1
|
Lemke J, Mengers N, Schmidt L, Schulig L, König S, Rosendahl P, Bartz FM, Garscha U, Bednarski PJ, Link A. Lead Optimization of Positive Allosteric K V7.2/3 Channel Modulators toward Improved Balance of Lipophilicity and Aqueous Solubility. J Med Chem 2025; 68:8377-8399. [PMID: 40198203 DOI: 10.1021/acs.jmedchem.4c03112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2025]
Abstract
The voltage-gated potassium channel KV7.2/3 is gaining attention for its association with several medical indications. While recently reported, potent compounds aimed to fill the therapeutic gap left by market-withdrawn activators, key physicochemical parameters did not meet the requirements of potential drug candidates. Targeting the membrane-located channel requires subtly balancing lipophilicity, activity, and aqueous solubility. This publication describes the lead optimization of a highly active compound toward optimized physicochemical parameters. Out of 42 newly synthesized compounds, 30 showed activity on KV7.2/3 channels, and 15 had also an increased solubility compared the to hit compound. The integration of a three-dimensional bulky structure and the probable onset of chameleonic behavior, led to a 20-fold solubility increase (S = 21.7 vs 1.1 μM) and only slightly reduced potency (pEC50 = 7.42 vs 7.96) for the lead. Additionally, the target engagement of the compound was theoretically enhanced by a reduction of membrane retention.
Collapse
Affiliation(s)
- Jana Lemke
- Institute of Pharmacy, University of Greifswald, Friedrich-Ludwig-Jahn-Str. 17, Greifswald 17489, Germany
| | - Nadine Mengers
- Institute of Pharmacy, University of Greifswald, Friedrich-Ludwig-Jahn-Str. 17, Greifswald 17489, Germany
| | - Louis Schmidt
- Institute of Pharmacy, University of Greifswald, Friedrich-Ludwig-Jahn-Str. 17, Greifswald 17489, Germany
| | - Lukas Schulig
- Institute of Pharmacy, University of Greifswald, Friedrich-Ludwig-Jahn-Str. 17, Greifswald 17489, Germany
| | - Stefanie König
- Institute of Pharmacy, University of Greifswald, Friedrich-Ludwig-Jahn-Str. 17, Greifswald 17489, Germany
| | - Pascal Rosendahl
- Institute of Pharmacy, University of Greifswald, Friedrich-Ludwig-Jahn-Str. 17, Greifswald 17489, Germany
| | - Frieda-Marie Bartz
- Institute of Pharmacy, University of Greifswald, Friedrich-Ludwig-Jahn-Str. 17, Greifswald 17489, Germany
| | - Ulrike Garscha
- Institute of Pharmacy, University of Greifswald, Friedrich-Ludwig-Jahn-Str. 17, Greifswald 17489, Germany
| | - Patrick J Bednarski
- Institute of Pharmacy, University of Greifswald, Friedrich-Ludwig-Jahn-Str. 17, Greifswald 17489, Germany
| | - Andreas Link
- Institute of Pharmacy, University of Greifswald, Friedrich-Ludwig-Jahn-Str. 17, Greifswald 17489, Germany
| |
Collapse
|
2
|
Perucca E, Taglialatela M. Targeting Kv7 Potassium Channels for Epilepsy. CNS Drugs 2025; 39:263-288. [PMID: 39853501 PMCID: PMC11850491 DOI: 10.1007/s40263-024-01155-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/22/2024] [Indexed: 01/26/2025]
Abstract
Voltage-gated Kv7 potassium channels, particularly Kv7.2 and Kv.7.3 channels, play a critical role in modulating susceptibility to seizures, and mutations in genes that encode these channels cause heterogeneous epilepsy phenotypes. On the basis of this evidence, activation of Kv7.2 and Kv.7.3 channels has long been considered an attractive target in the search for novel antiseizure medications. Ezogabine (retigabine), the first Kv7.2/3 activator introduced in 2011 for the treatment of focal seizures, was withdrawn from the market in 2017 due to declining use after discovery of its association with pigmentation changes in the retina, skin, and mucosae. A novel formulation of ezogabine for pediatric use (XEN496) has been recently investigated in children with KCNQ2-related developmental and epileptic encephalopathy, but the trial was terminated prematurely for reasons unrelated to safety. Among novel Kv7.2/3 openers in clinical development, azetukalner has shown dose-dependent efficacy against drug-resistant focal seizures with a good tolerability profile and no evidence of pigmentation-related adverse effects in early clinical studies, and it is now under investigation in phase III trials for the treatment of focal seizures, generalized tonic-clonic seizures, and major depressive disorder. Another Kv7.2/3 activator, BHV-7000, has completed phase I studies in healthy subjects, with excellent tolerability at plasma drug concentrations that exceed the median effective concentrations in a preclinical model of anticonvulsant activity, but no efficacy data in patients with epilepsy are available to date. Among other Kv7.2/3 activators in clinical development as potential antiseizure medications, pynegabine and CB-003 have completed phase I safety and pharmacokinetic studies, but results have not been yet reported. Overall, interest in targeting Kv7 channels for the treatment of epilepsy and for other indications remains strong. Future breakthroughs in this area could come from exploitation of mechanistic differences in the action of Kv7 activators, and from the development of molecules that combine Kv7 activation with other mechanisms of action.
Collapse
Affiliation(s)
- Emilio Perucca
- Department of Medicine (Austin Health), Melbourne Brain Center, The University of Melbourne, 245 Burgundy St., Heidelberg, VIC, 3084, Australia.
- Department of Neuroscience, School of Translational Medicine, Monash University, Melbourne, VIC, Australia.
| | - Maurizio Taglialatela
- Division of Pharmacology, Department of Neuroscience, University of Naples "Federico II", Naples, Italy
| |
Collapse
|
3
|
Caccialupi Da Prato L, Rezzag Lebza A, Consumi A, Tessier M, Srinivasan A, Rivera C, Laurin J, Pellegrino C. Ectopic expression of the cation-chloride cotransporter KCC2 in blood exosomes as a biomarker for functional rehabilitation. Front Mol Neurosci 2025; 18:1522571. [PMID: 39974187 PMCID: PMC11835807 DOI: 10.3389/fnmol.2025.1522571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 01/20/2025] [Indexed: 02/21/2025] Open
Abstract
Background Traumatic brain injury (TBI) is a major cause of disabilities in industrialized countries. Cognitive decline typically occurs in the chronic phase of the condition, following cellular and molecular processes. In this study, we described the use of KCC2, a neuronal-specific potassium-chloride cotransporter, as a potent biomarker to predict cognitive dysfunction after TBI. Methods Using neuronal and total exosome collections from the blood serum of the controls and patients with TBI, we were able to anticipate the decline in cognitive performance. Results After TBI, we observed a significant and persistent loss of KCC2 expression in the blood exosomes, which was correlated with the changes in the network activity and cellular processes such as secondary neurogenesis. Furthermore, we established a correlation between this decrease in KCC2 expression and the long-term consequences of brain trauma and identified a link between the loss of KCC2 expression and the emergence of depressive-like behavior observed in the mice. Conclusion We successfully validated our previous findings, supporting the potential therapeutic benefits of bumetanide in mitigating post-traumatic depression (PTD) following TBI. This effect was correlated with the recovery of KCC2 expression in the blood exosomes, the prevention of extensive neuronal loss among the interneurons, and changes in secondary neurogenesis.
Collapse
Affiliation(s)
| | | | - A. Consumi
- Inmed, INSERM, Aix-Marseille University, Marseille, France
| | - M. Tessier
- Inmed, INSERM, Aix-Marseille University, Marseille, France
| | - A. Srinivasan
- Division of Nanoscience and Technology, School of Life Sciences, Center of Excellence in Molecular Biology and Regenerative Medicine, JSS Academy of Higher Education and Research, Mysore, India
| | - C. Rivera
- Inmed, INSERM, Aix-Marseille University, Marseille, France
- Neuroscience Center, University of Helsinki, Helsinki, Finland
| | - J. Laurin
- Inmed, INSERM, Aix-Marseille University, Marseille, France
| | - C. Pellegrino
- Inmed, INSERM, Aix-Marseille University, Marseille, France
| |
Collapse
|
4
|
Zhang H, Tian Y, Zhang Y, Wang Y, Qi J, Wang X, Yuan Y, Chen R, Zhao Y, Liu C, Zhou N, Liu L, Hao H, Du X, Zhang H. Neuroprotective Effects, Mechanisms of Action and Therapeutic Potential of the Kv7/KCNQ Channel Opener QO-83 in Ischemic Stroke. Transl Stroke Res 2025:10.1007/s12975-025-01329-1. [PMID: 39853651 DOI: 10.1007/s12975-025-01329-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 10/17/2024] [Accepted: 01/11/2025] [Indexed: 01/26/2025]
Abstract
Ischemic stroke is a worldwide disease with high mortality and morbidity. Kv7/KCNQ channels are key modulators of neuronal excitability and microglia function, and activation of Kv7/KCNQ channels has emerged as a potential therapeutic avenue for ischemic stroke. In the present study, we focused on a new Kv7/KCNQ channel opener QO-83 on the stroke outcomes and its therapeutic potential. Transient or distal middle cerebral artery occlusion model was established with C57 mouse to evaluate the role of QO-83. Solitary dose of QO-83 contributes to the microglia inhibition and fibrotic scar mitigation post stroke. QO83 shows prominent effect on reducing infarction area, alleviating cerebral edema, maintaining blood-brain barrier integrity, and enhancing neurogenesis. Single-nucleus RNA sequencing unveils neuroprotection and specific microglial subclusters influenced by QO-83. More importantly, QO83 shows promise in enhancing survival rates with dose dependence. Notably, these protective effects extend beyond the 4-6 h post-reperfusion window. Additionally, continuous dosing of QO-83 correlates with enhanced cognition. In conclusion, this study highlights QO-83 as a protective agent against ischemic brain injury, showcasing its multifaceted effects and potential as a therapeutic strategy.
Collapse
Affiliation(s)
- Huiran Zhang
- The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Shijiazhuang, China
- Department of Medical and Pharmaceutical Informatics, Hebei Medical University, Shijiazhuang, 050017, Hebei, China
| | - Yanfei Tian
- Department of Pharmacology, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, The Key Laboratory of New Drug Pharmacology and Toxicology, Hebei Medical University, Shijiazhuang, 050017, Hebei, China
| | - Yan Zhang
- Department of Pharmacology, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, The Key Laboratory of New Drug Pharmacology and Toxicology, Hebei Medical University, Shijiazhuang, 050017, Hebei, China
| | - Yan Wang
- Department of Pharmacology, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, The Key Laboratory of New Drug Pharmacology and Toxicology, Hebei Medical University, Shijiazhuang, 050017, Hebei, China
| | - Jinlong Qi
- Department of Pharmacology, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, The Key Laboratory of New Drug Pharmacology and Toxicology, Hebei Medical University, Shijiazhuang, 050017, Hebei, China
- The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Shijiazhuang, China
| | - Xiangyu Wang
- Department of Clinical Pharmacy, Hebei Medical University, Shijiazhuang, 050017, Hebei, China
| | - Yi Yuan
- Department of Pharmacology, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, The Key Laboratory of New Drug Pharmacology and Toxicology, Hebei Medical University, Shijiazhuang, 050017, Hebei, China
| | - Rong Chen
- Department of Neurology, Hebei Key Laboratory of Vascular Homeostasis and Hebei Collaborative Innovation Center for Cardio-Cerebrovascular Disease, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, China
| | - Yupeng Zhao
- Department of Pharmacology, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, The Key Laboratory of New Drug Pharmacology and Toxicology, Hebei Medical University, Shijiazhuang, 050017, Hebei, China
| | - Chang Liu
- Department of Pharmacology, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, The Key Laboratory of New Drug Pharmacology and Toxicology, Hebei Medical University, Shijiazhuang, 050017, Hebei, China
| | - Najing Zhou
- Department of Pharmacology, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, The Key Laboratory of New Drug Pharmacology and Toxicology, Hebei Medical University, Shijiazhuang, 050017, Hebei, China
- Department of Cell Biology, Hebei Medical University, Shijiazhuang, 050017, Hebei, China
| | - Lanxin Liu
- Shanghai Applied Protein Technology Co., Ltd., Shanghai, 201100, China
| | - Han Hao
- Department of Pharmacology, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, The Key Laboratory of New Drug Pharmacology and Toxicology, Hebei Medical University, Shijiazhuang, 050017, Hebei, China
| | - Xiaona Du
- Department of Pharmacology, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, The Key Laboratory of New Drug Pharmacology and Toxicology, Hebei Medical University, Shijiazhuang, 050017, Hebei, China
- The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Shijiazhuang, China
- Collaborative Innovation Center of Hebei Province for Mechanism, Diagnosis and Treatment of Neuropsychiatric Diseases, Shijiazhuang, 050017, Hebei, China
| | - Hailin Zhang
- Department of Pharmacology, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, The Key Laboratory of New Drug Pharmacology and Toxicology, Hebei Medical University, Shijiazhuang, 050017, Hebei, China.
- The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Shijiazhuang, China.
- Department of Psychiatry, The First Hospital of Hebei Medical University, Mental Health Institute of Hebei Medical University, Shijiazhuang, 050017, Hebei, China.
- Collaborative Innovation Center of Hebei Province for Mechanism, Diagnosis and Treatment of Neuropsychiatric Diseases, Shijiazhuang, 050017, Hebei, China.
| |
Collapse
|
5
|
El Chemali L, Boutary S, Liu S, Liu GJ, Middleton RJ, Banati RB, Bahrenberg G, Rupprecht R, Schumacher M, Massaad-Massade L. GRT-X Stimulates Dorsal Root Ganglia Axonal Growth in Culture via TSPO and Kv7.2/3 Potassium Channel Activation. Int J Mol Sci 2024; 25:7327. [PMID: 39000434 PMCID: PMC11242890 DOI: 10.3390/ijms25137327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/27/2024] [Accepted: 06/30/2024] [Indexed: 07/16/2024] Open
Abstract
GRT-X, which targets both the mitochondrial translocator protein (TSPO) and the Kv7.2/3 (KCNQ2/3) potassium channels, has been shown to efficiently promote recovery from cervical spine injury. In the present work, we investigate the role of GRT-X and its two targets in the axonal growth of dorsal root ganglion (DRG) neurons. Neurite outgrowth was quantified in DRG explant cultures prepared from wild-type C57BL6/J and TSPO-KO mice. TSPO was pharmacologically targeted with the agonist XBD173 and the Kv7 channels with the activator ICA-27243 and the inhibitor XE991. GRT-X efficiently stimulated DRG axonal growth at 4 and 8 days after its single administration. XBD173 also promoted axonal elongation, but only after 8 days and its repeated administration. In contrast, both ICA27243 and XE991 tended to decrease axonal elongation. In dissociated DRG neuron/Schwann cell co-cultures, GRT-X upregulated the expression of genes associated with axonal growth and myelination. In the TSPO-KO DRG cultures, the stimulatory effect of GRT-X on axonal growth was completely lost. However, GRT-X and XBD173 activated neuronal and Schwann cell gene expression after TSPO knockout, indicating the presence of additional targets warranting further investigation. These findings uncover a key role of the dual mode of action of GRT-X in the axonal elongation of DRG neurons.
Collapse
Affiliation(s)
- Léa El Chemali
- Maladies et Hormones du Système Nerveux, Inserm, Université Paris-Saclay, 94276 Le Kremlin-Bicêtre, France
| | - Suzan Boutary
- Maladies et Hormones du Système Nerveux, Inserm, Université Paris-Saclay, 94276 Le Kremlin-Bicêtre, France
| | - Song Liu
- Maladies et Hormones du Système Nerveux, Inserm, Université Paris-Saclay, 94276 Le Kremlin-Bicêtre, France
| | - Guo-Jun Liu
- Australian Nuclear Science and Technology Organisation (ANSTO), Kirrawee, NSW 2232, Australia
- Faculty of Medicine and Health, University of Sydney, Camperdown, NSW 2006, Australia
| | - Ryan J Middleton
- Australian Nuclear Science and Technology Organisation (ANSTO), Kirrawee, NSW 2232, Australia
| | - Richard B Banati
- Faculty of Medicine and Health, University of Sydney, Camperdown, NSW 2006, Australia
| | - Gregor Bahrenberg
- Global Preclinical R&D, Grünenthal Innovation, Grünenthal GmbH, Zieglerstraße 6, D-52078 Aachen, Germany
| | - Rainer Rupprecht
- Department of Psychiatry and Psychotherapy, University of Regensburg, D-93053 Regensburg, Germany
| | - Michael Schumacher
- Maladies et Hormones du Système Nerveux, Inserm, Université Paris-Saclay, 94276 Le Kremlin-Bicêtre, France
| | - Liliane Massaad-Massade
- Maladies et Hormones du Système Nerveux, Inserm, Université Paris-Saclay, 94276 Le Kremlin-Bicêtre, France
| |
Collapse
|
6
|
Smith RA, Mir F, Butler MP, Maharathi B, Loeb JA. Spike-induced cytoarchitectonic changes in epileptic human cortex are reduced via MAP2K inhibition. Brain Commun 2024; 6:fcae152. [PMID: 38741662 PMCID: PMC11089420 DOI: 10.1093/braincomms/fcae152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 03/01/2024] [Accepted: 04/26/2024] [Indexed: 05/16/2024] Open
Abstract
Interictal spikes are electroencephalographic discharges that occur at or near brain regions that produce epileptic seizures. While their role in generating seizures is not well understood, spikes have profound effects on cognition and behaviour, depending on where and when they occur. We previously demonstrated that spiking areas of human neocortex show sustained MAPK activation in superficial cortical Layers I-III and are associated with microlesions in deeper cortical areas characterized by reduced neuronal nuclear protein staining and increased microglial infiltration. Based on these findings, we chose to investigate additional neuronal populations within microlesions, specifically inhibitory interneurons. Additionally, we hypothesized that spiking would be sufficient to induce similar cytoarchitectonic changes within the rat cortex and that inhibition of MAPK signalling, using a MAP2K inhibitor, would not only inhibit spike formation but also reduce these cytoarchitectonic changes and improve behavioural outcomes. To test these hypotheses, we analysed tissue samples from 16 patients with intractable epilepsy who required cortical resections. We also utilized a tetanus toxin-induced animal model of interictal spiking, designed to produce spikes without seizures in male Sprague-Dawley rats. Rats were fitted with epidural electrodes, to permit EEG recording for the duration of the study, and automated algorithms were implemented to quantify spikes. After 6 months, animals were sacrificed to assess the effects of chronic spiking on cortical cytoarchitecture. Here, we show that microlesions may promote excitability due to a significant reduction of inhibitory neurons that could be responsible for promoting interictal spikes in superficial layers. Similarly, we found that the induction of epileptic spikes in the rat model produced analogous changes, including reduced neuronal nuclear protein, calbindin and parvalbumin-positive neurons and increased microglia, suggesting that spikes are sufficient for inducing these cytoarchitectonic changes in humans. Finally, we implicated MAPK signalling as a driving force producing these pathological changes. Using CI-1040 to inhibit MAP2K, both acutely and after spikes developed, resulting in fewer interictal spikes, reduced microglial activation and less inhibitory neuron loss. Treated animals had significantly fewer high-amplitude, short-duration spikes, which correlated with improved spatial memory performance on the Barnes maze. Together, our results provide evidence for a cytoarchitectonic pathogenesis underlying epileptic cortex, which can be ameliorated through both early and delayed MAP2K inhibition. These findings highlight the potential role for CI-1040 as a pharmacological treatment that could prevent the development of epileptic activity and reduce cognitive impairment in both patients with epilepsy and those with non-epileptic spike-associated neurobehavioural disorders.
Collapse
Affiliation(s)
- Rachael A Smith
- Department of Neurology and Rehabilitation, University of Illinois Chicago, Chicago, IL 60612, USA
| | - Fozia Mir
- Department of Neurology and Rehabilitation, University of Illinois Chicago, Chicago, IL 60612, USA
| | - Mitchell P Butler
- Department of Neurology and Rehabilitation, University of Illinois Chicago, Chicago, IL 60612, USA
| | - Biswajit Maharathi
- Department of Neurology and Rehabilitation, University of Illinois Chicago, Chicago, IL 60612, USA
| | - Jeffrey A Loeb
- Department of Neurology and Rehabilitation, University of Illinois Chicago, Chicago, IL 60612, USA
| |
Collapse
|
7
|
Ma X, Yang G, Zhang J, Ma R, Shen J, Feng F, Yu D, Huang C, Ma X, La Y, Wu X, Guo X, Chu M, Yan P, Liang C. Association between Single Nucleotide Polymorphisms of PRKD1 and KCNQ3 Gene and Milk Quality Traits in Gannan Yak ( Bos grunniens). Foods 2024; 13:781. [PMID: 38472894 DOI: 10.3390/foods13050781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/28/2024] [Accepted: 02/28/2024] [Indexed: 03/14/2024] Open
Abstract
Protein kinase D1 (PRKD1) functions primarily in normal mammary cells, and the potassium voltage-gated channel subfamily Q member 3 (KCNQ3) gene plays an important role in controlling membrane potential and neuronal excitability, it has been found that this particular gene is linked to the percentage of milk fat in dairy cows. The purpose of this study was to investigate the relationship between nucleotide polymorphisms (SNPs) of PRKD1 and KCNQ3 genes and the milk quality of Gannan yak and to find molecular marker sites that may be used for milk quality breeding of Gannan yak. Three new SNPs were detected in the PRKD1 (g.283,619T>C, g.283,659C>A) and KCNQ3 gene (g.133,741T>C) of 172 Gannan lactating female yaks by Illumina yak cGPS 7K liquid-phase microarray technology. Milk composition was analyzed using a MilkoScanTM milk composition analyzer. We found that the mutations of these three loci significantly improved the lactose, milk fat, casein, protein, non-fat milk solid (SNF) content and acidity of Gannan yaks. The lactose content of the TC heterozygous genotype population at g.283,619T>C locus was significantly higher than that of the TT wild-type population (p < 0.05); the milk fat content of the CA heterozygous genotype population at g.283,659C>A locus was significantly higher than that of the CC wild-type and AA mutant populations (p < 0.05); the casein, protein and acidity of the CC mutant and TC heterozygous groups at the g.133,741T>C locus were significantly higher than those of the wild type (p < 0.05), and the SNF of the TC heterozygous group was significantly higher than that of the mutant group (p < 0.05). The results showed that PRKD1 and KCNQ3 genes could be used as candidate genes affecting the milk traits of Gannan yak.
Collapse
Affiliation(s)
- Xiaoyong Ma
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
- Key Laboratory of Yak Breeding of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Guowu Yang
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
- Key Laboratory of Yak Breeding of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Juanxiang Zhang
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
- Key Laboratory of Yak Breeding of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Rong Ma
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
- Key Laboratory of Yak Breeding of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Jinwei Shen
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
- Key Laboratory of Yak Breeding of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Fen Feng
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
- Key Laboratory of Yak Breeding of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Daoning Yu
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
- Key Laboratory of Yak Breeding of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Chun Huang
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
- Key Laboratory of Yak Breeding of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Xiaoming Ma
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
- Key Laboratory of Yak Breeding of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Yongfu La
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
- Key Laboratory of Yak Breeding of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Xiaoyun Wu
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
- Key Laboratory of Yak Breeding of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Xian Guo
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
- Key Laboratory of Yak Breeding of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Min Chu
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
- Key Laboratory of Yak Breeding of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Ping Yan
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
- Key Laboratory of Yak Breeding of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- Institute of Western Agriculture, The Chinese Academy of Agricultural Sciences, Changji 831100, China
| | - Chunnian Liang
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
- Key Laboratory of Yak Breeding of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| |
Collapse
|
8
|
Locskai LF, Alyenbaawi H, Allison WT. Antiepileptic Drugs as Potential Dementia Prophylactics Following Traumatic Brain Injury. Annu Rev Pharmacol Toxicol 2024; 64:577-598. [PMID: 37788493 DOI: 10.1146/annurev-pharmtox-051921-013930] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Seizures and other forms of neurovolatility are emerging as druggable prodromal mechanisms that link traumatic brain injury (TBI) to the progression of later dementias. TBI neurotrauma has both acute and long-term impacts on health, and TBI is a leading risk factor for dementias, including chronic traumatic encephalopathy and Alzheimer's disease. Treatment of TBI already considers acute management of posttraumatic seizures and epilepsy, and impressive efforts have optimized regimens of antiepileptic drugs (AEDs) toward that goal. Here we consider that expanding these management strategies could determine which AED regimens best prevent dementia progression in TBI patients. Challenges with this prophylactic strategy include the potential consequences of prolonged AED treatment and that a large subset of patients are refractory to available AEDs. Addressing these challenges is warranted because the management of seizure activity following TBI offers a rare opportunity to prevent the onset or progression of devastating dementias.
Collapse
Affiliation(s)
- Laszlo F Locskai
- Centre for Prions and Protein Folding Diseases and Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada;
| | - Hadeel Alyenbaawi
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Al Majmaah, Saudi Arabia
| | - W Ted Allison
- Centre for Prions and Protein Folding Diseases and Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada;
- Department of Medical Genetics, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
9
|
Chen KJ, Yoshimura R, Edmundo CA, Truong TM, Civelli O, Alachkar A, Abbott GW. Behavioral and neuro-functional consequences of eliminating the KCNQ3 GABA binding site in mice. Front Mol Neurosci 2023; 16:1192628. [PMID: 37305551 PMCID: PMC10248464 DOI: 10.3389/fnmol.2023.1192628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 05/09/2023] [Indexed: 06/13/2023] Open
Abstract
Voltage-gated potassium (Kv) channels formed by α subunits KCNQ2-5 are important in regulating neuronal excitability. We previously found that GABA directly binds to and activates channels containing KCNQ3, challenging the traditional understanding of inhibitory neurotransmission. To investigate the functional significance and behavioral role of this direct interaction, mice with a mutated KCNQ3 GABA binding site (Kcnq3-W266L) were generated and subjected to behavioral studies. Kcnq3-W266L mice exhibited distinctive behavioral phenotypes, of which reduced nociceptive and stress responses were profound and sex-specific. In female Kcnq3-W266L mice, the phenotype was shifted towards more nociceptive effects, while in male Kcnq3-W266L mice, it was shifted towards the stress response. In addition, female Kcnq3-W266L mice exhibited lower motor activity and reduced working spatial memory. The neuronal activity in the lateral habenula and visual cortex was altered in the female Kcnq3-W266L mice, suggesting that GABAergic activation of KCNQ3 in these regions may play a role in the regulation of the responses. Given the known overlap between the nociceptive and stress brain circuits, our data provide new insights into a sex-dependent role of KCNQ3 in regulating neural circuits involved in nociception and stress, via its GABA binding site. These findings identify new targets for effective treatments for neurological and psychiatric conditions such as pain and anxiety.
Collapse
Affiliation(s)
- Kiki J. Chen
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University of California, Irvine, Irvine, CA, United States
| | - Ryan Yoshimura
- Bioelectricity Laboratory, Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, Irvine, CA, United States
| | - Clarissa Adriana Edmundo
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University of California, Irvine, Irvine, CA, United States
| | - Tri Minh Truong
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University of California, Irvine, Irvine, CA, United States
| | - Olivier Civelli
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University of California, Irvine, Irvine, CA, United States
| | - Amal Alachkar
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University of California, Irvine, Irvine, CA, United States
- UC Irvine Center for the Neurobiology of Learning and Memory, University of California, Irvine, Irvine, CA, United States
- Institute for Genomics and Bioinformatics, School of Information and Computer Sciences, University of California, Irvine, Irvine, CA, United States
| | - Geoffrey W. Abbott
- Bioelectricity Laboratory, Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, Irvine, CA, United States
| |
Collapse
|
10
|
Vigil FA, Belchior H, Bugay V, Bazaldua II, Stoja A, Dantas DC, Chun SH, Farmer A, Bozdemir E, Holstein DM, Cavazos JE, Lechleiter JD, Brenner R, Shapiro MS. Acute Treatment with the M-Channel (K v7, KCNQ) Opener Retigabine Reduces the Long-Term Effects of Repetitive Blast Traumatic Brain Injuries. Neurotherapeutics 2023; 20:853-869. [PMID: 36976493 PMCID: PMC10275841 DOI: 10.1007/s13311-023-01361-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/20/2023] [Indexed: 03/29/2023] Open
Abstract
We investigated whether pharmacological increase of "M-type" (KCNQ, Kv7) K + channel currents by the M-channel opener, retigabine (RTG), acutely after repetitive traumatic brain injuries (rTBIs), prevents or reduces their long-term detrimental effects. rTBIs were studied using a blast shock air wave mouse model. Animals were monitored by video and electroencephalogram (EEG) records for nine months after the last injury to assess the occurrence of post-traumatic seizures (PTS), post-traumatic epilepsy (PTE), sleep-wake cycle architecture alterations, and the power of the EEG signals. We evaluated the development of long-term changes in the brain associated with various neurodegenerative diseases in mice by examining transactive response DNA-binding protein 43 (TDP-43) expression and nerve fiber damage ~ 2 years after the rTBIs. We observed acute RTG treatment to reduce the duration of PTS and impair the development of PTE. Acute RTG treatment also prevented post-injury hypersomnia, nerve fiber damage, and cortical TDP-43 accumulation and translocation from the nucleus to the cytoplasm. Mice that developed PTE displayed impaired rapid eye movement (REM) sleep, and there were significant correlations between seizure duration and time spent in the different stages of the sleep-wake cycle. We observed acute RTG treatment to impair injury-induced reduction of age-related increase in gamma frequency power of the EGG, which has been suggested to be necessary for a healthy aged brain. The data show that RTG, administered acutely post-TBI, is a promising, novel therapeutic option to blunt/prevent several long-term effects of rTBIs. Furthermore, our results show a direct relationship between sleep architecture and PTE.
Collapse
Affiliation(s)
- Fabio A Vigil
- Department of Cellular and Integrative Physiology, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Hindiael Belchior
- Department of Physical Education, Federal University of Rio Grande Do Norte, Natal, RN, Brazil
| | - Vladislav Bugay
- Department of Cellular and Integrative Physiology, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Isabella I Bazaldua
- Department of Cellular and Integrative Physiology, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Aiola Stoja
- Department of Cellular and Integrative Physiology, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Denise C Dantas
- Faculty of Health Sciences of Trairí, Federal University of Rio Grande Do Norte, Natal, RN, Brazil
| | - Sang H Chun
- Department of Cell Systems and Anatomy, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Austin Farmer
- Department of Cellular and Integrative Physiology, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Eda Bozdemir
- Department of Cell Systems and Anatomy, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Deborah M Holstein
- Department of Cell Systems and Anatomy, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Jose E Cavazos
- Department of Neurology, University of Texas Health San Antonio, San Antonio, TX, USA
| | - James D Lechleiter
- Department of Cell Systems and Anatomy, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Robert Brenner
- Department of Cellular and Integrative Physiology, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Mark S Shapiro
- Department of Cellular and Integrative Physiology, University of Texas Health San Antonio, San Antonio, TX, USA.
| |
Collapse
|
11
|
Nuñez E, Jones F, Muguruza-Montero A, Urrutia J, Aguado A, Malo C, Bernardo-Seisdedos G, Domene C, Millet O, Gamper N, Villarroel A. Redox regulation of K V7 channels through EF3 hand of calmodulin. eLife 2023; 12:e81961. [PMID: 36803414 PMCID: PMC9988260 DOI: 10.7554/elife.81961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 02/10/2023] [Indexed: 02/22/2023] Open
Abstract
Neuronal KV7 channels, important regulators of cell excitability, are among the most sensitive proteins to reactive oxygen species. The S2S3 linker of the voltage sensor was reported as a site-mediating redox modulation of the channels. Recent structural insights reveal potential interactions between this linker and the Ca2+-binding loop of the third EF-hand of calmodulin (CaM), which embraces an antiparallel fork formed by the C-terminal helices A and B, constituting the calcium responsive domain (CRD). We found that precluding Ca2+ binding to the EF3 hand, but not to EF1, EF2, or EF4 hands, abolishes oxidation-induced enhancement of KV7.4 currents. Monitoring FRET (Fluorescence Resonance Energy Transfer) between helices A and B using purified CRDs tagged with fluorescent proteins, we observed that S2S3 peptides cause a reversal of the signal in the presence of Ca2+ but have no effect in the absence of this cation or if the peptide is oxidized. The capacity of loading EF3 with Ca2+ is essential for this reversal of the FRET signal, whereas the consequences of obliterating Ca2+ binding to EF1, EF2, or EF4 are negligible. Furthermore, we show that EF3 is critical for translating Ca2+ signals to reorient the AB fork. Our data are consistent with the proposal that oxidation of cysteine residues in the S2S3 loop relieves KV7 channels from a constitutive inhibition imposed by interactions between the EF3 hand of CaM which is crucial for this signaling.
Collapse
Affiliation(s)
| | - Frederick Jones
- School of Biomedical Sciences, Faculty of Biological Sciences, University of LeedsLeedsUnited Kingdom
| | | | | | | | | | | | - Carmen Domene
- Department of Chemistry, University of BathBathUnited Kingdom
- Department of Chemistry, University of OxfordOxfordUnited Kingdom
| | - Oscar Millet
- Protein Stability and Inherited Disease Laboratory, CIC bioGUNEDerioSpain
| | - Nikita Gamper
- School of Biomedical Sciences, Faculty of Biological Sciences, University of LeedsLeedsUnited Kingdom
| | | |
Collapse
|
12
|
Jia H, Chen Y, Wang Y, Jia L, Tian Y, Jiang H. The neuroprotective effect of electro-acupuncture on cognitive recovery for patients with mild traumatic brain injury: A randomized controlled clinical trial. Medicine (Baltimore) 2023; 102:e32885. [PMID: 36820591 PMCID: PMC9907991 DOI: 10.1097/md.0000000000032885] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/12/2023] Open
Abstract
BACKGROUND Traumatic brain injury (TBI) is a major health and socioeconomic problem that affects all societies. Consciousness disorder is a common complication after TBI while there is still no effective treatment currently. The aim of this study was to investigate the protective effect of electro-acupuncture (EA) on cognitive recovery for patients with mild TBI. METHODS A total of 83 patients with initial Glasgow coma scale score higher than 12 points were assigned into this study. Then patients were randomly divided into 2 groups: EA group and control group (group C). Patients in group EA received EA treatment at Neiguan and Shuigou for 2 weeks. At 0 minute before EA treatment (T1), 0 minute after EA treatment (T2), and 8 weeks after EA treatment (T3), level of neuron-specific enolase (NSE), glial fibrillary acidic protein (GFAP), hypoxia inducible factor-1α (HIF-1α), and malondialdehyde were tested by enzyme-linked immunosorbent assay. The score of Montreal Cognitive Function Assessment (MoCA) and mini-mental state examination (MMSE) as well as cerebral oxygen saturation (rSO2) were detected at the same time. RESULTS Compared with the baseline at T1, the level of NSE, GFAP, HIF-1α, MDA, and rSO2 decreased, and the score of MoCA and MMSE increased in the 2 groups were significantly increased at T2-3 (P < .05). Compared with group C, the level of NSE, GFAP, HIF-1α, MDA, and rSO2 decreased, and the score of MoCA and MMSE increased were significantly increased at T2-3 in group EA; the difference were statistically significant (P < .05). CONCLUSIONS EA treatment could improve the cognitive recovery for patients with mild TBI and the potential mechanism may be related to improving cerebral hypoxia and alleviating brain injury.
Collapse
Affiliation(s)
- Haokun Jia
- Department of Neurosurgery, Cangzhou Central Hospital, Cangzhou City, Hebei, China
- * Correspondence: Haokun Jia, Department of Neurosurgery, Cangzhou Central Hospital, No. 50, Xinhua West Road, Yunhe District, Cangzhou, Hebei Province, 061017, China (e-mail: )
| | - Yonghan Chen
- Department of Neurosurgery, Cangzhou Central Hospital, Cangzhou City, Hebei, China
| | - Yi Wang
- Department of Neurosurgery, Cangzhou Central Hospital, Cangzhou City, Hebei, China
| | - Linwei Jia
- Department of Neurosurgery, Cangzhou Central Hospital, Cangzhou City, Hebei, China
| | - Yaohui Tian
- Department of Neurosurgery, Cangzhou Central Hospital, Cangzhou City, Hebei, China
| | - Hao Jiang
- Department of Neurosurgery, Cangzhou Central Hospital, Cangzhou City, Hebei, China
| |
Collapse
|
13
|
Wurm KW, Bartz FM, Schulig L, Bodtke A, Bednarski PJ, Link A. Replacing the oxidation-sensitive triaminoaryl chemotype of problematic K V 7 channel openers: Exploration of a nicotinamide scaffold. Arch Pharm (Weinheim) 2023; 356:e2200473. [PMID: 36395379 DOI: 10.1002/ardp.202200473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/13/2022] [Accepted: 10/18/2022] [Indexed: 11/18/2022]
Abstract
KV 7 channel openers have proven their therapeutic value in the treatment of pain as well as epilepsy and, moreover, they hold the potential to expand into additional indications with unmet medical needs. However, the clinically validated but meanwhile discontinued KV 7 channel openers flupirtine and retigabine bear an oxidation-sensitive triaminoraryl scaffold, which is suspected of causing adverse drug reactions via the formation of quinoid oxidation products. Here, we report the design and synthesis of nicotinamide analogs and related compounds that remediate the liability in the chemical structure of flupirtine and retigabine. Optimization of a nicotinamide lead structure yielded analogs with excellent KV 7.2/3 opening activity, as evidenced by EC50 values approaching the single-digit nanomolar range. On the other hand, weighted KV 7.2/3 opening activity data including inactive compounds allowed for the establishment of structure-activity relationships and a plausible binding mode hypothesis verified by docking and molecular dynamics simulations.
Collapse
Affiliation(s)
- Konrad W Wurm
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, University of Greifswald, Greifswald, Germany
| | - Frieda-Marie Bartz
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, University of Greifswald, Greifswald, Germany
| | - Lukas Schulig
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, University of Greifswald, Greifswald, Germany
| | - Anja Bodtke
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, University of Greifswald, Greifswald, Germany
| | - Patrick J Bednarski
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, University of Greifswald, Greifswald, Germany
| | - Andreas Link
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, University of Greifswald, Greifswald, Germany
| |
Collapse
|
14
|
Coppi E, Gibb AJ. Selective block of adenosine A 2A receptors prevents ischaemic-like effects induced by oxygen and glucose deprivation in rat medium spiny neurons. Br J Pharmacol 2022; 179:4844-4856. [PMID: 35817954 PMCID: PMC9796695 DOI: 10.1111/bph.15922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 05/20/2022] [Accepted: 06/26/2022] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND AND PURPOSE Ischaemia is known to cause massive neuronal depolarization, termed anoxic depolarization (AD), due to energy failure and loss of membrane ion gradients. The neuromodulator adenosine accumulates extracellularly during ischaemia and activates four metabotropic receptors: A1 , A2A , A2B and A3 . Striatal medium spiny neurons (MSNs) express high levels of A2A receptors and are particularly vulnerable to ischaemic insults. A2A Receptor blockade reduces acute striatal post-ischaemic damage but the cellular mechanisms involved are still unknown. EXPERIMENTAL APPROACH We performed patch-clamp recordings of MSNs in rat striatal slices subjected to oxygen and glucose deprivation (OGD) to investigate the effects of A2A receptor ligands or ion channel blockers on AD and OGD-induced ionic imbalance, measured as a positive shift in Erev of ramp currents. KEY RESULTS Our data indicate that the A2A receptor antagonist SCH58261 (10 μM) significantly attenuated ionic imbalance and AD appearance in MSNs exposed to OGD. The K+ channel blocker Ba2+ (2 mM) or the Na+ channel blocker tetrodotoxin (1 μM) exacerbated and attenuated, respectively, OGD-induced changes. Spontaneous excitatory post-synaptic current (sEPSC) analysis in MSNs revealed that the A2A receptor agonist CGS21680 (1 μM) prevented OGD-induced decrease of sEPSCs within the first 5 min of the insult, an effect shared by the K+ channel blocker Ba2+ , indicating facilitated glutamate release. CONCLUSION AND IMPLICATIONS Adenosine, released during striatal OGD, activates A2A receptors that may exacerbate OGD-induced damage through K+ channel inhibition. Our results could help to develop A2A receptor-selective therapeutic tools for the treatment of brain ischaemia.
Collapse
Affiliation(s)
- Elisabetta Coppi
- Department of Neuroscience, Psychology, Drug Research and Child HealthUniversity of FlorenceFlorenceItaly
| | - Alasdair J. Gibb
- Department of Neuroscience, Physiology and PharmacologyUniversity College LondonLondonUK
| |
Collapse
|
15
|
Yilmaz İ, Karaarslan N, Somay H, Ozbek H, Ates O. Curcumin-Impregnated Drug Delivery Systems May Show Promise in the Treatment of Diseases Secondary to Traumatic Brain Injury: Systematic Review. J Pharmacol Pharmacother 2022. [DOI: 10.1177/0976500x221112479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Background Traumatic brain injury (TBI) is a major social health problem, especially in young adults, and progresses with advanced functional losses. In this study, curcumin was directed to the damaged brain tissue by crossing the blood–brain barrier through drug delivery systems. Thus, the study asked whether it can be effective in the treatment of TBI, which has not had a radical treatment method in clinics yet. Methods A comprehensive and systematic literature search in the PubMed electronic database was performed. Descriptive statistics were used to evaluate the data obtained. The results were presented as frequency and percentage (%) or amount. Results Two clinical trials investigated curcumin for the treatment of TBI. One study tested curcumin in living mammalian subjects using an amyloLipid nanovesicle. In three studies, curcumin was investigated together with the drug delivery system for the treatment of TBI. Conclusion Drug delivery systems prepared with nanomaterials may have a potential therapeutic effect in treating TBI by increasing neuroprotection because they can penetrate the central nervous system more rapidly.
Collapse
Affiliation(s)
- İbrahim Yilmaz
- Ministry of Health, Dr Ismail Fehmi Cumalioglu City Hospital, Unit of Pharmacovigilance and Rational Use of Drugs, Tekirdag, Turkey
- Department of Medical Services and Techniques, Vocational School of Health Services, Istanbul Rumeli University, Istanbul, Istanbul, Turkey
| | - Numan Karaarslan
- Department of Neurosurgery, Halic University School of Medicine, Istanbul, Istanbul, Turkey
| | - Hakan Somay
- Department of Neurosurgery, Kadikoy Medicana Hospital, Istanbul, Istanbul, Turkey
| | - Hanefi Ozbek
- Department of Medical Pharmacology, İzmir Bakırçay University School of Medicine, Izmir, Izmir, Turkey
| | - Ozkan Ates
- Department of Neurosurgery, Istanbul Koc University School of Medicine, Istanbul, Istanbul, Turkey
| |
Collapse
|
16
|
Triclosan is a KCNQ3 potassium channel activator. Pflugers Arch 2022; 474:721-732. [PMID: 35459955 DOI: 10.1007/s00424-022-02692-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 03/24/2022] [Accepted: 04/13/2022] [Indexed: 01/10/2023]
Abstract
KCNQ channels participate in the physiology of several cell types. In neurons of the central nervous system, the primary subunits are KCNQ2, 3, and 5. Activation of these channels silence the neurons, limiting action potential duration and preventing high-frequency action potential burst. Loss-of-function mutations of the KCNQ channels are associated with a wide spectrum of phenotypes characterized by hyperexcitability. Hence, pharmacological activation of these channels is an attractive strategy to treat epilepsy and other hyperexcitability conditions as are the evolution of stroke and traumatic brain injury. In this work we show that triclosan, a bactericide widely used in personal care products, activates the KCNQ3 channels but not the KCNQ2. Triclosan induces a voltage shift in the activation, increases the conductance, and slows the closing of the channel. The response is independent of PIP2. Molecular docking simulations together with site-directed mutagenesis suggest that the putative binding site is in the voltage sensor domain. Our results indicate that triclosan is a new activator for KCNQ channels.
Collapse
|
17
|
Golub VM, Reddy DS. Post-Traumatic Epilepsy and Comorbidities: Advanced Models, Molecular Mechanisms, Biomarkers, and Novel Therapeutic Interventions. Pharmacol Rev 2022; 74:387-438. [PMID: 35302046 PMCID: PMC8973512 DOI: 10.1124/pharmrev.121.000375] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Post-traumatic epilepsy (PTE) is one of the most devastating long-term, network consequences of traumatic brain injury (TBI). There is currently no approved treatment that can prevent onset of spontaneous seizures associated with brain injury, and many cases of PTE are refractory to antiseizure medications. Post-traumatic epileptogenesis is an enduring process by which a normal brain exhibits hypersynchronous excitability after a head injury incident. Understanding the neural networks and molecular pathologies involved in epileptogenesis are key to preventing its development or modifying disease progression. In this article, we describe a critical appraisal of the current state of PTE research with an emphasis on experimental models, molecular mechanisms of post-traumatic epileptogenesis, potential biomarkers, and the burden of PTE-associated comorbidities. The goal of epilepsy research is to identify new therapeutic strategies that can prevent PTE development or interrupt the epileptogenic process and relieve associated neuropsychiatric comorbidities. Therefore, we also describe current preclinical and clinical data on the treatment of PTE sequelae. Differences in injury patterns, latency period, and biomarkers are outlined in the context of animal model validation, pathophysiology, seizure frequency, and behavior. Improving TBI recovery and preventing seizure onset are complex and challenging tasks; however, much progress has been made within this decade demonstrating disease modifying, anti-inflammatory, and neuroprotective strategies, suggesting this goal is pragmatic. Our understanding of PTE is continuously evolving, and improved preclinical models allow for accelerated testing of critically needed novel therapeutic interventions in military and civilian persons at high risk for PTE and its devastating comorbidities. SIGNIFICANCE STATEMENT: Post-traumatic epilepsy is a chronic seizure condition after brain injury. With few models and limited understanding of the underlying progression of epileptogenesis, progress is extremely slow to find a preventative treatment for PTE. This study reviews the current state of modeling, pathology, biomarkers, and potential interventions for PTE and comorbidities. There's new optimism in finding a drug therapy for preventing PTE in people at risk, such as after traumatic brain injury, concussion, and serious brain injuries, especially in military persons.
Collapse
Affiliation(s)
- Victoria M Golub
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University Health Science Center, Bryan, Texas
| | - Doodipala Samba Reddy
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University Health Science Center, Bryan, Texas
| |
Collapse
|
18
|
Wurm K, Bartz FM, Schulig L, Bodtke A, Bednarski PJ, Link A. Modifications of the Triaminoaryl Metabophore of Flupirtine and Retigabine Aimed at Avoiding Quinone Diimine Formation. ACS OMEGA 2022; 7:7989-8012. [PMID: 35284765 PMCID: PMC8908504 DOI: 10.1021/acsomega.1c07103] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 02/08/2022] [Indexed: 05/09/2023]
Abstract
The potassium channel opening drugs flupirtine and retigabine have been withdrawn from the market due to occasional drug-induced liver injury (DILI) and tissue discoloration, respectively. While the mechanism underlying DILI after prolonged flupirtine use is not entirely understood, evidence indicates that both drugs are metabolized in an initial step to reactive ortho- and/or para-azaquinone diimines or ortho- and/or para-quinone diimines, respectively. Aiming to develop safer alternatives for the treatment of pain and epilepsy, we have attempted to separate activity from toxicity by employing a drug design strategy of avoiding the detrimental oxidation of the central aromatic ring by shifting oxidation toward the formation of benign metabolites. In the present investigation, an alternative retrometabolic design strategy was followed. The nitrogen atom, which could be involved in the formation of both ortho- or para-quinone diimines of the lead structures, was shifted away from the central ring, yielding a substitution pattern with nitrogen substituents in the meta position only. Evaluation of KV7.2/3 opening activity of the 11 new specially designed derivatives revealed surprisingly steep structure-activity relationship data with inactive compounds and an activity cliff that led to the identification of an apparent "magic methyl" effect in the case of N-(4-fluorobenzyl)-6-[(4-fluorobenzyl)amino]-2-methoxy-4-methylnicotinamide. This flupirtine analogue showed potent KV7.2/3 opening activity, being six times as active as flupirtine itself, and by design is devoid of the potential for azaquinone diimine formation.
Collapse
|
19
|
Aiba I, Noebels JL. Kcnq2/Kv7.2 controls the threshold and bi-hemispheric symmetry of cortical spreading depolarization. Brain 2021; 144:2863-2878. [PMID: 33768249 PMCID: PMC8536937 DOI: 10.1093/brain/awab141] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 02/22/2021] [Accepted: 03/20/2021] [Indexed: 12/03/2022] Open
Abstract
Spreading depolarization is a slowly propagating wave of massive cellular depolarization associated with acute brain injury and migraine aura. Genetic studies link depolarizing molecular defects in Ca2+ flux, Na+ current in interneurons, and glial Na+-K+ ATPase with spreading depolarization susceptibility, emphasizing the important roles of synaptic activity and extracellular ionic homeostasis in determining spreading depolarization threshold. In contrast, although gene mutations in voltage-gated potassium ion channels that shape intrinsic membrane excitability are frequently associated with epilepsy susceptibility, it is not known whether epileptogenic mutations that regulate membrane repolarization also modify spreading depolarization threshold and propagation. Here we report that the Kcnq2/Kv7.2 potassium channel subunit, frequently mutated in developmental epilepsy, is a spreading depolarization modulatory gene with significant control over the seizure-spreading depolarization transition threshold, bi-hemispheric cortical expression, and diurnal temporal susceptibility. Chronic DC-band cortical EEG recording from behaving conditional Kcnq2 deletion mice (Emx1cre/+::Kcnq2flox/flox) revealed spontaneous cortical seizures and spreading depolarization. In contrast to the related potassium channel deficient model, Kv1.1-KO mice, spontaneous cortical spreading depolarizations in Kcnq2 cKO mice are tightly coupled to the terminal phase of seizures, arise bilaterally, and are observed predominantly during the dark phase. Administration of the non-selective Kv7.2 inhibitor XE991 to Kv1.1-KO mice partly reproduced the Kcnq2 cKO-like spreading depolarization phenotype (tight seizure coupling and bilateral symmetry) in these mice, indicating that Kv7.2 currents can directly and actively modulate spreading depolarization properties. In vitro brain slice studies confirmed that Kcnq2/Kv7.2 depletion or pharmacological inhibition intrinsically lowers the cortical spreading depolarization threshold, whereas pharmacological Kv7.2 activators elevate the threshold to multiple depolarizing and hypometabolic spreading depolarization triggers. Together these results identify Kcnq2/Kv7.2 as a distinctive spreading depolarization regulatory gene, and point to spreading depolarization as a potentially significant pathophysiological component of KCNQ2-linked epileptic encephalopathy syndromes. Our results also implicate KCNQ2/Kv7.2 channel activation as a potential adjunctive therapeutic target to inhibit spreading depolarization incidence.
Collapse
Affiliation(s)
- Isamu Aiba
- Department of Neurology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jeffrey L Noebels
- Department of Neurology, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
20
|
Bozdemir E, Vigil FA, Chun SH, Espinoza L, Bugay V, Khoury SM, Holstein DM, Stoja A, Lozano D, Tunca C, Sprague SM, Cavazos JE, Brenner R, Liston TE, Shapiro MS, Lechleiter JD. Neuroprotective Roles of the Adenosine A 3 Receptor Agonist AST-004 in Mouse Model of Traumatic Brain Injury. Neurotherapeutics 2021; 18:2707-2721. [PMID: 34608616 PMCID: PMC8804149 DOI: 10.1007/s13311-021-01113-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/26/2021] [Indexed: 10/20/2022] Open
Abstract
Traumatic brain injury (TBI) remains one of the greatest public health concerns with increasing morbidity and mortality rates worldwide. Our group reported that stimulation of astrocyte mitochondrial metabolism by P2Y1 receptor agonists significantly reduced cerebral edema and reactive gliosis in a TBI model. Subsequent data on the pharmacokinetics (PK) and rapid metabolism of these compounds suggested that neuroprotection was likely mediated by a metabolite, AST-004, which binding data indicated was an adenosine A3 receptor (A3R) agonist. The neuroprotective efficacy of AST-004 was tested in a control closed cortical injury (CCCI) model of TBI in mice. Twenty-four (24) hours post-injury, mice subjected to CCCI and treated with AST-004 (0.22 mg/kg, injected 30 min post-trauma) exhibited significantly less secondary brain injury. These effects were quantified with less cell death (PSVue794 fluorescence) and loss of blood brain barrier breakdown (Evans blue extravasation assay), compared to vehicle-treated TBI mice. TBI-treated mice also exhibited significantly reduced neuroinflammatory markers, glial-fibrillary acidic protein (GFAP, astrogliosis) and ionized Ca2+-binding adaptor molecule 1 (Iba1, microgliosis), both at the mRNA (qRT-PCR) and protein (Western blot and immunofluorescence) levels, respectively. Four (4) weeks post-injury, both male and female TBI mice presented a significant reduction in freezing behavior during contextual fear conditioning (after foot shock). AST-004 treatment prevented this TBI-induced impairment in male mice, but did not significantly affect impairment in female mice. Impairment of spatial memory, assessed 24 and 48 h after the initial fear conditioning, was also reduced in AST-004-treated TBI-male mice. Female TBI mice did not exhibit memory impairment 24 and 48 h after contextual fear conditioning and similarly, AST-004-treated female TBI mice were comparable to sham mice. Finally, AST-004 treatments were found to increase in vivo ATP production in astrocytes (GFAP-targeted luciferase activity), consistent with the proposed mechanism of action. These data reveal AST-004 as a novel A3R agonist that increases astrocyte energy production and enhances their neuroprotective efficacy after brain injury.
Collapse
Affiliation(s)
- Eda Bozdemir
- Department of Cell Systems and Anatomy, UT Health San Antonio, 8403 Floyd Curl Drive, San Antonio, TX 78229-3904 USA
| | - Fabio A. Vigil
- Department of Cellular and Integrative Physiology, UT Health San Antonio, 8403 Floyd Curl Drive, San Antonio, TX 78229-3904 USA
| | - Sang H. Chun
- Department of Cell Systems and Anatomy, UT Health San Antonio, 8403 Floyd Curl Drive, San Antonio, TX 78229-3904 USA
| | - Liliana Espinoza
- Department of Cellular and Integrative Physiology, UT Health San Antonio, 8403 Floyd Curl Drive, San Antonio, TX 78229-3904 USA
| | - Vladislav Bugay
- Department of Cellular and Integrative Physiology, UT Health San Antonio, 8403 Floyd Curl Drive, San Antonio, TX 78229-3904 USA
| | - Sarah M. Khoury
- Department of Cell Systems and Anatomy, UT Health San Antonio, 8403 Floyd Curl Drive, San Antonio, TX 78229-3904 USA
| | - Deborah M. Holstein
- Department of Cell Systems and Anatomy, UT Health San Antonio, 8403 Floyd Curl Drive, San Antonio, TX 78229-3904 USA
| | - Aiola Stoja
- Department of Cellular and Integrative Physiology, UT Health San Antonio, 8403 Floyd Curl Drive, San Antonio, TX 78229-3904 USA
| | - Damian Lozano
- Department of Cell Systems and Anatomy, UT Health San Antonio, 8403 Floyd Curl Drive, San Antonio, TX 78229-3904 USA
| | - Ceyda Tunca
- Department of Cell Systems and Anatomy, UT Health San Antonio, 8403 Floyd Curl Drive, San Antonio, TX 78229-3904 USA
| | - Shane M. Sprague
- Department of Neurosurgery, UT Health San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229-3904 USA
| | - Jose E. Cavazos
- Department of Neurology, UT Health San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229-3904 USA
| | - Robert Brenner
- Department of Cellular and Integrative Physiology, UT Health San Antonio, 8403 Floyd Curl Drive, San Antonio, TX 78229-3904 USA
| | - Theodore E. Liston
- Astrocyte Pharmaceuticals Inc, 245 First Street, Suite 1800, Cambridge, MA 02142 USA
| | - Mark S. Shapiro
- Department of Cellular and Integrative Physiology, UT Health San Antonio, 8403 Floyd Curl Drive, San Antonio, TX 78229-3904 USA
| | - James D. Lechleiter
- Department of Cell Systems and Anatomy, UT Health San Antonio, 8403 Floyd Curl Drive, San Antonio, TX 78229-3904 USA
| |
Collapse
|
21
|
van Lanen RH, Melchers S, Hoogland G, Schijns OE, Zandvoort MAV, Haeren RH, Rijkers K. Microvascular changes associated with epilepsy: A narrative review. J Cereb Blood Flow Metab 2021; 41:2492-2509. [PMID: 33866850 PMCID: PMC8504411 DOI: 10.1177/0271678x211010388] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The blood-brain barrier (BBB) is dysfunctional in temporal lobe epilepsy (TLE). In this regard, microvascular changes are likely present. The aim of this review is to provide an overview of the current knowledge on microvascular changes in epilepsy, and includes clinical and preclinical evidence of seizure induced angiogenesis, barriergenesis and microcirculatory alterations. Anatomical studies show increased microvascular density in the hippocampus, amygdala, and neocortex accompanied by BBB leakage in various rodent epilepsy models. In human TLE, a decrease in afferent vessels, morphologically abnormal vessels, and an increase in endothelial basement membranes have been observed. Both clinical and experimental evidence suggests that basement membrane changes, such as string vessels and protrusions, indicate and visualize a misbalance between endothelial cell proliferation and barriergenesis. Vascular endothelial growth factor (VEGF) appears to play a crucial role. Following an altered vascular anatomy, its physiological functioning is affected as expressed by neurovascular decoupling that subsequently leads to hypoperfusion, disrupted parenchymal homeostasis and potentially to seizures". Thus, epilepsy might be a condition characterized by disturbed cerebral microvasculature in which VEGF plays a pivotal role. Additional physiological data from patients is however required to validate findings from models and histological studies on patient biopsies.
Collapse
Affiliation(s)
- Rick Hgj van Lanen
- Department of Neurosurgery, Maastricht University Medical Center, Maastricht, the Netherlands.,School for Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands
| | - Stan Melchers
- Faculty of Health Medicine and Life Sciences, Maastricht University, Maastricht, the Netherlands
| | - Govert Hoogland
- Department of Neurosurgery, Maastricht University Medical Center, Maastricht, the Netherlands.,School for Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands.,Academic Center for Epileptology, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Olaf Emg Schijns
- Department of Neurosurgery, Maastricht University Medical Center, Maastricht, the Netherlands.,School for Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands.,Academic Center for Epileptology, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Marc Amj van Zandvoort
- School for Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands.,Department of Molecular Cell Biology, School for Mental Health and Neuroscience, Maastricht University Medical Center, Maastricht, the Netherlands.,School for Cardiovascular Diseases, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Roel Hl Haeren
- Department of Neurosurgery, Maastricht University Medical Center, Maastricht, the Netherlands.,Department of Neurosurgery, Helsinki University Central Hospital, Helsinki, Finland
| | - Kim Rijkers
- Department of Neurosurgery, Maastricht University Medical Center, Maastricht, the Netherlands.,School for Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands.,Academic Center for Epileptology, Maastricht University Medical Center, Maastricht, the Netherlands
| |
Collapse
|
22
|
Carver CM, DeWitt HR, Stoja AP, Shapiro MS. Blockade of TRPC Channels Limits Cholinergic-Driven Hyperexcitability and Seizure Susceptibility After Traumatic Brain Injury. Front Neurosci 2021; 15:681144. [PMID: 34489621 PMCID: PMC8416999 DOI: 10.3389/fnins.2021.681144] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 06/28/2021] [Indexed: 12/17/2022] Open
Abstract
We investigated the contribution of excitatory transient receptor potential canonical (TRPC) cation channels to posttraumatic hyperexcitability in the brain 7 days following controlled cortical impact model of traumatic brain injury (TBI) to the parietal cortex in male adult mice. We investigated if TRPC1/TRPC4/TRPC5 channel expression is upregulated in excitatory neurons after TBI in contribution to epileptogenic hyperexcitability in key hippocampal and cortical circuits that have substantial cholinergic innervation. This was tested by measuring TRPC1/TRPC4/TRPC5 protein and messenger RNA (mRNA) expression, assays of cholinergic function, neuronal Ca2+ imaging in brain slices, and seizure susceptibility after TBI. We found region-specific increases in expression of TRPC1, TRPC4, and TRPC5 subunits in the hippocampus and cortex following TBI. The dentate gyrus, CA3 region, and cortex all exhibited robust upregulation of TRPC4 mRNA and protein. TBI increased cFos activity in dentate gyrus granule cells (DGGCs) and layer 5 pyramidal neurons both at the time of TBI and 7 days post-TBI. DGGCs displayed greater magnitude and duration of acetylcholine-induced rises in intracellular Ca2+ in brain slices from mice subjected to TBI. The TBI mice also exhibited greater seizure susceptibility in response to pentylenetetrazol-induced kindling. Blockade of TRPC4/TRPC5 channels with M084 reduced neuronal hyperexcitation and impeded epileptogenic progression of kindling. We observed that the time-dependent upregulation of TRPC4/TRPC5-containing channels alters cholinergic responses and activity of principal neurons acting to increase proexcitatory sensitivity. The underlying mechanism includes acutely decreased acetylcholinesterase function, resulting in greater Gq/11-coupled muscarinic receptor activation of TRPC channels. Overall, our evidence suggests that TBI-induced plasticity of TRPC channels strongly contributes to overt hyperexcitability and primes the hippocampus and cortex for seizures.
Collapse
Affiliation(s)
- Chase M Carver
- Department of Cellular and Integrative Physiology, University of Texas Health San Antonio, San Antonio, TX, United States
| | - Haley R DeWitt
- Department of Cellular and Integrative Physiology, University of Texas Health San Antonio, San Antonio, TX, United States
| | - Aiola P Stoja
- Department of Cellular and Integrative Physiology, University of Texas Health San Antonio, San Antonio, TX, United States
| | - Mark S Shapiro
- Department of Cellular and Integrative Physiology, University of Texas Health San Antonio, San Antonio, TX, United States
| |
Collapse
|
23
|
Boscia F, Elkjaer ML, Illes Z, Kukley M. Altered Expression of Ion Channels in White Matter Lesions of Progressive Multiple Sclerosis: What Do We Know About Their Function? Front Cell Neurosci 2021; 15:685703. [PMID: 34276310 PMCID: PMC8282214 DOI: 10.3389/fncel.2021.685703] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Accepted: 05/23/2021] [Indexed: 12/19/2022] Open
Abstract
Despite significant advances in our understanding of the pathophysiology of multiple sclerosis (MS), knowledge about contribution of individual ion channels to axonal impairment and remyelination failure in progressive MS remains incomplete. Ion channel families play a fundamental role in maintaining white matter (WM) integrity and in regulating WM activities in axons, interstitial neurons, glia, and vascular cells. Recently, transcriptomic studies have considerably increased insight into the gene expression changes that occur in diverse WM lesions and the gene expression fingerprint of specific WM cells associated with secondary progressive MS. Here, we review the ion channel genes encoding K+, Ca2+, Na+, and Cl- channels; ryanodine receptors; TRP channels; and others that are significantly and uniquely dysregulated in active, chronic active, inactive, remyelinating WM lesions, and normal-appearing WM of secondary progressive MS brain, based on recently published bulk and single-nuclei RNA-sequencing datasets. We discuss the current state of knowledge about the corresponding ion channels and their implication in the MS brain or in experimental models of MS. This comprehensive review suggests that the intense upregulation of voltage-gated Na+ channel genes in WM lesions with ongoing tissue damage may reflect the imbalance of Na+ homeostasis that is observed in progressive MS brain, while the upregulation of a large number of voltage-gated K+ channel genes may be linked to a protective response to limit neuronal excitability. In addition, the altered chloride homeostasis, revealed by the significant downregulation of voltage-gated Cl- channels in MS lesions, may contribute to an altered inhibitory neurotransmission and increased excitability.
Collapse
Affiliation(s)
- Francesca Boscia
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, University of Naples "Federico II", Naples, Italy
| | - Maria Louise Elkjaer
- Neurology Research Unit, Department of Clinical Research, University of Southern Denmark, Odense, Denmark.,Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Zsolt Illes
- Neurology Research Unit, Department of Clinical Research, University of Southern Denmark, Odense, Denmark.,Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark.,Department of Neurology, Odense University Hospital, Odense, Denmark
| | - Maria Kukley
- Achucarro Basque Center for Neuroscience, Leioa, Spain.,Ikerbasque Basque Foundation for Science, Bilbao, Spain
| |
Collapse
|
24
|
Barker BS, Spampanato J, McCarren HS, Berger K, Jackson CE, Yeung DT, Dudek FE, McDonough JH. The K v7 Modulator, Retigabine, is an Efficacious Antiseizure Drug for Delayed Treatment of Organophosphate-induced Status Epilepticus. Neuroscience 2021; 463:143-158. [PMID: 33836243 PMCID: PMC8142924 DOI: 10.1016/j.neuroscience.2021.03.029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 03/23/2021] [Accepted: 03/25/2021] [Indexed: 10/21/2022]
Abstract
Benzodiazepines are the primary treatment option for organophosphate (OP)-induced status epilepticus (SE), but these antiseizure drugs (ASDs) lose efficacy as treatment is delayed. In the event of a mass civilian or military exposure, significant treatment delays are likely. New ASDs that combat benzodiazepine-resistant, OP-induced SE are critically needed, particularly if they can be efficacious after a long treatment delay. This study evaluated the efficacy of the Kv7 channel modulator, retigabine, as a novel therapy for OP-induced SE. Adult, male rats were exposed to soman or diisopropyl fluorophosphate (DFP) to elicit SE and monitored by electroencephalogram (EEG) recording. Retigabine was administered alone or adjunctive to midazolam (MDZ) at delays of 20- or 40-min in the soman model, and 60-min in the DFP model. Following EEG recordings, rats were euthanized and brain tissue was collected for Fluoro-Jade B (FJB) staining to quantify neuronal death. In the DFP model, MDZ + 15 mg/kg retigabine suppressed seizure activity and was neuroprotective. In the soman model, MDZ + 30 mg/kg retigabine suppressed seizures at 20- and 40-min delays. Without MDZ, 15 mg/kg retigabine provided partial antiseizure and neuroprotectant efficacy in the DFP model, while 30 mg/kg without MDZ failed to attenuate soman-induced SE. At 60 mg/kg, retigabine without MDZ strongly reduced seizure activity and neuronal degeneration against soman-induce SE. This study demonstrates the antiseizure and neuroprotective efficacy of retigabine against OP-induced SE. Our data suggest retigabine could be a useful adjunct to standard-of-care and has potential for use in the absence of MDZ.
Collapse
Affiliation(s)
- Bryan S Barker
- United States Army Medical Research Institute of Chemical Defense, Medical Toxicology Research Division, Neuroscience Department, 2900 Ricketts Point Rd, Aberdeen Proving Ground, MD 21010, USA
| | - Jay Spampanato
- Department of Neurosurgery, University of Utah School of Medicine, Salt Lake City, UT 84108, USA.
| | - Hilary S McCarren
- United States Army Medical Research Institute of Chemical Defense, Medical Toxicology Research Division, Neuroscience Department, 2900 Ricketts Point Rd, Aberdeen Proving Ground, MD 21010, USA
| | - Kyle Berger
- United States Army Medical Research Institute of Chemical Defense, Medical Toxicology Research Division, Neuroscience Department, 2900 Ricketts Point Rd, Aberdeen Proving Ground, MD 21010, USA
| | - Cecelia E Jackson
- United States Army Medical Research Institute of Chemical Defense, Medical Toxicology Research Division, Neuroscience Department, 2900 Ricketts Point Rd, Aberdeen Proving Ground, MD 21010, USA
| | - David T Yeung
- National Institutes of Health/National Institute of Allergy and Infectious Disease, Bethesda, MD 20892, USA
| | - F Edward Dudek
- Department of Neurosurgery, University of Utah School of Medicine, Salt Lake City, UT 84108, USA
| | - John H McDonough
- United States Army Medical Research Institute of Chemical Defense, Medical Toxicology Research Division, Neuroscience Department, 2900 Ricketts Point Rd, Aberdeen Proving Ground, MD 21010, USA
| |
Collapse
|
25
|
Borgini M, Mondal P, Liu R, Wipf P. Chemical modulation of Kv7 potassium channels. RSC Med Chem 2021; 12:483-537. [PMID: 34046626 PMCID: PMC8128042 DOI: 10.1039/d0md00328j] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 12/01/2020] [Indexed: 01/10/2023] Open
Abstract
The rising interest in Kv7 modulators originates from their ability to evoke fundamental electrophysiological perturbations in a tissue-specific manner. A large number of therapeutic applications are, in part, based on the clinical experience with two broad-spectrum Kv7 agonists, flupirtine and retigabine. Since precise molecular structures of human Kv7 channel subtypes in closed and open states have only very recently started to emerge, computational studies have traditionally been used to analyze binding modes and direct the development of more potent and selective Kv7 modulators with improved safety profiles. Herein, the synthetic and medicinal chemistry of small molecule modulators and the representative biological properties are summarized. Furthermore, new therapeutic applications supported by in vitro and in vivo assay data are suggested.
Collapse
Affiliation(s)
- Matteo Borgini
- Department of Chemistry, University of Pittsburgh Pittsburgh PA 15260 USA
| | - Pravat Mondal
- Department of Chemistry, University of Pittsburgh Pittsburgh PA 15260 USA
| | - Ruiting Liu
- Department of Chemistry, University of Pittsburgh Pittsburgh PA 15260 USA
| | - Peter Wipf
- Department of Chemistry, University of Pittsburgh Pittsburgh PA 15260 USA
| |
Collapse
|
26
|
Marinos L, Kouvaros S, Bizup B, Hambach B, Wipf P, Tzounopoulos T. Transient Delivery of a KCNQ2/3-Specific Channel Activator 1 Week After Noise Trauma Mitigates Noise-Induced Tinnitus. J Assoc Res Otolaryngol 2021; 22:127-139. [PMID: 33575914 PMCID: PMC7943662 DOI: 10.1007/s10162-021-00786-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 01/06/2021] [Indexed: 12/18/2022] Open
Abstract
Exposure to loud noise can cause hearing loss and tinnitus in mice and humans. In mice, one major underlying mechanism of noise-induced tinnitus is hyperactivity of auditory brainstem neurons, due at least in part, to decreased Kv7.2/3 (KCNQ2/3) potassium channel activity. In our previous studies, we used a reflex-based mouse model of tinnitus and showed that administration of a non-specific KCNQ channel activator, immediately after noise trauma, prevented the development of noise-induced tinnitus, assessed 1 week after trauma. Subsequently, we developed RL-81, a very potent and highly specific activator of KCNQ2/3 channels. Here, to test the timing window within which RL-81 prevents tinnitus in mice, we modified and employed an operant animal model of tinnitus, where mice are trained to move in response to sound but not move in silence. Mice with behavioral evidence of tinnitus are expected to move in silence. We validated this mouse model by testing the effect of salicylate, which is known to induce tinnitus. We found that transient administration of RL-81 1 week after noise exposure did not affect hearing loss but reduced significantly the percentage of mice with behavioral evidence of tinnitus, assessed 2 weeks after noise exposure. Our results indicate that RL-81 is a promising drug candidate for further development for the treatment of noise-induced tinnitus.
Collapse
Affiliation(s)
- Laura Marinos
- Department of Otolaryngology, Pittsburgh Hearing Research Center, University of Pittsburgh, Pittsburgh, 15261 USA
| | - Stylianos Kouvaros
- Department of Otolaryngology, Pittsburgh Hearing Research Center, University of Pittsburgh, Pittsburgh, 15261 USA
| | - Brandon Bizup
- Department of Otolaryngology, Pittsburgh Hearing Research Center, University of Pittsburgh, Pittsburgh, 15261 USA
| | - Bryce Hambach
- Department of Otolaryngology, Pittsburgh Hearing Research Center, University of Pittsburgh, Pittsburgh, 15261 USA
| | - Peter Wipf
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260 USA
| | - Thanos Tzounopoulos
- Department of Otolaryngology, Pittsburgh Hearing Research Center, University of Pittsburgh, Pittsburgh, 15261 USA
| |
Collapse
|
27
|
Varghese N, Lauritano A, Taglialatela M, Tzingounis AV. KCNQ3 is the principal target of retigabine in CA1 and subicular excitatory neurons. J Neurophysiol 2021; 125:1440-1449. [PMID: 33729829 DOI: 10.1152/jn.00564.2020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Retigabine is a first-in-class potassium channel opener approved for patients with epilepsy. Unfortunately, several side effects have limited its use in clinical practice, overshadowing its beneficial effects. Multiple studies have shown that retigabine acts by enhancing the activity of members of the voltage-gated KCNQ (Kv7) potassium channel family, particularly the neuronal KCNQ channels KCNQ2-KCNQ5. However, it is currently unknown whether retigabine's action in neurons is mediated by all KCNQ neuronal channels or by only a subset. This knowledge is necessary to elucidate retigabine's mechanism of action in the central nervous system and its adverse effects and to design more effective and selective retigabine analogs. In this study, we show that the action of retigabine in excitatory neurons strongly depends on the presence of KCNQ3 channels. Deletion of Kcnq3 severely limited the ability of retigabine to reduce neuronal excitability in mouse CA1 and subiculum excitatory neurons. In addition, we report that in the absence of KCNQ3 channels, retigabine can enhance CA1 pyramidal neuron activity, leading to a greater number of action potentials and reduced spike frequency adaptation; this finding further supports a key role of KCNQ3 channels in mediating the action of retigabine. Our work provides new insight into the action of retigabine in forebrain neurons, clarifying retigabine's action in the nervous system.NEW & NOTEWORTHY Retigabine has risen to prominence as a first-in-class potassium channel opener approved by the Food and Drug Administration, with potential for treating multiple neurological disorders. Here, we demonstrate that KCNQ3 channels are the primary target of retigabine in excitatory neurons, as deleting these channels greatly diminishes the effect of retigabine in pyramidal neurons. Our data provide the first indication that retigabine controls neuronal firing properties primarily through KCNQ3 channels.
Collapse
Affiliation(s)
- Nissi Varghese
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, Connecticut
| | - Anna Lauritano
- Department of Neuroscience, University of Naples Federico II, Naples, Italy
| | | | | |
Collapse
|
28
|
Ren J, Guo J, Zhu S, Wang Q, Gao R, Zhao C, Feng C, Qin C, He Z, Qin C, Wang Z, Zang L. The Role of Potassium Channels in Chronic Stress-Induced Brain Injury. Biol Pharm Bull 2021; 44:169-180. [PMID: 33239494 DOI: 10.1248/bpb.b20-00504] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Chronic stress-induced brain injury (CSBI) is the organic damage of brain tissue caused by long-term psychological and environmental stress. However, there is no effective drug for the treatment of CSBI. The present study aimed to investigate possible mechanisms of CSBI and to explore related therapeutic targets. A rat model of CSBI was established by combining chronic restraint and cold water immersion. Our CSBI model was validated via Nissl staining, Western blotting, and behavioral tests. RNA sequencing (RNA-seq) was used to identify differentially expressed genes (DEGs) within brain tissue during CSBI. Both Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) analyses were performed to determine signaling pathways associated with CSBI-induced DEGs. Agonists/antagonists were used to validate the pharmacodynamics of potential therapeutic targets. A combination of chronic restraint and cold water immersion successfully induced a rat model of CSBI, as indicated by various markers of brain injury and cell apoptosis that were verified via Nissl staining, Western blotting, and behavioral tests. RNA-seq analysis identified 1131 DEGs in CSBI rats. Of these DEGs, 553 genes were up-regulated and 778 genes were down-regulated. GO and KEGG pathway analyses revealed that significant DEGs were predominantly related to membrane-bound ion channels, among which the potassium channel function was found to be significantly affected. Pharmacological experiments revealed that retigabine, a voltage-gated potassium channel opener, demonstrated a protective effect in CSBI rats. Taken together, our findings suggest that potassium channel function is disrupted in CSBI, and that potassium channel regulators may function as anti-CSBI drugs.
Collapse
Affiliation(s)
- Jianhui Ren
- School of Pharmacy, Guangdong Pharmaceutical University
| | - Jiquan Guo
- Department of Respiratory, Guangdong Provincial People's Hospital
| | - Shuguang Zhu
- Department of Cardiothoracic Surgery, First Affiliated Hospital of Guangdong Pharmaceutical College
| | - Qiyou Wang
- Orthopedics, Third Affiliated Hospital of Sun Yat-Sen University
| | - Ruiping Gao
- School of Clinical Medicine, First Affiliated Hospital of Guangdong Pharmaceutical College
| | - Chunhe Zhao
- School of Pharmacy, Guangdong Pharmaceutical University
| | - Chuyu Feng
- School of Pharmacy, Guangdong Pharmaceutical University
| | - Cuiying Qin
- School of Pharmacy, Guangdong Pharmaceutical University
| | - Zhenfeng He
- School of Pharmacy, Guangdong Pharmaceutical University
| | - Changyun Qin
- School of Pharmacy, Guangdong Pharmaceutical University
| | - Zhanle Wang
- School of Pharmacy, Guangdong Pharmaceutical University
| | - Linquan Zang
- School of Pharmacy, Guangdong Pharmaceutical University
| |
Collapse
|
29
|
Li Z, Ma Y, Zhou F, Jia X, Zhan J, Tan H, Wang X, Yang T, Liu Q. Identification of MicroRNA-Potassium Channel Messenger RNA Interactions in the Brain of Rats With Post-traumatic Epilepsy. Front Mol Neurosci 2021; 13:610090. [PMID: 33597846 PMCID: PMC7882489 DOI: 10.3389/fnmol.2020.610090] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 12/21/2020] [Indexed: 12/14/2022] Open
Abstract
Background: Dysregulated expression of microRNAs and potassium channels have been reported for their contributions to seizure onset. However, the microRNA–potassium channel gene interactions in traumatic brain injury-induced post-traumatic epilepsy (PTE) remain unknown. Methods: PTE was induced in male rats by intracranial injection with ferrous chloride (0.1 mol/L, 1 μl/min) at the right frontal cortex. Electroencephalography was recorded at 60 min, as well as day 1, 7, and 30, and the behavioral seizures were assessed before injection and at different time points after injection. Rats were killed on day 30 after injection. The right frontal cortex samples were collected and subjected to high throughput messenger RNA (mRNA) and microRNA sequencing. A network of differentially expressed potassium channel mRNAs and microRNAs was constructed using OryCun2.0 and subjected to Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses. The differential mRNA and microRNA expressions were verified using quantitative real-time-PCR. The microRNA–mRNA was subject to the Pearson correlation analysis. Results: A PTE rat model was successfully established, as evidenced by behavioral seizures and epileptiform discharges on electroencephalography in PTE rats compared with sham rats. Among the 91 mRNAs and 40 microRNAs that were significantly differentially expressed in the PTE rat brain, 4 mRNAs and 10 microRNAs were associated with potassium channels. Except for potassium calcium-activated channel subfamily N member 2, the other three potassium channel mRNAs were negatively correlated with seven microRNAs. These microRNA–mRNA pairs were enriched in annotations and pathways related to neuronal ion channels and neuroinflammation. Quantitative real-time-PCR and correlation analysis verified negative correlations in miR-449a-5p-KCNH2, miR-98-5p-KCNH2, miR-98-5p-KCNK15, miR-19b-3p-KCNK15, and miR-301a-3p-KCNK15 pairs. Conclusion: We identified microRNA–potassium channel mRNA interactions associated with PTE, providing potential diagnostic markers and therapeutic targets for PTE.
Collapse
Affiliation(s)
- Zheng Li
- Key Laboratory of Evidence Science, Institute of Evidence Law and Forensic Science, China University of Political Science and Law, Ministry of Education, Beijing, China.,Collaborative Innovation Center of Judicial Civilization, Beijing, China
| | - Yixun Ma
- Key Laboratory of Evidence Science, Institute of Evidence Law and Forensic Science, China University of Political Science and Law, Ministry of Education, Beijing, China.,Collaborative Innovation Center of Judicial Civilization, Beijing, China
| | - Fengjuan Zhou
- Key Laboratory of Evidence Science, Institute of Evidence Law and Forensic Science, China University of Political Science and Law, Ministry of Education, Beijing, China.,Collaborative Innovation Center of Judicial Civilization, Beijing, China
| | - Xiao Jia
- Key Laboratory of Evidence Science, Institute of Evidence Law and Forensic Science, China University of Political Science and Law, Ministry of Education, Beijing, China.,Collaborative Innovation Center of Judicial Civilization, Beijing, China
| | - Jingjing Zhan
- Key Laboratory of Evidence Science, Institute of Evidence Law and Forensic Science, China University of Political Science and Law, Ministry of Education, Beijing, China.,Collaborative Innovation Center of Judicial Civilization, Beijing, China
| | - Huachao Tan
- Key Laboratory of Evidence Science, Institute of Evidence Law and Forensic Science, China University of Political Science and Law, Ministry of Education, Beijing, China.,Collaborative Innovation Center of Judicial Civilization, Beijing, China
| | - Xu Wang
- Key Laboratory of Evidence Science, Institute of Evidence Law and Forensic Science, China University of Political Science and Law, Ministry of Education, Beijing, China.,Collaborative Innovation Center of Judicial Civilization, Beijing, China
| | - Tiantong Yang
- Key Laboratory of Evidence Science, Institute of Evidence Law and Forensic Science, China University of Political Science and Law, Ministry of Education, Beijing, China.,Collaborative Innovation Center of Judicial Civilization, Beijing, China
| | - Quan Liu
- Hubei University of Police, Wuhan, China
| |
Collapse
|
30
|
Mathuthu E, Janse van Rensburg A, Du Plessis D, Mason S. EDTA as a chelating agent in quantitative 1H-NMR of biologically important ions. Biochem Cell Biol 2021; 99:465-475. [PMID: 33449856 DOI: 10.1139/bcb-2020-0543] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Biologically important ions such as Ca, K, Mg, Fe, and Zn play major roles in numerous biological processes, and their homeostatic balance is necessary for the maintenance of cellular activities. Sudden and severe loss in homeostasis of just one biologically important ion can cause a cascade of negative effects. The ability to quickly, accurately, and reliably quantify biologically important ions in samples of human bio-fluids is something that has been sorely lacking within the field of metabolomics. 1H-NMR spectra. The foundation of our investigation was the a-priori knowledge that free ethylenediaminetetraacetic acid (EDTA) produces two clear single peaks on 1H-NMR spectra, and that EDTA chelated to different ions produces unique 1H-NMR spectral patterns due to 3D conformational changes in the chemical structure of chelated-EDTA and varying degrees of electronegativity. The aim of this study was to develop and test a 1H-NMR-based method, with application specifically to the field of metabolomics, to quantify biologically important ions within the physiological pH range of 6.50-7.50 using EDTA as a chelating agent. Our method produced linear, accurate, precise, and repeatable results for Ca, Mg, and Zn; however, K and Fe did not chelate with EDTA.
Collapse
Affiliation(s)
- Emmanuel Mathuthu
- Human Metabolomics, Faculty of Natural and Agricultural Sciences, North-West University, Potchefstroom, South Africa.,Human Metabolomics, Faculty of Natural and Agricultural Sciences, North-West University, Potchefstroom, South Africa
| | - Angelique Janse van Rensburg
- Human Metabolomics, Faculty of Natural and Agricultural Sciences, North-West University, Potchefstroom, South Africa.,Human Metabolomics, Faculty of Natural and Agricultural Sciences, North-West University, Potchefstroom, South Africa
| | - Dean Du Plessis
- Human Metabolomics, Faculty of Natural and Agricultural Sciences, North-West University, Potchefstroom, South Africa.,Human Metabolomics, Faculty of Natural and Agricultural Sciences, North-West University, Potchefstroom, South Africa
| | - Shayne Mason
- Human Metabolomics, Faculty of Natural and Agricultural Sciences, North-West University, Potchefstroom, South Africa.,Human Metabolomics, Faculty of Natural and Agricultural Sciences, North-West University, Potchefstroom, South Africa
| |
Collapse
|
31
|
Karimi SA, Hosseinmardi N, Sayyah M, Hajisoltani R, Janahmadi M. Enhancement of intrinsic neuronal excitability-mediated by a reduction in hyperpolarization-activated cation current (I h ) in hippocampal CA1 neurons in a rat model of traumatic brain injury. Hippocampus 2020; 31:156-169. [PMID: 33107111 DOI: 10.1002/hipo.23270] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 09/28/2020] [Accepted: 10/04/2020] [Indexed: 01/13/2023]
Abstract
Traumatic brain injury (TBI) is associated with epileptiform activity in the hippocampus; however, the underlying mechanisms have not been fully determined. The goal was to understand what changes take place in intrinsic neuronal physiology in the hippocampus after blunt force trauma to the cortex. In this context, hyperpolarization-activated cation current (Ih ) currents may have a critical role in modulating the neuronal intrinsic membrane excitability; therefore, its contribution to the TBI-induced hyperexcitability was assessed. In a model of TBI caused by controlled cortical impact (CCI), the intrinsic electrophysiological properties of pyramidal neurons were examined 1 week after TBI induction in rats. Whole-cell patch-clamp recordings were performed under current- and voltage-clamp conditions following ionotropic receptors blockade. Induction of TBI caused changes in the intrinsic excitability of pyramidal neurons, as shown by a significant increase and decrease in firing frequency and in the rheobase current, respectively (p < .05). The evoked firing rate and the action potential time to peak were also significantly increased and decreased, respectively (p < .05). In the TBI group, the amplitude of instantaneous and steady-state Ih currents was both significantly smaller than those in the control group (p < .05). The Ih current density was also significantly decreased (p < .001). Findings indicated that TBI led to an increase in the intrinsic excitability in CA1 pyramidal neurons and changes in Ih current could be, in part, one of the underlying mechanisms involved in this hyperexcitability.
Collapse
Affiliation(s)
- Seyed Asaad Karimi
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Department of Physiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran.,Department of Neuroscience, School of Science and Advanced Technologies in Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Narges Hosseinmardi
- Department of Physiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Sayyah
- Department of Physiology and Pharmacology, Pasteur Institute of Iran, Tehran, Iran
| | - Razieh Hajisoltani
- Department of Physiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahyar Janahmadi
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Department of Physiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
32
|
Mondejar-Parreño G, Perez-Vizcaino F, Cogolludo A. Kv7 Channels in Lung Diseases. Front Physiol 2020; 11:634. [PMID: 32676036 PMCID: PMC7333540 DOI: 10.3389/fphys.2020.00634] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 05/18/2020] [Indexed: 12/23/2022] Open
Abstract
Lung diseases constitute a global health concern causing disability. According to WHO in 2016, respiratory diseases accounted for 24% of world population mortality, the second cause of death after cardiovascular diseases. The Kv7 channels family is a group of voltage-dependent K+ channels (Kv) encoded by KCNQ genes that are involved in various physiological functions in numerous cell types, especially, cardiac myocytes, smooth muscle cells, neurons, and epithelial cells. Kv7 channel α-subunits are regulated by KCNE1–5 ancillary β-subunits, which modulate several characteristics of Kv7 channels such as biophysical properties, cell-location, channel trafficking, and pharmacological sensitivity. Kv7 channels are mainly expressed in two large groups of lung tissues: pulmonary arteries (PAs) and bronchial tubes. In PA, Kv7 channels are expressed in pulmonary artery smooth muscle cells (PASMCs); while in the airway (trachea, bronchus, and bronchioles), Kv7 channels are expressed in airway smooth muscle cells (ASMCs), airway epithelial cells (AEPs), and vagal airway C-fibers (VACFs). The functional role of Kv7 channels may vary depending on the cell type. Several studies have demonstrated that the impairment of Kv7 channel has a strong impact on pulmonary physiology contributing to the pathophysiology of different respiratory diseases such as cystic fibrosis, asthma, chronic obstructive pulmonary disease, chronic coughing, lung cancer, and pulmonary hypertension. Kv7 channels are now recognized as playing relevant physiological roles in many tissues, which have encouraged the search for Kv7 channel modulators with potential therapeutic use in many diseases including those affecting the lung. Modulation of Kv7 channels has been proposed to provide beneficial effects in a number of lung conditions. Therefore, Kv7 channel openers/enhancers or drugs acting partly through these channels have been proposed as bronchodilators, expectorants, antitussives, chemotherapeutics and pulmonary vasodilators.
Collapse
Affiliation(s)
- Gema Mondejar-Parreño
- Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain.,Ciber Enfermedades Respiratorias (Ciberes), Madrid, Spain.,Instituto de Investigación Sanitaria Gregorio Marañón (IISGM), Madrid, Spain
| | - Francisco Perez-Vizcaino
- Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain.,Ciber Enfermedades Respiratorias (Ciberes), Madrid, Spain.,Instituto de Investigación Sanitaria Gregorio Marañón (IISGM), Madrid, Spain
| | - Angel Cogolludo
- Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain.,Ciber Enfermedades Respiratorias (Ciberes), Madrid, Spain.,Instituto de Investigación Sanitaria Gregorio Marañón (IISGM), Madrid, Spain
| |
Collapse
|
33
|
Vigil FA, Carver CM, Shapiro MS. Pharmacological Manipulation of K v 7 Channels as a New Therapeutic Tool for Multiple Brain Disorders. Front Physiol 2020; 11:688. [PMID: 32636759 PMCID: PMC7317068 DOI: 10.3389/fphys.2020.00688] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 05/27/2020] [Indexed: 12/12/2022] Open
Abstract
K v 7 ("M-type," KCNQ) K+ currents, play dominant roles in controlling neuronal excitability. They act as a "brake" against hyperexcitable states in the central and peripheral nervous systems. Pharmacological augmentation of M current has been developed for controlling epileptic seizures, although current pharmacological tools are uneven in practical usefulness. Lately, however, M-current "opener" compounds have been suggested to be efficacious in preventing brain damage after multiple types of insults/diseases, such as stroke, traumatic brain injury, drug addiction and mood disorders. In this review, we will discuss what is known to date on these efforts and identify gaps in our knowledge regarding the link between M current and therapeutic potential for these disorders. We will outline the preclinical experiments that are yet to be performed to demonstrate the likelihood of success of this approach in human trials. Finally, we also address multiple pharmacological tools available to manipulate different K v 7 subunits and the relevant evidence for translational application in the clinical use for disorders of the central nervous system and multiple types of brain insults. We feel there to be great potential for manipulation of K v 7 channels as a novel therapeutic mode of intervention in the clinic, and that the paucity of existing therapies obligates us to perform further research, so that patients can soon benefit from such therapeutic approaches.
Collapse
Affiliation(s)
- Fabio A Vigil
- Department of Cellular and Integrative Physiology, University of Texas Health San Antonio, San Antonio, TX, United States
| | - Chase M Carver
- Department of Cellular and Integrative Physiology, University of Texas Health San Antonio, San Antonio, TX, United States
| | - Mark S Shapiro
- Department of Cellular and Integrative Physiology, University of Texas Health San Antonio, San Antonio, TX, United States
| |
Collapse
|
34
|
Luszczki JJ, Panasiuk A, Zagaja M, Karwan S, Bojar H, Plewa Z, Florek-Łuszczki M. Polygonogram and isobolographic analysis of interactions between various novel antiepileptic drugs in the 6-Hz corneal stimulation-induced seizure model in mice. PLoS One 2020; 15:e0234070. [PMID: 32479532 PMCID: PMC7263629 DOI: 10.1371/journal.pone.0234070] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 05/17/2020] [Indexed: 12/11/2022] Open
Abstract
Pharmacotherapy with two antiepileptic drugs in combination is usually prescribed to epilepsy patients with refractory seizures. The choice of antiepileptic drugs in combination should be based on synergistic cooperation of the drugs with respect to suppression of seizures. The selection of synergistic interactions between antiepileptic drugs is challenging issue for physicians, especially, if 25 antiepileptic drugs are currently available and approved to treat epilepsy patients. The aim of this study was to determine all possible interactions among 5 second-generation antiepileptic drugs (gabapentin (GBP), lacosamide (LCM), levetiracetam (LEV), pregabalin (PGB) and retigabine (RTG)) in the 6-Hz corneal stimulation-induced seizure model in adult male albino Swiss mice. The anticonvulsant effects of 10 various two-drug combinations of antiepileptic drugs were evaluated with type I isobolographic analysis associated with graphical presentation of polygonogram to visualize the types of interactions. Isobolographic analysis revealed that 7 two-drug combinations of LEV+RTG, LEV+LCM, GBP+RTG, PGB+LEV, GBP+LEV, PGB+RTG, PGB+LCM were synergistic in the 6-Hz corneal stimulation-induced seizure model in mice. The additive interaction was observed for the combinations of GBP+LCM, GBP+PGB, and RTG+LCM in this seizure model in mice. The most beneficial combination, offering the highest level of synergistic suppression of seizures in mice was that of LEV+RTG, whereas the most additive combination that protected the animals from seizures was that reporting additivity for RTG+LCM. The strength of interaction for two-drug combinations can be arranged from the synergistic to the additive, as follows: LEV+RTG > LEV+LCM > GBP+RTG > PGB+LEV > GBP+LEV > PGB+RTG > PGB+LCM > GBP+LCM > GBP+PGB > RTG+LCM.
Collapse
Affiliation(s)
- Jarogniew J. Luszczki
- Department of Pathophysiology, Medical University of Lublin, Lublin, Poland
- Isobolographic Analysis Laboratory, Institute of Rural Health, Lublin, Poland
- * E-mail: ,
| | - Anna Panasiuk
- Department of Pathophysiology, Medical University of Lublin, Lublin, Poland
- Department of Anesthesiology and Intensive Care, Medical University of Lublin, Lublin, Poland
| | - Mirosław Zagaja
- Isobolographic Analysis Laboratory, Institute of Rural Health, Lublin, Poland
| | | | - Hubert Bojar
- Department of Toxicology and Food Safety, Institute of Rural Health, Lublin, Poland
| | - Zbigniew Plewa
- Department of General, Oncological and Minimally Invasive Surgery, 1st Military Clinical Hospital, Lublin, Poland
| | | |
Collapse
|
35
|
Jaworski T. Control of neuronal excitability by GSK-3beta: Epilepsy and beyond. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1867:118745. [PMID: 32450268 DOI: 10.1016/j.bbamcr.2020.118745] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 05/07/2020] [Accepted: 05/09/2020] [Indexed: 12/22/2022]
Abstract
Glycogen synthase kinase 3beta (GSK-3β) is an enzyme with a variety of cellular functions in addition to the regulation of glycogen metabolism. In the central nervous system, different intracellular signaling pathways converge on GSK-3β through a cascade of phosphorylation events that ultimately control a broad range of neuronal functions in the development and adulthood. In mice, genetically removing or increasing GSK-3β cause distinct functional and structural neuronal phenotypes and consequently affect cognition. Precise control of GSK-3β activity is important for such processes as neuronal migration, development of neuronal morphology, synaptic plasticity, excitability, and gene expression. Altered GSK-3β activity contributes to aberrant plasticity within neuronal circuits leading to neurological, psychiatric disorders, and neurodegenerative diseases. Therapeutically targeting GSK-3β can restore the aberrant plasticity of neuronal networks at least in animal models of these diseases. Although the complete repertoire of GSK-3β neuronal substrates has not been defined, emerging evidence shows that different ion channels and their accessory proteins controlling excitability, neurotransmitter release, and synaptic transmission are regulated by GSK-3β, thereby supporting mechanisms of synaptic plasticity in cognition. Dysregulation of ion channel function by defective GSK-3β activity sustains abnormal excitability in the development of epilepsy and other GSK-3β-linked human diseases.
Collapse
Affiliation(s)
- Tomasz Jaworski
- Laboratory of Animal Models, Nencki Institute of Experimental Biology, Warsaw, Poland.
| |
Collapse
|
36
|
Wu Z, Li L, Xie F, Xu G, Dang D, Yang Q. Enhancing KCNQ Channel Activity Improves Neurobehavioral Recovery after Spinal Cord Injury. J Pharmacol Exp Ther 2020; 373:72-80. [PMID: 31969383 PMCID: PMC7076523 DOI: 10.1124/jpet.119.264010] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 01/17/2020] [Indexed: 01/08/2023] Open
Abstract
Spinal cord injury (SCI) usually leads to acute neuronal death and delayed secondary degeneration, resulting in sensory dysfunction, paralysis, and chronic pain. Excessive excitation is one of the critical factors leading to secondary neural damage initiated by various insults. KCNQ/Kv7 channels are highly expressed in spinal neurons and axons and play an important role in controlling their excitability. Enhancing KCNQ channel activity by using its specific opener retigabine could thus be a plausible treatment strategy to reduce the pathology after SCI. We produced contusive SCI at T10 in adult male rats, which then received 10 consecutive days' treatment with retigabine or vehicle starting 3 hours or 3 days after contusion. Two different concentrations and two different delivery methods were applied. Delivery of retigabine via Alzet osmotic pumps, but not intraperitoneal injections 3 hours after contusion, promoted recovery of locomotor function. Remarkably, retigabine delivery in both methods significantly attenuated the development of mechanical stimuli-induced hyperreflexia and spontaneous pain; however, no significant difference in the thermal threshold was observed. Although retigabine delivered 3 days after contusion significantly attenuated the development of mechanical hypersensitivity and spontaneous pain, the locomotor function is not improved by the delayed treatments. Finally, we found that early application of retigabine attenuates the inflammatory activity in the spinal cord and increases the survival of white matter after SCI. Our results suggest that decreasing neuronal excitability by targeting KCNQ/Kv7 channels at acute stage aids the recovery of locomotor function and attenuates the development of neuropathic pain after SCI. SIGNIFICANCE STATEMENT: Several pharmacological interventions have been proposed for spinal cord injury (SCI) treatment, but none have been shown to be both effective and safe in clinical trials. Necrotic neuronal death and chronic pain are often the cost of pathological neural excitation after SCI. We show that early, brief application of retigabine could aid locomotor and sensory neurobehavioral recovery after SCI, supporting the use of this drug in the clinic to promote motor and sensory function in patients with SCI.
Collapse
Affiliation(s)
- Zizhen Wu
- The Solomon H Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland (Z.W.); Department of Integrative Biology and Pharmacology, McGovern Medical School at UT Health, Houston, Texas (L.L., F.X.); Department of Critical Medicine, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China (F.X.); and Department of Neuroscience, Cell Biology and Anatomy at University of Texas Medical Branch, Galveston, Texas (G.X., D.D., Q.Y.)
| | - Lin Li
- The Solomon H Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland (Z.W.); Department of Integrative Biology and Pharmacology, McGovern Medical School at UT Health, Houston, Texas (L.L., F.X.); Department of Critical Medicine, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China (F.X.); and Department of Neuroscience, Cell Biology and Anatomy at University of Texas Medical Branch, Galveston, Texas (G.X., D.D., Q.Y.)
| | - Fuhua Xie
- The Solomon H Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland (Z.W.); Department of Integrative Biology and Pharmacology, McGovern Medical School at UT Health, Houston, Texas (L.L., F.X.); Department of Critical Medicine, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China (F.X.); and Department of Neuroscience, Cell Biology and Anatomy at University of Texas Medical Branch, Galveston, Texas (G.X., D.D., Q.Y.)
| | - Guoying Xu
- The Solomon H Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland (Z.W.); Department of Integrative Biology and Pharmacology, McGovern Medical School at UT Health, Houston, Texas (L.L., F.X.); Department of Critical Medicine, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China (F.X.); and Department of Neuroscience, Cell Biology and Anatomy at University of Texas Medical Branch, Galveston, Texas (G.X., D.D., Q.Y.)
| | - Danny Dang
- The Solomon H Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland (Z.W.); Department of Integrative Biology and Pharmacology, McGovern Medical School at UT Health, Houston, Texas (L.L., F.X.); Department of Critical Medicine, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China (F.X.); and Department of Neuroscience, Cell Biology and Anatomy at University of Texas Medical Branch, Galveston, Texas (G.X., D.D., Q.Y.)
| | - Qing Yang
- The Solomon H Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland (Z.W.); Department of Integrative Biology and Pharmacology, McGovern Medical School at UT Health, Houston, Texas (L.L., F.X.); Department of Critical Medicine, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China (F.X.); and Department of Neuroscience, Cell Biology and Anatomy at University of Texas Medical Branch, Galveston, Texas (G.X., D.D., Q.Y.)
| |
Collapse
|
37
|
Carver CM, Hastings SD, Cook ME, Shapiro MS. Functional responses of the hippocampus to hyperexcitability depend on directed, neuron-specific KCNQ2 K + channel plasticity. Hippocampus 2019; 30:435-455. [PMID: 31621989 DOI: 10.1002/hipo.23163] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 07/24/2019] [Accepted: 08/30/2019] [Indexed: 12/14/2022]
Abstract
M-type (KCNQ2/3) K+ channels play dominant roles in regulation of active and passive neuronal discharge properties such as resting membrane potential, spike-frequency adaptation, and hyper-excitatory states. However, plasticity of M-channel expression and function in nongenetic forms of epileptogenesis are still not well understood. Using transgenic mice with an EGFP reporter to detect expression maps of KCNQ2 mRNA, we assayed hyperexcitability-induced alterations in KCNQ2 transcription across subregions of the hippocampus. Pilocarpine and pentylenetetrazol chemoconvulsant models of seizure induction were used, and brain tissue examined 48 hr later. We observed increases in KCNQ2 mRNA in CA1 and CA3 pyramidal neurons after chemoconvulsant-induced hyperexcitability at 48 hr, but no significant change was observed in dentate gyrus (DG) granule cells. Using chromogenic in situ hybridization assays, changes to KCNQ3 transcription were not detected after hyper-excitation challenge, but the results for KCNQ2 paralleled those using the KCNQ2-mRNA reporter mice. In mice 7 days after pilocarpine challenge, levels of KCNQ2 mRNA were similar in all regions to those from control mice. In brain-slice electrophysiology recordings, CA1 pyramidal neurons demonstrated increased M-current amplitudes 48 hr after hyperexcitability; however, there were no significant changes to DG granule cell M-current amplitude. Traumatic brain injury induced significantly greater KCNQ2 expression in the hippocampal hemisphere that was ipsilateral to the trauma. In vivo, after a secondary challenge with subconvulsant dose of pentylenetetrazole, control mice were susceptible to tonic-clonic seizures, whereas mice administered the M-channel opener retigabine were protected from such seizures. This study demonstrates that increased excitatory activity promotes KCNQ2 upregulation in the hippocampus in a cell-type specific manner. Such novel ion channel expressional plasticity may serve as a compensatory mechanism after a hyperexcitable event, at least in the short term. The upregulation described could be potentially leveraged in anticonvulsant enhancement of KCNQ2 channels as therapeutic target for preventing onset of epileptogenic seizures.
Collapse
Affiliation(s)
- Chase M Carver
- Department of Cellular and Integrative Physiology, University of Texas Health San Antonio, San Antonio, Texas
| | - Shayne D Hastings
- Department of Cellular and Integrative Physiology, University of Texas Health San Antonio, San Antonio, Texas
| | - Mileah E Cook
- Department of Cellular and Integrative Physiology, University of Texas Health San Antonio, San Antonio, Texas
| | - Mark S Shapiro
- Department of Cellular and Integrative Physiology, University of Texas Health San Antonio, San Antonio, Texas
| |
Collapse
|