1
|
Underwood M, Da Veiga Leprevost F, Basrur V, Nesvizhskii AI, Rawley O, Golden K, Emmer B, Lillicrap D, Desch K. Identification of multiple novel procoagulant plasma ligands for stabilin-2. J Thromb Haemost 2025; 23:1622-1635. [PMID: 39970990 DOI: 10.1016/j.jtha.2025.01.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 01/21/2025] [Accepted: 01/23/2025] [Indexed: 02/21/2025]
Abstract
BACKGROUND Damaging STAB2 gene variants are associated with increased venous thromboembolic risk. STAB2 encodes stabilin-2, a clearance receptor, expressed by the liver and spleen. Given its function, it is likely that the prothrombotic state associated with stabilin-2 deficiency is due to reduced procoagulant protein clearance, but the identity of these ligands is unknown. OBJECTIVES To identify plasma stabilin-2 ligands using proximity biotinylation proteomics. METHODS Cells stably expressing stabilin-2-TurboID were incubated with human plasma and biotin to initiate TurboID labeling of plasma ligands in endocytic vesicles. Biotinylated proteins were purified and identified using mass spectrometry. Candidate plasma ligands with roles in hemostasis were fluorescently labeled and incubated with stabilin-2 expressing and control cells. Flow cytometry assessed ligand surface binding and confocal microcopy assessed colocalization with stabilin-2 and lysosomes. Furthermore, plasma levels of ligands were measured in Stab2-deficient mice and littermate controls. RESULTS Twenty-eight stabilin-2 specific ligands were identified. Interactions with von Willebrand factor, fibrinogen, pro(thrombin), heparin cofactor II, high molecular weight kininogen, plasminogen, and C4b-binding protein were probed. Heparin cofactor II, high molecular weight kininogen, plasminogen, and fibrinogen showed binding to stabilin-2 using flow cytometry (>2-fold higher than controls). Confocal microscopy demonstrated stabilin-2 dependent colocalization of all ligands with lysosomes. In Stab2-deficient mice, ligand levels were not significantly increased, suggesting in mice stabilin-2 is not their main clearance receptor. CONCLUSION These results confirm the value of proximity labeling proteomics in identifying receptor ligands and suggest damaging STAB2 variants may increase venous thromboembolic risk potentially through altered hemostatic protein clearance.
Collapse
Affiliation(s)
- Mary Underwood
- Department of Pediatrics, University of Michigan, Ann Arbor, Michigan, USA
| | | | - Venkatesha Basrur
- Department of Pathology, University of Michigan, Ann Arbor, Michigan, USA
| | | | - Orla Rawley
- Department of Pathology and Molecular Medicine, Richardson Laboratory, Queen's University, Kingston, Ontario, Canada
| | - Krista Golden
- Department of Pediatrics, University of Michigan, Ann Arbor, Michigan, USA
| | - Brian Emmer
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - David Lillicrap
- Department of Pathology and Molecular Medicine, Richardson Laboratory, Queen's University, Kingston, Ontario, Canada
| | - Karl Desch
- Department of Pediatrics, University of Michigan, Ann Arbor, Michigan, USA.
| |
Collapse
|
2
|
Reyes Ruiz A, Bhale AS, Venkataraman K, Dimitrov JD, Lacroix-Desmazes S. Binding Promiscuity of Therapeutic Factor VIII. Thromb Haemost 2025; 125:194-206. [PMID: 38950594 DOI: 10.1055/a-2358-0853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/03/2024]
Abstract
The binding promiscuity of proteins defines their ability to indiscriminately bind multiple unrelated molecules. Binding promiscuity is implicated, at least in part, in the off-target reactivity, nonspecific biodistribution, immunogenicity, and/or short half-life of potentially efficacious protein drugs, thus affecting their clinical use. In this review, we discuss the current evidence for the binding promiscuity of factor VIII (FVIII), a protein used for the treatment of hemophilia A, which displays poor pharmacokinetics, and elevated immunogenicity. We summarize the different canonical and noncanonical interactions that FVIII may establish in the circulation and that could be responsible for its therapeutic liabilities. We also provide information suggesting that the FVIII light chain, and especially its C1 and C2 domains, could play an important role in the binding promiscuity. We believe that the knowledge accumulated over years of FVIII usage could be exploited for the development of strategies to predict protein binding promiscuity and therefore anticipate drug efficacy and toxicity. This would open a mutational space to reduce the binding promiscuity of emerging protein drugs while conserving their therapeutic potency.
Collapse
Affiliation(s)
- Alejandra Reyes Ruiz
- Centre de Recherche des Cordeliers, Institut National de la Santé et de la Recherche Médicale, CNRS, Sorbonne Université, Université Paris Cité, Paris, France
| | - Aishwarya S Bhale
- Centre for Bio-Separation Technology (CBST), Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India
| | - Krishnan Venkataraman
- Centre for Bio-Separation Technology (CBST), Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India
| | - Jordan D Dimitrov
- Centre de Recherche des Cordeliers, Institut National de la Santé et de la Recherche Médicale, CNRS, Sorbonne Université, Université Paris Cité, Paris, France
| | - Sébastien Lacroix-Desmazes
- Centre de Recherche des Cordeliers, Institut National de la Santé et de la Recherche Médicale, CNRS, Sorbonne Université, Université Paris Cité, Paris, France
| |
Collapse
|
3
|
Underwood M, Bidlack C, Desch KC. Venous thromboembolic disease genetics: from variants to function. J Thromb Haemost 2024; 22:2393-2403. [PMID: 38908832 PMCID: PMC11934295 DOI: 10.1016/j.jtha.2024.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 06/05/2024] [Accepted: 06/06/2024] [Indexed: 06/24/2024]
Abstract
Venous thromboembolic disease (VTE) is a prevalent and potentially life-threatening vascular disease, including both deep vein thrombosis and pulmonary embolism. This review will focus on recent insights into the heritable factors that influence an individual's risk for VTE. Here, we will explore not only the discovery of new genetic risk variants but also the importance of functional characterization of these variants. These genome-wide studies should lead to a better understanding of the biological role of genes inside and outside of the canonical coagulation system in thrombus formation and lead to an improved ability to predict an individual's risk of VTE. Further understanding of the molecular mechanisms altered by genetic variation in VTE risk will be accelerated by further human genome sequencing efforts and the use of functional genetic screens.
Collapse
Affiliation(s)
- Mary Underwood
- Department of Pediatrics, University of Michigan, Ann Arbor, Michigan, USA
| | - Christopher Bidlack
- Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, Michigan, USA
| | - Karl C Desch
- Department of Pediatrics, University of Michigan, Ann Arbor, Michigan, USA; Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, Michigan, USA.
| |
Collapse
|
4
|
Dargaud Y, Leuci A, Ruiz AR, Lacroix-Desmazes S. Efanesoctocog alfa: the renaissance of Factor VIII replacement therapy. Haematologica 2024; 109:2436-2444. [PMID: 38356459 PMCID: PMC11290510 DOI: 10.3324/haematol.2023.284498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 02/06/2024] [Indexed: 02/16/2024] Open
Abstract
Efanesoctocog alfa (Altuviiio,TM Sanofi-SOBI) is a B domain-deleted single-chain Factor VIII (FVIII) connected to D'D3 domain of von Willebrand Factor (vWF). Its ingenious design allows efanesoctocog alfa to operate independently of endogenous vWF and results in an outstanding 3-4 times longer half-life compared to standard and extended half-life (EHL) FVIII products. The prolonged half-life ensures sustained high levels of factor activity, maintaining normal to near-normal ranges for the majority of the week, facilitating the convenience of once-weekly administration. Efanesoctocog alfa received regulatory approval in 2023 for application in both adults and children with inherited hemophilia A in the United States and Japan. Its sanctioned use encompasses both prophylaxis and 'on demand' treatment for bleeding episodes. The European Medicines Agency (EMA) is currently undertaking a comprehensive review of Altuviiio. TM This comprehensive review focuses on the immunological profile of efanesoctocog alfa, a highly sophisticated new class of EHL FVIII molecule. The integration of the vWF D'D3 domain, XTEN polypeptides, and potential regulatory T-cell epitopes within various segments of efanesoctocog alfa collectively serves as a mitigating factor against the development of a neutralizing T-cell-mediated immune response. We hypothesize that such distinctive attribute may significantly reduce the risk of neutralizing antibodies, particularly in previously untreated patients. The discussion extends beyond regulatory approval to encompass the preclinical and clinical development of efanesoctocog alfa, including considerations for laboratory monitoring. The review also highlights areas that warrant further investigation to deepen our understanding of this groundbreaking therapeutic agent.
Collapse
Affiliation(s)
- Yesim Dargaud
- French Reference Center for Haemophilia, Clinical Haemostasis Unit, Hopital Louis Pradel, Lyon, France; UR4609 Research Unit on Haemostasis and Thrombosis, University Claude Bernard Lyon 1, Lyon.
| | - Alexandre Leuci
- UR4609 Research Unit on Haemostasis and Thrombosis, University Claude Bernard Lyon 1, Lyon
| | - Alejandra Reyes Ruiz
- Institut National de la Santé et de la Recherche Médicale, Centre de Recherche des Cordeliers, CNRS, Sorbonne Université, Université de Paris, F-75006 Paris
| | - Sebastien Lacroix-Desmazes
- Institut National de la Santé et de la Recherche Médicale, Centre de Recherche des Cordeliers, CNRS, Sorbonne Université, Université de Paris, F-75006 Paris
| |
Collapse
|
5
|
Shi H, Gao L, Kirby N, Shao B, Shan X, Kudo M, Silasi R, McDaniel JM, Zhou M, McGee S, Jing W, Lupu F, Cleuren A, George JN, Xia L. Clearance of VWF by hepatic macrophages is critical for the protective effect of ADAMTS13 in sickle cell anemia mice. Blood 2024; 143:1293-1309. [PMID: 38142410 PMCID: PMC10997916 DOI: 10.1182/blood.2023021583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 11/21/2023] [Accepted: 12/06/2023] [Indexed: 12/26/2023] Open
Abstract
ABSTRACT Although it is caused by a single-nucleotide mutation in the β-globin gene, sickle cell anemia (SCA) is a systemic disease with complex, incompletely elucidated pathologies. The mononuclear phagocyte system plays critical roles in SCA pathophysiology. However, how heterogeneous populations of hepatic macrophages contribute to SCA remains unclear. Using a combination of single-cell RNA sequencing and spatial transcriptomics via multiplexed error-robust fluorescence in situ hybridization, we identified distinct macrophage populations with diversified origins and biological functions in SCA mouse liver. We previously found that administering the von Willebrand factor (VWF)-cleaving protease ADAMTS13 alleviated vaso-occlusive episode in mice with SCA. Here, we discovered that the ADAMTS13-cleaved VWF was cleared from the circulation by a Clec4f+Marcohigh macrophage subset in a desialylation-dependent manner in the liver. In addition, sickle erythrocytes were phagocytized predominantly by Clec4f+Marcohigh macrophages. Depletion of macrophages not only abolished the protective effect of ADAMTS13 but exacerbated vaso-occlusive episode in mice with SCA. Furthermore, promoting macrophage-mediated VWF clearance reduced vaso-occlusion in SCA mice. Our study demonstrates that hepatic macrophages are important in the pathogenesis of SCA, and efficient clearance of VWF by hepatic macrophages is critical for the protective effect of ADAMTS13 in SCA mice.
Collapse
Affiliation(s)
- Huiping Shi
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK
| | - Liang Gao
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK
| | - Nicole Kirby
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK
| | - Bojing Shao
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK
| | - Xindi Shan
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK
| | - Mariko Kudo
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK
| | - Robert Silasi
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK
| | - John Michael McDaniel
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK
| | - Meixiang Zhou
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK
| | - Samuel McGee
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK
| | - Wei Jing
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK
| | - Florea Lupu
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK
| | - Audrey Cleuren
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK
| | - James N. George
- Hematology-Oncology Section, Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK
| | - Lijun Xia
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK
| |
Collapse
|
6
|
Borroni E, Borsotti C, Cirsmaru RA, Kalandadze V, Famà R, Merlin S, Brown B, Follenzi A. Immune tolerance promotion by LSEC-specific lentiviral vector-mediated expression of the transgene regulated by the stabilin-2 promoter. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102116. [PMID: 38333675 PMCID: PMC10850788 DOI: 10.1016/j.omtn.2024.102116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 01/05/2024] [Indexed: 02/10/2024]
Abstract
Liver sinusoidal endothelial cells (LSECs) are specialized endocytic cells that clear the body from blood-borne pathogens and waste macromolecules through scavenger receptors (SRs). Among the various SRs expressed by LSECs is stabilin-2 (STAB2), a class H SR that binds to several ligands, among which endogenous coagulation products. Given the well-established tolerogenic function of LSECs, we asked whether the STAB2 promoter (STAB2p) would enable us to achieve LSEC-specific lentiviral vector (LV)-mediated transgene expression, and whether the expression of this transgene would be maintained over the long term due to tolerance induction. Here, we show that STAB2p ensures LSEC-specific green fluorescent protein (GFP) expression by LV in the absence of a specific cytotoxic CD8+ T cell immune response, even in the presence of GFP-specific CD8+ T cells, confirming the robust tolerogenic function of LSECs. Finally, we show that our delivery system can partially and permanently restore FVIII activity in a mouse model of severe hemophilia A without the formation of anti-FVIII antibodies. Overall, our findings establish the suitability of STAB2p for long-term LSEC-restricted expression of therapeutic proteins, such as FVIII, or to achieve antigen-specific immune tolerance in auto-immune diseases.
Collapse
Affiliation(s)
- Ester Borroni
- Department of Health Sciences, University of Piemonte Orientale, 28100 Novara, Italy
| | - Chiara Borsotti
- Department of Health Sciences, University of Piemonte Orientale, 28100 Novara, Italy
| | - Roberta A. Cirsmaru
- Department of Health Sciences, University of Piemonte Orientale, 28100 Novara, Italy
| | - Vakhtang Kalandadze
- Department of Health Sciences, University of Piemonte Orientale, 28100 Novara, Italy
| | - Rosella Famà
- Department of Health Sciences, University of Piemonte Orientale, 28100 Novara, Italy
| | - Simone Merlin
- Department of Health Sciences, University of Piemonte Orientale, 28100 Novara, Italy
| | - Brian Brown
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York 10029, NY, USA
| | - Antonia Follenzi
- Department of Health Sciences, University of Piemonte Orientale, 28100 Novara, Italy
- Department of Attività Integrate Ricerca Innovazione, Azienda Ospedaliero-Universitaria SS. Antonio e Biagio e C.Arrigo, Alessandria, Italy
| |
Collapse
|
7
|
Du Z, Chen C, Zheng Y, Wang X, Song C. Retroviral Insertion Polymorphism (RIP) of Porcine Endogenous Retroviruses (PERVs) in Pig Genomes. Animals (Basel) 2024; 14:621. [PMID: 38396589 PMCID: PMC10886097 DOI: 10.3390/ani14040621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 01/29/2024] [Accepted: 02/05/2024] [Indexed: 02/25/2024] Open
Abstract
Endogenous retroviruses (ERVs) are one of the superfamilies of long terminal repeat retrotransposons (LTRs) in mice and humans. Approximately 8% of the pig genome is composed of sequences derived from LTRs. While the majority of ERVs in pigs have decayed, a small number of full-length copies can still mobilize within the genome. This study investigated the unexplored retroviral insertion polymorphisms (RIPs) generated by the mobilization of full-length ERVs (Fl-ERVs), and evaluated their impact on phenotypic variation to gain insights into the biological role of Fl-ERVs in pigs. Overall, 39 RIPs (insertions or deletions relative to the pig reference genome) generated by Fl-ERVs were predicted by comparative genomic analysis, and 18 of them were confirmed by PCR detection. Four RIP sites (D5, D14, D15, and D18) were further evaluated by population analysis, and all of them displayed polymorphisms in multiple breeds. The RIP site of ERV-D14, which is a Fl-ERV inserted in the STAB2-like gene, was further confirmed by sequencing. Population analysis of the polymorphic site of ERV-D14 reveals that it presents moderate polymorphism information in the Large White pig breed, and the association analysis reveals that the RIP of ERV-D14 is associated with age variations at 30 kg body weight (p < 0.05) and 100 kg body weight (p < 0.01) in the population of Large White pigs (N = 480). Furthermore, the ERV-D14 RIP is associated with changes in the expression of the target gene STAB2-like in the liver, backfat, and leaf fat in Sushan pigs. These data suggest that some Fl-ERVs are still mobilizing in the pig's genome, and contribute to genomic and phenotypic variations.
Collapse
Affiliation(s)
- Zhanyu Du
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (Z.D.); (C.C.); (Y.Z.); (X.W.)
- College of Grassland Resources, Institute of Qinghai-Tibetan Plateau, Southwest Minzu University, Chengdu 610225, China
| | - Cai Chen
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (Z.D.); (C.C.); (Y.Z.); (X.W.)
| | - Yao Zheng
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (Z.D.); (C.C.); (Y.Z.); (X.W.)
| | - Xiaoyan Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (Z.D.); (C.C.); (Y.Z.); (X.W.)
| | - Chengyi Song
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (Z.D.); (C.C.); (Y.Z.); (X.W.)
| |
Collapse
|
8
|
Westwood LJ, Le Couteur DG, Hunt NJ, Cogger VC. Strategies to target and genetically modify the liver sinusoid. SINUSOIDAL CELLS IN LIVER DISEASES 2024:161-189. [DOI: 10.1016/b978-0-323-95262-0.00008-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
9
|
Oleshko O, Vollack-Hesse N, Tiede A, Hegermann J, Curth U, Werwitzke S. von Willebrand factor modulates immune complexes and the recall response against factor VIII in a murine hemophilia A model. Blood Adv 2023; 7:6771-6781. [PMID: 37756521 PMCID: PMC10660012 DOI: 10.1182/bloodadvances.2023010388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 09/13/2023] [Accepted: 09/16/2023] [Indexed: 09/29/2023] Open
Abstract
Achieving tolerance toward factor VIII (FVIII) remains an important goal of hemophilia treatment. Up to 40% of patients with severe hemophilia A (HA) develop neutralizing antibodies against FVIII, and the only proven treatment to achieve tolerance is infusion of FVIII over prolonged periods in the context of immune tolerance induction. Here, we addressed the role of von Willebrand factor (VWF) as a modulator of anti-FVIII antibody effector functions and the FVIII-specific recall response in an HA mouse model. Analytical ultracentrifugation was used to demonstrate formation of FVIII-containing immune complexes (FVIII-ICs). VWF did not fully prevent FVIII-IC formation but was rather incorporated into larger macromolecular complexes. VWF prevented binding of FVIII-ICs to complement C1q, most efficiently when it was preincubated with FVIII before the addition of antibodies. It also prevented binding to immobilized Fc-γ receptor and to bone marrow-derived dendritic cells. An in vitro model of the anti-FVIII recall response demonstrated that addition of VWF to FVIII abolished the proliferation of FVIII-specific antibody-secreting cells. After adoptive transfer of sensitized splenocytes into immunocompetent HA mice, the FVIII recall response was diminished by VWF. In summary, these data indicate that VWF modulates the formation and effector functions of FVIII-ICs and attenuates the secondary immune response to FVIII in HA mice.
Collapse
Affiliation(s)
- Olga Oleshko
- Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
| | - Nadine Vollack-Hesse
- Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
| | - Andreas Tiede
- Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
| | - Jan Hegermann
- Research Core Unit Electron Microscopy, Institute of Functional and Applied Anatomy, Hannover Medical School, Hannover, Germany
| | - Ute Curth
- Institute for Biophysical Chemistry, Hannover Medical School, Hannover, Germany
| | - Sonja Werwitzke
- Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
| |
Collapse
|
10
|
Alavi P, Yousef Abdualla R, Brown D, Mojiri A, Nagendran J, Lewis J, Bourque SL, Jahroudi N. Aging Is Associated With Organ-Specific Alterations in the Level and Expression Pattern of von Willebrand Factor. Arterioscler Thromb Vasc Biol 2023; 43:2183-2196. [PMID: 37732483 DOI: 10.1161/atvbaha.123.319255] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 08/31/2023] [Indexed: 09/22/2023]
Abstract
BACKGROUND VWF (von Willebrand factor) is an endothelial-specific procoagulant protein with a major role in thrombosis. Aging is associated with increased circulating levels of VWF, which presents a risk factor for thrombus formation. METHODS Circulating plasma, cellular protein, and mRNA levels of VWF were determined and compared in young and aged mice. Major organs were subjected to immunofluorescence analyses to determine the vascular pattern of VWF expression and the presence of platelet aggregates. An in vitro model of aging, using extended culture time of endothelial cells, was used to explore the mechanism of age-associated increased VWF levels. RESULTS Increased circulating plasma levels of VWF with elevated levels of larger multimers, indicative of VWF functional activity, were observed in aged mice. VWF mRNA and cellular protein levels were significantly increased in the brains, lungs, and livers but not in the kidneys and hearts of aged mice. Higher proportion of small vessels in brains, lungs, and livers of aged mice exhibited VWF expression compared with young, and this was concomitant with increased platelet aggregate formation. Prolonged culture of endothelial cells resulted in increased cell senescence that correlated with increased VWF expression; VWF expression was specifically detected in senescent cultured endothelial cells and abolished in response to p53 knockdown. A significantly higher proportion of VWF expressing endothelial cells in vivo exhibited senescence markers SA-β-Gal (senescence-associated β-galactosidase) and p53 in aged mouse brains compared with that of the young. CONCLUSIONS Aging elicits a heterogenic response in endothelial cells with regard to VWF expression, leading to organ-specific increase in VWF levels and alterations in vascular tree pattern of expression. This is concomitant with increased platelet aggregate formation. The age-associated increase in VWF expression may be modulated through the process of cell senescence, and p53 transcription factor contributes to its regulation.
Collapse
Affiliation(s)
- Parnian Alavi
- Departments of Medicine (P.A., R.Y.A., A.M., N.J.), University of Alberta, Edmonton, Canada
| | - Radya Yousef Abdualla
- Departments of Medicine (P.A., R.Y.A., A.M., N.J.), University of Alberta, Edmonton, Canada
| | - Douglas Brown
- Oncology (D.B., J.L.), University of Alberta, Edmonton, Canada
| | - Anahita Mojiri
- Departments of Medicine (P.A., R.Y.A., A.M., N.J.), University of Alberta, Edmonton, Canada
- Now with Department of Cardiovascular Sciences, Houston Methodist Research Institute, TX (A.M.)
| | | | - John Lewis
- Oncology (D.B., J.L.), University of Alberta, Edmonton, Canada
| | - Stephane L Bourque
- Anesthesiology and Pain Medicine (S.L.B.), University of Alberta, Edmonton, Canada
| | - Nadia Jahroudi
- Departments of Medicine (P.A., R.Y.A., A.M., N.J.), University of Alberta, Edmonton, Canada
| |
Collapse
|
11
|
Swystun LL, Michels A, Lillicrap D. The contribution of the sinusoidal endothelial cell receptors CLEC4M, stabilin-2, and SCARA5 to VWF-FVIII clearance in thrombosis and hemostasis. J Thromb Haemost 2023; 21:2007-2019. [PMID: 37085036 PMCID: PMC11539076 DOI: 10.1016/j.jtha.2023.04.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 04/11/2023] [Accepted: 04/12/2023] [Indexed: 04/23/2023]
Abstract
Quantitative abnormalities in factor VIII (FVIII) and its binding partner, von Willebrand factor (VWF), are associated with an increased risk of bleeding or thrombosis, and pathways that regulate the clearance of VWF-FVIII can strongly influence their plasma levels. In 2010, the Cohorts for Heart and Aging Research in Genome Epidemiology (CHARGE) on genome-wide association study meta-analysis identified variants in the genes for the sinusoidal endothelial receptors C-type lectin domain family 4 member M (CLEC4M), stabilin-2, and scavenger receptor class A member 5 (SCARA5) as being associated with plasma levels of VWF and/or FVIII in normal individuals. The ability of these receptors to bind, internalize, and clear the VWF-FVIII complex from the circulation has now been reported in a series of studies using in vitro and in vivo models. The receptor stabilin-2 has also been shown to modulate the immune response to infused VWF-FVIII concentrates in a murine model. In addition, the influence of genetic variants in CLEC4M, STAB2, and SCARA5 on type 1 von Willebrand disease/low VWF phenotype, FVIII pharmacokinetics, and the risk of venous thromboembolism has been described in a number of patient-based studies. Understanding the role of these receptors in the regulation of VWF-FVIII clearance has led to significant insights into the genomic architecture that modulates plasma VWF and FVIII levels, improving the understanding of pathways that regulate VWF-FVIII clearance and the mechanistic basis of quantitative VWF-FVIII pathologies.
Collapse
Affiliation(s)
- Laura L Swystun
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, Ontario, Canada
| | - Alison Michels
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, Ontario, Canada. https://twitter.com/michels_alison
| | - David Lillicrap
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, Ontario, Canada.
| |
Collapse
|
12
|
Sarafanov AG. Plasma Clearance of Coagulation Factor VIII and Extension of Its Half-Life for the Therapy of Hemophilia A: A Critical Review of the Current State of Research and Practice. Int J Mol Sci 2023; 24:ijms24108584. [PMID: 37239930 DOI: 10.3390/ijms24108584] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 05/05/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023] Open
Abstract
Factor VIII (FVIII) is an important component of blood coagulation as its congenital deficiency results in life-threatening bleeding. Current prophylactic therapy of the disease (hemophilia A) is based on 3-4 intravenous infusions of therapeutic FVIII per week. This poses a burden on patients, demanding reduction of infusion frequency by using FVIII with extended plasma half-life (EHL). Development of these products requires understanding FVIII plasma clearance mechanisms. This paper overviews (i) an up-to-date state of the research in this field and (ii) current EHL FVIII products, including recently approved efanesoctocog alfa, for which the plasma half-life exceeds a biochemical barrier posed by von Willebrand factor, complexed with FVIII in plasma, which results in ~1 per week infusion frequency. We focus on the EHL FVIII products' structure and function, in particular related to the known discrepancy in results of one-stage clotting (OC) and chromogenic substrate (CS) assays used to assign the products' potency, dosing, and for clinical monitoring in plasma. We suggest a possible root cause of these assays' discrepancy that is also pertinent to EHL factor IX variants used to treat hemophilia B. Finally, we discuss approaches in designing future EHL FVIII variants, including those to be used for hemophilia A gene therapy.
Collapse
Affiliation(s)
- Andrey G Sarafanov
- Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD 20993, USA
| |
Collapse
|
13
|
Swystun LL, Lillicrap D. Current Understanding of Inherited Modifiers of FVIII Pharmacokinetic Variation. Pharmgenomics Pers Med 2023; 16:239-252. [PMID: 36998673 PMCID: PMC10046206 DOI: 10.2147/pgpm.s383221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 03/06/2023] [Indexed: 04/01/2023] Open
Abstract
The inherited bleeding disorder hemophilia A involves the quantitative deficiency of the coagulation cofactor factor VIII (FVIII). Prophylactic treatment of severe hemophilia A patients with FVIII concentrates aims to reduce the frequency of spontaneous joint bleeding and requires personalized tailoring of dosing regimens to account for the substantial inter-individual variability of FVIII pharmacokinetics. The strong reproducibility of FVIII pharmacokinetic (PK) metrics between repeat analyses in the same individual suggests this trait is genetically regulated. While the influence of plasma von Willebrand factor antigen (VWF:Ag) levels, ABO blood group, and patient age on FVIII PK is well established, estimates suggest these factors account for less than 35% of the overall variability in FVIII PK. More recent studies have identified genetic determinants that modify FVIII clearance or half-life including VWF gene variants that impair VWF-FVIII binding resulting in the accelerated clearance of VWF-free FVIII. Additionally, variants in receptors that regulate the clearance of FVIII or the VWF-FVIII complex have been associated with FVIII PK. The characterization of genetic modifiers of FVIII PK will provide mechanistic insight into a subject of clinical significance and support the development of personalized treatment plans for patients with hemophilia A.
Collapse
Affiliation(s)
- Laura L Swystun
- Department of Pathology and Molecular Medicine, Queen’s University, Kingston, ON, Canada
| | - David Lillicrap
- Department of Pathology and Molecular Medicine, Queen’s University, Kingston, ON, Canada
| |
Collapse
|
14
|
O'Donnell JS, Baker RI. Low von Willebrand Disease: A Bleeding Disorder of Unknown Cause? Hamostaseologie 2023; 43:44-51. [PMID: 36807819 DOI: 10.1055/a-1980-8198] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023] Open
Abstract
von Willebrand disease (VWD) represents the most common inherited bleeding disorder. The majority of VWD cases are characterized by partial quantitative reductions in plasma von Willebrand factor (VWF) levels. Management of patients with mild to moderate VWF reductions in the range of 30 to 50 IU/dL poses a common clinical challenge. Some of these low VWF patients present with significant bleeding problems. In particular, heavy menstrual bleeding and postpartum hemorrhage can cause significant morbidity. Conversely, however, many individuals with mild plasma VWF:Ag reductions do not have any bleeding sequelae. In contrast to type 1 VWD, most patients with low VWF do not have detectable pathogenic VWF sequence variants, and bleeding phenotype correlates poorly with residual VWF levels. These observations suggest that low VWF is a complex disorder caused by variants in other genes beyond VWF. With respect to low VWF pathobiology, recent studies have shown that reduced VWF biosynthesis within endothelial cells likely plays a key role. However, pathological enhanced VWF clearance from plasma has also been described in approximately 20% of low VWF cases. For low VWF patients who require hemostatic treatment prior to elective procedures, tranexamic acid and desmopressin have both been shown to be efficacious. In this article, we review the current state of the art regarding low VWF. In addition, we consider how low VWF represents an entity that appears to fall between type 1 VWD on the one hand and bleeding disorders of unknown cause on the other.
Collapse
Affiliation(s)
- James S O'Donnell
- Irish Centre for Vascular Biology, School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin 2, Ireland.,National Coagulation Centre, St James's Hospital, Dublin, Ireland.,Irish-Australian Blood Collaborative (IABC) Network, Dublin, Ireland
| | - Ross I Baker
- Irish-Australian Blood Collaborative (IABC) Network, Dublin, Ireland.,Western Australia Centre for Thrombosis and Haemostasis, Perth Blood Institute, Murdoch University, Perth, Australia.,Hollywood Haemophilia Treatment Centre, Hollywood Hospital, Perth, Australia
| |
Collapse
|
15
|
Manta CP, Leibing T, Friedrich M, Nolte H, Adrian M, Schledzewski K, Krzistetzko J, Kirkamm C, David Schmid C, Xi Y, Stojanovic A, Tonack S, de la Torre C, Hammad S, Offermanns S, Krüger M, Cerwenka A, Platten M, Goerdt S, Géraud C. Targeting of Scavenger Receptors Stabilin-1 and Stabilin-2 Ameliorates Atherosclerosis by a Plasma Proteome Switch Mediating Monocyte/Macrophage Suppression. Circulation 2022; 146:1783-1799. [PMID: 36325910 DOI: 10.1161/circulationaha.121.058615] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND Scavenger receptors Stabilin-1 (Stab1) and Stabilin-2 (Stab2) are preferentially expressed by liver sinusoidal endothelial cells. They mediate the clearance of circulating plasma molecules controlling distant organ homeostasis. Studies suggest that Stab1 and Stab2 may affect atherosclerosis. Although subsets of tissue macrophages also express Stab1, hematopoietic Stab1 deficiency does not modulate atherogenesis. Here, we comprehensively studied how targeting Stab1 and Stab2 affects atherosclerosis. METHODS ApoE-KO mice were interbred with Stab1-KO and Stab2-KO mice and fed a Western diet. For antibody targeting, Ldlr-KO mice were also used. Unbiased plasma proteomics were performed and independently confirmed. Ligand binding studies comprised glutathione-S-transferase-pulldown and endocytosis assays. Plasma proteome effects on monocytes were studied by single-cell RNA sequencing in vivo, and by gene expression analyses of Stabilin ligand-stimulated and plasma-stimulated bone marrow-derived monocytes/macrophages in vitro. RESULTS Spontaneous and Western diet-associated atherogenesis was significantly reduced in ApoE-Stab1-KO and ApoE-Stab2-KO mice. Similarly, inhibition of Stab1 or Stab2 by monoclonal antibodies significantly reduced Western diet-associated atherosclerosis in ApoE-KO and Ldlr-KO mice. Although neither plasma lipid levels nor circulating immune cell numbers were decisively altered, plasma proteomics revealed a switch in the plasma proteome, consisting of 231 dysregulated proteins comparing wildtype with Stab1/2-single and Stab1/2-double KO, and of 41 proteins comparing ApoE-, ApoE-Stab1-, and ApoE-Stab2-KO. Among this broad spectrum of common, but also disparate scavenger receptor ligand candidates, periostin, reelin, and TGFBi (transforming growth factor, β-induced), known to modulate atherosclerosis, were independently confirmed as novel circulating ligands of Stab1/2. Single-cell RNA sequencing of circulating myeloid cells of ApoE-, ApoE-Stab1-, and ApoE-Stab2-KO mice showed transcriptomic alterations in patrolling (Ccr2-/Cx3cr1++/Ly6Clo) and inflammatory (Ccr2+/Cx3cr1+/Ly6Chi) monocytes, including downregulation of proatherogenic transcription factor Egr1. In wildtype bone marrow-derived monocytes/macrophages, ligand exposure alone did not alter Egr1 expression in vitro. However, exposure to plasma from ApoE-Stab1-KO and ApoE-Stab2-KO mice showed a reverted proatherogenic macrophage activation compared with ApoE-KO plasma, including downregulation of Egr1 in vitro. CONCLUSIONS Inhibition of Stab1/Stab2 mediates an anti-inflammatory switch in the plasma proteome, including direct Stabilin ligands. The altered plasma proteome suppresses both patrolling and inflammatory monocytes and, thus, systemically protects against atherogenesis. Altogether, anti-Stab1- and anti-Stab2-targeted therapies provide a novel approach for the future treatment of atherosclerosis.
Collapse
Affiliation(s)
- Calin-Petru Manta
- Department of Dermatology, Venereology, and Allergology (C.-P.M., T.L., M.A., K.S., J.K., C.K., C.D.S., Y.X., S.G., C.G.), University Medical Center and Medical Faculty Mannheim, Heidelberg University, Germany.,European Center for Angioscience (ECAS) (C.-P.M., T.L., M.F., M.A., K.S., J.K., C.K., C.D.S., Y.X., A.S., A.C., M.P., S.G., C.G.), University Medical Center and Medical Faculty Mannheim, Heidelberg University, Germany
| | - Thomas Leibing
- Department of Dermatology, Venereology, and Allergology (C.-P.M., T.L., M.A., K.S., J.K., C.K., C.D.S., Y.X., S.G., C.G.), University Medical Center and Medical Faculty Mannheim, Heidelberg University, Germany.,Section of Clinical and Molecular Dermatology (T.L., M.A., J.K., C.K., Y.X., C.G.), University Medical Center and Medical Faculty Mannheim, Heidelberg University, Germany.,European Center for Angioscience (ECAS) (C.-P.M., T.L., M.F., M.A., K.S., J.K., C.K., C.D.S., Y.X., A.S., A.C., M.P., S.G., C.G.), University Medical Center and Medical Faculty Mannheim, Heidelberg University, Germany
| | - Mirco Friedrich
- Department of Dermatology, Venereology, and Allergology (C.-P.M., T.L., M.A., K.S., J.K., C.K., C.D.S., Y.X., S.G., C.G.), University Medical Center and Medical Faculty Mannheim, Heidelberg University, Germany.,European Center for Angioscience (ECAS) (C.-P.M., T.L., M.F., M.A., K.S., J.K., C.K., C.D.S., Y.X., A.S., A.C., M.P., S.G., C.G.), University Medical Center and Medical Faculty Mannheim, Heidelberg University, Germany.,Department of Neurology, MCTN (M.F., M.P.), University Medical Center and Medical Faculty Mannheim, Heidelberg University, Germany.,DKTK Clinical Cooperation Unit Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany (M.F., M.P.)
| | - Hendrik Nolte
- European Center for Angioscience (ECAS) (C.-P.M., T.L., M.F., M.A., K.S., J.K., C.K., C.D.S., Y.X., A.S., A.C., M.P., S.G., C.G.), University Medical Center and Medical Faculty Mannheim, Heidelberg University, Germany.,Institute for Genetics and CECAD, University of Cologne, Germany (H.N., M.K.).,Max Planck Institute for Biology of Ageing, Cologne, Germany (H.N.)
| | - Monica Adrian
- Department of Dermatology, Venereology, and Allergology (C.-P.M., T.L., M.A., K.S., J.K., C.K., C.D.S., Y.X., S.G., C.G.), University Medical Center and Medical Faculty Mannheim, Heidelberg University, Germany.,Section of Clinical and Molecular Dermatology (T.L., M.A., J.K., C.K., Y.X., C.G.), University Medical Center and Medical Faculty Mannheim, Heidelberg University, Germany.,European Center for Angioscience (ECAS) (C.-P.M., T.L., M.F., M.A., K.S., J.K., C.K., C.D.S., Y.X., A.S., A.C., M.P., S.G., C.G.), University Medical Center and Medical Faculty Mannheim, Heidelberg University, Germany
| | - Kai Schledzewski
- Department of Dermatology, Venereology, and Allergology (C.-P.M., T.L., M.A., K.S., J.K., C.K., C.D.S., Y.X., S.G., C.G.), University Medical Center and Medical Faculty Mannheim, Heidelberg University, Germany.,European Center for Angioscience (ECAS) (C.-P.M., T.L., M.F., M.A., K.S., J.K., C.K., C.D.S., Y.X., A.S., A.C., M.P., S.G., C.G.), University Medical Center and Medical Faculty Mannheim, Heidelberg University, Germany
| | - Jessica Krzistetzko
- Department of Dermatology, Venereology, and Allergology (C.-P.M., T.L., M.A., K.S., J.K., C.K., C.D.S., Y.X., S.G., C.G.), University Medical Center and Medical Faculty Mannheim, Heidelberg University, Germany.,Section of Clinical and Molecular Dermatology (T.L., M.A., J.K., C.K., Y.X., C.G.), University Medical Center and Medical Faculty Mannheim, Heidelberg University, Germany.,European Center for Angioscience (ECAS) (C.-P.M., T.L., M.F., M.A., K.S., J.K., C.K., C.D.S., Y.X., A.S., A.C., M.P., S.G., C.G.), University Medical Center and Medical Faculty Mannheim, Heidelberg University, Germany
| | - Christof Kirkamm
- Department of Dermatology, Venereology, and Allergology (C.-P.M., T.L., M.A., K.S., J.K., C.K., C.D.S., Y.X., S.G., C.G.), University Medical Center and Medical Faculty Mannheim, Heidelberg University, Germany.,Section of Clinical and Molecular Dermatology (T.L., M.A., J.K., C.K., Y.X., C.G.), University Medical Center and Medical Faculty Mannheim, Heidelberg University, Germany.,European Center for Angioscience (ECAS) (C.-P.M., T.L., M.F., M.A., K.S., J.K., C.K., C.D.S., Y.X., A.S., A.C., M.P., S.G., C.G.), University Medical Center and Medical Faculty Mannheim, Heidelberg University, Germany
| | - Christian David Schmid
- Department of Dermatology, Venereology, and Allergology (C.-P.M., T.L., M.A., K.S., J.K., C.K., C.D.S., Y.X., S.G., C.G.), University Medical Center and Medical Faculty Mannheim, Heidelberg University, Germany.,European Center for Angioscience (ECAS) (C.-P.M., T.L., M.F., M.A., K.S., J.K., C.K., C.D.S., Y.X., A.S., A.C., M.P., S.G., C.G.), University Medical Center and Medical Faculty Mannheim, Heidelberg University, Germany
| | - Yannick Xi
- Department of Dermatology, Venereology, and Allergology (C.-P.M., T.L., M.A., K.S., J.K., C.K., C.D.S., Y.X., S.G., C.G.), University Medical Center and Medical Faculty Mannheim, Heidelberg University, Germany.,Section of Clinical and Molecular Dermatology (T.L., M.A., J.K., C.K., Y.X., C.G.), University Medical Center and Medical Faculty Mannheim, Heidelberg University, Germany.,European Center for Angioscience (ECAS) (C.-P.M., T.L., M.F., M.A., K.S., J.K., C.K., C.D.S., Y.X., A.S., A.C., M.P., S.G., C.G.), University Medical Center and Medical Faculty Mannheim, Heidelberg University, Germany
| | - Ana Stojanovic
- European Center for Angioscience (ECAS) (C.-P.M., T.L., M.F., M.A., K.S., J.K., C.K., C.D.S., Y.X., A.S., A.C., M.P., S.G., C.G.), University Medical Center and Medical Faculty Mannheim, Heidelberg University, Germany.,Department of Immunobiochemistry, Mannheim Institute for Innate Immunoscience, MI3 (A.S., A.C.), University Medical Center and Medical Faculty Mannheim, Heidelberg University, Germany
| | - Sarah Tonack
- Max Planck Institute for Heart and Lung Research, Department of Pharmacology, Bad Nauheim, Germany (S.T., S.O., M.K.)
| | - Carolina de la Torre
- Centre for Medical Research (ZMF) (C.d.l.T.), University Medical Center and Medical Faculty Mannheim, Heidelberg University, Germany
| | - Seddik Hammad
- Department of Medicine II (S.H.), University Medical Center and Medical Faculty Mannheim, Heidelberg University, Germany
| | - Stefan Offermanns
- Max Planck Institute for Heart and Lung Research, Department of Pharmacology, Bad Nauheim, Germany (S.T., S.O., M.K.)
| | - Marcus Krüger
- Institute for Genetics and CECAD, University of Cologne, Germany (H.N., M.K.).,Max Planck Institute for Heart and Lung Research, Department of Pharmacology, Bad Nauheim, Germany (S.T., S.O., M.K.)
| | - Adelheid Cerwenka
- European Center for Angioscience (ECAS) (C.-P.M., T.L., M.F., M.A., K.S., J.K., C.K., C.D.S., Y.X., A.S., A.C., M.P., S.G., C.G.), University Medical Center and Medical Faculty Mannheim, Heidelberg University, Germany.,Department of Immunobiochemistry, Mannheim Institute for Innate Immunoscience, MI3 (A.S., A.C.), University Medical Center and Medical Faculty Mannheim, Heidelberg University, Germany
| | - Michael Platten
- European Center for Angioscience (ECAS) (C.-P.M., T.L., M.F., M.A., K.S., J.K., C.K., C.D.S., Y.X., A.S., A.C., M.P., S.G., C.G.), University Medical Center and Medical Faculty Mannheim, Heidelberg University, Germany.,Department of Neurology, MCTN (M.F., M.P.), University Medical Center and Medical Faculty Mannheim, Heidelberg University, Germany.,DKTK Clinical Cooperation Unit Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany (M.F., M.P.)
| | - Sergij Goerdt
- Department of Dermatology, Venereology, and Allergology (C.-P.M., T.L., M.A., K.S., J.K., C.K., C.D.S., Y.X., S.G., C.G.), University Medical Center and Medical Faculty Mannheim, Heidelberg University, Germany.,European Center for Angioscience (ECAS) (C.-P.M., T.L., M.F., M.A., K.S., J.K., C.K., C.D.S., Y.X., A.S., A.C., M.P., S.G., C.G.), University Medical Center and Medical Faculty Mannheim, Heidelberg University, Germany
| | - Cyrill Géraud
- Department of Dermatology, Venereology, and Allergology (C.-P.M., T.L., M.A., K.S., J.K., C.K., C.D.S., Y.X., S.G., C.G.), University Medical Center and Medical Faculty Mannheim, Heidelberg University, Germany.,Section of Clinical and Molecular Dermatology (T.L., M.A., J.K., C.K., Y.X., C.G.), University Medical Center and Medical Faculty Mannheim, Heidelberg University, Germany.,European Center for Angioscience (ECAS) (C.-P.M., T.L., M.F., M.A., K.S., J.K., C.K., C.D.S., Y.X., A.S., A.C., M.P., S.G., C.G.), University Medical Center and Medical Faculty Mannheim, Heidelberg University, Germany
| |
Collapse
|
16
|
Chun H, Kurasawa JH, Olivares P, Marakasova ES, Shestopal SA, Hassink GU, Karnaukhova E, Migliorini M, Obi JO, Smith AK, Wintrode PL, Durai P, Park K, Deredge D, Strickland DK, Sarafanov AG. Characterization of interaction between blood coagulation factor VIII and LRP1 suggests dynamic binding by alternating complex contacts. J Thromb Haemost 2022; 20:2255-2269. [PMID: 35810466 PMCID: PMC9804390 DOI: 10.1111/jth.15817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/15/2022] [Accepted: 07/01/2022] [Indexed: 01/07/2023]
Abstract
BACKGROUND Deficiency in blood coagulation factor VIII (FVIII) results in life-threating bleeding (hemophilia A) treated by infusions of FVIII concentrates. To improve disease treatment, FVIII has been modified to increase its plasma half-life, which requires understanding mechanisms of FVIII catabolism. An important catabolic actor is hepatic low density lipoprotein receptor-related protein 1 (LRP1), which also regulates many other clinically significant processes. Previous studies showed complexity of FVIII site for binding LRP1. OBJECTIVES To characterize binding sites between FVIII and LRP1 and suggest a model of the interaction. METHODS A series of recombinant ligand-binding complement-type repeat (CR) fragments of LRP1 including mutated variants was generated in a baculovirus system and tested for FVIII interaction using surface plasmon resonance, tissue culture model, hydrogen-deuterium exchange mass spectrometry, and in silico. RESULTS Multiple CR doublets within LRP1 clusters II and IV were identified as alternative FVIII-binding sites. These interactions follow the canonical binding mode providing major binding energy, and additional weak interactions are contributed by adjacent CR domains. A representative CR doublet was shown to have multiple contact sites on FVIII. CONCLUSIONS FVIII and LRP1 interact via formation of multiple complex contacts involving both canonical and non-canonical binding combinations. We propose that FVIII-LRP1 interaction occurs via switching such alternative binding combinations in a dynamic mode, and that this mechanism is relevant to other ligand interactions of the low-density lipoprotein receptor family members including LRP1.
Collapse
Affiliation(s)
- Haarin Chun
- Center for Biologics Evaluation and ResearchU.S. Food and Drug AdministrationSilver SpringMarylandUSA
| | - James H. Kurasawa
- Center for Biologics Evaluation and ResearchU.S. Food and Drug AdministrationSilver SpringMarylandUSA
- Present address:
Biologics Engineering, R&D, AstraZeneca, GaithersburgMarylandUSA
| | - Philip Olivares
- Center for Biologics Evaluation and ResearchU.S. Food and Drug AdministrationSilver SpringMarylandUSA
| | - Ekaterina S. Marakasova
- Center for Biologics Evaluation and ResearchU.S. Food and Drug AdministrationSilver SpringMarylandUSA
- Present address:
(1) Center for Devices and Radiological Health, U.S. Food and Drug Administration, Silver SpringMarylandUSA
- Present address:
George Mason University, School of Systems Biology, FairfaxVirginiaUSA
| | - Svetlana A. Shestopal
- Center for Biologics Evaluation and ResearchU.S. Food and Drug AdministrationSilver SpringMarylandUSA
| | - Gabriela U. Hassink
- Center for Biologics Evaluation and ResearchU.S. Food and Drug AdministrationSilver SpringMarylandUSA
- Present address:
GSK‐Rockville Center for Vaccines Research, RockvilleMarylandUSA
| | - Elena Karnaukhova
- Center for Biologics Evaluation and ResearchU.S. Food and Drug AdministrationSilver SpringMarylandUSA
| | - Mary Migliorini
- Center for Vascular and Inflammatory DiseasesDepartments of Surgery and PhysiologyUniversity of Maryland School of MedicineBaltimoreMarylandUSA
| | - Juliet O. Obi
- Department of Pharmaceutical SciencesUniversity of Maryland School of PharmacyBaltimoreMarylandUSA
| | - Ally K. Smith
- Department of Pharmaceutical SciencesUniversity of Maryland School of PharmacyBaltimoreMarylandUSA
| | - Patrick L. Wintrode
- Department of Pharmaceutical SciencesUniversity of Maryland School of PharmacyBaltimoreMarylandUSA
| | - Prasannavenkatesh Durai
- Natural Product Informatics Research CenterKorea Institute of Science and TechnologyGangneungRepublic of Korea
| | - Keunwan Park
- Natural Product Informatics Research CenterKorea Institute of Science and TechnologyGangneungRepublic of Korea
| | - Daniel Deredge
- Department of Pharmaceutical SciencesUniversity of Maryland School of PharmacyBaltimoreMarylandUSA
| | - Dudley K. Strickland
- Center for Vascular and Inflammatory DiseasesDepartments of Surgery and PhysiologyUniversity of Maryland School of MedicineBaltimoreMarylandUSA
| | - Andrey G. Sarafanov
- Center for Biologics Evaluation and ResearchU.S. Food and Drug AdministrationSilver SpringMarylandUSA
| |
Collapse
|
17
|
Michel JB, Lagrange J, Regnault V, Lacolley P. Conductance Artery Wall Layers and Their Respective Roles in the Clearance Functions. Arterioscler Thromb Vasc Biol 2022; 42:e253-e272. [PMID: 35924557 DOI: 10.1161/atvbaha.122.317759] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Evolutionary organization of the arterial wall into layers occurred concomitantly with the emergence of a highly muscularized, pressurized arterial system that facilitates outward hydraulic conductance and mass transport of soluble substances across the arterial wall. Although colliding circulating cells disperse potential energy within the arterial wall, the different layers counteract this effect: (1) the endothelium ensures a partial barrier function; (2) the media comprises smooth muscle cells capable of endocytosis/phagocytosis; (3) the outer adventitia and perivascular adipocytic tissue are the final receptacles of convected substances. While the endothelium forms a physical and a biochemical barrier, the medial layer is avascular, relying on the specific permeability properties of the endothelium for metabolic support. Different components of the media interact with convected molecules: medial smooth muscle cells take up numerous molecules via scavenger receptors and are capable of phagocytosis of macro/micro particles. The outer layers-the highly microvascularized innervated adventitia and perivascular adipose tissue-are also involved in the clearance functions of the media: the adventitia is the seat of immune response development, inward angiogenesis, macromolecular lymphatic drainage, and neuronal stimulation. Consequently, the clearance functions of the arterial wall are physiologically essential, but also may favor the development of arterial wall pathologies. This review describes how the walls of large conductance arteries have acquired physiological clearance functions, how this is determined by the attributes of the endothelial barrier, governed by endocytic and phagocytic capacities of smooth muscle cells, impacting adventitial functions, and the role of these clearance functions in arterial wall diseases.
Collapse
|
18
|
Comerford C, Glavey S, Quinn J, O’Sullivan JM. The role of VWF/FVIII in thrombosis and cancer progression in multiple myeloma and other hematological malignancies. J Thromb Haemost 2022; 20:1766-1777. [PMID: 35644028 PMCID: PMC9546473 DOI: 10.1111/jth.15773] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 05/11/2022] [Accepted: 05/25/2022] [Indexed: 11/30/2022]
Abstract
Cancer associated thrombosis (CAT) is associated with significant morbidity and mortality, highlighting an unmet clinical need to improve understanding of the pathophysiology of CAT. Multiple myeloma (MM) is associated with one of the highest rates of thrombosis despite widespread use of thromboprophylactic agents. The pathophysiology of thrombosis in MM is multifactorial and patients with MM appear to display a hypercoagulable phenotype with potential contributory factors including raised von Willebrand factor (VWF) levels, activated protein C resistance, impaired fibrinolysis, and abnormal thrombin generation. In addition, the toxic effect of anti-myeloma therapies on the endothelium and contribution to thrombosis has been widely described. Elevated VWF/factor VIII (FVIII) plasma levels have been reported in heterogeneous cohorts of patients with MM and other hematological malignancies. In specific studies, high plasma VWF levels have been shown to associate with VTE risk and reduced overall survival. While the mechanisms underpinning this remain unclear, dysregulation of the VWF and A Disintegrin And Metalloprotease Thrombospondin type 1, motif 13 (ADAMTS-13) axis is evident in certain solid organ malignancies and correlates with advanced disease and thrombosis. Furthermore, thrombotic microangiopathic conditions arising from deficiencies in ADAMTS-13 and thus an accumulation of prothrombotic VWF multimers have been reported in patients with MM, particularly in association with specific myeloma therapies. This review will discuss current evidence on the pathophysiological mechanisms underpinning thrombosis in MM and in particular summarize the role of VWF/FVIII in hematological malignancies with a focus on thrombotic risk and emerging evidence for contribution to disease progression.
Collapse
Affiliation(s)
- Claire Comerford
- Irish Centre for Vascular Biology, School of Pharmacy and Biomolecular SciencesRoyal College of Surgeons in IrelandDublinIreland
- Department of HaematologyBeaumont HospitalDublinIreland
| | - Siobhan Glavey
- Department of HaematologyBeaumont HospitalDublinIreland
- School of PathologyRoyal College of Surgeons in IrelandDublinIreland
| | - John Quinn
- Department of HaematologyBeaumont HospitalDublinIreland
- School of MedicineRoyal College of Surgeons in IrelandDublinIreland
| | - Jamie M. O’Sullivan
- Irish Centre for Vascular Biology, School of Pharmacy and Biomolecular SciencesRoyal College of Surgeons in IrelandDublinIreland
| |
Collapse
|
19
|
Sacco M, Lancellotti S, Branchini A, Tardugno M, Testa MF, Lunghi B, Bernardi F, Pinotti M, Giusti B, Castaman G, De Cristofaro R. The p.P1127S pathogenic variant lowers von Willebrand factor levels through higher affinity for the macrophagic scavenger receptor LRP1: Clinical phenotype and pathogenic mechanisms. J Thromb Haemost 2022; 20:1818-1829. [PMID: 35596664 PMCID: PMC9545986 DOI: 10.1111/jth.15765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 04/28/2022] [Accepted: 05/17/2022] [Indexed: 11/30/2022]
Abstract
BACKGROUND The index case is a 21-year-old Italian woman with a mild hemorrhagic syndrome and von Willebrand factor antigen (VWF:Ag) = 34.3 U/dl, VWF recombinant glycoprotein Ib (VWF:GpIbR) = 32.8 U/dl, and factor VIII (FVIII) = 55.3 IU/dl. AIMS The aim of this study is to characterize from a genetic and biochemical standpoint this low VWF phenotype. METHODS Coagulation and biochemical methods were used to study the structural and functional pattern of VWF multimers in the index case's plasma. Recombinant wild-type and p.P1127S VWF variants were produced using human embryonic kidney (HEK)-293 cells. In addition, genetic screening was carried out to detect single nucleotide variants of some scavenger VWF/FVIII receptor genes such as CLEC4M, STAB2, and ASGR2. RESULTS Genetic investigation revealed that the index case inherited from her mother the heterozygous missense mutation c.3379C > T (VWF exon 25), causing the p.P1127S substitution in the VWF D'D3 domain. The index case was also homozygous for the scavenger receptor ASGR2 c.-95 CC-genotype. Desmopressin normalized the VWF level of the patient, although its clearance was faster (t1/2 = 6.7 h) than in normal subjects (t1/2 = 12 ± 0.7 h). FVIII-VWF interaction, A Disintegrin And Metalloprotease with ThromboSpondin type 1 motif-13 levels, ristocetin-induced-platelet-aggregation, and VWF multimeric pattern were normal. The p.P1127S variant was normally synthesized and secreted by HEK-293 cells, and molecular modeling predicts a conformational change showing higher affinity for the macrophagic scavenger receptor lipoprotein receptor-related protein 1 (LRP1), as also experimentally verified. CONCLUSIONS The p.P1127S variant may cause a low VWF phenotype, stemming from an increased VWF affinity for the scavenger receptor LRP1 and, consequently, an accelerated clearance of VWF.
Collapse
Affiliation(s)
- Monica Sacco
- Dipartimento di Medicina e Chirurgia TraslazionaleFacoltà di Medicina e Chirurgia “Agostino Gemelli,” Università Cattolica S. CuoreRomaItaly
| | - Stefano Lancellotti
- Servizio Malattie Emorragiche e TromboticheFondazione Policlinico Universitario “A. Gemell” IRCCSRomaItaly
| | - Alessio Branchini
- Dipartimento di Scienze della Vita e BiotecnologieUniversità di FerraraFerraraItaly
| | - Maira Tardugno
- Dipartimento di Medicina e Chirurgia TraslazionaleFacoltà di Medicina e Chirurgia “Agostino Gemelli,” Università Cattolica S. CuoreRomaItaly
| | | | - Barbara Lunghi
- Dipartimento di Scienze della Vita e BiotecnologieUniversità di FerraraFerraraItaly
| | - Francesco Bernardi
- Dipartimento di Scienze della Vita e BiotecnologieUniversità di FerraraFerraraItaly
| | - Mirko Pinotti
- Dipartimento di Scienze della Vita e BiotecnologieUniversità di FerraraFerraraItaly
| | - Betti Giusti
- Dipartimento di Medicina Sperimentale e ClinicaUniversità di FirenzeFirenzeItaly
- Laboratorio Genetico Molecolare Avanzato, SOD Malattie AterotromboticheAzienda Ospedaliero‐ Universitaria “Careggi"FirenzeItaly
| | - Giancarlo Castaman
- Dipartimento di Oncologia, Centro Malattie Emorragiche e della CoagulazioneOspedale Universitario “Careggi”FirenzeItaly
| | - Raimondo De Cristofaro
- Dipartimento di Medicina e Chirurgia TraslazionaleFacoltà di Medicina e Chirurgia “Agostino Gemelli,” Università Cattolica S. CuoreRomaItaly
- Servizio Malattie Emorragiche e TromboticheFondazione Policlinico Universitario “A. Gemell” IRCCSRomaItaly
| |
Collapse
|
20
|
Rawley O, Swystun LL, Brown C, Nesbitt K, Rand M, Hossain T, Klaassen R, James PD, Carcao MD, Lillicrap D. Novel cysteine substitution p.(Cys1084Tyr) causes variable expressivity of qualitative and quantitative VWF defects. Blood Adv 2022; 6:2908-2919. [PMID: 35020809 PMCID: PMC9092401 DOI: 10.1182/bloodadvances.2021005928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 11/23/2021] [Indexed: 11/20/2022] Open
Abstract
von Willebrand factor (VWF) is an extremely cysteine-rich multimeric protein that is essential for maintaining normal hemostasis. The cysteine residues of VWF monomers form intra- and intermolecular disulfide bonds that regulate its structural conformation, multimer distribution, and ultimately its hemostatic activity. In this study, we investigated and characterized the molecular and pathogenic mechanisms through which a novel cysteine variant p.(Cys1084Tyr) causes an unusual, mixed phenotype form of von Willebrand disease (VWD). Phenotypic data including bleeding scores, laboratory values, VWF multimer distribution, and desmopressin response kinetics were investigated in 5 members (2 parents and 3 daughters) of a consanguineous family. VWF synthesis and secretion were also assessed in a heterologous expression system and in a transient transgenic mouse model. Heterozygosity for p.(Cys1084Tyr) was associated with variable expressivity of qualitative VWF defects. Heterozygous individuals had reduced VWF:GPIbM (<0.40 IU/mL) and VWF:CB (<0.35 IU/mL), as well as relative reductions in high-molecular-weight multimers, consistent with type 2A VWD. In addition to these qualitative defects, homozygous individuals also displayed reduced factor VIII (FVIII):C/VWF:Ag, leading to very low FVIII levels (0.03-0.1 IU/mL) and reduced VWF:Ag (<0.40 IU/mL) and VWF:GPIbM (<0.30 IU/mL). Accelerated VWF clearance and impaired VWF secretion contributed to the fully expressed homozygous phenotype with impaired secretion arising because of disordered disulfide connectivity.
Collapse
Affiliation(s)
- Orla Rawley
- Molecular Hemostasis Research Group, Department of Pathology and Molecular Medicine, Queen’s University, Kingston, ON, Canada
| | - Laura L. Swystun
- Molecular Hemostasis Research Group, Department of Pathology and Molecular Medicine, Queen’s University, Kingston, ON, Canada
| | - Christine Brown
- Molecular Hemostasis Research Group, Department of Pathology and Molecular Medicine, Queen’s University, Kingston, ON, Canada
| | - Kate Nesbitt
- Molecular Hemostasis Research Group, Department of Pathology and Molecular Medicine, Queen’s University, Kingston, ON, Canada
| | - Margaret Rand
- Division of Hematology/Oncology, Department of Pediatrics, Hospital for Sick Children and University of Toronto, Toronto, ON, Canada
| | - Taneya Hossain
- Division of Hematology/Oncology, Department of Pediatrics, Hospital for Sick Children and University of Toronto, Toronto, ON, Canada
| | - Robert Klaassen
- Department of Pediatrics, University of Ottawa, Ottawa, ON, Canada; and
| | - Paula D. James
- Department of Medicine, Queen’s University, Kingston, ON, Canada
| | - Manuel D. Carcao
- Division of Hematology/Oncology, Department of Pediatrics, Hospital for Sick Children and University of Toronto, Toronto, ON, Canada
| | - David Lillicrap
- Molecular Hemostasis Research Group, Department of Pathology and Molecular Medicine, Queen’s University, Kingston, ON, Canada
| |
Collapse
|
21
|
Sadler B, Castaman G, O’Donnell JS. von Willebrand disease and von Willebrand factor. Haemophilia 2022; 28 Suppl 4:11-17. [PMID: 35521725 PMCID: PMC9094051 DOI: 10.1111/hae.14547] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 02/28/2022] [Accepted: 02/28/2022] [Indexed: 12/31/2022]
Abstract
Progress in both basic and translational research into the molecular mechanisms of VWD can be seen in multiple fields. GENETICS OF VWD In the past several decades, knowledge of the underlying pathogenesis of von Willebrand disease (VWD) has increased tremendously, thanks in no small part to detailed genetic mapping of the von Willebrand Factor (VWF) gene and advances in genetic and bioinformatic technology. However, these advances do not always easily translate into improved management for patients with VWD and low-VWF levels. VWD AND PREGNANCY For example, the treatment of pregnant women with VWD both pre- and postpartum can be complicated. While knowledge of the VWF genotype at some amino acid positions can aid in knowledge of who may be at increased risk of thrombocytopenia or insufficient increase in VWF levels during pregnancy, in many cases, VWF levels and bleeding severity is highly heterogeneous, making monitoring recommended during pregnancy to optimize treatment strategies. VWF AND COVID-19: New challenges related to the consequences of dysregulation of hemostasis continue to be discovered. The ongoing COVID-19 pandemic has highlighted that VWF has additional biological roles in the regulation of inflammatory disorders and angiogenesis, disruption of which may contribute to COVID-19 induced vasculopathy. Increased endothelial cell activation and Weibel-Palade body exocytosis in severe COVID-19 lead to markedly increased plasma VWF levels. Coupled with impairment of normal ADAMTS13 multimer regulation, these data suggest a role for VWF in the pathogenesis underlying pulmonary microvascular angiopathy in severe COVID-19. CONCLUSION With the increased affordability and availability of next-generation sequencing techniques, as well as a push towards a multi-omic approach and personalized medicine in human genetics, there is hope that translational research will improve VWD patient outcomes.
Collapse
Affiliation(s)
- Brooke Sadler
- Washington University School of Medicine, Department of Pediatrics, Division of Hematology/Oncology, St. Louis, MO USA
| | - Giancarlo Castaman
- Center for Bleeding Disorders and Coagulation, Department of Oncology, Careggi University Hospital, Florence, Italy
| | - James S. O’Donnell
- Irish Centre for Vascular Biology, School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin 2, Ireland,National Coagulation Centre, St James’s Hospital, Dublin, Ireland
| |
Collapse
|
22
|
Ng CJ, Liu A, Venkataraman S, Ashworth KJ, Baker CD, O'Rourke R, Vibhakar R, Jones KL, Di Paola J. Single-cell transcriptional analysis of human endothelial colony-forming cells from patients with low VWF levels. Blood 2022; 139:2240-2251. [PMID: 35143643 PMCID: PMC8990376 DOI: 10.1182/blood.2021010683] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 07/21/2021] [Indexed: 11/20/2022] Open
Abstract
von Willebrand factor (VWF) plays a key role in normal hemostasis, and deficiencies of VWF lead to clinically significant bleeding. We sought to identify novel modifiers of VWF levels in endothelial colony-forming cells (ECFCs) using single-cell RNA sequencing (scRNA-seq). ECFCs were isolated from patients with low VWF levels (plasma VWF antigen levels between 30 and 50 IU/dL) and from healthy controls. Human umbilical vein endothelial cells were used as an additional control cell line. Cells were characterized for their Weibel Palade body (WPB) content and VWF release. scRNA-seq of all cell lines was performed to evaluate for gene expression heterogeneity and for candidate modifiers of VWF regulation. Candidate modifiers identified by scRNA-seq were further characterized with small-interfering RNA (siRNA) experiments to evaluate for effects on VWF. We observed that ECFCs derived from patients with low VWF demonstrated alterations in baseline WPB metrics and exhibit impaired VWF release. scRNA-seq analyses of these endothelial cells revealed overall decreased VWF transcription, mosaicism of VWF expression, and genes that are differentially expressed in low VWF ECFCs and control endothelial cells (control ECs). An siRNA screen of potential VWF modifiers provided further evidence of regulatory candidates, and 1 such candidate, FLI1, alters the transcriptional activity of VWF. In conclusion, ECFCs from individuals with low VWF demonstrate alterations in their baseline VWF packaging and release compared with control ECs. scRNA-seq revealed alterations in VWF transcription, and siRNA screening identified multiple candidate regulators of VWF.
Collapse
Affiliation(s)
- Christopher J Ng
- Department of Pediatrics, University of Colorado and Children's Hospital Colorado, Aurora, CO
- University of Colorado, Anschutz Medical Campus, Aurora, CO
| | - Alice Liu
- Department of Pediatrics, University of Colorado and Children's Hospital Colorado, Aurora, CO
- University of Colorado, Anschutz Medical Campus, Aurora, CO
| | - Sujatha Venkataraman
- Department of Pediatrics, University of Colorado and Children's Hospital Colorado, Aurora, CO
- University of Colorado, Anschutz Medical Campus, Aurora, CO
| | - Katrina J Ashworth
- Division of Hematology Oncology, Department of Pediatrics, Washington University School of Medicine in St. Louis, St. Louis, MO; and
| | - Christopher D Baker
- Department of Pediatrics, University of Colorado and Children's Hospital Colorado, Aurora, CO
- University of Colorado, Anschutz Medical Campus, Aurora, CO
| | - Rebecca O'Rourke
- Department of Pediatrics, University of Colorado and Children's Hospital Colorado, Aurora, CO
- University of Colorado, Anschutz Medical Campus, Aurora, CO
| | - Rajeev Vibhakar
- Department of Pediatrics, University of Colorado and Children's Hospital Colorado, Aurora, CO
- University of Colorado, Anschutz Medical Campus, Aurora, CO
| | - Kenneth L Jones
- Department of Cell Biology and
- Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK
| | - Jorge Di Paola
- Division of Hematology Oncology, Department of Pediatrics, Washington University School of Medicine in St. Louis, St. Louis, MO; and
| |
Collapse
|
23
|
Kayashima Y, Clanton CA, Lewis AM, Sun X, Hiller S, Huynh P, Wilder J, Hagaman J, Li F, Maeda-Smithies N, Harris EN. Reduction of Stabilin-2 Contributes to a Protection Against Atherosclerosis. Front Cardiovasc Med 2022; 9:818662. [PMID: 35360009 PMCID: PMC8963368 DOI: 10.3389/fcvm.2022.818662] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 02/16/2022] [Indexed: 01/05/2023] Open
Abstract
We have previously identified a novel atherosclerosis quantitative trait locus (QTL), Arch atherosclerosis 5 (Aath5), on mouse chromosome 10 by three-way QTL analyses between Apoe−/− mice on a DBA/2J, 129S6 and C57BL/6J background. The DBA/2J haplotype at the Aath5 locus was associated with smaller plaque size. One of the candidate genes underlying Aath5 was Stabilin-2 (Stab2), which encodes a clearance receptor for hyaluronan (HA) predominantly expressed in liver sinusoidal endothelial cells (LSECs). However, the role of Stab2 in atherosclerosis is unknown. A congenic line of Apoe−/− mice carrying Aath5 covering the Stab2DBA allele on a background of 129S6 confirmed the small reductions of atherosclerotic plaque development. To further determine whether Stab2 is an underlying gene for Aath5, we generated Stab2−/−Apoe−/− mice on a C57BL/6J background. When fed with a Western diet for 8 weeks, Stab2−/−Apoe−/− males developed approximately 30% smaller plaques than Stab2+/+Apoe−/− mice. HA was accumulated in circulation but not in major organs in the Stab2 deficient mice. STAB2-binding molecules that are involved in atherosclerosis, including acLDL, apoptotic cells, heparin and vWF were not likely the direct cause of the protection in the Stab2−/−Apoe−/− males. These data indicate that reduction of Stab2 is protective against atherosclerotic plaque development, and that Stab2 is a contributing gene underlying Aath5, although its effect is small. To test whether non-synonymous amino acid changes unique to DBA/2J affect the function of STAB2 protein, we made HEK293 cell lines expressing STAB2129 or STAB2DBA proteins, as well as STAB2129 proteins carrying each of five DBA-unique replacements that have been predicted to be deleterious. These mutant cells were capable of internalizing 125I -HA and DiI-acLDL similarly to the control cells. These results indicate that the amino acid changes unique to DBA/2J are not affecting the function of STAB2 protein, and support our previous observation that the reduced transcription of Stab2 in the liver sinusoid as a consequence of the insertion of a viral-derived sequence, intracisternal A particle, is the primary contributor to the athero-protection conferred by the DBA/2J allele.
Collapse
Affiliation(s)
- Yukako Kayashima
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- *Correspondence: Yukako Kayashima
| | - Connor A. Clanton
- Department of Biochemistry, University of Nebraska, Lincoln, NE, United States
| | - Amanda M. Lewis
- Department of Biochemistry, University of Nebraska, Lincoln, NE, United States
| | - Xinghui Sun
- Department of Biochemistry, University of Nebraska, Lincoln, NE, United States
| | - Sylvia Hiller
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Phillip Huynh
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Jennifer Wilder
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - John Hagaman
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Feng Li
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Nobuyo Maeda-Smithies
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Edward N. Harris
- Department of Biochemistry, University of Nebraska, Lincoln, NE, United States
| |
Collapse
|
24
|
Ward SE, O'Sullivan JM, Moran AB, Spencer DIR, Gardner RA, Sharma J, Fazavana J, Monopoli M, McKinnon TAJ, Chion A, Haberichter S, O'Donnell JS. Sialylation on O-linked glycans protects von Willebrand factor from macrophage galactose lectin-mediated clearance. Haematologica 2022; 107:668-679. [PMID: 33763999 PMCID: PMC8883566 DOI: 10.3324/haematol.2020.274720] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 03/12/2021] [Indexed: 11/17/2022] Open
Abstract
Terminal sialylation determines the plasma half-life of von Willebrand factor (VWF). A role for macrophage galactose lectin (MGL) in regulating hyposialylated VWF clearance has recently been proposed. In this study, we showed that MGL influences physiological plasma VWF clearance. MGL inhibition was associated with a significantly extended mean residence time and 3-fold increase in endogenous plasma VWF antigen levels (P<0.05). Using a series of VWF truncations, we further demonstrated that the A1 domain of VWF is predominantly responsible for enabling the MGL interaction. Binding of both full-length and VWF-A1-A2-A3 to MGL was significantly enhanced in the presence of ristocetin (P<0.05), suggesting that the MGL-binding site in A1 is not fully accessible in globular VWF. Additional studies using different VWF glycoforms demonstrated that VWF O-linked glycans, clustered at either end of the A1 domain, play a key role in protecting VWF against MGLmediated clearance. Reduced sialylation has been associated with pathological, increased clearance of VWF in patients with von Willebrand disease. Herein, we demonstrate that specific loss of α2-3 linked sialylation from O-glycans results in markedly increased MGL-binding in vitro, and markedly enhanced MGL-mediated clearance of VWF in vivo. Our data further show that the asialoglycoprotein receptor (ASGPR) does not have a significant role in mediating the increased clearance of VWF following loss of O-sialylation. Conversely however, we observed that loss of N-linked sialylation from VWF drives enhanced circulatory clearance predominantly via the ASGPR. Collectively, our data support the hypothesis that in addition to regulating physiological VWF clearance, the MGL receptor works in tandem with ASGPR to modulate enhanced clearance of aberrantly sialylated VWF in the pathogenesis of von Willebrand disease.
Collapse
Affiliation(s)
- Soracha E Ward
- Irish Centre for Vascular Biology, School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland
| | - Jamie M O'Sullivan
- Irish Centre for Vascular Biology, School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland
| | - Alan B Moran
- Ludger, Ltd., Culham Science Centre, Abingdon, Oxfordshire OX14 3EB, United Kingdom; Leiden University Medical Centre, Centre for Proteomics and Metabolomics, 2300 RC Leiden
| | | | | | - Jyotika Sharma
- Department of Basic Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, North Dakota
| | - Judicael Fazavana
- Irish Centre for Vascular Biology, School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland
| | - Marco Monopoli
- Department of Chemistry, RCSI, 123 St. Stephen's Green, Dublin 2
| | - Thomas A J McKinnon
- Faculty of Medicine, Imperial College, Hammersmith Hospital, Ducane Road, London
| | - Alain Chion
- Irish Centre for Vascular Biology, School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland
| | | | - James S O'Donnell
- Irish Centre for Vascular Biology, School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland; National Children's Research Centre, Our Lady's Children's Hospital, Dublin, Ireland; National Coagulation Centre, St James's Hospital, Dublin.
| |
Collapse
|
25
|
Multifaceted Pathomolecular Mechanism of a VWF Large Deletion Involved in the Pathogenesis of Severe VWD. Blood Adv 2021; 6:1038-1053. [PMID: 34861678 PMCID: PMC8945295 DOI: 10.1182/bloodadvances.2021005895] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 11/21/2021] [Indexed: 11/20/2022] Open
Abstract
The present study demonstrates the dominant-negative impact of an in-frame large deletion on VWF biosynthesis and biogenesis of the WPBs. The malformed WPBs/altered trafficking of its inflammatory cargos cause distresses in endothelial cell signaling pathways and phenotype.
An in-frame heterozygous large deletion of exons 4 through 34 of the von Willebrand factor (VWF) gene was identified in a type 3 von Willebrand disease (VWD) index patient (IP), as the only VWF variant. The IP exhibited severe bleeding episodes despite prophylaxis treatment, with a short VWF half-life after infusion of VWF/factor VIII concentrates. Transcript analysis confirmed transcription of normal VWF messenger RNA besides an aberrant deleted transcript. The IP endothelial colony-forming cells (ECFCs) exhibited a defect in the VWF multimers and Weibel-Palade bodies (WPBs) biogenesis, although demonstrating normal VWF secretion compared with healthy cells. Immunostaining of IP-ECFCs revealed subcellular mislocalization of WPBs pro-inflammatory cargos angiopoietin-2 (Ang2, nuclear accumulation) and P-selectin. Besides, the RNA-sequencing (RNA-seq) analysis showed upregulation of pro-inflammatory and proangiogenic genes, P-selectin, interleukin 8 (IL-8), IL-6, and GROα, copackaged with VWF into WPBs. Further, whole-transcriptome RNA-seq and subsequent gene ontology (GO) enrichment analysis indicated the most enriched GO-biological process terms among the differentially expressed genes in IP-ECFCs were regulation of cell differentiation, cell adhesion, leukocyte adhesion to vascular endothelial, blood vessel morphogenesis, and angiogenesis, which resemble downstream signaling pathways associated with inflammatory stimuli and Ang2 priming. Accordingly, our functional experiments exhibited an increased endothelial cell adhesiveness and interruption in endothelial cell–cell junctions of the IP-ECFCs. In conclusion, the deleted VWF has a dominant-negative impact on multimer assembly and the biogenesis of WPBs, leading to altered trafficking of their pro-inflammatory cargos uniquely, which, in turn, causes changes in cellular signaling pathways, phenotype, and function of the endothelial cells.
Collapse
|
26
|
Michels A, Swystun LL, Dwyer CN, Rawley O, Nesbitt K, Notley C, Lillicrap D. Stabilin-2 deficiency increases thrombotic burden and alters the composition of venous thrombi in a mouse model. J Thromb Haemost 2021; 19:2440-2453. [PMID: 34152080 DOI: 10.1111/jth.15429] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 05/17/2021] [Accepted: 06/17/2021] [Indexed: 11/29/2022]
Abstract
BACKGROUND Stabilin-2 is an endocytic scavenger receptor that mediates the clearance of glycosaminoglycans, phosphatidylserine-expressing cells, and the von Willebrand factor-factor VIII (FVIII) complex. In a genome-wide screening study, pathogenic loss-of-function variants in the human STAB2 gene associated with an increased incidence of unprovoked venous thromboembolism (VTE). However, the specific mechanism(s) by which stabilin-2 deficiency influences the pathogenesis of VTE is unknown. OBJECTIVES The aim of this study was to assess the influence of stabilin-2 on deep vein thrombosis (DVT) and to characterize the underlying prothrombotic phenotype of stabilin-2 deficiency in a mouse model. METHODS DVT was induced using the inferior vena cava (IVC) stenosis model in two independent cohorts (littermates and non-littermates) of wild-type (Stab2+/+ ) and stabilin-2 (Stab2-/- )-deficient mice. Thrombus structure and contents were quantified by immunohistochemistry. Plasma procoagulant activity was assessed and complete blood counts were performed. RESULTS Incidence of thrombus formation was not altered between Stab2+/+ and Stab2-/- mice. When thrombi were formed, Stab2-/- mice developed significantly larger thrombi than Stab2+/+ controls. Thrombi from Stab2-/- mice contained significantly more leukocytes and citrullinated histone H3 than Stab2+/+ thrombi. Stab2-/- mice had increased FVIII activity. Circulating levels of monocytes and granulocytes were significantly elevated in Stab2-/- mice, and Stab2-/- mice had elevated plasma cell-free DNA 24 hours post-IVC stenosis compared to their Stab2+/+ counterparts. CONCLUSIONS These data suggest that stabilin-2 deficiency associates with a prothrombotic phenotype involving elevated levels of neutrophil extracellular trap-releasing leukocytes coupled with endogenous procoagulant activity, resulting in larger and qualitatively distinct venous thrombi.
Collapse
Affiliation(s)
- Alison Michels
- Department of Pathology and Molecular Medicine, Queens University, Kingston, Ontario, Canada
| | - Laura L Swystun
- Department of Pathology and Molecular Medicine, Queens University, Kingston, Ontario, Canada
| | - Courtney N Dwyer
- Department of Pathology and Molecular Medicine, Queens University, Kingston, Ontario, Canada
| | - Orla Rawley
- Department of Pathology and Molecular Medicine, Queens University, Kingston, Ontario, Canada
| | - Kate Nesbitt
- Department of Pathology and Molecular Medicine, Queens University, Kingston, Ontario, Canada
| | - Colleen Notley
- Department of Pathology and Molecular Medicine, Queens University, Kingston, Ontario, Canada
| | - David Lillicrap
- Department of Pathology and Molecular Medicine, Queens University, Kingston, Ontario, Canada
| |
Collapse
|
27
|
Mojzisch A, Brehm MA. The Manifold Cellular Functions of von Willebrand Factor. Cells 2021; 10:2351. [PMID: 34572000 PMCID: PMC8466076 DOI: 10.3390/cells10092351] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 08/26/2021] [Accepted: 09/02/2021] [Indexed: 12/13/2022] Open
Abstract
The plasma glycoprotein von Willebrand factor (VWF) is exclusively synthesized in endothelial cells (ECs) and megakaryocytes, the precursor cells of platelets. Its primary function lies in hemostasis. However, VWF is much more than just a "fishing hook" for platelets and a transporter for coagulation factor VIII. VWF is a true multitasker when it comes to its many roles in cellular processes. In ECs, VWF coordinates the formation of Weibel-Palade bodies and guides several cargo proteins to these storage organelles, which control the release of hemostatic, inflammatory and angiogenic factors. Leukocytes employ VWF to assist their rolling on, adhesion to and passage through the endothelium. Vascular smooth muscle cell proliferation is supported by VWF, and it regulates angiogenesis. The life cycle of platelets is accompanied by VWF from their budding from megakaryocytes to adhesion, activation and aggregation until the end in apoptosis. Some tumor cells acquire the ability to produce VWF to promote metastasis and hide in a shell of VWF and platelets, and even the maturation of osteoclasts is regulated by VWF. This review summarizes the current knowledge on VWF's versatile cellular functions and the resulting pathophysiological consequences of their dysregulation.
Collapse
Affiliation(s)
- Angelika Mojzisch
- Dermatology and Venerology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany;
| | - Maria A. Brehm
- School of Life Sciences, University of Siegen, 57076 Siegen, Germany
| |
Collapse
|
28
|
Lunghi B, Morfini M, Martinelli N, Balestra D, Linari S, Frusconi S, Branchini A, Cervellera CF, Marchetti G, Castaman G, Bernardi F. The Asialoglycoprotein Receptor Minor Subunit Gene Contributes to Pharmacokinetics of Factor VIII Concentrates in Hemophilia A. Thromb Haemost 2021; 122:715-725. [PMID: 34407556 DOI: 10.1055/a-1591-7869] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
BACKGROUND The asialoglycoprotein receptor (ASGPR) binds with high affinity factor VIII (FVIII) through its N-linked oligosaccharides. However, its contribution to the wide inter-individual variation of infused FVIII pharmacokinetics (PK) in hemophilia A (HA) is unknown. OBJECTIVE To investigate the variability in FVIII PK outcomes in relation to genetic variation in the ASGR2, encoding the ASGPR2 subunit. METHODS Thirty-two HA patients with FVIII:C ≤2 IU/dL underwent 66 single-dose FVIII PK studies. PK parameters were evaluated in relation to ASGR2 5' untranslated region (5'UTR) polymorphisms, which were investigated by recombinant and white blood cell reverse transcription-polymerase chain reaction approaches. RESULTS The 5'UTR polymorphisms determine a frequent and conserved haplotype (HT1) in a regulatory region. The HT1 homozygotes may differ in the amounts of alternatively spliced mRNA transcripts and thus ASGPR2 isoforms. Compared with the other ASGR2 genotypes, the c.-95TT homozygotes (n = 9), showed threefold longer Alpha HL (3.60 hours, 95% confidence interval: 1.44-5.76, p = 0.006), and the c.-95TC heterozygotes (n = 17) showed 25% shorter mean residence time (MRT; 18.5 hours, 15.0-22.0, p = 0.038) and 32% shorter Beta HL (13.5 hours, 10.9-16.0, p = 0.016). These differences were confirmed in patients (n = 27) undergoing PK studies (n = 54) with full-length FVIII only. In different linear regression models, the contribution of the ASGR2 genotypes remained significant after adjustment by ABO genotypes and von Willebrand factor (VWF) antigen levels, and explained 14% (MRT), 15 to 18% (Beta HL), and 22% (Alpha HL) of parameter variability. CONCLUSIONS Infused FVIII distribution was modulated by frequent ASGR2 genotypes, independently from and together with ABO and VWF antigen levels, which has potential implications for genetically tailored substitutive treatment in HA.
Collapse
Affiliation(s)
- Barbara Lunghi
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Massimo Morfini
- Italian Association Hemophilia Centers (AICE), Naples, Italy
| | | | - Dario Balestra
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Silvia Linari
- Department of Oncology, Center for Bleeding Disorders, Careggi University Hospital, Florence, Italy
| | - Sabrina Frusconi
- Genetic Diagnostics Unit, Laboratory Department, Careggi University Hospital, Florence, Italy
| | - Alessio Branchini
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | | | - Giovanna Marchetti
- Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara, Italy
| | - Giancarlo Castaman
- Department of Oncology, Center for Bleeding Disorders, Careggi University Hospital, Florence, Italy
| | - Francesco Bernardi
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| |
Collapse
|
29
|
Cadé M, Muñoz-Garcia J, Babuty A, Fouassier M, Heymann MF, Monahan PE, Heymann D. FVIII at the crossroad of coagulation, bone and immune biology: Emerging evidence of biological activities beyond hemostasis. Drug Discov Today 2021; 27:102-116. [PMID: 34311113 DOI: 10.1016/j.drudis.2021.07.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 04/27/2021] [Accepted: 07/19/2021] [Indexed: 12/19/2022]
Abstract
Hemophilia A is an X-linked hereditary disorder that results from deficient coagulation factor VIII (FVIII) activity, leading to spontaneous bleeding episodes, particularly in joints and muscles. FVIII deficiency has been associated with altered bone remodeling, dysregulated macrophage polarization, and inflammatory processes that are associated with the neoformation of abnormal blood vessels. Treatment based on FVIII replacement can lead to the development of inhibitors that render FVIII concentrate infusion ineffective. In this context, hemophilia has entered a new therapeutic era with the development of new drugs, such as emicizumab, that seek to restore the hemostatic balance by bypassing pathologically acquired antibodies. We discuss the potential extrahemostatic functions of FVIII that may be crucial for defining future therapies in hemophilia.
Collapse
Affiliation(s)
- Marie Cadé
- Université de Nantes, INSERM, Institut de Cancérologie de l'Ouest, Saint-Herblain 44805, France
| | - Javier Muñoz-Garcia
- Université de Nantes, INSERM, Institut de Cancérologie de l'Ouest, Saint-Herblain 44805, France
| | - Antoine Babuty
- Université de Nantes, INSERM, Institut de Cancérologie de l'Ouest, Saint-Herblain 44805, France; Department of Haemostasis, CHU de Nantes, France
| | | | - Marie-Francoise Heymann
- Université de Nantes, INSERM, Institut de Cancérologie de l'Ouest, Saint-Herblain 44805, France
| | - Paul E Monahan
- Gene Therapy Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
| | - Dominique Heymann
- Université de Nantes, INSERM, Institut de Cancérologie de l'Ouest, Saint-Herblain 44805, France; University of Sheffield, Department of Oncology and Metabolism, Sheffield, UK.
| |
Collapse
|
30
|
Avdonin PP, Tsvetaeva NV, Goncharov NV, Rybakova EY, Trufanov SK, Tsitrina AA, Avdonin PV. Von Willebrand Factor in Health and Disease. BIOCHEMISTRY (MOSCOW), SUPPLEMENT SERIES A: MEMBRANE AND CELL BIOLOGY 2021. [DOI: 10.1134/s1990747821040036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Abstract—
Von Willebrand factor (vWF), the key component of hemostasis, is synthesized in endothelial cells and megakaryocytes and released into the blood as high molecular weight multimeric glycoproteins weighing up to 20 million Daltons. Blood plasma metalloprotease ADAMTS13 cleaves ultra-large vWF multimers to smaller multimeric and oligomeric molecules. The vWF molecules attach to the sites of damage at the surface of arterioles and capillaries and unfold under conditions of shear stress. On the unfolded vWF molecule, the regions interacting with receptors on the platelet membrane are exposed. After binding to the vWF filaments, platelets are activated; platelets circulating in the vessels are additionally attached to them, leading to thrombus formation, blocking of microvessels, and cessation of bleeding. This review describes the history of the discovery of vWF, presents data on the mechanisms of vWF secretion and its structure, and characterizes the processes of vWF metabolism in the body under normal and pathological conditions.
Collapse
|
31
|
Groeneveld DJ, Poole LG, Luyendyk JP. Targeting von Willebrand factor in liver diseases: A novel therapeutic strategy? J Thromb Haemost 2021; 19:1390-1408. [PMID: 33774926 PMCID: PMC8582603 DOI: 10.1111/jth.15312] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 03/08/2021] [Accepted: 03/22/2021] [Indexed: 12/11/2022]
Abstract
Acute and chronic liver disease are associated with substantial alterations in the hemostatic system. Evidence from both experimental and clinical studies suggests that anticoagulants slow the progression of liver disease. Efficacy of those anticoagulant drugs is, in part, attributed to a reduction of microthrombi formation within the liver. Although anticoagulant drugs show promising results, bleeding risk associated with these drugs is an obvious drawback, particularly in patients with a complex coagulopathy driven by decreased liver function. Identifying therapies that reduce intrahepatic thrombosis with minimal bleeding risk would significantly advance the field. Among the hemostatic alterations observed in patients are substantially increased levels of the platelet-adhesive protein von Willebrand factor (VWF). In contrast, levels of A Disintegrin and Metalloproteinase with Thrombospondin motifs, the enzyme that regulates VWF activity, are significantly reduced in patients with liver disease. Highly elevated VWF levels are proposed to accelerate intrahepatic thrombus formation and thus be a driver of disease progression. Strong clinical evidence suggesting a link between liver disease and changes in VWF is now being matched by emerging mechanistic data showing a detrimental role for VWF in the progression of liver disease. This review focuses on clinical and experimental evidence supporting a connection between VWF function and the progression of acute and chronic liver diseases. Furthermore, with the recent anticipated approval of several novel therapies targeting VWF, we discuss potential strategies and benefits of targeting VWF as an innovative therapy for patients with liver disease.
Collapse
Affiliation(s)
- Dafna J Groeneveld
- Department of Pathobiology & Diagnostic Investigation, Michigan State University, East Lansing, MI, USA
| | - Lauren G Poole
- Department of Pathobiology & Diagnostic Investigation, Michigan State University, East Lansing, MI, USA
| | - James P Luyendyk
- Department of Pathobiology & Diagnostic Investigation, Michigan State University, East Lansing, MI, USA
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, USA
- Department of Pharmacology & Toxicology, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
32
|
Di Minno A, Spadarella G, Esposito S, Mathew P, Di Minno G, Mannucci PM. Perspective - The case for zero bleeds and drug bioequivalence in the treatment of congenital hemophilia A in 2021. Blood Rev 2021; 50:100849. [PMID: 34024681 DOI: 10.1016/j.blre.2021.100849] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 04/13/2021] [Accepted: 05/04/2021] [Indexed: 01/19/2023]
Abstract
Not all patients with severe hemophilia A (HA) respond optimally to a given dose of a given product. Within-individual variance in cross-over studies makes each patient unique in the response to each standard half-life (SHL) factor VIII (FVIII) product in pharmacokinetic (PK) terms. This hampers the prediction of efficacy when a SHL FVIII product is employed. PK data showing that half-lives of SHL rFVIII are unsatisfactory to achieve zero bleeding in individual HA patients provide the rationale for switching from SHL to extended half-life (EHL) products. However, not all subjects receiving prophylaxis with EHL products achieve zero bleeding, the most cogent objective of personalized prophylaxis. Known determinants of FVIII half-life (age, von Willebrand factor [VWF] levels, blood group) cumulatively account for one third of the total inter-individual variation in FVIII clearance in subjects with severe HA. Investigations into precision, and accuracy of laboratory measurement to be employed; newer pathways for the clearance of both free-FVIII and VWF-bound FVIII, and adequately powered studies on omics and phenotypic heterogeneity, are likely to provide additional information on the remaining two thirds of inter-individual variation in FVIII clearance in HA. Variability in the clinical response has also been documented in patients when FVIII activity is mimicked by fixed subcutaneous doses of the bispecific antibody emicizumab. National registries that collect PK data of available FVIII products and ad hoc information on the individual response to emicizumab should be encouraged, to establish newer standards of care and ease personalized clinical decisions to achieve zero bleeding.
Collapse
Affiliation(s)
- Alessandro Di Minno
- Dipartimento di Farmacia, Università degli Studi di Napoli "Federico II", Italy; CEINGE-Biotecnologie Avanzate, Università degli Studi di Napoli "Federico II", Italy.
| | - Gaia Spadarella
- Dipartimento di Scienze Mediche Traslazionali, Università degli Studi di Napoli "Federico II", Italy
| | - Salvatore Esposito
- Dipartimento di Medicina Clinica e Chirurgia and Centro Hub per le Malattie Emorragiche Congenite e le Trombofilie, Università degli Studi di Napoli "Federico II", Italy
| | | | - Giovanni Di Minno
- Dipartimento di Medicina Clinica e Chirurgia and Centro Hub per le Malattie Emorragiche Congenite e le Trombofilie, Università degli Studi di Napoli "Federico II", Italy.
| | - Pier Mannuccio Mannucci
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Angelo Bianchi Bonomi Hemophilia and Thrombosis Center, Milan, Italy..
| |
Collapse
|
33
|
The relationship between ABO blood group, von Willebrand factor, and primary hemostasis. Blood 2021; 136:2864-2874. [PMID: 32785650 DOI: 10.1182/blood.2020005843] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 08/03/2020] [Indexed: 12/16/2022] Open
Abstract
Numerous studies have reported significant associations between ABO blood group and risk of cardiovascular disease. These studies have consistently demonstrated that thrombotic risk is significantly reduced in individuals in blood group O. Nevertheless, the biological mechanisms through which ABO influences hemostasis have remained poorly understood. Exciting recent data have provided novel insights into how these ABO effects are modulated and have highlighted that ABO group significantly influences platelet plug formation at sites of vascular injury (primary hemostasis). In particular, ABO affects multiple aspects of von Willebrand factor (VWF) biology. In keeping with their reduced thrombotic risk, plasma VWF levels are ∼25% lower in healthy group O compared with healthy group non-O individuals. In addition, blood group O VWF demonstrates enhanced susceptibility to ADAMTS13 proteolysis. Finally, preliminary findings suggest that the interaction of group O VWF with platelets may also be reduced. Although the molecular mechanisms underlying these ABO effects on VWF have not been fully elucidated, it seems likely that they are mediated in large part by the ABO(H) carbohydrate structures that are carried on both the N- and O-linked glycans of VWF. Interestingly, ABO(H) determinants are also expressed on several different platelet surface glycoprotein receptors. Recent studies support the hypothesis that ABO group not only exerts major quantitative and qualitative effects on VWF, but also affect specific aspects of platelet function. Given the severe morbidity and the mortality associated with thrombotic disorders, defining the mechanisms underlying these ABO effects is not only of scientific interest, but also of direct clinical importance.
Collapse
|
34
|
Pradhan-Sundd T, Gudapati S, Kaminski TW, Ragni MV. Exploring the Complex Role of Coagulation Factor VIII in Chronic Liver Disease. Cell Mol Gastroenterol Hepatol 2021; 12:1061-1072. [PMID: 33705963 PMCID: PMC8342958 DOI: 10.1016/j.jcmgh.2021.02.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 02/25/2021] [Accepted: 02/25/2021] [Indexed: 12/22/2022]
Abstract
Chronic liver disease is one of the leading causes of death in the United States. Coagulopathy is often a sequela of chronic liver disease, however, the role and regulation of coagulation components in chronic liver injury remain poorly understood. Clinical and experimental evidence indicate that misexpression of the procoagulant factor VIII (FVIII) is associated with chronic liver disease. Nevertheless, the molecular mechanism of FVIII-induced chronic liver injury progression remains unknown. This review provides evidence supporting a pathologic role for FVIII in the development of chronic liver disease using both experimental and clinical models.
Collapse
Affiliation(s)
- Tirthadipa Pradhan-Sundd
- Pittsburgh Heart, Lung and Blood Vascular Medicine Institute, Pittsburgh, Pennsylvania; Division of Hematology/Oncology, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania.
| | - Shweta Gudapati
- Pittsburgh Heart, Lung and Blood Vascular Medicine Institute, Pittsburgh, Pennsylvania
| | - Tomasz W Kaminski
- Pittsburgh Heart, Lung and Blood Vascular Medicine Institute, Pittsburgh, Pennsylvania
| | - Margaret V Ragni
- Pittsburgh Heart, Lung and Blood Vascular Medicine Institute, Pittsburgh, Pennsylvania; Division of Hematology/Oncology, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; Hemophilia Center of Western Pennsylvania, Pittsburgh, Pennsylvania
| |
Collapse
|
35
|
Ogiwara K, Swystun LL, Paine AS, Kepa S, Choi SJ, Rejtö J, Hopman W, Pabinger I, Lillicrap D. Factor VIII pharmacokinetics associates with genetic modifiers of VWF and FVIII clearance in an adult hemophilia A population. J Thromb Haemost 2021; 19:654-663. [PMID: 33219619 DOI: 10.1111/jth.15183] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 11/12/2020] [Accepted: 11/13/2020] [Indexed: 12/19/2022]
Abstract
BACKGROUND Factor VIII (FVIII) pharmacokinetics (PK) in adult hemophilia A populations are highly variable and have been previously determined to be influenced by von Willebrand factor:antigen (VWF:Ag), ABO blood group, and age. However, additional genetic determinants of FVIII PK are largely unknown. OBJECTIVES The contribution of VWF clearance, VWF-FVIII-binding activity, and genetic variants in VWF clearance receptors to FVIII PK in adult patients were assessed. METHODS FVIII PK assessment was performed in 44 adult subjects (age 18-61 years) with moderate or severe hemophilia A. VWF:Ag, VWF propeptide (VWFpp), VWFpp/VWF:Ag, and VWF:FVIII binding activity were measured. The VWF modifying loci CLEC4M, SCARA5, STAB2, and ABO, and the D'D3 FVIII-binding region of the VWF gene were genotyped. RESULTS VWF:Ag, VWFpp, and VWF:FVIIIB positively correlated with FVIII half-life and negatively correlated with FVIII clearance. VWFpp/VWF:Ag negatively correlated with FVIII half-life and positively correlated with FVIII clearance. The correlation between VWFpp/VWF:Ag and FVIII half-life was stronger for type non-O patients than for type O patients, suggesting that slower VWF clearance increases FVIII half-life. Patients heterozygous for the CLEC4M rs868875 variant had increased FVIII clearance when compared with individuals homozygous for the reference allele. The CLEC4M variable number of tandem repeat (VNTR) alleles were also associated with the rate of FVIII clearance. When compared with the quartile of patients with the fastest FVIII clearance, the quartile of patients with the slowest FVIII clearance had a decreased frequency of the CLEC4M 5-VNTR. CONCLUSIONS VWF-FVIII binding activity and genetic determinants of VWF clearance are important contributors to FVIII pharmacokinetics in adult patients.
Collapse
Affiliation(s)
- Kenichi Ogiwara
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, ON, Canada
| | - Laura L Swystun
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, ON, Canada
| | - A Simonne Paine
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, ON, Canada
| | - Sylvia Kepa
- Clinical Division of Haematology and Haemostaseology, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Seon Jai Choi
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, ON, Canada
| | - Judit Rejtö
- Clinical Division of Haematology and Haemostaseology, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Wilma Hopman
- Department of Public Health Sciences, Queen's University, Kingston, ON, Canada
| | - Ingrid Pabinger
- Clinical Division of Haematology and Haemostaseology, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - David Lillicrap
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, ON, Canada
| |
Collapse
|
36
|
O'Donnell JS. Toward Personalized Treatment for Patients with Low von Willebrand Factor and Quantitative von Willebrand Disease. Semin Thromb Hemost 2021; 47:192-200. [PMID: 33636750 DOI: 10.1055/s-0041-1722864] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The biological mechanisms involved in the pathogenesis of type 2 and type 3 von Willebrand disease (VWD) have been studied extensively. In contrast, although accounting for the majority of VWD cases, the pathobiology underlying partial quantitative VWD has remained somewhat elusive. However, important insights have been attained following several recent cohort studies that have investigated mechanisms in patients with type 1 VWD and low von Willebrand factor (VWF), respectively. These studies have demonstrated that reduced plasma VWF levels may result from either (1) decreased VWF biosynthesis and/or secretion in endothelial cells and (2) pathological increased VWF clearance. In addition, it has become clear that some patients with only mild to moderate reductions in plasma VWF levels in the 30 to 50 IU/dL range may have significant bleeding phenotypes. Importantly in these low VWF patients, bleeding risk fails to correlate with plasma VWF levels and inheritance is typically independent of the VWF gene. Although plasma VWF levels may increase to > 50 IU/dL with progressive aging or pregnancy in these subjects, emerging data suggest that this apparent normalization in VWF levels does not necessarily equate to a complete correction in bleeding phenotype in patients with partial quantitative VWD. In this review, these recent advances in our understanding of quantitative VWD pathogenesis are discussed. Furthermore, the translational implications of these emerging findings are considered, particularly with respect to designing personalized treatment plans for VWD patients undergoing elective procedures.
Collapse
Affiliation(s)
- James S O'Donnell
- Irish Centre for Vascular Biology, School of Pharmacy & Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, Ireland.,National Coagulation Centre, St. James's Hospital, Dublin, Ireland.,National Children's Research Centre, Our Lady's Children's Hospital at Crumlin, Dublin, Ireland
| |
Collapse
|
37
|
Manderstedt E, Lind-Halldén C, Lethagen S, Halldén C. Common and Rare Variants in Genes Associated with von Willebrand Factor Level Variation: No Accumulation of Rare Variants in Swedish von Willebrand Disease Patients. TH OPEN 2020; 4:e322-e331. [PMID: 33145474 PMCID: PMC7603419 DOI: 10.1055/s-0040-1718885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 09/15/2020] [Indexed: 10/31/2022] Open
Abstract
Genome-wide association studies (GWASs) have identified genes that affect plasma von Willebrand factor (VWF) levels. ABO showed a strong effect, whereas smaller effects were seen for VWF , STXBP5 , STAB2 , SCARA5 , STX2 , TC2N , and CLEC4M . This study screened comprehensively for both common and rare variants in these eight genes by resequencing their coding sequences in 104 Swedish von Willebrand disease (VWD) patients. The common variants previously associated with the VWF level were all accumulated in the VWD patients compared to three control populations. The strongest effect was detected for blood group O coded for by the ABO gene (71 vs. 38% of genotypes). The other seven VWF level associated alleles were enriched in the VWD population compared to control populations, but the differences were small and not significant. The sequencing detected a total of 146 variants in the eight genes. Excluding 70 variants in VWF , 76 variants remained. Of the 76 variants, 54 had allele frequencies > 0.5% and have therefore been investigated for their association with the VWF level in previous GWAS. The remaining 22 variants with frequencies < 0.5% are less likely to have been evaluated previously. PolyPhen2 classified 3 out of the 22 variants as probably or possibly damaging (two in STAB2 and one in STX2 ); the others were either synonymous or benign. No accumulation of low frequency (0.05-0.5%) or rare variants (<0.05%) in the VWD population compared to the gnomAD (Genome Aggregation Database) population was detected. Thus, rare variants in these genes do not contribute to the low VWF levels observed in VWD patients.
Collapse
Affiliation(s)
- Eric Manderstedt
- Department of Environmental Science and Bioscience, Kristianstad University, Kristianstad, Sweden
| | - Christina Lind-Halldén
- Department of Environmental Science and Bioscience, Kristianstad University, Kristianstad, Sweden
| | - Stefan Lethagen
- Department for Coagulation Disorders, University Hospital, Malmö, Sweden.,National Hemophilia Center, Copenhagen University Hospital-Rigshospitalet, Copenhagen, Denmark.,Sobi, Stockholm, Sweden
| | - Christer Halldén
- Department of Environmental Science and Bioscience, Kristianstad University, Kristianstad, Sweden
| |
Collapse
|
38
|
Michels A, Dwyer CN, Mewburn J, Nesbitt K, Kawecki C, Lenting P, Swystun LL, Lillicrap D. von Willebrand Factor Is a Critical Mediator of Deep Vein Thrombosis in a Mouse Model of Diet-Induced Obesity. Arterioscler Thromb Vasc Biol 2020; 40:2860-2874. [PMID: 32967458 DOI: 10.1161/atvbaha.120.314690] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
OBJECTIVE Obesity is characterized by chronic low-grade inflammation and consequentially a hypercoagulable state, associating with an increased incidence of venous thromboembolism. Increased VWF (von Willebrand factor) plasma concentration and procoagulant function are independent risk factors for venous thromboembolism and are elevated in obese patients. Here, we explore the pathobiological role of VWF in obesity-associated venous thrombosis using murine models. Approach and Results: We first showed that diet-induced obese mice have increased VWF plasma levels and FVIII (factor VIII) activity compared with littermate controls. Elevated VWF levels appeared to be because of both increased synthesis and impaired clearance. Diet-induced obesity-associated venous thrombosis was assessed using the inferior vena cava-stenosis model of deep vein thrombosis. Diet-induced obese mice developed larger venous thrombi that were rich in VWF, erythrocytes, and leukocytes. Administering a polyclonal anti-VWF antibody or an anti-VWF A1 domain nanobody was protective against obesity-mediated thrombogenicity. Delayed administration (3 hours post-inferior vena cava stenosis) similarly reduced thrombus weight in diet-induced obese mice. CONCLUSIONS This study demonstrates the critical role of VWF in the complex, thrombo-inflammatory state of obesity. It adds to the growing rationale for targeting VWF-specific interactions in thrombotic disease.
Collapse
Affiliation(s)
- Alison Michels
- Department of Pathology and Molecular Medicine (A.M., C.N.D., K.N., L.L.S., D.L.), Queen's University, Kingston, ON, Canada
| | - Courtney N Dwyer
- Department of Pathology and Molecular Medicine (A.M., C.N.D., K.N., L.L.S., D.L.), Queen's University, Kingston, ON, Canada
| | - Jeffrey Mewburn
- Cancer Research Institute (J.M.), Queen's University, Kingston, ON, Canada
| | - Kate Nesbitt
- Department of Pathology and Molecular Medicine (A.M., C.N.D., K.N., L.L.S., D.L.), Queen's University, Kingston, ON, Canada
| | - Charlotte Kawecki
- INSERM U1176, Hémostase Inflammation Thrombose, University Paris-Sud, University Paris-Saclay, Le Kremlin-Bicêtre, France (C.K., P.L.)
| | - Peter Lenting
- INSERM U1176, Hémostase Inflammation Thrombose, University Paris-Sud, University Paris-Saclay, Le Kremlin-Bicêtre, France (C.K., P.L.)
| | - Laura L Swystun
- Department of Pathology and Molecular Medicine (A.M., C.N.D., K.N., L.L.S., D.L.), Queen's University, Kingston, ON, Canada
| | - David Lillicrap
- Department of Pathology and Molecular Medicine (A.M., C.N.D., K.N., L.L.S., D.L.), Queen's University, Kingston, ON, Canada
| |
Collapse
|
39
|
A collapse for venous thromboembolism. Blood 2020; 136:523-524. [DOI: 10.1182/blood.2020006457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
40
|
Desch KC, Ozel AB, Halvorsen M, Jacobi PM, Golden K, Underwood M, Germain M, Tregouet DA, Reitsma PH, Kearon C, Mokry L, Richards JB, Williams F, Li JZ, Goldstein D, Ginsburg D. Whole-exome sequencing identifies rare variants in STAB2 associated with venous thromboembolic disease. Blood 2020; 136:533-541. [PMID: 32457982 PMCID: PMC7393257 DOI: 10.1182/blood.2019004161] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 04/12/2020] [Indexed: 12/13/2022] Open
Abstract
Deep vein thrombosis and pulmonary embolism, collectively defined as venous thromboembolism (VTE), are the third leading cause of cardiovascular death in the United States. Common genetic variants conferring increased varying degrees of VTE risk have been identified by genome-wide association studies (GWAS). Rare mutations in the anticoagulant genes PROC, PROS1 and SERPINC1 result in perinatal lethal thrombosis in homozygotes and markedly increased VTE risk in heterozygotes. However, currently described VTE variants account for an insufficient portion of risk to be routinely used for clinical decision making. To identify new rare VTE risk variants, we performed a whole-exome study of 393 individuals with unprovoked VTE and 6114 controls. This study identified 4 genes harboring an excess number of rare damaging variants in patients with VTE: PROS1, STAB2, PROC, and SERPINC1. At STAB2, 7.8% of VTE cases and 2.4% of controls had a qualifying rare variant. In cell culture, VTE-associated variants of STAB2 had a reduced surface expression compared with reference STAB2. Common variants in STAB2 have been previously associated with plasma von Willebrand factor and coagulation factor VIII levels in GWAS, suggesting that haploinsufficiency of stabilin-2 may increase VTE risk through elevated levels of these procoagulants. In an independent cohort, we found higher von Willebrand factor levels and equivalent propeptide levels in individuals with rare STAB2 variants compared with controls. Taken together, this study demonstrates the utility of gene-based collapsing analyses to identify loci harboring an excess of rare variants with functional connections to a complex thrombotic disease.
Collapse
Affiliation(s)
| | - Ayse B Ozel
- Department of Human Genetics, University of Michigan, Ann Arbor, MI
| | - Matt Halvorsen
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | | | | | | | - Marine Germain
- INSERM UMR_S 1219, Bordeaux Population Health Research Center, University of Bordeaux, Bordeaux, France
| | - David-Alexandre Tregouet
- INSERM UMR_S 1219, Bordeaux Population Health Research Center, University of Bordeaux, Bordeaux, France
| | - Pieter H Reitsma
- Einthoven Laboratory for Experimental Vascular and Regenerative Medicine, Leiden, The Netherlands
| | - Clive Kearon
- Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Lauren Mokry
- Department of Medicine, Human Genetics, Epidemiology and Biostatistics, McGill University, Montreal, QC, Canada
| | - J Brent Richards
- Department of Medicine, Human Genetics, Epidemiology and Biostatistics, McGill University, Montreal, QC, Canada
| | - Frances Williams
- Department of Twin Research and Genetic Epidemiology, Kings College London, London, United Kingdom
| | - Jun Z Li
- Department of Human Genetics, University of Michigan, Ann Arbor, MI
| | - David Goldstein
- Columbia University, Institute for Genomic Medicine, New York, NY; and
| | - David Ginsburg
- Department of Pediatrics and
- Department of Human Genetics, University of Michigan, Ann Arbor, MI
- Department of Internal Medicine, Howard Hughes Medical Institute, University of Michigan, Ann Arbor, MI
| |
Collapse
|
41
|
Pandey E, Nour AS, Harris EN. Prominent Receptors of Liver Sinusoidal Endothelial Cells in Liver Homeostasis and Disease. Front Physiol 2020; 11:873. [PMID: 32848838 PMCID: PMC7396565 DOI: 10.3389/fphys.2020.00873] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 06/29/2020] [Indexed: 12/12/2022] Open
Abstract
Liver sinusoidal endothelial cells (LSECs) are the most abundant non-parenchymal cells lining the sinusoidal capillaries of the hepatic system. LSECs are characterized with numerous fenestrae and lack basement membrane as well as a diaphragm. These unique morphological characteristics of LSECs makes them the most permeable endothelial cells of the mammalian vasculature and aid in regulating flow of macromolecules and small lipid-based structures between sinusoidal blood and parenchymal cells. LSECs have a very high endocytic capacity aided by scavenger receptors (SR), such as SR-A, SR-B (SR-B1 and CD-36), SR-E (Lox-1 and mannose receptors), and SR-H (Stabilins). Other high-affinity receptors for mediating endocytosis include the FcγRIIb, which assist in the antibody-mediated removal of immune complexes. Complemented with intense lysosomal activity, LSECs play a vital role in the uptake and degradation of many blood borne waste macromolecules and small (<280 nm) colloids. Currently, seven Toll-like receptors have been investigated in LSECs, which are involved in the recognition and clearance of pathogen-associated molecular pattern (PAMPs) as well as damage associated molecular pattern (DAMP). Along with other SRs, LSECs play an essential role in maintaining lipid homeostasis with the low-density lipoprotein receptor-related protein-1 (LRP-1), in juxtaposition with hepatocytes. LSECs co-express two surface lectins called L-Specific Intercellular adhesion molecule-3 Grabbing Non-integrin Receptor (L-SIGN) and liver sinusoidal endothelial cell lectin (LSECtin). LSECs also express several adhesion molecules which are involved in the recruitment of leukocytes at the site of inflammation. Here, we review these cell surface receptors as well as other components expressed by LSECs and their functions in the maintenance of liver homeostasis. We further discuss receptor expression and activity and dysregulation associated with the initiation and progression of many liver diseases, such as hepatocellular carcinoma, liver fibrosis, and cirrhosis, alcoholic and non-alcoholic fatty liver diseases and pseudocapillarization with aging.
Collapse
Affiliation(s)
- Ekta Pandey
- Department of Biochemistry, Universityof Nebraska, Lincoln, NE, United States
| | - Aiah S Nour
- Department of Biochemistry, Universityof Nebraska, Lincoln, NE, United States
| | - Edward N Harris
- Department of Biochemistry, Universityof Nebraska, Lincoln, NE, United States
| |
Collapse
|
42
|
New tools to prevent cancer growth and spread: a 'Clever' approach. Br J Cancer 2020; 123:501-509. [PMID: 32595212 PMCID: PMC7434904 DOI: 10.1038/s41416-020-0953-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 05/19/2020] [Accepted: 06/02/2020] [Indexed: 12/12/2022] Open
Abstract
Clever-1 (also known as Stabilin-1 and FEEL-1) is a scavenger receptor expressed on lymphatic endothelial cells, sinusoidal endothelial cells and immunosuppressive monocytes and macrophages. Its role in cancer growth and spread first became evident in Stab1–/– knockout mice, which have smaller primary tumours and metastases. Subsequent studies in mice and humans have shown that immunotherapeutic blockade of Clever-1 can activate T-cell responses, and that this response is mainly mediated by a phenotypic change in macrophages and monocytes from immunosuppressive to pro-inflammatory following Clever-1 inhibition. Analyses of human cancer cohorts have revealed marked associations between the number of Clever-1-positive macrophages and patient outcome. As hardly any reports to date have addressed the role of Clever-1 in immunotherapy resistance and T-cell dysfunction, we performed data mining using several published cancer cohorts, and observed a remarkable correlation between Clever-1 positivity and resistance to immune checkpoint therapies. This result provides impetus and potential for the ongoing clinical trial targeting Clever-1 in solid tumours, which has so far shown a shift towards immune activation when a particular epitope of Clever-1 is blocked.
Collapse
|
43
|
Turecek PL, Johnsen JM, Pipe SW, O'Donnell JS. Biological mechanisms underlying inter-individual variation in factor VIII clearance in haemophilia. Haemophilia 2020; 26:575-583. [PMID: 32596930 PMCID: PMC7496649 DOI: 10.1111/hae.14078] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 05/26/2020] [Indexed: 12/28/2022]
Abstract
Previous studies have highlighted marked inter‐individual variations in factor VIII (FVIII) clearance between patients with haemophilia (PWH). The half‐life of infused FVIII has been reported to vary from as little as 5.3 hours in some adult PWH, up to as long as 28.8 hours in other individuals. These differences in clearance kinetics have been consistently observed using a number of different plasma‐derived and recombinant FVIII products. Furthermore, recent studies have demonstrated that half‐life for extended half‐life (EHL‐) FVIII products also demonstrates significant inter‐patient variation. Since time spent with FVIII trough levels <1% has been shown to be associated with increased bleeding risk in PWH on prophylaxis therapy, this variability in FVIII clearance clearly has major clinical significance. Recent studies have provided significant novel insights into the cellular basis underlying FVIII clearance pathways. In addition, accumulating data have shown that endogenous plasma VWF levels, ABO blood group and age, all play important roles in regulating FVIII half‐life in PWH. Indeed, multiple regression analysis suggests that together these factors account for approximately 34% of the total inter‐individual variation in FVIII clearance observed between subjects with severe haemophilia A. In this review, we consider these and other putative modulators of FVIII half‐life, and discuss the biological mechanisms through which these factors impact upon FVIII clearance in vivo.
Collapse
Affiliation(s)
- Peter L Turecek
- Baxalta Innovations GmbH, A Member of the Takeda Group of Companies, Vienna, Austria
| | - Jill M Johnsen
- Bloodworks Northwest Research Institute, Seattle, WA, USA.,Department of Medicine, University of Washington, Seattle, WA, USA
| | - Steven W Pipe
- Departments of Pediatrics and Pathology, University of Michigan, Ann Arbor, MI, USA
| | - James S O'Donnell
- Haemostasis Research Group, Irish Centre for Vascular Biology, Royal College of Surgeons in Ireland, Dublin, Ireland.,National Children's Research Centre, Our Lady's Children's Hospital, Dublin, Ireland.,National Coagulation Centre, St James's Hospital, Dublin, Ireland
| | | |
Collapse
|
44
|
Shi Q, Carman CV, Chen Y, Sage PT, Xue F, Liang XM, Gilbert GE. Unexpected enhancement of FVIII immunogenicity by endothelial expression in lentivirus-transduced and transgenic mice. Blood Adv 2020; 4:2272-2285. [PMID: 32453842 PMCID: PMC7252558 DOI: 10.1182/bloodadvances.2020001468] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 04/24/2020] [Indexed: 12/16/2022] Open
Abstract
Factor VIII (FVIII) replacement therapy for hemophilia A is complicated by development of inhibitory antibodies (inhibitors) in ∼30% of patients. Because endothelial cells (ECs) are the primary physiologic expression site, we probed the therapeutic potential of genetically restoring FVIII expression selectively in ECs in hemophilia A mice (FVIIInull). Expression of FVIII was driven by the Tie2 promoter in the context of lentivirus (LV)-mediated in situ transduction (T2F8LV) or embryonic stem cell-mediated transgenesis (T2F8Tg). Both endothelial expression approaches were associated with a strikingly robust immune response. Following in situ T2F8LV-mediated EC transduction, all FVIIInull mice developed inhibitors but had no detectable plasma FVIII. In the transgenic approach, the T2F8Tg mice had normalized plasma FVIII levels, but showed strong sensitivity to developing an FVIII immune response upon FVIII immunization. A single injection of FVIII with incomplete Freund adjuvant led to high titers of inhibitors and reduction of plasma FVIII to undetectable levels. Because ECs are putative major histocompatibility complex class II (MHCII)-expressing nonhematopoietic, "semiprofessional" antigen-presenting cells (APCs), we asked whether they might directly influence the FVIII immune responses. Imaging and flow cytometric studies confirmed that both murine and human ECs express MHCII and efficiently bind and take up FVIII protein in vitro. Moreover, microvascular ECs preconditioned ex vivo with inflammatory cytokines could functionally present exogenously taken-up FVIII to previously primed CD4+/CXCR5+ T follicular helper (Tfh) cells to drive FVIII-specific proliferation. Our results show an unanticipated immunogenicity of EC-expressed FVIII and suggest a context-dependent role for ECs in the regulation of inhibitors as auxiliary APCs for Tfh cells.
Collapse
Affiliation(s)
- Qizhen Shi
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI
- Blood Research Institute, Versiti Wisconsin, Milwaukee, WI
- Children's Research Institute, Children's Wisconsin, Milwaukee, WI
- Midwest Athletes Against Childhood Cancer Fund Research Center, Milwaukee, WI
| | - Christopher V Carman
- Molecular and Integrative Physiological Sciences Program, Harvard School of Public Health, Boston, MA
| | - Yingyu Chen
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI
- Blood Research Institute, Versiti Wisconsin, Milwaukee, WI
| | - Peter T Sage
- Renal Division, Transplant Research Center, Brigham and Women's Hospital and Harvard Medical School, Boston, MA; and
| | - Feng Xue
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI
- Blood Research Institute, Versiti Wisconsin, Milwaukee, WI
| | - Xin M Liang
- Department of Medicine, Veterans Affairs Boston Healthcare System and Harvard Medical School, Boston, MA
| | - Gary E Gilbert
- Department of Medicine, Veterans Affairs Boston Healthcare System and Harvard Medical School, Boston, MA
| |
Collapse
|
45
|
Harris EN, Baker E. Role of the Hyaluronan Receptor, Stabilin-2/HARE, in Health and Disease. Int J Mol Sci 2020; 21:E3504. [PMID: 32429122 PMCID: PMC7279005 DOI: 10.3390/ijms21103504] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 05/08/2020] [Accepted: 05/14/2020] [Indexed: 12/12/2022] Open
Abstract
Stabilin-2/HARE is the primary clearance receptor for circulating hyaluronan (HA), a polysaccharide found in the extracellular matrix (ECM) of metazoans. HA has many biological functions including joint lubrication, ocular turgor pressure, skin elasticity and hydration, cell motility, and intercellular signaling, among many others. The regulatory system for HA content in the tissues, lymphatics, and circulatory systems is due, in part, to Stabilin-2/HARE. The activity of this receptor was discovered about 40 years ago (early 1980s), cloned in the mid-1990s, and has been characterized since then. Here, we discuss the overall domain organization of this receptor and how it correlates to ligand binding, cellular signaling, and its role in known physiological disorders such as cancer.
Collapse
Affiliation(s)
- Edward N. Harris
- Department of Biochemistry, University of Nebraska, 1901 Vine St., Lincoln, NE 68588, USA;
| | | |
Collapse
|
46
|
Xiang M, Grosso RA, Takeda A, Pan J, Bekkhus T, Brulois K, Dermadi D, Nordling S, Vanlandewijck M, Jalkanen S, Ulvmar MH, Butcher EC. A Single-Cell Transcriptional Roadmap of the Mouse and Human Lymph Node Lymphatic Vasculature. Front Cardiovasc Med 2020; 7:52. [PMID: 32426372 PMCID: PMC7204639 DOI: 10.3389/fcvm.2020.00052] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Accepted: 03/18/2020] [Indexed: 01/08/2023] Open
Abstract
Single-cell transcriptomics promise to revolutionize our understanding of the vasculature. Emerging computational methods applied to high-dimensional single-cell data allow integration of results between samples and species and illuminate the diversity and underlying developmental and architectural organization of cell populations. Here, we illustrate these methods in the analysis of mouse lymph node (LN) lymphatic endothelial cells (LEC) at single-cell resolution. Clustering identifies five well-delineated subsets, including two medullary sinus subsets not previously recognized as distinct. Nearest neighbor alignments in trajectory space position the major subsets in a sequence that recapitulates the known features and suggests novel features of LN lymphatic organization, providing a transcriptional map of the lymphatic endothelial niches and of the transitions between them. Differences in gene expression reveal specialized programs for (1) subcapsular ceiling endothelial interactions with the capsule connective tissue and cells; (2) subcapsular floor regulation of lymph borne cell entry into the LN parenchyma and antigen presentation; and (3) pathogen interactions and (4) LN remodeling in distinct medullary subsets. LEC of the subcapsular sinus floor and medulla, which represent major sites of cell entry and exit from the LN parenchyma respectively, respond robustly to oxazolone inflammation challenge with enriched signaling pathways that converge on both innate and adaptive immune responses. Integration of mouse and human single-cell profiles reveals a conserved cross-species pattern of lymphatic vascular niches and gene expression, as well as specialized human subsets and genes unique to each species. The examples provided demonstrate the power of single-cell analysis in elucidating endothelial cell heterogeneity, vascular organization, and endothelial cell responses. We discuss the findings from the perspective of LEC functions in relation to niche formations in the unique stromal and highly immunological environment of the LN.
Collapse
Affiliation(s)
- Menglan Xiang
- Laboratory of Immunology and Vascular Biology, Department of Pathology, Stanford University School of Medicine, Stanford, CA, United States
- Palo Alto Veterans Institute for Research, Palo Alto, CA, United States
- The Center for Molecular Biology and Medicine, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, United States
| | - Rubén Adrián Grosso
- The Beijer Laboratory, Department Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Akira Takeda
- MediCity Research Laboratory and Institute of Biomedicine, University of Turku, Turku, Finland
| | - Junliang Pan
- Palo Alto Veterans Institute for Research, Palo Alto, CA, United States
- The Center for Molecular Biology and Medicine, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, United States
| | - Tove Bekkhus
- The Beijer Laboratory, Department Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Kevin Brulois
- Palo Alto Veterans Institute for Research, Palo Alto, CA, United States
- The Center for Molecular Biology and Medicine, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, United States
| | - Denis Dermadi
- Laboratory of Immunology and Vascular Biology, Department of Pathology, Stanford University School of Medicine, Stanford, CA, United States
- Palo Alto Veterans Institute for Research, Palo Alto, CA, United States
| | - Sofia Nordling
- Laboratory of Immunology and Vascular Biology, Department of Pathology, Stanford University School of Medicine, Stanford, CA, United States
- Palo Alto Veterans Institute for Research, Palo Alto, CA, United States
- The Center for Molecular Biology and Medicine, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, United States
| | - Michael Vanlandewijck
- The Beijer Laboratory, Department Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
- Karolinska Institutet/AstraZeneca Integrated Cardio Metabolic Centre (KI/AZ ICMC), Stockholm, Sweden
| | - Sirpa Jalkanen
- MediCity Research Laboratory and Institute of Biomedicine, University of Turku, Turku, Finland
| | - Maria H. Ulvmar
- The Beijer Laboratory, Department Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Eugene C. Butcher
- Laboratory of Immunology and Vascular Biology, Department of Pathology, Stanford University School of Medicine, Stanford, CA, United States
- Palo Alto Veterans Institute for Research, Palo Alto, CA, United States
- The Center for Molecular Biology and Medicine, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, United States
| |
Collapse
|
47
|
Cormier M, Batty P, Tarrant J, Lillicrap D. Advances in knowledge of inhibitor formation in severe haemophilia A. Br J Haematol 2020; 189:39-53. [DOI: 10.1111/bjh.16377] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Matthew Cormier
- Department of Pathology and Molecular Medicine Richardson Laboratory Queen’s University Kingston ON Canada
| | - Paul Batty
- Department of Pathology and Molecular Medicine Richardson Laboratory Queen’s University Kingston ON Canada
| | - Julie Tarrant
- Department of Pathology and Molecular Medicine Richardson Laboratory Queen’s University Kingston ON Canada
| | - David Lillicrap
- Department of Pathology and Molecular Medicine Richardson Laboratory Queen’s University Kingston ON Canada
| |
Collapse
|
48
|
Danoy M, Poulain S, Koui Y, Tauran Y, Scheidecker B, Kido T, Miyajima A, Sakai Y, Plessy C, Leclerc E. Transcriptome profiling of hiPSC-derived LSECs with nanoCAGE. Mol Omics 2020; 16:138-146. [PMID: 31989141 DOI: 10.1039/c9mo00135b] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Liver Sinusoidal Endothelial Cells (LSECs) are an important component of the liver as they compose the microvasculature which allows the supply of oxygen, blood, and nutrients. However, maintenance of these cells in vitro remains challenging as they tend to rapidly lose some of their characteristics such as fenestration or as their immortalized counterparts present poor characteristics. In this work, human induced pluripotent stem cells (hiPSCs) have been differentiated toward an LSEC phenotype. After differentiation, the RNA quantification allowed demonstration of high expression of specific vascular markers (CD31, CD144, and STAB2). Immunostaining performed on the cells was found to be positive for both Stabilin-1 and Stabilin-2. Whole transcriptome analysis performed with the nanoCAGE method further confirmed the overall vascular commitment of the cells. The gene expression profile revealed the upregulation of the APLN, LYVE1, VWF, ESAM and ANGPT2 genes while VEGFA appeared to be downregulated. Analysis of promoter motif activities highlighted several transcription factors (TFs) of interest in LSECs (IRF2, ERG, MEIS2, SPI1, IRF7, WRNIP1, HIC2, NFIX_NFIB, BATF, and PATZ1). Based on this investigation, we compiled the regulatory network involving the relevant TFs, their target genes as well as their related signaling pathways. The proposed hiPSC-derived LSEC model and its regulatory network were then confirmed by comparing the experimental data to primary human LSEC reference datasets. Thus, the presented model appears as a promising tool to generate more complex in vitro liver multi-cellular tissues.
Collapse
Affiliation(s)
- Mathieu Danoy
- CNRS UMI 2820, Laboratory for Integrated Micro Mechatronic Systems, Institute of Industrial Science, University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Lacroix-Desmazes S, Voorberg J, Lillicrap D, Scott DW, Pratt KP. Tolerating Factor VIII: Recent Progress. Front Immunol 2020; 10:2991. [PMID: 31998296 PMCID: PMC6965068 DOI: 10.3389/fimmu.2019.02991] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Accepted: 12/05/2019] [Indexed: 02/02/2023] Open
Abstract
Development of neutralizing antibodies against biotherapeutic agents administered to prevent or treat various clinical conditions is a longstanding and growing problem faced by patients, medical providers and pharmaceutical companies. The hemophilia A community has deep experience with attempting to manage such deleterious immune responses, as the lifesaving protein drug factor VIII (FVIII) has been in use for decades. Hemophilia A is a bleeding disorder caused by genetic mutations that result in absent or dysfunctional FVIII. Prophylactic treatment consists of regular intravenous FVIII infusions. Unfortunately, 1/4 to 1/3 of patients develop neutralizing anti-FVIII antibodies, referred to clinically as “inhibitors,” which result in a serious bleeding diathesis. Until recently, the only therapeutic option for these patients was “Immune Tolerance Induction,” consisting of intensive FVIII administration, which is extraordinarily expensive and fails in ~30% of cases. There has been tremendous recent progress in developing novel potential clinical alternatives for the treatment of hemophilia A, ranging from encouraging results of gene therapy trials, to use of other hemostatic agents (either promoting coagulation or slowing down anti-coagulant or fibrinolytic pathways) to “bypass” the need for FVIII or supplement FVIII replacement therapy. Although these approaches are promising, there is widespread agreement that preventing or reversing inhibitors remains a high priority. Risk profiles of novel therapies are still unknown or incomplete, and FVIII will likely continue to be considered the optimal hemostatic agent to support surgery and manage trauma, or to combine with other therapies. We describe here recent exciting studies, most still pre-clinical, that address FVIII immunogenicity and suggest novel interventions to prevent or reverse inhibitor development. Studies of FVIII uptake, processing and presentation on antigen-presenting cells, epitope mapping, and the roles of complement, heme, von Willebrand factor, glycans, and the microbiome in FVIII immunogenicity are elucidating mechanisms of primary and secondary immune responses and suggesting additional novel targets. Promising tolerogenic therapies include development of FVIII-Fc fusion proteins, nanoparticle-based therapies, oral tolerance, and engineering of regulatory or cytotoxic T cells to render them FVIII-specific. Importantly, these studies are highly applicable to other scenarios where establishing immune tolerance to a defined antigen is a clinical priority.
Collapse
Affiliation(s)
| | - Jan Voorberg
- Sanquin Research and Landsteiner Laboratory, Department of Molecular and Cellular Hemostasis, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - David Lillicrap
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, ON, Canada
| | - David W Scott
- Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Kathleen P Pratt
- Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| |
Collapse
|
50
|
Abstract
Von Willebrand factor (VWF) and coagulation factor VIII (FVIII) circulate as a complex in plasma and have a major role in the hemostatic system. VWF has a dual role in hemostasis. It promotes platelet adhesion by anchoring the platelets to the subendothelial matrix of damaged vessels and it protects FVIII from proteolytic degradation. Moreover, VWF is an acute phase protein that has multiple roles in vascular inflammation and is massively secreted from Weibel-Palade bodies upon endothelial cell activation. Activated FVIII on the other hand, together with coagulation factor IX forms the tenase complex, an essential feature of the propagation phase of coagulation on the surface of activated platelets. VWF deficiency, either quantitative or qualitative, results in von Willebrand disease (VWD), the most common bleeding disorder. The deficiency of FVIII is responsible for Hemophilia A, an X-linked bleeding disorder. Here, we provide an overview on the role of the VWF-FVIII interaction in vascular physiology.
Collapse
Affiliation(s)
- Klytaimnistra Kiouptsi
- Center for Thrombosis and Hemostasis (CTH), University Medical Center Mainz, Langenbeckstrasse 1, Building 708, 55131, Mainz, Germany
| | - Christoph Reinhardt
- Center for Thrombosis and Hemostasis (CTH), University Medical Center Mainz, Langenbeckstrasse 1, Building 708, 55131, Mainz, Germany.
- German Center for Cardiovascular Research (DZHK), Partner Site RheinMain, Mainz, Germany.
| |
Collapse
|