1
|
Hemilä H, de Man AME. Vitamin C deficiency can lead to pulmonary hypertension: a systematic review of case reports. BMC Pulm Med 2024; 24:140. [PMID: 38504249 PMCID: PMC10949735 DOI: 10.1186/s12890-024-02941-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 03/01/2024] [Indexed: 03/21/2024] Open
Abstract
BACKGROUND In the early literature, unintentional vitamin C deficiency in humans was associated with heart failure. Experimental vitamin C deficiency in guinea pigs caused enlargement of the heart. The purpose of this study was to collect and analyze case reports on vitamin C and pulmonary hypertension. METHODS We searched Pubmed and Scopus for case studies in which vitamin C deficiency was considered to be the cause of pulmonary hypertension. We selected reports in which pulmonary hypertension was diagnosed by echocardiography or catheterization, for any age, sex, or dosage of vitamin C. We extracted quantitative data for our analysis. We used the mean pulmonary artery pressure (mPAP) as the outcome of primary interest. RESULTS We identified 32 case reports, 21 of which were published in the last 5 years. Dyspnea was reported in 69%, edema in 53% and fatigue in 28% of the patients. Vitamin C plasma levels, measured in 27 cases, were undetectable in 24 and very low in 3 cases. Diet was poor in 30 cases and 17 cases had neuropsychiatric disorders. Right ventricular enlargement was reported in 24 cases. During periods of vitamin C deficiency, the median mPAP was 48 mmHg (range 29-77 mmHg; N = 28). After the start of vitamin C administration, the median mPAP was 20 mmHg (range 12-33 mmHg; N = 18). For the latter 18 cases, mPAP was 2.4-fold (median) higher during vitamin C deficiency. Pulmonary vascular resistance (PVR) during vitamin C deficiency was reported for 9 cases, ranging from 4.1 to 41 Wood units. PVR was 9-fold (median; N = 5) higher during vitamin C deficiency than during vitamin C administration. In 8 cases, there was direct evidence that the cases were pulmonary artery hypertension (PAH). Probably the majority of the remaining cases were also PAH. CONCLUSIONS The cases analyzed in our study indicate that pulmonary hypertension can be one explanation for the reported heart failure of scurvy patients in the early literature. It would seem sensible to measure plasma vitamin C levels of patients with PH and examine the effects of vitamin C administration.
Collapse
Affiliation(s)
- Harri Hemilä
- Department of Public Health, University of Helsinki, POB 41, Helsinki, FI-00014, Finland.
| | - Angelique M E de Man
- Department of Intensive Care Medicine, Amsterdam University Medical Centers, location VUmc, Amsterdam, The Netherlands.
| |
Collapse
|
2
|
He JD, Parker JD. The effect of vitamin C on nitroglycerin-mediated vasodilation in individuals with and without the aldehyde dehydrogenase 2 polymorphism. Br J Clin Pharmacol 2023; 89:2767-2774. [PMID: 37101414 DOI: 10.1111/bcp.15755] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 04/10/2023] [Accepted: 04/12/2023] [Indexed: 04/28/2023] Open
Abstract
AIMS To mediate its pharmacodynamic effects, glyceryl trinitrate (GTN) requires bioactivation, by which it releases nitric oxide or a nitric oxide moiety. The exact mechanism of GTN bioactivation remains uncertain. Mitochondrial aldehyde dehydrogenase (ALDH-2) has been proposed as the primary enzyme responsible for this bioactivation process. Evidence for the importance of ALDH-2 in GTN bioactivation has been inconsistent, particularly in human models. An alternative hypothesis suggests that decreased ALDH-2 activity leads to accumulation of reactive cytotoxic aldehydes, which either inhibit the vasoactive product(s) of GTN or impair other enzymatic pathways involved in the bioactivation of GTN. We investigated the effect of supplemental vitamin C on vascular responses to GTN in healthy volunteers of East Asian descent, of whom 12 with and 12 without the ALDH-2 polymorphism participated. METHODS Subjects underwent 2 sequential brachial artery infusions of GTN at rates of 5, 11 and 22 nmol/min, separated by a 30-min washout period. The GTN infusions were carried out in the presence and absence of vitamin C using a randomized, crossover design. Venous occlusion plethysmography was used to measure forearm blood flow responses to GTN. RESULTS Compared to subjects with functional ALDH-2, the variant group exhibited blunted hemodynamic responses to intra-arterial GTN infusions, although this reduction in response was not statically significant. Contrary to our hypothesis, vitamin C had an inhibitory effect on GTN mediated vasodilation as compared to GTN during saline in both groups. CONCLUSION We conclude that vitamin C did not augment the acute vascular response to GTN in those with the ALDH-2 polymorphism.
Collapse
Affiliation(s)
- Jerry D He
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Canada
| | - John D Parker
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Canada
- Division of Cardiology, Department of Medicine, Sinai Health System and the Peter Munk Cardiac Centre, University Health Network, Toronto, Canada
- The Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Canada
| |
Collapse
|
3
|
Doseděl M, Jirkovský E, Macáková K, Krčmová LK, Javorská L, Pourová J, Mercolini L, Remião F, Nováková L, Mladěnka P. Vitamin C-Sources, Physiological Role, Kinetics, Deficiency, Use, Toxicity, and Determination. Nutrients 2021; 13:615. [PMID: 33668681 PMCID: PMC7918462 DOI: 10.3390/nu13020615] [Citation(s) in RCA: 199] [Impact Index Per Article: 49.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/02/2021] [Accepted: 02/08/2021] [Indexed: 02/07/2023] Open
Abstract
Vitamin C (L-ascorbic acid) has been known as an antioxidant for most people. However, its physiological role is much larger and encompasses very different processes ranging from facilitation of iron absorption through involvement in hormones and carnitine synthesis for important roles in epigenetic processes. Contrarily, high doses act as a pro-oxidant than an anti-oxidant. This may also be the reason why plasma levels are meticulously regulated on the level of absorption and excretion in the kidney. Interestingly, most cells contain vitamin C in millimolar concentrations, which is much higher than its plasma concentrations, and compared to other vitamins. The role of vitamin C is well demonstrated by miscellaneous symptoms of its absence-scurvy. The only clinically well-documented indication for vitamin C is scurvy. The effects of vitamin C administration on cancer, cardiovascular diseases, and infections are rather minor or even debatable in the general population. Vitamin C is relatively safe, but caution should be given to the administration of high doses, which can cause overt side effects in some susceptible patients (e.g., oxalate renal stones). Lastly, analytical methods for its determination with advantages and pitfalls are also discussed in this review.
Collapse
Affiliation(s)
- Martin Doseděl
- Department of Social and Clinical Pharmacy, Faculty of Pharmacy, Charles University, 500 05 Hradec Králové, Czech Republic;
| | - Eduard Jirkovský
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Charles University, 500 05 Hradec Králové, Czech Republic; (E.J.); (J.P.)
| | - Kateřina Macáková
- Department of Pharmacognosy, Faculty of Pharmacy, Charles University, 500 05 Hradec Králové, Czech Republic;
| | - Lenka Kujovská Krčmová
- Department of Analytical Chemistry, Faculty of Pharmacy, Charles University, 500 05 Hradec Králové, Czech Republic; (L.K.K.); (L.N.)
- Department of Clinical Biochemistry and Diagnostics, University Hospital Hradec Králové, 500 05 Hradec Králové, Czech Republic;
| | - Lenka Javorská
- Department of Clinical Biochemistry and Diagnostics, University Hospital Hradec Králové, 500 05 Hradec Králové, Czech Republic;
| | - Jana Pourová
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Charles University, 500 05 Hradec Králové, Czech Republic; (E.J.); (J.P.)
| | - Laura Mercolini
- Research group of Pharmaco-Toxicological Analysis (PTA Lab), Department of Pharmacy and Biotechnology (FaBiT), Alma Mater Studiorum—University of Bologna, 40126 Bologna, Italy;
| | - Fernando Remião
- UCIBIO-REQUIMTE, Laboratory of Toxicology, Biological Sciences Department, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal;
| | - Lucie Nováková
- Department of Analytical Chemistry, Faculty of Pharmacy, Charles University, 500 05 Hradec Králové, Czech Republic; (L.K.K.); (L.N.)
| | - Přemysl Mladěnka
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Charles University, 500 05 Hradec Králové, Czech Republic; (E.J.); (J.P.)
| | | |
Collapse
|
4
|
Mir JM, Malik BA, Maurya RC. Nitric oxide-releasing molecules at the interface of inorganic chemistry and biology: a concise overview. REV INORG CHEM 2019. [DOI: 10.1515/revic-2018-0017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
AbstractThe useful aspects of nitric oxide (NO) are nowadays widely known. Due to the need for this molecule in the maintenance of homeostasis, NO-releasing compounds are tested every year to optimize its levels in a patient suffering from low NO production. This manuscript is an update of some important historical concerns about nitrosyl complexes having the ability to act as NO-releasing compounds under the influence of different chemically modified environments. At present, the search for efficient and less harmful NO-releasing molecules at desirable targets and concentrations has gained considerable momentum in nitrosyl chemistry. Iron, ruthenium, and manganese nitrosyls have been investigated elitely to disentangle their electronic transition (excitation) under visible light to act as NO donors without harming the healthy cells of a target. There is much evidence supporting the increase of NO lability if amino acids are used as complexing ligands, the design of a reduction center close to an NO grouping, and the development of porphyrin system-based nitrosyl complexes. From the overall survey, it may be concluded that the desirable properties of such scaffolds need to be evaluated further to complement the biological milieu.
Collapse
Affiliation(s)
- Jan Mohammad Mir
- Coordination, Bioinorganic and Computational Chemistry Laboratory, Department of Post Graduate Studies and Research in Chemistry and Pharmacy, Rani Durgavati University, Jabalpur 482001, Madhya Pradesh, India
- Department of Chemistry, Islamic University of Science and Technology, Awantipora 192322, Jammu and Kashmir
| | - Bashir Ahmad Malik
- Coordination, Bioinorganic and Computational Chemistry Laboratory, Department of Post Graduate Studies and Research in Chemistry and Pharmacy, Rani Durgavati University, Jabalpur 482001, Madhya Pradesh, India
- Department of Chemistry, Islamic University of Science and Technology, Awantipora 192322, Jammu and Kashmir
| | - Ram Charitra Maurya
- Coordination, Bioinorganic and Computational Chemistry Laboratory, Department of Post Graduate Studies and Research in Chemistry and Pharmacy, Rani Durgavati University, Jabalpur 482001, Madhya Pradesh, India
| |
Collapse
|
5
|
Axton ER, Cristobal E, Choi J, Miranda CL, Stevens JF. Metabolomics-Driven Elucidation of Cellular Nitrate Tolerance Reveals Ascorbic Acid Prevents Nitroglycerin-Induced Inactivation of Xanthine Oxidase. Front Pharmacol 2018; 9:1085. [PMID: 30319419 PMCID: PMC6167911 DOI: 10.3389/fphar.2018.01085] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Accepted: 09/06/2018] [Indexed: 12/16/2022] Open
Abstract
Glyceryl trinitrate (GTN) has found widespread use for the treatment of angina pectoris, a pathological condition manifested by chest pain resulting from insufficient blood supply to the heart. Metabolic conversion of GTN, a nitric oxide (NO) pro-drug, into NO induces vasodilation and improves blood flow. Patients develop tolerance to GTN after several weeks of continuous use, limiting the potential for long-term therapy. The mechanistic cause of nitrate tolerance is relatively unknown. We developed a cell culture model of nitrate tolerance that utilizes stable isotopes to measure metabolism of 15N3-GTN into 15N-nitrite. We performed global metabolomics to identify the mechanism of GTN-induced nitrate tolerance and to elucidate the protective role of vitamin C (ascorbic acid). Metabolomics analyses revealed that GTN impaired purine metabolism and depleted intracellular ATP and GTP. GTN inactivated xanthine oxidase (XO), an enzyme that is critical for the metabolic bioactivation of GTN into NO. Ascorbic acid prevented inactivation of XO, resulting in increased NO production from GTN. Our studies suggest that ascorbic acid has the ability to prevent nitrate tolerance by protecting XO, but not aldehyde dehydrogenase (another GTN bioactivating enzyme), from GTN-induced inactivation. Our findings provide a mechanistic explanation for the previously observed beneficial effects of ascorbic acid in nitrate therapy.
Collapse
Affiliation(s)
- Elizabeth Rose Axton
- The Linus Pauling Institute, Oregon State University, Corvallis, OR, United States.,Department of Pharmaceutical Sciences, Oregon State University, Corvallis, OR, United States.,Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR, United States
| | - Eleonso Cristobal
- The Linus Pauling Institute, Oregon State University, Corvallis, OR, United States.,Department of Pharmaceutical Sciences, Oregon State University, Corvallis, OR, United States
| | - Jaewoo Choi
- The Linus Pauling Institute, Oregon State University, Corvallis, OR, United States
| | - Cristobal L Miranda
- The Linus Pauling Institute, Oregon State University, Corvallis, OR, United States.,Department of Pharmaceutical Sciences, Oregon State University, Corvallis, OR, United States
| | - Jan Frederik Stevens
- The Linus Pauling Institute, Oregon State University, Corvallis, OR, United States.,Department of Pharmaceutical Sciences, Oregon State University, Corvallis, OR, United States
| |
Collapse
|
6
|
Nemzer BV, Centner C, Zdzieblik D, Fink B, Hunter JM, König D. Oxidative stress or redox signalling - new insights into the effects of a proprietary multifunctional botanical dietary supplement. Free Radic Res 2017; 52:362-372. [PMID: 29110555 DOI: 10.1080/10715762.2017.1390228] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Recent interest has focused on maintenance of healthy levels of redox signalling and the related oxidants; these parameters are crucial for providing us with concrete nutritional targets that may help us to better understand and maintain "optimal health". Following the above hypothesis, we performed a pilot double-blind, crossover, placebo-controlled, single dose study to measure the dose-dependent effects of a proprietary plant-based dietary supplement labelled here as S7 (SPECTRA7), related to how it affected the cellular metabolic index (CMI) in healthy human participants (n = 8). We demonstrated using the electron spin resonance/electron paramagnetic resonance spectrometer NOXYSCAN that the administration S7 resulted in statistically significant, long-term, dose-dependent inhibition of mitochondrial and cellular reactive oxygen species generation by as much as 9.2 or 17.7% as well as 12.0 or 14.8% inhibition in extracellular nicotinamide-dinucleotide-phosphate oxidase system-dependent generation of O2•-, and 9.5 or 44.5% inhibition of extracellular H2O2 formation. This was reflected with dose-dependent 13.4 or 17.6% inhibition of tumour necrosis factor alpha induced cellular inflammatory resistance and also 1.7 or 2.3-times increases of bioavailable NO concentration. In this pilot study, we demonstrated the ability of a natural supplement to affect cellular redox signalling, which is considered by many researchers as oxidative stress. The design and activity of this proprietary plant-based material, in combination with the newly developed "CMI" test, demonstrates the potential of using dietary supplements to modulate redox signalling. This opens the door to future research into the use of S7 for modulation of inflammatory markers, for sports endurance or recovery applications.
Collapse
Affiliation(s)
- Boris V Nemzer
- a VDF FutureCeuticals, Inc. , Momence , IL , USA.,b Department of Food Science and Human Nutrition , University of Illinois at Urbana-Champaign , Urbana , IL , USA
| | - Christoph Centner
- c Steinbeis Center for Health Promotion and Metabolic Research , Freiburg , Germany
| | - Denise Zdzieblik
- c Steinbeis Center for Health Promotion and Metabolic Research , Freiburg , Germany
| | - Bruno Fink
- d Noxygen Science Transfer & Diagnostics GmbH , Elzach , Germany
| | | | - Daniel König
- c Steinbeis Center for Health Promotion and Metabolic Research , Freiburg , Germany
| |
Collapse
|
7
|
Abstract
AbstractCVD is the leading cause of death worldwide, a consequence of mostly poor lifestyle and dietary behaviours. Although whole fruit and vegetable consumption has been consistently shown to reduce CVD risk, the exact protective constituents of these foods are yet to be clearly identified. A recent and biologically plausible hypothesis supporting the cardioprotective effects of vegetables has been linked to their inorganic nitrate content. Approximately 60–80 % inorganic nitrate exposure in the human diet is contributed by vegetable consumption. Although inorganic nitrate is a relatively stable molecule, under specific conditions it can be metabolised in the body to produce NO via the newly discovered nitrate–nitrite–NO pathway. NO is a major signalling molecule in the human body, and has a key role in maintaining vascular tone, smooth muscle cell proliferation, platelet activity and inflammation. Currently, there is accumulating evidence demonstrating that inorganic nitrate can lead to lower blood pressure and improved vascular compliance in humans. The aim of this review is to present an informative, balanced and critical review of the current evidence investigating the role of inorganic nitrate and nitrite in the development, prevention and/or treatment of CVD. Although there is evidence supporting short-term inorganic nitrate intakes for reduced blood pressure, there is a severe lack of research examining the role of long-term nitrate intakes in the treatment and/or prevention of hard CVD outcomes, such as myocardial infarction and cardiovascular mortality. Epidemiological evidence is needed in this field to justify continued research efforts.
Collapse
|
8
|
Elkayam U, Bitar F, Akhter MW, Khan S, Patrus S, Derakhshani M. Intravenous Nitroglycerin in the Treatment of Decompensated Heart Failure: Potential Benefits and Limitations. J Cardiovasc Pharmacol Ther 2016; 9:227-41. [PMID: 15678242 DOI: 10.1177/107424840400900403] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Acute decompensated heart failure (ADHF) is a common cause of hospitalizations. Intravenous nitroglycerin is widely used in the treatment of this condition. The use of this drug is based on its nitric oxide-mediated vasodilatory effect, which can lead to beneficial hemodynamic effects as well as improvement of myocardial ischemia and reduction of mitral regurgitation. However, information regarding the use of nitroglycerin for ADHF is limited to mostly hemodynamic evaluations in small groups of patients without cardiovascular outcome data. A single randomized, placebo controlled study that evaluated commonly used doses of nitroglycerin in patients with ADHF was disappointing and failed to show a significant hemodynamic effect or improvement of symptoms compared with placebo. The potential benefit of nitroglycerin seems to be limited by a decreased vasodilatory response in patients with heart failure, which requires an active titration of the drug and the use of high doses (>120 µg/min). In addition, the initial beneficial hemodynamic effect achieved with the appropriate dose of nitroglycerin is associated with neurohumoral activation and limited by an early development of nitrate tolerance that leads to a marked attenuation of the initial effect. More information obtained in large-scale studies that are appropriately designed to evaluate the effect of variable doses of nitroglycerin on short- and long-term cardiovascular outcome, with and without interventions shown to prevent nitrate tolerance, is needed before intravenous nitroglycerin can be recommended as a standard therapy for ADHF.
Collapse
Affiliation(s)
- Uri Elkayam
- Heart Failure Program, Division of Cardiovascular Medicine, University of Southern California, Keck School of Medicine, Los Angeles, CA, USA.
| | | | | | | | | | | |
Collapse
|
9
|
Daiber A, Münzel T. Organic Nitrate Therapy, Nitrate Tolerance, and Nitrate-Induced Endothelial Dysfunction: Emphasis on Redox Biology and Oxidative Stress. Antioxid Redox Signal 2015; 23:899-942. [PMID: 26261901 PMCID: PMC4752190 DOI: 10.1089/ars.2015.6376] [Citation(s) in RCA: 109] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Organic nitrates, such as nitroglycerin (GTN), isosorbide-5-mononitrate and isosorbide dinitrate, and pentaerithrityl tetranitrate (PETN), when given acutely, have potent vasodilator effects improving symptoms in patients with acute and chronic congestive heart failure, stable coronary artery disease, acute coronary syndromes, or arterial hypertension. The mechanisms underlying vasodilation include the release of •NO or a related compound in response to intracellular bioactivation (for GTN, the mitochondrial aldehyde dehydrogenase [ALDH-2]) and activation of the enzyme, soluble guanylyl cyclase. Increasing cyclic guanosine-3',-5'-monophosphate (cGMP) levels lead to an activation of the cGMP-dependent kinase I, thereby causing the relaxation of the vascular smooth muscle by decreasing intracellular calcium concentrations. The hemodynamic and anti-ischemic effects of organic nitrates are rapidly lost upon long-term (low-dose) administration due to the rapid development of tolerance and endothelial dysfunction, which is in most cases linked to increased intracellular oxidative stress. Enzymatic sources of reactive oxygen species under nitrate therapy include mitochondria, NADPH oxidases, and an uncoupled •NO synthase. Acute high-dose challenges with organic nitrates cause a similar loss of potency (tachyphylaxis), but with distinct pathomechanism. The differences among organic nitrates are highlighted regarding their potency to induce oxidative stress and subsequent tolerance and endothelial dysfunction. We also address pleiotropic effects of organic nitrates, for example, their capacity to stimulate antioxidant pathways like those demonstrated for PETN, all of which may prevent adverse effects in response to long-term therapy. Based on these considerations, we will discuss and present some preclinical data on how the nitrate of the future should be designed.
Collapse
Affiliation(s)
- Andreas Daiber
- The 2nd Medical Clinic, Medical Center of the Johannes Gutenberg University , Mainz, Germany
| | - Thomas Münzel
- The 2nd Medical Clinic, Medical Center of the Johannes Gutenberg University , Mainz, Germany
| |
Collapse
|
10
|
Jabs A, Oelze M, Mikhed Y, Stamm P, Kröller-Schön S, Welschof P, Jansen T, Hausding M, Kopp M, Steven S, Schulz E, Stasch JP, Münzel T, Daiber A. Effect of soluble guanylyl cyclase activator and stimulator therapy on nitroglycerin-induced nitrate tolerance in rats. Vascul Pharmacol 2015; 71:181-91. [DOI: 10.1016/j.vph.2015.03.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Revised: 02/20/2015] [Accepted: 03/25/2015] [Indexed: 01/06/2023]
|
11
|
Wölkart G, Beretta M, Wenzl MV, Stessel H, Schmidt K, Maeda N, Mayer B, Schrammel A. Tolerance to nitroglycerin through proteasomal down-regulation of aldehyde dehydrogenase-2 in a genetic mouse model of ascorbate deficiency. Br J Pharmacol 2015. [PMID: 23194305 PMCID: PMC3623057 DOI: 10.1111/bph.12081] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Background and Purpose L-gulonolactone oxidase-deficient (Gulo(-/-)) mice were used to study the effects of ascorbate deficiency on aortic relaxation by nitroglycerin (GTN) with focus on changes in the expression and activity of vascular aldehyde dehydrogenase-2 (ALDH2), which catalyses GTN bioactivation. Experimental Approach Ascorbate deficiency was induced in Gulo(-/-) mice by ascorbate deprivation for 4 weeks. Some of the animals were concomitantly treated with the proteasome inhibitor bortezomib and effects compared with ascorbate-supplemented Gulo(-/-), untreated or nitrate-tolerant wild-type mice. Aortic relaxation of the experimental groups to GTN, ACh and a NO donor was studied. Changes in mRNA and protein expression of vascular ALDH2 were quantified by qPCR and immunoblotting, respectively, and aortic GTN denitration rates determined. Key Results Like GTN treatment, ascorbate deprivation induced vascular tolerance to GTN that was associated with markedly decreased rates of GTN denitration. Ascorbate deficiency did not affect ALDH2 mRNA levels, but reduced ALDH2 protein expression and the total amount of ubiquitinated proteins to about 40% of wild-type controls. These effects were largely prevented by ascorbate supplementation or treating Gulo(-/-) mice with the 26S proteasome inhibitor bortezomib. Conclusions and Implications Our data indicate that ascorbate deficiency results in vascular tolerance to GTN via proteasomal degradation of ALDH2. The results support the view that impaired ALDH2-catalysed metabolism of GTN contributes significantly to the development of vascular nitrate tolerance and reveal a hitherto unrecognized protective effect of ascorbate in the vasculature.
Collapse
Affiliation(s)
- G Wölkart
- Department of Pharmacology and Toxicology, Karl-Franzens-Universität Graz, Graz, Austria
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Nemzer BV, Fink N, Fink B. New insights on effects of a dietary supplement on oxidative and nitrosative stress in humans. Food Sci Nutr 2014; 2:828-39. [PMID: 25493202 PMCID: PMC4256589 DOI: 10.1002/fsn3.178] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Revised: 09/01/2014] [Accepted: 09/02/2014] [Indexed: 01/17/2023] Open
Abstract
The research community is generally agreed that maintenance of healthy levels of free radicals and related oxidants are important for good health. However, utilization of the "redox stress hypothesis" can provide us with concrete nutritional targets in order to better support and maintain "optimal health." Following this hypothesis we performed a crossover, double-blind, placebo-controlled, single-dose study on the effects of SPECTRA™, a dietary supplement, on oxidative stress markers (OSM) in human participants (n = 22). The measurement of OSM (ex vivo intra- and extracellular formation of reactive oxygen species (ROS, O2 (-), H2O2, OH(-)) in whole blood, respiratory activity of blood cells, as well as mitochondrial-dependent ROS formation, and respiratory activity), was performed using EPR spectrometer nOxyscan, spin probe CMH, and oxygen label NOX-15.1, respectively. Furthermore, we investigated the ability of SPECTRA™ to modulate ex vivo cellular inflammatory responses induced by stimulation with exogenous TNF-α and also followed changes in bioavailable NO concentrations. In this clinical study, we demonstrated that administration of SPECTRA™ resulted in statistically significant long-term inhibition of mitochondrial and cellular ROS generation by as much as 17% as well as 3.5-times inhibition in extracellular NADPH system-dependent generation of O2 (-), and nearly complete inhibition of extracellular H2O2 formation. This was reflected in more than two times inhibition of ex vivo cellular inflammatory response and also increases in bioavailable NO concentration. For the first time, we have measured synergetic, biological effects of a natural supplement on changes in OSM and cellular metabolic activity. The unique design and activity of the plant-based natural supplement, in combination with the newly developed and extended Vitality test, demonstrates the potential of using dietary supplements to modulate OSM and also opens the door to future research into the use of natural supplements for supporting optimal health.
Collapse
Affiliation(s)
- Boris V Nemzer
- VDF FutureCeuticals Inc. 2692 N State Rt. 1-17, Momence, Illinois, 60954 ; University of Illinois at Urbana-Champaign 1201 W. Gregory Dr, Urbana, Illinois, 61801
| | - Nelli Fink
- Noxygen Science Transfer & Diagnostics GmbH Lindenmatte 42, 79215, Elzach, Germany
| | - Bruno Fink
- Noxygen Science Transfer & Diagnostics GmbH Lindenmatte 42, 79215, Elzach, Germany
| |
Collapse
|
13
|
Page NA, Fung HL. Organic nitrate metabolism and action: toward a unifying hypothesis and the future-a dedication to Professor Leslie Z. Benet. J Pharm Sci 2013; 102:3070-81. [PMID: 23670666 DOI: 10.1002/jps.23550] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Revised: 03/20/2013] [Accepted: 03/26/2013] [Indexed: 12/23/2022]
Abstract
This review summarizes the major advances that had been reported since the outstanding contributions that Professor Benet and his group had made in the 1980s and 1990s concerning the metabolism and pharmacologic action of organic nitrates (ORNs). Several pivotal studies have now enhanced our understanding of the metabolism and the bioactivation of ORNs, resulting in the identification of a host of cysteine-containing enzymes that can carry out this function. Three isoforms of aldehyde dehydrogenase, all of which with active catalytic cysteine sites, are now known to metabolize, somewhat selectively, various members of the ORN family. The existence of a long-proposed but unstable thionitrate intermediate from ORN metabolism has now been experimentally observed. ORN-induced thiol oxidation in multiple proteins, called the "thionitrate oxidation hypothesis," can be used not only to explain the phenomenon of nitrate tolerance, but also the various consequences of chronic nitrate therapy, namely, rebound vasoconstriction, and increased morbidity and mortality. Thus, a unifying biochemical hypothesis can account for the myriad of pharmacological events resulting from nitrate therapy. Optimization of the future uses of ORN in cardiology and other diseases could benefit from further elaboration of this unifying hypothesis.
Collapse
Affiliation(s)
- Nathaniel A Page
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, Buffalo, New York 14214, USA
| | | |
Collapse
|
14
|
Jansen T, Daiber A. Direct Antioxidant Properties of Bilirubin and Biliverdin. Is there a Role for Biliverdin Reductase? Front Pharmacol 2012; 3:30. [PMID: 22438843 PMCID: PMC3306014 DOI: 10.3389/fphar.2012.00030] [Citation(s) in RCA: 148] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2012] [Accepted: 02/14/2012] [Indexed: 12/18/2022] Open
Abstract
Reactive oxygen species (ROS) and signaling events are involved in the pathogenesis of endothelial dysfunction and represent a major contribution to vascular regulation. Molecular signaling is highly dependent on ROS. But depending on the amount of ROS production it might have toxic or protective effects. Despite a large number of negative outcomes in large clinical trials (e.g., HOPE, HOPE-TOO), antioxidant molecules and agents are important players to influence the critical balance between production and elimination of reactive oxygen and nitrogen species. However, chronic systemic antioxidant therapy lacks clinical efficacy, probably by interfering with important physiological redox signaling pathways. Therefore, it may be a much more promising attempt to induce intrinsic antioxidant pathways in order to increase the antioxidants not systemically but at the place of oxidative stress and complications. Among others, heme oxygenase (HO) has been shown to be important for attenuating the overall production of ROS in a broad range of disease states through its ability to degrade heme and to produce carbon monoxide and biliverdin/bilirubin. With the present review we would like to highlight the important antioxidant role of the HO system and especially discuss the contribution of the biliverdin, bilirubin, and biliverdin reductase (BVR) to these beneficial effects. The BVR was reported to confer an antioxidant redox amplification cycle by which low, physiological bilirubin concentrations confer potent antioxidant protection via recycling of biliverdin from oxidized bilirubin by the BVR, linking this sink for oxidants to the NADPH pool. To date the existence and role of this antioxidant redox cycle is still under debate and we present and discuss the pros and cons as well as our own findings on this topic.
Collapse
Affiliation(s)
- Thomas Jansen
- The 2nd Medical Clinic, Molecular Cardiology, Medical Center of the Johannes Gutenberg University Mainz, Germany
| | | |
Collapse
|
15
|
Bjelakovic G, Nikolova D, Gluud LL, Simonetti RG, Gluud C. Antioxidant supplements for prevention of mortality in healthy participants and patients with various diseases. Cochrane Database Syst Rev 2012; 2012:CD007176. [PMID: 22419320 PMCID: PMC8407395 DOI: 10.1002/14651858.cd007176.pub2] [Citation(s) in RCA: 296] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND Our systematic review has demonstrated that antioxidant supplements may increase mortality. We have now updated this review. OBJECTIVES To assess the beneficial and harmful effects of antioxidant supplements for prevention of mortality in adults. SEARCH METHODS We searched The Cochrane Library, MEDLINE, EMBASE, LILACS, the Science Citation Index Expanded, and Conference Proceedings Citation Index-Science to February 2011. We scanned bibliographies of relevant publications and asked pharmaceutical companies for additional trials. SELECTION CRITERIA We included all primary and secondary prevention randomised clinical trials on antioxidant supplements (beta-carotene, vitamin A, vitamin C, vitamin E, and selenium) versus placebo or no intervention. DATA COLLECTION AND ANALYSIS Three authors extracted data. Random-effects and fixed-effect model meta-analyses were conducted. Risk of bias was considered in order to minimise the risk of systematic errors. Trial sequential analyses were conducted to minimise the risk of random errors. Random-effects model meta-regression analyses were performed to assess sources of intertrial heterogeneity. MAIN RESULTS Seventy-eight randomised trials with 296,707 participants were included. Fifty-six trials including 244,056 participants had low risk of bias. Twenty-six trials included 215,900 healthy participants. Fifty-two trials included 80,807 participants with various diseases in a stable phase. The mean age was 63 years (range 18 to 103 years). The mean proportion of women was 46%. Of the 78 trials, 46 used the parallel-group design, 30 the factorial design, and 2 the cross-over design. All antioxidants were administered orally, either alone or in combination with vitamins, minerals, or other interventions. The duration of supplementation varied from 28 days to 12 years (mean duration 3 years; median duration 2 years). Overall, the antioxidant supplements had no significant effect on mortality in a random-effects model meta-analysis (21,484 dead/183,749 (11.7%) versus 11,479 dead/112,958 (10.2%); 78 trials, relative risk (RR) 1.02, 95% confidence interval (CI) 0.98 to 1.05) but significantly increased mortality in a fixed-effect model (RR 1.03, 95% CI 1.01 to 1.05). Heterogeneity was low with an I(2)- of 12%. In meta-regression analysis, the risk of bias and type of antioxidant supplement were the only significant predictors of intertrial heterogeneity. Meta-regression analysis did not find a significant difference in the estimated intervention effect in the primary prevention and the secondary prevention trials. In the 56 trials with a low risk of bias, the antioxidant supplements significantly increased mortality (18,833 dead/146,320 (12.9%) versus 10,320 dead/97,736 (10.6%); RR 1.04, 95% CI 1.01 to 1.07). This effect was confirmed by trial sequential analysis. Excluding factorial trials with potential confounding showed that 38 trials with low risk of bias demonstrated a significant increase in mortality (2822 dead/26,903 (10.5%) versus 2473 dead/26,052 (9.5%); RR 1.10, 95% CI 1.05 to 1.15). In trials with low risk of bias, beta-carotene (13,202 dead/96,003 (13.8%) versus 8556 dead/77,003 (11.1%); 26 trials, RR 1.05, 95% CI 1.01 to 1.09) and vitamin E (11,689 dead/97,523 (12.0%) versus 7561 dead/73,721 (10.3%); 46 trials, RR 1.03, 95% CI 1.00 to 1.05) significantly increased mortality, whereas vitamin A (3444 dead/24,596 (14.0%) versus 2249 dead/16,548 (13.6%); 12 trials, RR 1.07, 95% CI 0.97 to 1.18), vitamin C (3637 dead/36,659 (9.9%) versus 2717 dead/29,283 (9.3%); 29 trials, RR 1.02, 95% CI 0.98 to 1.07), and selenium (2670 dead/39,779 (6.7%) versus 1468 dead/22,961 (6.4%); 17 trials, RR 0.97, 95% CI 0.91 to 1.03) did not significantly affect mortality. In univariate meta-regression analysis, the dose of vitamin A was significantly associated with increased mortality (RR 1.0006, 95% CI 1.0002 to 1.001, P = 0.002). AUTHORS' CONCLUSIONS We found no evidence to support antioxidant supplements for primary or secondary prevention. Beta-carotene and vitamin E seem to increase mortality, and so may higher doses of vitamin A. Antioxidant supplements need to be considered as medicinal products and should undergo sufficient evaluation before marketing.
Collapse
Affiliation(s)
- Goran Bjelakovic
- Department of InternalMedicine,Medical Faculty, University ofNis,Nis, Serbia.
| | | | | | | | | |
Collapse
|
16
|
Abstract
INTRODUCTION It is becoming increasingly clear that many diseases are characterized or associated with perturbations in nitric oxide (NO) production/signaling. Therapeutics or strategies designed to restore normal NO homeostasis will likely have broad application and utility in human health. This highly complex and multi-step pathway for NO production and subsequent target activation provides many steps in the endogenous pathway that may be useful targets for drug development. Important therapeutic areas for NO-based therapies are inflammatory disorders, cardiovascular diseases, erectile dysfunction and metabolic disorders. AREAS COVERED The following review will discuss the endogenous NO pathway, highlight the current market and indications for NO-based therapeutics, as well as identify pathway targets currently under drug development. Each step along the NO pathway will be discussed including exogenous sources of NO, use of precursors to promote NO production and downstream pathways affected by NO production with advantages and disadvantages highlighted for each. EXPERT OPINION Development of NO-based therapeutics is and will continue to be a major focus of biotech and pharmaceutical companies. Understanding and utilizing dietary and nutritional strategies to restore NO homeostasis could allow for safer, quicker marketing of products that may be just as efficacious as drugs designed against specific targets.
Collapse
Affiliation(s)
- Nathan S Bryan
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine , The University of Texas Health Science Center at Houston,The Graduate School of Biomedical Sciences at Houston , Department of Integrative Biology and Pharmacology , 1825 Pressler St. 530C, Houston, TX 77030 , USA +1 713 500 2439 ; +1 713 500 2447 ;
| |
Collapse
|
17
|
Münzel T, Daiber A, Gori T. Nitrate therapy: new aspects concerning molecular action and tolerance. Circulation 2011; 123:2132-44. [PMID: 21576678 DOI: 10.1161/circulationaha.110.981407] [Citation(s) in RCA: 139] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Thomas Münzel
- II. Medizinische Klinik und Poliklinik, Kardiologie, Johannes Gutenberg Universität, Mainz, Germany.
| | | | | |
Collapse
|
18
|
Coadministration of atorvastatin prevents nitroglycerin-induced endothelial dysfunction and nitrate tolerance in healthy humans. J Am Coll Cardiol 2011; 57:93-8. [PMID: 21185507 DOI: 10.1016/j.jacc.2010.07.037] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2010] [Revised: 07/06/2010] [Accepted: 07/13/2010] [Indexed: 11/21/2022]
Abstract
OBJECTIVES We aimed to assess whether concurrent administration of atorvastatin would modify the development of tolerance and endothelial dysfunction associated with sustained nitroglycerin (GTN) therapy in humans. BACKGROUND Animal studies have demonstrated that administration of 3-hydroxy-3 methylglutaryl coenzyme A reductase inhibitors can protect against GTN-induced endothelial dysfunction and tolerance, likely through an antioxidant mechanism. METHODS Thirty-six healthy male volunteers were randomized to receive continuous transdermal GTN (0.6 mg/h) and placebo, atorvastatin (80 mg/day) alone, or continuous transdermal GTN (0.6 mg/h) with concurrent atorvastatin (80 mg/day), all for 7 days. On the second visit, forearm blood flow was measured with venous-occlusion strain gauge plethysmography in response to incremental infusions of acetylcholine (7.5, 15, and 30 μg/min). Acetylcholine infusions were coinfused first with saline, and repeated during the coinfusion of vitamin C (24 mg/min). Blood pressure responses to sublingual GTN (400 μg) were assessed on both visits. RESULTS Acetylcholine responses in the GTN plus placebo group were significantly attenuated versus those in the GTN plus atorvastatin and atorvastatin groups (p < 0.01). Coinfusion of vitamin C completely restored acetylcholine responses in the GTN plus placebo group (p < 0.01 vs. saline coinfusion), but caused no change in either the atorvastatin or the GTN plus atorvastatin groups. Blood pressure responses to sublingual GTN did not significantly change between visits in subjects receiving GTN plus atorvastatin and atorvastatin alone, but were significantly blunted in the GTN plus placebo group (p < 0.05). CONCLUSIONS The present findings demonstrate, for the first time in humans, that atorvastatin prevents both GTN-induced endothelial dysfunction and nitrate tolerance, likely by counteracting the GTN-induced increase in oxidative stress.
Collapse
|
19
|
Organic nitrates and nitrate resistance in diabetes: the role of vascular dysfunction and oxidative stress with emphasis on antioxidant properties of pentaerithrityl tetranitrate. EXPERIMENTAL DIABETES RESEARCH 2010; 2010:213176. [PMID: 21234399 PMCID: PMC3014692 DOI: 10.1155/2010/213176] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2010] [Accepted: 11/01/2010] [Indexed: 12/20/2022]
Abstract
Organic nitrates represent a class of drugs which are clinically used for treatment of ischemic symptoms of angina as well as for congestive heart failure based on the idea to overcome the impaired NO bioavailability by “NO” replacement therapy. The present paper is focused on parallels between diabetes mellitus and nitrate tolerance, and aims to discuss the mechanisms underlying nitrate resistance in the setting of diabetes. Since oxidative stress was identified as an important factor in the development of tolerance to organic nitrates, but also represents a hallmark of diabetic complications, this may represent a common principle for both disorders where therapeutic intervention should start. This paper examines the evidence supporting the hypothesis that pentaerithrityl tetranitrate may represent a nitrate for treatment of ischemia in diabetic patients. This evidence is based on the considerations of parallels between diabetes mellitus and nitrate tolerance as well as on preliminary data from experimental diabetes studies.
Collapse
|
20
|
Daiber A. Redox signaling (cross-talk) from and to mitochondria involves mitochondrial pores and reactive oxygen species. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2010; 1797:897-906. [PMID: 20122895 DOI: 10.1016/j.bbabio.2010.01.032] [Citation(s) in RCA: 283] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2009] [Revised: 01/15/2010] [Accepted: 01/26/2010] [Indexed: 12/13/2022]
Abstract
This review highlights the important role of redox signaling between mitochondria and NADPH oxidases. Besides the definition and general importance of redox signaling, the cross-talk between mitochondrial and Nox-derived reactive oxygen species (ROS) is discussed on the basis of 4 different examples. In the first model, angiotensin-II is discussed as a trigger for NADPH oxidase activation with subsequent ROS-dependent opening of mitochondrial ATP-sensitive potassium channels leading to depolarization of mitochondrial membrane potential followed by mitochondrial ROS formation and respiratory dysfunction. This concept was supported by observations that ethidium bromide-induced mitochondrial damage suppressed angiotensin-II-dependent increase in Nox1 and oxidative stress. In another example hypoxia was used as a stimulator of mitochondrial ROS formation and by using pharmacological and genetic inhibitors, a role of mitochondrial ROS for the induction of NADPH oxidase via PKCvarepsilon was demonstrated. The third model was based on cell death by serum withdrawal that promotes the production of ROS in human 293T cells by stimulating both the mitochondria and Nox1. By superior molecular biological methods the authors showed that mitochondria were responsible for the fast onset of ROS formation followed by a slower but long-lasting oxidative stress condition based on the activation of an NADPH oxidase (Nox1) in response to the fast mitochondrial ROS formation. Finally, a cross-talk between mitochondria and NADPH oxidases (Nox2) was shown in nitroglycerin-induced tolerance involving the mitochondrial permeability transition pore and ATP-sensitive potassium channels. The use of these redox signaling pathways as pharmacological targets is briefly discussed.
Collapse
Affiliation(s)
- Andreas Daiber
- Universitätsmedizin der Johannes Gutenberg-Universität Mainz, II. Med. Klinik u. Poliklinik-Labor für Molekulare Kardiologie, Obere Zahlbacher Str. 63, 55101 Mainz, Germany.
| |
Collapse
|
21
|
Dudek M, Bilska A, Bednarski M, Iciek M, KwiecieÅ I, SokoÅowska-Jeżewicz M, Filipek B, WÅodek L. The effect of nitroglycerin tolerance on oxidative stress and anaerobic sulfur metabolism in rat tissues. Fundam Clin Pharmacol 2010; 24:47-53. [DOI: 10.1111/j.1472-8206.2009.00728.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
22
|
Csont T. Nitroglycerin-induced preconditioning: interaction with nitrate tolerance. Am J Physiol Heart Circ Physiol 2010; 298:H308-9. [DOI: 10.1152/ajpheart.01079.2009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Tamás Csont
- Cardiovascular Research Group, Department of Biochemistry, University of Szeged, and Pharmahungary Group, Szeged, Hungary
| |
Collapse
|
23
|
Daiber A, Münzel T, Gori T. Organic nitrates and nitrate tolerance--state of the art and future developments. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2010; 60:177-227. [PMID: 21081219 DOI: 10.1016/b978-0-12-385061-4.00007-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The hemodynamic and antiischemic effects of nitroglycerin (GTN) are lost upon chronic administration due to the rapid development of nitrate tolerance. The mechanism of this phenomenon has puzzled several generations of scientists, but recent findings have led to novel hypotheses. The formation of reactive oxygen and nitrogen species in the mitochondria and the subsequent inhibition of the nitrate-bioactivating enzyme mitochondrial aldehyde dehydrogenase (ALDH-2) appear to play a central role, at least for GTN, that is, bioactivated by ALDH-2. Importantly, these findings provide the opportunity to reconcile the two "traditional" hypotheses of nitrate tolerance, that is, the one postulating a decreased bioactivation and the concurrent one suggesting a role of oxidative stress. Furthermore, recent animal and human experimental studies suggest that the organic nitrates are not a homogeneous group but demonstrate a broad diversity with regard to induction of vascular dysfunction, oxidative stress, and other side effects. In the past, attempts to avoid nitrate-induced side effects have focused on administration schedules that would allow a "nitrate-free interval"; in the future, the role of co-therapies with antioxidant compounds and of activation of endogeneous protective pathways such as the heme oxygenase 1 (HO-1) will need to be explored. However, the development of new nitrates, for example, tolerance-free aminoalkyl nitrates or combination of nitrate groups with established cardiovascular drugs like ACE inhibitors or AT(1)-receptor blockers (hybrid molecules) may be of great clinical interest.
Collapse
Affiliation(s)
- Andreas Daiber
- II. Medizinische Klinik, Labor für Molekulare Kardiologie und Abteilung für Kardiologie und Angiologie, Universitätsmedizin der Johannes-Gutenberg-Universität, Mainz, Germany
| | | | | |
Collapse
|
24
|
Gori T, Dragoni S, Di Stolfo G, Sicuro S, Liuni A, Luca MC, Thomas G, Oelze M, Daiber A, Parker JD. Tolerance to nitroglycerin-induced preconditioning of the endothelium: a human in vivo study. Am J Physiol Heart Circ Physiol 2009; 298:H340-5. [PMID: 19933412 DOI: 10.1152/ajpheart.01324.2008] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Damage and dysfunction of the vascular endothelium critically influence clinical outcomes after ischemia and reperfusion (I/R). Brief exposure to organic nitrates can protect the vascular endothelium from I/R injury via a mechanism that is similar to ischemic preconditioning and is independent of hemodynamic changes. The clinical relevance of these protective effects clearly depends on whether they can be sustained over time. Twenty-four healthy (age 25-32) male volunteers were randomized to receive 1) transdermal nitroglycerin (GTN; 0.6 mg/h) administered for 2 h on 1 day only, 2) transdermal GTN for 2 h/day for 7 days, or 3) continuous therapy with transdermal GTN for 7 days. Eight volunteers underwent continuous GTN therapy followed by intra-arterial infusion of the antioxidant vitamin C. Finally, five additional subjects underwent no therapy and served as controls. Endothelial function measurements were performed before and after induction of I/R of the arm. I/R caused a significant blunting of the flow responses to acetylcholine in the control group (P < 0.01 vs. before I/R). A single 2-h GTN dosage, given 24 h before I/R, prevented I/R-induced endothelial dysfunction [P = not significant (NS) vs. before I/R], but this protective effect was completely lost after 1 wk of GTN administration 2 h/day (P < 0.05 vs. before I/R; P = NS vs. control). In subjects who received continuous GTN, endothelial responses were blunted before I/R, and I/R did not cause further endothelial dysfunction. Finally, vitamin C normalized acetylcholine responses and prevented the loss of preconditioning associated with prolonged GTN. In a separate experimental model using isolated human endothelial cells, short-term incubation with GTN caused upregulation of heme oxygenase, an effect that was lost after prolonged GTN administration. Although a single administration of GTN is able to protect the endothelium from I/R-induced endothelial dysfunction, this protection is lost upon prolonged exposure, likely via an oxidative mechanism.
Collapse
Affiliation(s)
- Tommaso Gori
- Department of Internal, Cardiovascular and Geriatric Medicine, University of Siena, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Wenzl MV, Beretta M, Gorren ACF, Zeller A, Baral PK, Gruber K, Russwurm M, Koesling D, Schmidt K, Mayer B. Role of the general base Glu-268 in nitroglycerin bioactivation and superoxide formation by aldehyde dehydrogenase-2. J Biol Chem 2009; 284:19878-86. [PMID: 19506075 PMCID: PMC2740413 DOI: 10.1074/jbc.m109.005652] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Mitochondrial aldehyde dehydrogenase-2 (ALDH2) plays an essential role in nitroglycerin (GTN) bioactivation, resulting in formation of NO or a related activator of soluble guanylate cyclase. ALDH2 denitrates GTN to 1,2-glyceryl dinitrate and nitrite but also catalyzes reduction of GTN to NO. To elucidate the relationship between ALDH2-catalyzed GTN bioconversion and established ALDH2 activities (dehydrogenase, esterase), we compared the function of the wild type (WT) enzyme with mutants lacking either the reactive Cys-302 (C302S) or the general base Glu-268 (E268Q). Although the C302S mutation led to >90% loss of all enzyme activities, the E268Q mutant exhibited virtually unaffected rates of GTN denitration despite low dehydrogenase and esterase activities. The nucleotide co-factor NAD caused a pronounced increase in the rates of 1,2-glyceryl dinitrate formation by WT-ALDH2 but inhibited the reaction catalyzed by the E268Q mutant. GTN bioactivation measured as activation of purified soluble guanylate cyclase or release of NO in the presence of WT- or E268Q-ALDH2 was markedly potentiated by superoxide dismutase, suggesting that bioavailability of GTN-derived NO is limited by co-generation of superoxide. Formation of superoxide was confirmed by determination of hydroethidine oxidation that was inhibited by superoxide dismutase and the ALDH2 inhibitor chloral hydrate. E268Q-ALDH2 exhibited approximately 50% lower rates of superoxide formation than the WT enzyme. Our results suggest that Glu-268 is involved in the structural organization of the NAD-binding pocket but is not required for GTN denitration. ALDH2-catalyzed superoxide formation may essentially contribute to oxidative stress in GTN-exposed blood vessels.
Collapse
Affiliation(s)
- M Verena Wenzl
- Department of Pharmacology and Toxicology, Karl-Franzens-Universität Graz, A-8010 Graz, Austria
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Uryash A, Wu H, Bassuk J, Kurlansky P, Sackner MA, Adams JA. Low-amplitude pulses to the circulation through periodic acceleration induces endothelial-dependent vasodilatation. J Appl Physiol (1985) 2009; 106:1840-7. [PMID: 19325024 DOI: 10.1152/japplphysiol.91612.2008] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Low-amplitude pulses to the vasculature increase pulsatile shear stress to the endothelium. This activates endothelial nitric oxide (NO) synthase (eNOS) to promote NO release and endothelial-dependent vasodilatation. Descent of the dicrotic notch on the arterial pulse waveform and a-to-b ratio (a/b; where a is the height of the pulse amplitude and b is the height of the dicrotic notch above the end-diastolic level) reflects vasodilator (increased a/b) and vasoconstrictor effects (decreased a/b) due to NO level change. Periodic acceleration (pG(z)) (motion of the supine body head to foot on a platform) provides systemic additional pulsatile shear stress. The purpose of this study was to determine whether or not pG(z) applied to rats produced endothelial-dependent vasodilatation and increased NO production, and whether the latter was regulated by the Akt/phosphatidylinositol 3-kinase (PI3K) pathway. Male rats were anesthetized and instrumented, and pG(z) was applied. Sodium nitroprusside, N(G)-nitro-l-arginine methyl ester (l-NAME), and wortmannin (WM; to block Akt/PI3K pathway) were administered to compare changes in a/b and mean aortic pressure. Descent of the dicrotic notch occurred within 2 s of initiating pG(z). Dose-dependent increase of a/b and decrease of mean aortic pressure took place with SNP. l-NAME produced a dose-dependent rise in mean aortic pressure and decrease of a/b, which was blunted with pG(z). In the presence of WM, pG(z) did not decrease aortic pressure or increase a/b. WM also abolished the pG(z) blunting effect on blood pressure and a/b of l-NAME-treated animals. eNOS expression was increased in aortic tissue after pG(z). This study indicates that addition of low-amplitude pulses to circulation through pG(z) produces endothelial-dependent vasodilatation due to increased NO in rats, which is mediated via activation of eNOS, in part, by the Akt/PI3K pathway.
Collapse
Affiliation(s)
- Arkady Uryash
- Deptartment of Research, Mt. Sinai Medical Center, Miami Beach, FL 33410, USA
| | | | | | | | | | | |
Collapse
|
27
|
Wenzl MV, Wölkart G, Stessel H, Beretta M, Schmidt K, Mayer B. Different effects of ascorbate deprivation and classical vascular nitrate tolerance on aldehyde dehydrogenase-catalysed bioactivation of nitroglycerin. Br J Pharmacol 2009; 156:1248-55. [PMID: 19254277 DOI: 10.1111/j.1476-5381.2009.00126.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND AND PURPOSE Vascular tolerance to nitroglycerin (GTN) may be caused by impaired GTN bioactivation due to inactivation of mitochondrial aldehyde dehydrogenase (ALDH2). As relaxation to GTN is reduced but still sensitive to ALDH2 inhibitors in ascorbate deficiency, we compared the contribution of ALDH2 inactivation to GTN hyposensitivity in ascorbate deficiency and classical in vivo nitrate tolerance. EXPERIMENTAL APPROACH Guinea pigs were fed standard or ascorbate-free diet for 2 weeks. Reversibility was tested by feeding ascorbate-deficient animals standard diet for 1 week. Nitrate tolerance was induced by subcutaneous injection of 50 mg x kg(-1) GTN 4 times daily for 3 days. Ascorbate levels were determined in plasma, blood vessels, heart and liver. GTN-induced relaxation was measured as isometric tension of aortic rings; vascular GTN biotransformation was assayed as formation of 1,2- and 1,3-glyceryl dinitrate (GDN). KEY RESULTS Two weeks of ascorbate deprivation had no effect on relaxation to nitric oxide but reduced the potency of GTN approximately 10-fold in a fully reversible manner. GTN-induced relaxation was similarly reduced in nitrate tolerance but not further attenuated by ALDH inhibitors. Nitrate tolerance reduced ascorbate plasma levels without affecting ascorbate in blood vessels, liver and heart. GTN denitration was significantly diminished in nitrate-tolerant and ascorbate-deficient rings. However, while the approximately 10-fold preferential 1,2-GDN formation, indicative for active ALDH2, had been retained in ascorbate deficiency, selectivity was largely lost in nitrate tolerance. CONCLUSIONS AND IMPLICATIONS These results indicate that nitrate tolerance is associated with ALDH2 inactivation, whereas ascorbate deficiency possibly results in down-regulation of ALDH2 expression.
Collapse
Affiliation(s)
- M V Wenzl
- Department of Pharmacology and Toxicology, Karl-Franzens-Universität Graz, Graz, Austria
| | | | | | | | | | | |
Collapse
|
28
|
End-organ dysfunction and cardiovascular outcomes: the role of the microcirculation. Clin Sci (Lond) 2009; 116:175-90. [PMID: 19118490 DOI: 10.1042/cs20080069] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Risk factors for cardiovascular disease mediate their effects by altering the structure and function of wall and endothelial components of arterial blood vessels. A pathological change in the microcirculation plays a pivotal role in promoting end-organ dysfunction that not only predisposes to further organ damage, but also increases the risk for future macrovascular events. The microcirculation is recognized as the site where the earliest manifestations of cardiovascular disease, especially inflammatory responses, occur that may play a pivotal role in driving the atherosclerotic process in conduit vessels. Furthermore, the vast surface area of the endothelium compared with conduit vessels means that the vascular effects of endothelial dysfunction or activation will be most apparent in this section of the vasculature. Current techniques providing indices of vascular health focus on large arteries without providing insight into the structure and function of small vessels. Techniques capable of detecting microvascular damage and monitoring the response to therapeutic interventions, especially in vulnerable target organs of interest, may improve risk stratification and represent a valuable surrogate for future cardiovascular outcome.
Collapse
|
29
|
Alicigüzel Y, Aktaş S, Bozan H, Aslan M. Effect of intravenous nitroglycerin therapy on erythrocyte antioxidant enzymes. J Enzyme Inhib Med Chem 2008; 20:293-6. [PMID: 16119201 DOI: 10.1080/14756360500073320] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
Intravenous nitroglycerin (GTN) has been used as an anti-ischemic agent for the therapy of unstable and post-infarction angina. Nitric oxide (NO) and S-nitrosothiols constitute the biologically active species formed via nitroglycerin bioactivation. Increased levels of reactive oxygen species can diminish the therapeutic action of organic nitrates by scavenging donated NO and oxidizing tissue thiols important in nitrate biotransformation. Studies reported here show that the red cell activity of antioxidant enzymes, catalase and glutathione peroxidase, are significantly decreased after intravenous nitroglycerin treatment. Catalase activity (739.6 +/- 92.3 k/gHb) decreased to 440.1 +/- 111.9 and 459.8 +/- 130.7 k/gHb after 1 and 24 hr GTN infusion, respectively. Similarly, glutathione peroxidase activity (5.8 +/- 1.8 U/gHb) decreased to 3.2 +/- 1.7 and 3.8 +/- 1.1 U/g Hb after 1 and 24 hr GTN infusion, respectively. The reported decrease in antioxidant enzyme activities can lead to an oxidant milieu and contribute to the generation of nitrate tolerance.
Collapse
Affiliation(s)
- Yakup Alicigüzel
- Department of Biochemistry, Akdeniz University Medical School, Antalya, Turkey.
| | | | | | | |
Collapse
|
30
|
Tsou PS, Addanki V, Fung HL. Dissociation between superoxide accumulation and nitroglycerin-induced tolerance. J Pharmacol Exp Ther 2008; 327:97-104. [PMID: 18653825 PMCID: PMC2574757 DOI: 10.1124/jpet.108.138784] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
We hypothesize that superoxide (O(2)(*-)) accumulation is not a crucial causative factor in inducing nitroglycerin (NTG) tolerance. In LLC-PK1 cells, pre-exposure to NTG resulted in increased O(2)(*-) accumulation and reduced cGMP response to NTG versus vehicle control. O(2)(*-) stimulated by NTG was reduced by oxypurinol (100 microM), a xanthine oxidase inhibitor. Exposure to angiotensin II (Ang II) increased O(2)(*-) but did not reduce cGMP response. The O(2)(*-) scavenger tiron reduced Ang II-induced O(2)(*-) production but did not increase NTG-stimulated cGMP production. Using p47(phox-/-) and gp91(phox-/-) mice versus their respective wild-type controls (WT), we showed that aorta from mice null of these critical NADPH oxidase subunits exhibited similar vascular tolerance after NTG dosing (20 mg/kg s.c., t.i.d. for 3 days), as indicated by their ex vivo pEC(50) and cGMP accumulation upon NTG challenge. In vitro aorta O(2)(*-) production was enhanced by NTG incubation in both p47(phox) null and WT mice. Pre-exposure of isolated mice aorta to 100 microM NTG for 1 h resulted in vascular tolerance toward NTG and increased O(2)(*-) accumulation. Oxypurinol (1 mM) reduced O(2)(*-) but did not attenuate vascular tolerance. These results suggest that O(2)(*-) does not initiate either in vitro and in vivo NTG tolerance, and that the p47(phox) and gp91(phox) subunits of NADPH oxidase are not critically required. Increased O(2)(*-) accumulation may be an effect, rather than an initiating cause, of NTG tolerance.
Collapse
Affiliation(s)
- Pei-Suen Tsou
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, Buffalo, NY 14260-1200, USA
| | | | | |
Collapse
|
31
|
Mayer B, Beretta M. The enigma of nitroglycerin bioactivation and nitrate tolerance: news, views and troubles. Br J Pharmacol 2008; 155:170-84. [PMID: 18574453 PMCID: PMC2538691 DOI: 10.1038/bjp.2008.263] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2008] [Revised: 05/28/2008] [Accepted: 06/03/2008] [Indexed: 02/07/2023] Open
Abstract
Nitroglycerin (glyceryl trinitrate; GTN) is the most prominent representative of the organic nitrates or nitrovasodilators, a class of compounds that have been used clinically since the late nineteenth century for the treatment of coronary artery disease (angina pectoris), congestive heart failure and myocardial infarction. Medline lists more than 15 000 publications on GTN and other organic nitrates, but the mode of action of these drugs is still largely a mystery. In the first part of this article, we give an overview on the molecular mechanisms of GTN biotransformation resulting in vascular cyclic GMP accumulation and vasodilation with focus on the role of mitochondrial aldehyde dehydrogenase (ALDH2) and the link between the ALDH2 reaction and activation of vascular soluble guanylate cyclase (sGC). In particular, we address the identity of the bioactive species that activates sGC and the potential involvement of nitrite as an intermediate, describe our recent findings suggesting that ALDH2 catalyses direct 3-electron reduction of GTN to NO and discuss possible reaction mechanisms. In the second part, we discuss contingent processes leading to markedly reduced sensitivity of blood vessels to GTN, referred to as vascular nitrate tolerance. Again, we focus on ALDH2 and describe the current controversy on the role of ALDH2 inactivation in tolerance development. Finally, we emphasize some of the most intriguing, in our opinion, unresolved puzzles of GTN pharmacology that urgently need to be addressed in future studies.
Collapse
Affiliation(s)
- B Mayer
- Department of Pharmacology and Toxicology, Karl-Franzens-University Graz, Graz, Austria.
| | | |
Collapse
|
32
|
|
33
|
Grossi L. Nitrite anion: the key intermediate in alkyl nitrates degradative mechanism. J Med Chem 2008; 51:3318-21. [PMID: 18442229 DOI: 10.1021/jm701390c] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Alkyl nitrates are metabolized in vitro to yield nitric oxide, and thiol groups have long been considered necessary cofactors. Here, we report evidence that no reaction between thiols and alkyl nitrates takes place in vitro, but stronger reducing agents, such as iron(II) derivatives, are necessary; alkoxy radicals and nitrite anions are the reaction intermediates. The latter, in slightly acidic conditions, can nitrosate thiols to the corresponding S-nitrosothiols, the real NO releasers.
Collapse
Affiliation(s)
- Loris Grossi
- Dipartimento di Chimica Organica A Mangini, Università di Bologna, Bologna, Italy.
| |
Collapse
|
34
|
Wölkart G, Wenzl MV, Beretta M, Stessel H, Schmidt K, Mayer B. Vascular tolerance to nitroglycerin in ascorbate deficiency. Cardiovasc Res 2008; 79:304-12. [PMID: 18442986 DOI: 10.1093/cvr/cvn107] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIMS Nitroglycerin (GTN) acts through release of a nitric oxide (NO)-related activator of soluble guanylate cyclase in vascular smooth muscle. Besides enzymatic GTN bioactivation catalysed by aldehyde dehydrogenase, non-enzymatic reaction of GTN with ascorbate also results in the formation of a bioactive product. Using an established guinea pig model of ascorbate deficiency, we investigated whether endogenous ascorbate contributes to GTN-induced vasodilation. METHODS AND RESULTS Guinea pigs were fed either standard or ascorbate-free diet for 2 or 4 weeks prior to measuring the GTN response of aortic rings and isolated hearts. The effects of ascorbate on GTN metabolism were studied with purified mitochondrial aldehyde dehydrogenase (ALDH2) and isolated mitochondria. Ascorbate deprivation led to severe scorbutic symptoms and loss of body weight, but had no (2 weeks) or only slight (4 weeks) effects on aortic relaxations to a direct NO donor. The EC(50) of GTN was increased from 0.058 +/- 0.018 to 0.46 +/- 0.066 and 5.5 +/- 0.9 microM after 2 and 4 weeks of ascorbate-free diet, respectively. Similarly, coronary vasodilation to GTN was severely impaired in ascorbate deficiency. The potency of GTN was reduced to a similar extent by ALDH inhibitors in control and ascorbate-deficient blood vessels. Up to 10 mM ascorbate had no effect on GTN metabolism catalysed by purified ALDH2 or liver mitochondria isolated from ascorbate-deficient guinea pigs. CONCLUSION Our results indicate that prolonged ascorbate deficiency causes tolerance to GTN without affecting NO/cyclic GMP-mediated vasorelaxation.
Collapse
Affiliation(s)
- Gerald Wölkart
- Department of Pharmacology and Toxicology, Karl-Franzens-Universität Graz, Universitätsplatz 2, A-8010 Graz, Austria
| | | | | | | | | | | |
Collapse
|
35
|
Bjelakovic G, Nikolova D, Gluud LL, Simonetti RG, Gluud C. Antioxidant supplements for prevention of mortality in healthy participants and patients with various diseases. Cochrane Database Syst Rev 2008:CD007176. [PMID: 18425980 DOI: 10.1002/14651858.cd007176] [Citation(s) in RCA: 147] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND Animal and physiological research as well as observational studies suggest that antioxidant supplements may improve survival. OBJECTIVES To assess the effect of antioxidant supplements on mortality in primary or secondary prevention randomised clinical trials. SEARCH STRATEGY We searched The Cochrane Library (Issue 3, 2005), MEDLINE (1966 to October 2005), EMBASE (1985 to October 2005), and the Science Citation Index Expanded (1945 to October 2005). We scanned bibliographies of relevant publications and wrote to pharmaceutical companies for additional trials. SELECTION CRITERIA We included all primary and secondary prevention randomised clinical trials on antioxidant supplements (beta-carotene, vitamin A, vitamin C, vitamin E, and selenium) versus placebo or no intervention. Included participants were either healthy (primary prevention trials) or had any disease (secondary prevention trials). DATA COLLECTION AND ANALYSIS Three authors extracted data. Trials with adequate randomisation, blinding, and follow-up were classified as having a low risk of bias. Random-effects and fixed-effect meta-analyses were performed. Random-effects meta-regression analyses were performed to assess sources of intertrial heterogeneity. MAIN RESULTS Sixty-seven randomised trials with 232,550 participants were included. Forty-seven trials including 180,938 participants had low risk of bias. Twenty-one trials included 164,439 healthy participants. Forty-six trials included 68111 participants with various diseases (gastrointestinal, cardiovascular, neurological, ocular, dermatological, rheumatoid, renal, endocrinological, or unspecified). Overall, the antioxidant supplements had no significant effect on mortality in a random-effects meta-analysis (relative risk [RR] 1.02, 95% confidence interval [CI] 0.99 to 1.06), but significantly increased mortality in a fixed-effect model (RR 1.04, 95% CI 1.02 to 1.06). In meta-regression analysis, the risk of bias and type of antioxidant supplement were the only significant predictors of intertrial heterogeneity. In the trials with a low risk of bias, the antioxidant supplements significantly increased mortality (RR 1.05, 95% CI 1.02 to 1.08). When the different antioxidants were assessed separately, analyses including trials with a low risk of bias and excluding selenium trials found significantly increased mortality by vitamin A (RR 1.16, 95% CI 1.10 to 1.24), beta-carotene (RR 1.07, 95% CI 1.02 to 1.11), and vitamin E (RR 1.04, 95% CI 1.01 to 1.07), but no significant detrimental effect of vitamin C (RR 1.06, 95% CI 0.94 to 1.20). Low-bias risk trials on selenium found no significant effect on mortality (RR 0.91, 95% CI 0.76 to 1.09). AUTHORS' CONCLUSIONS We found no evidence to support antioxidant supplements for primary or secondary prevention. Vitamin A, beta-carotene, and vitamin E may increase mortality. Future randomised trials could evaluate the potential effects of vitamin C and selenium for primary and secondary prevention. Such trials should be closely monitored for potential harmful effects. Antioxidant supplements need to be considered medicinal products and should undergo sufficient evaluation before marketing.
Collapse
Affiliation(s)
- G Bjelakovic
- Copenhagen University Hospital, Rigshospitalet, Department 3344,Copenhagen Trial Unit, Centre for Clinical Intervention Research, Blegdamsvej 9, Copenhagen, Denmark, DK-2100.
| | | | | | | | | |
Collapse
|
36
|
|
37
|
Wenzel P, Oelze M, Coldewey M, Hortmann M, Seeling A, Hink U, Mollnau H, Stalleicken D, Weiner H, Lehmann J, Li H, Förstermann U, Münzel T, Daiber A. Heme Oxygenase-1. Arterioscler Thromb Vasc Biol 2007; 27:1729-35. [PMID: 17541025 DOI: 10.1161/atvbaha.107.143909] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Objective—
Nitrate tolerance is likely attributable to an increased production of reactive oxygen species (ROS) leading to an inhibition of the mitochondrial aldehyde dehydrogenase (ALDH-2), representing the nitroglycerin (GTN) and pentaerythrityl tetranitrate (PETN) bioactivating enzyme, and to impaired nitric oxide bioactivity and signaling. We tested whether differences in their capacity to induce heme oxygenase-1 (HO-1) might explain why PETN and not GTN therapy is devoid of nitrate and cross-tolerance.
Methods and Results—
Wistar rats were treated with PETN or GTN (10.5 or 6.6 μg/kg/min for 4 days). In contrast to GTN, PETN did not induce nitrate tolerance or cross-tolerance as assessed by isometric tension recordings in isolated aortic rings. Vascular protein and mRNA expression of HO-1 and ferritin were increased in response to PETN but not GTN. In contrast to GTN therapy, NO signaling, ROS formation, and the activity of ALDH-2 (as assessed by an high-performance liquid chromatography–based method) were not significantly influenced by PETN. Inhibition of HO-1 expression by apigenin induced “tolerance” to PETN whereas HO-1 gene induction by hemin prevented tolerance in GTN treated rats.
Conclusions—
HO-1 expression and activity appear to play a key role in the development of nitrate tolerance and might represent an intrinsic antioxidative mechanism of therapeutic interest.
Collapse
Affiliation(s)
- Philip Wenzel
- II. Medizinische Klinik, Johannes-Gutenberg-Universität Mainz, Langenbeckstr. 1, 55131 Mainz, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Kollau A, Beretta M, Gorren ACF, Russwurm M, Koesling D, Schmidt K, Mayer B. Bioactivation of nitroglycerin by ascorbate. Mol Pharmacol 2007; 72:191-6. [PMID: 17446267 DOI: 10.1124/mol.107.035642] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Bioactivation of nitroglycerin (GTN) into an activator of soluble guanylate cyclase (sGC) is essential for the vasorelaxant effect of the drug. Besides several enzymes that catalyze GTN bioactivation, the reaction with cysteine is the sole nonenzymatic mechanism known so far. Here we show that a reaction with ascorbate results in GTN bioactivation. In the absence of ascorbate, GTN did not affect the activity of purified sGC. However, the enzyme was activated to approximately 20% of maximal NO-stimulated activity by GTN in the presence of 10 mM ascorbate with an EC(50) value of 27.3 +/- 4.9 microM GTN. The EC(50) value of ascorbate was 0.11 +/- 0.011 mM. Activation of sGC was sensitive to oxyhemoglobin, superoxide, and a heme-site enzyme inhibitor. GTN had no effect when ascorbate was replaced by 1000 U of superoxide dismutase per milliliter. Ascorbate is known to reduce inorganic nitrite to NO. In the presence of 10 mM ascorbate, approximately 30 microM nitrite caused the same increase in sGC activity as 0.3 mM GTN. Determination of ascorbate-driven 1,2- and 1,3-glycerol dinitrate formation indicated that a 140 nM concentration of products was generated from 0.3 mM GTN within 10 min, excluding nitrite as a relevant intermediate. Our results suggest that a reaction between GTN and ascorbate or an ascorbate-derived species yields an activator of sGC with NO-like chemical properties. This reaction may contribute to GTN bioactivation in blood vessels under conditions of GTN tolerance and ascorbate supplementation.
Collapse
Affiliation(s)
- Alexander Kollau
- Department of Pharmacology and Toxicology, Karl-Franzens-Universität Graz, Universitätsplatz 2, A-8010 Graz, Austria
| | | | | | | | | | | | | |
Collapse
|
39
|
Ghatta S, Hemmer RB, Uppala S, O'Rourke ST. Role of endogenous hydrogen peroxide in the development of nitrate tolerance. Vascul Pharmacol 2007; 46:247-52. [PMID: 17157562 DOI: 10.1016/j.vph.2006.10.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2006] [Revised: 09/07/2006] [Accepted: 10/13/2006] [Indexed: 11/25/2022]
Abstract
The present study was designed to test the hypothesis that hydrogen peroxide plays a role in the development of nitrate tolerance. Isolated rat aortic rings were suspended in organ chambers for isometric tension recording. The rings were incubated with (tolerant) and without (control) nitroglycerin (10(-4) M) for 90 min, followed by repeated rinsing for 1 h. Hydrogen peroxide release in control and tolerant tissues was measured fluorimetrically using amplex red. Nitroglycerin (10(-9)-10(-4) M) caused concentration-dependent relaxations in control (-logEC50=7.15+/-0.1) and tolerant rings (-logEC50=5.83+/-0.1) contracted with norepinephrine. Nitrate tolerance was evident by a >20-fold rightward shift in the nitroglycerin concentration-response curve in tissues exposed previously to nitroglycerin for 90 min. Incubation of the rings with the superoxide dismutase (SOD)-mimetic, tempol (10(-4) M), during the 90-min exposure period to nitroglycerin caused a leftward shift in the nitroglycerin concentration-response curve in tolerant rings (-logEC50=6.84+/-0.2), but had no effect on the response to nitroglycerin in control rings. Treatment of the rings with catalase (1200 U/ml) or ebselen (1.5x10(-5) M), a glutathione peroxidase-mimetic, during the 90-min exposure period to nitroglycerin resulted in a further rightward shift in the nitroglycerin concentration-response curve in tolerant rings (-logEC50=5.41+/-0.1 and 4.98+/-0.1; catalase and ebselen respectively), without altering the response to nitroglycerin in control rings. In the presence of catalase, the effect of tempol on nitrate tolerance was abolished (-logEC50=5.46+/-0.1). Hydrogen peroxide release was reduced by approximately 64% in nitrate tolerant tissues when compared to control. The decrease in hydrogen peroxide release was completely reversed by treatment with tempol, whereas treatment with ebselen caused a further decrease in hydrogen peroxide release in nitrate tolerant tissues. Addition of hydrogen peroxide (3x10(-5) M) to nitrate tolerant rings caused a leftward shift in the nitroglycerin concentration-response curve in tolerant rings (-logEC50=7.18+/-0.3), but had no effect on the response to nitroglycerin in control rings. These results suggest that nitrate tolerance is associated with decreased endogenous formation of hydrogen peroxide, which attenuates nitrate tolerance development. SOD-mimetics may reduce nitrate tolerance, in part, by increasing the formation of hydrogen peroxide.
Collapse
Affiliation(s)
- Srinivas Ghatta
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, ND 58105-5055, USA
| | | | | | | |
Collapse
|
40
|
Abrams J, Schroeder J, Frishman WH, Freedman J. Pharmacologic Options for Treatment of Ischemic Disease. Cardiovasc Ther 2007. [DOI: 10.1016/b978-1-4160-3358-5.50011-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
41
|
Abstract
Increasing knowledge of the role of nitric oxide (NO) in physiology and disease has stimulated efforts to target the NO pathway pharmacologically. These therapeutic strategies include NO donors that directly or indirectly release NO and agents that increase NO bioactivity. Traditional organic nitrates such as nitroglycerin, which indirectly release NO, were believed to have limited long-term efficacy and tolerability, chiefly because of nitrate tolerance. Recent studies, however, suggest more effective ways of using these agents and new applications for them. Nicorandil, a hybrid organic nitrate that also activates potassium channels, has demonstrated significant benefits in acute coronary syndromes. Other nitrates are being investigated for use in neurodegenerative diseases. Direct NO donors include NO gas, which is useful in respiratory disorders, and the more recent classes of diazeniumdiolates, sydnonimines, and S-nitrosothiols. Preliminary data suggest that these agents may be effective as antiatherosclerotic agents as well as in other disease states. In addition, hybrid agents that consist of an NO donor coupled with a parent anti-inflammatory drug, including nonsteroidal anti-inflammatory drugs, have demonstrated enhanced efficacy and tolerability compared with the anti-inflammatory parent drug alone in diverse experimental models. Established drugs that enhance NO bioactivity include antihypertensive agents, particularly angiotensin-converting enzyme inhibitors, calcium channel blockers, and newer vasodilating beta-blockers. In addition, 3-methylglutaryl coenzyme A reductase inhibitors (statins) promote NO bioactivity, both through and independent of lipid lowering. The NO-promoting actions of these established drugs provide some insight into their known benefits and suggest possible therapeutic potential.
Collapse
Affiliation(s)
- R Preston Mason
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| | | |
Collapse
|
42
|
Mitochondrial oxidative stress and nitrate tolerance--comparison of nitroglycerin and pentaerithrityl tetranitrate in Mn-SOD+/- mice. BMC Cardiovasc Disord 2006; 6:44. [PMID: 17092343 PMCID: PMC1654181 DOI: 10.1186/1471-2261-6-44] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2006] [Accepted: 11/08/2006] [Indexed: 11/29/2022] Open
Abstract
Background Chronic therapy with nitroglycerin (GTN) results in a rapid development of nitrate tolerance which is associated with an increased production of reactive oxygen species (ROS). According to recent studies, mitochondrial ROS formation and oxidative inactivation of the organic nitrate bioactivating enzyme mitochondrial aldehyde dehydrogenase (ALDH-2) play an important role for the development of nitrate and cross-tolerance. Methods Tolerance was induced by infusion of wild type (WT) and heterozygous manganese superoxide dismutase mice (Mn-SOD+/-) with ethanolic solution of GTN (12.5 μg/min/kg for 4 d). For comparison, the tolerance-free pentaerithrityl tetranitrate (PETN, 17.5 μg/min/kg for 4 d) was infused in DMSO. Vascular reactivity was measured by isometric tension studies of isolated aortic rings. ROS formation and aldehyde dehydrogenase (ALDH-2) activity was measured in isolated heart mitochondria. Results Chronic GTN infusion lead to impaired vascular responses to GTN and acetylcholine (ACh), increased the ROS formation in mitochondria and decreased ALDH-2 activity in Mn-SOD+/- mice. In contrast, PETN infusion did not increase mitochondrial ROS formation, did not decrease ALDH-2 activity and accordingly did not lead to tolerance and cross-tolerance in Mn-SOD+/- mice. PETN but not GTN increased heme oxygenase-1 mRNA in EA.hy 926 cells and bilirubin efficiently scavenged GTN-derived ROS. Conclusion Chronic GTN infusion stimulates mitochondrial ROS production which is an important mechanism leading to tolerance and cross-tolerance. The tetranitrate PETN is devoid of mitochondrial oxidative stress induction and according to the present animal study as well as numerous previous clinical studies can be used without limitations due to tolerance and cross-tolerance.
Collapse
|
43
|
Daiber A, Mülsch A, Hink U, Mollnau H, Warnholtz A, Oelze M, Münzel T. The oxidative stress concept of nitrate tolerance and the antioxidant properties of hydralazine. Am J Cardiol 2005; 96:25i-36i. [PMID: 16226933 DOI: 10.1016/j.amjcard.2005.07.030] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The hemodynamic and anti-ischemic effects of nitroglycerin (NTG) are rapidly blunted as a result of the development of nitrate tolerance. With initiation of NTG therapy, it is possible to detect neurohormonal activation and intravascular volume expansion. These so-called pseudotolerance mechanisms may compromise the vasodilatory effects of NTG. Long-term nitrate treatment also is associated with decreased vascular responsiveness caused by changes in intrinsic mechanisms of the tolerant vasculature itself. According to the oxidative stress concept, increased vascular superoxide (O2-) production and an increased sensitivity to vasoconstrictors secondary to activation of protein kinase C contribute to the development of tolerance. Nicotinamide adenine dinucleotide phosphate oxidase and the uncoupled endothelial nitric oxide synthase may be O2- -producing enzymes. Nitric oxide (NO) and O2-, both derived from NTG and the vessel wall, form peroxynitrite in a diffusion-limited rapid reaction. Peroxynitrite, O2-, or both may be responsible for the development of nitrate tolerance and cross-tolerance to direct NO donors (eg, sodium nitroprusside, sydnonimines) and endothelium-dependent NO synthase-activating vasodilators. Hydralazine is an efficient reactive oxygen species (ROS) scavenger and an inhibitor of O2- generation. When given concomitantly with NTG, hydralazine prevents the development of nitrate tolerance and normalizes endogenous rates of vascular O2- production. Recent experimental work has defined new tolerance mechanisms, including inhibition of the enzyme that bioactivates NTG (ie, mitochondrial aldehyde dehydrogenase isoform 2 [ALDH2]) and mitochondria as potential sources of ROS. NTG-induced ROS inhibit the bioactivation of NTG by ALDH2. Both mechanisms increase oxidative stress and impair NTG bioactivation, and now converge at the level of ALDH2 to support a new theory for NTG tolerance and NTG-induced endothelial dysfunction. The consequences of these processes for NTG downstream targets (eg, soluble guanylyl cyclase, cyclic guanosine monophosphate-dependent protein kinase), toxic effects contributing to endothelial dysfunction (eg, prostacyclin synthase inhibition) and novel applications of the antioxidant properties of hydralazine are discussed.
Collapse
Affiliation(s)
- Andreas Daiber
- The 2nd Medical Clinic, Department of Cardiology, Johannes Gutenberg University, Mainz, Germany
| | | | | | | | | | | | | |
Collapse
|
44
|
|
45
|
Sydow K, Daiber A, Oelze M, Chen Z, August M, Wendt M, Ullrich V, Mülsch A, Schulz E, Keaney JF, Stamler JS, Münzel T. Central role of mitochondrial aldehyde dehydrogenase and reactive oxygen species in nitroglycerin tolerance and cross-tolerance. J Clin Invest 2004; 113:482-9. [PMID: 14755345 PMCID: PMC324536 DOI: 10.1172/jci19267] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2003] [Accepted: 11/04/2003] [Indexed: 01/28/2023] Open
Abstract
Recent studies suggest that mitochondrial aldehyde dehydrogenase (ALDH-2) plays a central role in the process of nitroglycerin (glyceryl trinitrate, GTN) biotransformation in vivo and that its inhibition accounts for mechanism-based tolerance in vitro. The extent to which ALDH-2 contributes to GTN tolerance (impaired relaxation to GTN) and cross-tolerance (impaired endothelium-dependent relaxation) in vivo remain to be elucidated. Rats were treated for three days with GTN. Infusions were accompanied by decreases in vascular ALDH-2 activity, GTN biotransformation, and cGMP-dependent kinase (cGK-I) activity. Further, whereas in control vessels, multiple inhibitors and substrates of ALDH-2 reduced both GTN-stimulation of cGKI and GTN-induced vasodilation, these agents had little effect on tolerant vessels. A state of functional tolerance (in the GTN/cGMP pathway) was recapitulated in cultured endothelial cells by knocking down mitochondrial DNA (rho(0) cells). In addition, GTN increased the production of reactive oxygen species (ROS) by mitochondria, and these increases were associated with impaired relaxation to acetylcholine. Finally, antioxidants/reductants decreased mitochondrial ROS production and restored ALDH-2 activity. These observations suggest that nitrate tolerance is mediated, at least in significant part, by inhibition of vascular ALDH-2 and that mitochondrial ROS contribute to this inhibition. Thus, GTN tolerance may be viewed as a metabolic syndrome characterized by mitochondrial dysfunction.
Collapse
Affiliation(s)
- Karsten Sydow
- The University Hospital Eppendorf, Division of Cardiology, Hamburg, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Parker JD. Nitrate tolerance, oxidative stress, and mitochondrial function: another worrisome chapter on the effects of organic nitrates. J Clin Invest 2004; 113:352-4. [PMID: 14755331 PMCID: PMC324552 DOI: 10.1172/jci21003] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
A shortcoming in the clinical use of organic nitrates is the development of tolerance. Recent data have suggested that the denitrification of organic nitrates is mediated by mitochondrial aldehyde dehydrogenase and that dysfunction of this enzyme is an important cause of tolerance. In this issue of the JCI, evidence in support of this hypothesis is presented in an in vivo model of nitrate tolerance (see the related article beginning on page 482).
Collapse
Affiliation(s)
- John D Parker
- Division of Cardiology, Mount Sinai and University Health Network Hospitals, and Department of Medicine, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
47
|
Fayers KE, Cummings MH, Shaw KM, Laight DW. Nitrate tolerance and the links with endothelial dysfunction and oxidative stress. Br J Clin Pharmacol 2004; 56:620-8. [PMID: 14616421 PMCID: PMC1884304 DOI: 10.1046/j.1365-2125.2003.01946.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Identification of nitric oxide as the molecule responsible for endothelial dependant vasodilatation has led to an explosion of interest in endothelial function. Oxidative stress has been identified as an important factor in the development of tolerance to organic nitrates. This review examines the evidence supporting this recently developed theory and how mechanisms of nitrate tolerance may link with the wider picture of primary nitric oxide resistance.
Collapse
Affiliation(s)
- Katherine E Fayers
- Academic Department of Diabetes and Endocrinology, Queen Alexandra Hospital, Southwick Road, Cosham, Portsmouth, Hants, PO6 3LY, UK.
| | | | | | | |
Collapse
|
48
|
Sydow K, Daiber A, Oelze M, Chen Z, August M, Wendt M, Ullrich V, Mülsch A, Schulz E, Keaney JF, Stamler JS, Münzel T. Central role of mitochondrial aldehyde dehydrogenase and reactive oxygen species in nitroglycerin tolerance and cross-tolerance. J Clin Invest 2004. [DOI: 10.1172/jci200419267] [Citation(s) in RCA: 239] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
49
|
Perings SM, Grubert N, Kleinbongard P, Reinecke P, Schulz R, Hermsen D, Willers R, Kelm M. Chronic treatment with fluvastatin improves smooth muscle dilatory function in genetically determined hyperlipoproteinemia. J Cardiovasc Pharmacol 2004; 43:183-90. [PMID: 14716204 DOI: 10.1097/00005344-200402000-00004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
We hypothesized that the HMG-CoA reductase inhibitor fluvastatin, does not only improve endothelium-dependent vasorelaxation, but that it also increases vascular smooth muscle reactivity in hyperlipoproteinemia. New Zealand White (NZW) rabbits aged 37 weeks (control), Watanabe Heritable Hyperlipidemic rabbits (WHHL) aged 37 weeks, and WHHL aged 35 weeks with fluvastatin treatment of 17 weeks (10 mg/kg/d) were examined. Aortas were isolated for isometric tension recording. Both endothelium-dependent and independent relaxation were impaired in WHHL. Fluvastatin significantly restored impaired endothelium-independent relaxation (WHHL: 57 +/- 12 versus WHHL+ fluvastatin: 150 +/- 22%; P < 0.05) and in tendency endothelium-dependent relaxation (WHHL: 26 +/- 5 versus WHHL+ fluvastatin: 83 +/- 29%; (P = 0.07)). In parallel, fluvastatin restored nitrite plasma level in hyperlipoproteinemic animals (WHHL: 480 (13-3821) versus WHHL+ fluvastatin: 808 (467-1595) nmol; P < 0.05). Thus, chronic treatment with fluvastatin not only improves endothelial but also vascular smooth muscle function in hyperlipoproteinemia, which may contribute to the beneficial clinical effects of statins.
Collapse
Affiliation(s)
- Stefan Martin Perings
- Department of Medicine, Division of Cardiology, Pulmonary Disease, and Angiology, Heinrich Heine University, Düsseldorf, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Münzel T, Feil R, Mülsch A, Lohmann SM, Hofmann F, Walter U. Physiology and pathophysiology of vascular signaling controlled by guanosine 3',5'-cyclic monophosphate-dependent protein kinase [corrected]. Circulation 2003; 108:2172-83. [PMID: 14597579 DOI: 10.1161/01.cir.0000094403.78467.c3] [Citation(s) in RCA: 247] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Thomas Münzel
- Division of Cardiology, University Hospital Eppendorf, Martinistr 52, 20246 Hamburg, Germany.
| | | | | | | | | | | |
Collapse
|