1
|
Ma J, Chen C, Wang N, Fang T, Liu Y, He P, Dong W. Identification of Senescence-Related Genes for the Prediction of Ulcerative Colitis Based on Interpretable Machine Learning Models. J Inflamm Res 2025; 18:3431-3447. [PMID: 40093957 PMCID: PMC11908404 DOI: 10.2147/jir.s508396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Accepted: 03/05/2025] [Indexed: 03/19/2025] Open
Abstract
Background Cellular senescence, a hallmark of aging, significantly contributes to the pathology of ulcerative colitis (UC). Despite this, the role of senescence-related genes in UC remains largely undefined. This study seeks to clarify the impact of cellular senescence on UC by identifying key senescence-related genes and developing diagnostic models with potential clinical utility. Methods Clinical data and gene expression profiles were obtained from the Gene Expression Omnibus (GEO) database. Senescence-related differentially expressed genes (sene-DEGs) between patients with UC and healthy controls were identified using various bioinformatics techniques. Functional enrichment and immune infiltration analyses were performed to understand subtype characteristics derived from sene-DEGs through consensus clustering. Machine learning algorithms were employed to select feature genes from sene-DEGs, and their expression was validated across multiple independent datasets and human specimens. A nomogram incorporating these feature genes was created and assessed, with its diagnostic performance evaluated using receiver operating characteristic (ROC) analysis on independent datasets. Results Fourteen senescence-related differential genes were identified between patients with UC and healthy controls. These genes enabled the classification of patients with UC into molecular subtypes via unsupervised clustering. ABCB1 and LCN2 emerged as central hub genes through machine learning and feature importance analysis. ROC analysis verified their diagnostic value across various datasets. Validation in independent datasets and human specimens supported the bioinformatics findings. Furthermore, the expression levels of ABCB1 and LCN2 showed significant associations with immune cell profiles. The logistic regression (LR) model based on these genes demonstrated accurate UC prediction, as confirmed by ROC curve analysis. The nomogram model, constructed with feature genes, exhibited outstanding prediction capabilities, supported by DCA, C index, and calibration curve assessments. Conclusion This integrated bioinformatics approach identified ABCB1 and LCN2 as significant biomarkers associated with cellular senescence. These findings enhance the understanding of cellular senescence in UC pathogenesis and propose its potential as a valuable diagnostic biomarker.
Collapse
Affiliation(s)
- Jingjing Ma
- Department of Geriatric, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, People's Republic of China
| | - Chen Chen
- Department of General Surgery, Renmin Hospital of Wuhan University, Wuhan, People's Republic of China
- General Surgery Laboratory, Renmin Hospital of Wuhan University, Wuhan, People's Republic of China
| | - Nian Wang
- Department of Geriatric, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, People's Republic of China
| | - Ting Fang
- Department of Geriatric, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, People's Republic of China
| | - Yinghui Liu
- Department of Geriatric, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, People's Republic of China
| | - Pengzhan He
- Department of Geriatric, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, People's Republic of China
| | - Weiguo Dong
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, People's Republic of China
| |
Collapse
|
2
|
Yang C, Zhao E, Zhang H, Duan L, Han X, Ding H, Cheng Y, Wang D, Lei X, Diwu Y. Xixin Decoction's novel mechanism for alleviating Alzheimer's disease cognitive dysfunction by modulating amyloid-β transport across the blood-brain barrier to reduce neuroinflammation. Front Pharmacol 2025; 15:1508726. [PMID: 39834810 PMCID: PMC11743276 DOI: 10.3389/fphar.2024.1508726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 12/05/2024] [Indexed: 01/22/2025] Open
Abstract
Purpose Xixin Decoction (XXD) is a classical formula that has been used to effectively treat dementia for over 300 years. Modern clinical studies have demonstrated its significant therapeutic effects in treating Alzheimer's disease (AD) without notable adverse reactions. Nevertheless, the specific mechanisms underlying its efficacy remain to be elucidated. This investigation sought to elucidate XXD's impact on various aspects of AD pathology, including blood-brain barrier (BBB) impairment, neuroinflammatory processes, and amyloid-β (Aβ) deposition, as well as the molecular pathways involved in these effects. Methods In vitro experiments were conducted using hCMEC/D3 and HBVP cell coculture to establish an in vitro blood-brain barrier (BBB) model. BBB damage was induced in this model by 24-h exposure to 1 μg/mL lipopolysaccharide (LPS). After 24, 48, and 72 h of treatment with 10% XXD-medicated serum, the effects of XXD were assessed through Western blotting, RT-PCR, and immunofluorescence techniques. In vivo, SAMP8 mice were administered various doses of XXD via gavage for 8 weeks, including high-dose XXD group (H-XXD) at 5.07 g kg-1·d-1, medium-dose XXD group (M-XXD) at 2.535 g kg-1·d-1, and low-dose XXD group (L-XXD) at 1.2675 g kg-1·d-1. Cognitive function was subsequently evaluated using the Morris water maze test. BBB integrity was evaluated using Evans blue staining, and protein expression levels were analyzed via ELISA, Western blotting, and immunofluorescence. Results In vitro experiments revealed that XXD-containing serum, when cultured for 24, 48, and 72 h, could upregulate the expression of P-gp mRNA and protein, downregulate CB1 protein expression, and upregulate CB2 and Mfsd2a protein expression. In vivo studies demonstrated that XXD improved spatial learning and memory abilities in SAMP8 mice, reduced the amount of Evans blue extravasation in brain tissues, modulated the BBB-associated P-gp/ECS axis, RAGE/LRP1 receptor system, as well as MRP2 and Mfsd2a proteins, and decreased the accumulation of Aβ in the brains of SAMP8 mice. Additionally, XXD upregulated the expression of TREM2, downregulated IBA1, TLR1, TLR2, and CMPK2 expression, and reduced the levels of pro-inflammatory factors NLRP3, NF-κB p65, COX-2, TNF-α, and IL-1β in the hippocampal tissues. Conclusion XXD may exert its effects by regulating the P-gp/ECS axis, the RAGE/LRP1 receptor system, and the expression of MRP2 and Mfsd2a proteins, thereby modulating the transport function of the BBB to expedite the clearance of Aβ, reduce cerebral Aβ accumulation, and consequently inhibit the activation of microglia induced by Aβ aggregation. This process may suppress the activation of the CMPK2/NLRP3 and TLRs/NF-κB pathways, diminish the production of inflammatory cytokines and chemokines, alleviate neuroinflammation associated with microglia in the brain of AD, and ultimately improve AD pathology.
Collapse
Affiliation(s)
- Chaokai Yang
- The First Clinical Medical College of Shaanxi University of Chinese Medicine, Xianyang, China
| | - Enlong Zhao
- The First Clinical Medical College of Shaanxi University of Chinese Medicine, Xianyang, China
| | - Hu Zhang
- The First Clinical Medical College of Shaanxi University of Chinese Medicine, Xianyang, China
| | - Liqi Duan
- The First Clinical Medical College of Shaanxi University of Chinese Medicine, Xianyang, China
| | - Xinyue Han
- The First Clinical Medical College of Shaanxi University of Chinese Medicine, Xianyang, China
| | - Hongli Ding
- The First Clinical Medical College of Shaanxi University of Chinese Medicine, Xianyang, China
| | - Yan Cheng
- The First Clinical Medical College of Shaanxi University of Chinese Medicine, Xianyang, China
| | - Dengkun Wang
- The First Clinical Medical College of Shaanxi University of Chinese Medicine, Xianyang, China
- Key Research Laboratory for Prevention and Treatment of Cerebrospinal diseases, Shaanxi Provincial Administration of Traditional Chinese Medicine, Xianyang, China
- Discipline Innovation Team for Neurodegenerative Diseases of Shaanxi University of Chinese Medicine, Xianyang, China
| | - Xiaojing Lei
- Key Research Laboratory for Prevention and Treatment of Cerebrospinal diseases, Shaanxi Provincial Administration of Traditional Chinese Medicine, Xianyang, China
- Discipline Innovation Team for Neurodegenerative Diseases of Shaanxi University of Chinese Medicine, Xianyang, China
- College of Basic Medicine, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Yongchang Diwu
- Key Research Laboratory for Prevention and Treatment of Cerebrospinal diseases, Shaanxi Provincial Administration of Traditional Chinese Medicine, Xianyang, China
- Discipline Innovation Team for Neurodegenerative Diseases of Shaanxi University of Chinese Medicine, Xianyang, China
- College of Basic Medicine, Shaanxi University of Chinese Medicine, Xianyang, China
| |
Collapse
|
3
|
Lauriola M, Zadora W, Farré R, Meijers B. Intestinal transport of organic food compounds and drugs: A scoping review on the alterations observed in chronic kidney disease. Clin Nutr ESPEN 2024; 64:461-482. [PMID: 39491666 DOI: 10.1016/j.clnesp.2024.10.166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/28/2024] [Accepted: 10/26/2024] [Indexed: 11/05/2024]
Abstract
BACKGROUND AND AIMS Around 850 million people worldwide are affected by chronic kidney disease (CKD). Patients with CKD often develop malnutrition and sarcopenia and changes in the pharmacokinetics of drugs. A reduced kidney function partially explains the prolonged half-life of certain drugs due to decreased renal clearance, which leads to an increased risk of adverse effects. While the intestine plays a fundamental role in this context, a systematic review of the effects of CKD on intestinal transport is lacking. We aimed to systematically summarize all the available evidence on intestinal transport of organic food components (carbohydrates/sugar, proteins/amino acids, fats, vitamins) and drugs (including drug transporters) in CKD. METHODS We conducted a systematic search of all the articles published until the 1st of April 2024, on five databases i.e. Embase, PubMed, Web of Science Core Collection, Cochrane Library, and Scopus. This systematic review was registered on the Open Science Framework (OSF) (osf.io/5e6wb) and was carried out according to the PRISMA 2020 guidelines. RESULTS From 9205 articles identified, 68 met the inclusion criteria. Absorption of organic food compounds seems to be altered, in general, and reduced for vitamins. The expression of intestinal efflux drug transporters may be altered in CKD. CONCLUSIONS Despite alterations in intestinal transport is suggested to be altered in CKD, the lack of recent studies, the paucity of human data and the heterogeneity of the methodologies used underscore the need for more research on the effect of CKD and uremia on intestinal transport.
Collapse
Affiliation(s)
- Mara Lauriola
- Laboratory of Nephrology and Renal Transplantation, Department of Microbiology, Immunology and Transplantation, KU Leuven, Herestraat 49, 3000 Leuven, Belgium; Translational Research Center for Gastrointestinal Disorders (TARGID), Department of Chronic Diseases and Metabolism (CHROMETA), KU Leuven, Herestraat 49, 3000 Leuven, Belgium; Department of Nephrology, UZ Leuven, Herestraat 49, 3000 Leuven, Belgium
| | - Ward Zadora
- Laboratory of Nephrology and Renal Transplantation, Department of Microbiology, Immunology and Transplantation, KU Leuven, Herestraat 49, 3000 Leuven, Belgium; Translational Research Center for Gastrointestinal Disorders (TARGID), Department of Chronic Diseases and Metabolism (CHROMETA), KU Leuven, Herestraat 49, 3000 Leuven, Belgium; Department of Nephrology, UZ Leuven, Herestraat 49, 3000 Leuven, Belgium
| | - Ricard Farré
- Translational Research Center for Gastrointestinal Disorders (TARGID), Department of Chronic Diseases and Metabolism (CHROMETA), KU Leuven, Herestraat 49, 3000 Leuven, Belgium
| | - Björn Meijers
- Laboratory of Nephrology and Renal Transplantation, Department of Microbiology, Immunology and Transplantation, KU Leuven, Herestraat 49, 3000 Leuven, Belgium; Department of Nephrology, UZ Leuven, Herestraat 49, 3000 Leuven, Belgium.
| |
Collapse
|
4
|
Li Y, Li Z, Wang H. Gut dysbiosis of Rana zhenhaiensis tadpoles after lead (Pb) exposure based on integrated analysis of microbiota and gut transcriptome. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 284:116922. [PMID: 39181079 DOI: 10.1016/j.ecoenv.2024.116922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 08/07/2024] [Accepted: 08/20/2024] [Indexed: 08/27/2024]
Abstract
Lead (Pb) is a ubiquitously detected heavy metal pollutant in aquatic ecosystems. Previous studies focused mainly on the response of gut microbiota to Pb stress, with less emphasis on gene expression in intestine, thereby limiting the information about impacts of Pb on intestinal homeostasis in amphibians. Here, microbial community and transcriptional response of intestines in Rana zhenhaiensis tadpoles to Pb exposure were evaluated. Our results showed that 10 μg/L Pb significantly decreased bacterial diversity compared to the controls by the Simpson index. Additionally, 1000 μg/L Pb exposure resulted in a significant reduction in the abundance of Fusobacteriota phylum and Cetobacterium genus but a significant expansion in Hafnia-Obesumbacterium genus. Moreover, transcriptome analysis revealed that about 90 % of the DEGs (8458 out of 9450 DEGs) were down-regulated in 1000 μg/L Pb group, mainly including genes annotated with biological functions in fatty acid degradation, and oxidative phosphorylation, while up-regulated DEGs involved in metabolism of xenobiotics by cytochrome P450. The expression of Gsto1, Gsta5, Gstt4, and Nadph showed strong correlation with the abundance of genera Serratia, Lactococcus, and Hafnia-Obesumbacterium. The findings of this study provide important insights into understanding the influence of Pb on intestinal homeostasis in amphibians.
Collapse
Affiliation(s)
- Yonghui Li
- School of Life Sciences, Luoyang Normal University, Luoyang, Henan 471934, China.
| | - Zizhu Li
- School of Life Sciences, Luoyang Normal University, Luoyang, Henan 471934, China.
| | - Hongyuan Wang
- College of Life Science, Shaanxi Normal University, Xi'an 710119, China.
| |
Collapse
|
5
|
Barker H, Ferraro MJ. Exploring the versatile roles of the endocannabinoid system and phytocannabinoids in modulating bacterial infections. Infect Immun 2024; 92:e0002024. [PMID: 38775488 PMCID: PMC11237442 DOI: 10.1128/iai.00020-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2024] Open
Abstract
The endocannabinoid system (ECS), initially identified for its role in maintaining homeostasis, particularly in regulating brain function, has evolved into a complex orchestrator influencing various physiological processes beyond its original association with the nervous system. Notably, an expanding body of evidence emphasizes the ECS's crucial involvement in regulating immune responses. While the specific role of the ECS in bacterial infections remains under ongoing investigation, compelling indications suggest its active participation in host-pathogen interactions. Incorporating the ECS into the framework of bacterial pathogen infections introduces a layer of complexity to our understanding of its functions. While some studies propose the potential of cannabinoids to modulate bacterial function and immune responses, the outcomes inherently hinge on the specific infection and cannabinoid under consideration. Moreover, the bidirectional relationship between the ECS and the gut microbiota underscores the intricate interplay among diverse physiological processes. The ECS extends its influence far beyond its initial discovery, emerging as a promising therapeutic target across a spectrum of medical conditions, encompassing bacterial infections, dysbiosis, and sepsis. This review comprehensively explores the complex roles of the ECS in the modulation of bacteria, the host's response to bacterial infections, and the dynamics of the microbiome. Special emphasis is placed on the roles of cannabinoid receptor types 1 and 2, whose signaling intricately influences immune cell function in microbe-host interactions.
Collapse
Affiliation(s)
- Hailey Barker
- Microbiology and Cell Science Department, IFAS, University of Florida, Gainesville, Florida, USA
| | - Mariola J. Ferraro
- Microbiology and Cell Science Department, IFAS, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
6
|
Bradley E, Haran J. The human gut microbiome and aging. Gut Microbes 2024; 16:2359677. [PMID: 38831607 PMCID: PMC11152108 DOI: 10.1080/19490976.2024.2359677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 05/21/2024] [Indexed: 06/05/2024] Open
Abstract
The composition of the human gut microbiome has been observed to change over the course of an individual's life. From birth, it is shaped by mode of delivery, diet, environmental exposures, geographic location, exposures to medications, and by aging itself. Here, we present a narrative review of the gut microbiome across the lifespan with a focus on its impacts on aging and age-related diseases in humans. We will describe how it is shaped, and features of the gut microbiome that have been associated with diseases at different phases of life and how this can adversely affect healthy aging. Across the lifespan, and especially in old age, a diverse microbiome that includes organisms suspected to produce anti-inflammatory metabolites such as short-chain fatty acids, has been reported to be associated with healthy aging. These findings have been remarkably consistent across geographic regions of the world suggesting that they could be universal features of healthy aging across all cultures and genetic backgrounds. Exactly how these features of the microbiome affect biologic processes associated with aging thus promoting healthy aging will be crucial to targeting the gut microbiome for interventions that will support health and longevity.
Collapse
Affiliation(s)
- Evan Bradley
- UMass Chan Medical School, Department of Emergency Medicine and Department of Microbiology and Physiologic Systems, Program in Microbiome Dynamics, Worcester, MA, USA
| | - John Haran
- UMass Chan Medical School, Department of Emergency Medicine and Department of Microbiology and Physiologic Systems, Program in Microbiome Dynamics, Worcester, MA, USA
| |
Collapse
|
7
|
Liang C, Pereira R, Zhang Y, Rojas OL. Gut Microbiome in Alzheimer's Disease: from Mice to Humans. Curr Neuropharmacol 2024; 22:2314-2329. [PMID: 39403057 PMCID: PMC11451315 DOI: 10.2174/1570159x22666240308090741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/24/2024] [Accepted: 02/23/2024] [Indexed: 10/19/2024] Open
Abstract
Alzheimer's disease (AD) is the most prevalent type of dementia, but its etiopathogenesis is not yet fully understood. Recent preclinical studies and clinical evidence indicate that changes in the gut microbiome could potentially play a role in the accumulation of amyloid beta. However, the relationship between gut dysbiosis and AD is still elusive. In this review, the potential impact of the gut microbiome on AD development and progression is discussed. Pre-clinical and clinical literature exploring changes in gut microbiome composition is assessed, which can contribute to AD pathology including increased amyloid beta deposition and cognitive impairment. The gut-brain axis and the potential involvement of metabolites produced by the gut microbiome in AD are also highlighted. Furthermore, the potential of antibiotics, prebiotics, probiotics, fecal microbiota transplantation, and dietary interventions as complementary therapies for the management of AD is summarized. This review provides valuable insights into potential therapeutic strategies to modulate the gut microbiome in AD.
Collapse
Affiliation(s)
- Chang Liang
- Department of Gastroenterology, West China Hospital of Sichuan University, Chengdu, China
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Resel Pereira
- Krembil Research Institute, University Health Network, Toronto, ON, Canada
| | - Yan Zhang
- Department of Gastroenterology, West China Hospital of Sichuan University, Chengdu, China
| | - Olga L. Rojas
- Department of Immunology, University of Toronto, Toronto, ON, Canada
- Krembil Research Institute, University Health Network, Toronto, ON, Canada
| |
Collapse
|
8
|
Thapa D, Warne LN, Falasca M. Pharmacohistory of Cannabis Use-A New Possibility in Future Drug Development for Gastrointestinal Diseases. Int J Mol Sci 2023; 24:14677. [PMID: 37834122 PMCID: PMC10572150 DOI: 10.3390/ijms241914677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 09/21/2023] [Accepted: 09/25/2023] [Indexed: 10/15/2023] Open
Abstract
Humans have employed cannabis for multiple uses including medicine, recreation, food, and fibre. The various components such as roots, flowers, seeds, and leaves have been utilized to alleviate pain, inflammation, anxiety, and gastrointestinal disorders like nausea, vomiting, diarrhoea, and inflammatory bowel diseases (IBDs). It has occupied a significant space in ethnomedicines across cultures and religions. Despite multi-dimensional uses, the global prohibition of cannabis by the USA through the introduction of the Marijuana Tax Act in 1937 led to prejudice about the perceived risks of cannabis, overshadowing its medicinal potential. Nevertheless, the discovery of tetrahydrocannabinol (THC), the primary psychoactive compound in cannabis, and the endocannabinoid system renewed scientific interest in understanding the role of cannabis in modulating different conditions, including gastrointestinal disorders. Preparations combining cannabidiol and THC have shown promise in mitigating gut symptoms through anti-inflammatory and motility-enhancing effects. This review revisits the ethnomedicinal use of cannabis in gastrointestinal diseases and emphasizes the need for further research to determine optimal dosages, formulations, and safety profiles of cannabis-based medicines. It also underscores the future potential of cannabinoid-based therapies by leveraging the role of the expanded endocannabinoid system, an endocannabinoidome, in the modulation of gastrointestinal ailments.
Collapse
Affiliation(s)
- Dinesh Thapa
- Metabolic Signalling Group, Curtin Medical School, Curtin Health Innovation Research Institute, Curtin University, Perth, WA 6102, Australia; (D.T.); (L.N.W.)
| | - Leon N. Warne
- Metabolic Signalling Group, Curtin Medical School, Curtin Health Innovation Research Institute, Curtin University, Perth, WA 6102, Australia; (D.T.); (L.N.W.)
- Little Green Pharma, West Perth, WA 6872, Australia
| | - Marco Falasca
- Metabolic Signalling Group, Curtin Medical School, Curtin Health Innovation Research Institute, Curtin University, Perth, WA 6102, Australia; (D.T.); (L.N.W.)
| |
Collapse
|
9
|
Brierley SM, Greenwood-Van Meerveld B, Sarnelli G, Sharkey KA, Storr M, Tack J. Targeting the endocannabinoid system for the treatment of abdominal pain in irritable bowel syndrome. Nat Rev Gastroenterol Hepatol 2023; 20:5-25. [PMID: 36168049 DOI: 10.1038/s41575-022-00682-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/16/2022] [Indexed: 12/27/2022]
Abstract
The management of visceral pain in patients with disorders of gut-brain interaction, notably irritable bowel syndrome, presents a considerable clinical challenge, with few available treatment options. Patients are increasingly using cannabis and cannabinoids to control abdominal pain. Cannabis acts on receptors of the endocannabinoid system, an endogenous system of lipid mediators that regulates gastrointestinal function and pain processing pathways in health and disease. The endocannabinoid system represents a logical molecular therapeutic target for the treatment of pain in irritable bowel syndrome. Here, we review the physiological and pathophysiological functions of the endocannabinoid system with a focus on the peripheral and central regulation of gastrointestinal function and visceral nociception. We address the use of cannabinoids in pain management, comparing them to other treatment modalities, including opioids and neuromodulators. Finally, we discuss emerging therapeutic candidates targeting the endocannabinoid system for the treatment of pain in irritable bowel syndrome.
Collapse
Affiliation(s)
- Stuart M Brierley
- Visceral Pain Research Group, College of Medicine and Public Health, Flinders Health and Medical Research Institute, Flinders University, Bedford Park, South Australia, Australia
- Hopwood Centre for Neurobiology, Lifelong Health, South Australian Health and Medical Research Institute, North Terrace, Adelaide, South Australia, Australia
| | | | - Giovanni Sarnelli
- Department of Clinical Medicine and Surgery, University of Naples "Federico II", Naples, Italy
| | - Keith A Sharkey
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.
- Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.
| | - Martin Storr
- Department of Medicine, Ludwig-Maximilians University, Munich, Germany
- Zentrum für Endoskopie, Starnberg, Germany
| | - Jan Tack
- Translational Research Center for Gastrointestinal Disorders, University of Leuven, Leuven, Belgium
| |
Collapse
|
10
|
Daikohara K, Akanuma SI, Kubo Y, Hosoya KI. Lipopolysaccharide-Induced Functional Alteration of P-glycoprotein in the Ex Vivo Rat Inner Blood-Retinal Barrier. Int J Mol Sci 2022; 23:ijms232415504. [PMID: 36555148 PMCID: PMC9779076 DOI: 10.3390/ijms232415504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/02/2022] [Accepted: 12/03/2022] [Indexed: 12/13/2022] Open
Abstract
At the inner blood-retinal barrier (BRB), P-glycoprotein (P-gp) contributes to maintaining the homeostasis of substance concentration in the retina by transporting drugs and exogenous toxins from the retina to the circulating blood. Under inflammatory conditions, P-gp activities have been reported to be altered in various tissues. The purpose of this study was to clarify the alterations in P-gp activity at the inner BRB due to lipopolysaccharide (LPS), an inflammatory agent, and the molecular mechanisms of the alterations induced by LPS. Ex vivo P-gp activity was evaluated as luminal accumulation of 7-nitro-2,1,3-benzoxadiazole-cyclosporin A (NBD-CSA), a fluorescent P-gp substrate, in freshly prepared rat retinal capillaries. The luminal NBD-CSA accumulation was significantly decreased in the presence of LPS, indicating that P-gp activity at the inner BRB is reduced by LPS. This LPS-induced attenuation of the luminal NBD-CSA accumulation was abolished by inhibiting toll-like receptor 4 (TLR4), a receptor for LPS. Furthermore, an inhibitor/antagonist of tumor necrosis factor receptor 1, endothelin B receptor, nitric oxide synthase, or protein kinase C (PKC) significantly restored the LPS-induced decrease in the luminal NBD-CSA accumulation. Consequently, it is suggested that the TLR4/PKC pathway is involved in the reduction in P-gp function in the inner BRB by LPS.
Collapse
Affiliation(s)
- Kiyotaka Daikohara
- Department of Pharmaceutics, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | - Shin-ichi Akanuma
- Department of Pharmaceutics, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
- Correspondence: ; Tel.: +81-76-434-7508
| | - Yoshiyuki Kubo
- Laboratory of Drug Disposition and Pharmacokinetics, Faculty of Pharma-Sciences, Teikyo University, Kaga 2-11-1, Tokyo 173-8605, Japan
| | - Ken-ichi Hosoya
- Department of Pharmaceutics, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| |
Collapse
|
11
|
Grigoreva TA, Sagaidak AV, Novikova DS, Tribulovich VG. Implication of ABC transporters in non-proliferative diseases. Eur J Pharmacol 2022; 935:175327. [DOI: 10.1016/j.ejphar.2022.175327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 09/28/2022] [Accepted: 10/12/2022] [Indexed: 11/17/2022]
|
12
|
Kotlyarov S, Kotlyarova A. Clinical Significance of Lipid Transport Function of ABC Transporters in the Innate Immune System. MEMBRANES 2022; 12:1083. [PMID: 36363640 PMCID: PMC9698216 DOI: 10.3390/membranes12111083] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 10/25/2022] [Accepted: 10/28/2022] [Indexed: 06/16/2023]
Abstract
ABC transporters are a large family of proteins that transport a variety of substrates across cell plasma membranes. Because of this, they are involved in many physiological processes. It is of interest to note that many ABC transporters are involved in the transport of various lipids. In addition, this function may be related to the innate immune system. The evidence that ABC transporters are involved in the regulation of the innate immune system through the transport of various substances greatly enhances the understanding of their clinical significance. ABC transporters are involved in the cellular homeostasis of cholesterol as well as in the regulation of its content in lipid rafts. Through these mechanisms, they can regulate the function of membrane proteins, including receptors of the innate immune system. By regulating lipid transport, some members of ABC transporters are involved in phagocytosis. In addition, ABC transporters are involved in the transport of lipopolysaccharide, lipid mediators of inflammation, and perform other functions in the innate immune system.
Collapse
Affiliation(s)
- Stanislav Kotlyarov
- Department of Nursing, Ryazan State Medical University, 390026 Ryazan, Russia
| | - Anna Kotlyarova
- Department of Pharmacy Management and Economics, Ryazan State Medical University, 390026 Ryazan, Russia
| |
Collapse
|
13
|
Tarawneh R, Penhos E. The gut microbiome and Alzheimer's disease: Complex and bidirectional interactions. Neurosci Biobehav Rev 2022; 141:104814. [PMID: 35934087 PMCID: PMC9637435 DOI: 10.1016/j.neubiorev.2022.104814] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 07/16/2022] [Accepted: 08/01/2022] [Indexed: 11/20/2022]
Abstract
Structural and functional alterations to the gut microbiome, referred to as gut dysbiosis, have emerged as potential key mediators of neurodegeneration and Alzheimer disease (AD) pathogenesis through the "gut -brain" axis. Emerging data from animal and clinical studies support an important role for gut dysbiosis in mediating neuroinflammation, central and peripheral immune dysregulation, abnormal brain protein aggregation, and impaired intestinal and brain barrier permeability, leading to neuronal loss and cognitive impairment. Gut dysbiosis has also been shown to directly influence various mechanisms involved in neuronal growth and repair, synaptic plasticity, and memory and learning functions. Aging and lifestyle factors including diet, exercise, sleep, and stress influence AD risk through gut dysbiosis. Furthermore, AD is associated with characteristic gut microbial signatures which offer value as potential markers of disease severity and progression. Together, these findings suggest the presence of a complex bidirectional relationship between AD and the gut microbiome and highlight the utility of gut modulation strategies as potential preventative or therapeutic strategies in AD. We here review the current literature regarding the role of the gut-brain axis in AD pathogenesis and its potential role as a future therapeutic target in AD treatment and/or prevention.
Collapse
Affiliation(s)
- Rawan Tarawneh
- Department of Neurology, Center for Memory and Aging, Alzheimer Disease Research Center, The University of New Mexico, Albuquerque, NM 87106, USA.
| | - Elena Penhos
- College of Medicine, The Ohio State University, Columbus, OH, USA 43210
| |
Collapse
|
14
|
Wang S, Ding Y, Jiang W. CSE/H2S ameliorates colitis in mice via protection of enteric glial cells and inhibition of the RhoA/ROCK pathway. Front Immunol 2022; 13:966881. [PMID: 36189321 PMCID: PMC9520914 DOI: 10.3389/fimmu.2022.966881] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Accepted: 08/26/2022] [Indexed: 11/19/2022] Open
Abstract
The enteric glial cells (EGCs) participate in the homeostasis of the gastrointestinal tract, and RhoA/ROCK signaling pathway plays a vital role in colonic tight junctions. Hydrogen sulfide (H2S) has been reported to alleviate colitis. However, the effect and mechanism of endogenous H2S on colitis remain unclear. This study established a Cystathionine-γ-lyase (CSE) knockout mouse model, a significant source of H2S production in the gut. The role of CSE-produced H2S on EGCs and the RhoA/ROCK signaling pathway was investigated in experimental colitis using CSE knockout (KO) and wild-type (WT) mice. CSE gene knockout animals presented with disease progression, more deteriorated clinical scores, colon shortening, and histological damage. EGCs dysfunction, characterized by decreased expression of the glial fibrillary acidic protein (GFAP), C3, and S100A10, was observed in the colon of WT and KO mice, especially in KO mice. RhoA/ROCK pathway was significantly upregulated in colon of colitis mice, which was more evident in KO mice. Pretreatment with NaHS, an exogenous H2S donor, significantly ameliorated mucosal injury and inhibited the expression of proinflammatory factors. Furthermore, we found that NaHS promoted the transformation of EGCs from “A1” to “A2” type, with decreased expression of C3 and increased expression of S100A10. These findings suggest that CSE/H2S protects mice from colon inflammation, which may be associated with preserving EGCs function by promoting EGCs transformation and inhibiting the RhoA/ROCK pathway.
Collapse
Affiliation(s)
- Song Wang
- Department of Gastroenterology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Yanyu Ding
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Wenjun Jiang
- Department of Gastroenterology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- *Correspondence: Wenjun Jiang,
| |
Collapse
|
15
|
Microbial Metabolites Orchestrate a Distinct Multi-Tiered Regulatory Network in the Intestinal Epithelium That Directs P-Glycoprotein Expression. mBio 2022; 13:e0199322. [PMID: 35968955 PMCID: PMC9426490 DOI: 10.1128/mbio.01993-22] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
P-glycoprotein (P-gp) is a key component of the intestinal epithelium playing a pivotal role in removal of toxins and efflux of endocannabinoids to prevent excessive inflammation and sustain homeostasis. Recent studies revealed butyrate and secondary bile acids, produced by the intestinal microbiome, potentiate the induction of functional P-gp expression. We now aim to determine the molecular mechanism by which this functional microbiome output regulates P-gp. RNA sequencing of intestinal epithelial cells responding to butyrate and secondary bile acids in combination discovered a unique transcriptional program involving multiple pathways that converge on P-gp induction. Using shRNA knockdown and CRISPR/Cas9 knockout cell lines, as well as mouse models, we confirmed the RNA sequencing findings and discovered a role for intestinal HNF4α in P-gp regulation. These findings shed light on a sophisticated signaling network directed by intestinal microbial metabolites that orchestrate P-gp expression and highlight unappreciated connections between multiple pathways linked to colonic health. IMPORTANCE Preventing aberrant inflammation is essential to maintaining homeostasis in the mammalian intestine. Although P-glycoprotein (P-gp) expression in the intestine is critical for protecting the intestinal epithelium from toxins and damage due to neutrophil infiltration, its regulation in the intestine is poorly understood. Findings presented in our current study have now uncovered a sophisticated and heretofore unappreciated intracellular signaling network or "reactome" directed by intestinal microbial metabolites that orchestrate regulation of P-gp. Not only do we confirm the role of histone deacetylases (HDAC) inhibition and nuclear receptor activation in P-gp induction by butyrate and bile acids, but we also discovered new signaling pathways and transcription factors that are uniquely activated in response to the combination of microbial metabolites. Such findings shed new light into a multi-tiered network that maintains P-gp expression in the intestine in the context of the fluctuating commensal microbiome, to sustain a homeostatic tone in the absence of infection or insult.
Collapse
|
16
|
The Gut Microbiome-Brain Crosstalk in Neurodegenerative Diseases. Biomedicines 2022; 10:biomedicines10071486. [PMID: 35884791 PMCID: PMC9312830 DOI: 10.3390/biomedicines10071486] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 05/20/2022] [Accepted: 05/25/2022] [Indexed: 02/06/2023] Open
Abstract
The gut–brain axis (GBA) is a complex interactive network linking the gut to the brain. It involves the bidirectional communication between the gastrointestinal and the central nervous system, mediated by endocrinological, immunological, and neural signals. Perturbations of the GBA have been reported in many neurodegenerative diseases, suggesting a possible role in disease pathogenesis, making it a potential therapeutic target. The gut microbiome is a pivotal component of the GBA, and alterations in its composition have been linked to GBA dysfunction and CNS inflammation and degeneration. The gut microbiome might influence the homeostasis of the central nervous system homeostasis through the modulation of the immune system and, more directly, the production of molecules and metabolites. Small clinical and preclinical trials, in which microbial composition was manipulated using dietary changes, fecal microbiome transplantation, and probiotic supplements, have provided promising outcomes. However, results are not always consistent, and large-scale randomized control trials are lacking. Here, we give an overview of how the gut microbiome influences the GBA and could contribute to disease pathogenesis in neurodegenerative diseases.
Collapse
|
17
|
Cuddihey H, MacNaughton WK, Sharkey KA. Role of the Endocannabinoid System in the Regulation of Intestinal Homeostasis. Cell Mol Gastroenterol Hepatol 2022; 14:947-963. [PMID: 35750314 PMCID: PMC9500439 DOI: 10.1016/j.jcmgh.2022.05.015] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 05/09/2022] [Accepted: 05/25/2022] [Indexed: 12/15/2022]
Abstract
The maintenance of intestinal homeostasis is fundamentally important to health. Intestinal barrier function and immune regulation are key determinants of intestinal homeostasis and are therefore tightly regulated by a variety of signaling mechanisms. The endocannabinoid system is a lipid mediator signaling system widely expressed in the gastrointestinal tract. Accumulating evidence suggests the endocannabinoid system is a critical nexus involved in the physiological processes that underlie the control of intestinal homeostasis. In this review we will illustrate how the endocannabinoid system is involved in regulation of intestinal permeability, fluid secretion, and immune regulation. We will also demonstrate a reciprocal regulation between the endocannabinoid system and the gut microbiome. The role of the endocannabinoid system is complex and multifaceted, responding to both internal and external factors while also serving as an effector system for the maintenance of intestinal homeostasis.
Collapse
Affiliation(s)
- Hailey Cuddihey
- Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada,Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada,Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Wallace K. MacNaughton
- Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada,Alberta Children’s Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada,Inflammation Research Network, University of Calgary, Calgary, Alberta, Canada,Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Keith A. Sharkey
- Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada,Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada,Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada,Correspondence Address correspondence to: Keith Sharkey, PhD, Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada.
| |
Collapse
|
18
|
Fei Y, Zhang S, Han S, Qiu B, Lu Y, Huang W, Li F, Chen D, Berglund B, Xiao H, Li L, Yao M. The Role of Dihydroresveratrol in Enhancing the Synergistic Effect of Ligilactobacillus salivarius Li01 and Resveratrol in Ameliorating Colitis in Mice. Research (Wash D C) 2022; 2022:9863845. [PMID: 35935130 PMCID: PMC9275091 DOI: 10.34133/2022/9863845] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 05/14/2022] [Indexed: 12/13/2022] Open
Abstract
Currently approved therapeutical strategies for inflammatory bowel diseases (IBD) suffer from variable efficacy and association with risk of serious side effects. Therefore, efforts have been made in searching for alternative therapeutics strategies utilizing gut microbiota manipulation. In this study, we show that the probiotic strain Ligilactobacillus salivarius Li01 (Li01) and the phytochemical prebiotic resveratrol (RSV) have synergistic effect in ameliorating colitis in mice. Oral coadministration of Li01 (109 CFU/d) and RSV (1.5 g/kg/d) promoted restoration of various inflammatory injuries and gut microbiota composition, exhibiting a favorable anti-inflammatory effect in DSS-induced colitis mice. The combination treatment was associated with reductions in the levels of proinflammatory cytokines IL-1β and IL-6 and increases in the levels of the anti-inflammatory cytokine IL-17A in mouse serum. Moreover, the combination treatment was found to alter the composition and metabolism of the gut microbiota, especially influencing the production of short chain fatty acids and anti-inflammatory related molecules. The mechanism underlying the improved anti-inflammatory effect from the RSV and Li01 combination treatment was found to be associated with the environmental sensor mammalian aryl hydrocarbon receptor (AHR) and tryptophan metabolism pathway. Administration of RSV in combination with Li01 in different mouse model led to enhanced conversion of RSV into metabolites, including dihydroresveratrol (DHR), resveratrol-sulfate, and resveratrol-glucuronide. DHR was found to be the dominant metabolite of RSV in conventional and colitis mice. An increased DHR/RSV ratio was confirmed to activate AHR and contribute to an enhanced anti-inflammatory effect. DHR is considered as a potential AHR ligand. The DHR/RSV ratio also affected the serotonin pathway by controlling the expression of Tph1, SERT, and 5-HT7R leading to amelioration of colitis in mice. Our data suggest that treatment with a combination of Li01 and RSV has potential as a therapeutic strategy for IBD; further investigation of this combination in clinical settings is warranted.
Collapse
Affiliation(s)
- Yiqiu Fei
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Shuobo Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Shengyi Han
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Bo Qiu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Yanmeng Lu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Weixing Huang
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan 250021, China
- Zhejiang Tongchuang Yuecheng Health Science and Technology Co., Ltd., Shaoxing, China
| | - Fang Li
- Cardiometabolic Genomics Program, Division of Cardiology, Department of Medicine, Columbia University Irving Medical Center, 630 W 168th St, P&S10-401, New York, NY 10032, USA
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts 01003, USA
| | - Deying Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Björn Berglund
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Hang Xiao
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts 01003, USA
- Zhejiang University, Department of Food Science and Nutrition, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, Zhejiang R & D Center for Food Technology and Equipment, Hangzhou 310058, China
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan 250021, China
| | - Mingfei Yao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| |
Collapse
|
19
|
Choi H, Lee D, Mook-Jung I. Gut Microbiota as a Hidden Player in the Pathogenesis of Alzheimer's Disease. J Alzheimers Dis 2022; 86:1501-1526. [PMID: 35213369 DOI: 10.3233/jad-215235] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Alzheimer's disease (AD), the most common neurodegenerative disorder, is accompanied by cognitive impairment and shows representative pathological features, including senile plaques and neurofibrillary tangles in the brain. Recent evidence suggests that several systemic changes outside the brain are associated with AD and may contribute to its pathogenesis. Among the factors that induce systemic changes in AD, the gut microbiota is increasingly drawing attention. Modulation of gut microbiome, along with continuous attempts to remove pathogenic proteins directly from the brain, is a viable strategy to cure AD. Seeking a holistic understanding of the pathways throughout the body that can affect the pathogenesis, rather than regarding AD solely as a brain disease, may be key to successful therapy. In this review, we focus on the role of the gut microbiota in causing systemic manifestations of AD. The review integrates recently emerging concepts and provides potential mechanisms about the involvement of the gut-brain axis in AD, ranging from gut permeability and inflammation to bacterial translocation and cross-seeding.
Collapse
Affiliation(s)
- Hyunjung Choi
- Genomic Medicine Institute, Medical Research Center, Seoul National University, Seoul, Republic of Korea.,SNU Dementia Research Center, College of Medicine, Seoul National University, Seoul, Republic of Korea
| | - Dongjoon Lee
- Department of Biochemistry and Biomedical Sciences, College of Medicine, Seoul National University, Seoul, Republic of Korea.,SNU Dementia Research Center, College of Medicine, Seoul National University, Seoul, Republic of Korea
| | - Inhee Mook-Jung
- Genomic Medicine Institute, Medical Research Center, Seoul National University, Seoul, Republic of Korea.,Department of Biochemistry and Biomedical Sciences, College of Medicine, Seoul National University, Seoul, Republic of Korea.,SNU Dementia Research Center, College of Medicine, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
20
|
Naphthoquinone derivatives as P-glycoprotein inducers in inflammatory bowel disease: 2D monolayers, 3D spheroids, and in vivo models. Pharmacol Res 2022; 179:106233. [DOI: 10.1016/j.phrs.2022.106233] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 04/07/2022] [Accepted: 04/19/2022] [Indexed: 12/21/2022]
|
21
|
De R, Dutta S. Role of the Microbiome in the Pathogenesis of COVID-19. Front Cell Infect Microbiol 2022; 12:736397. [PMID: 35433495 PMCID: PMC9009446 DOI: 10.3389/fcimb.2022.736397] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 01/28/2022] [Indexed: 12/12/2022] Open
Abstract
The ongoing pandemic coronavirus disease COVID-19 is caused by the highly contagious single-stranded RNA virus, SARS-coronavirus 2 (SARS-CoV-2), which has a high rate of evolution like other RNA viruses. The first genome sequences of SARS-CoV-2 were available in early 2020. Subsequent whole-genome sequencing revealed that the virus had accumulated several mutations in genes associated with viral replication and pathogenesis. These variants showed enhanced transmissibility and infectivity. Soon after the first outbreak due to the wild-type strain in December 2019, a genetic variant D614G emerged in late January to early February 2020 and became the dominant genotype worldwide. Thereafter, several variants emerged, which were found to harbor mutations in essential viral genes encoding proteins that could act as drug and vaccine targets. Numerous vaccines have been successfully developed to assuage the burden of COVID-19. These have different rates of efficacy, including, although rarely, a number of vaccinated individuals exhibiting side effects like thrombosis. However, the recent emergence of the Britain strain with 70% more transmissibility and South African variants with higher resistance to vaccines at a time when several countries have approved these for mass immunization has raised tremendous concern regarding the long-lasting impact of currently available prophylaxis. Apart from studies addressing the pathophysiology, pathogenesis, and therapeutic targets of SARS-CoV-2, analysis of the gut, oral, nasopharyngeal, and lung microbiome dysbiosis has also been undertaken to find a link between the microbiome and the pathogenesis of COVID-19. Therefore, in the current scenario of skepticism regarding vaccine efficacy and challenges over the direct effects of currently available drugs looming large, investigation of alternative therapeutic avenues based on the microbiome can be a rewarding finding. This review presents the currently available understanding of microbiome dysbiosis and its association with cause and consequence of COVID-19. Taking cues from other inflammatory diseases, we propose a hypothesis of how the microbiome may be influencing homeostasis, pro-inflammatory condition, and the onset of inflammation. This accentuates the importance of a healthy microbiome as a protective element to prevent the onset of COVID-19. Finally, the review attempts to identify areas where the application of microbiome research can help in reducing the burden of the disease.
Collapse
Affiliation(s)
- Rituparna De
- Division of Bacteriology, National Institute of Cholera and Enteric Diseases, Kolkota, India
- Division of Immunology, National Institute of Cholera and Enteric Diseases, Kolkota, India
| | - Shanta Dutta
- Division of Bacteriology, National Institute of Cholera and Enteric Diseases, Kolkota, India
| |
Collapse
|
22
|
SepA Enhances Shigella Invasion of Epithelial Cells by Degrading Alpha-1 Antitrypsin and Producing a Neutrophil Chemoattractant. mBio 2021; 12:e0283321. [PMID: 34724811 PMCID: PMC8561385 DOI: 10.1128/mbio.02833-21] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Shigella spp. are highly adapted pathogens that cause bacillary dysentery in human and nonhuman primates. An unusual feature of Shigella pathogenesis is that this organism invades the colonic epithelia from the basolateral pole. Therefore, it has evolved the ability to disrupt the intestinal epithelial barrier to reach the basolateral surface. We have shown previously that the secreted serine protease A (SepA), which belongs to the family of serine protease autotransporters of Enterobacteriaceae, is responsible for the initial destabilization of the intestinal epithelial barrier that facilitates Shigella invasion. However, the mechanisms used by SepA to regulate this process remain unknown. To investigate the protein targets cleaved by SepA in the intestinal epithelium, we incubated a sample of homogenized human colon with purified SepA or with a catalytically inactive mutant of this protease. We discovered that SepA targets an array of 18 different proteins, including alpha-1 antitrypsin (AAT), a major circulating serine proteinase inhibitor in humans. In contrast to other serine proteases, SepA cleaved AAT without forming an inhibiting complex, which resulted in the generation of a neutrophil chemoattractant. We demonstrated that the products of the AAT-SepA reaction induce a mild but significant increase in neutrophil transepithelial migration in vitro. Moreover, the presence of AAT during Shigella infection stimulated neutrophil migration and dramatically enhanced the number of bacteria invading the intestinal epithelium in a SepA-dependent manner. We conclude that by cleaving AAT, SepA releases a chemoattractant that promotes neutrophil migration, which in turn disrupts the intestinal epithelial barrier to enable Shigella invasion. IMPORTANCE Shigella is the second leading cause of diarrheal death globally. In this study, we identified the host protein targets of SepA, Shigella's major protein secreted in culture. We demonstrated that by cleaving AAT, a serine protease inhibitor important to protect surrounding tissue at inflammatory sites, SepA releases a neutrophil chemoattractant that enhances Shigella invasion. Moreover, SepA degraded AAT without becoming inhibited by the cleaved product, and SepA catalytic activity was enhanced at higher concentrations of AAT. Activation of SepA by an excess of AAT may be physiologically relevant at the early stages of Shigella infection, when the amount of synthesized SepA is very low compared to the concentration of AAT in the intestinal lumen. This observation may also help to explain the adeptness of Shigella infectivity at low dose, despite the requirement of reaching the basolateral side to invade and colonize the colonic epithelium.
Collapse
|
23
|
Sun H, Zhang W, Yang N, Xue Y, Wang T, Wang H, Zheng K, Wang Y, Zhu F, Yang H, Xu W, Xu Y, Geng D. Activation of cannabinoid receptor 2 alleviates glucocorticoid-induced osteonecrosis of femoral head with osteogenesis and maintenance of blood supply. Cell Death Dis 2021; 12:1035. [PMID: 34718335 PMCID: PMC8556843 DOI: 10.1038/s41419-021-04313-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 09/23/2021] [Accepted: 10/07/2021] [Indexed: 12/19/2022]
Abstract
In glucocorticoid (GC)-induced osteonecrosis of the femoral head (ONFH), downregulated osteogenic ability and damaged blood supply are two key pathogenic mechanisms. Studies suggested that cannabinoid receptor 2 (CB2) is expressed in bone tissue and it plays a positive role in osteogenesis. However, whether CB2 could enhance bone formation and blood supply in GC-induced ONFH remains unknown. In this study, we focused on the effect of CB2 in GC-induced ONFH and possible mechanisms in vitro and in vivo. By using GC-induced ONFH rat model, rat-bone mesenchymal stem cells (BMSCs) and human umbilical vein endothelial cells (HUVECs) to address the interaction of CB2 in vitro and in vivo, we evaluate the osteogenic and angiogenic effect variation and possible mechanisms. Micro-CT, histological staining, angiography, calcein labeling, Alizarin red staining (ARS), alkaline phosphatase (ALP), tartrate-resistant acid phosphatase (TRAP) staining, TUNEL staining, migration assay, scratch assay, and tube formation were applied in this study. Our results showed that selective activation of CB2 alleviates GC-induced ONFH. The activation of CB2 strengthened the osteogenic activity of BMSCs under the influence of GCs by promotion of GSK-3β/β-catenin signaling pathway. Furthermore, CB2 promoted HUVECs migration and tube-forming capacities. Our findings indicated that CB2 may serve as a rational new treatment strategy against GC-induced ONFH by osteogenesis activation and maintenance of blood supply.
Collapse
Affiliation(s)
- Houyi Sun
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| | - Weicheng Zhang
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| | - Ning Yang
- Department of Orthopaedics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230000, China
| | - Yi Xue
- Department of Orthopedics, Changshu Hospital Affiliated to Nanjing University of Traditional Chinese Medicine, Changshu, 215500, China
| | - Tianhao Wang
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| | - Hongzhi Wang
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| | - Kai Zheng
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| | - Yijun Wang
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| | - Feng Zhu
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| | - Huilin Yang
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| | - Wei Xu
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, 215006, China.
| | - Yaozeng Xu
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China.
| | - Dechun Geng
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China.
| |
Collapse
|
24
|
Yang K, Choi SE, Jeong WI. Hepatic Cannabinoid Signaling in the Regulation of Alcohol-Associated Liver Disease. Alcohol Res 2021; 41:12. [PMID: 34646717 PMCID: PMC8496755 DOI: 10.35946/arcr.v41.1.12] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
PURPOSE The endocannabinoid system has emerged as a key regulatory signaling pathway in the pathophysiology of alcohol-associated liver disease (ALD). More than 30 years of research have established different roles of endocannabinoids and their receptors in various aspects of liver diseases, such as steatosis, inflammation, and fibrosis. However, pharmacological applications of the endocannabinoid system for the treatment of ALD have not been successful because of psychoactive side effects, despite some beneficial effects. Thus, a more delicate and detailed elucidation of the mechanism linking the endocannabinoid system and ALD may be of paramount significance in efforts to apply the system to the treatment of ALD. SEARCH METHODS Three electronic databases (PubMed, MEDLINE, and Cochrane Library) were used for literature search from November 1988 to April 2021. Major keywords used for literature searches were “cannabinoid,” “cannabinoid receptor,” “ALD,” “steatosis,” and “fibrosis.” SEARCH RESULTS According to the inclusion and exclusion criteria, the authors selected 47 eligible full-text articles out of 2,691 searched initially. Studies in the past 3 decades revealed the opposite effects of cannabinoid receptors CB1R and CB2R on steatosis, inflammation, and fibrosis in ALD. DISCUSSION AND CONCLUSIONS This review summarizes the endocannabinoid signaling in the general physiology of the liver, the pathogenesis of ALD, and some of the potential therapeutic implications of cannabinoid-based treatments for ALD.
Collapse
Affiliation(s)
- Keungmo Yang
- Laboratory of Liver Research, Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Sung Eun Choi
- Laboratory of Liver Research, Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Won-Il Jeong
- Laboratory of Liver Research, Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea.,Biomedical Research Center, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| |
Collapse
|
25
|
Foley SE, Loew EB, McCormick BA. Recent advances in understanding microbial regulation of host multi-drug resistance transporters. CURRENT OPINION IN PHYSIOLOGY 2021. [DOI: 10.1016/j.cophys.2021.100469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
26
|
Foley SE, Tuohy C, Dunford M, Grey MJ, De Luca H, Cawley C, Szabady RL, Maldonado-Contreras A, Houghton JM, Ward DV, Mrsny RJ, McCormick BA. Gut microbiota regulation of P-glycoprotein in the intestinal epithelium in maintenance of homeostasis. MICROBIOME 2021; 9:183. [PMID: 34493329 PMCID: PMC8425172 DOI: 10.1186/s40168-021-01137-3] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 07/17/2021] [Indexed: 05/29/2023]
Abstract
BACKGROUND P-glycoprotein (P-gp) plays a critical role in protection of the intestinal epithelia by mediating efflux of drugs/xenobiotics from the intestinal mucosa into the gut lumen. Recent studies bring to light that P-gp also confers a critical link in communication between intestinal mucosal barrier function and the innate immune system. Yet, despite knowledge for over 10 years that P-gp plays a central role in gastrointestinal homeostasis, the precise molecular mechanism that controls its functional expression and regulation remains unclear. Here, we assessed how the intestinal microbiome drives P-gp expression and function. RESULTS We have identified a "functional core" microbiome of the intestinal gut community, specifically genera within the Clostridia and Bacilli classes, that is necessary and sufficient for P-gp induction in the intestinal epithelium in mouse models. Metagenomic analysis of this core microbial community revealed that short-chain fatty acid and secondary bile acid production positively associate with P-gp expression. We have further shown these two classes of microbiota-derived metabolites synergistically upregulate P-gp expression and function in vitro and in vivo. Moreover, in patients suffering from ulcerative colitis (UC), we find diminished P-gp expression coupled to the reduction of epithelial-derived anti-inflammatory endocannabinoids and luminal content (e.g., microbes or their metabolites) with a reduced capability to induce P-gp expression. CONCLUSION Overall, by means of both in vitro and in vivo studies as well as human subject sample analysis, we identify a mechanistic link between cooperative functional outputs of the complex microbial community and modulation of P-gp, an epithelial component, that functions to suppress overactive inflammation to maintain intestinal homeostasis. Hence, our data support a new cross-talk paradigm in microbiome regulation of mucosal inflammation. Video abstract.
Collapse
Affiliation(s)
- Sage E. Foley
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA 01605 USA
- Program in Microbiome Dynamics, University of Massachusetts Medical School, Worcester, MA 01605 USA
| | - Christine Tuohy
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA 01605 USA
- Graduate School of Nursing, University of Massachusetts Medical School, Worcester, MA 01605 USA
| | - Merran Dunford
- Department of Pharmacy and Pharmacology, University of Bath, Bath, BA2 7AY UK
| | - Michael J. Grey
- Division of Gastroenterology and Nutrition, Department of Pediatrics, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115 USA
| | - Heidi De Luca
- Division of Gastroenterology and Nutrition, Department of Pediatrics, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115 USA
| | - Caitlin Cawley
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA 01605 USA
- Program in Microbiome Dynamics, University of Massachusetts Medical School, Worcester, MA 01605 USA
| | - Rose L. Szabady
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA 01605 USA
- Ferring Pharmaceuticals, San Diego, CA 92121 USA
| | - Ana Maldonado-Contreras
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA 01605 USA
- Program in Microbiome Dynamics, University of Massachusetts Medical School, Worcester, MA 01605 USA
| | - Jean Marie Houghton
- Division of Gastroenterology, Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01605 USA
| | - Doyle V. Ward
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA 01605 USA
- Program in Microbiome Dynamics, University of Massachusetts Medical School, Worcester, MA 01605 USA
| | - Randall J. Mrsny
- Department of Pharmacy and Pharmacology, University of Bath, Bath, BA2 7AY UK
| | - Beth A. McCormick
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA 01605 USA
- Program in Microbiome Dynamics, University of Massachusetts Medical School, Worcester, MA 01605 USA
| |
Collapse
|
27
|
Ganguly S, Finkelstein D, Shaw TI, Michalek RD, Zorn KM, Ekins S, Yasuda K, Fukuda Y, Schuetz JD, Mukherjee K, Schuetz EG. Metabolomic and transcriptomic analysis reveals endogenous substrates and metabolic adaptation in rats lacking Abcg2 and Abcb1a transporters. PLoS One 2021; 16:e0253852. [PMID: 34255797 PMCID: PMC8277073 DOI: 10.1371/journal.pone.0253852] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 06/14/2021] [Indexed: 12/21/2022] Open
Abstract
Abcg2/Bcrp and Abcb1a/Pgp are xenobiotic efflux transporters limiting substrate permeability in the gastrointestinal system and brain, and increasing renal and hepatic drug clearance. The systemic impact of Bcrp and Pgp ablation on metabolic homeostasis of endogenous substrates is incompletely understood. We performed untargeted metabolomics of cerebrospinal fluid (CSF) and plasma, transcriptomics of brain, liver and kidney from male Sprague Dawley rats (WT) and Bcrp/Pgp double knock-out (dKO) rats, and integrated metabolomic/transcriptomic analysis to identify putative substrates and perturbations in canonical metabolic pathways. A predictive Bayesian machine learning model was used to predict in silico those metabolites with greater substrate-like features for either transporters. The CSF and plasma levels of 169 metabolites, nutrients, signaling molecules, antioxidants and lipids were significantly altered in dKO rats, compared to WT rats. These metabolite changes suggested alterations in histidine, branched chain amino acid, purine and pyrimidine metabolism in the dKO rats. Levels of methylated and sulfated metabolites and some primary bile acids were increased in dKO CSF or plasma. Elevated uric acid levels appeared to be a primary driver of changes in purine and pyrimidine biosynthesis. Alterations in Bcrp/Pgp dKO CSF levels of antioxidants, precursors of neurotransmitters, and uric acid suggests the transporters may contribute to the regulation of a healthy central nervous system in rats. Microbiome-generated metabolites were found to be elevated in dKO rat plasma and CSF. The altered dKO metabolome appeared to cause compensatory transcriptional change in urate biosynthesis and response to lipopolysaccharide in brain, oxidation-reduction processes and response to oxidative stress and porphyrin biosynthesis in kidney, and circadian rhythm genes in liver. These findings present insight into endogenous functions of Bcrp and Pgp, the impact that transporter substrates, inhibitors or polymorphisms may have on metabolism, how transporter inhibition could rewire drug sensitivity indirectly through metabolic changes, and identify functional Bcrp biomarkers.
Collapse
Affiliation(s)
- Samit Ganguly
- Cancer & Developmental Biology Track, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
| | - David Finkelstein
- Department of Computational Biology, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Timothy I. Shaw
- Department of Computational Biology, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | | | - Kimberly M. Zorn
- Collaborations Pharmaceuticals, Inc., Raleigh, North Carolina, United States of America
| | - Sean Ekins
- Collaborations Pharmaceuticals, Inc., Raleigh, North Carolina, United States of America
| | - Kazuto Yasuda
- Department of Pharmaceutical Sciences, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Yu Fukuda
- Department of Pharmaceutical Sciences, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - John D. Schuetz
- Department of Pharmaceutical Sciences, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Kamalika Mukherjee
- Department of Pharmaceutical Sciences, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Erin G. Schuetz
- Department of Pharmaceutical Sciences, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
- * E-mail:
| |
Collapse
|
28
|
Learning to mellow out GVHD. Blood 2021; 137:1142-1143. [PMID: 33661292 DOI: 10.1182/blood.2020009315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
29
|
Functional Fine-Tuning of Metabolic Pathways by the Endocannabinoid System-Implications for Health and Disease. Int J Mol Sci 2021; 22:ijms22073661. [PMID: 33915889 PMCID: PMC8036872 DOI: 10.3390/ijms22073661] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/19/2021] [Accepted: 03/26/2021] [Indexed: 12/12/2022] Open
Abstract
The endocannabinoid system (ECS) employs a huge network of molecules (receptors, ligands, and enzymatic machinery molecules) whose interactions with other cellular networks have still not been fully elucidated. Endogenous cannabinoids are molecules with the primary function of control of multiple metabolic pathways. Maintenance of tissue and cellular homeostasis by functional fine-tuning of essential metabolic pathways is one of the key characteristics of the ECS. It is implicated in a variety of physiological and pathological states and an attractive pharmacological target yet to reach its full potential. This review will focus on the involvement of ECS in glucose and lipid metabolism, food intake regulation, immune homeostasis, respiratory health, inflammation, cancer and other physiological and pathological states will be substantiated using freely available data from open-access databases, experimental data and literature review. Future directions should envision capturing its diversity and exploiting pharmacological options beyond the classical ECS suspects (exogenous cannabinoids and cannabinoid receptor monomers) as signaling through cannabinoid receptor heteromers offers new possibilities for different biochemical outcomes in the cell.
Collapse
|
30
|
Polarity scaffolds signaling in epithelial cell permeability. Inflamm Res 2021; 70:525-538. [PMID: 33721031 DOI: 10.1007/s00011-021-01454-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 01/20/2021] [Accepted: 03/06/2021] [Indexed: 01/14/2023] Open
Abstract
As an integral part of the innate immune system, the epithelial membrane is exposed to an array of insults that may trigger an immune response. One of the immune system's main functions is to regulate the level of communications between the mucosa and the lumen of various tissues. While it is clear that inhaled or ingested substances, or microorganisms may induce changes that affect the epithelial barrier in various ways, the proteins involved in the signaling cascades and physiological events leading to the regulation and maintenance of the barrier are not always well characterized. We review here some of the signaling components involved in regulating the barrier's paracellular permeability, and their potential effects on the activation of an immune response. While an effective immune response must be launched against pathogenic insults, tolerance must also be maintained for non-pathogenic antigens such as those in the commensal flora or for endogenous metabolites. Along with other members of the innate and adaptive immunity, the endocannabinoid system also plays an instrumental role in maintaining the balance between inflammation and tolerance. We discuss the potential effects of endo- and phytocannabinoids on epithelial permeability and how the dysregulation of this system could be involved in diseases and targeted for therapy.
Collapse
|
31
|
Gómez CT, Lairion F, Repetto M, Ettcheto M, Merelli A, Lazarowski A, Auzmendi J. Cannabidiol (CBD) Alters the Functionality of Neutrophils (PMN). Implications in the Refractory Epilepsy Treatment. Pharmaceuticals (Basel) 2021; 14:ph14030220. [PMID: 33807975 PMCID: PMC8001508 DOI: 10.3390/ph14030220] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/18/2021] [Accepted: 02/22/2021] [Indexed: 01/20/2023] Open
Abstract
Cannabidiol (CBD), a lipophilic cannabinoid compound without psychoactive effects, has emerged as adjuvant of anti-epileptic drugs (AEDs) in the treatment of refractory epilepsy (RE), decreasing the severity and/or frequency of seizures. CBD is considered a multitarget drug that could act throughout the canonical endocannabinoid receptors (CB1-CB2) or multiple non-canonical pathways. Despite the fact that the CBD mechanism in RE is still unknown, experiments carried out in our laboratory showed that CBD has an inhibitory role on P-glycoprotein excretory function, highly related to RE. Since CB2 is expressed mainly in the immune cells, we hypothesized that CBD treatment could alter the activity of polymorphonuclear neutrophils (PMNs) in a similar way that it does with microglia/macrophages and others circulating leukocytes. In vitro, CBD induced PMN cytoplasmatic vacuolization and proapoptotic nuclear condensation, associated with a significantly decreased viability in a concentration-dependent manner, while low CBD concentration decreased PMN viability in a time-dependent manner. At a functional level, CBD reduced the chemotaxis and oxygen consumption of PMNs related with superoxide anion production, while the singlet oxygen level was increased suggesting oxidative stress damage. These results are in line with the well-known CBD anti-inflammatory effect and support a potential immunosuppressor role on PMNs that could promote an eventual defenseless state during chronic treatment with CBD in RE.
Collapse
Affiliation(s)
- Claudia Taborda Gómez
- Departamento de Bioquímica Clínica, Facultad de Farmacia y Bioquímica, Instituto de Fisiopatología y Bioquímica Clínica (INFIBIOC), Universidad de Buenos Aires, Buenos Aires C1120AAF, Argentina; (C.T.G.); (A.M.); (A.L.)
| | - Fabiana Lairion
- Departamento de Química Analítica y Fisicoquímica, Facultad de Farmacia y Bioquímica, Instituto de Bioquímica y Medicina Molecular, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad de Buenos Aires, (IBIMOL, UBA-CONICET), Buenos Aires C1113AAD, Argentina; (F.L.); (M.R.)
| | - Marisa Repetto
- Departamento de Química Analítica y Fisicoquímica, Facultad de Farmacia y Bioquímica, Instituto de Bioquímica y Medicina Molecular, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad de Buenos Aires, (IBIMOL, UBA-CONICET), Buenos Aires C1113AAD, Argentina; (F.L.); (M.R.)
| | - Miren Ettcheto
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Science, Institute of Neuroscience, University of Barcelona, 08193 Barcelona, Spain;
- Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), 28031 Madrid, Spain
| | - Amalia Merelli
- Departamento de Bioquímica Clínica, Facultad de Farmacia y Bioquímica, Instituto de Fisiopatología y Bioquímica Clínica (INFIBIOC), Universidad de Buenos Aires, Buenos Aires C1120AAF, Argentina; (C.T.G.); (A.M.); (A.L.)
| | - Alberto Lazarowski
- Departamento de Bioquímica Clínica, Facultad de Farmacia y Bioquímica, Instituto de Fisiopatología y Bioquímica Clínica (INFIBIOC), Universidad de Buenos Aires, Buenos Aires C1120AAF, Argentina; (C.T.G.); (A.M.); (A.L.)
| | - Jerónimo Auzmendi
- Departamento de Bioquímica Clínica, Facultad de Farmacia y Bioquímica, Instituto de Fisiopatología y Bioquímica Clínica (INFIBIOC), Universidad de Buenos Aires, Buenos Aires C1120AAF, Argentina; (C.T.G.); (A.M.); (A.L.)
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires C1425FQD, Argentina
- Correspondence:
| |
Collapse
|
32
|
Yonker LM, Barrios J, Mou H, Hurley BP. Untapped Potential: Therapeutically Targeting Eicosanoids and Endocannabinoids in the Lung. Clin Pharmacol Ther 2021; 110:69-81. [PMID: 33423293 DOI: 10.1002/cpt.2165] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 12/20/2020] [Indexed: 02/05/2023]
Abstract
Inflammation of the airway involves the recruitment of highly active immune cells to combat and clear microbes and toxic factors; however, this inflammatory response can result in unintended damage to lung tissue. Tissue damage resulting from inflammation is often mitigated by resolving factors that limit the scope and duration of the inflammatory response. Both inflammatory and resolving processes require the actions of a vast array of lipid mediators that can be rapidly synthesized through a variety of airway resident and infiltrating immune cells. Eicosanoids and endocannabinoids represent two major classes of lipid mediators that share synthetic enzymes and have diverse and overlapping functions. This review seeks to provide a summary of the major bioactive eicosanoids and endocannabinoids, challenges facing researchers that study them, and their roles in modulating inflammation and resolution. With a special emphasis on cystic fibrosis, a variety of therapeutics are discussed that have been explored for their potential anti-inflammatory or proresolving impact toward alleviating excessive airway inflammation and improving lung function.
Collapse
Affiliation(s)
- Lael M Yonker
- Massachusetts General Hospital, Department of Pediatrics, Pulmonary Division, Boston, Massachusetts, USA.,Massachusetts General Hospital, Mucosal Immunology and Biology Research Center, Boston, Massachusetts, USA.,Harvard Medical School, Department of Pediatrics, Boston, Massachusetts, USA
| | - Juliana Barrios
- Massachusetts General Hospital, Mucosal Immunology and Biology Research Center, Boston, Massachusetts, USA.,Harvard Medical School, Department of Pediatrics, Boston, Massachusetts, USA
| | - Hongmei Mou
- Massachusetts General Hospital, Mucosal Immunology and Biology Research Center, Boston, Massachusetts, USA.,Harvard Medical School, Department of Pediatrics, Boston, Massachusetts, USA
| | - Bryan P Hurley
- Massachusetts General Hospital, Mucosal Immunology and Biology Research Center, Boston, Massachusetts, USA.,Harvard Medical School, Department of Pediatrics, Boston, Massachusetts, USA
| |
Collapse
|
33
|
Paland N, Pechkovsky A, Aswad M, Hamza H, Popov T, Shahar E, Louria-Hayon I. The Immunopathology of COVID-19 and the Cannabis Paradigm. Front Immunol 2021; 12:631233. [PMID: 33643316 PMCID: PMC7907157 DOI: 10.3389/fimmu.2021.631233] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 01/26/2021] [Indexed: 12/13/2022] Open
Abstract
Coronavirus disease-19 caused by the novel RNA betacoronavirus SARS-CoV2 has first emerged in Wuhan, China in December 2019, and since then developed into a worldwide pandemic with >99 million people afflicted and >2.1 million fatal outcomes as of 24th January 2021. SARS-CoV2 targets the lower respiratory tract system leading to pneumonia with fever, cough, and dyspnea. Most patients develop only mild symptoms. However, a certain percentage develop severe symptoms with dyspnea, hypoxia, and lung involvement which can further progress to a critical stage where respiratory support due to respiratory failure is required. Most of the COVID-19 symptoms are related to hyperinflammation as seen in cytokine release syndrome and it is believed that fatalities are due to a COVID-19 related cytokine storm. Treatments with anti-inflammatory or anti-viral drugs are still in clinical trials or could not reduce mortality. This makes it necessary to develop novel anti-inflammatory therapies. Recently, the therapeutic potential of phytocannabinoids, the unique active compounds of the cannabis plant, has been discovered in the area of immunology. Phytocannabinoids are a group of terpenophenolic compounds which biological functions are conveyed by their interactions with the endocannabinoid system in humans. Here, we explore the anti-inflammatory function of cannabinoids in relation to inflammatory events that happen during severe COVID-19 disease, and how cannabinoids might help to prevent the progression from mild to severe disease.
Collapse
Affiliation(s)
- Nicole Paland
- Medical Cannabis Research and Innovation Center, Rambam Health Care Campus, Haifa, Israel
| | - Antonina Pechkovsky
- Medical Cannabis Research and Innovation Center, Rambam Health Care Campus, Haifa, Israel
| | - Miran Aswad
- Medical Cannabis Research and Innovation Center, Rambam Health Care Campus, Haifa, Israel
| | - Haya Hamza
- Medical Cannabis Research and Innovation Center, Rambam Health Care Campus, Haifa, Israel
| | - Tania Popov
- Medical Cannabis Research and Innovation Center, Rambam Health Care Campus, Haifa, Israel
| | - Eduardo Shahar
- Clinical Immunology Unit, Rambam Health Care Campus, Haifa, Israel
| | - Igal Louria-Hayon
- Medical Cannabis Research and Innovation Center, Rambam Health Care Campus, Haifa, Israel
- Clinical Research Institute at Rambam (CRIR), Rambam Health Care Campus, Haifa, Israel
- Department of Hematology, Rambam Health Care Campus, Haifa, Israel
| |
Collapse
|
34
|
Haran JP, McCormick BA. Aging, Frailty, and the Microbiome-How Dysbiosis Influences Human Aging and Disease. Gastroenterology 2021; 160:507-523. [PMID: 33307030 PMCID: PMC7856216 DOI: 10.1053/j.gastro.2020.09.060] [Citation(s) in RCA: 94] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 09/08/2020] [Accepted: 09/16/2020] [Indexed: 02/07/2023]
Abstract
The human gut microbiome is a collection of bacteria, protozoa, fungi, and viruses that coexist in our bodies and are essential in protective, metabolic, and physiologic functions of human health. Gut dysbiosis has traditionally been linked to increased risk of infection, but imbalances within the intestinal microbial community structure that correlate with untoward inflammatory responses are increasingly recognized as being involved in disease processes that affect many organ systems in the body. Furthermore, it is becoming more apparent that the connection between gut dysbiosis and age-related diseases may lie in how the gut microbiome communicates with both the intestinal mucosa and the systemic immune system, given that these networks have a common interconnection to frailty. We therefore discuss recent advances in our understanding of the important role the microbiome plays in aging and how this knowledge opens the door for potential novel therapeutics aimed at shaping a less dysbiotic microbiome to prevent or treat age-related diseases.
Collapse
Affiliation(s)
- John P Haran
- Department of Emergency Medicine; Department of Microbiology and Physiological Systems; Center for Microbiome Research, University of Massachusetts Medical School, Worcester, Massachusetts.
| | - Beth A McCormick
- Department of Microbiology and Physiological Systems; Center for Microbiome Research, University of Massachusetts Medical School, Worcester, Massachusetts
| |
Collapse
|
35
|
Yang R, Chen Z, Xie F, Xie M, Liu N, Su Z, Gu J, Zhao R. (+/-)-Borneol Reverses Mitoxantrone Resistance against P-Glycoprotein. J Chem Inf Model 2020; 61:252-262. [PMID: 33378196 DOI: 10.1021/acs.jcim.0c00892] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
P-Glycoprotein (Pgp) is a main factor contributing to multidrug resistance and the consequent failure of chemotherapy. Overcoming Pgp efflux is a strategy to improve the efficacy of drugs. (+)-Borneol (BNL1) and (-)-borneol (BNL2) interfere and inhibit Pgp, and thus, the accumulation of drugs increases in cells. However, it is not clear yet how they play the inhibitory effect against Pgp. In this work, the effect and molecular mechanism of borneol enantiomers in reversing mitoxantrone (MTO) resistance against Pgp were explored by in vitro and in silico approaches. Chemosensitizing potential tests showed that BNLs could enhance the efficacy of MTO in MES-SA/MX2 cells, and BNL2 exhibited a stronger potential. The protein expression of Pgp was decreased to some extent by the administration of BNLs. Molecular docking revealed that BNLs could reduce the binding affinity between MTO and Pgp. The results were consistent with the chemosensitizing potential test and were supported by molecular dynamics (MD) simulations. Molecular docking also suggested that BNLs preferred to bind in the drug-binding pocket rather than the nucleotide-binding domain of inward-facing Pgp. The occupied space of BNLs had an evident distance from that of MTO, which was further verified by the conformational analysis after MD simulations. The decomposition of binding free energies revealed the key amino acid residues (GLN195, SER196, TRP232, PHE343, SER344, GLY346, and GLN347) for BNLs to reverse MTO resistance. The results provide an insight into the mechanism through which BNLs reduce the MTO resistance against inward-facing Pgp in the drug-binding pocket through noncompetitive inhibition.
Collapse
Affiliation(s)
- Rong Yang
- Research Centre for Integrative Medicine, School of Basic Medical Science, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Zhenxing Chen
- College of Basic Medicine, Guangxi University of Chinese Medicine, Nanning 530200, China.,The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Fuda Xie
- Research Centre for Integrative Medicine, School of Basic Medical Science, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Mingxiang Xie
- Research Centre for Integrative Medicine, School of Basic Medical Science, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Na Liu
- Research Centre for Integrative Medicine, School of Basic Medical Science, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Ziren Su
- Mathematical Engineering Academy of Chinese Medicine, Guangdong Provincial Key Laboratory of New Drug Development and Research of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Jiangyong Gu
- Research Centre for Integrative Medicine, School of Basic Medical Science, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Ruizhi Zhao
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510006, China.,Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| |
Collapse
|
36
|
Brash AR. Challenging the evidence for hepoxilin A 3 being a mediator of neutrophil epithelial transmigration. Am J Physiol Lung Cell Mol Physiol 2020; 319:L752-L753. [PMID: 33021845 DOI: 10.1152/ajplung.00349.2020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
- Alan R Brash
- Division of Clinical Pharmacology, Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee
| |
Collapse
|
37
|
Almogi-Hazan O, Or R. Cannabis, the Endocannabinoid System and Immunity-the Journey from the Bedside to the Bench and Back. Int J Mol Sci 2020; 21:ijms21124448. [PMID: 32585801 PMCID: PMC7352399 DOI: 10.3390/ijms21124448] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 06/18/2020] [Accepted: 06/19/2020] [Indexed: 12/13/2022] Open
Abstract
The Cannabis plant contains numerous components, including cannabinoids and other active molecules. The phyto-cannabinoid activity is mediated by the endocannabinoid system. Cannabinoids affect the nervous system and play significant roles in the regulation of the immune system. While Cannabis is not yet registered as a drug, the potential of cannabinoid-based medicines for the treatment of various conditions has led many countries to authorize their clinical use. However, the data from basic and medical research dedicated to medical Cannabis is currently limited. A variety of pathological conditions involve dysregulation of the immune system. For example, in cancer, immune surveillance and cancer immuno-editing result in immune tolerance. On the other hand, in autoimmune diseases increased immune activity causes tissue damage. Immuno-modulating therapies can regulate the immune system and therefore the immune-regulatory properties of cannabinoids, suggest their use in the therapy of immune related disorders. In this contemporary review, we discuss the roles of the endocannabinoid system in immunity and explore the emerging data about the effects of cannabinoids on the immune response in different pathologies. In addition, we discuss the complexities of using cannabinoid-based treatments in each of these conditions.
Collapse
|
38
|
Cas MD, Roda G, Li F, Secundo F. Functional Lipids in Autoimmune Inflammatory Diseases. Int J Mol Sci 2020; 21:E3074. [PMID: 32349258 PMCID: PMC7246500 DOI: 10.3390/ijms21093074] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 04/22/2020] [Accepted: 04/24/2020] [Indexed: 12/27/2022] Open
Abstract
Lipids are apolar small molecules known not only as components of cell membranes but also, in recent literature, as modulators of different biological functions. Herein, we focused on the bioactive lipids that can influence the immune responses and inflammatory processes regulating vascular hyperreactivity, pain, leukocyte trafficking, and clearance. In the case of excessive pro-inflammatory lipid activity, these lipids also contribute to the transition from acute to chronic inflammation. Based on their biochemical function, these lipids can be divided into different families, including eicosanoids, specialized pro-resolving mediators, lysoglycerophospholipids, sphingolipids, and endocannabinoids. These bioactive lipids are involved in all phases of the inflammatory process and the pathophysiology of different chronic autoimmune diseases such as rheumatoid arthritis, multiple sclerosis, type-1 diabetes, and systemic lupus erythematosus.
Collapse
Affiliation(s)
- Michele Dei Cas
- Department of Health Sciences, Università degli Studi di Milano, 20142 Milan, Italy
| | - Gabriella Roda
- Department of Pharmaceutical Sciences, Università degli Studi di Milano, 20133 Milan, Italy
| | - Feng Li
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Francesco Secundo
- Istituto di Scienze e Tecnologie Chimiche “Giulio Natta”, Consiglio Nazionale delle Ricerche, 20131 Milan, Italy
| |
Collapse
|
39
|
Zhang T, Liu Y, Yan JK, Cai W. Early downregulation of P-glycoprotein facilitates bacterial attachment to intestinal epithelial cells and thereby triggers barrier dysfunction in a rodent model of total parenteral nutrition. FASEB J 2020; 34:4670-4683. [PMID: 32027421 DOI: 10.1096/fj.201902513r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 01/08/2020] [Accepted: 01/20/2020] [Indexed: 12/19/2022]
Abstract
Intestinal barrier dysfunction is a major complication of total parenteral nutrition (TPN). Our preliminary study revealed that intestinal P-glycoprotein (P-gp) was significantly downregulated under TPN treatment followed by disruption of barrier function, and thus the significance of early downregulation of P-gp needs to be addressed. Herein, we report a pivotal role of P-gp in the development of intestinal barrier dysfunction under TPN. Functional suppression of P-gp may facilitate bacterial attachment to intestinal epithelial cells (IECs) and thereby induce degradation of tight junctions to trigger barrier dysfunction. By using a rat model of TPN, we found early downregulation of P-gp function in ileum after 3-day TPN, followed by disruption of barrier function after 7-day TPN. By using Escherichia coli (E. coli) k88 and DH5α as type strains, we found significantly increased bacterial attachment to IECs in TPN group compared to sham. By using Caco-2 cells as an IEC model in vitro, we found that functional suppression of P-gp remarkably facilitated bacterial attachment to Caco-2 cells, leading to subsequent disruption of intestinal barrier function. Of note, Occludin was significantly downregulated by bacterial attachment when P-gp was functionally suppressed. Mechanistically, changes on Occludin were attributed to enhanced protein degradation instead of suppressed protein translation. Despite the half-life of Occludin protein being unchanged by DH5α treatment alone, it was decreased by about 40% when P-gp was simultaneously suppressed. Taken together, our findings revealed that early downregulation of intestinal P-gp under TPN may be a potential therapeutic target to prevent the development of barrier dysfunction.
Collapse
Affiliation(s)
- Tian Zhang
- School of Medicine, Xinhua Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Yang Liu
- School of Medicine, Xinhua Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Jun-Kai Yan
- School of Medicine, Xinhua Hospital, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai Institute for Pediatric Research, Shanghai, China
| | - Wei Cai
- School of Medicine, Xinhua Hospital, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai Institute for Pediatric Research, Shanghai, China
| |
Collapse
|
40
|
Abstract
Bacterial pathogens have evolved to regulate virulence gene expression at critical points in the colonization and infection processes to successfully cause disease. The Shigella species infect the epithelial cells lining the colon to result in millions of cases of diarrhea and a significant global health burden. As antibiotic resistance rates increase, understanding the mechanisms of infection is vital to ensure successful vaccine development. Despite significant gains in our understanding of Shigella infection, it remains unknown how the bacteria initiate contact with the colonic epithelium. Most pathogens harbor multiple adherence factors to facilitate this process, but Shigella was thought to have lost the ability to produce these factors. Interestingly, we have identified conditions that mimic some features of gastrointestinal transit and that enable Shigella to express adherence structural genes. This work highlights aspects of genetic regulation for Shigella adherence factors and may have a significant impact on future vaccine development. The Shigella species are Gram-negative, facultative intracellular pathogens that invade the colonic epithelium and cause significant diarrheal disease. Despite extensive research on the pathogen, a comprehensive understanding of how Shigella initiates contact with epithelial cells remains unknown. Shigella maintains many of the same Escherichia coli adherence gene operons; however, at least one critical gene component in each operon is currently annotated as a pseudogene in reference genomes. These annotations, coupled with a lack of structures upon microscopic analysis following growth in laboratory media, have led the field to hypothesize that Shigella is unable to produce fimbriae or other traditional adherence factors. Nevertheless, our previous analyses have demonstrated that a combination of bile salts and glucose induces both biofilm formation and adherence to colonic epithelial cells. The goal of this study was to perform transcriptomic and genetic analyses to demonstrate that adherence gene operons in Shigella flexneri strain 2457T are functional, despite the gene annotations. Our results demonstrate that at least three structural genes facilitate S. flexneri 2457T adherence for epithelial cell contact and biofilm formation. Furthermore, our results demonstrate that host factors, namely, glucose and bile salts at their physiological concentrations in the small intestine, offer key environmental stimuli required for adherence factor expression in S. flexneri. This research may have a significant impact on Shigella vaccine development and further highlights the importance of utilizing in vivo-like conditions to study bacterial pathogenesis. IMPORTANCE Bacterial pathogens have evolved to regulate virulence gene expression at critical points in the colonization and infection processes to successfully cause disease. The Shigella species infect the epithelial cells lining the colon to result in millions of cases of diarrhea and a significant global health burden. As antibiotic resistance rates increase, understanding the mechanisms of infection is vital to ensure successful vaccine development. Despite significant gains in our understanding of Shigella infection, it remains unknown how the bacteria initiate contact with the colonic epithelium. Most pathogens harbor multiple adherence factors to facilitate this process, but Shigella was thought to have lost the ability to produce these factors. Interestingly, we have identified conditions that mimic some features of gastrointestinal transit and that enable Shigella to express adherence structural genes. This work highlights aspects of genetic regulation for Shigella adherence factors and may have a significant impact on future vaccine development.
Collapse
|
41
|
Burstein SH. Eicosanoid mediation of cannabinoid actions. Bioorg Med Chem 2019; 27:2718-2728. [DOI: 10.1016/j.bmc.2019.05.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 05/08/2019] [Accepted: 05/11/2019] [Indexed: 12/26/2022]
|
42
|
Ossola CA, Balcarcel NB, Astrauskas JI, Bozzini C, Elverdin JC, Fernández‐Solari J. A new target to ameliorate the damage of periodontal disease: The role of transient receptor potential vanilloid type‐1 in contrast to that of specific cannabinoid receptors in rats. J Periodontol 2019; 90:1325-1335. [DOI: 10.1002/jper.18-0766] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 04/29/2019] [Accepted: 05/06/2019] [Indexed: 01/01/2023]
Affiliation(s)
- César A. Ossola
- Department of PhysiologyFaculty of DentistryUniversity of Buenos Aires Buenos Aires Argentina
- National Council of Scientific and Technical Research (CONICET) Buenos Aires Argentina
| | - Noelia B. Balcarcel
- Department of PhysiologyFaculty of DentistryUniversity of Buenos Aires Buenos Aires Argentina
| | - Julia I. Astrauskas
- Department of PhysiologyFaculty of DentistryUniversity of Buenos Aires Buenos Aires Argentina
| | - Clarisa Bozzini
- Department of PhysiologyFaculty of DentistryUniversity of Buenos Aires Buenos Aires Argentina
| | - Juan C. Elverdin
- Department of PhysiologyFaculty of DentistryUniversity of Buenos Aires Buenos Aires Argentina
| | - Javier Fernández‐Solari
- Department of PhysiologyFaculty of DentistryUniversity of Buenos Aires Buenos Aires Argentina
- National Council of Scientific and Technical Research (CONICET) Buenos Aires Argentina
| |
Collapse
|
43
|
A selective CB 2 agonist protects against the inflammatory response and joint destruction in collagen-induced arthritis mice. Biomed Pharmacother 2019; 116:109025. [PMID: 31154267 DOI: 10.1016/j.biopha.2019.109025] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 05/20/2019] [Accepted: 05/21/2019] [Indexed: 01/23/2023] Open
Abstract
Rheumatoid arthritis (RA) is a chronic, inflammatory, synovitis-dominated systemic disease with unknown etiology. RA is characterized by the involvement of multiple affected joints, symmetry, and invasive arthritis of the limbs, which can lead to joint deformity, cartilage destruction, and loss of function. Cannabinoid receptor 2 (CB2) has potent immunomodulatory and anti-inflammatory effects and is predominantly expressed in non-neuronal tissues. In the current study, the role of CB2 in the process of inflammatory bone erosion in RA was examined. The selective agonist or high-affinity ligand of CB2 (4-quinolone-3-carboxamides CB2 agonist, 4Q3C CB2 agonist, 4Q3C) significantly reduced the severity of arthritis, decreased histopathological findings, and markedly reduced bone erosion in collagen-induced arthritis (CIA) mice. In addition, 4Q3C prevented an increase in the nuclear factor-κB ligand (RANKL)/osteoprotegerin (OPG) ratio and inhibited the formation of osteoclasts in CIA mice. Furthermore, the expression of tumor necrosis factor-alpha, interleukin-1β, cyclooxygenase-2, and inducible nitric oxide synthase was lower in 4Q3C-treated CIA mice than in control CIA mice. Micro-computed tomography corroborated the finding that 4Q3C reduced joint destruction. These data clearly indicate that the CB2-selective agonist, 4Q3C, may have anti-inflammatory and anti-osteoclastogenesis effects in RA and may be considered to be a novel treatment for RA.
Collapse
|
44
|
Alzheimer's Disease Microbiome Is Associated with Dysregulation of the Anti-Inflammatory P-Glycoprotein Pathway. mBio 2019; 10:mBio.00632-19. [PMID: 31064831 PMCID: PMC6509190 DOI: 10.1128/mbio.00632-19] [Citation(s) in RCA: 252] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Studies of the intestinal microbiome and AD have demonstrated associations with microbiome composition at the genus level among matched cohorts. We move this body of literature forward by more deeply investigating microbiome composition via metagenomics and by comparing AD patients against those without dementia and with other dementia types. We also exploit machine learning approaches that combine both metagenomic and clinical data. Finally, our functional studies using stool samples from elders demonstrate how the c microbiome of AD elders can affect intestinal health via dysregulation of the P-glycoprotein pathway. P-glycoprotein dysregulation contributes directly to inflammatory disorders of the intestine. Since AD has been long thought to be linked to chronic bacterial infections as a possible etiology, our findings therefore fill a gap in knowledge in the field of AD research by identifying a nexus between the microbiome, loss of intestinal homeostasis, and inflammation that may underlie this neurodegenerative disorder. The microbiota-gut-brain axis is a bidirectional communication system that is poorly understood. Alzheimer’s disease (AD), the most common cause of dementia, has long been associated with bacterial infections and inflammation-causing immunosenescence. Recent studies examining the intestinal microbiota of AD patients revealed that their microbiome differs from that of subjects without dementia. In this work, we prospectively enrolled 108 nursing home elders and followed each for up to 5 months, collecting longitudinal stool samples from which we performed metagenomic sequencing and in vitro T84 intestinal epithelial cell functional assays for P-glycoprotein (P-gp) expression, a critical mediator of intestinal homeostasis. Our analysis identified clinical parameters as well as numerous microbial taxa and functional genes that act as predictors of AD dementia in comparison to elders without dementia or with other dementia types. We further demonstrate that stool samples from elders with AD can induce lower P-gp expression levels in vitro those samples from elders without dementia or with other dementia types. We also paired functional studies with machine learning approaches to identify bacterial species differentiating the microbiome of AD elders from that of elders without dementia, which in turn are accurate predictors of the loss of dysregulation of the P-gp pathway. We observed that the microbiome of AD elders shows a lower proportion and prevalence of bacteria with the potential to synthesize butyrate, as well as higher abundances of taxa that are known to cause proinflammatory states. Therefore, a potential nexus between the intestinal microbiome and AD is the modulation of intestinal homeostasis by increases in inflammatory, and decreases in anti-inflammatory, microbial metabolism.
Collapse
|
45
|
Bourassa P, Tremblay C, Schneider JA, Bennett DA, Calon F. Beta-amyloid pathology in human brain microvessel extracts from the parietal cortex: relation with cerebral amyloid angiopathy and Alzheimer's disease. Acta Neuropathol 2019; 137:801-823. [PMID: 30729296 DOI: 10.1007/s00401-019-01967-4] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 01/24/2019] [Accepted: 01/24/2019] [Indexed: 01/13/2023]
Abstract
Several pieces of evidence suggest that blood-brain barrier (BBB) dysfunction is implicated in the pathophysiology of Alzheimer's disease (AD), exemplified by the frequent occurrence of cerebral amyloid angiopathy (CAA) and the defective clearance of Aβ peptides. However, the specific role of brain microvascular cells in these anomalies remains elusive. In this study, we validated by Western, ELISA and immunofluorescence analyses a procedure to generate microvasculature-enriched fractions from frozen samples of human cerebral cortex. We then investigated Aβ and proteins involved in its clearance or production in microvessel extracts generated from the parietal cortex of 60 volunteers in the Religious Orders Study. Volunteers were categorized as AD (n = 38) or controls (n = 22) based on the ABC scoring method presented in the revised guidelines for the neuropathological diagnosis of AD. Higher ELISA-determined concentrations of vascular Aβ40 and Aβ42 were found in persons with a neuropathological diagnosis of AD, in apoE4 carriers and in participants with advanced parenchymal CAA, compared to respective age-matched controls. Vascular levels of two proteins involved in Aβ clearance, ABCB1 and neprilysin, were lower in persons with AD and positively correlated with cognitive function, while being inversely correlated to vascular Aβ40. In contrast, BACE1, a protein necessary for Aβ production, was increased in individuals with AD and in apoE4 carriers, negatively correlated to cognitive function and positively correlated to Aβ40 in microvessel extracts. The present report indicates that concentrating microvessels from frozen human brain samples facilitates the quantitative biochemical analysis of cerebrovascular dysfunction in CNS disorders. Data generated overall show that microvessels extracted from individuals with parenchymal CAA-AD contained more Aβ and BACE1 and less ABCB1 and neprilysin, evidencing a pattern of dysfunction in brain microvascular cells contributing to CAA and AD pathology and symptoms.
Collapse
Affiliation(s)
- Philippe Bourassa
- Faculté de pharmacie, Université Laval, Quebec, QC, Canada
- Axe Neurosciences, Centre de recherche du CHU de Québec-Université Laval, 2705, Boulevard Laurier, Room T2-67, Quebec, QC, G1V 4G2, Canada
| | - Cyntia Tremblay
- Axe Neurosciences, Centre de recherche du CHU de Québec-Université Laval, 2705, Boulevard Laurier, Room T2-67, Quebec, QC, G1V 4G2, Canada
| | - Julie A Schneider
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA
| | - David A Bennett
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA
| | - Frédéric Calon
- Faculté de pharmacie, Université Laval, Quebec, QC, Canada.
- Axe Neurosciences, Centre de recherche du CHU de Québec-Université Laval, 2705, Boulevard Laurier, Room T2-67, Quebec, QC, G1V 4G2, Canada.
| |
Collapse
|
46
|
Kumar V, Torben W, Mansfield J, Alvarez X, Vande Stouwe C, Li J, Byrareddy SN, Didier PJ, Pahar B, Molina PE, Mohan M. Cannabinoid Attenuation of Intestinal Inflammation in Chronic SIV-Infected Rhesus Macaques Involves T Cell Modulation and Differential Expression of Micro-RNAs and Pro-inflammatory Genes. Front Immunol 2019; 10:914. [PMID: 31114576 PMCID: PMC6503054 DOI: 10.3389/fimmu.2019.00914] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 04/09/2019] [Indexed: 12/12/2022] Open
Abstract
Cannabis use is frequent in HIV-infected individuals for its appetite stimulation and anti-inflammatory effects. To identify the underlying molecular mechanisms associated with these effects, we simultaneously profiled micro-RNA (miRNA) and mRNA expression in the colon of chronically simian immunodeficiency virus (SIV)-infected rhesus macaques administered either vehicle (VEH/SIV; n = 9) or Δ9-tetrahydrocannabinol (Δ9-THC; THC/SIV; n = 8). Pro-inflammatory miR-130a, miR-222, and miR-29b, lipopolysaccharide-responsive miR-146b-5p and SIV-induced miR-190b were significantly upregulated in VEH/SIV rhesus macaques. Compared to VEH/SIV rhesus macaques, 10 miRNAs were significantly upregulated in THC/SIV rhesus macaques, among which miR-204 was confirmed to directly target MMP8, an extracellular matrix-degrading collagenase that was significantly downregulated in THC/SIV rhesus macaques. Moreover, THC/SIV rhesus macaques failed to upregulate pro-inflammatory miR-21, miR-141 and miR-222, and alpha/beta-defensins, suggesting attenuated intestinal inflammation. Further, THC/SIV rhesus macaques showed higher expression of tight junction proteins (occludin, claudin-3), anti-inflammatory MUC13, keratin-8 (stress protection), PROM1 (epithelial proliferation), and anti-HIV CCL5. Gomori one-step trichrome staining detected significant collagen deposition (fibrosis) in the paracortex and B cell follicular zones of axillary lymph nodes from all VEH/SIV but not in THC/SIV rhesus macaques, thus demonstrating the ability of Δ9-THC to prevent lymph node fibrosis, a serious irreversible consequence of HIV induced chronic inflammation. Furthermore, using flow cytometry, we showed that Δ9-THC suppressed intestinal T cell proliferation/activation (Ki67/HLA-DR) and PD-1 expression and increased the percentages of anti-inflammatory CD163+ macrophages. Finally, while Δ9-THC did not affect the levels of CD4+ T cells, it significantly reduced absolute CD8+ T cell numbers in peripheral blood at 14 and 150 days post-SIV infection. These translational findings strongly support a role for differential miRNA/gene induction and T cell activation in Δ9-THC-mediated suppression of intestinal inflammation in HIV/SIV and potentially other chronic inflammatory diseases of the intestine.
Collapse
Affiliation(s)
- Vinay Kumar
- Nektar Therapeutics, South San Francisco, CA, United States
| | - Workineh Torben
- Department of Biological Sciences, LSU, Alexandria, LA, United States
| | - Joshua Mansfield
- Division of Comparative Pathology, Tulane National Primate Research Center, Covington, LA, United States
| | - Xavier Alvarez
- Division of Comparative Pathology, Tulane National Primate Research Center, Covington, LA, United States
| | | | - Jian Li
- Department of Global Biostatistics and Data Science, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA, United States
| | - Siddappa N Byrareddy
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, United States
| | - Peter J Didier
- Division of Comparative Pathology, Tulane National Primate Research Center, Covington, LA, United States
| | - Bapi Pahar
- Division of Comparative Pathology, Tulane National Primate Research Center, Covington, LA, United States
| | - Patricia E Molina
- Department of Physiology, LSUHSC, New Orleans, LA, United States.,LSUHSC Alcohol and Drug Abuse Center, New Orleans, LA, United States
| | - Mahesh Mohan
- Division of Comparative Pathology, Tulane National Primate Research Center, Covington, LA, United States
| |
Collapse
|
47
|
Endocannabinoids counterbalance intestinal inflammation. Nat Rev Gastroenterol Hepatol 2018; 15:656-657. [PMID: 30181610 DOI: 10.1038/s41575-018-0067-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/08/2022]
|
48
|
Neish AS. Acute inflammation: endogenous cannabinoids mellow the harsh proinflammatory environment. J Clin Invest 2018; 128:3750-3751. [PMID: 30102253 DOI: 10.1172/jci122885] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Under normal conditions, there is a paucity of neutrophils within the intestinal mucosa; however, these innate immune cells rapidly infiltrate the mucosa in response to infection and are critical for pathogen control. Unfortunately, these cells can cause extensive damage to the intestine if the initial inflammatory influx is not resolved. Factors that promote resolution of inflammation are of great interest, as they have therapeutic potential for limiting uncontrolled inflammatory damage. In this issue of the JCI, Szabady et al. demonstrate that the multidrug resistance transporter P-glycoprotein (P-gp) secretes endocannabinoids into the intestinal lumen that counteract the proinflammatory actions of the eicosanoid hepoxilin A3, which is secreted into the lumen by the efflux pump MRP2 and serves as a potent neutrophil chemoattractant. Moreover, the antiinflammatory actions of P-gp-secreted endocannabinoids were mediated by peripheral cannabinoid receptor CB2 on neutrophils. Together, the results of this study identify an important mechanism by which endogenous endocannabinoids facilitate the resolution of inflammation; this mechanism has potential to be therapeutically exploited.
Collapse
|