterioration of the TME. We propose for the first time that TGF-β1 is a major cause of tumor adaptive resistance and developed an immune cocktail therapy containing DOX NPs, ICB, and TGF-β1 gene silencing nanoparticles. This therapy successfully overcame tumor adaptive resistance by reversing the immunosuppressive TME and achieved enhanced tumor treatment efficiency.
Collapse
Affiliation(s)
- Jiayan Wu
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, People's Republic of China
- University of Science and Technology of China, Hefei 230026, People's Republic of China
| | - Zhaopei Guo
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, People's Republic of China
| | - Weidong Ni
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, People's Republic of China
| | - Yuanji Feng
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, People's Republic of China
- University of Science and Technology of China, Hefei 230026, People's Republic of China
| | - Xiaoya Guo
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, People's Republic of China
- University of Science and Technology of China, Hefei 230026, People's Republic of China
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People's Republic of China
| | - Meng Meng
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, People's Republic of China
- University of Science and Technology of China, Hefei 230026, People's Republic of China
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People's Republic of China
| | - Yunan Yuan
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, People's Republic of China
- University of Science and Technology of China, Hefei 230026, People's Republic of China
| | - Lin Lin
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, People's Republic of China
- University of Science and Technology of China, Hefei 230026, People's Republic of China
| | - Jie Chen
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, People's Republic of China
| | - Huayu Tian
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, People's Republic of China
- University of Science and Technology of China, Hefei 230026, People's Republic of China
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People's Republic of China
| | - Xuesi Chen
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, People's Republic of China
- University of Science and Technology of China, Hefei 230026, People's Republic of China
| |
Collapse
|