1
|
Du B, Yan R, Hu X, Lou J, Zhu Y, Shao Y, Jiang H, Hao Y, Lv L. Role of Bifidobacterium animalis subsp. lactis BB-12 in mice with acute pancreatitis. AMB Express 2025; 15:62. [PMID: 40186645 PMCID: PMC11972277 DOI: 10.1186/s13568-025-01867-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Accepted: 03/14/2025] [Indexed: 04/07/2025] Open
Abstract
Acute pancreatitis (AP) is a prevalent acute gastrointestinal disease, which may be prevented and alleviated by probiotics. Bifidobacterium animalis subsp. lactis BB-12 (BB-12) is a widely studied probiotic strain; however, its specific effects in this context remain unexplored. In this study, we aimed to investigate the prophylactic and therapeutic effects of BB-12 in AP. Our findings revealed that BB-12 administration via gavage significantly reduced pathological pancreatic damage and serum amylase activity. Microbiome analysis showed that BB-12 treatment significantly increased the relative abundance of Ligilactobacillus and decreased that of Bilophila in the gut microbiota of mice with AP. Transcriptome analysis revealed that BB-12 mitigated the AP-induced dysregulation of several pathways, specifically attenuating the upregulation of the pancreatic secretion and ascorbate and aldarate metabolism pathways while reversing the downregulation of the ribosome, oxidative phosphorylation, and thermogenesis pathways. Spearman's correlation analysis revealed a positive correlation between the abundances of Bilophila and ASF356 and serum amylase activity. Furthermore, the abundances of Bilophila and ASF356 were significantly correlated with BB-12-regulated pancreatic genes and were predominantly enriched in the ribosome pathway. In conclusion, BB-12 pretreatment alleviated AP, likely by regulating the abundance of intestinal Lactobacillus, Bilophila, and ASF356, as well as the pancreatic secretion, ascorbate and aldarate metabolism, oxidative phosphorylation, ribosome, and thermogenesis pathways.
Collapse
Affiliation(s)
- Bingbing Du
- Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, 250021, China
| | - Ren Yan
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Xiaoxiang Hu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Jing Lou
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Yixin Zhu
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, 250021, China
| | - Yini Shao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Huiyong Jiang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, China.
| | - Yingying Hao
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China.
| | - Longxian Lv
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, 250021, China.
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, China.
| |
Collapse
|
2
|
Mititelu A, Grama A, Colceriu MC, Pop TL. Overview of the cellular and immune mechanisms involved in acute pancreatitis: In search of new prognosis biomarkers. Expert Rev Mol Med 2025; 27:e9. [PMID: 39757373 PMCID: PMC11879381 DOI: 10.1017/erm.2024.40] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 10/15/2024] [Accepted: 11/19/2024] [Indexed: 01/07/2025]
Abstract
Acute pancreatitis (AP) is an acute-onset gastrointestinal disease characterized by a significant inflammation of the pancreas. Most of the time, AP does not leave substantial changes in the pancreas after the resolution of the symptoms but the severe forms are associated with local or systemic complications. The pathogenesis of AP has long been investigated and, lately, the importance of intracellular mechanisms and the immune system has been described. The initial modifications in AP take place in the acinar cell. There are multiple mechanisms by which cellular homeostasis is impaired, one of the most important being calcium overload. Necrotic pancreatic cells initiate the inflammatory response by secreting inflammatory mediators and attracting immune cells. From this point on, the inflammation is sustained by the involvement of innate and adaptive immune systems. Multiple studies have demonstrated the importance of the first 48 h for identifying patients at risk for developing severe forms. For this reason, there is a need to find new, easy-to-use and reliable markers for accurate predictions of these forms. This review provides an overview of the main pathogenetic mechanisms involved in AP development and the most promising biomarkers for severity stratification.
Collapse
Affiliation(s)
- Alexandra Mititelu
- 2 Pediatric Discipline, Department of Mother and Child, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Alina Grama
- 2 Pediatric Discipline, Department of Mother and Child, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
- 2 Pediatric Clinic, Emergency Clinical Hospital for Children, Cluj-Napoca, Romania
| | - Marius-Cosmin Colceriu
- 2 Pediatric Discipline, Department of Mother and Child, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Tudor L. Pop
- 2 Pediatric Discipline, Department of Mother and Child, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
- 2 Pediatric Clinic, Emergency Clinical Hospital for Children, Cluj-Napoca, Romania
| |
Collapse
|
3
|
Zub AM, Manko BO, Manko VV. Screening of Amino Acids as a Safe Energy Source for Isolated Rat Pancreatic Acini. Pancreas 2024; 53:e662-e669. [PMID: 38696385 DOI: 10.1097/mpa.0000000000002350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/04/2024]
Abstract
OBJECTIVES Amino acids play an essential role in protein synthesis, metabolism, and survival of pancreatic acini. Adequate nutritional support is important for acute pancreatitis treatment. However, high concentrations of arginine and lysine may induce acute pancreatitis. The study aimed to identify the most suitable l -amino acids as safe energy sources for pancreatic acinar cells. MATERIALS AND METHODS Pancreatic acini were isolated from male Wistar rats. Effects of amino acids (0.1-20 mM) on uncoupled respiration of isolated acini were studied with a Clark electrode. Cell death was evaluated with fluorescent microscopy and DNA gel electrophoresis. RESULTS Among the tested amino acids, glutamate, glutamine, alanine, lysine, and aspartate were able to stimulate the uncoupled respiration rate of isolated pancreatic acini, whereas arginine, histidine, and asparagine were not. Lysine, arginine, and glutamine (20 mM) caused complete loss of plasma membrane integrity of acinar cells after 24 hours of incubation. Glutamine also caused early (2-4 hours) cell swelling and blebbing. Aspartate, asparagine, and glutamate only moderately decreased the number of viable cells, whereas alanine and histidine were not toxic. DNA fragmentation assay and microscopic analysis of nuclei showed no evidence of apoptosis in cells treated with amino acids. CONCLUSIONS Alanine and glutamate are safe and effective energy sources for mitochondria of pancreatic acinar cells.
Collapse
Affiliation(s)
- Anastasiia M Zub
- From the Human and Animal Physiology Department, Ivan Franko National University of Lviv, Lviv, Ukraine
| | | | | |
Collapse
|
4
|
Lewis S, Evans DL, Tsugorka TT, Peng S, Stauderman K, Gerasimenko O, Gerasimenko J. Combination of the CRAC Channel Inhibitor CM4620 and Galactose as a Potential Therapy for Acute Pancreatitis. FUNCTION 2024; 5:zqae017. [PMID: 38984998 PMCID: PMC11237893 DOI: 10.1093/function/zqae017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/28/2024] [Accepted: 03/28/2024] [Indexed: 07/11/2024] Open
Abstract
Acute pancreatitis (AP) is a life-threatening inflammatory disease with no specific therapy. Excessive cytoplasmic Ca2+ elevation and intracellular ATP depletion are responsible for the initiation of AP. Inhibition of Ca2+ release-activated Ca2+ (CRAC) channels has been proposed as a potential treatment, and currently, a novel selective CRAC channel inhibitor CM4620 (Auxora, CalciMedica) is in Phase 2b human trials. While CM4620 is on track to become the first effective treatment for AP, it does not produce complete protection in animal models. Recently, an alternative approach has suggested reducing ATP depletion with a natural carbohydrate galactose. Here, we have investigated the possibility of using the smallest effective concentration of CM4620 in combination with galactose. Protective effects of CM4620, in the range of 1-100 n m, have been studied against necrosis induced by bile acids, palmitoleic acid, or l-asparaginase. CM4620 markedly protected against necrosis induced by bile acids or asparaginase starting from 50 n m and palmitoleic acid starting from 1 n m. Combining CM4620 and galactose (1 m m) significantly reduced the extent of necrosis to near-control levels. In the palmitoleic acid-alcohol-induced experimental mouse model of AP, CM4620 at a concentration of 0.1 mg/kg alone significantly reduced edema, necrosis, inflammation, and the total histopathological score. A combination of 0.1 mg/kg CM4620 with galactose (100 m m) significantly reduced further necrosis, inflammation, and histopathological score. Our data show that CM4620 can be used at much lower concentrations than reported previously, reducing potential side effects. The novel combination of CM4620 with galactose synergistically targets complementary pathological mechanisms of AP.
Collapse
Affiliation(s)
- Siân Lewis
- Cardiff School of Biosciences, Cardiff University, Museum Avenue, Cardiff CF10 3AX, UK
| | - David L Evans
- Cardiff School of Biosciences, Cardiff University, Museum Avenue, Cardiff CF10 3AX, UK
| | - Tetyana T Tsugorka
- Cardiff School of Biosciences, Cardiff University, Museum Avenue, Cardiff CF10 3AX, UK
| | - Shuang Peng
- School of Sport and Health Sciences, Guangzhou Sport University, Guangzhou 510500, China
| | | | - Oleg Gerasimenko
- Cardiff School of Biosciences, Cardiff University, Museum Avenue, Cardiff CF10 3AX, UK
| | - Julia Gerasimenko
- Cardiff School of Biosciences, Cardiff University, Museum Avenue, Cardiff CF10 3AX, UK
| |
Collapse
|
5
|
Liu Q, Gu X, Liu X, Gu Y, Zhang H, Yang J, Huang Z. Long-chain fatty acids - The turning point between 'mild' and 'severe' acute pancreatitis. Heliyon 2024; 10:e31296. [PMID: 38828311 PMCID: PMC11140623 DOI: 10.1016/j.heliyon.2024.e31296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 05/14/2024] [Accepted: 05/14/2024] [Indexed: 06/05/2024] Open
Abstract
Acute pancreatitis (AP) is an inflammatory disease characterized by localized pancreatic injury and a systemic inflammatory response. Fatty acids (FAs), produced during the breakdown of triglycerides (TGs) in blood and peripancreatic fat, escalate local pancreatic inflammation to a systemic level by damaging pancreatic acinar cells (PACs) and triggering M1 macrophage polarization. This paper provides a comprehensive analysis of lipases' roles in the onset and progression of AP, as well as the effects of long-chain fatty acids (LCFAs) on the function of pancreatic acinar cells (PACs). Abnormalities in the function of PACs include Ca2+ overload, premature trypsinogen activation, protein kinase C (PKC) expression, endoplasmic reticulum (ER) stress, and mitochondrial and autophagic dysfunction. The study highlights the contribution of long-chain saturated fatty acids (LC-SFAs), especially palmitic acid (PA), to M1 macrophage polarization through the activation of the NLRP3 inflammasome and the NF-κB pathway. Furthermore, we investigated lipid lowering therapy for AP. This review establishes a theoretical foundation for pro-inflammatory mechanisms associated with FAs in AP and facilitating drug development.
Collapse
Affiliation(s)
- Qiang Liu
- Department of Gastroenterology, Affiliated Hangzhou First People's Hospital, Westlake University School of Medicine, Hangzhou 310058, China
- Key Laboratory of Integrated Traditional Chinese and Western Medicine for Biliary and Pancreatic Diseases of Zhejiang Province, Hangzhou 310058, China
- Hangzhou Hospital & Institute of Digestive Diseases, Hangzhou, Zhejiang 310006, China
| | - Xinyi Gu
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou 310003, China
| | - Xiaodie Liu
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou 310003, China
| | - Ye Gu
- Department of Gastroenterology, Affiliated Hangzhou First People's Hospital, Westlake University School of Medicine, Hangzhou 310058, China
| | - Hongchen Zhang
- Department of Gastroenterology, Affiliated Hangzhou First People's Hospital, Westlake University School of Medicine, Hangzhou 310058, China
| | - Jianfeng Yang
- Department of Gastroenterology, Affiliated Hangzhou First People's Hospital, Westlake University School of Medicine, Hangzhou 310058, China
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou 310003, China
- Key Laboratory of Integrated Traditional Chinese and Western Medicine for Biliary and Pancreatic Diseases of Zhejiang Province, Hangzhou 310058, China
- Hangzhou Hospital & Institute of Digestive Diseases, Hangzhou, Zhejiang 310006, China
| | - Zhicheng Huang
- Department of Gastroenterology, Affiliated Hangzhou First People's Hospital, Westlake University School of Medicine, Hangzhou 310058, China
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou 310003, China
| |
Collapse
|
6
|
Zhou Y, Huang X, Jin Y, Qiu M, Ambe PC, Basharat Z, Hong W. The role of mitochondrial damage-associated molecular patterns in acute pancreatitis. Biomed Pharmacother 2024; 175:116690. [PMID: 38718519 DOI: 10.1016/j.biopha.2024.116690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/27/2024] [Accepted: 04/29/2024] [Indexed: 06/03/2024] Open
Abstract
Acute pancreatitis (AP) is one of the most common gastrointestinal tract diseases with significant morbidity and mortality. Current treatments remain unspecific and supportive due to the severity and clinical course of AP, which can fluctuate rapidly and unpredictably. Mitochondria, cellular power plant to produce energy, are involved in a variety of physiological or pathological activities in human body. There is a growing evidence indicating that mitochondria damage-associated molecular patterns (mtDAMPs) play an important role in pathogenesis and progression of AP. With the pro-inflammatory properties, released mtDAMPs may damage pancreatic cells by binding with receptors, activating downstream molecules and releasing inflammatory factors. This review focuses on the possible interaction between AP and mtDAMPs, which include cytochrome c (Cyt c), mitochondrial transcription factor A (TFAM), mitochondrial DNA (mtDNA), cardiolipin (CL), adenosine triphosphate (ATP) and succinate, with focus on experimental research and potential therapeutic targets in clinical practice. Preventing or diminishing the release of mtDAMPs or targeting the mtDAMPs receptors might have a role in AP progression.
Collapse
Affiliation(s)
- Yan Zhou
- Department of Gastroenterology and Hepatology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China; School of the First Clinical Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Xiaoyi Huang
- Department of Gastroenterology and Hepatology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China; School of the First Clinical Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Yinglu Jin
- Department of Gastroenterology and Hepatology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China; School of the First Clinical Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Minhao Qiu
- Department of Gastroenterology and Hepatology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Peter C Ambe
- Department of General Surgery, Visceral Surgery and Coloproctology, Vinzenz-Pallotti-Hospital Bensberg, Vinzenz-Pallotti-Str. 20-24, Bensberg 51429, Germany
| | | | - Wandong Hong
- Department of Gastroenterology and Hepatology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China.
| |
Collapse
|
7
|
Zhang T, Chen S, Li L, Jin Y, Liu S, Liu Z, Shi F, Xie L, Guo P, Cannon AC, Ergashev A, Yao H, Huang C, Zhang B, Wu L, Sun H, Chen S, Shan Y, Yu Z, Tolosa EJ, Liu J, Fernandez-Zapico ME, Ma F, Chen G. PFKFB3 controls acinar IP3R-mediated Ca2+ overload to regulate acute pancreatitis severity. JCI Insight 2024; 9:e169481. [PMID: 38781030 PMCID: PMC11383365 DOI: 10.1172/jci.insight.169481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 05/22/2024] [Indexed: 05/25/2024] Open
Abstract
Acute pancreatitis (AP) is among the most common hospital gastrointestinal diagnoses; understanding the mechanisms underlying the severity of AP is critical for development of new treatment options for this disease. Here, we evaluate the biological function of phosphofructo-2-kinase/fructose-2,6-biphosphatase 3 (PFKFB3) in AP pathogenesis in 2 independent genetically engineered mouse models of AP. PFKFB3 was elevated in AP and severe AP (SAP), and KO of Pfkfb3 abrogated the severity of alcoholic SAP (FAEE-SAP). Using a combination of genetic, pharmacological, and molecular studies, we defined the interaction of PFKFB3 with inositol 1,4,5-trisphosphate receptor (IP3R) as a key event mediating this phenomenon. Further analysis demonstrated that the interaction between PFKFB3 and IP3R promotes FAEE-SAP severity by altering intracellular calcium homeostasis in acinar cells. Together, our results support a PFKFB3-driven mechanism controlling AP pathobiology and define this enzyme as a therapeutic target to ameliorate the severity of this condition.
Collapse
Affiliation(s)
- Tan Zhang
- Zhejiang Key Laboratory of intelligent Cancer Biomarker Discovery & Translation, Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- National Key Laboratory of Immunity and Inflammation, and CAMS Key Laboratory of Synthetic Biology Regulatory Elements, Suzhou Institute of Systems Medicine (ISM), Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, China
| | - Shengchuan Chen
- Zhejiang Key Laboratory of intelligent Cancer Biomarker Discovery & Translation, Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- National Key Laboratory of Immunity and Inflammation, and CAMS Key Laboratory of Synthetic Biology Regulatory Elements, Suzhou Institute of Systems Medicine (ISM), Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, China
| | - Liang Li
- National Key Laboratory of Immunity and Inflammation, and CAMS Key Laboratory of Synthetic Biology Regulatory Elements, Suzhou Institute of Systems Medicine (ISM), Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, China
| | - Yuepeng Jin
- Zhejiang Key Laboratory of intelligent Cancer Biomarker Discovery & Translation, Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Siying Liu
- National Key Laboratory of Immunity and Inflammation, and CAMS Key Laboratory of Synthetic Biology Regulatory Elements, Suzhou Institute of Systems Medicine (ISM), Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, China
| | - Zhu Liu
- Zhejiang Key Laboratory of intelligent Cancer Biomarker Discovery & Translation, Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Fengyu Shi
- Zhejiang Key Laboratory of intelligent Cancer Biomarker Discovery & Translation, Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Lifen Xie
- National Key Laboratory of Immunity and Inflammation, and CAMS Key Laboratory of Synthetic Biology Regulatory Elements, Suzhou Institute of Systems Medicine (ISM), Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, China
| | - Panpan Guo
- State Key Laboratory of Pharmaceutical Biotechnology and MOE key laboratory of Model Animal for Disease Study, Model Animal Research Center of Nanjing University, Nanjing, China
| | - Andrew C. Cannon
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - Akmal Ergashev
- Zhejiang Key Laboratory of intelligent Cancer Biomarker Discovery & Translation, Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Haiping Yao
- National Key Laboratory of Immunity and Inflammation, and CAMS Key Laboratory of Synthetic Biology Regulatory Elements, Suzhou Institute of Systems Medicine (ISM), Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, China
| | - Chaohao Huang
- Zhejiang Key Laboratory of intelligent Cancer Biomarker Discovery & Translation, Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Baofu Zhang
- Zhejiang Key Laboratory of intelligent Cancer Biomarker Discovery & Translation, Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Lijun Wu
- Zhejiang Key Laboratory of intelligent Cancer Biomarker Discovery & Translation, Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Hongwei Sun
- Zhejiang Key Laboratory of intelligent Cancer Biomarker Discovery & Translation, Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Siming Chen
- State Key Laboratory of Cellular Stress Biology and Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian, China
| | - Yunfeng Shan
- Zhejiang Key Laboratory of intelligent Cancer Biomarker Discovery & Translation, Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zhengping Yu
- Zhejiang Key Laboratory of intelligent Cancer Biomarker Discovery & Translation, Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Ezequiel J. Tolosa
- Schulze Center for Novel Therapeutics, Division of Oncology Research, Department of Oncology, Mayo Clinic, Rochester, Minnesota, USA
| | - Jianghuai Liu
- State Key Laboratory of Pharmaceutical Biotechnology and MOE key laboratory of Model Animal for Disease Study, Model Animal Research Center of Nanjing University, Nanjing, China
| | - Martin E. Fernandez-Zapico
- Schulze Center for Novel Therapeutics, Division of Oncology Research, Department of Oncology, Mayo Clinic, Rochester, Minnesota, USA
| | - Feng Ma
- Zhejiang Key Laboratory of intelligent Cancer Biomarker Discovery & Translation, Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- National Key Laboratory of Immunity and Inflammation, and CAMS Key Laboratory of Synthetic Biology Regulatory Elements, Suzhou Institute of Systems Medicine (ISM), Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, China
| | - Gang Chen
- Zhejiang Key Laboratory of intelligent Cancer Biomarker Discovery & Translation, Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
8
|
Fiumana G, Pancaldi A, Bertani H, Boarino V, Cellini M, Iughetti L. Asparaginase-associated Pancreatitis Complicated by Pancreatic Fluid Collection Treated with Endoscopic Cistogastrostomy in Pediatric Acute Lymphoblastic Leukemia: A Case Report and Systematic Review of the Literature. Clin Hematol Int 2023; 5:51-61. [PMID: 38817959 PMCID: PMC10742384 DOI: 10.46989/001c.90958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 07/21/2023] [Indexed: 06/01/2024] Open
Abstract
Asparaginase-associated pancreatitis complicates 2-10% of patients treated for acute lymphoblastic leukemia, causing morbidity and discontinuation of asparaginase administration. Among acute complications, pancreatic fluid collections can be managed conservatively, but intervention is indicated when associated with persistent insulin therapy need and recurrent abdominal pain. Endoscopic treatment has become the standard approach in adult patients, with increasing favorable evidence in children. This work compares the characteristics of a pediatric oncology patient treated at our institution with reported literature experiences, showing feasibility, safety and effectiveness of endoscopic approach.
Collapse
Affiliation(s)
- Giulia Fiumana
- Post Graduate School of Pediatrics, Department of Medical and Surgical Sciences of the Mothers, Children, and AdultsUniversity of Modena and Reggio Emilia
| | | | - Helga Bertani
- Gastroenterology and Endoscopy UnitPoliclinico di Modena
| | | | | | - Lorenzo Iughetti
- Post Graduate School of Pediatrics, Department of Medical and Surgical Sciences of the Mothers, Children, and AdultsUniversity of Modena and Reggio Emilia, Italy
- Pediatric Hematology Oncology UnitAzienda Ospedaliero Universitaria Policlinico di Modena, Italy
| |
Collapse
|
9
|
Famili DT, Mistry A, Gerasimenko O, Gerasimenko J, Tribe RM, Kyrana E, Dhawan A, Goldberg MF, Voermans N, Willis T, Jungbluth H. Pancreatitis in RYR1-related disorders. Neuromuscul Disord 2023; 33:769-775. [PMID: 37783627 DOI: 10.1016/j.nmd.2023.09.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 09/15/2023] [Accepted: 09/15/2023] [Indexed: 10/04/2023]
Abstract
Mutations in RYR1 encoding the ryanodine receptor (RyR) skeletal muscle isoform (RyR1) are a common cause of inherited neuromuscular disorders. Despite its expression in a wide range of tissues, non-skeletal muscle manifestations associated with RYR1 mutations have only been rarely reported. Here, we report three patients with a diagnosis of Central Core Disease (CCD), King-Denborough Syndrome (KDS) and Malignant Hyperthermia Susceptibility (MHS), respectively, who in addition to their (putative) RYR1-related disorder also developed symptoms and signs of acute pancreatitis. In two patients, episodes were recurrent, with severe multisystem involvement and sequelae. RyR1-mediated calcium signalling plays an important role in normal pancreatic function but has also been critically implicated in the pathophysiology of acute pancreatitis, particularly in bile acid- and ethanol-induced forms. Findings from relevant animal models indicate that pancreatic damage in these conditions may be ameliorated through administration of the specific RyR1 antagonist dantrolene and other compounds modifying pancreatic metabolism including calcium signalling. These observations suggest that patients with RYR1 gain-of-function variants may be at increased risk of developing acute pancreatitis, a condition which should therefore be considered in the health surveillance of such individuals.
Collapse
Affiliation(s)
- Dennis T Famili
- Department of Paediatric Neurology, Neuromuscular Service, Evelina's Children Hospital, Guy's & St. Thomas' Hospital NHS Foundation Trust, London, United Kingdom
| | - Arti Mistry
- Department of Women and Children's Health, Faculty of Life Sciences and Medicine (FoLSM), King's College London, London, United Kingdom
| | - Oleg Gerasimenko
- School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | | | - Rachel M Tribe
- Department of Women and Children's Health, Faculty of Life Sciences and Medicine (FoLSM), King's College London, London, United Kingdom
| | - Eirini Kyrana
- Department of Paediatric Hepatology, King's College Hospital, London, United Kingdom
| | - Anil Dhawan
- Department of Paediatric Hepatology, King's College Hospital, London, United Kingdom
| | | | - Nicol Voermans
- Department of Neurology, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Tracey Willis
- Robert Jones and Agnes Hunt Orthopaedic Hospital NHS Foundation Trust, Oswestry, United Kingdom
| | - Heinz Jungbluth
- Department of Paediatric Neurology, Neuromuscular Service, Evelina's Children Hospital, Guy's & St. Thomas' Hospital NHS Foundation Trust, London, United Kingdom; Randall Centre for Cell and Molecular Biophysics, Muscle Signalling Section, Faculty of Life Sciences and Medicine (FoLSM), King's College London, London, United Kingdom.
| |
Collapse
|
10
|
Zub AM, Ostapiv RD, Manko BO, Manko VV. Sodium pyruvate improves the plasma amino acid profile in rats with L-arginine-induced acute pancreatitis. Amino Acids 2023; 55:1447-1454. [PMID: 37755529 DOI: 10.1007/s00726-023-03324-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 08/24/2023] [Indexed: 09/28/2023]
Abstract
Plasma amino acid levels are altered upon many pathological conditions including acute pancreatitis. It is unclear whether amino acids can be used as specific biomarker of acute pancreatitis severity or recovery. Development of acute pancreatitis is associated with mitochondrial dysfunction and decreased cytosolic ATP level. Sodium pyruvate is considered as a potential treatment of pancreatitis due to its ability to sustain mitochondrial oxidative and ATP-productive capacity in vitro. This study investigated the effect of sodium pyruvate on pancreatic morphology and plasma amino acid levels in rats with acute pancreatitis. Acute pancreatitis in rats was induced by administration of L-arginine (5 g/kg) Experimental treatment group received sodium pyruvate (1 g/kg) for 4 days. On day 8 of the experiment, animals were killed, blood was collected and plasma amino acid concentration was determined with high-performance liquid chromatography. Histological examination showed large areas of fibrosis in the pancreas of animals treated with L-arginine irrespectively of sodium pyruvate administration. Sodium pyruvate improved the plasma amino acid levels. Rats with acute pancreatitis had significantly lower levels of most essential and non-essential amino acids and increased glutamate and aspartate in plasma. Administration of sodium pyruvate completely or partially restored the levels of methionine, phenylalanine, tryptophan, leucine, isoleucine, aspartate, asparagine and ornithine levels, while increasing glutamine and serine to levels significantly higher than control. Plasma lysine, alanine, arginine and taurine remained unaffected in all experimental groups. Sodium pyruvate may be considered for use as a maintenance therapy in acute pancreatitis.
Collapse
Affiliation(s)
- Anastasiia M Zub
- Human and Animal Physiology Department, Ivan Franko National University of Lviv, Hrushevskyi Str., 4, Lviv, 79005, Ukraine.
| | - Roman D Ostapiv
- Human and Animal Physiology Department, Ivan Franko National University of Lviv, Hrushevskyi Str., 4, Lviv, 79005, Ukraine
- State Scientific-Research Control Institute of Veterinary Medicinal Products and Feed Additives, Donetska 11, Lviv, 79019, Ukraine
| | - Bohdan O Manko
- Human and Animal Physiology Department, Ivan Franko National University of Lviv, Hrushevskyi Str., 4, Lviv, 79005, Ukraine
| | - Volodymyr V Manko
- Human and Animal Physiology Department, Ivan Franko National University of Lviv, Hrushevskyi Str., 4, Lviv, 79005, Ukraine
| |
Collapse
|
11
|
Gerasimenko JV, Gerasimenko OV. The role of Ca 2+ signalling in the pathology of exocrine pancreas. Cell Calcium 2023; 112:102740. [PMID: 37058923 PMCID: PMC10840512 DOI: 10.1016/j.ceca.2023.102740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/04/2023] [Accepted: 04/06/2023] [Indexed: 04/16/2023]
Abstract
Exocrine pancreas has been the field of many successful studies in pancreatic physiology and pathology. However, related disease - acute pancreatitis (AP) is still takes it toll with more than 100,000 related deaths worldwide per year. In spite of significant scientific progress and several human trials currently running for AP, there is still no specific treatment in the clinic. Studies of the mechanism of initiation of AP have identified two crucial conditions: sustained elevations of cytoplasmic calcium concentration (Ca2+ plateau) and significantly reduced intracellular energy (ATP depletion). These hallmarks are interdependent, i.e., Ca2+ plateau increase energy demand for its clearance while energy production is greatly affected by the pathology. Result of long standing Ca2+ plateau is destabilisation of the secretory granules and premature activation of the digestive enzymes leading to necrotic cell death. Main attempts so far to break the vicious circle of cell death have been concentrated on reduction of Ca2+ overload or reduction of ATP depletion. This review will summarise these approaches, including recent developments of potential therapies for AP.
Collapse
Affiliation(s)
- Julia V Gerasimenko
- Cardiff School of Biosciences, Cardiff University, Museum Avenue, Cardiff, Wales, CF10 3AX, United Kingdom.
| | - Oleg V Gerasimenko
- Cardiff School of Biosciences, Cardiff University, Museum Avenue, Cardiff, Wales, CF10 3AX, United Kingdom
| |
Collapse
|
12
|
Chanda D, Thoudam T, Sinam IS, Lim CW, Kim M, Wang J, Lee KM, Ma J, Saxena R, Choi J, Oh CJ, Lee H, Jeon YH, Cho SJ, Jung HY, Park KG, Choi HS, Suh JM, Auwerx J, Ji B, Liangpunsakul S, Jeon JH, Lee IK. Upregulation of the ERRγ-VDAC1 axis underlies the molecular pathogenesis of pancreatitis. Proc Natl Acad Sci U S A 2023; 120:e2219644120. [PMID: 37155882 PMCID: PMC10193927 DOI: 10.1073/pnas.2219644120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 04/06/2023] [Indexed: 05/10/2023] Open
Abstract
Emerging evidence suggest that transcription factors play multiple roles in the development of pancreatitis, a necroinflammatory condition lacking specific therapy. Estrogen-related receptor γ (ERRγ), a pleiotropic transcription factor, has been reported to play a vital role in pancreatic acinar cell (PAC) homeostasis. However, the role of ERRγ in PAC dysfunction remains hitherto unknown. Here, we demonstrated in both mice models and human cohorts that pancreatitis is associated with an increase in ERRγ gene expression via activation of STAT3. Acinar-specific ERRγ haploinsufficiency or pharmacological inhibition of ERRγ significantly impaired the progression of pancreatitis both in vitro and in vivo. Using systematic transcriptomic analysis, we identified that voltage-dependent anion channel 1 (VDAC1) acts as a molecular mediator of ERRγ. Mechanistically, we showed that induction of ERRγ in cultured acinar cells and mouse pancreata enhanced VDAC1 expression by directly binding to specific site of the Vdac1 gene promoter and resulted in VDAC1 oligomerization. Notably, VDAC1, whose expression and oligomerization were dependent on ERRγ, modulates mitochondrial Ca2+ and ROS levels. Inhibition of the ERRγ-VDAC1 axis could alleviate mitochondrial Ca2+ accumulation, ROS formation and inhibit progression of pancreatitis. Using two different mouse models of pancreatitis, we showed that pharmacological blockade of ERRγ-VDAC1 pathway has therapeutic benefits in mitigating progression of pancreatitis. Likewise, using PRSS1R122H-Tg mice to mimic human hereditary pancreatitis, we demonstrated that ERRγ inhibitor also alleviated pancreatitis. Our findings highlight the importance of ERRγ in pancreatitis progression and suggests its therapeutic intervention for prevention and treatment of pancreatitis.
Collapse
Affiliation(s)
- Dipanjan Chanda
- Research Institute of Aging and Metabolism, Kyungpook National University, Daegu41404, South Korea
| | - Themis Thoudam
- Research Institute of Aging and Metabolism, Kyungpook National University, Daegu41404, South Korea
| | - Ibotombi Singh Sinam
- Bio-Medical Research Institute, Kyungpook National University Hospital, Daegu41404, South Korea
| | - Chae Won Lim
- Bio-Medical Research Institute, Kyungpook National University Hospital, Daegu41404, South Korea
| | - Myeongjin Kim
- Research Institute of Aging and Metabolism, Kyungpook National University, Daegu41404, South Korea
| | - Jiale Wang
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL32066
| | - Kyeong-Min Lee
- Division of Biotechnology, Daegu Gyeongbuk Institute of Science and Technology, Daegu42988, South Korea
| | - Jing Ma
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN46202
| | - Romil Saxena
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN46202
| | - Jinhyuk Choi
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon34141, South Korea
| | - Chang Joo Oh
- Research Institute of Aging and Metabolism, Kyungpook National University, Daegu41404, South Korea
| | - Hoyul Lee
- Research Institute of Aging and Metabolism, Kyungpook National University, Daegu41404, South Korea
| | - Yong Hyun Jeon
- Laboratory Animal Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu41061, South Korea
| | - Sung Jin Cho
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu41061, South Korea
| | - Hoe-Yune Jung
- R&D Center NovMetaPharma Co. Ltd., Pohang37688, South Korea
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, Pohang37673, South Korea
| | - Keun-Gyu Park
- Research Institute of Aging and Metabolism, Kyungpook National University, Daegu41404, South Korea
- Department of Internal Medicine, Kyungpook National University Hospital, School of Medicine, Kyungpook National University, Daegu41944, South Korea
| | - Hueng-Sik Choi
- School of Biological Sciences and Technology, Chonnam National University, Gwangju61186, South Korea
| | - Jae Myoung Suh
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon34141, South Korea
| | - Johan Auwerx
- Laboratory of Integrative Systems Physiology, Ecole Polytechnique Fédérale de Lausanne, LausanneCH-1015, Switzerland
| | - Baoan Ji
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL32066
| | - Suthat Liangpunsakul
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN46202
| | - Jae-Han Jeon
- Research Institute of Aging and Metabolism, Kyungpook National University, Daegu41404, South Korea
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Chilgok Hospital, Daegu41404, South Korea
| | - In-Kyu Lee
- Research Institute of Aging and Metabolism, Kyungpook National University, Daegu41404, South Korea
- Department of Internal Medicine, Kyungpook National University Hospital, School of Medicine, Kyungpook National University, Daegu41944, South Korea
| |
Collapse
|
13
|
Tsai CY, Saito T, Sarangdhar M, Abu-El-Haija M, Wen L, Lee B, Yu M, Lipata DA, Manohar M, Barakat MT, Contrepois K, Tran TH, Theoret Y, Bo N, Ding Y, Stevenson K, Ladas EJ, Silverman LB, Quadro L, Anthony TG, Jegga AG, Husain SZ. A systems approach points to a therapeutic role for retinoids in asparaginase-associated pancreatitis. Sci Transl Med 2023; 15:eabn2110. [PMID: 36921036 PMCID: PMC10205044 DOI: 10.1126/scitranslmed.abn2110] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 02/22/2023] [Indexed: 03/17/2023]
Abstract
Among drug-induced adverse events, pancreatitis is life-threatening and results in substantial morbidity. A prototype example is the pancreatitis caused by asparaginase, a crucial drug used to treat acute lymphoblastic leukemia (ALL). Here, we used a systems approach to identify the factors affecting asparaginase-associated pancreatitis (AAP). Connectivity Map analysis of the transcriptomic data showed that asparaginase-induced gene signatures were potentially reversed by retinoids (vitamin A and its analogs). Analysis of a large electronic health record database (TriNetX) and the U.S. Federal Drug Administration Adverse Events Reporting System demonstrated a reduction in AAP risk with concomitant exposure to vitamin A. Furthermore, we performed a global metabolomic screening of plasma samples from 24 individuals with ALL who developed pancreatitis (cases) and 26 individuals with ALL who did not develop pancreatitis (controls), before and after a single exposure to asparaginase. Screening from this discovery cohort revealed that plasma carotenoids were lower in the cases than in controls. This finding was validated in a larger external cohort. A 30-day dietary recall showed that the cases received less dietary vitamin A than the controls did. In mice, asparaginase administration alone was sufficient to reduce circulating and hepatic retinol. Based on these data, we propose that circulating retinoids protect against pancreatic inflammation and that asparaginase reduces circulating retinoids. Moreover, we show that AAP is more likely to develop with reduced dietary vitamin A intake. The systems approach taken for AAP provides an impetus to examine the role of dietary vitamin A supplementation in preventing or treating AAP.
Collapse
Affiliation(s)
- Cheng-Yu Tsai
- Division of Pediatric Gastroenterology, Department of Pediatrics, Stanford University, Palo Alto, CA, 94304, USA
| | - Toshie Saito
- Division of Pediatric Gastroenterology, Department of Pediatrics, Stanford University, Palo Alto, CA, 94304, USA
| | - Mayur Sarangdhar
- Division of Biomedical Informatics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, 45229, USA
- Division of Oncology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, 45229, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, 45229, USA
| | - Maisam Abu-El-Haija
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, 45229, USA
- Division of Pediatric Gastroenterology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Li Wen
- Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100006, China
| | - Bomi Lee
- Division of Pediatric Gastroenterology, Department of Pediatrics, Stanford University, Palo Alto, CA, 94304, USA
| | - Mang Yu
- Division of Pediatric Gastroenterology, Department of Pediatrics, Stanford University, Palo Alto, CA, 94304, USA
| | - Den A. Lipata
- Division of Pediatric Gastroenterology, Department of Pediatrics, Stanford University, Palo Alto, CA, 94304, USA
| | - Murli Manohar
- Division of Pediatric Gastroenterology, Department of Pediatrics, Stanford University, Palo Alto, CA, 94304, USA
| | - Monique T. Barakat
- Division of Pediatric Gastroenterology, Department of Pediatrics, Stanford University, Palo Alto, CA, 94304, USA
- Division of Gastroenterology and Hepatology, Department of Medicine, Stanford University, Palo Alto, CA, 94304, USA
| | - Kévin Contrepois
- Department of Genetics, School of Medicine, Stanford University, Palo Alto, CA, 94304, USA
| | - Thai Hoa Tran
- Division of Pediatric Hematology Oncology, Charles-Bruneau Cancer Center, CHU Sainte-Justine, Montreal, QC, H3T 1C5, Canada
| | - Yves Theoret
- Département Clinique de Médecine de Laboratoire, Secteur Pharmacologie Clinique, Optilab Montréal - CHU Sainte-Justine, Montreal, H3T 1C5, Canada
| | - Na Bo
- Department of Biostatistics, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Ying Ding
- Department of Biostatistics, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Kristen Stevenson
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, MA, 02115, USA
| | - Elena J. Ladas
- Division of Pediatric Hematology/Oncology/Stem Cell Transplant, Columbia University Irving Medical Center, New York, NY, 10032, USA
- Institute of Human Nutrition, Columbia University, New York, NY, 10032, USA
| | - Lewis B. Silverman
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, 02115, USA
- Division of Pediatric Hematology-Oncology, Boston, Children’s Hospital, Boston, MA, 02115, USA
| | - Loredana Quadro
- Department of Food Science, Rutgers Center for Lipid Research and the New Jersey Institute for Food, Nutrition and Health, Rutgers University, New Brunswick, NJ, 08901, USA
| | - Tracy G. Anthony
- Department of Nutritional Sciences and the New Jersey Institute for Food, Nutrition and Health, Rutgers University, New Brunswick, NJ, 08901, USA
| | - Anil G. Jegga
- Division of Biomedical Informatics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, 45229, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, 45229, USA
| | - Sohail Z. Husain
- Division of Pediatric Gastroenterology, Department of Pediatrics, Stanford University, Palo Alto, CA, 94304, USA
| |
Collapse
|
14
|
Liu LW, Xie Y, Li GQ, Zhang T, Sui YH, Zhao ZJ, Zhang YY, Yang WB, Geng XL, Xue DB, Chen H, Wang YW, Lu TQ, Shang LR, Li ZB, Li L, Sun B. Gut microbiota-derived nicotinamide mononucleotide alleviates acute pancreatitis by activating pancreatic SIRT3 signalling. Br J Pharmacol 2023; 180:647-666. [PMID: 36321732 DOI: 10.1111/bph.15980] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 10/07/2022] [Accepted: 10/10/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND AND PURPOSE Gut microbiota dysbiosis induced by acute pancreatitis (AP) exacerbates pancreatic injury and systemic inflammatory responses. The alleviation of gut microbiota dysbiosis through faecal microbiota transplantation (FMT) is considered a potential strategy to reduce tissue damage and inflammation in many clinical disorders. Here, we aim to investigate the effect of gut microbiota and microbiota-derived metabolites on AP and further clarify the mechanisms associated with pancreatic damage and inflammation. EXPERIMENTAL APPROACH AP rat and mouse models were established by administration of caerulein or sodium taurocholate in vivo. Pancreatic acinar cells were exposed to caerulein and lipopolysaccharide in vitro to simulate AP. KEY RESULTS Normobiotic FMT alleviated AP-induced gut microbiota dysbiosis and ameliorated the severity of AP, including mitochondrial dysfunction, oxidative damage and inflammation. Normobiotic FMT induced higher levels of NAD+ (nicotinamide adenine dinucleotide)-associated metabolites, particularly nicotinamide mononucleotide (NMN). NMN administration mitigated AP-mediated mitochondrial dysfunction, oxidative damage and inflammation by increasing pancreatic NAD+ levels. Similarly, overexpression of the NAD+ -dependent mitochondrial deacetylase sirtuin 3 (SIRT3) alleviated the severity of AP. Furthermore, SIRT3 deacetylated peroxiredoxin 5 (PRDX5) and enhanced PRDX5 protein expression, thereby promoting its antioxidant and anti-inflammatory activities in AP. Importantly, normobiotic FMT-mediated NMN metabolism induced SIRT3-PRDX5 pathway activation during AP. CONCLUSION AND IMPLICATIONS Gut microbiota-derived NMN alleviates the severity of AP by activating the SIRT3-PRDX5 pathway. Normobiotic FMT could be served as a potential strategy for AP treatment.
Collapse
Affiliation(s)
- Li-Wei Liu
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China.,Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin, China
| | - Yu Xie
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China.,Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin, China
| | - Guan-Qun Li
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China.,Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin, China
| | - Tao Zhang
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China.,Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin, China
| | - Yu-Hang Sui
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China.,Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin, China
| | - Zhong-Jie Zhao
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yang-Yang Zhang
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Wen-Bo Yang
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xing-Long Geng
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Dong-Bo Xue
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Hua Chen
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yong-Wei Wang
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Tian-Qi Lu
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Li-Ren Shang
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Zhi-Bo Li
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Le Li
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China.,Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin, China
| | - Bei Sun
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China.,Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin, China
| |
Collapse
|
15
|
Thiopurines impair the apical plasma membrane expression of CFTR in pancreatic ductal cells via RAC1 inhibition. Cell Mol Life Sci 2023; 80:31. [PMID: 36609875 PMCID: PMC9825359 DOI: 10.1007/s00018-022-04662-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 11/15/2022] [Accepted: 12/02/2022] [Indexed: 01/09/2023]
Abstract
BACKGROUND AND AIMS Thiopurine-induced acute pancreatitis (TIP) is one of the most common adverse events among inflammatory bowel disease patients treated with azathioprine (AZA), representing a significant clinical burden. Previous studies focused on immune-mediated processes, however, the exact pathomechanism of TIP is essentially unclear. METHODS To model TIP in vivo, we triggered cerulein-induced experimental pancreatitis in mice receiving a daily oral dose of 1.5 mg/kg AZA. Also, freshly isolated mouse pancreatic cells were exposed to AZA ex vivo, and acinar cell viability, ductal and acinar Ca2+ signaling, ductal Cl- and HCO3- secretion, as well as cystic fibrosis transmembrane conductance regulator (CFTR) expression were assessed using microscopy techniques. Ras-related C3 botulinum toxin substrate (RAC1) activity was measured with a G-LISA assay. Super-resolution microscopy was used to determine protein colocalization. RESULTS We demonstrated that AZA treatment increases tissue damage in the early phase of cerulein-induced pancreatitis in vivo. Also, both per os and ex vivo AZA exposure impaired pancreatic fluid and ductal HCO3- and Cl- secretion, but did not affect acinar cells. Furthermore, ex vivo AZA exposure also inhibited RAC1 activity in ductal cells leading to decreased co-localization of CFTR and the anchor protein ezrin, resulting in impaired plasma membrane localization of CFTR. CONCLUSIONS AZA impaired the ductal HCO3- and Cl- secretion through the inhibition of RAC1 activity leading to diminished ezrin-CFTR interaction and disturbed apical plasma membrane expression of CFTR. We report a novel direct toxic effect of AZA on pancreatic ductal cells and suggest that the restoration of ductal function might help to prevent TIP in the future.
Collapse
|
16
|
Petersen OH. The 2022 George E Palade Medal Lecture: Toxic Ca 2+ signals in acinar, stellate and endogenous immune cells are important drivers of acute pancreatitis. Pancreatology 2023; 23:1-8. [PMID: 36539315 PMCID: PMC10809214 DOI: 10.1016/j.pan.2022.12.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 12/13/2022] [Accepted: 12/14/2022] [Indexed: 01/11/2023]
Abstract
In this account of the 2022 Palade Medal Lecture, an attempt is made to explain, as simply as possible, the most essential features of normal physiological control of pancreatic enzyme secretion, as they have emerged from more than 50 years of experimental work. On that basis, further studies on the mechanism by which acute pancreatitis is initiated are then described. Calcium ion signaling is crucially important for both the normal physiology of secretion control as well as for the development of acute pancreatitis. Although acinar cell processes have, rightly, been central to our understanding of pancreatic physiology and pathophysiology, attention is here drawn to the additional critical influence of calcium signaling events in stellate and immune cells in the acinar environment. These signals contribute significantly to the crucially important inflammatory response in acute pancreatitis.
Collapse
Affiliation(s)
- Ole H Petersen
- School of Biosciences, Sir Martin Evans Building, Cardiff University, Wales, CF10 3AX, UK.
| |
Collapse
|
17
|
Petersen OH. Watching Living Cells in Action in the Exocrine Pancreas: The Palade Prize Lecture. FUNCTION 2022; 4:zqac061. [PMID: 36606242 PMCID: PMC9809903 DOI: 10.1093/function/zqac061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/04/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022] Open
Abstract
George Palade's pioneering electron microscopical studies of the pancreatic acinar cell revealed the intracellular secretory pathway from the rough endoplasmic reticulum at the base of the cell to the zymogen granules in the apical region. Palade also described for the first time the final stage of exocytotic enzyme secretion into the acinar lumen. The contemporary studies of the mechanism by which secretion is acutely controlled, and how the pancreas is destroyed in the disease acute pancreatitis, rely on monitoring molecular events in the various identified pancreatic cell types in the living pancreas. These studies have been carried out with the help of high-resolution fluorescence recordings, often in conjunction with patch clamp current measurements. In such studies we have gained much detailed information about the regulatory events in the exocrine pancreas in health as well as disease, and new therapeutic opportunities have been revealed.
Collapse
Affiliation(s)
- Ole H Petersen
- School of Biosciences, Sir Martin Evans Building, Cardiff University, Wales, CF10 3AX, UK
| |
Collapse
|
18
|
Does L-asparaginase dose intensity correlate with acute pancreatitis in acute lymphoblastic leukemia patients? Pediatr Res 2022; 92:341-342. [PMID: 35681086 DOI: 10.1038/s41390-022-02146-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 03/01/2022] [Accepted: 05/26/2022] [Indexed: 11/08/2022]
|
19
|
Du W, Liu G, Shi N, Tang D, Ferdek PE, Jakubowska MA, Liu S, Zhu X, Zhang J, Yao L, Sang X, Zou S, Liu T, Mukherjee R, Criddle DN, Zheng X, Xia Q, Berggren PO, Huang W, Sutton R, Tian Y, Huang W, Fu X. A microRNA checkpoint for Ca 2+ signaling and overload in acute pancreatitis. Mol Ther 2022; 30:1754-1774. [PMID: 35077860 PMCID: PMC9077382 DOI: 10.1016/j.ymthe.2022.01.033] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 12/16/2021] [Accepted: 01/20/2022] [Indexed: 02/05/2023] Open
Abstract
Acute pancreatitis (AP) is a common digestive disease without specific treatment, and its pathogenesis features multiple deleterious amplification loops dependent on translation, triggered by cytosolic Ca2+ ([Ca2+]i) overload; however, the underlying mechanisms in Ca2+ overload of AP remains incompletely understood. Here we show that microRNA-26a (miR-26a) inhibits pancreatic acinar cell (PAC) store-operated Ca2+ entry (SOCE) channel expression, Ca2+ overload, and AP. We find that major SOCE channels are post-transcriptionally induced in PACs during AP, whereas miR-26a expression is reduced in experimental and human AP and correlated with AP severity. Mechanistically, miR-26a simultaneously targets Trpc3 and Trpc6 SOCE channels and attenuates physiological oscillations and pathological elevations of [Ca2+]i in PACs. MiR-26a deficiency increases SOCE channel expression and [Ca2+]i overload, and significantly exacerbates AP. Conversely, global or PAC-specific overexpression of miR-26a in mice ameliorates pancreatic edema, neutrophil infiltration, acinar necrosis, and systemic inflammation, accompanied with remarkable improvements on pathological determinants related with [Ca2+]i overload. Moreover, pancreatic or systemic administration of an miR-26a mimic to mice significantly alleviates experimental AP. These findings reveal a previously unknown mechanism underlying AP pathogenesis, establish a critical role for miR-26a in Ca2+ signaling in the exocrine pancreas, and identify a potential target for the treatment of AP.
Collapse
Affiliation(s)
- Wenya Du
- Division of Endocrinology and Metabolism, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, 610041 Sichuan, China
| | - Geng Liu
- Division of Endocrinology and Metabolism, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, 610041 Sichuan, China
| | - Na Shi
- Department of Integrated Traditional Chinese and Western Medicine, Sichuan Provincial Pancreatitis Centre and West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan, China; Institutes for Systems Genetics & Immunology and Inflammation, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan, China
| | - Dongmei Tang
- Division of Endocrinology and Metabolism, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, 610041 Sichuan, China
| | - Pawel E Ferdek
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Krakow, Poland
| | - Monika A Jakubowska
- Malopolska Centre of Biotechnology, Jagiellonian University, 30-387 Krakow, Poland
| | - Shiyu Liu
- Department of Integrated Traditional Chinese and Western Medicine, Sichuan Provincial Pancreatitis Centre and West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan, China
| | - Xinyue Zhu
- Division of Endocrinology and Metabolism, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, 610041 Sichuan, China
| | - Jiayu Zhang
- Division of Endocrinology and Metabolism, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, 610041 Sichuan, China
| | - Linbo Yao
- Department of Integrated Traditional Chinese and Western Medicine, Sichuan Provincial Pancreatitis Centre and West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan, China
| | - Xiongbo Sang
- Division of Endocrinology and Metabolism, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, 610041 Sichuan, China
| | - Sailan Zou
- Division of Endocrinology and Metabolism, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, 610041 Sichuan, China
| | - Tingting Liu
- Department of Integrated Traditional Chinese and Western Medicine, Sichuan Provincial Pancreatitis Centre and West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan, China
| | - Rajarshi Mukherjee
- Liverpool Pancreatitis Research Group, Liverpool University Hospitals NHS Foundation Trust and Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Ashton Street, Liverpool L69 3GE, UK
| | - David N Criddle
- Department of Molecular Physiology and Cell Signaling, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 3GE, UK
| | - Xiaofeng Zheng
- Center for Diabetes and Metabolism Research, Division of Endocrinology and Metabolism, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan, China
| | - Qing Xia
- Department of Integrated Traditional Chinese and Western Medicine, Sichuan Provincial Pancreatitis Centre and West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan, China
| | - Per-Olof Berggren
- Center for Diabetes and Metabolism Research, Division of Endocrinology and Metabolism, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan, China; The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, 17176 Stockholm, Sweden
| | - Wendong Huang
- Department of Diabetes Complications and Metabolism, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
| | - Robert Sutton
- Liverpool Pancreatitis Research Group, Liverpool University Hospitals NHS Foundation Trust and Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Ashton Street, Liverpool L69 3GE, UK.
| | - Yan Tian
- Division of Endocrinology and Metabolism, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, 610041 Sichuan, China.
| | - Wei Huang
- Department of Integrated Traditional Chinese and Western Medicine, Sichuan Provincial Pancreatitis Centre and West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan, China; Institutes for Systems Genetics & Immunology and Inflammation, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan, China; West China Biobanks, Department of Clinical Research Management, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan, China.
| | - Xianghui Fu
- Division of Endocrinology and Metabolism, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, 610041 Sichuan, China.
| |
Collapse
|
20
|
Zhang Z, Zeng D, Zhang W, Chen A, Lei J, Liu F, Deng B, Zhuo J, He B, Yan M, Lei X, Wang S, Lam EWF, Liu Q, Wang Z. Modulation of oxidative phosphorylation augments antineoplastic activity of mitotic aurora kinase inhibition. Cell Death Dis 2021; 12:893. [PMID: 34593753 PMCID: PMC8484571 DOI: 10.1038/s41419-021-04190-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 09/06/2021] [Accepted: 09/17/2021] [Indexed: 02/08/2023]
Abstract
Uncontrolled mitosis is one of the most important features of cancer, and mitotic kinases are thought to be ideal targets for anticancer therapeutics. However, despite numerous clinical attempts spanning decades, clinical trials for mitotic kinase-targeting agents have generally stalled in the late stages due to limited therapeutic effectiveness. Alisertib (MLN8237) is a promising oral mitotic aurora kinase A (AURKA, Aurora-A) selective inhibitor, which is currently under several clinical evaluations but has failed in its first Phase III trial due to inadequate efficacy. In this study, we performed genome-wide CRISPR/Cas9-based screening to identify vulnerable biological processes associated with alisertib in breast cancer MDA-MB-231 cells. The result indicated that alisertib treated cancer cells are more sensitive to the genetic perturbation of oxidative phosphorylation (OXPHOS). Mechanistic investigation indicated that alisertib treatment, as well as other mitotic kinase inhibitors, rapidly reduces the intracellular ATP level to generate a status that is highly addictive to OXPHOS. Furthermore, the combinational inhibition of mitotic kinase and OXPHOS by alisertib, and metformin respectively, generates severe energy exhaustion in mitotic cells that consequently triggers cell death. The combination regimen also enhanced tumor regression significantly in vivo. This suggests that targeting OXPHOS by metformin is a potential strategy for promoting the therapeutic effects of mitotic kinase inhibitors through the joint targeting of mitosis and cellular energy homeostasis.
Collapse
Affiliation(s)
- Zijian Zhang
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, China
| | - Deshun Zeng
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, China
| | - Wei Zhang
- Department of Clinical Immunology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
| | - Ailin Chen
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, China
| | - Jie Lei
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, China
| | - Fang Liu
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, China
| | - Bing Deng
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, China
| | - Junxiao Zhuo
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, China
| | - Bin He
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, China
| | - Min Yan
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, China
| | - Xinxing Lei
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, China
| | - Shulan Wang
- Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, China
| | - Eric W-F Lam
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, China
| | - Quentin Liu
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, China.
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, 116044, China.
| | - Zifeng Wang
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, China.
| |
Collapse
|
21
|
Asparaginase-Associated Pancreatitis in Pediatric Patients with Acute Lymphoblastic Leukemia: Current Perspectives. Paediatr Drugs 2021; 23:457-463. [PMID: 34351604 DOI: 10.1007/s40272-021-00463-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/25/2021] [Indexed: 10/20/2022]
Abstract
Asparaginase therapy is a vital agent in the treatment of acute lymphoblastic leukemia (ALL), with increasing evidence of its high importance in high-risk ALL populations. However, despite the clear clinical and biological benefits of asparaginase therapy, many patients experience toxicities. A well-known treatment-limiting toxicity is asparaginase-associated pancreatitis (AAP). If severe, it necessitates discontinuation of asparaginase therapy, which can lead to a higher risk of relapse in patients with ALL. New protocols for ALL therapy have increased overall total doses of asparaginase therapy in select high-risk populations and have incorporated longer half-life formulations of pegylated asparaginase. Treatment drug monitoring has also allowed assurance of adequate levels of asparagine depletion throughout treatment. It is currently unknown if these changes will increase rates of AAP. Interestingly, important pharmacogenomics data, such as single nucleotide polymorphisms, can identify patients at the highest risk for severe AAP. The incidence of AAP in recent trials, current pharmacogenomic data that could further our understanding of the disease, and the importance of cautiously re-exposing patients to further asparaginase treatment after an initial episode of AAP are discussed.
Collapse
|
22
|
Farooq A, Richman CM, Swain SM, Shahid RA, Vigna SR, Liddle RA. The Role of Phosphate in Alcohol-Induced Experimental Pancreatitis. Gastroenterology 2021; 161:982-995.e2. [PMID: 34051238 PMCID: PMC8380702 DOI: 10.1053/j.gastro.2021.05.048] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 05/05/2021] [Accepted: 05/20/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS Heavy alcohol consumption is a common cause of acute pancreatitis; however, alcohol abuse does not always result in clinical pancreatitis. As a consequence, the factors responsible for alcohol-induced pancreatitis are not well understood. In experimental animals, it has been difficult to produce pancreatitis with alcohol. Clinically, alcohol use predisposes to hypophosphatemia, and hypophosphatemia has been observed in some patients with acute pancreatitis. Because of abundant protein synthesis, the pancreas has high metabolic demands, and reduced mitochondrial function leads to organelle dysfunction and pancreatitis. We proposed, therefore, that phosphate deficiency might limit adenosine triphosphate synthesis and thereby contribute to alcohol-induced pancreatitis. METHODS Mice were fed a low-phosphate diet (LPD) before orogastric administration of ethanol. Direct effects of phosphate and ethanol were evaluated in vitro in isolated mouse pancreatic acini. RESULTS LPD reduced serum phosphate levels. Intragastric administration of ethanol to animals maintained on an LPD caused severe pancreatitis that was ameliorated by phosphate repletion. In pancreatic acinar cells, low-phosphate conditions increased susceptibility to ethanol-induced cellular dysfunction through decreased bioenergetic stores, specifically affecting total cellular adenosine triphosphate and mitochondrial function. Phosphate supplementation prevented ethanol-associated cellular injury. CONCLUSIONS Phosphate status plays a critical role in predisposition to and protection from alcohol-induced acinar cell dysfunction and the development of acute alcohol-induced pancreatitis. This finding may explain why pancreatitis develops in only some individuals with heavy alcohol use and suggests a potential novel therapeutic approach to pancreatitis. Finally, an LPD plus ethanol provides a new model for studying alcohol-associated pancreatic injury.
Collapse
Affiliation(s)
- Ahmad Farooq
- Department of Medicine, Duke University Medical Center, Durham, North Carolina
| | - Courtney M Richman
- School of Medicine, Duke University Medical Center, Durham, North Carolina
| | - Sandip M Swain
- Department of Medicine, Duke University Medical Center, Durham, North Carolina
| | - Rafiq A Shahid
- Department of Pathology, Brown University, Providence, Rhode Island
| | - Steven R Vigna
- Department of Medicine, Duke University Medical Center, Durham, North Carolina
| | - Rodger A Liddle
- Department of Medicine, Duke University Medical Center, Durham, North Carolina; Department of Veterans Affairs Health Care System, Durham, North Carolina.
| |
Collapse
|
23
|
Manko BO, Bilonoha OO, Voloshyn DM, Zub AM, Ivasechko II, Manko VV. Pyruvate and Glutamine Define the Effects of Cholecystokinin and Ethanol on Mitochondrial Oxidation, Necrosis, and Morphology of Rat Pancreatic Acini. Pancreas 2021; 50:972-981. [PMID: 34629447 DOI: 10.1097/mpa.0000000000001864] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
OBJECTIVES The objective of this study was to test whether pyruvate and glutamine affect the ethanol and cholecystokinin (CCK) effects on the mitochondrial function, viability, and morphology of rat pancreatic acini. METHODS Respiration was measured with Clark oxygen electrode. Mitochondrial membrane potential, reduced nicotinamide adenine dinucleotide (phosphate) (NAD(P)H), cell morphology, and viability were studied with fluorescence microscopy. RESULTS In vitro, CCK (0.1 nM) caused pyruvate-dependent stimulation of basal and uncoupled respiration, and the effects were abolished by ethanol (20 mM). The combination of ethanol with CCK (2 hours) caused necrosis of approximately 40% acinar cells in medium with glucose, but not with pyruvate and/or glutamine. Cholecystokinin (10 nM) or ethanol with 0.1 nM CCK caused plasma membrane blebbing not related to apoptosis only when both glutamine and pyruvate were present. Glutamine, but not pyruvate, decreased NAD(P)H level and prevented the effects of ethanol with CCK on mitochondrial membrane potential and NAD(P)H, but, in combination with CCK and ethanol, decreased the uncoupled respiration. In vivo, the combination of ethanol (4 g/kg) and CCK (20 pmol/kg) suppressed basal and uncoupled respiration and caused acinar cell blebbing, but not necrosis. CONCLUSIONS The lack of sufficient substrate supply in vitro makes pancreatic acinar cells susceptible to necrosis caused by ethanol and CCK in clinically relevant concentrations.
Collapse
Affiliation(s)
- Bohdan O Manko
- From the Human and Animal Physiology Department, Ivan Franko National University of Lviv
| | - Olha O Bilonoha
- From the Human and Animal Physiology Department, Ivan Franko National University of Lviv
| | - Dariia M Voloshyn
- From the Human and Animal Physiology Department, Ivan Franko National University of Lviv
| | - Anastasiia M Zub
- From the Human and Animal Physiology Department, Ivan Franko National University of Lviv
| | - Iryna I Ivasechko
- Institute of Cell Biology of National Academy of Sciences of Ukraine, Lviv, Ukraine
| | - Volodymyr V Manko
- From the Human and Animal Physiology Department, Ivan Franko National University of Lviv
| |
Collapse
|
24
|
Bruce JIE, Sánchez-Alvarez R, Sans MD, Sugden SA, Qi N, James AD, Williams JA. Insulin protects acinar cells during pancreatitis by preserving glycolytic ATP supply to calcium pumps. Nat Commun 2021; 12:4386. [PMID: 34282152 PMCID: PMC8289871 DOI: 10.1038/s41467-021-24506-w] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 06/11/2021] [Indexed: 02/06/2023] Open
Abstract
Acute pancreatitis (AP) is serious inflammatory disease of the pancreas. Accumulating evidence links diabetes with severity of AP, suggesting that endogenous insulin may be protective. We investigated this putative protective effect of insulin during cellular and in vivo models of AP in diabetic mice (Ins2Akita) and Pancreatic Acinar cell-specific Conditional Insulin Receptor Knock Out mice (PACIRKO). Caerulein and palmitoleic acid (POA)/ethanol-induced pancreatitis was more severe in both Ins2Akita and PACIRKO vs control mice, suggesting that endogenous insulin directly protects acinar cells in vivo. In isolated pancreatic acinar cells, insulin induced Akt-mediated phosphorylation of 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 2 (PFKFB2) which upregulated glycolysis thereby preventing POA-induced ATP depletion, inhibition of the ATP-dependent plasma membrane Ca2+ ATPase (PMCA) and cytotoxic Ca2+ overload. These data provide the first mechanistic link between diabetes and severity of AP and suggest that phosphorylation of PFKFB2 may represent a potential therapeutic strategy for treatment of AP.
Collapse
Affiliation(s)
- Jason I. E. Bruce
- grid.5379.80000000121662407Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK ,grid.214458.e0000000086837370Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI USA
| | - Rosa Sánchez-Alvarez
- grid.5379.80000000121662407Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Maria Dolors Sans
- grid.214458.e0000000086837370Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI USA
| | - Sarah A. Sugden
- grid.5379.80000000121662407Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Nathan Qi
- grid.214458.e0000000086837370Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI USA
| | - Andrew D. James
- grid.5379.80000000121662407Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK ,grid.5685.e0000 0004 1936 9668Present Address: Division of Cancer Sciences, Department of Biology, University of York, Heslington, York, UK
| | - John A. Williams
- grid.214458.e0000000086837370Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI USA
| |
Collapse
|
25
|
Petersen OH, Gerasimenko JV, Gerasimenko OV, Gryshchenko O, Peng S. The roles of calcium and ATP in the physiology and pathology of the exocrine pancreas. Physiol Rev 2021; 101:1691-1744. [PMID: 33949875 DOI: 10.1152/physrev.00003.2021] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
This review deals with the roles of calcium ions and ATP in the control of the normal functions of the different cell types in the exocrine pancreas as well as the roles of these molecules in the pathophysiology of acute pancreatitis. Repetitive rises in the local cytosolic calcium ion concentration in the apical part of the acinar cells not only activate exocytosis but also, via an increase in the intramitochondrial calcium ion concentration, stimulate the ATP formation that is needed to fuel the energy-requiring secretion process. However, intracellular calcium overload, resulting in a global sustained elevation of the cytosolic calcium ion concentration, has the opposite effect of decreasing mitochondrial ATP production, and this initiates processes that lead to necrosis. In the last few years it has become possible to image calcium signaling events simultaneously in acinar, stellate, and immune cells in intact lobules of the exocrine pancreas. This has disclosed processes by which these cells interact with each other, particularly in relation to the initiation and development of acute pancreatitis. By unraveling the molecular mechanisms underlying this disease, several promising therapeutic intervention sites have been identified. This provides hope that we may soon be able to effectively treat this often fatal disease.
Collapse
Affiliation(s)
- Ole H Petersen
- School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | | | | | | | - Shuang Peng
- Department of Pathophysiology, Key Laboratory of State Administration of Traditional Chinese Medicine of the People's Republic of China, School of Medicine, Jinan University, Guangzhou, Guangdong, People's Republic of China
| |
Collapse
|
26
|
Bu HF, Subramanian S, Geng H, Wang X, Liu F, Chou PM, Du C, De Plaen IG, Tan XD. MFG-E8 Plays an Important Role in Attenuating Cerulein-Induced Acute Pancreatitis in Mice. Cells 2021; 10:728. [PMID: 33806041 PMCID: PMC8064467 DOI: 10.3390/cells10040728] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 03/18/2021] [Accepted: 03/22/2021] [Indexed: 11/23/2022] Open
Abstract
Milk fat globule-EGF factor 8 (MFG-E8) is a secreted glycoprotein that regulates tissue homeostasis, possesses potent anti-inflammatory properties, and protects against tissue injury. The human pancreas expresses MFG-E8; however, the role of MFG-E8 in the pancreas remains unclear. We examined the expression of MFG-E8 in the pancreas at baseline and during cerulein-induced acute pancreatitis in mice and determined whether MFG-E8 attenuates the progression of pancreatitis, a serious inflammatory condition that can be life-threatening. We administered cerulein to wild-type (WT) and Mfge8 knockout (KO) mice to induce pancreatitis. Immunoblot analysis showed that MFG-E8 is constitutively expressed in the murine pancreas and is increased in mice with cerulein-induced acute pancreatitis. In situ hybridization revealed that ductal epithelial cells in the mouse pancreas express Mfge8 transcripts at baseline. During pancreatitis, Mfge8 transcripts were abundantly expressed in acinar cells and endothelial cells in addition to ductal epithelial cells. Knocking out Mfge8 in mice exacerbated the severity of cerulein-induced acute pancreatitis and delayed its resolution. In contrast, administration of recombinant MFG-E8 attenuated cerulein-induced acute pancreatitis and promoted repair of pancreatic injury in Mfge8 KO mice. Taken together, our study suggests that MFG-E8 protects the pancreas against inflammatory injury and promotes pancreatic tissue repair. MFG-E8 may represent a novel therapeutic target in acute pancreatitis.
Collapse
Affiliation(s)
- Heng-Fu Bu
- Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Center for Intestinal and Liver Inflammation Research, Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL 60611, USA; (H.-F.B.); (S.S.); (H.G.); (X.W.); (F.L.); (C.D.)
- Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA;
| | - Saravanan Subramanian
- Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Center for Intestinal and Liver Inflammation Research, Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL 60611, USA; (H.-F.B.); (S.S.); (H.G.); (X.W.); (F.L.); (C.D.)
- Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA;
| | - Hua Geng
- Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Center for Intestinal and Liver Inflammation Research, Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL 60611, USA; (H.-F.B.); (S.S.); (H.G.); (X.W.); (F.L.); (C.D.)
- Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA;
| | - Xiao Wang
- Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Center for Intestinal and Liver Inflammation Research, Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL 60611, USA; (H.-F.B.); (S.S.); (H.G.); (X.W.); (F.L.); (C.D.)
- Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA;
| | - Fangyi Liu
- Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Center for Intestinal and Liver Inflammation Research, Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL 60611, USA; (H.-F.B.); (S.S.); (H.G.); (X.W.); (F.L.); (C.D.)
- Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA;
| | - Pauline M. Chou
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA;
| | - Chao Du
- Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Center for Intestinal and Liver Inflammation Research, Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL 60611, USA; (H.-F.B.); (S.S.); (H.G.); (X.W.); (F.L.); (C.D.)
- Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA;
| | - Isabelle G. De Plaen
- Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA;
- Division of Neonatology, Department of Pediatrics, Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL 60611, USA
| | - Xiao-Di Tan
- Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Center for Intestinal and Liver Inflammation Research, Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL 60611, USA; (H.-F.B.); (S.S.); (H.G.); (X.W.); (F.L.); (C.D.)
- Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA;
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA;
- Department of Research & Development, Jesse Brown Veterans Affairs Medical Center, Chicago, IL 60612, USA
| |
Collapse
|
27
|
Gryshchenko O, Gerasimenko JV, Petersen OH, Gerasimenko OV. Calcium Signaling in Pancreatic Immune Cells In situ. FUNCTION (OXFORD, ENGLAND) 2020; 2:zqaa026. [PMID: 35330972 PMCID: PMC8788766 DOI: 10.1093/function/zqaa026] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 10/05/2020] [Accepted: 10/06/2020] [Indexed: 01/06/2023]
Abstract
Immune cells were identified in intact live mouse pancreatic lobules and their Ca2+ signals, evoked by various agents, characterized and compared with the simultaneously recorded Ca2+ signals in neighboring acinar and stellate cells. Immunochemistry in the live lobules indicated that the pancreatic immune cells most likely are macrophages. In the normal pancreas the density of these cells is very low, but induction of acute pancreatitis (AP), by a combination of ethanol and fatty acids, markedly increased the number of the immune cells. The principal agent eliciting Ca2+ signals in the pancreatic immune cells was ATP, but these cells also frequently produced Ca2+ signals in response to acetylcholine and to high concentrations of bradykinin. Pharmacological studies, using specific purinergic agonists and antagonists, indicated that the ATP-elicited Ca2+ signals were mediated by both P2Y1 and P2Y13 receptors. The pancreatic immune cells were not electrically excitable and the Ca2+ signals generated by ATP were primarily due to release of Ca2+ from internal stores followed by store-operated Ca2+ entry through Ca2+ release-activated Ca2+ channels. The ATP-induced intracellular Ca2+ liberation was dependent on both IP3 generation and IP3 receptors. We propose that the ATP-elicited Ca2+ signal generation in the pancreatic immune cells is likely to play an important role in the severe inflammatory response to the primary injury of the acinar cells that occurs in AP.
Collapse
Affiliation(s)
- Oleksiy Gryshchenko
- Cardiff School of Biosciences, Cardiff University, Cardiff CF10 3AX, UK,Bogomoletz Institute of Physiology, Kyiv 01024, Ukraine
| | | | - Ole H Petersen
- Cardiff School of Biosciences, Cardiff University, Cardiff CF10 3AX, UK
| | - Oleg V Gerasimenko
- Cardiff School of Biosciences, Cardiff University, Cardiff CF10 3AX, UK,Corresponding author. E-mail:
| |
Collapse
|
28
|
The role of asparagine synthetase on nutrient metabolism in pancreatic disease. Pancreatology 2020; 20:1029-1034. [PMID: 32800652 DOI: 10.1016/j.pan.2020.08.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 07/31/2020] [Accepted: 08/02/2020] [Indexed: 12/11/2022]
Abstract
The pancreas avidly takes up and synthesizes the amino acid asparagine (Asn), in part, to maintain an active translational machinery that requires incorporation of the amino acid. The de novo synthesis of Asn in the pancreas occurs through the enzyme asparagine synthetase (ASNS). The pancreas has the highest expression of ASNS of any organ, and it can further upregulate ASNS expression in the setting of amino acid depletion. ASNS expression is driven by an intricate feedback network within the integrated stress response (ISR), which includes the amino acid response (AAR) and the unfolded protein response (UPR). Asparaginase is a cancer chemotherapeutic drug that depletes plasma Asn. However, asparaginase-associated pancreatitis (AAP) is a major medical problem and could be related to pancreatic Asn depletion. In this review, we will provide an overview of ASNS and then describe its role in pancreatic health and in the exocrine disorders of pancreatitis and pancreatic cancer. We will offer the overarching perspective that a high abundance of ASNS expression is hardwired in the exocrine pancreas to buffer the high demands of Asn for pancreatic digestive enzyme protein synthesis, that perturbations in the ability to express or upregulate ASNS could tip the balance towards pancreatitis, and that pancreatic cancers exploit ASNS to gain a metabolic survival advantage.
Collapse
|
29
|
Pallagi P, Madácsy T, Varga Á, Maléth J. Intracellular Ca 2+ Signalling in the Pathogenesis of Acute Pancreatitis: Recent Advances and Translational Perspectives. Int J Mol Sci 2020; 21:ijms21114005. [PMID: 32503336 PMCID: PMC7312053 DOI: 10.3390/ijms21114005] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 05/26/2020] [Accepted: 06/01/2020] [Indexed: 12/12/2022] Open
Abstract
Intracellular Ca2+ signalling is a major signal transductional pathway in non-excitable cells, responsible for the regulation of a variety of physiological functions. In the secretory epithelial cells of the exocrine pancreas, such as acinar and ductal cells, intracellular Ca2+ elevation regulates digestive enzyme secretion in acini or fluid and ion secretion in ductal cells. Although Ca2+ is a uniquely versatile orchestrator of epithelial physiology, unregulated global elevation of the intracellular Ca2+ concentration is an early trigger for the development of acute pancreatitis (AP). Regardless of the aetiology, different forms of AP all exhibit sustained intracellular Ca2+ elevation as a common hallmark. The release of endoplasmic reticulum (ER) Ca2+ stores by toxins (such as bile acids or fatty acid ethyl esters (FAEEs)) or increased intrapancreatic pressure activates the influx of extracellular Ca2+ via the Orai1 Ca2+ channel, a process known as store-operated Ca2+ entry (SOCE). Intracellular Ca2+ overload can lead to premature activation of trypsinogen in pancreatic acinar cells and impaired fluid and HCO3- secretion in ductal cells. Increased and unbalanced reactive oxygen species (ROS) production caused by sustained Ca2+ elevation further contributes to cell dysfunction, leading to mitochondrial damage and cell death. Translational studies of AP identified several potential target molecules that can be modified to prevent intracellular Ca2+ overload. One of the most promising drugs, a selective inhibitor of the Orai1 channel that has been shown to inhibit extracellular Ca2+ influx and protect cells from injury, is currently being tested in clinical trials. In this review, we will summarise the recent advances in the field, with a special focus on the translational aspects of the basic findings.
Collapse
Affiliation(s)
- Petra Pallagi
- First Department of Medicine, University of Szeged, H6720 Szeged, Hungary; (P.P.); (T.M.); (Á.V.)
- HAS-USZ Momentum Epithelial Cell Signaling and Secretion Research Group, University of Szeged, H6720 Szeged, Hungary
- HCEMM-SZTE Molecular Gastroenterology Research Group, University of Szeged, H6720 Szeged, Hungary
| | - Tamara Madácsy
- First Department of Medicine, University of Szeged, H6720 Szeged, Hungary; (P.P.); (T.M.); (Á.V.)
- HAS-USZ Momentum Epithelial Cell Signaling and Secretion Research Group, University of Szeged, H6720 Szeged, Hungary
- HCEMM-SZTE Molecular Gastroenterology Research Group, University of Szeged, H6720 Szeged, Hungary
| | - Árpád Varga
- First Department of Medicine, University of Szeged, H6720 Szeged, Hungary; (P.P.); (T.M.); (Á.V.)
- HAS-USZ Momentum Epithelial Cell Signaling and Secretion Research Group, University of Szeged, H6720 Szeged, Hungary
- HCEMM-SZTE Molecular Gastroenterology Research Group, University of Szeged, H6720 Szeged, Hungary
| | - József Maléth
- First Department of Medicine, University of Szeged, H6720 Szeged, Hungary; (P.P.); (T.M.); (Á.V.)
- HAS-USZ Momentum Epithelial Cell Signaling and Secretion Research Group, University of Szeged, H6720 Szeged, Hungary
- HCEMM-SZTE Molecular Gastroenterology Research Group, University of Szeged, H6720 Szeged, Hungary
- Correspondence: or ; Tel.: +36-(62)-342-877 or +36-70-41-66500
| |
Collapse
|
30
|
Bruce JIE. TRPM2 and biliary acute pancreatitis. J Physiol 2020; 598:1119-1120. [PMID: 32053213 DOI: 10.1113/jp279553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Affiliation(s)
- Jason I E Bruce
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| |
Collapse
|
31
|
Kerkhofs M, Bultynck G, Vervliet T, Monaco G. Therapeutic implications of novel peptides targeting ER-mitochondria Ca 2+-flux systems. Drug Discov Today 2019; 24:1092-1103. [PMID: 30910738 DOI: 10.1016/j.drudis.2019.03.020] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 02/16/2019] [Accepted: 03/18/2019] [Indexed: 01/03/2023]
Abstract
Intracellular Ca2+-flux systems located at the ER-mitochondrial axis govern mitochondrial Ca2+ balance and cell fate. Multiple yet incurable pathologies are characterized by insufficient or excessive Ca2+ fluxes toward the mitochondria, in turn leading to aberrant cell life or death dynamics. The discovery and ongoing molecular characterization of the main interorganellar Ca2+ gateways have resulted in a novel class of peptide tools able to regulate relevant protein-protein interactions (PPIs) underlying this signaling scenario. Here, we review peptides, molecularly derived from Ca2+-flux systems or their accessory proteins. We discuss how they alter Ca2+-signaling protein complexes and modulate cell survival in light of their forthcoming therapeutic applications.
Collapse
Affiliation(s)
- Martijn Kerkhofs
- KU Leuven, Department of Cellular and Molecular Medicine and Leuven Kanker Instituut, Laboratory of Molecular and Cellular Signaling, Campus Gasthuisberg O/N-I bus 802, Herestraat 49, 3000 Leuven, Belgium
| | - Geert Bultynck
- KU Leuven, Department of Cellular and Molecular Medicine and Leuven Kanker Instituut, Laboratory of Molecular and Cellular Signaling, Campus Gasthuisberg O/N-I bus 802, Herestraat 49, 3000 Leuven, Belgium.
| | - Tim Vervliet
- KU Leuven, Department of Cellular and Molecular Medicine and Leuven Kanker Instituut, Laboratory of Molecular and Cellular Signaling, Campus Gasthuisberg O/N-I bus 802, Herestraat 49, 3000 Leuven, Belgium
| | - Giovanni Monaco
- KU Leuven, Department of Cellular and Molecular Medicine and Leuven Kanker Instituut, Laboratory of Molecular and Cellular Signaling, Campus Gasthuisberg O/N-I bus 802, Herestraat 49, 3000 Leuven, Belgium.
| |
Collapse
|
32
|
Yao L, Cheng C, Yang X, Han C, Du D, Liu T, Chvanov M, Windsor J, Sutton R, Huang W, Xia Q. Ethyl pyruvate and analogs as potential treatments for acute pancreatitis: A review of in vitro and in vivo studies. Pancreatology 2019; 19:209-216. [PMID: 30611702 DOI: 10.1016/j.pan.2018.12.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 12/10/2018] [Accepted: 12/15/2018] [Indexed: 02/05/2023]
Abstract
Ethyl pyruvate (EP) has been shown to improve outcomes from multiple organ dysfunction syndrome (MODS) in experimental animal models of critical illness. This review aimed to summarise in vitro and in vivo effects of EP analogs on acute pancreatitis (AP) with the objective of proposing medicinal chemistry modifications of EP for future research. In vitro studies showed that both sodium pyruvate and EP significantly reduced pancreatic acinar necrotic cell death pathway activation induced by multiple pancreatic toxins. In vivo studies using different murine AP models showed that EP (usually at a dose of 40 mg/kg every 6 h) consistently reduced pain, markers of pancreatic injury, systemic inflammation and MODS. There was also a significant increase in survival rate, even when EP was administered 12 h after disease induction (compared with untreated groups or those treated with Ringer's lactate solution). Experimental studies suggest that EP and analogs are promising drug candidates for treating AP. EP or analogs can undergo medicinal chemistry modifications to improve its stability and deliverability. EP or analogs could be evaluated as a supplement to intravenous fluid therapy in AP.
Collapse
Affiliation(s)
- Linbo Yao
- Department of Integrated Traditional Chinese and Western Medicine, Sichuan Provincial Pancreatitis Centre and West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Chunru Cheng
- School of Chemistry and Pharmaceutical Engineering, Institute of Pharmaceutical Engineering Technology and Application, Key Laboratory of Green Chemistry of Sichuan Institute of Higher Education, Sichuan University of Science and Engineering, Zigong 643000, China
| | - Xinmin Yang
- Department of Integrated Traditional Chinese and Western Medicine, Sichuan Provincial Pancreatitis Centre and West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Chenxia Han
- Department of Integrated Traditional Chinese and Western Medicine, Sichuan Provincial Pancreatitis Centre and West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Dan Du
- West China-Washington Mitochondria and Metabolism Centre, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Tingting Liu
- Department of Integrated Traditional Chinese and Western Medicine, Sichuan Provincial Pancreatitis Centre and West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Michael Chvanov
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool L69 3BX, UK
| | - John Windsor
- Centre for Surgical and Translational Research, Faculty of Medical and Health Sciences, University of Auckland, Auckland 92019, New Zealand
| | - Robert Sutton
- Liverpool Pancreatitis Study Group, Royal Liverpool University Hospital, Institute of Translational Medicine, University of Liverpool, Liverpool L69 3GE, UK
| | - Wei Huang
- Department of Integrated Traditional Chinese and Western Medicine, Sichuan Provincial Pancreatitis Centre and West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Qing Xia
- Department of Integrated Traditional Chinese and Western Medicine, Sichuan Provincial Pancreatitis Centre and West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
33
|
Jakubowska MA, Kerkhofs M, Martines C, Efremov DG, Gerasimenko JV, Gerasimenko OV, Petersen OH, Bultynck G, Vervliet T, Ferdek PE. ABT-199 (Venetoclax), a BH3-mimetic Bcl-2 inhibitor, does not cause Ca 2+ -signalling dysregulation or toxicity in pancreatic acinar cells. Br J Pharmacol 2018; 176:4402-4415. [PMID: 30266036 PMCID: PMC6887725 DOI: 10.1111/bph.14505] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 08/21/2018] [Accepted: 09/13/2018] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND AND PURPOSE Many cancer cells depend on anti-apoptotic B-cell lymphoma 2 (Bcl-2) proteins for their survival. Bcl-2 antagonism through Bcl-2 homology 3 (BH3) mimetics has emerged as a novel anti-cancer therapy. ABT-199 (Venetoclax), a recently developed BH3 mimetic that selectively inhibits Bcl-2, was introduced into the clinic for treatment of relapsed chronic lymphocytic leukaemia. Early generations of Bcl-2 inhibitors evoked sustained Ca2+ responses in pancreatic acinar cells (PACs) inducing cell death. Therefore, BH3 mimetics could potentially be toxic for the pancreas when used to treat cancer. Although ABT-199 was shown to kill Bcl-2-dependent cancer cells without affecting intracellular Ca2+ signalling, its effects on PACs have not yet been determined. Hence, it is essential and timely to assess whether this recently approved anti-leukaemic drug might potentially have pancreatotoxic effects. EXPERIMENTAL APPROACH Single-cell Ca2+ measurements and cell death analysis were performed on isolated mouse PACs. KEY RESULTS Inhibition of Bcl-2 via ABT-199 did not elicit intracellular Ca2+ signalling on its own or potentiate Ca2+ signalling induced by physiological/pathophysiological stimuli in PACs. Although ABT-199 did not affect cell death in PACs, under conditions that killed ABT-199-sensitive cancer cells, cytosolic Ca2+ extrusion was slightly enhanced in the presence of ABT-199. In contrast, inhibition of Bcl-xL potentiated pathophysiological Ca2+ responses in PACs, without exacerbating cell death. CONCLUSION AND IMPLICATIONS Our results demonstrate that apart from having a modest effect on cytosolic Ca2+ extrusion, ABT-199 does not substantially alter intracellular Ca2+ homeostasis in normal PACs and should be safe for the pancreas during cancer treatment. LINKED ARTICLES This article is part of a themed section on Mitochondrial Pharmacology: Featured Mechanisms and Approaches for Therapy Translation. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v176.22/issuetoc.
Collapse
Affiliation(s)
- Monika A Jakubowska
- Medical Research Council Group, School of Biosciences, Cardiff University, Cardiff, UK.,International Associated Laboratory (LIA), Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
| | - Martijn Kerkhofs
- Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Claudio Martines
- Molecular Hematology Unit, International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | - Dimitar G Efremov
- Molecular Hematology Unit, International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | - Julia V Gerasimenko
- Medical Research Council Group, School of Biosciences, Cardiff University, Cardiff, UK
| | - Oleg V Gerasimenko
- Medical Research Council Group, School of Biosciences, Cardiff University, Cardiff, UK
| | - Ole H Petersen
- Medical Research Council Group, School of Biosciences, Cardiff University, Cardiff, UK
| | - Geert Bultynck
- Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Tim Vervliet
- Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Pawel E Ferdek
- Medical Research Council Group, School of Biosciences, Cardiff University, Cardiff, UK.,Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| |
Collapse
|
34
|
Vervliet T, Yule DI, Bultynck G. Carbohydrate Loading to Combat Acute Pancreatitis. Trends Biochem Sci 2018; 43:741-744. [PMID: 30170888 DOI: 10.1016/j.tibs.2018.08.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 08/04/2018] [Indexed: 01/21/2023]
Abstract
Acute pancreatitis is characterized by ATP deficiency and sustained Ca2+ overload in pancreatic acinar cells, leading to premature zymogen activation, auto-digestion of the pancreas, and necrosis. Recent research reveals a rational approach to ameliorate disease through galactose feeding, bypassing hexokinases to restore ATP levels and Ca2+ homeostasis, thereby reducing disease markers.
Collapse
Affiliation(s)
- Tim Vervliet
- KU Leuven, Laboratory of Molecular & Cellular Signaling, Department of Cellular and Molecular Medicine, Campus Gasthuisberg O/N-I bus 802, Herestraat 49, B-3000 Leuven, Belgium
| | - David I Yule
- University of Rochester, Laboratory of Intracellular Calcium Signaling, Department of Pharmacology and Physiology, Rochester, NY 14642, USA
| | - Geert Bultynck
- KU Leuven, Laboratory of Molecular & Cellular Signaling, Department of Cellular and Molecular Medicine, Campus Gasthuisberg O/N-I bus 802, Herestraat 49, B-3000 Leuven, Belgium.
| |
Collapse
|