1
|
Catalán-Castorena O, Garibay-Cerdenares OL, Illades-Aguiar B, Rodríguez-Ruiz HA, Zubillaga-Guerrero MI, Leyva-Vázquez MA, Encarnación-Guevara S, Alarcón-Romero LDC. The role of HR-HPV integration in the progression of premalignant lesions into different cancer types. Heliyon 2024; 10:e34999. [PMID: 39170128 PMCID: PMC11336306 DOI: 10.1016/j.heliyon.2024.e34999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 07/19/2024] [Accepted: 07/21/2024] [Indexed: 08/23/2024] Open
Abstract
High-risk human papillomavirus (HR-HPV) is associated with the development of different types of cancer, such as cervical, head and neck (including oral, laryngeal, and oropharyngeal), vulvar, vaginal, penile, and anal cancers. The progression of premalignant lesions to cancer depends on factors associated with the host cell and the different epithelia infected by HPV, such as basal cells of the flat epithelium and the cells of the squamocolumnar transformation zone (STZ) found in the uterine cervix and the anal canal, which is rich in heparan sulfate proteoglycans and integrin-like receptors. On the other hand, factors associated with the viral genotype, infection with multiple viruses, viral load, viral persistence, and type of integration determine the viral breakage pattern and the sites at which the virus integrates into the host cell genome (introns, exons, intergenic regions), inducing the loss of function of tumor suppressor genes and increasing oncogene expression. This review describes the role of viral integration and the molecular mechanisms induced by HR-HPV in different types of tissues. The purpose of this review is to identify the common factors associated with the role of integration events in the progression of premalignant lesions in different types of cancer.
Collapse
Affiliation(s)
- Oscar Catalán-Castorena
- Research in Cytopathology and Histochemical Laboratory, Faculty of Chemical and Biological Sciences, Autonomous University of Guerrero, Chilpancingo, Guerrero, 39089, Mexico
| | - Olga Lilia Garibay-Cerdenares
- Molecular Biomedicine Laboratory, Faculty of Chemical-Biological Sciences, Autonomous University of Guerrero, Chilpancingo, Guerrero, 39089, Mexico
- CONAHCyT-Autonomous University of Guerrero, Chilpancingo, Guerrero, 39089, Mexico
| | - Berenice Illades-Aguiar
- Molecular Biomedicine Laboratory, Faculty of Chemical-Biological Sciences, Autonomous University of Guerrero, Chilpancingo, Guerrero, 39089, Mexico
| | - Hugo Alberto Rodríguez-Ruiz
- Molecular Biomedicine Laboratory, Faculty of Chemical-Biological Sciences, Autonomous University of Guerrero, Chilpancingo, Guerrero, 39089, Mexico
| | - Ma. Isabel Zubillaga-Guerrero
- Research in Cytopathology and Histochemical Laboratory, Faculty of Chemical and Biological Sciences, Autonomous University of Guerrero, Chilpancingo, Guerrero, 39089, Mexico
| | - Marco Antonio Leyva-Vázquez
- Molecular Biomedicine Laboratory, Faculty of Chemical-Biological Sciences, Autonomous University of Guerrero, Chilpancingo, Guerrero, 39089, Mexico
| | | | - Luz del Carmen Alarcón-Romero
- Research in Cytopathology and Histochemical Laboratory, Faculty of Chemical and Biological Sciences, Autonomous University of Guerrero, Chilpancingo, Guerrero, 39089, Mexico
| |
Collapse
|
2
|
Auen T, Talmon G. Nasopharyngeal Carcinoma: Connecting Antemortem and Postmortem Findings to Highlight a Rare Case of EBV and HPV Negativity. Case Rep Pathol 2024; 2024:8881912. [PMID: 38962102 PMCID: PMC11221976 DOI: 10.1155/2024/8881912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 05/08/2024] [Accepted: 05/09/2024] [Indexed: 07/05/2024] Open
Abstract
Nasopharyngeal carcinoma is an endemic entity with a strong association with Epstein-Barr virus and a new recognition of human papilloma virus-mediated effects in nonendemic areas. Here, we discuss a nasopharyngeal carcinoma suspected as based on imaging results with metastasis to the lymph nodes, lung, spleen, bone, and liver. Gross and microscopic findings from the autopsy were clinicopathologically correlated with antemortem clinical studies and investigations. The authors report a case of EBV- and HPV-negative nonendemic, multisite metastatic nasopharyngeal carcinoma, shown to be nonkeratinizing undifferentiated subtype.
Collapse
Affiliation(s)
- Thomas Auen
- University of Nebraska Medical CenterDepartment of Pathology, Microbiology, and Immunology983135 Nebraska Medical CenterMedical Science Building, 3rd Floor, Omaha, NE 68198, USA
| | - Geoffrey Talmon
- University of Nebraska Medical CenterDepartment of Pathology, Microbiology, and Immunology983135 Nebraska Medical CenterMedical Science Building, 3rd Floor, Omaha, NE 68198, USA
| |
Collapse
|
3
|
Izaguirre G, Phan LMU, Asif S, Alam S, Meyers C, Rong L. Diversity in Proprotein Convertase Reactivity among Human Papillomavirus Types. Viruses 2023; 16:39. [PMID: 38257739 PMCID: PMC10820984 DOI: 10.3390/v16010039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/19/2023] [Accepted: 12/21/2023] [Indexed: 01/24/2024] Open
Abstract
The cleavage of viral surface proteins by furin is associated with some viruses' high virulence and infectivity. The human papillomavirus (HPV) requires the proteolytic processing of its capsid proteins for activation before entry. Variability in reactivity with furin and other proprotein convertases (PCs) among HPV types was investigated. HPV16, the most prevalent and carcinogenic HPV type, reacted with PCs with the broadest selectivity compared to other types in reactions of pseudoviral particles with the recombinant PCs, furin, PC4, PC5, PACE4, and PC7. Proteolytic preactivation was assessed using a well-established entry assay into PC-inhibited cells based on the green fluorescent protein as a reporter. The inhibition of the target cell PC activity with serpin-based PC-selective inhibitors also showed a diversity of PC selectivity among HPV types. HPV16 reacted with furin at the highest rate compared to the other types in time-dependent preactivation reactions and produced the highest entry values standardized to pseudoviral particle concentration. The predominant expression of furin in keratinocytes and the high reactivity of HPV16 with this enzyme highlight the importance of selectively targeting furin as a potential antiviral therapeutic approach.
Collapse
Affiliation(s)
- Gonzalo Izaguirre
- Department of Periodontics, College of Dentistry, University of Illinois Chicago, Chicago, IL 60612, USA
| | - Lam Minh Uyen Phan
- Department of Periodontics, College of Dentistry, University of Illinois Chicago, Chicago, IL 60612, USA
| | - Shaan Asif
- Department of Periodontics, College of Dentistry, University of Illinois Chicago, Chicago, IL 60612, USA
| | - Samina Alam
- Departments of Microbiology and Immunology, College of Medicine, Penn State University, Hershey, PA 17033, USA
| | - Craig Meyers
- Departments of Microbiology and Immunology, College of Medicine, Penn State University, Hershey, PA 17033, USA
| | - Lijun Rong
- Departments of Microbiology and Immunology, College of Medicine, University of Illinois Chicago, Chicago, IL 60612, USA
| |
Collapse
|
4
|
Santos AAD, Mafra RP, da Silva LP, Pinto LP, Freitas RDA, de Souza LB. Immunohistochemical comparative analysis of tumor stem cell biomarkers in pleomorphic adenoma, adenoid cystic carcinoma and mucoepidermoid carcinoma of salivary glands. Oral Surg Oral Med Oral Pathol Oral Radiol 2023; 135:396-409. [PMID: 36863971 DOI: 10.1016/j.oooo.2022.09.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 09/09/2022] [Accepted: 09/22/2022] [Indexed: 11/20/2022]
Abstract
OBJECTIVE This study aimed to compare the immunoexpression profile of tumor stem cell (TSC) biomarkers CD44, aldehyde dehydrogenase 1 (ALDH1), OCT4, and SOX2 in salivary gland tumors (SGTs). STUDY DESIGN Sixty tissue specimens of SGTs, including 20 pleomorphic adenomas, 20 adenoid cystic carcinomas (ACCs), and 20 mucoepidermoid carcinomas, in addition to 4 samples of normal glandular tissue, were subjected to immunohistochemistry. The expression of the biomarkers in the parenchyma and stroma was evaluated. Data were analyzed statistically by nonparametric tests (P < .05). RESULTS Higher parenchymal expression of ALDH1, OCT4, and SOX2 was observed in pleomorphic adenomas, ACCs, and mucoepidermoid carcinomas, respectively. Most ACCs did not express ALDH1. Higher immunoexpression of ALDH1 in major SGTs (P = .021) and of OCT4 in minor SGTs (P = .011) was found. Immunoexpression of SOX2 was related to lesions without myoepithelial differentiation (P < .001) and malignant behavior (P = .002). Furthermore, OCT4 was related to myoepithelial differentiation (P = .009). CD44 expression was related to a better prognosis. Stromal immunoexpressions of CD44, ALDH1, and OCT4 were higher in malignant SGTs. CONCLUSIONS Our findings suggest the participation of TSCs in the pathogenesis of SGTs. We emphasize the need for further investigations into the presence and role of TSCs in the stroma of these lesions.
Collapse
Affiliation(s)
- André Azevedo Dos Santos
- Dentistry Sciences Postgraduate Program, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil.
| | - Rodrigo Porpino Mafra
- Oral Pathology Postgraduate Program, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil
| | - Leorik Pereira da Silva
- Professor, Oral Histopathology Service, Federal University of Campina Grande, Patos, Paraíba, Brazil
| | - Leão Pereira Pinto
- Professor, Oral Pathology Postgraduate Program, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil; Researcher, Brazilian National Council for Scientific and Technological Development (CNPq), Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil
| | - Roseana de Almeida Freitas
- Professor, Oral Pathology Postgraduate Program, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil; Researcher, Brazilian National Council for Scientific and Technological Development (CNPq), Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil
| | - Lélia Batista de Souza
- Professor, Oral Pathology Postgraduate Program, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil; Researcher, Brazilian National Council for Scientific and Technological Development (CNPq), Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil
| |
Collapse
|
5
|
Miglinci L, Reicher P, Nell B, Koch M, Jindra C, Brandt S. Detection of Equine Papillomaviruses and Gamma-Herpesviruses in Equine Squamous Cell Carcinoma. Pathogens 2023; 12:179. [PMID: 36839451 PMCID: PMC9958655 DOI: 10.3390/pathogens12020179] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/09/2023] [Accepted: 01/21/2023] [Indexed: 01/25/2023] Open
Abstract
Squamous cell carcinoma (SCC) seriously compromises the health and welfare of affected horses. Although robust evidence points to equine papillomavirus type 2 (EcPV2) causing genital lesions, the etiopathogenesis of equine SCC is still poorly understood. We screened a series of SCCs from the head-and-neck (HN), (peri-)ocular and genital region, and site-matched controls for the presence of EcPV2-5 and herpesvirus DNA using type-specific EcPV PCR, and consensus nested herpesvirus PCR followed by sequencing. EcPV2 DNA was detected in 45.5% of HN lesions, 8.3% of (peri-)ocular SCCs, and 100% of genital tumors, whilst control samples from tumor-free horses except one tested EcPV-negative. Two HNSCCs harbored EcPV5, and an ocular lesion EcPV4 DNA. Herpesvirus DNA was detected in 63.6%, 66.6%, 47.2%, and 14.2% of horses with HN, ocular, penile, and vulvar SCCs, respectively, and mainly identified as equine herpesvirus 2 (EHV2), 5 (EHV5) or asinine herpesvirus 5 (AsHV5) DNA. In the tumor-free control group, 9.6% of oral secretions, 46.6% of ocular swabs, 47% of penile samples, and 14.2% of vaginal swabs scored positive for these herpesvirus types. This work further highlights the role of EcPV2 as an oncovirus and is the first to provide information on the prevalence of (gamma-)herpesviruses in equine SCCs.
Collapse
Affiliation(s)
- Lea Miglinci
- Research Group Oncology (RGO), Clinical Unit of Equine Surgery, Department for Companion Animals and Horses, Veterinary University, 1210 Vienna, Austria
| | - Paul Reicher
- Research Group Oncology (RGO), Clinical Unit of Equine Surgery, Department for Companion Animals and Horses, Veterinary University, 1210 Vienna, Austria
| | - Barbara Nell
- Clinical Unit of Ophthalmology, Department for Companion Animals and Horses, Veterinary University, 1210 Vienna, Austria
| | - Michelle Koch
- Research Group Oncology (RGO), Clinical Unit of Equine Surgery, Department for Companion Animals and Horses, Veterinary University, 1210 Vienna, Austria
| | - Christoph Jindra
- Research Group Oncology (RGO), Clinical Unit of Equine Surgery, Department for Companion Animals and Horses, Veterinary University, 1210 Vienna, Austria
- Division of Molecular Oncology and Hematology, Karl Landsteiner University of Health Sciences, 3500 Krems an der Donau, Austria
| | - Sabine Brandt
- Research Group Oncology (RGO), Clinical Unit of Equine Surgery, Department for Companion Animals and Horses, Veterinary University, 1210 Vienna, Austria
| |
Collapse
|
6
|
Suchanti S, Stephen BJ, Awasthi S, Awasthi SK, Singh G, Singh A, Mishra R. Harnessing the role of epigenetic histone modification in targeting head and neck squamous cell carcinoma. Epigenomics 2022; 14:279-293. [PMID: 35184601 DOI: 10.2217/epi-2020-0348] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is the sixth most prevalent form of cancer worldwide. Despite advancements made in treatment strategies, the fatality rate of HNSCC is very high. An accumulating body of evidence suggests that epigenetic modification of histones plays an influential role in the development and progression of the disease. In this review we discuss the role of epigenetic modifications in HNSCC and the inter-relationships of human papillomavirus oncoproteins and histone-modifying agents. Further, we explore the possibility of identifying these modifications as biomarkers for their use as drugs in treatment strategies.
Collapse
Affiliation(s)
- Surabhi Suchanti
- Department of Biosciences, Manipal University Jaipur, Rajasthan, 303007, India
| | - Bjorn J Stephen
- Department of Biosciences, Manipal University Jaipur, Rajasthan, 303007, India
| | - Sonali Awasthi
- Department of Life Sciences, CSJM University, Kanpur, Uttar Pradesh, 208024, India
| | - Sudhir K Awasthi
- Department of Life Sciences, CSJM University, Kanpur, Uttar Pradesh, 208024, India
| | - Gyanendra Singh
- Toxicology Division, ICMR-National Institute of Occupational Health, Ahmedabad, Gujarat, 380016, India
| | - Abhijeet Singh
- Department of Biosciences, Manipal University Jaipur, Rajasthan, 303007, India
| | - Rajeev Mishra
- Department of Life Sciences, CSJM University, Kanpur, Uttar Pradesh, 208024, India
| |
Collapse
|
7
|
Strohmayer C, Klang A, Kummer S, Walter I, Jindra C, Weissenbacher-Lang C, Redmer T, Kneissl S, Brandt S. Tumor Cell Plasticity in Equine Papillomavirus-Positive Versus-Negative Squamous Cell Carcinoma of the Head and Neck. Pathogens 2022; 11:pathogens11020266. [PMID: 35215208 PMCID: PMC8875230 DOI: 10.3390/pathogens11020266] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 02/13/2022] [Accepted: 02/14/2022] [Indexed: 11/29/2022] Open
Abstract
Squamous cell carcinoma of the head and neck (HNSCC) is a common malignant tumor in humans and animals. In humans, papillomavirus (PV)-induced HNSCCs have a better prognosis than papillomavirus-unrelated HNSCCs. The ability of tumor cells to switch from epithelial to mesenchymal, endothelial, or therapy-resistant stem-cell-like phenotypes promotes disease progression and metastasis. In equine HNSCC, PV-association and tumor cell phenotype switching are poorly understood. We screened 49 equine HNSCCs for equine PV (EcPV) type 2, 3 and 5 infection. Subsequently, PV-positive versus -negative lesions were analyzed for expression of selected epithelial (keratins, β-catenin), mesenchymal (vimentin), endothelial (COX-2), and stem-cell markers (CD271, CD44) by immunohistochemistry (IHC) and immunofluorescence (IF; keratins/vimentin, CD44/CD271 double-staining) to address tumor cell plasticity in relation to PV infection. Only EcPV2 PCR scored positive for 11/49 equine HNSCCs. IHC and IF from 11 EcPV2-positive and 11 EcPV2-negative tumors revealed epithelial-to-mesenchymal transition events, with vimentin-positive cells ranging between <10 and >50%. CD44- and CD271-staining disclosed the intralesional presence of infiltrative tumor cell fronts and double-positive tumor cell subsets independently of the PV infection status. Our findings are indicative of (partial) epithelial–mesenchymal transition events giving rise to hybrid epithelial/mesenchymal and stem-cell-like tumor cell phenotypes in equine HNSCCs and suggest CD44 and CD271 as potential malignancy markers that merit to be further explored in the horse.
Collapse
Affiliation(s)
- Carina Strohmayer
- Clinical Unit of Diagnostic Imaging, Department for Companion Animals and Horses, University of Veterinary Medicine, 1210 Vienna, Austria; (C.S.); (S.K.)
| | - Andrea Klang
- Institute of Pathology, Department of Pathobiology, University of Veterinary Medicine, 1210 Vienna, Austria; (A.K.); (C.W.-L.)
| | - Stefan Kummer
- VetCore Facility for Research, University of Veterinary Medicine, 1210 Vienna, Austria; (S.K.); (I.W.)
| | - Ingrid Walter
- VetCore Facility for Research, University of Veterinary Medicine, 1210 Vienna, Austria; (S.K.); (I.W.)
- Institute of Morphology, Department of Pathobiology, University of Veterinary Medicine, 1210 Vienna, Austria
| | - Christoph Jindra
- Research Group Oncology (RGO), Clinical Unit of Equine Surgery, Department for Companion Animals and Horses, University of Veterinary Medicine, 1210 Vienna, Austria;
| | - Christiane Weissenbacher-Lang
- Institute of Pathology, Department of Pathobiology, University of Veterinary Medicine, 1210 Vienna, Austria; (A.K.); (C.W.-L.)
| | - Torben Redmer
- Institute of Medical Biochemistry, Department of Biomedical Sciences, University of Veterinary Medicine, 1210 Vienna, Austria;
| | - Sibylle Kneissl
- Clinical Unit of Diagnostic Imaging, Department for Companion Animals and Horses, University of Veterinary Medicine, 1210 Vienna, Austria; (C.S.); (S.K.)
| | - Sabine Brandt
- Research Group Oncology (RGO), Clinical Unit of Equine Surgery, Department for Companion Animals and Horses, University of Veterinary Medicine, 1210 Vienna, Austria;
- Correspondence: ; Tel.: +43-12-5077-5308
| |
Collapse
|
8
|
Vanajothi R, Srikanth N, Vijayakumar R, Palanisamy M, Bhavaniramya S, Premkumar K. HPV-mediated Cervical Cancer: A Systematic review on Immunological Basis, Molecular Biology and Immune evasion mechanisms. Curr Drug Targets 2021; 23:782-801. [PMID: 34939539 DOI: 10.2174/1389450123666211221160632] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 07/26/2021] [Accepted: 07/28/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Human papillomavirus (HPV), one of the most frequently transmitted viruses globally, causing several malignancies including cervical cancer. AIM Owing to their unique pathogenicity HPV viruses can persist in the host organism for a longer duration than other virus types, to complete their lifecycle. During its association with the host, HPV causes various pathological conditions affecting the immune system by evading the host immune- mechanisms leading to the progression of various diseases, including cancer. METHOD To date, ~ 150 serotypes were identified, and certain high-risk HPV types are known to be associated with genital warts and cervical cancer. As of now, two prophylactic vaccines are in use for the treatment of HPV infection, however, no effective antiviral drug is available for HPV-associated disease/infections. Numerous clinical and laboratory studies are being investigated to formulate an effective and specific vaccine again HPV infections and associated diseases. RESULT As the immunological basis of HPV infection and associated disease progress persist indistinctly, deeper insights on immune evasion mechanism and molecular biology of disease would aid in developing an effective vaccine. CONCLUSION Thus this review focuses, aiming a systematic review on the immunological aspects of HPV-associated cervical cancer by uncovering immune evasion strategies adapted by HPV.
Collapse
Affiliation(s)
- Ramar Vanajothi
- Department of Biomedical Science, Bharathidasan University, Tiruchirappalli-620024. India
| | - Natarajan Srikanth
- Department of Integrative Biology, Vellore Institute of Technology, Vellore. India
| | - Rajendran Vijayakumar
- Department of Biology, College of Science in Zulfi, Majmaah University, Majmaah 11952. Saudi Arabia
| | - Manikandan Palanisamy
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Majmaah 11952. Saudi Arabia
| | - Sundaresan Bhavaniramya
- College of Food and Dairy Technology, Tamil Nadu Veterinary and Animal Sciences, University, Chennai-600052, Tamil Nadu. India
| | - Kumpati Premkumar
- Department of Biomedical Science, Bharathidasan University, Tiruchirappalli-620024. India
| |
Collapse
|
9
|
Cancer Stem Cells in Head and Neck Squamous Cell Carcinoma-Treatment Modalities. BALKAN JOURNAL OF DENTAL MEDICINE 2021. [DOI: 10.2478/bjdm-2021-0012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Summary
Head and neck squamous cell carcinoma (HNSCC) belongs to the most frequent cancer subtypes in the world. Mutations due to genetic and chromosomal instability, syndromes such as Fanconi anemia and the Bloom syndrome, environmental risk factors such as tobacco smoking, alcohol and human papillomavirus infection (HPV) subtypes 16,18,31,33,35,52,58 are implicated in its pathogenesis. The HNSCC belongs to the solid tumors of epithelial origin and consists of stromal, inflammatory, cancer cells and most importantly a fraction of them, the cancer stem cells (CSCs). The identification of the CSCs through their biomarkers such as CD44, CD10, CD166, CD133, CD271, ALDH, Oct4, Nanog, Sox2 and Bmi1, the maintenance of their subpopulation through epithelial to mesenchymal transition, the role of HPV infection regarding their prognosis and of their microenvironment regarding their resistance to therapy, all constitute key elements that must be taken thoroughly into consideration in order to develop an effective targeted therapy. There are already therapies in place targeting specific related biomarkers, important biochemical pathways and growth factors. The aim of this literature review is to illustrate the treatment modalities available against the cancer stem cells of head and neck squamous cell carcinoma.
Collapse
|
10
|
Guadiana D, Kavanagh NM, Squarize CH. Oral health care professionals recommending and administering the HPV vaccine: Understanding the strengths and assessing the barriers. PLoS One 2021; 16:e0248047. [PMID: 33662007 PMCID: PMC7932114 DOI: 10.1371/journal.pone.0248047] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 02/19/2021] [Indexed: 11/18/2022] Open
Abstract
Introduction Head and neck cancer is a deadly cancer that ranks among the six most common cancers worldwide. The HPV vaccine has been used to prevent head and neck cancer of the oropharynx, and changes in health policies and state law are impacting the role of dental professionals in HPV vaccination. However, relatively little is known about dental professionals’ attitudes regarding the vaccine. Objectives Our study assesses dental professionals’ willingness to administer the HPV vaccine, their confidence discussing HPV with patients, beliefs about the vaccine’s efficacy, perceived barriers to administering it, and sites of referral. Methods We surveyed 623 dental professionals, including dentists, hygienists, dental students, and hygiene students across Michigan. Attitudes toward the vaccine and predictive characteristics were evaluated by logistic regression, ANOVAs, and t-tests. Results The majority of the respondents (51% of dentists, 63% of hygienists, 82% of dental students, and 71% of hygiene students) were willing to administer the HPV vaccine if allowed by law. The role of dental and dental hygiene students would be one of advocacy, educating and recommending the vaccine, and the dental students administering it once licensed. Dental professionals were variably confident discussing HPV with patients and generally believed it enhanced patients’ health. Stronger confidence and beliefs were associated with greater willingness to administer the vaccine. Barriers among professionals opposing the HPV vaccine included lack of knowledge on the subject, liability concerns, and personal beliefs. Conclusion Dental professionals can become leaders in preventing HPV-related cancers. Training and continuing education courses could enhance their confidence and willingness to recommend and administer the HPV vaccine. Policy implications Legislation that permits dental professionals to administer the vaccine could increase the vaccine’s accessibility to patients, improve vaccination rates, and population health.
Collapse
Affiliation(s)
- Denise Guadiana
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, Michigan, United States of America
| | - Nolan M. Kavanagh
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, Michigan, United States of America
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Cristiane H. Squarize
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, Michigan, United States of America
- Laboratory of Epithelial Biology, Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, Michigan, United States of America
- University of Michigan Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
- * E-mail:
| |
Collapse
|
11
|
Holman BN, Van Gulick RJ, Amato CM, MacBeth ML, Davies KD, Aisner DL, Robinson WA, Couts KL. Clinical and molecular features of subungual melanomas are site-specific and distinct from acral melanomas. Melanoma Res 2020; 30:562-573. [PMID: 33156595 DOI: 10.1097/cmr.0000000000000688] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Subungual melanomas (SUM) arise beneath the nails of the hands and feet, and account for 0.7-3.5% of all malignant melanomas. Most studies include SUM in the category of acral melanoma, but understanding the specific features of SUM is critical for improving patient care. In this study, we performed a site-specific comparison of the clinical and molecular features between 54 cases of SUM and 78 cases of nonsubungual acral melanoma. Compared to patients with acral melanoma, patients with SUM were younger at diagnosis, had a higher prevalence of primary melanomas on the hand, and had more frequent reports of previous trauma at the tumor site. SUM was deeper than acral melanoma at diagnosis, which correlated with an increased frequency of metastases. Analysis of common melanoma driver genes revealed KIT and KRAS mutations were predominantly found in SUM, whereas BRAF and NRAS mutations occurred almost exclusively in acral melanoma. We also discovered molecular differences in the cell cycle pathway, where CDK4/CCND1 amplifications were more frequent in SUM and CDKN2A/B loss occurred mostly in acral melanoma, and in the PI3K/mTOR pathway, where RICTOR amplification and TSC1 K587R mutations were exclusively in SUM and PTEN loss and AKT1 mutations were exclusively in acral melanoma. Comparison of hand versus foot tumors revealed more frequent ulceration of SUM foot tumors, which correlated with more distal metastases and poorer overall survival. In summary, we find SUM are both clinically and molecularly distinct from acral melanoma, and our data suggest KIT, CDK4/6, and mTOR inhibitors may be particularly relevant and effective treatments for patients with SUM.
Collapse
Affiliation(s)
- Blair N Holman
- Division of Medical Oncology, Department of Medicine
- Center for Rare Melanomas
| | - Robert J Van Gulick
- Division of Medical Oncology, Department of Medicine
- Center for Rare Melanomas
| | - Carol M Amato
- Division of Medical Oncology, Department of Medicine
- Center for Rare Melanomas
| | - Morgan L MacBeth
- Division of Medical Oncology, Department of Medicine
- Center for Rare Melanomas
| | - Kurtis D Davies
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Dara L Aisner
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - William A Robinson
- Division of Medical Oncology, Department of Medicine
- Center for Rare Melanomas
| | - Kasey L Couts
- Division of Medical Oncology, Department of Medicine
- Center for Rare Melanomas
| |
Collapse
|
12
|
Franconi R, Massa S, Paolini F, Vici P, Venuti A. Plant-Derived Natural Compounds in Genetic Vaccination and Therapy for HPV-Associated Cancers. Cancers (Basel) 2020; 12:cancers12113101. [PMID: 33114220 PMCID: PMC7690868 DOI: 10.3390/cancers12113101] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 10/13/2020] [Accepted: 10/21/2020] [Indexed: 12/22/2022] Open
Abstract
Simple Summary DNA vaccination represents a useful approach for human papillomavirus (HPV) cancer therapy. The therapeutic potential of plant-based natural compounds for control of HPV- associated cancers has been also widely explored. Genetic vaccines for HPV-associated tumors that include plant protein-encoding gene sequences, used alone or in combinations with plant metabolites, are being investigated but are still in their infancy. Main focus of this paper is to provide an overview of the current state of novel therapeutic strategies employing genetic vaccines along with plant-derived compounds and genes. We highlight the importance of multimodality treatment regimen such as combining immunotherapy with plant-derived agents. Abstract Antigen-specific immunotherapy and, in particular, DNA vaccination provides an established approach for tackling human papillomavirus (HPV) cancers at different stages. DNA vaccines are stable and have a cost-effective production. Their intrinsic low immunogenicity has been improved by several strategies with some success, including fusion of HPV antigens with plant gene sequences. Another approach for the control of HPV cancers is the use of natural immunomodulatory agents like those derived from plants, that are able to interfere in carcinogenesis by modulating many different cellular pathways and, in some instances, to reduce chemo- and radiotherapy resistance of tumors. Indeed, plant-derived compounds represent, in many cases, an abundantly available, cost-effective source of molecules that can be either harvested directly in nature or obtained from plant cell cultures. In this review, an overview of the most relevant data reported in literature on the use of plant natural compounds and genetic vaccines that include plant-derived sequences against HPV tumors is provided. The purpose is also to highlight the still under-explored potential of multimodal treatments implying DNA vaccination along with plant-derived agents.
Collapse
Affiliation(s)
- Rosella Franconi
- Division of Health Protection Technology, Department for Sustainability, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, ENEA, 00123 Rome, Italy
- Correspondence: (R.F.); (S.M.); Tel.: +39-06-3048-4482 (R.F.); +39-06-3048-4052 (S.M.)
| | - Silvia Massa
- Division of Biotechnology and Agroindustry, Department for Sustainability, ENEA, 00123 Rome, Italy
- Correspondence: (R.F.); (S.M.); Tel.: +39-06-3048-4482 (R.F.); +39-06-3048-4052 (S.M.)
| | - Francesca Paolini
- HPV-UNIT—UOSD Tumor Immunology and Immunotherapy, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy; (F.P.); (A.V.)
| | - Patrizia Vici
- Division of Medical Oncology B, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy;
| | - Aldo Venuti
- HPV-UNIT—UOSD Tumor Immunology and Immunotherapy, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy; (F.P.); (A.V.)
| |
Collapse
|
13
|
Caldeira PC, Bonardi MJF, Pantuzzo ERM, Soares JMA, Soto AML, Aguiar MCF, Sousa AA. Advanced carcinoma of the oropharynx: survival analysis comparing two treatment modalities. Braz Oral Res 2020; 34:e032. [PMID: 32267289 DOI: 10.1590/1807-3107bor-2020.vol34.0032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 11/27/2019] [Indexed: 12/24/2022] Open
Abstract
About 92,000 new cases of oropharynx carcinoma are expected to occur annually worldwide. There is no consensus about the best therapy for these advanced tumors. The objective of the present study was to evaluate overall and disease-free survival rates of patients with advanced oropharynx squamous cell carcinoma, comparing surgery + radiotherapy with chemotherapy + radiotherapy. Medical records of patients were reviewed. Previously treated tumors were excluded. Clinical, demographic and microscopic information was collected, and p16 staining was performed. Kaplan-Meier survival curves were plotted. Forty-seven cases were included, 41 men and 6 women, having a mean age of 56.3 years. Most patients were smokers (85.1%) and consumed alcohol (74.5%). Patients were stage III (21.3%) or IV (78.7%). Most lesions affected the base of the tongue (36.2%). Of the 23 cases available for p16 testing, 3 were positive (13.0%). There was no difference between the overall and the disease-free survival rates for the two treatment modalities (p>0.05), even when only resectable tumors were compared. Seventeen cases experienced recurrence (36.2%); 16 (34.0%) patients remained alive without disease; 15 (31.9%) died due to disease; 9 (19.2%) were recurrent at the last follow-up. The two treatment protocols were equally efficient in treating advanced oropharynx squamous cell carcinoma, since both promoted similar overall and disease-free survival rates. The results and interpretations related herein mostly regard "conventional" oropharyngeal squamous cell carcinomas, as opposed to HPV-associated tumors.
Collapse
Affiliation(s)
- Patrícia Carlos Caldeira
- Universidade Federal de Minas Gerais - UFMG, School of Dentistry, Department of Oral Pathology and Surgery, Belo Horizonte, MG, Brazil
| | - Mara Juliana Fagundes Bonardi
- Universidade Federal de Minas Gerais - UFMG, School of Dentistry, Department of Oral Pathology and Surgery, Belo Horizonte, MG, Brazil
| | - Esther Rodrigues Mansur Pantuzzo
- Universidade Federal de Minas Gerais - UFMG, Hospital das Clínicas, Department of Surgery of the School of Medicine and Head and Neck Surgery, Belo Horizonte, MG, Brazil
| | - João Marcos Arantes Soares
- Universidade Federal de Minas Gerais - UFMG, Hospital das Clínicas, Department of Surgery of the School of Medicine and Head and Neck Surgery, Belo Horizonte, MG, Brazil
| | - Andréa Maria Lopez Soto
- Universidade Federal de Minas Gerais - UFMG, School of Dentistry, Department of Oral Pathology and Surgery, Belo Horizonte, MG, Brazil
| | - Maria Cássia Ferreira Aguiar
- Universidade Federal de Minas Gerais - UFMG, School of Dentistry, Department of Oral Pathology and Surgery, Belo Horizonte, MG, Brazil
| | - Alexandre Andrade Sousa
- Universidade Federal de Minas Gerais - UFMG, Hospital das Clínicas, Department of Surgery of the School of Medicine and Head and Neck Surgery, Belo Horizonte, MG, Brazil
| |
Collapse
|
14
|
Thong T, Forté CA, Hill EM, Colacino JA. Environmental exposures, stem cells, and cancer. Pharmacol Ther 2019; 204:107398. [PMID: 31376432 PMCID: PMC6881547 DOI: 10.1016/j.pharmthera.2019.107398] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 07/29/2019] [Indexed: 12/19/2022]
Abstract
An estimated 70-90% of all cancers are linked to exposure to environmental risk factors. In parallel, the number of stem cells in a tissue has been shown to be a strong predictor of risk of developing cancer in that tissue. Tumors themselves are characterized by an acquisition of "stem cell" characteristics, and a growing body of evidence points to tumors themselves being sustained and propagated by a stem cell-like population. Here, we review our understanding of the interplay between environmental exposures, stem cell biology, and cancer. We provide an overview of the role of stem cells in development, tissue homeostasis, and wound repair. We discuss the pathways and mechanisms governing stem cell plasticity and regulation of the stem cell state, and describe experimental methods for assessment of stem cells. We then review the current understanding of how environmental exposures impact stem cell function relevant to carcinogenesis and cancer prevention, with a focus on environmental and occupational exposures to chemical, physical, and biological hazards. We also highlight key areas for future research in this area, including defining whether the biological basis for cancer disparities is related to effects of complex exposure mixtures on stem cell biology.
Collapse
Affiliation(s)
- Tasha Thong
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI 48109, USA
| | - Chanese A Forté
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI 48109, USA; Michigan Institute for Computational Discovery and Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Evan M Hill
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI 48109, USA
| | - Justin A Colacino
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI 48109, USA; Department of Nutritional Sciences, University of Michigan School of Public Health, Ann Arbor, MI 48109, USA; Center for Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
15
|
Olivero C, Lanfredini S, Borgogna C, Gariglio M, Patel GK. HPV-Induced Field Cancerisation: Transformation of Adult Tissue Stem Cell Into Cancer Stem Cell. Front Microbiol 2018; 9:546. [PMID: 29632522 PMCID: PMC5879094 DOI: 10.3389/fmicb.2018.00546] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 03/09/2018] [Indexed: 11/24/2022] Open
Abstract
Field cancerisation was originally described as a basis for multiple head and neck squamous cell carcinoma (HNSCC) and is a pre-malignant phenomenon that is frequently attributable to oncogenic human papillomavirus (HPV) infection. Our work on β-HPV-induced cutaneous squamous cell carcinomas identified a novel Lrig1+ hair follicle junctional zone keratinocyte stem cell population as the basis for field cancerisation. Herein, we describe the ability for HPV to infect adult tissue stem cells in order to establish persistent infection and induce their proliferation and displacement resulting in field cancerisation. By review of the HPV literature, we reveal how this mechanism is conserved as the basis of field cancerisation across many tissues. New insights have identified the capacity for HPV early region genes to dysregulate adult tissue stem cell self-renewal pathways ensuring that the expanded population preserve its stem cell characteristics beyond the stem cell niche. HPV-infected cells acquire additional transforming mutations that can give rise to intraepithelial neoplasia (IEN), from environmental factors such as sunlight or tobacco induced mutations in skin and oral cavity, respectively. With establishment of IEN, HPV viral replication is sacrificed with loss of the episome, and the tissue is predisposed to multiple cancer stem cell-driven carcinomas.
Collapse
Affiliation(s)
- Carlotta Olivero
- Virology Unit, Department of Translational Medicine, Novara Medical School, University of Eastern Piedmont, Novara, Italy.,European Cancer Stem Cell Research Institute, Cardiff School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - Simone Lanfredini
- European Cancer Stem Cell Research Institute, Cardiff School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - Cinzia Borgogna
- Virology Unit, Department of Translational Medicine, Novara Medical School, University of Eastern Piedmont, Novara, Italy
| | - Marisa Gariglio
- Virology Unit, Department of Translational Medicine, Novara Medical School, University of Eastern Piedmont, Novara, Italy
| | - Girish K Patel
- European Cancer Stem Cell Research Institute, Cardiff School of Biosciences, Cardiff University, Cardiff, United Kingdom
| |
Collapse
|
16
|
Shang W, Zhang Q, Huang Y, Shanti R, Alawi F, Le A, Jiang C. Cellular Plasticity-Targeted Therapy in Head and Neck Cancers. J Dent Res 2018; 97:654-664. [PMID: 29486673 DOI: 10.1177/0022034518756351] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Head and neck cancer is one of the most frequent human malignancies worldwide, with a high rate of recurrence and metastasis. Head and neck squamous cell carcinoma (HNSCC) is cellularly and molecularly heterogeneous, with subsets of undifferentiated cancer cells exhibiting stem cell-like properties, called cancer stem cells (CSCs). Epithelial-mesenchymal transition, gene mutation, and epigenetic modification are associated with the formation of cellular plasticity of tumor cells in HNSCC, contributing to the acquisition of invasive, recurrent, and metastatic properties and therapeutic resistance. Tumor microenvironment (TME) plays a supportive role in the initiation, progression, and metastasis of head and neck cancer. Stromal fibroblasts, vasculature, immune cells, cytokines, and hypoxia constitute the main components of TME in HNSCC, which contributes not only to the acquisition of CSC properties but also to the recurrence and therapeutic resistance of the malignancies. In this review, we discuss the potential mechanisms underlying the development of cellular plasticity, especially the emergence of CSCs, in HNSCC. We also highlight recent studies implicating the complex interplays among TME components, plastic CSCs, tumorigenesis, recurrence, and therapeutic resistance of HNSCC. Finally, we summarize the treatment modalities of HNSCC and reinforce the novel concept of therapeutic targeting CSCs in HNSCC.
Collapse
Affiliation(s)
- W Shang
- 1 Department of Oral and Maxillofacial Surgery, The Affiliated Hospital of Qingdao University, Shandong, China.,4 School of Stomatology, Qingdao University, Shandong, China
| | - Q Zhang
- 2 Department of Oral and Maxillofacial Surgery and Pharmacology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Y Huang
- 3 Department of Orthodontics, The Affiliated Hospital of Qingdao University, Shandong, China.,4 School of Stomatology, Qingdao University, Shandong, China
| | - R Shanti
- 2 Department of Oral and Maxillofacial Surgery and Pharmacology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA.,5 Department of Oral and Maxillofacial Surgery, Perelman Center for Advanced Medicine, Penn Medicine Hospital of the University of Pennsylvania, Philadelphia, PA, USA.,6 Department of Otorhinolaryngology-Head and Neck Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - F Alawi
- 7 Department of Pathology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - A Le
- 2 Department of Oral and Maxillofacial Surgery and Pharmacology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA.,5 Department of Oral and Maxillofacial Surgery, Perelman Center for Advanced Medicine, Penn Medicine Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - C Jiang
- 3 Department of Orthodontics, The Affiliated Hospital of Qingdao University, Shandong, China.,4 School of Stomatology, Qingdao University, Shandong, China
| |
Collapse
|
17
|
Guan J, Bywaters SM, Brendle SA, Ashley RE, Makhov AM, Conway JF, Christensen ND, Hafenstein S. High-Resolution Structure Analysis of Antibody V5 and U4 Conformational Epitopes on Human Papillomavirus 16. Viruses 2017; 9:v9120374. [PMID: 29211035 PMCID: PMC5744149 DOI: 10.3390/v9120374] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 11/13/2017] [Accepted: 11/18/2017] [Indexed: 01/14/2023] Open
Abstract
Cancers attributable to human papillomavirus (HPV) place a huge burden on the health of both men and women. The current commercial vaccines are genotype specific and provide little therapeutic benefit to patients with existing HPV infections. Identifying the conformational epitopes on the virus capsid supports the development of improved recombinant vaccines to maximize long-term protection against multiple types of HPV. Fragments of antibody (Fab) digested from the neutralizing monoclonal antibodies H16.V5 (V5) and H16.U4 (U4) were bound to HPV16 capsids and the structures of the two virus-Fab complexes were solved to near atomic resolution using cryo-electron microscopy. The structures reveal virus conformational changes, the Fab-binding mode to the capsid, the residues comprising the epitope and indicate a potential interaction of U4 with the minor structural protein, L2. Competition enzyme-linked immunosorbent assay (ELISA) showed V5 outcompetes U4 when added sequentially, demonstrating a steric interference even though the footprints do not overlap. Combined with our previously reported immunological and structural results, we propose that the virus may initiate host entry through an interaction between the icosahedral five-fold vertex of the capsid and receptors on the host cell. The highly detailed epitopes identified for the two antibodies provide a framework for continuing biochemical, genetic and biophysical studies.
Collapse
Affiliation(s)
- Jian Guan
- Department of Medicine, The Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA 17033, USA.
| | - Stephanie M Bywaters
- Department of Pathology, The Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA 17033, USA.
| | - Sarah A Brendle
- Department of Pathology, The Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA 17033, USA.
| | - Robert E Ashley
- Department of Medicine, The Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA 17033, USA.
| | - Alexander M Makhov
- Department of Structural Biology, University of Pittsburgh School of Medicine, 3501 5th Ave, Pittsburgh, PA 15260, USA.
| | - James F Conway
- Department of Structural Biology, University of Pittsburgh School of Medicine, 3501 5th Ave, Pittsburgh, PA 15260, USA.
| | - Neil D Christensen
- Department of Pathology, The Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA 17033, USA.
| | - Susan Hafenstein
- Department of Medicine, The Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA 17033, USA.
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, Millennium Science Complex, University Park, State College, PA 16802, USA.
| |
Collapse
|
18
|
Mui UN, Haley CT, Tyring SK. Viral Oncology: Molecular Biology and Pathogenesis. J Clin Med 2017; 6:E111. [PMID: 29186062 PMCID: PMC5742800 DOI: 10.3390/jcm6120111] [Citation(s) in RCA: 117] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 11/17/2017] [Accepted: 11/22/2017] [Indexed: 02/06/2023] Open
Abstract
Oncoviruses are implicated in approximately 12% of all human cancers. A large number of the world's population harbors at least one of these oncoviruses, but only a small proportion of these individuals go on to develop cancer. The interplay between host and viral factors is a complex process that works together to create a microenvironment conducive to oncogenesis. In this review, the molecular biology and oncogenic pathways of established human oncoviruses will be discussed. Currently, there are seven recognized human oncoviruses, which include Epstein-Barr Virus (EBV), Human Papillomavirus (HPV), Hepatitis B and C viruses (HBV and HCV), Human T-cell lymphotropic virus-1 (HTLV-1), Human Herpesvirus-8 (HHV-8), and Merkel Cell Polyomavirus (MCPyV). Available and emerging therapies for these oncoviruses will be mentioned.
Collapse
Affiliation(s)
- Uyen Ngoc Mui
- Center for Clinical Studies, Houston, TX 77004, USA.
| | | | - Stephen K Tyring
- Center for Clinical Studies, Houston, TX 77004, USA.
- Department of Dermatology, University of Texas Health Science Center at Houston, Houston, TX 77004, USA.
| |
Collapse
|
19
|
Shipilova A, Dayakar MM, Gupta D. High risk human papillomavirus in the periodontium : A case control study. J Indian Soc Periodontol 2017; 21:380-385. [PMID: 29491584 PMCID: PMC5827505 DOI: 10.4103/jisp.jisp_56_17] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 11/13/2017] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Human papilloma viruses (HPVs) are small DNA viruses that have been identified in periodontal pocket as well as gingival sulcus. High risk HPVs are also associated with a subset of head and neck carcinomas. It is thought that the periodontium could be a reservoir for HPV. AIMS 1. Detection of Human Papilloma virus (HPV) in periodontal pocket as well as gingival of patients having localized chronic periodontitis and gingival sulcus of periodontally healthy subjects. 2. Quantitative estimation of E6 and E7 mRNA in subjects showing presence of HPV3. To assess whether periodontal pocket is a reservoir for HPV. SETTINGS AND DESIGN This case-control study included 30 subjects with localized chronic Periodontitis (cases) and 30 periodontally healthy subjects (controls). Two samples were taken from cases, one from periodontal pocket and one from gingival sulcus and one sample was taken from controls. METHODS AND MATERIALS Samples were collected in the form of pocket scrapings and gingival sulcus scrapings from cases and controls respectively. These samples were sent in storage media for identification and estimation of E6/E7 mRNA of HPV using in situ hybridization and flow cytometry. STATISTICAL ANALYSIS Statistical analysis was done by using, mean, percentage and Chi Square test. A statistical package SPSS version 13.0 was used to analyze the data. P value < 0.05 was considered as statistically significant. RESULTS pocket samples as well as sulcus samples for both cases and controls were found to contain HPV E6/E7 mRNAInterpretation and. CONCLUSION Presence of HPV E6/E7 mRNA in periodontium supports the hypothesis that periodontal tissues serve as a reservoir for latent HPV and there may be a synergy between oral cancer, periodontitis and HPV. However prospective studies are required to further explore this link.
Collapse
Affiliation(s)
- Anna Shipilova
- Department of Periodontics and Implantology, K.V.G Dental College, Sullia, Karnataka, India
| | | | - Dinesh Gupta
- Curehealth Diagnostics Pvt Ltd, New Delhi, India
| |
Collapse
|
20
|
Epigenetic Modifications and Head and Neck Cancer: Implications for Tumor Progression and Resistance to Therapy. Int J Mol Sci 2017; 18:ijms18071506. [PMID: 28704968 PMCID: PMC5535996 DOI: 10.3390/ijms18071506] [Citation(s) in RCA: 111] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 07/05/2017] [Accepted: 07/07/2017] [Indexed: 02/06/2023] Open
Abstract
Head and neck squamous carcinoma (HNSCC) is the sixth most prevalent cancer and one of the most aggressive malignancies worldwide. Despite continuous efforts to identify molecular markers for early detection, and to develop efficient treatments, the overall survival and prognosis of HNSCC patients remain poor. Accumulated scientific evidences suggest that epigenetic alterations, including DNA methylation, histone covalent modifications, chromatin remodeling and non-coding RNAs, are frequently involved in oral carcinogenesis, tumor progression, and resistance to therapy. Epigenetic alterations occur in an unsystematic manner or as part of the aberrant transcriptional machinery, which promotes selective advantage to the tumor cells. Epigenetic modifications also contribute to cellular plasticity during tumor progression and to the formation of cancer stem cells (CSCs), a small subset of tumor cells with self-renewal ability. CSCs are involved in the development of intrinsic or acquired therapy resistance, and tumor recurrences or relapse. Therefore, the understanding and characterization of epigenetic modifications associated with head and neck carcinogenesis, and the prospective identification of epigenetic markers associated with CSCs, hold the promise for novel therapeutic strategies to fight tumors. In this review, we focus on the current knowledge on epigenetic modifications observed in HNSCC and emerging Epi-drugs capable of sensitizing HNSCC to therapy.
Collapse
|
21
|
Matsumoto CS, Almeida LO, Guimarães DM, Martins MD, Papagerakis P, Papagerakis S, Leopoldino AM, Castilho RM, Squarize CH. PI3K-PTEN dysregulation leads to mTOR-driven upregulation of the core clock gene BMAL1 in normal and malignant epithelial cells. Oncotarget 2016; 7:42393-42407. [PMID: 27285754 PMCID: PMC5173143 DOI: 10.18632/oncotarget.9877] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 05/19/2016] [Indexed: 01/23/2023] Open
Abstract
Dysfunctional clock signaling is observed in a variety of pathological conditions. Many members of the clock gene family are upregulated in tumor cells. Here, we explored the consequences of a commonly disrupted signaling pathway in head and neck cancer on the regulation of circadian clock genes. PTEN is a key molecular controller of the PI3K signaling, and loss of PTEN function is often observed in a variety of cancers. Our main goal was to determine whether PTEN regulates circadian clock signaling. We found that oxidation-driven loss of PTEN function resulted in the activation of mTOR signaling and activation of the core clock protein BMAL1 (also known as ARNTL). The PTEN-induced BMAL1 upregulation was further confirmed using small interference RNA targeting PTEN, and in vivo conditional depletion of PTEN from the epidermis. We observed that PTEN-driven accumulation of BMAL1 was mTOR-mediated and that administration of Rapamycin, a specific mTOR inhibitor, resulted in in vivo rescue of normal levels of BMAL1. Accumulation of BMAL1 by deletion of PER2, a Period family gene, was also rescued upon in vivo administration of mTOR inhibitor. Notably, BMAL1 regulation requires mTOR regulatory protein Raptor and Rictor. These findings indicate that mTORC1 and mTORC2 complex plays a critical role in controlling BMAL1, establishing a connection between PI3K signaling and the regulation of circadian rhythm, ultimately resulting in deregulated BMAL1 in tumor cells with disrupted PI3K signaling.
Collapse
Affiliation(s)
- Camila S. Matsumoto
- Laboratory of Epithelial Biology, Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI, USA
- Department of Clinical Analysis, Toxicology and Bromatology, School of Pharmacy, University of Sao Paulo, Ribeirao Preto, SP, Brazil
| | - Luciana O. Almeida
- Laboratory of Epithelial Biology, Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI, USA
| | - Douglas M. Guimarães
- Laboratory of Epithelial Biology, Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI, USA
- Department of Oral Pathology, School of Dentistry, University of Sao Paulo, SP, Brazil
| | - Manoela D. Martins
- Laboratory of Epithelial Biology, Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI, USA
- Department of Oral Pathology, School of Dentistry, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Petros Papagerakis
- Department of Orthodontics and Pediatric Dentistry, School of Dentistry, University of Michigan, Ann Arbor, MI, USA
- Center for Organogenesis, University of Michigan, Ann Arbor, MI, USA
| | - Silvana Papagerakis
- Comprehensive Cancer Center, University of Michigan, Ann Arbor, MI, USA
- Department of Otolaryngology, Medical School, University of Michigan, Ann Arbor, MI, USA
| | - Andreia M. Leopoldino
- Department of Clinical Analysis, Toxicology and Bromatology, School of Pharmacy, University of Sao Paulo, Ribeirao Preto, SP, Brazil
| | - Rogerio M. Castilho
- Laboratory of Epithelial Biology, Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI, USA
| | - Cristiane H. Squarize
- Laboratory of Epithelial Biology, Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI, USA
- Comprehensive Cancer Center, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
22
|
Abstract
Human papillomaviruses are the causative agents of cervical, anal as well as many oropharyngeal cancers. While prophylactic vaccines have been developed, uptake is low in the US and other Western countries, and access is limited in less developed countries. A number of areas are emerging as critical for future study. These include investigation of the mechanisms regulating infection and progression to cancer at both cervical and oropharyngeal sites as these appear to be distinct. HPV-induced cancers also may be susceptible to immune therapy, revealing opportunities for treating advanced cervical disease and reducing the morbidity of treatments for oropharyngeal cancers. We believe these areas are critical focal points for HPV cancer research in the next decade.
Collapse
Affiliation(s)
- Erika Langsfeld
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Laimonis A Laimins
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| |
Collapse
|
23
|
Affiliation(s)
- O.D. Klein
- Program in Craniofacial Biology, University of California, San Francisco, San Francisco, CA, USA
- Departments of Orofacial Sciences and Pediatrics, University of California, San Francisco, San Francisco, CA, USA
- Institute for Human Genetics, University of California, San Francisco, San Francisco, CA, USA
| | - J.E. Nör
- Department of Cariology, Restorative Sciences, and Endodontics, University of Michigan School of Dentistry, Ann Arbor, MI, USA
- Department of Otolaryngology, University of Michigan School of Medicine, Ann Arbor, MI, USA
- Department of Biomedical Engineering, University of Michigan College of Engineering, Ann Arbor, MI, USA
- University of Michigan Comprehensive Cancer Center, Ann Arbor, MI, USA
| |
Collapse
|