1
|
Zhang R, Chen J, Chen Y, Li Y. SIRT7 promotes dental pulp stem cells replicative senescence through desuccinylation of ROCK1. Tissue Cell 2025; 92:102636. [PMID: 39616832 DOI: 10.1016/j.tice.2024.102636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 11/18/2024] [Accepted: 11/19/2024] [Indexed: 12/15/2024]
Abstract
The therapeutic effectiveness of dental pulp stem cells (DPSCs) is limited. Sirtuin 7 (SIRT7) has been reported to be associated with a variety of age-related diseases. We aimed to identify the regulatory role of SIRT7 in DPSC senescence and investigate the underlying mechanism. DPSCs were isolated from healthy adults, the stem markers were verified by flow cytomerty analysis. Replicative senescence was induced in DPSCs by serial passage and cells were analyzed at PD16 and 54. DPSC senescence was evaluated by observing senescence-associated β-galactosidase (SA-β-gal) and telomerase reverse transcriptase (TERT) activity. Meanwhile, the markers of senescence levels were monitored by western blotting assay. SIRT7 protein was pulled-down, and the binding relationship between SIRT7 and ROCK1 was verified by immunoprecipitation and western blotting methods. Replicative senescence was induced in DPSCs at PD54. The number of SA-β-gal stained DPSCs significantly increased in the PD54 group while the level of TERT activity was decreased. The cyclin-dependent kinase inhibitors p53, p21, and p16, which are markers of senescence, were markedly up-regulated at PD54. SIRT7 was also found to be lowly expressed at PD54. Inhibition of SIRT7 significantly accelerated the senescence of DPSCs. Moreover, SIRT7 can bind with ROCK1, and SIRT7 could lead to ROCK1 desuccinylation at K520. Inhibited ROCK1 significantly reversed the effects of SIRT7 knockdown on regulating DPSCs senescence. Our results demonstrate that the SIRT7/ROCK1 axis plays a key role in the regulation of DPSC senescence and provide a candidate target to improve the functional and therapeutic potential of DPSCs.
Collapse
Affiliation(s)
- Rui Zhang
- Department of endodontics, Changsha Stomatological Hospital, No. 389, Youyi Road, Tianxin District, Changsha 410008, China
| | - Jie Chen
- Department of endodontics, Changsha Stomatological Hospital, No. 389, Youyi Road, Tianxin District, Changsha 410008, China
| | - Yuanyuan Chen
- Department of endodontics, Changsha Stomatological Hospital, No. 389, Youyi Road, Tianxin District, Changsha 410008, China
| | - Yangyang Li
- Department of orthodontics, Changsha Stomatological Hospital, No.844, Wuyi Road, Furong District, Changsha 410001, China.
| |
Collapse
|
2
|
Kim D, Kim SG. Cell Homing Strategies in Regenerative Endodontic Therapy. Cells 2025; 14:201. [PMID: 39936992 PMCID: PMC11817319 DOI: 10.3390/cells14030201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 01/24/2025] [Accepted: 01/28/2025] [Indexed: 02/13/2025] Open
Abstract
Cell homing, a process that leverages the body's natural ability to recruit cells and repair damaged tissues, presents a promising alternative to cell transplantation methods. Central to this approach is the recruitment of endogenous stem/progenitor cells-such as those from the apical papilla, bone marrow, and periapical tissues-facilitated by chemotactic biological cues. Moreover, biomaterial scaffolds embedded with signaling molecules create supportive environments, promoting cell migration, adhesion, and differentiation for the regeneration of the pulp-dentin complex. By analyzing in vivo animal studies using cell homing strategies, this review explores how biomolecules and scaffold materials enhance the recruitment of endogenous stem cells to the site of damaged dental pulp tissue, thereby promoting repair and regeneration. It also examines the key principles, recent advancements, and current limitations linked to cell homing-based regenerative endodontic therapy, highlighting the interplay of biomaterials, signaling molecules, and their broader clinical implications.
Collapse
Affiliation(s)
- David Kim
- Center for Dental and Craniofacial Research, Columbia University College of Dental Medicine, New York, NY 10032, USA;
| | - Sahng G. Kim
- Division of Endodontics, Columbia University College of Dental Medicine, New York, NY 10032, USA
| |
Collapse
|
3
|
Dobrzyńska‐Mizera M, Dodda JM, Liu X, Knitter M, Oosterbeek RN, Salinas P, Pozo E, Ferreira AM, Sadiku ER. Engineering of Bioresorbable Polymers for Tissue Engineering and Drug Delivery Applications. Adv Healthc Mater 2024; 13:e2401674. [PMID: 39233521 PMCID: PMC11616265 DOI: 10.1002/adhm.202401674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 08/15/2024] [Indexed: 09/06/2024]
Abstract
Herein, the recent advances in the development of resorbable polymeric-based biomaterials, their geometrical forms, resorption mechanisms, and their capabilities in various biomedical applications are critically reviewed. A comprehensive discussion of the engineering approaches for the fabrication of polymeric resorbable scaffolds for tissue engineering, drug delivery, surgical, cardiological, aesthetical, dental and cardiovascular applications, are also explained. Furthermore, to understand the internal structures of resorbable scaffolds, representative studies of their evaluation by medical imaging techniques, e.g., cardiac computer tomography, are succinctly highlighted. This approach provides crucial clinical insights which help to improve the materials' suitable and viable characteristics for them to meet the highly restrictive medical requirements. Finally, the aspects of the legal regulations and the associated challenges in translating research into desirable clinical and marketable materials of polymeric-based formulations, are presented.
Collapse
Affiliation(s)
| | - Jagan Mohan Dodda
- New Technologies – Research Centre (NTC)University of West BohemiaUniverzitní 8Pilsen30100Czech Republic
| | - Xiaohua Liu
- Chemical and Biomedical Engineering DepartmentUniversity of Missouri1030 Hill StreetColumbiaMissouri65211USA
| | - Monika Knitter
- Institute of Materials TechnologyPolymer DivisionPoznan University of TechnologyPoznanPoland
| | - Reece N. Oosterbeek
- Department of Engineering ScienceUniversity of OxfordParks RoadOxfordOX1 3PJUK
| | - Pablo Salinas
- Department of CardiologyHospital Clínico San CarlosMadridSpain
- Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC)MadridSpain
| | - Eduardo Pozo
- Department of CardiologyHospital Clínico San CarlosMadridSpain
- Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC)MadridSpain
| | - Ana Marina Ferreira
- School of EngineeringNewcastle UniversityNewcastle upon TyneNewcastleNE1 7RUUK
| | - Emmanuel Rotimi Sadiku
- Tshwane University of TechnologyDepartment of ChemicalMetallurgical and Materials EngineeringPolymer Division & Institute for Nano Engineering Research (INER)Pretoria West CampusPretoriaSouth Africa
| |
Collapse
|
4
|
Liu S, Ren J, Hu Y, Zhou F, Zhang L. TGFβ family signaling in human stem cell self-renewal and differentiation. CELL REGENERATION (LONDON, ENGLAND) 2024; 13:26. [PMID: 39604763 PMCID: PMC11602941 DOI: 10.1186/s13619-024-00207-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/16/2024] [Accepted: 11/01/2024] [Indexed: 11/29/2024]
Abstract
Human stem cells are undifferentiated cells with the capacity for self-renewal and differentiation into distinct cell lineages, playing important role in the development and maintenance of diverse tissues and organs. The microenvironment of stem cell provides crucial factors and components that exert significant influence over the determination of cell fate. Among these factors, cytokines from the transforming growth factor β (TGFβ) superfamily, including TGFβ, bone morphogenic protein (BMP), Activin and Nodal, have been identified as important regulators governing stem cell maintenance and differentiation. In this review, we present a comprehensive overview of the pivotal roles played by TGFβ superfamily signaling in governing human embryonic stem cells, somatic stem cells, induced pluripotent stem cells, and cancer stem cells. Furthermore, we summarize the latest research and advancements of TGFβ family in various cancer stem cells and stem cell-based therapy, discussing their potential clinical applications in cancer therapy and regeneration medicine.
Collapse
Affiliation(s)
- Sijia Liu
- International Biomed-X Research Center, Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| | - Jiang Ren
- The First Affiliated Hospital, MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, Institute of Biomedical Innovation, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Yanmei Hu
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Fangfang Zhou
- The First Affiliated Hospital, the Institutes of Biology and Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, China.
| | - Long Zhang
- International Biomed-X Research Center, Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China.
- The First Affiliated Hospital, MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, Institute of Biomedical Innovation, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, China.
- MOE Key Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
5
|
Quigley RM, Kearney M, Kennedy OD, Duncan HF. Tissue engineering approaches for dental pulp regeneration: The development of novel bioactive materials using pharmacological epigenetic inhibitors. Bioact Mater 2024; 40:182-211. [PMID: 38966600 PMCID: PMC11223092 DOI: 10.1016/j.bioactmat.2024.06.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 06/05/2024] [Accepted: 06/06/2024] [Indexed: 07/06/2024] Open
Abstract
The drive for minimally invasive endodontic treatment strategies has shifted focus from technically complex and destructive root canal treatments towards more conservative vital pulp treatment. However, novel approaches to maintaining dental pulp vitality after disease or trauma will require the development of innovative, biologically-driven regenerative medicine strategies. For example, cell-homing and cell-based therapies have recently been developed in vitro and trialled in preclinical models to study dental pulp regeneration. These approaches utilise natural and synthetic scaffolds that can deliver a range of bioactive pharmacological epigenetic modulators (HDACis, DNMTis, and ncRNAs), which are cost-effective and easily applied to stimulate pulp tissue regrowth. Unfortunately, many biological factors hinder the clinical development of regenerative therapies, including a lack of blood supply and poor infection control in the necrotic root canal system. Additional challenges include a need for clinically relevant models and manufacturing challenges such as scalability, cost concerns, and regulatory issues. This review will describe the current state of bioactive-biomaterial/scaffold-based engineering strategies to stimulate dentine-pulp regeneration, explicitly focusing on epigenetic modulators and therapeutic pharmacological inhibition. It will highlight the components of dental pulp regenerative approaches, describe their current limitations, and offer suggestions for the effective translation of novel epigenetic-laden bioactive materials for innovative therapeutics.
Collapse
Affiliation(s)
- Ross M. Quigley
- Division of Restorative Dentistry & Periodontology, Dublin Dental University Hospital, Trinity College Dublin (TCD), University of Dublin, Lincoln Place, Dublin, Ireland
- Department of Anatomy and Regenerative Medicine, and Tissue Engineering Research Group, Royal College of Surgeons in Ireland (RCSI) University of Medicine and Health Sciences, Dublin, Ireland
| | - Michaela Kearney
- Division of Restorative Dentistry & Periodontology, Dublin Dental University Hospital, Trinity College Dublin (TCD), University of Dublin, Lincoln Place, Dublin, Ireland
| | - Oran D. Kennedy
- Department of Anatomy and Regenerative Medicine, and Tissue Engineering Research Group, Royal College of Surgeons in Ireland (RCSI) University of Medicine and Health Sciences, Dublin, Ireland
- The Trinity Centre for Biomedical Engineering (TCBE) and the Advanced Materials and Bioengineering Research Centre (AMBER), Royal College of Surgeons in Ireland (RCSI) and Trinity College Dublin (TCD), Dublin, Ireland
| | - Henry F. Duncan
- Division of Restorative Dentistry & Periodontology, Dublin Dental University Hospital, Trinity College Dublin (TCD), University of Dublin, Lincoln Place, Dublin, Ireland
- The Trinity Centre for Biomedical Engineering (TCBE) and the Advanced Materials and Bioengineering Research Centre (AMBER), Royal College of Surgeons in Ireland (RCSI) and Trinity College Dublin (TCD), Dublin, Ireland
| |
Collapse
|
6
|
Baek HS, Park SJ, Lee EG, Kim YI, Kim IR. Chios gum mastic enhance the proliferation and odontogenic differentiation of human dental pulp stem cells. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2024; 28:423-433. [PMID: 39198223 PMCID: PMC11362005 DOI: 10.4196/kjpp.2024.28.5.423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/18/2024] [Accepted: 04/02/2024] [Indexed: 09/01/2024]
Abstract
Dental pulp stem cells (DPSCs) are a type of adult stem cell present in the dental pulp tissue. They possess a higher proliferative capacity than bone marrow mesenchymal stem cells. Their ease of collection from patients makes them well-suited for tissue engineering applications, such as tooth and nerve regeneration. Chios gum mastic (CGM), a resin extracted from the stems and leaves of Pistacia lentiscus var. Chia, has garnered attention for its potential in tissue regeneration. This study aims to confirm alterations in cell proliferation rates and induce differentiation in human DPSCs (hDPSCs) through CGM treatment, a substance known for effectively promoting odontogenic differentiation. Administration of CGM to hDPSC cells was followed by an assessment of cell survival, proliferation, and odontogenic differentiation through protein and gene analysis. The study revealed that hDPSCs exhibited low sensitivity to CGM toxicity. CGM treatment induced cell proliferation by activating cell-cycle proteins through the Wnt/β-catenin pathway. Additionally, the study demonstrated that CGM enhances alkaline phosphatase activation by upregulating the expression of collagen type I, a representative matrix protein of dentin. This activation of markers associated with odontogenic and bone differentiation ultimately facilitated the mineralization of hDPSCs. This study concludes that CGM, as a natural substance, fosters the cell cycle and cell proliferation in hDPSCs. Furthermore, it triggers the transcription of odontogenic and osteogenic markers, thereby facilitating odontogenic differentiation.
Collapse
Affiliation(s)
- Hyun-Su Baek
- Department of Oral Anatomy, School of Dentistry, Pusan National University, Yangsan 50612, Korea
| | - Se-Jin Park
- Department of Oral Anatomy, School of Dentistry, Pusan National University, Yangsan 50612, Korea
| | - Eun-Gyung Lee
- Department of Pediatric Dentistry, School of Dentistry, Pusan National University, Yangsan 50612, Korea
- Dental and Life Science Institute, School of Dentistry, Pusan National University, Yangsan 50612, Korea
| | - Yong-Il Kim
- Department of Orthodontics, School of Dentistry, Pusan National University, Yangsan 50612, Korea
- Dental and Life Science Institute, School of Dentistry, Pusan National University, Yangsan 50612, Korea
| | - In-Ryoung Kim
- Department of Oral Anatomy, School of Dentistry, Pusan National University, Yangsan 50612, Korea
- Dental and Life Science Institute, School of Dentistry, Pusan National University, Yangsan 50612, Korea
| |
Collapse
|
7
|
Wang C, Liu X, Zhou J, Zhang X, Zhou Z, Zhang Q. Sensory nerves drive migration of dental pulp stem cells via the CGRP-Ramp1 axis in pulp repair. Cell Mol Life Sci 2024; 81:373. [PMID: 39196292 PMCID: PMC11358583 DOI: 10.1007/s00018-024-05400-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 07/17/2024] [Accepted: 08/06/2024] [Indexed: 08/29/2024]
Abstract
Dental pulp stem cells (DPSCs) are responsible for maintaining pulp structure and function after pulp injury. DPSCs migrate directionally to the injury site before differentiating into odontoblast-like cells, which is a prerequisite and a determinant in pulp repair. Increasing evidence suggests that sensory neuron-stem cell crosstalk is critical for maintaining normal physiological functions, and sensory nerves influence stem cells mainly by neuropeptides. However, the role of sensory nerves on DPSC behaviors after pulp injury is largely unexplored. Here, we find that sensory nerves released significant amounts of calcitonin gene-related peptide (CGRP) near the injury site, acting directly on DPSCs via receptor activity modifying protein 1 (RAMP1) to promote collective migration of DPSCs to the injury site, and ultimately promoting pulp repair. Specifically, sensory denervation leads to poor pulp repair and ectopic mineralization, in parallel with that DPSCs failed to be recruited to the injury site. Furthermore, in vitro evidence shows that sensory nerve-deficient microenvironment suppressed DPSC migration prominently among all related behaviors. Mechanistically, the CGRP-Ramp1 axis between sensory neurons and DPSCs was screened by single-cell RNA-seq analysis and immunohistochemical studies confirmed that the expression of CGRP rather than Ramp1 increases substantially near the damaged site. We further demonstrated that CGRP released by sensory nerves binds the receptor Ramp1 on DPSCs to facilitate cell collective migration by an indirect co-culture system using conditioned medium from trigeminal neurons, CGRP recombinant protein and antagonists BIBN4096. The treatment with exogenous CGRP promoted the recruitment of DPSCs, and ultimately enhanced the quality of pulp repair. Targeting the sensory nerve could therefore provide a new strategy for stem cell-based pulp repair and regeneration.
Collapse
Affiliation(s)
- Chunmeng Wang
- Department of Endodontics, Stomatological Hospital and Dental School of Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, No.399 Yanchang Middle Road, Jing'an District, Shanghai, 200072, China
| | - Xiaochen Liu
- Department of Endodontics, Stomatological Hospital and Dental School of Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, No.399 Yanchang Middle Road, Jing'an District, Shanghai, 200072, China
| | - Jiani Zhou
- Department of Endodontics, Stomatological Hospital and Dental School of Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, No.399 Yanchang Middle Road, Jing'an District, Shanghai, 200072, China
| | - Xiaoyi Zhang
- Department of Endodontics, Stomatological Hospital and Dental School of Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, No.399 Yanchang Middle Road, Jing'an District, Shanghai, 200072, China
| | - Zihao Zhou
- Department of Endodontics, Stomatological Hospital and Dental School of Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, No.399 Yanchang Middle Road, Jing'an District, Shanghai, 200072, China
| | - Qi Zhang
- Department of Endodontics, Stomatological Hospital and Dental School of Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, No.399 Yanchang Middle Road, Jing'an District, Shanghai, 200072, China.
| |
Collapse
|
8
|
Shi X, Hu X, Jiang N, Mao J. Regenerative endodontic therapy: From laboratory bench to clinical practice. J Adv Res 2024:S2090-1232(24)00267-4. [PMID: 38969092 DOI: 10.1016/j.jare.2024.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/16/2024] [Accepted: 07/01/2024] [Indexed: 07/07/2024] Open
Abstract
BACKGROUND Maintaining the vitality and functionality of dental pulp is paramount for tooth integrity, longevity, and homeostasis. Aiming to treat irreversible pulpitis and necrosis, there has been a paradigm shift from conventional root canal treatment towards regenerative endodontic therapy. AIM OF REVIEW This extensive and multipart review presents crucial laboratory and practical issues related to pulp-dentin complex regeneration aimed towards advancing clinical translation of regenerative endodontic therapy and enhancing human life quality. KEY SCIENTIFIC CONCEPTS OF REVIEW In this multipart review paper, we first present a panorama of emerging potential tissue engineering strategies for pulp-dentin complex regeneration from cell transplantation and cell homing perspectives, emphasizing the critical regenerative components of stem cells, biomaterials, and conducive microenvironments. Then, this review provides details about current clinically practiced pulp regenerative/reparative approaches, including direct pulp capping and root revascularization, with a specific focus on the remaining hurdles and bright prospects in developing such therapies. Next, special attention was devoted to discussing the innovative biomimetic perspectives opened in establishing functional tissues by employing exosomes and cell aggregates, which will benefit the clinical translation of dental pulp engineering protocols. Finally, we summarize careful consideration that should be given to basic research and clinical applications of regenerative endodontics. In particular, this review article highlights significant challenges associated with residual infection and inflammation and identifies future insightful directions in creating antibacterial and immunomodulatory microenvironments so that clinicians and researchers can comprehensively understand crucial clinical aspects of regenerative endodontic procedures.
Collapse
Affiliation(s)
- Xin Shi
- Center of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
| | - Xiaohan Hu
- Outpatient Department Office, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Nan Jiang
- Central Laboratory, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Peking University School and Hospital of Stomatology, Beijing 100081, China.
| | - Jing Mao
- Center of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China.
| |
Collapse
|
9
|
Akamp T, Rosendahl A, Galler KM, Wölflick M, Buchalla W, Widbiller M. An in vitro coculture approach to study the interplay between dental pulp cells and Streptococcus mutans. Int Endod J 2024; 57:164-177. [PMID: 37947494 DOI: 10.1111/iej.13995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/04/2023] [Accepted: 10/20/2023] [Indexed: 11/12/2023]
Abstract
AIM To develop a new coculture system that allows exposure of dental pulp cells (DPCs) to Streptococcus mutans and dentine matrix proteins (eDMP) to study cellular interactions in dentine caries. METHODOLOGY Dental pulp cells and S. mutans were cocultured with or without eDMP for 72 h. Cell proliferation and viability were assessed by cell counting and MTT assays, while bacterial growth and viability were determined by CFU and LIVE/DEAD staining. Glucose catabolism and lactate excretion were measured photometrically as metabolic indicators. To evaluate the inflammatory response, the release of cytokines and growth factors (IL-6, IL-8, TGF-β1, VEGF) was determined by ELISA. Non-parametric statistical analyses were performed to compare all groups and time points (Mann-Whitney U test or Kruskal-Wallis test; α = .05). RESULTS While eDMP and especially S. mutans reduced the number and viability of DPCs (p ≤ .0462), neither DPCs nor eDMP affected the growth and viability of S. mutans during coculture (p > .0546). The growth of S. mutans followed a common curve, but the death phase was not reached within 72 h. S. mutans consumed medium glucose in only 30 h, whereas in the absence of S. mutans, cells were able to catabolize glucose throughout 72 h, resulting in the corresponding amount of l-lactate. No change in medium pH was observed. S. mutans induced IL-6 production in DPCs (p ≤ .0011), whereas eDMP had no discernible effect (p > .7509). No significant changes in IL-8 were observed (p > .198). TGF-β1, available from eDMP supplementation, was reduced by DPCs over time. VEGF, on the other hand, was increased in all groups during coculture. CONCLUSIONS The results show that the coculture of DPCs and S. mutans is possible without functional impairment. The bacterially induced stimulation of proinflammatory and regenerative cytokines provides a basis for future investigations and the elucidation of molecular biological relationships in pulp defence against caries.
Collapse
Affiliation(s)
- Tobias Akamp
- Department of Conservative Dentistry and Periodontology, University Hospital Regensburg, Regensburg, Germany
| | - Andreas Rosendahl
- Department of Conservative Dentistry and Periodontology, University Hospital Regensburg, Regensburg, Germany
| | - Kerstin M Galler
- Department of Operative Dentistry and Periodontology, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Melanie Wölflick
- Department of Conservative Dentistry and Periodontology, University Hospital Regensburg, Regensburg, Germany
| | - Wolfgang Buchalla
- Department of Conservative Dentistry and Periodontology, University Hospital Regensburg, Regensburg, Germany
| | - Matthias Widbiller
- Department of Conservative Dentistry and Periodontology, University Hospital Regensburg, Regensburg, Germany
| |
Collapse
|
10
|
Malekpour F, Bahrami R, Hodjat M, Hakimiha N, Bolhari B, Sooratgar A, Niavarzi S. Effect of photobiomodulation therapy on TGF-β release from dentin, migration and viability of dental pulp stem cells in regenerative endodontics treatment: An ex vivo study. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2024; 250:112817. [PMID: 38029663 DOI: 10.1016/j.jphotobiol.2023.112817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/06/2023] [Accepted: 11/21/2023] [Indexed: 12/01/2023]
Abstract
BACKGROUND AND AIM Regenerative endodontic procedures (REPs) are oriented by the principles of tissue engineering, incorporating dental pulp stem cells (DPSC), crucial growth factors like Transforming growth factor-β (TGF-β1), and scaffolds to facilitate the regeneration of dental pulp tissues. The present study aimed to investigate the effect of photobiomodulation (PBM) therapy, using an 808 nm diode laser on cellular modulation mechanisms in REPs. METHOD AND MATERIAL A total of 108 human dentin discs obtained from intact single root teeth were randomly assigned into six groups (n = 8): 1. Positive control (EDTA), 2. PBM-1 (3 J/cm2), 3. PBM-2 (5 J/cm2), 4. EDTA+PBM-1, 5. EDTA+PBM-2, and 6. Negative control (NaOCl). Then, an extract solution was prepared from each disc and the concentration of released TGF-β1 from the discs was measured using enzyme-linked immunosorbent assay (ELISA). Moreover, the extract solution was added to DPSC culture medium to evaluate cell viability and migration through MTT assay and scratch test, respectively. RESULT The group exposed to PBM-1 showed the highest cell viability, while treatment with EDTA and EDTA+PBM-2 decreased cellular viability. Also, the PBM-treated groups showed significantly higher release of TGF-β1 compared to the negative control. EDTA and EDTA+PBM-1 showed the highest release among all the groups. No significant difference was found between EDTA and EDTA+PBM-1, as well as between PBM-1 and PBM-2. Moreover, the PBM-1 group exhibited the highest migration after 24 h, which was significantly greater than other groups, except for the PBM-2 group. CONCLUSION According to the obtained data, 808 nm mediated-PBM (3 J/cm2), both independently and in conjunction with EDTA, enhanced the release of TGF-β1 from dentin and improved cell viability and migration of DPSCs. It seems that, PBM under the specific parameters employed in this study, could be an effective adjunctive therapy in REPs.
Collapse
Affiliation(s)
- Fatemeh Malekpour
- Department of Endodontics, School of Dentistry, Tehran University of Medical Sciences, Tehran, Iran
| | - Rashin Bahrami
- Department of Orthodontics, School of Dentistry, Guilan University of Medical Sciences, Rasht, Iran
| | - Mahshid Hodjat
- Dental Research Centre, Dentistry Research Institute, Tehran University of Medical Science, Tehran, Iran
| | - Neda Hakimiha
- Laser Application in Medical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Behnam Bolhari
- Department of Endodontics, School of Dentistry, Tehran University of Medical Sciences, Tehran, Iran.
| | - Aidin Sooratgar
- Department of Endodontics, School of Dentistry, Tehran University of Medical Sciences, Tehran, Iran
| | - Soheil Niavarzi
- Department of Endodontics, School of Dentistry, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
11
|
Li F, Wang X, Shi J, Wu S, Xing W, He Y. Anti-inflammatory effect of dental pulp stem cells. Front Immunol 2023; 14:1284868. [PMID: 38077342 PMCID: PMC10701738 DOI: 10.3389/fimmu.2023.1284868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 11/06/2023] [Indexed: 12/18/2023] Open
Abstract
Dental pulp stem cells (DPSCs) have received a lot of attention as a regenerative medicine tool with strong immunomodulatory capabilities. The excessive inflammatory response involves a variety of immune cells, cytokines, and has a considerable impact on tissue regeneration. The use of DPSCs for controlling inflammation for the purpose of treating inflammation-related diseases and autoimmune disorders such as supraspinal nerve inflammation, inflammation of the pulmonary airways, systemic lupus erythematosus, and diabetes mellitus is likely to be safer and more regenerative than traditional medicines. The mechanism of the anti-inflammatory and immunomodulatory effects of DPSCs is relatively complex, and it may be that they themselves or some of the substances they secrete regulate a variety of immune cells through inflammatory immune-related signaling pathways. Most of the current studies are still at the laboratory cellular level and animal model level, and it is believed that through the efforts of more researchers, DPSCs/SHED are expected to be transformed into excellent drugs for the clinical treatment of related diseases.
Collapse
Affiliation(s)
- FenYao Li
- Institute of Regenerative and Translational Medicine, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, China
| | - XinXin Wang
- Institute of Regenerative and Translational Medicine, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, China
| | - Jin Shi
- Institute of Regenerative and Translational Medicine, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, China
| | - ShuTing Wu
- Institute of Regenerative and Translational Medicine, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, China
| | - WenBo Xing
- Institute of Regenerative and Translational Medicine, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, China
| | - Yan He
- Institute of Regenerative and Translational Medicine, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, China
| |
Collapse
|
12
|
Duncan HF, Kobayashi Y, Kearney M, Shimizu E. Epigenetic therapeutics in dental pulp treatment: Hopes, challenges and concerns for the development of next-generation biomaterials. Bioact Mater 2023; 27:574-593. [PMID: 37213443 PMCID: PMC10199232 DOI: 10.1016/j.bioactmat.2023.04.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/11/2023] [Accepted: 04/11/2023] [Indexed: 05/23/2023] Open
Abstract
This opinion-led review paper highlights the need for novel translational research in vital-pulp-treatment (VPT), but also discusses the challenges in translating evidence to clinics. Traditional dentistry is expensive, invasive and relies on an outmoded mechanical understanding of dental disease, rather than employing a biological perspective that harnesses cell activity and the regenerative-capacity. Recent research has focussed on developing minimally-invasive biologically-based 'fillings' that preserve the dental pulp; research that is shifting the paradigm from expensive high-technology dentistry, with high failure rates, to smart restorations targeted at biological processes. Current VPTs promote repair by recruiting odontoblast-like cells in a material-dependent process. Therefore, exciting opportunities exist for development of next-generation biomaterials targeted at regenerative processes in the dentin-pulp complex. This article analyses recent research using pharmacological-inhibitors to therapeutically-target histone-deacetylase (HDAC) enzymes in dental-pulp-cells (DPCs) that stimulate pro-regenerative effects with limited loss of viability. Consequently, HDAC-inhibitors have the potential to enhance biomaterial-driven tissue responses at low concentration by influencing the cellular processes with minimal side-effects, providing an opportunity to develop a topically-placed, inexpensive bio-inductive pulp-capping material. Despite positive results, clinical translation of these innovations requires enterprise to counteract regulatory obstacles, dental-industry priorities and to develop strong academic/industry partnerships. The aim of this opinion-led review paper is to discuss the potential role of therapeutically-targeting epigenetic modifications as part of a topical VPT strategy in the treatment of the damaged dental pulp, while considering the next steps, material considerations, challenges and future for the clinical development of epigenetic therapeutics or other 'smart' restorations in VPT.
Collapse
Affiliation(s)
- Henry F. Duncan
- Division of Restorative Dentistry & Periodontology, Dublin Dental University Hospital, Trinity College Dublin, University of Dublin, Lincoln Place, Dublin, Ireland
| | - Yoshifumi Kobayashi
- Department of Oral Biology, Rutgers School of Dental Medicine, Newark, NJ, USA
| | - Michaela Kearney
- Division of Restorative Dentistry & Periodontology, Dublin Dental University Hospital, Trinity College Dublin, University of Dublin, Lincoln Place, Dublin, Ireland
| | - Emi Shimizu
- Department of Oral Biology, Rutgers School of Dental Medicine, Newark, NJ, USA
| |
Collapse
|
13
|
Shi J, Teo KYW, Zhang S, Lai RC, Rosa V, Tong HJ, Duggal MS, Lim SK, Toh WS. Mesenchymal stromal cell exosomes enhance dental pulp cell functions and promote pulp-dentin regeneration. BIOMATERIALS AND BIOSYSTEMS 2023; 11:100078. [PMID: 37283805 PMCID: PMC10239699 DOI: 10.1016/j.bbiosy.2023.100078] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 05/23/2023] [Accepted: 05/26/2023] [Indexed: 06/08/2023] Open
Abstract
Mesenchymal stromal/stem cell (MSC) therapies are currently being explored for dental pulp regeneration. As the therapeutic effects of MSCs in tissue repair are mediated mainly through the release of extracellular vesicles (EVs) including exosomes, we investigated here the cellular processes and molecular mechanisms modulated by MSC exosomes in dental pulp regeneration. Using dental pulp cell (DPC) cultures, we demonstrated that MSC exosomes could increase DPC migration, proliferation, and odontogenic differentiation. The enhancement of these cellular processes was mediated through exosomal CD73-mediated adenosine receptor activation of AKT and ERK signaling. Consistent with these observations, MSC exosomes increased the expression of dentin matrix proteins and promoted the formation of dentin-like tissue and bridge-like structures in a rat pulp defect model. These effects were comparable to that of mineral trioxide aggregate (MTA) treatment. MSC exosomes also yielded recellularized pulp-dentin tissues in the root canal of endodontically-treated human premolars, following subcutaneous implantation in the mouse dorsum. Together, our findings suggest that MSC exosomes could exert a multi-faceted effect on DPC functions including migration, proliferation and odontogenic differentiation to promote dental pulp regeneration. This study provides the basis for development of MSC exosomes as a cell-free MSC therapeutic alternative for pulp-dentin regeneration.
Collapse
Affiliation(s)
- Jiajun Shi
- Faculty of Dentistry, National University of Singapore, Singapore
| | | | - Shipin Zhang
- Faculty of Dentistry, National University of Singapore, Singapore
| | - Ruenn Chai Lai
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore
| | - Vinicius Rosa
- Faculty of Dentistry, National University of Singapore, Singapore
- Oral Care Health Innovations and Designs Singapore, National University of Singapore, Singapore
| | - Huei Jinn Tong
- Faculty of Dentistry, National University of Singapore, Singapore
| | | | - Sai Kiang Lim
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore
| | - Wei Seong Toh
- Faculty of Dentistry, National University of Singapore, Singapore
- Department of Orthopaedic Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, Singapore
- Tissue Engineering Program, Life Sciences Institute, National University of Singapore, Singapore
- Integrative Sciences and Engineering Program, NUS Graduate School, National University of Singapore, Singapore
| |
Collapse
|
14
|
Hanson-Drury S, Patni AP, Lee DL, Alghadeer A, Zhao YT, Ehnes DD, Vo VN, Kim SY, Jithendra D, Phal A, Edman NI, Schlichthaerle T, Baker D, Young JE, Mathieu J, Ruohola-Baker H. Single Cell RNA Sequencing Reveals Human Tooth Type Identity and Guides In Vitro hiPSC Derived Odontoblast Differentiation (iOB). FRONTIERS IN DENTAL MEDICINE 2023; 4:1209503. [PMID: 38259324 PMCID: PMC10802932 DOI: 10.3389/fdmed.2023.1209503] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 05/29/2023] [Indexed: 01/24/2024] Open
Abstract
Over 90% of the U.S. adult population suffers from tooth structure loss due to caries. Most of the mineralized tooth structure is composed of dentin, a material produced and mineralized by ectomesenchyme derived cells known as odontoblasts. Clinicians, scientists, and the general public share the desire to regenerate this missing tooth structure. To bioengineer missing dentin, increased understanding of human tooth development is required. Here we interrogate at the single cell level the signaling interactions that guide human odontoblast and ameloblast development and which determine incisor or molar tooth germ type identity. During human odontoblast development, computational analysis predicts that early FGF and BMP activation followed by later HH signaling is crucial. Application of this sci-RNA-seq analysis generates a differentiation protocol to produce mature hiPSC derived odontoblasts in vitro (iOB). Further, we elucidate the critical role of FGF signaling in odontoblast maturation and its biomineralization capacity using the de novo designed FGFR1/2c isoform specific minibinder scaffolded as a C6 oligomer that acts as a pathway agonist. We find that FGFR1c is upregulated in functional odontoblasts and specifically plays a crucial role in driving odontoblast maturity. Using computational tools, we show on a molecular level how human molar development is delayed compared to incisors. We reveal that enamel knot development is guided by FGF and WNT in incisors and BMP and ROBO in the molars, and that incisor and molar ameloblast development is guided by FGF, EGF and BMP signaling, with tooth type specific intensity of signaling interactions. Dental ectomesenchyme derived cells are the primary source of signaling ligands responsible for both enamel knot and ameloblast development.
Collapse
Affiliation(s)
- Sesha Hanson-Drury
- Department of Oral Health Sciences, School of Dentistry, University of Washington, Seattle, WA, United States
- Department of Biochemistry, School of Medicine, University of Washington, Seattle, WA, United States
- Institute for Stem Cell and Regenerative Medicine, School of Medicine, University of Washington, Seattle, WA, United States
| | - Anjali P. Patni
- Department of Oral Health Sciences, School of Dentistry, University of Washington, Seattle, WA, United States
- Department of Biochemistry, School of Medicine, University of Washington, Seattle, WA, United States
- Institute for Stem Cell and Regenerative Medicine, School of Medicine, University of Washington, Seattle, WA, United States
- Department of Genetic Engineering, SRM Institute of Science and Technology, Chennai, India
| | - Deborah L. Lee
- Department of Oral Health Sciences, School of Dentistry, University of Washington, Seattle, WA, United States
- Department of Biochemistry, School of Medicine, University of Washington, Seattle, WA, United States
- Institute for Stem Cell and Regenerative Medicine, School of Medicine, University of Washington, Seattle, WA, United States
| | - Ammar Alghadeer
- Department of Oral Health Sciences, School of Dentistry, University of Washington, Seattle, WA, United States
- Department of Biochemistry, School of Medicine, University of Washington, Seattle, WA, United States
- Institute for Stem Cell and Regenerative Medicine, School of Medicine, University of Washington, Seattle, WA, United States
- Department of Biomedical Dental Sciences, College of Dentistry, Imam Abdulrahman bin Faisal University, Dammam, Saudi Arabia
| | - Yan Ting Zhao
- Department of Oral Health Sciences, School of Dentistry, University of Washington, Seattle, WA, United States
- Department of Biochemistry, School of Medicine, University of Washington, Seattle, WA, United States
- Institute for Stem Cell and Regenerative Medicine, School of Medicine, University of Washington, Seattle, WA, United States
| | - Devon Duron Ehnes
- Department of Oral Health Sciences, School of Dentistry, University of Washington, Seattle, WA, United States
- Department of Biochemistry, School of Medicine, University of Washington, Seattle, WA, United States
- Institute for Stem Cell and Regenerative Medicine, School of Medicine, University of Washington, Seattle, WA, United States
| | - Vivian N. Vo
- Department of Biochemistry, School of Medicine, University of Washington, Seattle, WA, United States
- Institute for Stem Cell and Regenerative Medicine, School of Medicine, University of Washington, Seattle, WA, United States
- Department of Biology, University of Washington, Seattle, WA, United States
| | - Sydney Y. Kim
- Department of Oral Health Sciences, School of Dentistry, University of Washington, Seattle, WA, United States
- Institute for Stem Cell and Regenerative Medicine, School of Medicine, University of Washington, Seattle, WA, United States
| | - Druthi Jithendra
- Institute for Stem Cell and Regenerative Medicine, School of Medicine, University of Washington, Seattle, WA, United States
- Department of Biotechnology, SRM Institute of Science and Technology, Chennai, India
| | - Ashish Phal
- Department of Biochemistry, School of Medicine, University of Washington, Seattle, WA, United States
- Institute for Stem Cell and Regenerative Medicine, School of Medicine, University of Washington, Seattle, WA, United States
- Department of Bioengineering, University of Washington, Seattle, WA, United States
| | - Natasha I. Edman
- Department of Biochemistry, School of Medicine, University of Washington, Seattle, WA, United States
- Institute for Protein Design, University of Washington, Seattle, WA, United States
- Molecular and Cellular Biology Graduate Program, University of Washington, Seattle, WA, United States
- Medical Scientist Training Program, University of Washington, Seattle, WA, United States
| | - Thomas Schlichthaerle
- Department of Biochemistry, School of Medicine, University of Washington, Seattle, WA, United States
- Institute for Protein Design, University of Washington, Seattle, WA, United States
| | - David Baker
- Department of Biochemistry, School of Medicine, University of Washington, Seattle, WA, United States
- Institute for Stem Cell and Regenerative Medicine, School of Medicine, University of Washington, Seattle, WA, United States
- Institute for Protein Design, University of Washington, Seattle, WA, United States
| | - Jessica E. Young
- Institute for Stem Cell and Regenerative Medicine, School of Medicine, University of Washington, Seattle, WA, United States
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, United States
| | - Julie Mathieu
- Institute for Stem Cell and Regenerative Medicine, School of Medicine, University of Washington, Seattle, WA, United States
- Department of Comparative Medicine, School of Medicine, University of Washington, Seattle, WA, United States
| | - Hannele Ruohola-Baker
- Department of Oral Health Sciences, School of Dentistry, University of Washington, Seattle, WA, United States
- Department of Biochemistry, School of Medicine, University of Washington, Seattle, WA, United States
- Institute for Stem Cell and Regenerative Medicine, School of Medicine, University of Washington, Seattle, WA, United States
- Department of Biology, University of Washington, Seattle, WA, United States
- Department of Bioengineering, University of Washington, Seattle, WA, United States
| |
Collapse
|
15
|
Piperigkou Z, Bainantzou D, Makri N, Papachristou E, Mantsou A, Choli-Papadopoulou T, Theocharis AD, Karamanos NK. Enhancement of mesenchymal stem cells' chondrogenic potential by type II collagen-based bioscaffolds. Mol Biol Rep 2023; 50:5125-5135. [PMID: 37118382 PMCID: PMC10209287 DOI: 10.1007/s11033-023-08461-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 04/12/2023] [Indexed: 04/30/2023]
Abstract
BACKGROUND Osteoarthritis (OA) is a common degenerative chronic disease accounting for physical pain, tissue stiffness and mobility restriction. Current therapeutic approaches fail to prevent the progression of the disease considering the limited knowledge on OA pathobiology. During OA progression, the extracellular matrix (ECM) of the cartilage is aberrantly remodeled by chondrocytes. Chondrocytes, being the main cell population of the cartilage, participate in cartilage regeneration process. To this end, modern tissue engineering strategies involve the recruitment of mesenchymal stem cells (MSCs) due to their regenerative capacity as to promote chondrocyte self-regeneration. METHODS AND RESULTS In the present study, we evaluated the role of type II collagen, as the main matrix macromolecule in the cartilage matrix, to promote chondrogenic differentiation in two MSC in vitro culture systems. The chondrogenic differentiation of human Wharton's jelly- and dental pulp-derived MSCs was investigated over a 24-day culture period on type II collagen coating to improve the binding affinity of MSCs. Functional assays, demonstrated that type II collagen promoted chondrogenic differentiation in both MSCs tested, which was confirmed through gene and protein analysis of major chondrogenic markers. CONCLUSIONS Our data support that type II collagen contributes as a natural bioscaffold enhancing chondrogenesis in both MSC models, thus enhancing the commitment of MSC-based therapeutic approaches in regenerative medicine to target OA and bring therapy closer to the clinical use.
Collapse
Affiliation(s)
- Zoi Piperigkou
- Biochemistry, Biochemical Analysis and Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras, Greece
- Foundation for Research and Technology-Hellas (FORTH)/Institute of Chemical Engineering Sciences (ICE-HT), Patras, Greece
| | - Dimitra Bainantzou
- Biochemistry, Biochemical Analysis and Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras, Greece
| | - Nadia Makri
- Biochemistry, Biochemical Analysis and Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras, Greece
| | - Eleni Papachristou
- Laboratory of Biochemistry, Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Aglaia Mantsou
- Laboratory of Biochemistry, Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Theodora Choli-Papadopoulou
- Laboratory of Biochemistry, Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Achilleas D Theocharis
- Biochemistry, Biochemical Analysis and Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras, Greece.
| | - Nikos K Karamanos
- Biochemistry, Biochemical Analysis and Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras, Greece.
- Foundation for Research and Technology-Hellas (FORTH)/Institute of Chemical Engineering Sciences (ICE-HT), Patras, Greece.
| |
Collapse
|
16
|
Noohi P, Abdekhodaie MJ, Saadatmand M, Nekoofar MH, Dummer PMH. The development of a dental light curable PRFe-loaded hydrogel as a potential scaffold for pulp-dentine complex regeneration: An in vitro study. Int Endod J 2023; 56:447-464. [PMID: 36546662 DOI: 10.1111/iej.13882] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 12/07/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022]
Abstract
AIM The study aimed to develop a bicomponent bioactive hydrogel formed in situ and enriched with an extract of platelet-rich fibrin (PRFe) and to assess its potential for use in pulp-dentine complex tissue engineering via cell homing. METHODOLOGY A bicomponent hydrogel based on photo-activated naturally derived polymers, methacrylated chitosan (ChitMA) and methacrylated collagen (ColMA), plus PRFe was fabricated. The optimized formulation of PRFe-loaded bicomponent hydrogel was determined by analysing the mechanical strength, swelling ratio and cell viability simultaneously. The physical, mechanical, rheological and morphological properties of the optimal hydrogel with and without PRFe were determined. Additionally, MTT, phalloidin/DAPI and live/dead assays were carried out to compare the viability, cytoskeletal morphology and migration ability of stem cells from the apical papilla (SCAP) within the developed hydrogels with and without PRFe, respectively. To further investigate the effect of PRFe on the differentiation of encapsulated SCAP, alizarin red S staining, RT-PCR analysis and immunohistochemical detection were performed. Statistical significance was established at p < .05. RESULTS The optimized formulation of PRFe-loaded bicomponent hydrogel can be rapidly photocrosslinked using available dental light curing units. Compared to bicomponent hydrogels without PRFe, the PRFe-loaded hydrogel exhibited greater viscoelasticity and higher cytocompatibility to SCAP. Moreover, it promoted cell proliferation and migration in vitro. It also supported the odontogenic differentiation of SCAP as evidenced by its promotion of biomineralization and upregulating the gene expression for ALP, COL I, DSPP and DMP1 as well as facilitated angiogenesis by enhancing VEGFA gene expression. CONCLUSIONS The new PRFe-loaded ChitMA/ColMA hydrogel developed within this study fulfils the criteria of injectability, cytocompatibility, chemoattractivity and bioactivity to promote odontogenic differentiation, which are fundamental requirements for scaffolds used in pulp-dentine complex regeneration via cell-homing approaches.
Collapse
Affiliation(s)
- Parisa Noohi
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran
| | - Mohammad J Abdekhodaie
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran.,Environmental and Applied Science Management, Yeates School of Graduate Studies, Toronto Metropolitan University, Toronto, Canada
| | - Maryam Saadatmand
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran
| | - Mohammad H Nekoofar
- Department of Endodontics, School of Dentistry, Tehran University of Medical Sciences, Tehran, Iran.,Department of Tissue Engineering, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Department of Endodontics, Bahçeşehir University School of Dentistry, Istanbul, Turkey
| | - Paul M H Dummer
- School of Dentistry, College of Biomedical and Life Sciences, Cardiff University, Cardiff, UK
| |
Collapse
|
17
|
Bagio DA, Lestari NA, Putra WA, Alinda SD, Ricardo S, Julianto I. The effect of hyaluronic acid conditioned media on hDPSCs differentiation through CD44 and transforming growth factor-β1 expressions. J Adv Pharm Technol Res 2023; 14:89-93. [PMID: 37255878 PMCID: PMC10226701 DOI: 10.4103/japtr.japtr_649_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 02/01/2023] [Accepted: 02/16/2023] [Indexed: 06/01/2023] Open
Abstract
Hyaluronic acid (HA) has the capability to influence dentin niche which is important in regenerative process. The CD44 as a specific receptor of HA was found to be related to dentin mineralization process. Meanwhile, transforming growth factor β1 (TGF-β1) has a vital role in the transition from proliferation into the differentiation of human dental pulp stem cell human dental pulp stem cells (hDPSCs) to become odontoblast cells and dentin mineralization. This study aims to analyzed HA's effect on dentin mineralization through CD44 and TGF-β1 expressions. Stem cells were cultured in four different supplemented conditioned media (control, +10 μg/mL, +20 μg/mL, and + 30 μg/mL of HA). Evaluation of CD44 expression was analyzed using flow cytometry and TGF-β1 was analyzed using enzyme-linked immunosorbent assay reader. Qualitative result using Alizarin red test after 21 days was done to confirm the formation of mineralization nodules. It was shown that HA expression of CD44 and TGF-β1 on hDPSCs were higher in AH groups compared to the control group and 30 μg/mL HA induced the highest TGF-β1 expression on hDPSCs. Alizarin red test also showed the highest mineralization nodules in the same group. Therefore, from this study, we found that supplemented 30 μg/mL of HA was proved in initiating hDPSCs differentiation process and promote dentin mineralization.
Collapse
Affiliation(s)
- Dini Asrianti Bagio
- Lecturer of Conservative Dentistry Department, Faculty of Dentistry, Universitas Indonesia, Surakarta Solo, Indonesia
| | - Nia Agung Lestari
- Residency Programme, Conservative Dentistry Department, Faculty of Dentistry, Universitas Indonesia, Surakarta Solo, Indonesia
| | - Wandy Afrizal Putra
- Residency Programme, Conservative Dentistry Department, Faculty of Dentistry, Universitas Indonesia, Surakarta Solo, Indonesia
| | - Sylva Dinie Alinda
- Lecturer of Conservative Dentistry Department, Faculty of Dentistry, Universitas Indonesia, Surakarta Solo, Indonesia
| | - Shalina Ricardo
- Lecturer of Conservative Dentistry Department, Faculty of Dentistry, Universitas Indonesia, Surakarta Solo, Indonesia
| | - Indah Julianto
- Department of Dermatology and Venereology, Faculty of Medicine, Universitas Sebelas Maret, Surakarta Solo, Indonesia
| |
Collapse
|
18
|
Hu N, Li W, Jiang W, Wen J, Gu S. Creating a Microenvironment to Give Wings to Dental Pulp Regeneration-Bioactive Scaffolds. Pharmaceutics 2023; 15:158. [PMID: 36678787 PMCID: PMC9861529 DOI: 10.3390/pharmaceutics15010158] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/13/2022] [Accepted: 12/23/2022] [Indexed: 01/05/2023] Open
Abstract
Dental pulp and periapical diseases make patients suffer from acute pain and economic loss. Although root canal therapies, as demonstrated through evidence-based medicine, can relieve symptoms and are commonly employed by dentists, it is still difficult to fully restore a dental pulp's nutrition, sensory, and immune-regulation functions. In recent years, researchers have made significant progress in tissue engineering to regenerate dental pulp in a desired microenvironment. With breakthroughs in regenerative medicine and material science, bioactive scaffolds play a pivotal role in creating a suitable microenvironment for cell survival, proliferation, and differentiation, following dental restoration and regeneration. This article focuses on current challenges and novel perspectives about bioactive scaffolds in creating a microenvironment to promote dental pulp regeneration. We hope our readers will gain a deeper understanding and new inspiration of dental pulp regeneration through our summary.
Collapse
Affiliation(s)
- Nan Hu
- Department of Endodontics, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, Shanghai 200011, China
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai 200011, China
| | - Weiping Li
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai 200011, China
- Department of Oral and Maxillofacial Head & Neck Oncology, Shanghai Ninth People’s Hospital, College of Stomatology, Shanghai Jiao Tong University, Shanghai 200011, China
| | - Wentao Jiang
- Department of Endodontics, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, Shanghai 200011, China
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai 200011, China
| | - Jin Wen
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai 200011, China
- Department of Prosthodontics, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, Shanghai 200011, China
- Shanghai Key Laboratory of Stomatology, Shanghai Engineering Research Center of Advanced Dental Technology and Materials, Shanghai 200125, China
| | - Shensheng Gu
- Department of Endodontics, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, Shanghai 200011, China
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai 200011, China
| |
Collapse
|
19
|
Development of Growth Factor Releasing Hyaluronic Acid-Based Hydrogel for Pulp Regeneration: A Preliminary Study. Gels 2022; 8:gels8120825. [PMID: 36547349 PMCID: PMC9778203 DOI: 10.3390/gels8120825] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/09/2022] [Accepted: 12/09/2022] [Indexed: 12/15/2022] Open
Abstract
Growth factors play essential roles as signaling molecules in pulp regeneration. We investigated the effect of a hyaluronic acid (HA)-collagen hybrid hydrogel with controlled release of fibroblast growth factor (FGF)-2 and platelet-derived growth factor (PDGF)-BB on human pulp regeneration. The cell interaction and cytotoxicity of the HA-collagen hybrid hydrogel, the release kinetics of each growth factor, and the effects of the released growth factors on pulp cell proliferation were examined. The vitality of pulp cells was maintained. The amounts of FGF-2 and PDGF-BB released over 7 days were 68% and 50%, respectively. Groups with a different concentration of growth factor (FGF-2: 100, 200, 500, and 1000 ng/mL; PDGF-BB: 10, 50, 100, 200, and 500 ng/mL) were experimented on days 1, 3, 5, and 7. Considering FGF-2 concentration, significantly increased pulp cell proliferation was observed on days 1, 3, 5, and 7 in the 100 ng/mL group and on days 3, 5, and 7 in the 200 ng/mL group. In the case of PDGF-BB concentration, significantly increased pulp cell proliferation was observed at all four time points in the 100 ng/mL group and on days 3, 5, and 7 in the 50, 200, and 500 ng/mL groups. This indicates that the optimal concentration of FGF-2 and PDGF-BB for pulp cell proliferation was 100 ng/mL and that the HA-collagen hybrid hydrogel has potential as a controlled release delivery system for FGF-2 and PDGF-BB.
Collapse
|
20
|
Expert consensus on regenerative endodontic procedures. Int J Oral Sci 2022; 14:55. [PMID: 36450715 PMCID: PMC9712432 DOI: 10.1038/s41368-022-00206-z] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 10/02/2022] [Accepted: 10/09/2022] [Indexed: 12/05/2022] Open
Abstract
Regenerative endodontic procedures (REPs) is a biologic-based treatment modality for immature permanent teeth diagnosed with pulp necrosis. The ultimate objective of REPs is to regenerate the pulp-dentin complex, extend the tooth longevity and restore the normal function. Scientific evidence has demonstrated the efficacy of REPs in promotion of root development through case reports, case series, cohort studies, and randomized controlled studies. However, variations in clinical protocols for REPs exist due to the empirical nature of the original protocols and rapid advancements in the research field of regenerative endodontics. The heterogeneity in protocols may cause confusion among dental practitioners, thus guidelines and considerations of REPs should be explicated. This expert consensus mainly discusses the biological foundation, the available clinical protocols and current status of REPs in treating immature teeth with pulp necrosis, as well as the main complications of this treatment, aiming at refining the clinical management of REPs in accordance with the progress of basic researches and clinical studies, suggesting REPs may become a more consistently evidence-based option in dental treatment.
Collapse
|
21
|
Dalir Abdolahinia E, Safari Z, Sadat Kachouei SS, Zabeti Jahromi R, Atashkar N, Karbalaeihasanesfahani A, Alipour M, Hashemzadeh N, Sharifi S, Maleki Dizaj S. Cell homing strategy as a promising approach to the vitality of pulp-dentin complexes in endodontic therapy: focus on potential biomaterials. Expert Opin Biol Ther 2022; 22:1405-1416. [PMID: 36345819 DOI: 10.1080/14712598.2022.2142466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Elaheh Dalir Abdolahinia
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zahra Safari
- Faculty of Dentistry, Tehran University of Medical Sciences, Tehran, Iran
| | | | | | - Nastaran Atashkar
- Department of Orthodontics, Faculty of Dentistry, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | | | - Mahdieh Alipour
- Center for Craniofacial Regeneration, Department of Oral and Craniofacial Sciences, University of Pittsburgh School of Dental Medicine, Pittsburgh, PA, United States
- Dental and Periodontal Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nastaran Hashemzadeh
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Simin Sharifi
- Dental and Periodontal Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Solmaz Maleki Dizaj
- Dental and Periodontal Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Dental Biomaterials, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
22
|
KÜÇÜKKAYA EREN S, BAHADOR ZIRH E, ZIRH S, SHARAFI P, ZEYBEK ND. Combined effects of bone morphogenetic protein-7 and mineral trioxide aggregate on the proliferation, migration, and differentiation of human dental pulp stem cells. J Appl Oral Sci 2022; 30:e20220086. [PMID: 36102412 PMCID: PMC9469872 DOI: 10.1590/1678-7757-2022-0086] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 06/21/2022] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Bioactive molecules present the potential to be used along with biomaterials in vital pulp therapy and regenerative endodontic treatment. OBJECTIVE The aim of this study was to assess the effects of the combined use of bone morphogenetic protein-7 (BMP-7) and mineral trioxide aggregate (MTA) on the proliferation, migration, and differentiation of human dental pulp stem cells (DPSCs). METHODOLOGY For the proliferation analysis, DPSCs were incubated with a growth medium and treated with MTA and/or BMP-7 at different concentrations. For the following analyses, DPSCs were incubated with a differentiation medium and treated with MTA and/or BMP-7. Moreover, there were groups in which DPSCs were incubated with the growth medium (control), the differentiation medium, or DMEM/F12 containing fetal bovine serum, and not treated with MTA or BMP-7. Cell proliferation was analyzed using the WST-1 assay. The odontogenic/osteogenic differentiation was evaluated by immunocytochemistry, alkaline phosphatase (ALP) activity assay, alizarin red staining, and reverse transcription-quantitative polymerase chain reaction (RT-qPCR). Cell migration was evaluated using a wound-healing assay. Data were analyzed using analysis of variance and Tukey test (p=0.05). RESULTS The use of BMP-7 with MTA presented no significant effect on cell proliferation in comparison with the treatment with MTA alone (p>0.05), but showed higher ALP activity, increased mineralization, and higher expression of DMP1 and DSPP when compared with other groups (p<0.05). Nestin expression was higher in the control group than in groups treated with MTA and/or BMP-7 (p<0.05). The cell migration rate increased after treatment with MTA when compared with other groups in all periods of time (p<0.05). At 72 hours, the wound area was smaller in groups treated with MTA and/or BMP-7 than in the control group (p<0.05). CONCLUSION The use of BMP-7 with MTA increased odontogenic/osteogenic differentiation without adversely affecting proliferation and migration of DPSCs. The use of BMP-7 with MTA may improve treatment outcomes by increasing repair and regeneration capacity of DPSCs.
Collapse
Affiliation(s)
- Selen KÜÇÜKKAYA EREN
- Hacettepe UniversityFaculty of DentistryDepartment of EndodonticsAnkaraTurkeyHacettepe University, Faculty of Dentistry, Department of Endodontics, Ankara, Turkey.
| | - Elham BAHADOR ZIRH
- TOBB University of Economics and TechnologyFaculty of MedicineDepartment of Histology and EmbryologyAnkaraTurkeyTOBB University of Economics and Technology, Faculty of Medicine, Department of Histology and Embryology, Ankara, Turkey.
| | - Selim ZIRH
- Erzincan Binali Yıldırım UniversityFaculty of MedicineDepartment of Histology and EmbryologyErzincanTurkeyErzincan Binali Yıldırım University, Faculty of Medicine, Department of Histology and Embryology, Erzincan, Turkey.
| | - Parisa SHARAFI
- TOBB University of Economics and TechnologyFaculty of MedicineDepartment of Medical Biology and GeneticsAnkaraTurkeyTOBB University of Economics and Technology, Faculty of Medicine, Department of Medical Biology and Genetics, Ankara, Turkey.
| | - Naciye Dilara ZEYBEK
- Hacettepe UniversityFaculty of MedicineDepartment of Histology and EmbryologyAnkaraTurkeyHacettepe University, Faculty of Medicine, Department of Histology and Embryology, Ankara, Turkey.
| |
Collapse
|
23
|
Siddiqui Z, Acevedo-Jake AM, Griffith A, Kadincesme N, Dabek K, Hindi D, Kim KK, Kobayashi Y, Shimizu E, Kumar V. Cells and material-based strategies for regenerative endodontics. Bioact Mater 2022; 14:234-249. [PMID: 35310358 PMCID: PMC8897646 DOI: 10.1016/j.bioactmat.2021.11.015] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 10/29/2021] [Accepted: 11/09/2021] [Indexed: 12/21/2022] Open
Abstract
The carious process leads to inflammation of pulp tissue. Current care options include root canal treatment or apexification. These procedures, however, result in the loss of tooth vitality, sensitivity, and healing. Pulp capping and dental pulp regeneration are continually evolving techniques to regenerate pulp tissue, avoiding necrosis and loss of vitality. Many studies have successfully employed stem/progenitor cell populations, revascularization approaches, scaffolds or material-based strategies for pulp regeneration. Here we outline advantages and disadvantages of different methods and techniques which are currently being used in the field of regenerative endodontics. We also summarize recent findings on efficacious peptide-based materials which target the dental niche. .
Collapse
Affiliation(s)
- Zain Siddiqui
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, 07102, USA
| | - Amanda M. Acevedo-Jake
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, 07102, USA
| | - Alexandra Griffith
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, 07102, USA
| | - Nurten Kadincesme
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, 07102, USA
| | - Kinga Dabek
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, 07102, USA
| | - Dana Hindi
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, 07102, USA
| | - Ka Kyung Kim
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, 07102, USA
| | - Yoshifumi Kobayashi
- Department of Oral Biology, Rutgers School of Dental Medicine, Newark, NJ, 07103, USA
| | - Emi Shimizu
- Department of Oral Biology, Rutgers School of Dental Medicine, Newark, NJ, 07103, USA
- Department of Endodontics, Rutgers School of Dental Medicine, Newark, NJ, 07103, USA
| | - Vivek Kumar
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, 07102, USA
- Department of Endodontics, Rutgers School of Dental Medicine, Newark, NJ, 07103, USA
- Department of Chemicals and Materials Engineering, New Jersey Institute of Technology, Newark, NJ, 07102, USA
- Department of Biology, New Jersey Institute of Technology, Newark, NJ, 07102, USA
| |
Collapse
|
24
|
Zou J, Mao J, Shi X. Influencing factors of pulp-dentin complex regeneration and related biological strategies. Zhejiang Da Xue Xue Bao Yi Xue Ban 2022; 51:350-361. [PMID: 36207838 PMCID: PMC9511472 DOI: 10.3724/zdxbyxb-2022-0046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 04/12/2022] [Indexed: 06/16/2023]
Abstract
Regenerative endodontic therapy (RET) utilizing tissue engineering approach can promote the regeneration of pulp-dentin complex to restore pulp vascularization, neuralization, immune function and tubular dentin, therefore the regenerated pulp-dentin complex will have normal function. Multiple factors may significantly affect the efficacy of RET, including stem cells, biosignaling molecules and biomaterial scaffolds. Stem cells derived from dental tissues (such as dental pulp stem cells) exhibit certain advantages in RET. Combined application of multiple signaling molecules and activation of signal transduction pathways such as Wnt/β-catenin and BMP/Smad play pivotal roles in enhancing the potential of stem cell migration, proliferation, odontoblastic differentiation, and nerve and blood vessel regeneration. Biomaterials suitable for RET include naturally-derived materials and artificially synthetic materials. Artificially synthetic materials should imitate natural tissues for biomimetic modification in order to realize the temporal and spatial regulation of pulp-dentin complex regeneration. The realization of pulp-dentin complex regeneration depends on two strategies: stem cell transplantation and stem cell homing. Stem cell homing strategy does not require the isolation and culture of stem cells in vitro, so is better for clinical application. However, in order to achieve the true regeneration of pulp-dentin complex, problems related to improving the success rate of stem cell homing and promoting their proliferation and differentiation need to be solved. This article reviews the influencing factors of pulp-dentin complex regeneration and related biological strategies, and discusses the future research direction of RET, to provide reference for clinical translation and application of RET.
Collapse
Affiliation(s)
- Jielin Zou
- 1. Center of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- 2. School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- 3. Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
| | - Jing Mao
- 1. Center of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- 2. School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- 3. Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
| | - Xin Shi
- 1. Center of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- 2. School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- 3. Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
| |
Collapse
|
25
|
Mosaddad SA, Rasoolzade B, Namanloo RA, Azarpira N, Dortaj H. Stem cells and common biomaterials in dentistry: a review study. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2022; 33:55. [PMID: 35716227 PMCID: PMC9206624 DOI: 10.1007/s10856-022-06676-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 05/16/2022] [Indexed: 05/16/2023]
Abstract
Stem cells exist as normal cells in embryonic and adult tissues. In recent years, scientists have spared efforts to determine the role of stem cells in treating many diseases. Stem cells can self-regenerate and transform into some somatic cells. They would also have a special position in the future in various clinical fields, drug discovery, and other scientific research. Accordingly, the detection of safe and low-cost methods to obtain such cells is one of the main objectives of research. Jaw, face, and mouth tissues are the rich sources of stem cells, which more accessible than other stem cells, so stem cell and tissue engineering treatments in dentistry have received much clinical attention in recent years. This review study examines three essential elements of tissue engineering in dentistry and clinical practice, including stem cells derived from the intra- and extra-oral sources, growth factors, and scaffolds.
Collapse
Affiliation(s)
- Seyed Ali Mosaddad
- Student Research Committee, School of Dentistry, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Boshra Rasoolzade
- Student Research Committee, Department of Pediatric Dentistry, School of Dentistry, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Negar Azarpira
- Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hengameh Dortaj
- Department of Tissue Engineering, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
26
|
Ye S, Wei B, Zeng L. Advances on Hydrogels for Oral Science Research. Gels 2022; 8:gels8050302. [PMID: 35621600 PMCID: PMC9140480 DOI: 10.3390/gels8050302] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/22/2022] [Accepted: 04/25/2022] [Indexed: 11/16/2022] Open
Abstract
Hydrogels are biocompatible polymer systems, which have become a hotspot in biomedical research. As hydrogels mimic the structure of natural extracellular matrices, they are considered as good scaffold materials in the tissue engineering area for repairing dental pulp and periodontal damages. Combined with different kinds of stem cells and growth factors, various hydrogel complexes have played an optimistic role in endodontic and periodontal tissue engineering studies. Further, hydrogels exhibit biological effects in response to external stimuli, which results in hydrogels having a promising application in local drug delivery. This review summarized the advances of hydrogels in oral science research, in the hopes of providing a reference for future applications.
Collapse
Affiliation(s)
- Shengjia Ye
- Department of Prosthodontics, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China;
- College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Engineering Research Center of Advanced Dental Technology and Materials, Shanghai 200011, China
| | - Bin Wei
- College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Engineering Research Center of Advanced Dental Technology and Materials, Shanghai 200011, China
- Department of Stomatology Special Consultation Clinic, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
- Correspondence: (B.W.); (L.Z.)
| | - Li Zeng
- Department of Prosthodontics, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China;
- College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Engineering Research Center of Advanced Dental Technology and Materials, Shanghai 200011, China
- Correspondence: (B.W.); (L.Z.)
| |
Collapse
|
27
|
Nanomaterials in Dentistry: Current Applications and Future Scope. NANOMATERIALS 2022; 12:nano12101676. [PMID: 35630898 PMCID: PMC9144694 DOI: 10.3390/nano12101676] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 05/09/2022] [Accepted: 05/12/2022] [Indexed: 02/06/2023]
Abstract
Nanotechnology utilizes the mechanics to control the size and morphology of the particles in the required nano range for accomplishing the intended purposes. There was a time when it was predominantly applied only to the fields of matter physics or chemical engineering, but with time, biological scientists recognized its vast benefits and explored the advantages in their respective fields. This extension of nanotechnology in the field of dentistry is termed ‘Nanodentistry.’ It is revolutionizing every aspect of dentistry. It consists of therapeutic and diagnostic tools and supportive aids to maintain oral hygiene with the help of nanomaterials. Research in nanodentistry is evolving holistically but slowly with the advanced finding of symbiotic use of novel polymers, natural polymers, metals, minerals, and drugs. These materials, in association with nanotechnology, further assist in exploring the usage of nano dental adducts in prosthodontic, regeneration, orthodontic, etc. Moreover, drug release cargo abilities of the nano dental adduct provide an extra edge to dentistry over their conventional counterparts. Nano dentistry has expanded to every single branch of dentistry. In the present review, we will present a holistic view of the recent advances in the field of nanodentistry. The later part of the review compiled the ethical and regulatory challenges in the commercialization of the nanodentistry. This review tracks the advancement in nano dentistry in different but important domains of dentistry.
Collapse
|
28
|
Kwack KH, Lee HW. Clinical Potential of Dental Pulp Stem Cells in Pulp Regeneration: Current Endodontic Progress and Future Perspectives. Front Cell Dev Biol 2022; 10:857066. [PMID: 35478967 PMCID: PMC9035692 DOI: 10.3389/fcell.2022.857066] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 03/18/2022] [Indexed: 12/12/2022] Open
Abstract
Dental caries is a common disease that not only destroys the rigid structure of the teeth but also causes pulp necrosis in severe cases. Once pulp necrosis has occurred, the most common treatment is to remove the damaged pulp tissue, leading to a loss of tooth vitality and increased tooth fragility. Dental pulp stem cells (DPSCs) isolated from pulp tissue exhibit mesenchymal stem cell-like characteristics and are considered ideal candidates for regenerating damaged dental pulp tissue owing to their multipotency, high proliferation rate, and viability after cryopreservation. Importantly, DPSCs do not elicit an allogeneic immune response because they are non-immunogenic and exhibit potent immunosuppressive properties. Here, we provide an up-to-date review of the clinical applicability and potential of DPSCs, as well as emerging trends in the regeneration of damaged pulp tissue. In addition, we suggest the possibility of using DPSCs as a resource for allogeneic transplantation and provide a perspective for their clinical application in pulp regeneration.
Collapse
Affiliation(s)
- Kyu Hwan Kwack
- Department of Dentistry, Graduate School, Kyung Hee University, Seoul, South Korea
| | - Hyeon-Woo Lee
- Department of Pharmacology, School of Dentistry, Graduate School, Institute of Oral Biology, Kyung Hee University, Seoul, South Korea
- *Correspondence: Hyeon-Woo Lee,
| |
Collapse
|
29
|
Towards Induction of Angiogenesis in Dental Pulp Stem Cells Using Chitosan-Based Hydrogels Releasing Basic Fibroblast Growth Factor. BIOMED RESEARCH INTERNATIONAL 2022; 2022:5401461. [PMID: 35198635 PMCID: PMC8860569 DOI: 10.1155/2022/5401461] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 11/26/2021] [Accepted: 01/19/2022] [Indexed: 11/17/2022]
Abstract
Introduction. Chitosan is a natural biopolymer that attracted enormous attention in biomedical fields. The main components of regenerative endodontic procedures (REPs), as well as tissue engineering, are scaffolds, stem cells, and growth factors. As one of the basic factors in the REPs is maintaining vascularization, this study was aimed at developing basic fibroblast growth factor- (bFGF-) loaded scaffolds and investigating their effects on the angiogenic induction in human dental pulp stem cells (hDPSCs). Methods. Poly (ε-caprolactone) (PCL)/chitosan- (CS-) based highly porous scaffold (PCL/CS) was prepared and evaluated by scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR) analyses. The adhesion and survival potency of seeded cells were assessed by SEM and MTT assays, respectively. The amount of angiogenic markers was investigated in gene and protein levels by real-time PCR and western blotting assays, respectively. Results. Based on our findings, the SEM and FTIR tests confirmed the appropriate structure of synthesized scaffolds. Besides, the adhesion and survival rate of cells and the levels of VEGFR-2, Tie2, and Angiopoietin-1 genes were increased significantly in the PCL/CS/bFGF group. Also, the western blotting results showed the upregulation of these markers at protein levels, which were considerably higher at the PCL/CS/bFGF group (
). Conclusions. On a more general note, this study demonstrates that the bFGF-loaded PCL/CS scaffolds have the potential to promote angiogenesis of hDPSCs, which could provide vitality of dentin-pulp complex as the initial required factor for regenerative endodontic procedures.
Collapse
|
30
|
Biomolecule-Mediated Therapeutics of the Dentin–Pulp Complex: A Systematic Review. Biomolecules 2022; 12:biom12020285. [PMID: 35204786 PMCID: PMC8961586 DOI: 10.3390/biom12020285] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/01/2022] [Accepted: 02/03/2022] [Indexed: 12/09/2022] Open
Abstract
The aim of this systematic review was to evaluate the application of potential therapeutic signaling molecules on complete dentin-pulp complex and pulp tissue regeneration in orthotopic and ectopic animal studies. A search strategy was performed according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement in the MEDLINE/PubMed database. Animal studies evaluating the application of signaling molecules to pulpectomized teeth for pulp tissue or dentin-pulp complex regeneration were included. From 2530 identified records, 18 fulfilled the eligibility criteria and were subjected to detailed qualitative analysis. Among the applied molecules, basic fibroblast growth factor, vascular endothelial growth factor, bone morphogenetic factor-7, nerve growth factor, and platelet-derived growth factor were the most frequently studied. The clinical, radiographical and histological outcome measures included healing of periapical lesions, root development, and apical closure, cellular recolonization of the pulp space, ingrowth of pulp-like connective tissue (vascularization and innervation), mineralized dentin-like tissue formation along the internal dentin walls, and odontoblast-like cells in contact with the internal dentin walls. The results indicate that signaling molecules play an important role in dentin/pulp regeneration. However, further studies are needed to determine a more specific subset combination of molecules to achieve greater efficiency towards the desired tissue engineering applications.
Collapse
|
31
|
Chang MC, Chen NY, Chen JH, Huang WL, Chen CY, Huang CC, Pan YH, Chang HH, Jeng JH. bFGF stimulated plasminogen activation factors, but inhibited alkaline phosphatase and SPARC in stem cells from apical Papilla: Involvement of MEK/ERK, TAK1 and p38 signaling. J Adv Res 2021; 40:95-107. [PMID: 36100336 PMCID: PMC9481946 DOI: 10.1016/j.jare.2021.12.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 12/04/2021] [Accepted: 12/14/2021] [Indexed: 11/25/2022] Open
Abstract
bFGF induced uPA, uPAR, PAI-1 production/expression in SCAP → bFGF induced decline of ALP and SPARC of SCAP → The effects of bFGF are regulated by ERK, p38, TAK1 and Akt signaling → Crucial for SCAP proliferation, matrix turnover and differentiation → These events are important for revascularization/root apexogenesis
Introduction Objectives Methods Results Conclusion
Collapse
|
32
|
Hsiao HY, Nien CY, Hong HH, Cheng MH, Yen TH. Application of dental stem cells in three-dimensional tissue regeneration. World J Stem Cells 2021; 13:1610-1624. [PMID: 34909114 PMCID: PMC8641025 DOI: 10.4252/wjsc.v13.i11.1610] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 04/06/2021] [Accepted: 09/29/2021] [Indexed: 02/06/2023] Open
Abstract
Dental stem cells can differentiate into different types of cells. Dental pulp stem cells, stem cells from human exfoliated deciduous teeth, periodontal ligament stem cells, stem cells from apical papilla, and dental follicle progenitor cells are five different types of dental stem cells that have been identified during different stages of tooth development. The availability of dental stem cells from discarded or removed teeth makes them promising candidates for tissue engineering. In recent years, three-dimensional (3D) tissue scaffolds have been used to reconstruct and restore different anatomical defects. With rapid advances in 3D tissue engineering, dental stem cells have been used in the regeneration of 3D engineered tissue. This review presents an overview of different types of dental stem cells used in 3D tissue regeneration, which are currently the most common type of stem cells used to treat human tissue conditions.
Collapse
Affiliation(s)
- Hui-Yi Hsiao
- Center for Tissue Engineering, Chang Gung Memorial Hospital, Linkou Branch, Taoyuan 333, Taiwan
| | - Chung-Yi Nien
- Department of Life Sciences, National Central University, Zhongli, Taoyuan 320, Taiwan
| | - Hsiang-Hsi Hong
- Department of Periodontics, Chang Gung Memorial Hospital, Linkou Branch, Taoyuan 333, Taiwan
| | - Ming-Huei Cheng
- Center for Tissue Engineering, Chang Gung Memorial Hospital, Linkou Branch, Taoyuan 333, Taiwan
- Division of Reconstructive Microsurgery, Department of Plastic and Reconstructive Surgery, Chang Gung Memorial Hospital, Linkou Branch, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Tzung-Hai Yen
- Center for Tissue Engineering, Chang Gung Memorial Hospital, Linkou Branch, Taoyuan 333, Taiwan
- Department of Nephrology, Clinical Poison Center, Chang Gung Memorial Hospital, Linkou Branch, Taoyuan 333, Taiwan
- School of Traditional Chinese Medicine, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan.
| |
Collapse
|
33
|
Yan H, Oshima M, Raju R, Raman S, Sekine K, Waskitho A, Inoue M, Inoue M, Baba O, Morita T, Miyagi M, Matsuka Y. Dentin-Pulp Complex Tissue Regeneration via Three-Dimensional Cell Sheet Layering. Tissue Eng Part C Methods 2021; 27:559-570. [PMID: 34583551 DOI: 10.1089/ten.tec.2021.0171] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The dentin-pulp complex is a unique structure in teeth that contains both hard and soft tissues. Generally, deep caries and trauma cause damage to the dentin-pulp complex, and if left untreated, this damage will progress to irreversible pulpitis. The aim of this study was to fabricate a layered cell sheet composed of rat dental pulp (DP) cells and odontogenic differentiation of pulp (OD) cells and to investigate the ability to regenerate the dentin-pulp complex in a scaffold tooth. We fabricated two single cell sheets composed of DP cells (DP cell sheet) or OD cells (OD cell sheet) and a layered cell sheet made by layering both cells. The characteristics of the fabricated cell sheets were analyzed using light microscopy, scanning electron microscope (SEM), hematoxylin-eosin (HE) staining, and immunohistochemistry (IHC). Furthermore, the cell sheets were transplanted into the subrenal capsule of immunocompromised mice for 8 weeks. After this, the regenerative capacity to form dentin-like tissue was evaluated using micro-computed tomography (micro-CT), HE staining, and IHC. The findings of SEM and IHC confirmed that layered cell sheets fabricated by stacking OD cells and DP cells maintained their cytological characteristics. Micro-CT of layered cell sheet transplants revealed a mineralized capping of the access cavity in the crown area, similar to that of natural dentin. In contrast, the OD cell sheet group demonstrated the formation of irregular fragments of mineralized tissue in the pulp cavity, and the DP cell sheet did not develop any hard tissue. Moreover, bone volume/tissue volume (BV/TV) showed a significant increase in hard tissue formation in the layered cell sheet group compared with that in the single cell sheet group (p < 0.05). HE staining also showed a combination of soft and hard tissue formation in the layered cell sheet group. Furthermore, IHC confirmed that the dentin-like tissue generated from the layered cell sheet expressed characteristic markers of dentin but not bone equivalent to that of a natural tooth. In conclusion, this study demonstrates the feasibility of regenerating dentin-pulp complex using a bioengineered tissue designed to simulate the anatomical structure. Impact statement The dentin-pulp complex can be destroyed by deep caries and trauma, which may cause pulpitis and progress to irreversible pulpitis, apical periodontitis, and even tooth loss. Current treatments cannot maintain pulp health, and teeth can become brittle. We developed a three-dimensional (3D) layered cell sheet using dental pulp cells and odontogenic differentiation of pulp cells for dentin-pulp complex regeneration. Our layered cell sheet enables the regeneration of an organized 3D dentin-pulp-like structure comparable with that of natural teeth. This layered cell sheet technology may contribute to dentin-pulp complex regeneration and provide a novel method for complex tissue engineering.
Collapse
Affiliation(s)
- Huijiao Yan
- Department of Stomatognathic Function and Occlusal Reconstruction, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Masamitsu Oshima
- Department of Stomatognathic Function and Occlusal Reconstruction, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Resmi Raju
- Department of Oral Disease Research, National Center for Geriatrics and Gerontology, Obu, Japan
| | - Swarnalakshmi Raman
- Department of Stomatognathic Function and Occlusal Reconstruction, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Kazumitsu Sekine
- Department of Biomaterials and Bioengineering, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Arief Waskitho
- Department of Stomatognathic Function and Occlusal Reconstruction, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Miho Inoue
- Department of Stomatognathic Function and Occlusal Reconstruction, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Masahisa Inoue
- Laboratories for Structure and Function Research, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima, Japan
| | - Otto Baba
- Department of Oral and Maxillofacial Anatomy, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Tsuyoshi Morita
- Department of Oral and Maxillofacial Anatomy, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Mayu Miyagi
- Department of Stomatognathic Function and Occlusal Reconstruction, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Yoshizo Matsuka
- Department of Stomatognathic Function and Occlusal Reconstruction, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan
| |
Collapse
|
34
|
Functional Dental Pulp Regeneration: Basic Research and Clinical Translation. Int J Mol Sci 2021; 22:ijms22168991. [PMID: 34445703 PMCID: PMC8396610 DOI: 10.3390/ijms22168991] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 08/12/2021] [Accepted: 08/17/2021] [Indexed: 12/12/2022] Open
Abstract
Pulpal and periapical diseases account for a large proportion of dental visits, the current treatments for which are root canal therapy (RCT) and pulp revascularisation. Despite the clinical signs of full recovery and histological reconstruction, true regeneration of pulp tissues is still far from being achieved. The goal of regenerative endodontics is to promote normal pulp function recovery in inflamed or necrotic teeth that would result in true regeneration of the pulpodentinal complex. Recently, rapid progress has been made related to tissue engineering-mediated pulp regeneration, which combines stem cells, biomaterials, and growth factors. Since the successful isolation and characterisation of dental pulp stem cells (DPSCs) and other applicable dental mesenchymal stem cells, basic research and preclinical exploration of stem cell-mediated functional pulp regeneration via cell transplantation and cell homing have received considerably more attention. Some of this effort has translated into clinical therapeutic applications, bringing a ground-breaking revolution and a new perspective to the endodontic field. In this article, we retrospectively examined the current treatment status and clinical goals of pulpal and periapical diseases and scrutinized biological studies of functional pulp regeneration with a focus on DPSCs, biomaterials, and growth factors. Then, we reviewed preclinical experiments based on various animal models and research strategies. Finally, we summarised the current challenges encountered in preclinical or clinical regenerative applications and suggested promising solutions to address these challenges to guide tissue engineering-mediated clinical translation in the future.
Collapse
|
35
|
Gaviño-Orduña JF, Caviedes-Bucheli J, Manzanares-Céspedes MC, Román-Richon S, Martin-Biedma B, Segura-Egea JJ, Berástegui-Jimeno E, López-López J. Dentin Growth after Direct Pulp Capping with the Different Fractions of Plasma Rich in Growth Factors (PRGF) vs. MTA: Experimental Study in Animal Model. J Clin Med 2021; 10:jcm10153432. [PMID: 34362215 PMCID: PMC8347198 DOI: 10.3390/jcm10153432] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 07/24/2021] [Accepted: 07/28/2021] [Indexed: 11/24/2022] Open
Abstract
Background: This study aimed to evaluate the area of dentin growth in rabbit incisors after pulp capping with plasma rich in growth factors (PRGF) compared with mineral trioxide aggregate (MTA) by fluorescence. Methods: twenty-seven upper and lower incisors of rabbits were divided into 4 groups: poor PRGF (F1) (n = 9 teeth), rich PRGF (F2) (n = 8 teeth), ProRoot MTA (positive control, n = 5 teeth), and untreated (NC) (negative control, n = 5). Fluorochrome markers were injected 24 h before surgery and the day before euthanasia, 28 days after the vital pulp therapy (VPT). Two transverse cuts were performed to every tooth: the first cut (A), 1 mm incisal to the gingival margin, and the second cut (B), 5 mm apical to the first cut. The sections were assessed with histomorphometric evaluation by fluorescence microscopy, comparing the dentin area between fluorescence marks and the total mineralized area. Results: The higher percentage of dentin growth was observed in the F2 group (B = 63.25%, A = 36.52%), followed by F1 (B = 57.63%, A = 30,12%) and MTA (B = 38.64%, A = 15.74%). The group with lowest percentage of dentin growth was the NC group (B = 29.22%, A = 7.82%). Significant difference (p < 0.05) was found between F2 group and MTA, also statistically significant difference has been observed comparing dentin growth areas of NC group with F1 and F2 groups. Conclusions: The application of PRGF rich and poor fraction as a pulp capping material stimulated dentin formation more intensively than MTA and NC.
Collapse
Affiliation(s)
- José F. Gaviño-Orduña
- Department of Odonto-Stomatology, Faculty of Medicine and Health Sciences, School of Dentistry, University of Barcelona, 08907 Barcelona, Spain; (S.R.-R.); (E.B.-J.)
- Correspondence: (J.F.G.-O.); (J.L.-L.)
| | - Javier Caviedes-Bucheli
- Centro de Investigaciones Odontologicas (CIO), Pontificia Universidad Javeriana, Bogota 11001000, Colombia;
| | - María C. Manzanares-Céspedes
- Human Anatomy and Embryology Unit, Department of Pathology and Experimental Therapeutics, Faculty of Medicine and Health Sciences, School of Dentistry, University of Barcelona, 08907 Barcelona, Spain;
| | - Sophie Román-Richon
- Department of Odonto-Stomatology, Faculty of Medicine and Health Sciences, School of Dentistry, University of Barcelona, 08907 Barcelona, Spain; (S.R.-R.); (E.B.-J.)
| | - Benjamín Martin-Biedma
- Unit of Dental Pathology and Therapeutics II, School of Medicine and Dentistry, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain;
| | - Juan J. Segura-Egea
- Department of Stomatology, School of Dentistry, University of Sevilla, 41009 Sevilla, Spain;
| | - Esther Berástegui-Jimeno
- Department of Odonto-Stomatology, Faculty of Medicine and Health Sciences, School of Dentistry, University of Barcelona, 08907 Barcelona, Spain; (S.R.-R.); (E.B.-J.)
| | - José López-López
- Department of Odonto-Stomatology, Faculty of Medicine and Health Sciences, School of Dentistry, University of Barcelona, 08907 Barcelona, Spain; (S.R.-R.); (E.B.-J.)
- Service of the Surgical Medical Area, Odontological Hospital University of Barcelona, University of Barcelona, 08907 Barcelona, Spain
- Oral Health and Masticatory System Group—IDIBELL (Bellvitge Biomedical Research Institute), University of Barcelona, 08907 Barcelona, Spain
- Correspondence: (J.F.G.-O.); (J.L.-L.)
| |
Collapse
|
36
|
Virdee SS, Bashir N, Camilleri J, Cooper PR, Tomson P. Exploiting dentine matrix proteins in cell-free approaches for periradicular tissue engineering. TISSUE ENGINEERING PART B-REVIEWS 2021; 28:707-732. [PMID: 34309453 PMCID: PMC9419954 DOI: 10.1089/ten.teb.2021.0074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The recent discovery of mesenchymal stem cells within periapical lesions (PL-MSC) has presented novel opportunities for managing periradicular diseases in adult teeth by way of enhancing tissue regeneration. This discovery coincides with the current paradigm shift toward biologically driven treatment strategies in endodontics, which have typically been reserved for non-vital immature permanent teeth. One such approach that shows promise is utilizing local endogenous non-collagenous dentine extracellular matrix components (dECM) to recruit and upregulate the intrinsic regenerative capacity of PL-MSCs in situ. At picogram levels, these morphogens have demonstrated tremendous ability to enhance the cellular activities in in vitro and in vivo animal studies that would otherwise be necessary for periradicular regeneration. Briefly, these include proliferation, viability, migration, differentiation, and mineralization. Therefore, topical application of dECMs during ortho- or retrograde root canal treatment could potentially enhance and sustain the regenerative mechanisms within diseased periapical tissues that are responsible for attaining favorable clinical and radiographic outcomes. This would provide many advantages when compared with conventional antimicrobial-only therapies for apical periodontitis (AP), which do not directly stimulate healing and have had stagnant success rates over the past five decades despite significant advances in operative techniques. The aim of this narrative review was to present the novel concept of exploiting endogenous dECMs as clinical tools for treating AP in mature permanent teeth. A large scope of literature was summarized to discuss the issues associated with conventional treatment modalities; current knowledge surrounding PL-MSCs; composition of the dECM; inductive potentials of dECM morphogens in other odontogenic stem cell niches; how treatment protocols can be adapted to take advantage of dECMs and PL-MSCs; and finally, the challenges currently impeding successful clinical translation alongside directions for future research.
Collapse
Affiliation(s)
- Satnam Singh Virdee
- University of Birmingham, 1724, School of Dentistry, Birmingham, West Midlands, United Kingdom of Great Britain and Northern Ireland;
| | - Nasir Bashir
- University of Birmingham, 1724, School of Dentistry, Birmingham Dental Hospital and School of Dentistry, 5 Mill Pool Way, Edgbaston, Birmingham, United Kingdom of Great Britain and Northern Ireland, B5 7SA;
| | - Josette Camilleri
- University of Birmingham, 1724, School of Dentistry, Birmingham, West Midlands, United Kingdom of Great Britain and Northern Ireland;
| | - Paul R Cooper
- University of Otago, 2495, Faculty of Dentistry, Dunedin, New Zealand;
| | - Phillip Tomson
- University of Birmingham College of Medical and Dental Sciences, 150183, School of Dentistry, Institute of Clinical Sciences, 5 Mill Pool Way, Edgbaston, Birmingham, Birmingham, Birmingham, United Kingdom of Great Britain and Northern Ireland, B5 7EG.,University of Birmingham;
| |
Collapse
|
37
|
Liu K, Yu S, Ye L, Gao B. The Regenerative Potential of bFGF in Dental Pulp Repair and Regeneration. Front Pharmacol 2021; 12:680209. [PMID: 34354584 PMCID: PMC8329335 DOI: 10.3389/fphar.2021.680209] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Accepted: 06/22/2021] [Indexed: 02/05/2023] Open
Abstract
Regenerative endodontic therapy intends to induce the host’s natural wound-healing process, which can restore the vitality, immunity, and sensitivity of the inflammatory or necrotic pulp tissue destroyed by infection or trauma. Myriads of growth factors are critical in the processes of pulp repair and regeneration. Among the key regulatory factors are the fibroblast growth factors, which have turned out to be the master regulators of both organogenesis and tissue homeostasis. Fibroblast growth factors, a family composed of 22 polypeptides, have been used in tissue repair and regeneration settings, in conditions as diverse as burns, ulcers, bone-related diseases, and spinal cord injuries. Meanwhile, in dentistry, the basic fibroblast growth factor is the most frequently investigated. Thereby, the aim of this review is 2-fold: 1) foremost, to explore the underlying mechanisms of the bFGF in dental pulp repair and regeneration and 2) in addition, to shed light on the potential therapeutic strategies of the bFGF in dental pulp–related clinical applications.
Collapse
Affiliation(s)
- Keyue Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Sijing Yu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ling Ye
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Bo Gao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
38
|
Cui D, Yu S, Zhou X, Liu Y, Gan L, Pan Y, Zheng L, Wan M. Roles of Dental Mesenchymal Stem Cells in the Management of Immature Necrotic Permanent Teeth. Front Cell Dev Biol 2021; 9:666186. [PMID: 34095133 PMCID: PMC8170050 DOI: 10.3389/fcell.2021.666186] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 04/06/2021] [Indexed: 02/05/2023] Open
Abstract
Dental caries and trauma always lead to pulp necrosis and subsequent root development arrest of young permanent teeth. The traditional treatment, apexification, with the absence of further root formation, results in abnormal root morphology and compromises long-term prognosis. Regeneration endodontics procedures (REPs) have been developed and considered as an alternative strategy for management of immature permanent teeth with pulpal necrosis, including cell-free and cell-based REPs. Cell-free REPs, including revascularization and cell homing with molecules recruiting endogenous mesenchymal stem cells (MSCs), have been widely applied in clinical treatment, showing optimistic periapical lesion healing and continued root development. However, the regenerated pulp-dentin complex is still absent in these cases. Dental MSCs, as one of the essentials of tissue engineering, are vital seed cells in regenerative medicine. Dental MSC-based REPs have presented promising potential with pulp-dentin regeneration in large animal studies and clinical trials via cell transplantation. In the present review, we summarize current understanding of the biological basis of clinical treatments for immature necrotic permanent teeth and the roles of dental MSCs during this process and update the progress of MSC-based REPs in the administration of immature necrotic permanent teeth.
Collapse
Affiliation(s)
- Dixin Cui
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Sihan Yu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xin Zhou
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ying Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Lu Gan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yue Pan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Liwei Zheng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Mian Wan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
39
|
Huang X, Li Z, Liu A, Liu X, Guo H, Wu M, Yang X, Han B, Xuan K. Microenvironment Influences Odontogenic Mesenchymal Stem Cells Mediated Dental Pulp Regeneration. Front Physiol 2021; 12:656588. [PMID: 33967826 PMCID: PMC8100342 DOI: 10.3389/fphys.2021.656588] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 03/23/2021] [Indexed: 12/21/2022] Open
Abstract
Dental pulp as a source of nutrition for the whole tooth is vulnerable to trauma and bacterial invasion, which causes irreversible pulpitis and pulp necrosis. Dental pulp regeneration is a valuable method of restoring the viability of the dental pulp and even the whole tooth. Odontogenic mesenchymal stem cells (MSCs) residing in the dental pulp environment have been widely used in dental pulp regeneration because of their immense potential to regenerate pulp-like tissue. Furthermore, the regenerative abilities of odontogenic MSCs are easily affected by the microenvironment in which they reside. The natural environment of the dental pulp has been proven to be capable of regulating odontogenic MSC homeostasis, proliferation, and differentiation. Therefore, various approaches have been applied to mimic the natural dental pulp environment to optimize the efficacy of pulp regeneration. In addition, odontogenic MSC aggregates/spheroids similar to the natural dental pulp environment have been shown to regenerate well-organized dental pulp both in preclinical and clinical trials. In this review, we summarize recent progress in odontogenic MSC-mediated pulp regeneration and focus on the effect of the microenvironment surrounding odontogenic MSCs in the achievement of dental pulp regeneration.
Collapse
Affiliation(s)
- Xiaoyao Huang
- State Key Laboratory of Military Stomatology, Fourth Military Medical University, Xi'an, China.,National Clinical Research Center for Oral Diseases, Fourth Military Medical University, Xi'an, China.,Shaanxi Clinical Research Center for Oral Diseases, Department of Preventive Dentistry, School of Stomatology, Fourth Military Medical University, Xi'an, China
| | - Zihan Li
- State Key Laboratory of Military Stomatology, Fourth Military Medical University, Xi'an, China.,National Clinical Research Center for Oral Diseases, Fourth Military Medical University, Xi'an, China.,Shaanxi Clinical Research Center for Oral Diseases, Department of Preventive Dentistry, School of Stomatology, Fourth Military Medical University, Xi'an, China
| | - Anqi Liu
- State Key Laboratory of Military Stomatology, Fourth Military Medical University, Xi'an, China.,National Clinical Research Center for Oral Diseases, Fourth Military Medical University, Xi'an, China.,Shaanxi Clinical Research Center for Oral Diseases, Department of Preventive Dentistry, School of Stomatology, Fourth Military Medical University, Xi'an, China
| | - Xuemei Liu
- State Key Laboratory of Military Stomatology, Fourth Military Medical University, Xi'an, China.,National Clinical Research Center for Oral Diseases, Fourth Military Medical University, Xi'an, China.,Shaanxi Clinical Research Center for Oral Diseases, Department of Preventive Dentistry, School of Stomatology, Fourth Military Medical University, Xi'an, China
| | - Hao Guo
- State Key Laboratory of Military Stomatology, Fourth Military Medical University, Xi'an, China.,National Clinical Research Center for Oral Diseases, Fourth Military Medical University, Xi'an, China.,Shaanxi Clinical Research Center for Oral Diseases, Department of Preventive Dentistry, School of Stomatology, Fourth Military Medical University, Xi'an, China
| | - Meiling Wu
- State Key Laboratory of Military Stomatology, Fourth Military Medical University, Xi'an, China.,National Clinical Research Center for Oral Diseases, Fourth Military Medical University, Xi'an, China.,Shaanxi Clinical Research Center for Oral Diseases, Department of Preventive Dentistry, School of Stomatology, Fourth Military Medical University, Xi'an, China
| | - Xiaoxue Yang
- State Key Laboratory of Military Stomatology, Fourth Military Medical University, Xi'an, China.,National Clinical Research Center for Oral Diseases, Fourth Military Medical University, Xi'an, China.,Shaanxi Clinical Research Center for Oral Diseases, Department of Preventive Dentistry, School of Stomatology, Fourth Military Medical University, Xi'an, China
| | - Bing Han
- State Key Laboratory of Military Stomatology, Fourth Military Medical University, Xi'an, China.,National Clinical Research Center for Oral Diseases, Fourth Military Medical University, Xi'an, China.,Shaanxi Clinical Research Center for Oral Diseases, Department of Preventive Dentistry, School of Stomatology, Fourth Military Medical University, Xi'an, China
| | - Kun Xuan
- State Key Laboratory of Military Stomatology, Fourth Military Medical University, Xi'an, China.,National Clinical Research Center for Oral Diseases, Fourth Military Medical University, Xi'an, China.,Shaanxi Clinical Research Center for Oral Diseases, Department of Preventive Dentistry, School of Stomatology, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
40
|
Distinct Expression Patterns of Cxcl12 in Mesenchymal Stem Cell Niches of Intact and Injured Rodent Teeth. Int J Mol Sci 2021; 22:ijms22063024. [PMID: 33809663 PMCID: PMC8002260 DOI: 10.3390/ijms22063024] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/13/2021] [Accepted: 03/15/2021] [Indexed: 12/11/2022] Open
Abstract
Specific stem cell populations within dental mesenchymal tissues guarantee tooth homeostasis and regeneration throughout life. The decision between renewal and differentiation of stem cells is greatly influenced by interactions with stromal cells and extracellular matrix molecules that form the tissue specific stem cell niches. The Cxcl12 chemokine is a general marker of stromal cells and plays fundamental roles in the maintenance, mobilization and migration of stem cells. The aim of this study was to exploit Cxcl12-GFP transgenic mice to study the expression patterns of Cxcl12 in putative dental niches of intact and injured teeth. We showed that endothelial and stromal cells expressed Cxcl12 in the dental pulp tissue of both intact molars and incisors. Isolated non-endothelial Cxcl12+ dental pulp cells cultured in different conditions in vitro exhibited expression of both adipogenic and osteogenic markers, thus suggesting that these cells possess multipotent fates. Taken together, our results show that Cxcl12 is widely expressed in intact and injured teeth and highlight its importance as a key component of the various dental mesenchymal stem cell niches.
Collapse
|
41
|
Lin LM, Huang GTJ, Sigurdsson A, Kahler B. Clinical cell-based versus cell-free regenerative endodontics: clarification of concept and term. Int Endod J 2021; 54:887-901. [PMID: 33389773 DOI: 10.1111/iej.13471] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 12/29/2020] [Accepted: 12/30/2020] [Indexed: 12/17/2022]
Abstract
There is no consensus on the true meaning of clinical regenerative endodontics, and there is confusion over the concept and the term. Commonly used terms include revitalization and revascularization. The clinical methods for endodontic revitalization procedures and the tissue engineering concept differ depending on whether there is exogenous delivery of cells - called cell therapy, or not. Here, in this review, the difference is clarified by emphasizing the correct terminology: cell-free versus cell-based regenerative endodontic therapy (CF-RET versus CB-RET). The revitalization procedures practised clinically do not fit into the modern tissue engineering concepts of pulp regeneration but can be categorized as CF-RET. The modern tissue engineering concept in pulp regeneration is a CB-RET, which so far is at the clinical trial stage. However, histological examination of teeth following regenerative endodontic treatments reveals healing with repair derived from stem cells that originate from the periodontal, bone and other tissues. The aim of regenerative endodontics is regeneration of the pulp-dentine complex. This review discusses why CF-RET is unlikely to regenerate a pulp-dentine complex with current protocols. The American Association of Endodontists and the European Society of Endodontology have not yet recommended autologous stem cell transplantation (CB-RERT) which aspires for regeneration. Therefore, an understanding of the concept, term, difficulties and differences in current protocols is important for the clinician. However, rather than being discouraged that ideal regeneration has not been achieved to date, repair can be an acceptable outcome in clinical regenerative endodontics as it has also been accepted in medicine. Repair should also be considered in the context that resolution of the clinical signs/symptoms of pulp necrosis/apical periodontitis is generally reliably obtained in clinical regenerative endodontics.
Collapse
Affiliation(s)
- L M Lin
- College of Dentistry, New York University, New York, NY, USA
| | - G T-J Huang
- Department of Bioscience Research, College of Dentistry, University of Tennessee Health Science Center, Memphis, TN, USA
| | - A Sigurdsson
- College of Dentistry, New York University, New York, NY, USA
| | - B Kahler
- School of Dentistry, University of Queensland, Brisbane, Australia
| |
Collapse
|
42
|
Stem Cell-based Dental Pulp Regeneration: Insights From Signaling Pathways. Stem Cell Rev Rep 2021; 17:1251-1263. [PMID: 33459973 DOI: 10.1007/s12015-020-10117-3] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/29/2020] [Indexed: 02/05/2023]
Abstract
Deep caries, trauma, and severe periodontitis result in pulpitis, pulp necrosis, and eventually pulp loss. However, no clinical therapy can regenerate lost pulp. A novel pulp regeneration strategy for clinical application is urgently needed. Signaling transduction plays an essential role in regulating the regenerative potentials of dental stem cells. Cytokines or growth factors, such as stromal cell-derived factor (SDF), fibroblast growth factor (FGF), bone morphogenetic protein (BMP), vascular endothelial growth factor (VEGF), WNT, can promote the migration, proliferation, odontogenic differentiation, pro-angiogenesis, and pro-neurogenesis potentials of dental stem cells respectively. Using the methods of signaling modulation including growth factors delivery, genetic modification, and physical stimulation has been applied in multiple preclinical studies of pulp regeneration based on cell transplantation or cell homing. Transplanting dental stem cells and growth factors encapsulated into scaffold regenerated vascularized pulp-like tissue in the root canal. Also, injecting a flowable scaffold only with chemokines recruited endogenous stem/progenitor cells for pulp regeneration. Notably, dental pulp regeneration has gradually developed into the clinical phase. These findings enlightened us on a novel strategy for structural and functional pulp regeneration through elaborate modulation of signaling transduction spatially and temporally via clinically applicable growth factors delivery. But challenges, such as the adverse effects of unphysiological signaling activation, the controlled drug release system, and the safety of gene modulation, are necessary to be tested in future works for promoting the clinical translation of pulp regeneration.
Collapse
|
43
|
Son JW, Choi SH, Jang JH, Koh JT, Oh WM, Hwang YC, Lee BN. Irisin promotes odontogenic differentiation and angiogenic potential in human dental pulp cells. Int Endod J 2020; 54:399-412. [PMID: 33089893 DOI: 10.1111/iej.13435] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 10/19/2020] [Accepted: 10/19/2020] [Indexed: 12/31/2022]
Abstract
AIM To determine whether irisin, a newly discovered myokine that links exercise-induced and metabolic homeostasis, is able to promote odontogenic differentiation and angiogenesis in human dental pulp cells (HDPCs). METHODOLOGY Cell viability in the presence of irisin was measured. Real-time PCR and Western blot analysis were performed to evaluate the expression levels of irisin, odontogenic and angiogenic markers. The involvement of mitogen-activated protein kinase (MAPK) and the protein kinase B (Akt) signalling pathway was evaluated by Western blot. To evaluate mineralization nodule formation, alkaline phosphatase (ALP) staining and alizarin red S staining were performed. Scratch wound assays were performed to evaluate the effects of irisin on cell migration. The data were analysed using one-way analysis of variance (anova) followed by Tukey post hoc test and Student's t-test. Statistical significance was considered at P < 0.05. RESULTS Irisin significantly promoted odontogenic differentiation as evidenced by formation of mineralized nodules, induction of ALP activity and upregulation of odontogenic and angiogenic markers (P < 0.05). Scratch wound assays revealed that irisin significantly increased migration of HDPCs (P < 0.05). Phosphorylation of both MAPK and Akt was increased by irisin. MAPK and Akt inhibitors inhibited mineralization, cell migration and the increased expression of odontogenic and angiogenic markers. CONCLUSIONS Irisin promoted odontogenic differentiation and mineralization and has the potential for angiogenesis through activation of the MAPK and Akt signalling pathways in HDPCs.
Collapse
Affiliation(s)
- J W Son
- Department of Conservative Dentistry, School of Dentistry, Dental Science Research Institute, Chonnam National University, Gwangju, Korea
| | - S H Choi
- Department of Conservative Dentistry, School of Dentistry, Dental Science Research Institute, Chonnam National University, Gwangju, Korea
| | - J H Jang
- Department of Conservative Dentistry, School of Dentistry, Kyung Hee University, Seoul, Korea
| | - J T Koh
- Department of Pharmacology and Dental Therapeutics, Hard-tissue Biointerface Research Center, School of Dentistry, Dental Science Research Institute, Chonnam National University, Gwangju, Korea
| | - W M Oh
- Department of Conservative Dentistry, School of Dentistry, Dental Science Research Institute, Chonnam National University, Gwangju, Korea
| | - Y C Hwang
- Department of Conservative Dentistry, School of Dentistry, Dental Science Research Institute, Chonnam National University, Gwangju, Korea
| | - B N Lee
- Department of Conservative Dentistry, School of Dentistry, Dental Science Research Institute, Chonnam National University, Gwangju, Korea
| |
Collapse
|
44
|
Sismanoglu S, Ercal P. Dentin-Pulp Tissue Regeneration Approaches in Dentistry: An Overview and Current Trends. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1298:79-103. [PMID: 32902726 DOI: 10.1007/5584_2020_578] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Conventional treatment approaches in irreversible pulpitis and apical periodontitis include the disinfection of the pulp space followed by filling with various materials, which is commonly known as the root canal treatment. Disadvantages including the loss of tooth vitality and defense mechanism against carious lesions, susceptibility to fractures, discoloration and microleakage led to the development of regenerative therapies for the dentin pulp-complex. The goal of dentin-pulp tissue regeneration is to reestablish the physiological pulp function such as pulp sensibility, pulp repair capability by mineralization and pulp immunity. Recent dentin-pulp tissue regeneration approaches can be divided into cell homing and cell transplantation. Cell based approaches include a suitable scaffold for the delivery of potent stem cells with or without bioactive molecules into the root canal system while cell homing is based on the recruitment of host endogenous stem cells from the resident tissue including periapical region or dental pulp. This review discusses the recent treatment modalities in dentin-pulp tissue regeneration through tissue engineering and current challenges and trends in this field of research.
Collapse
Affiliation(s)
- Soner Sismanoglu
- Department of Restorative Dentistry, Faculty of Dentistry, Altinbas University, Istanbul, Turkey
| | - Pınar Ercal
- Department of Oral Surgery, Faculty of Dentistry, Altinbas University, Istanbul, Turkey.
| |
Collapse
|
45
|
Granz CL, Gorji A. Dental stem cells: The role of biomaterials and scaffolds in developing novel therapeutic strategies. World J Stem Cells 2020; 12:897-921. [PMID: 33033554 PMCID: PMC7524692 DOI: 10.4252/wjsc.v12.i9.897] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 06/05/2020] [Accepted: 08/16/2020] [Indexed: 02/06/2023] Open
Abstract
Dental stem cells (DSCs) are self-renewable cells that can be obtained easily from dental tissues, and are a desirable source of autologous stem cells. The use of DSCs for stem cell transplantation therapeutic approaches is attractive due to their simple isolation, high plasticity, immunomodulatory properties, and multipotential abilities. Using appropriate scaffolds loaded with favorable biomolecules, such as growth factors, and cytokines, can improve the proliferation, differentiation, migration, and functional capacity of DSCs and can optimize the cellular morphology to build tissue constructs for specific purposes. An enormous variety of scaffolds have been used for tissue engineering with DSCs. Of these, the scaffolds that particularly mimic tissue-specific micromilieu and loaded with biomolecules favorably regulate angiogenesis, cell-matrix interactions, degradation of extracellular matrix, organized matrix formation, and the mineralization abilities of DSCs in both in vitro and in vivo conditions. DSCs represent a promising cell source for tissue engineering, especially for tooth, bone, and neural tissue restoration. The purpose of the present review is to summarize the current developments in the major scaffolding approaches as crucial guidelines for tissue engineering using DSCs and compare their effects in tissue and organ regeneration.
Collapse
Affiliation(s)
- Cornelia Larissa Granz
- Epilepsy Research Center, Westfälische Wilhelms-Universität Münster, Münster 48149, Germany
| | - Ali Gorji
- Epilepsy Research Center, Westfälische Wilhelms-Universität Münster, Münster 48149, Germany
| |
Collapse
|
46
|
Xia K, Chen Z, Chen J, Xu H, Xu Y, Yang T, Zhang Q. RGD- and VEGF-Mimetic Peptide Epitope-Functionalized Self-Assembling Peptide Hydrogels Promote Dentin-Pulp Complex Regeneration. Int J Nanomedicine 2020; 15:6631-6647. [PMID: 32982223 PMCID: PMC7495350 DOI: 10.2147/ijn.s253576] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 07/15/2020] [Indexed: 12/12/2022] Open
Abstract
INTRODUCTION Cell-based tissue engineering is a promising method for dentin-pulp complex (DPC) regeneration. The challenges associated with DPC regeneration include the generation of a suitable microenvironment that facilitates the complete odontogenic differentiation of dental pulp stem cells (DPSCs) and the rapid induction of angiogenesis. Thus, the survival and subsequent differentiation of DPSCs are limited. Extracellular matrix (ECM)-like biomimetic hydrogels composed of self-assembling peptides (SAPs) were developed to provide an appropriate microenvironment for DPSCs. For functional DPC regeneration, the most important considerations are to provide an environment that promotes the adequate attachment of DPSCs and rapid vascularization of the regenerating pulp. Morphogenic signals in the form of growth factors (GFs) have been incorporated into SAPs to promote productive DPSC behaviors. However, the use of GFs has several drawbacks. We envision using a scaffold with SAPs coupled with long-term factors to increase DPSC attachment and vascularization as a method to address this challenge. METHODS In this study, we developed synthetic material for an SAP-based scaffold with RGD- and vascular endothelial growth factor (VEGF)-mimetic peptide epitopes with the dual functions of dentin and pulp regeneration. DPSCs and human umbilical vein endothelial cells (HUVECs) were used to evaluate the biological effects of SAP-based scaffolds. Furthermore, the pulpotomized molar rat model was employed to test the reparative and regenerative effects of SAP-based scaffolds. RESULTS This scaffold simultaneously presented RGD- and VEGF-mimetic peptide epitopes and provided a 3D microenvironment for DPSCs. DPSCs grown on this composite scaffold exhibited significantly improved survival and angiogenic and odontogenic differentiation in the multifunctionalized group in vitro. Histological and functional evaluations of a partially pulpotomized rat model revealed that the multifunctionalized scaffold was superior to other options with respect to stimulating pulp recovery and dentin regeneration in vivo. CONCLUSION Based on our data obtained with the functionalized SAP scaffold, a 3D microenvironment that supports stem cell adhesion and angiogenesis was generated that has great potential for dental pulp tissue engineering and regeneration.
Collapse
Affiliation(s)
- Kun Xia
- Department of Endodontics, School and Hospital of Stomatology, Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai200072, People’s Republic of China
- Department of Preventive Dentistry, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou325027, People’s Republic of China
| | - Zhuo Chen
- Department of Endodontics, The Affiliated Stomatology Hospital, Zhejiang University School of Medicine, Hangzhou310006, People’s Republic of China
- Key Laboratory of Oral Biomedical Research of Zhejiang Province, Zhejiang University School of Stomatology, Hangzhou310006, People’s Republic of China
| | - Jie Chen
- Department of Endodontics, School and Hospital of Stomatology, Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai200072, People’s Republic of China
| | - Huaxing Xu
- Department of Endodontics, School and Hospital of Stomatology, Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai200072, People’s Republic of China
| | - Yunfei Xu
- Department of Endodontics, School and Hospital of Stomatology, Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai200072, People’s Republic of China
| | - Ting Yang
- Department of Endodontics, School and Hospital of Stomatology, Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai200072, People’s Republic of China
| | - Qi Zhang
- Department of Endodontics, School and Hospital of Stomatology, Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai200072, People’s Republic of China
| |
Collapse
|
47
|
Sui B, Wu D, Xiang L, Fu Y, Kou X, Shi S. Dental Pulp Stem Cells: From Discovery to Clinical Application. J Endod 2020; 46:S46-S55. [DOI: 10.1016/j.joen.2020.06.027] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
48
|
|
49
|
Ayoub S, Cheayto A, Bassam S, Najar M, Berbéri A, Fayyad-Kazan M. The Effects of Intracanal Irrigants and Medicaments on Dental-Derived Stem Cells Fate in Regenerative Endodontics: An update. Stem Cell Rev Rep 2020; 16:650-660. [PMID: 32394343 DOI: 10.1007/s12015-020-09982-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Regenerative endodontics is a biologically based treatment designed for immature permanent teeth with necrotic pulp to replace dentin and root structures, as well as dental pulp cells. This procedure has become a part of novel modality in endodontics therapeutic manner, and it is considered as an alternative to apexification. In the last decade, numerous case reports, which describe this procedure, have been published. This therapeutic approach succeeded due to its lower financial cost and ease of performance. Although the clinical protocol of this procedure is not standardized and the effects of irrigants and medicaments on dental stem cells fate remain somewhat ambiguous, however when successful, it is an improvement of endodontics treatment protocols which leads to continued root development, increased dentinal wall thickness, and apical closure of immature teeth. To ensure a successful regenerative procedure, it is essential to investigate the appropriate disinfection protocols and the use of biocompatible molecules in order to control the release of growth factors and the differentiation of stem cells. This is the first review in the literature to summarize the present knowledge regarding the effect of intracanal irrigants and medicaments on the dental derived stem cells fate in regenerative endodontic procedures.
Collapse
Affiliation(s)
- Sara Ayoub
- Department of Prosthodontics, Faculty of Dental Medicine, Lebanese University, Hadath, Beirut, Lebanon
| | - Ali Cheayto
- Department of Restorative Dentistry and Endodontics, Faculty of Dental Medicine, Lebanese University, Hadath, Beirut, Lebanon
| | - Sanaa Bassam
- Department of Restorative Dentistry and Endodontics, Faculty of Dental Medicine, Lebanese University, Hadath, Beirut, Lebanon
| | - Mehdi Najar
- Genetics and Immune Cell Therapy Unit, Faculty of Sciences, University Mohammed Premier, Oujda, Morocco
- Osteoarthritis Research Unit, Department of Medicine, Research Center (CRCHUM), University of Montreal Hospital, University of Montreal, Montreal, QC, Canada
| | - Antoine Berbéri
- Department of Oral and Maxillofacial Surgery, Faculty of Dental Medicine, Lebanese University, Hadath, Beirut, Lebanon
| | - Mohammad Fayyad-Kazan
- Laboratory of Cancer biology and Molecular Immunology, Faculty of Sciences-I, Lebanese University, Hadath, Beirut, Lebanon.
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Beirut, Lebanon.
| |
Collapse
|
50
|
Yoshida S, Tomokiyo A, Hasegawa D, Hamano S, Sugii H, Maeda H. Insight into the Role of Dental Pulp Stem Cells in Regenerative Therapy. BIOLOGY 2020; 9:biology9070160. [PMID: 32659896 PMCID: PMC7407391 DOI: 10.3390/biology9070160] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 07/02/2020] [Accepted: 07/05/2020] [Indexed: 02/07/2023]
Abstract
Mesenchymal stem cells (MSCs) have the capacity for self-renewal and multilineage differentiation potential, and are considered a promising cell population for cell-based therapy and tissue regeneration. MSCs are isolated from various organs including dental pulp, which originates from cranial neural crest-derived ectomesenchyme. Recently, dental pulp stem cells (DPSCs) and stem cells from human exfoliated deciduous teeth (SHEDs) have been isolated from dental pulp tissue of adult permanent teeth and deciduous teeth, respectively. Because of their MSC-like characteristics such as high growth capacity, multipotency, expression of MSC-related markers, and immunomodulatory effects, they are suggested to be an important cell source for tissue regeneration. Here, we review the features of these cells, their potential to regenerate damaged tissues, and the recently acquired understanding of their potential for clinical application in regenerative medicine.
Collapse
Affiliation(s)
- Shinichiro Yoshida
- Department of Endodontology, Kyushu University Hospital, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; (A.T.); (D.H.); (H.S.); (H.M.)
- Correspondence: ; Tel.: +81-92-642-6432
| | - Atsushi Tomokiyo
- Department of Endodontology, Kyushu University Hospital, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; (A.T.); (D.H.); (H.S.); (H.M.)
| | - Daigaku Hasegawa
- Department of Endodontology, Kyushu University Hospital, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; (A.T.); (D.H.); (H.S.); (H.M.)
| | - Sayuri Hamano
- OBT Research Center, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan;
- Department of Endodontology and Operative Dentistry, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Hideki Sugii
- Department of Endodontology, Kyushu University Hospital, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; (A.T.); (D.H.); (H.S.); (H.M.)
| | - Hidefumi Maeda
- Department of Endodontology, Kyushu University Hospital, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; (A.T.); (D.H.); (H.S.); (H.M.)
- Department of Endodontology and Operative Dentistry, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| |
Collapse
|