1
|
Bahriz HA, Abdelaziz RR, El-Kashef DH. Desloratadine mitigates hepatocellular carcinoma in rats: Possible contribution of TLR4/MYD88/NF-κB pathway. Toxicol Appl Pharmacol 2025; 495:117202. [PMID: 39672344 DOI: 10.1016/j.taap.2024.117202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 07/03/2024] [Accepted: 12/08/2024] [Indexed: 12/15/2024]
Abstract
Chemotherapeutic medication-induced systemic toxicity makes cancer treatment less effective. Thus, the need for drug repurposing, which aids in the development of safe and efficient cancer therapies, is urgent. The primary goal of this research was to assess desloratadine hepatoprotective abilities and its capacity to attenuate TLR4/MyD88/NF-κB inflammatory pathway in hepatocellular carcinoma (HCC) induced by thioacetamide (TAA). Male Sprague Dawely rats received TAA injections (200 mg/kg, i.p., 2 times/week) for 16 weeks. To confirm the development of HCC, liver function biomarkers and histopathological analysis were evaluated. Desloratadine (5 mg/kg, p.o.) was administered to rats in 2 treatment groups; HCC + DES 1 group received desloratadine with TAA for 1 month from week 13-16, HCC + DES 2 group received desloratadine with TAA for 2 months from week 9-16. Chronic TAA administration resulted in considerable overexpression of the profibrogenic cytokine TGF-β and elevation in protein expression of NF-κB besides levels of TLR4, MyD88, TRAF6, TAK1 and IL-1β. Desloratadine administration showed a significant improvement in liver function tests, as well as an increase in tissue antioxidant enzymes and an improvement in the liver's histopathological features. Collectively, desloratadine through modulating TLR4/MyD88/TRAF6/TAK1/NF-κB and acting as an antioxidant, is a promising treatment for HCC induced by TAA.
Collapse
Affiliation(s)
- Heba A Bahriz
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Rania R Abdelaziz
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt.
| | - Dalia H El-Kashef
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| |
Collapse
|
2
|
Lesar M, Sajovic J, Novaković D, Primožič M, Vetrih E, Sajovic M, Žnidaršič A, Rogelj P, Daffertshofer A, Levnajić Z, Drevenšek G. The complexity of caffeine's effects on regular coffee consumers. Heliyon 2025; 11:e41471. [PMID: 39897922 PMCID: PMC11786655 DOI: 10.1016/j.heliyon.2024.e41471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 12/03/2024] [Accepted: 12/23/2024] [Indexed: 02/04/2025] Open
Abstract
Why does coffee wake us up? Is it because it contains caffeine, or because we are used to it waking us up after drinking it? To answer this question, we recruited twenty habitual coffee drinkers who received either caffeinated or decaffeinated coffee (placebo) in a double-blind, randomized fashion. The two substances were identical except for the presence of caffeine. We measured cognitive performance, cardiovascular responses, and whole-head EEG during rest and during an auditory-oddball task. The same measurements were done before and after ingestion. We expected to find significant differences between caffeine and placebo groups across the outcome measures. However, except for the resting-state alpha power, changes due to ingestion in physiological responses and in cognitive functioning were not significantly different between the two groups. Actually, only one of the three cognitive measures was found to be significantly altered by the ingestion. These findings suggest that regular coffee consumers respond to coffee-like beverages independently of the presence of caffeine.
Collapse
Affiliation(s)
- Mateja Lesar
- Faculty of Information Studies in Novo mesto, Slovenia
| | | | | | - Maša Primožič
- Faculty of Mathematics, Natural Sciences and Information Technologies, University of Primorska, Koper, Slovenia
| | - Eva Vetrih
- University Medical Centre Ljubljana, Slovenia
| | | | - Anja Žnidaršič
- Faculty of Organizational Sciences, University of Maribor, Slovenia
| | - Peter Rogelj
- Faculty of Mathematics, Natural Sciences and Information Technologies, University of Primorska, Koper, Slovenia
| | - Andreas Daffertshofer
- Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, the Netherlands
| | | | - Gorazd Drevenšek
- The Institute of Pharmacology and Experimental Toxicology, Faculty of Medicine, University of Ljubljana, Slovenia
| |
Collapse
|
3
|
Rasheed N, Rasheed Z. Coffee and liver health: Exploring the protective benefits and mechanisms of coffee and its bioactive compounds in liver disorders. Int J Health Sci (Qassim) 2025; 19:1-3. [PMID: 39760057 PMCID: PMC11699235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2025] Open
Affiliation(s)
- Naila Rasheed
- School of Nursing and Midwifery, Griffith University, Brisbane, Queensland, Australia
| | - Zafar Rasheed
- Department of Pathology, College of Medicine, Qassim University, Buraidah, Saudi Arabia
| |
Collapse
|
4
|
Zeng H, Lai J, Liu Z, Liu W, Zhang Y. Specific blood metabolite associations with Gout: a Mendelian randomization study. Eur J Clin Nutr 2025; 79:24-32. [PMID: 39215202 PMCID: PMC11717691 DOI: 10.1038/s41430-024-01497-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 08/13/2024] [Accepted: 08/15/2024] [Indexed: 09/04/2024]
Abstract
OBJECTIVE Gout, common metabolic disorders, have poorly understood links with blood metabolites. Exploring these relationships could enhance clinical prevention and treatment strategies. METHODS We applied bidirectional two-sample Mendelian randomization (MR) analysis, using data from a genome-wide association (GWAS) study of 486 blood metabolites. Gout data was obtained from FinnGen R8 (7461 gout and 221,323 control cases). We implemented the inverse variance-weighted (IVW) method for main analytical approach. Extensive heterogeneity, pleiotropy tests, leave-one-out analysis, and reverse MR were conducted to validate the robustness of our findings. Both Bonferroni and False Discovery Rate (FDR) corrections were used to adjust for multiple comparisons, ensuring stringent validation of our results. RESULTS Initial MR identified 31 candidate metabolites with potential genetic associations to gout. Following rigorous sensitivity analysis, 23 metabolites as potential statistical significance after final confirmation. These included metabolites enhancing gout risk such as X-11529 (OR = 1.225, 95% CI 1.112-1.350, P < 0.001), as well as others like piperine and stachydrine, which appeared to confer protective effects. The analysis was strengthened by reverse MR analysis. Additionally, an enrichment analysis was conducted, suggesting that 1-methylxanthine may be involved in the metabolic process of gout through the caffeine metabolism pathway. CONCLUSION Identifying causal metabolites offers new insights into the mechanisms influencing gout, suggesting pathways for future research and potential therapeutic targets.
Collapse
Affiliation(s)
- Huiqiong Zeng
- Traditional Chinese Medicine Department of Immunology, Women & Children Health Institute Futian Shenzhen, #2002 Jintian Road, Shenzhen, 518000, China
| | - Junda Lai
- Department of Human Life Sciences, Beijing Sport University, Haidian district, Beijing, #48 Xinxi Road, 100029, China
| | - Zhihang Liu
- Department of National Cybersecurity Center, Wuhan University, Wuchang District, #299 Bayi Road, Wuhan, 430072, Hubei, China
| | - Wei Liu
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, #314 Anshanxi Road, Tianjin, 300381, China.
| | - Ye Zhang
- Traditional Chinese Medicine Department of Immunology, Women & Children Health Institute Futian Shenzhen, #2002 Jintian Road, Shenzhen, 518000, China.
| |
Collapse
|
5
|
Di Pietrantonio D, Pace Palitti V, Cichelli A, Tacconelli S. Protective Effect of Caffeine and Chlorogenic Acids of Coffee in Liver Disease. Foods 2024; 13:2280. [PMID: 39063364 PMCID: PMC11276147 DOI: 10.3390/foods13142280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/12/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
Coffee is one of the most widely consumed beverages in the world due to its unique aroma and psychostimulant effects, mainly due to the presence of caffeine. In recent years, experimental evidence has shown that the moderate consumption of coffee (3/4 cups per day) is safe and beneficial to human health, revealing protective effects against numerous chronic metabolic diseases such as diabetes, cardiovascular, neurodegenerative, and hepatic diseases. This review focuses on two of coffee's main bioactive compounds, i.e., caffeine and chlorogenic acids, and their effects on the progression of chronic liver diseases, demonstrating that regular coffee consumption correlates with a lower risk of the development and progression of non-alcoholic steatohepatitis, viral hepatitis, liver cirrhosis, and hepatocellular carcinoma. In particular, this review analyzes caffeine and chlorogenic acid from a pharmacological point of view and explores the molecular mechanism through which these compounds are responsible for the protective role of coffee. Both bioactive compounds, therefore, have antifibrotic effects on hepatic stellate cells and hepatocytes, induce a decrease in connective tissue growth factor, stimulate increased apoptosis with anti-cancer effects, and promote a major inhibition of focal adhesion kinase, actin, and protocollagen synthesis. In conclusion, coffee shows many beneficial effects, and experimental data in favor of coffee consumption in patients with liver diseases are encouraging, but further prospective studies are needed to demonstrate its preventive and therapeutic role in chronic liver diseases.
Collapse
Affiliation(s)
- Daniela Di Pietrantonio
- Department of Innovative Technologies in Medicine and Dentistry, “G. d’Annunzio” University, Via dei Vestini 31, 66100 Chieti, Italy;
| | - Valeria Pace Palitti
- Internal Medicine and Hepatology Unit, Azienda Sanitaria Locale, Via R. Paolini 47, 65125 Pescara, Italy;
| | - Angelo Cichelli
- Department of Innovative Technologies in Medicine and Dentistry, “G. d’Annunzio” University, Via dei Vestini 31, 66100 Chieti, Italy;
| | - Stefania Tacconelli
- Department of Neuroscience, Imaging and Clinical Science, “G. d’Annunzio” University, Via dei Vestini 31, 66100 Chieti, Italy
| |
Collapse
|
6
|
Krarup KB, Riis J, Mørk M, Nguyen HTT, Søkilde Pedersen I, Risom Kristensen S, Handberg A, Krarup HB. Biochemical Changes in Adult Male Gamers During Prolonged Gaming: Pilot Study. Interact J Med Res 2024; 13:e46570. [PMID: 38976326 PMCID: PMC11263886 DOI: 10.2196/46570] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 01/30/2024] [Accepted: 04/02/2024] [Indexed: 07/09/2024] Open
Abstract
BACKGROUND Gaming has become an integrated part of life for children and adults worldwide. Previous studies on the impact of gaming on biochemical parameters have primarily addressed the acute effects of gaming. The literature is limited, and the study designs are very diverse. The parameters that have been investigated most thoroughly are blood glucose and cortisol. OBJECTIVE This exploratory study is the first to investigate the effects of long gaming sessions on the biochemical parameters of healthy male adults. The extensive testing allowed us to observe short-term changes (within 6 hours), long-term changes during the duration of the gaming sessions, and follow-up after 1 week to determine whether any changes were longer lasting. METHODS In total, 9 experienced gamers completed 2 back-to-back 18-hour gaming sessions interspersed with a 6-hour rest period. All participants adhered to a structured sleep pattern due to daytime employment or attending university. Blood, saliva, and urine samples were collected from the participants every 6 hours. Linear mixed-effect models were used to analyze the repeated-measures data accumulated during the study. A total of 51 biochemical parameters were investigated. RESULTS In total, 12 of the 51 biochemical parameters significantly changed during the study: alkaline phosphatase, aspartate aminotransferase, bilirubin, chloride, creatinine, glucose, hemoglobin, immature reticulocyte fraction, lactate, methemoglobin, sodium, and thrombocytes. All changes were within the normal range. The mean glucose level of the participants was 4.39 (SD 0.07) mmol/L at baseline, which increased significantly by 0.24 (SD 0.07) mmol/L per 6 hours during the first period and by 0.38 (SD 0.07) mmol/L per 6 hours in the second period (P<.001). The glucose levels during the second session increased even though the participants had little energy intake. Cortisol levels did not change significantly, although the cortisol pattern deviated from the typical circadian rhythm. During both gaming sessions, we observed increasing cortisol levels from 6 AM until noon. The participants were relatively dehydrated at the start of the study. The patients were asked to fast before the first blood sampling. Within the first 6 hours of the study, the participants rehydrated, followed by relative dehydration during the remainder of the study. This pattern was identified using the following parameters: albumin, creatinine, hemoglobin, erythrocytes, potassium, and platelets. CONCLUSIONS This study is the first of its kind, and many of the analyses in the study yielded novel results. The study was designed to emulate the behavior of gamers during the weekend and other long gaming sessions. At this point, we are not able to determine the difference between the effects of gaming and behavior during gaming. Regardless, the results of this study suggest that healthy gamers can partake in long gaming sessions, with ample amounts of unhealthy foods and little rest, without acute impacts on health.
Collapse
Affiliation(s)
| | - Johannes Riis
- Department of Geriatrics, Aalborg University Hospital, Aalborg, Denmark
| | - Morten Mørk
- Department of Clinical Biochemistry, Aalborg University Hospital, Aalborg, Denmark
| | - Hien Thi Thu Nguyen
- Department of Molecular Diagnostics, Aalborg University Hospital, Aalborg, Denmark
| | - Inge Søkilde Pedersen
- Department of Molecular Diagnostics, Aalborg University Hospital, Aalborg, Denmark
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - Søren Risom Kristensen
- Department of Clinical Biochemistry, Aalborg University Hospital, Aalborg, Denmark
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - Aase Handberg
- Department of Clinical Biochemistry, Aalborg University Hospital, Aalborg, Denmark
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - Henrik Bygum Krarup
- Department of Molecular Diagnostics, Aalborg University Hospital, Aalborg, Denmark
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| |
Collapse
|
7
|
Dutra NS, da Silva D’Ávila CM, da Silva TC, de Oliveira Mendes T, Livinalli IC, Bertoncelli ACZ, Saccol FK, Cadoná FC. Biological properties of caffeine, (+)-catechin, and theobromine: an in silico study. 3 Biotech 2024; 14:94. [PMID: 38444785 PMCID: PMC10909812 DOI: 10.1007/s13205-024-03934-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 01/15/2024] [Indexed: 03/07/2024] Open
Abstract
We analyzed here the in silico biological activities of caffeine, (+)-catechin, and theobromine. For this, the PubChem database of the NIH (National Institutes of Health) was used to obtain the SMILE canonical form of the bioactive molecules, and the free software PASS Online (Prediction of Activity Spectra for Substances) from the Way2Drug portal. Also, we conducted an in vitro experiment using a chronic myeloid leukemia (CML) cell line (K562) to confirm some results found in in silico investigation. These cells were exposed to different concentrations of caffeine, (+)-catechin, and theobromine for 72 h. The results found in this in silico study suggested that caffeine, (+)-catechin, and theobromine showed excellent biological properties, such as antioxidant, anti-inflammatory, and anticarcinogenic, as well as protection against cardiovascular, diabetes, neurological, allergic, respiratory, and other therapeutic activities. These findings can be elucidated through the modulation exerted by these bioactive molecules in many biochemical pathways involved in organism homeostasis, such as free radical scavenger action, oxidoreductase inhibitor, membrane permeability inhibitor, and lipid peroxidase inhibitor. In addition, we have found here that caffeine, (+)-catechin, and theobromine have a remarkable anti-inflammatory activity which plays an important role in the therapeutic approach of COVID-19. Moreover, our in vitro findings confirmed the in silico results regarding anticancer activity since these molecules reduce cell proliferation at all tested concentrations. Therefore, since these molecules exhibit important medicinal activities, further investigations should be conducted to reveal new therapies to improve the treatments and prevention of numerous disorders and, consequently, promote human health.
Collapse
Affiliation(s)
- Nara Saraiva Dutra
- Post-Graduate Program in Health and Life Sciences, Franciscan University, 1614 Andradas Street, Santa Maria, RS 97010-032 Brazil
| | | | | | | | | | | | | | - Francine Carla Cadoná
- Post-Graduate Program in Health and Life Sciences, Franciscan University, 1614 Andradas Street, Santa Maria, RS 97010-032 Brazil
| |
Collapse
|
8
|
Shan L, Zhao N, Wang F, Zhai D, Liu J, Lv X. Caffeine in Hepatocellular Carcinoma: Cellular Assays, Animal Experiments, and Epidemiological Investigation. J Inflamm Res 2024; 17:1589-1605. [PMID: 38495344 PMCID: PMC10941793 DOI: 10.2147/jir.s424384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 02/29/2024] [Indexed: 03/19/2024] Open
Abstract
The use of caffeine in treating various liver diseases has made substantial progress in the past decade owing to advances in science, technology, and medicine. However, whether caffeine has a preventive effect on hepatocellular carcinoma (HCC) and its mechanism are still worth further investigation. In this review, we summarize and analyze the efficacy and safety of caffeine in the prevention of HCC. We conducted a review of articles published in PubMed and Web of Science in the past 2 decades until December 6, 2023, which were searched for using the terms "Caffeine" and "Hepatocellular Carcinoma." Studies have found that coffee intake is negatively correlated with HCC risk, especially caffeinated coffee. Recent studies have found that caffeine has beneficial effects on liver health, decreasing levels of enzymes responsible for liver damaging and slowing the progression of hepatic fibrosis and cirrhosis. Caffeine also acts against liver fibrosis through adenosine receptors (ARs), which promote tissue remodeling by inducing fibrin and collagen production. Additionally, new studies have found that moderate consumption of caffeinated beverages can decrease various the levels of various collagens in patients with chronic hepatitis C. Furthermore, polyphenolic compounds in coffee can improve fat homeostasis, reduce oxidative stress, and prevent liver steatosis and fibrosis. Moreover, many in vitro studies have shown that caffeine can protect liver cells and inhibit the activation and proliferation of hepatic stellate cells. Taken together, we describe the benefits of caffeine for liver health and highlight its potential values as a drug to prevent various hepatic diseases. As a protective agent of liver inflammation, non-selective AR inhibitor caffeine can inhibit the growth of HCC cells by inhibiting adenosine and AR binding to initiate immune response, providing a basis for the future development of caffeine as an adjuvant drug against HCC.
Collapse
Affiliation(s)
- Liang Shan
- Department of Pharmacy, the Second People’s Hospital of Hefei, Hefei Hospital Affiliated to Anhui Medical University, Hefei, Anhui, 230011, People’s Republic of China
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, Hefei, 230032, People’s Republic of China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, 230032, People’s Republic of China
- The Key Laboratory of Major Autoimmune Diseases, Hefei, Anhui Province, 230032, People’s Republic of China
| | - Ning Zhao
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, Hefei, 230032, People’s Republic of China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, 230032, People’s Republic of China
- The Key Laboratory of Major Autoimmune Diseases, Hefei, Anhui Province, 230032, People’s Republic of China
| | - Fengling Wang
- Department of Pharmacy, the Second People’s Hospital of Hefei, Hefei Hospital Affiliated to Anhui Medical University, Hefei, Anhui, 230011, People’s Republic of China
| | - Dandan Zhai
- Department of Pharmacy, the Second People’s Hospital of Hefei, Hefei Hospital Affiliated to Anhui Medical University, Hefei, Anhui, 230011, People’s Republic of China
| | - Jianjun Liu
- Department of Pharmacy, the Second People’s Hospital of Hefei, Hefei Hospital Affiliated to Anhui Medical University, Hefei, Anhui, 230011, People’s Republic of China
| | - Xiongwen Lv
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, Hefei, 230032, People’s Republic of China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, 230032, People’s Republic of China
- The Key Laboratory of Major Autoimmune Diseases, Hefei, Anhui Province, 230032, People’s Republic of China
| |
Collapse
|
9
|
Dong R, Zhang R, Shen C, Shen Y, Shen Z, Tian T, Wang J. Urinary caffeine and its metabolites in association with advanced liver fibrosis and liver steatosis: a nationwide cross-sectional study. Food Funct 2024; 15:2064-2077. [PMID: 38295369 DOI: 10.1039/d3fo04957d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2024]
Abstract
Aim: This study used urinary caffeine and its metabolites to evaluate their relationships with liver steatosis and advanced liver fibrosis. Methods: A total of 2068 adult participants with required data were filtered from the 2009-2014 National Health and Nutrition Examination Survey (NHANES) cycles. Non-invasive scores were applied to define liver steatosis and advanced liver fibrosis. Logistic regression models, weighted quantile sum (WQS) regression models, quantile-based g-computation (QG-Comp) models, and restricted cubic spline (RCS) regression models were used to assess the associations of urinary caffeine and its metabolites with liver steatosis and advanced liver fibrosis. A series of additional analyses were conducted to examine the subgroup-specific differences and test the robustness of the observed results. Results: The major caffeine metabolite mixture and most individual caffeine metabolites were found to be negatively associated with the risk of advanced liver fibrosis with subgroup-specific variations. Only 7-MX consistently showed a negative association with liver steatosis in all analyses, while no association was observed between the major caffeine metabolite mixture and liver steatosis. Conclusion: The major caffeine metabolite mixture and most individual urinary caffeine metabolites exhibited inverse associations with advanced liver fibrosis with subgroup differences. Further prospective and experimental studies are urgently needed to verify our results and further identify the possible mechanisms.
Collapse
Affiliation(s)
- Rui Dong
- Department of Fundamental and Community Nursing, School of Nursing, Nanjing Medical University, Nanjing, China.
| | - Ru Zhang
- Jiangsu College of Nursing, School of Nursing and Midwifery, Huaian, China
| | - Chao Shen
- Nanjing Municipal Center for Disease Control and Prevention, Nanjing, China
| | - Ya Shen
- Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, China.
| | - Zhengkai Shen
- Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, China.
| | - Ting Tian
- Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, China.
| | - Jie Wang
- Department of Fundamental and Community Nursing, School of Nursing, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
10
|
Yilmaz F, Aydemi̇r S, Yilmaz B, Ilgen O, Kurt S, Baykara B. Effects of dose-dependent chronic caffeine consumption in a rat burn wound model: Histopathological and immunohistochemical evaluation. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2024; 27:1180-1186. [PMID: 39055867 PMCID: PMC11266734 DOI: 10.22038/ijbms.2024.76513.16557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 06/18/2024] [Indexed: 07/28/2024]
Abstract
Objectives Using histopathological and immunohistochemical methods, we aimed to examine the dose-dependent effects of chronic caffeine consumption on the recovery of burn wounds in an in vivo rat model. Materials and Methods Forty-five rats were randomly assigned to a high-dose group (20 mg/kg per day for eight weeks; n=15), a low-dose group (10 mg/kg per day for eight weeks; n=15), or a control group (n=15). The burn model was created in rats. The groups were separated into three subgroups (n=5) based on the day after injury (7th, 14th, or 21st day). The wound area, wound closure percentage, and histopathological and immunohistochemical reactivity were evaluated. Results Successful wound healing was noted in rats treated with low doses of caffeine, similar to the control group. Pathology revealed low re-epithelization, low inflammation, and high granulation in the high-dose group. In addition, there was a significant difference between the control and high-dose groups regarding the immunohistochemical reactivity of αVβ3 integrin, vascular endothelial growth factor (VEGF), and matrix metalloproteinase 9 (MMP-9) (P<0.05). Conclusion We demonstrated that chronic caffeine consumption in rats adversely affects the recovery process of wounds in a dose-dependent manner. This effect may occur through delayed wound healing via the molecules MMP-9, αVβ3 integrin, and VEGF. Treatment that modulates these molecules can lead to enhanced and quicker recovery of damaged skin in coffee lovers.
Collapse
Affiliation(s)
- Filiz Yilmaz
- Hitit University, Training and Research Hospital, IVF Center, Corum, Turkey
| | - Selma Aydemi̇r
- Dokuz Eylul University, Faculty of Medicine, Department of Histology and Embryology, Izmir, Turkey
| | - Bayram Yilmaz
- Hitit University, Training and Research Hospital, Pathology Department, Corum, Turkey
| | - Orkun Ilgen
- Dokuz Eylul University, Faculty of Medicine, Department of Obstetrics and Gynecology, Izmir, Turkey
| | - Sefa Kurt
- Dokuz Eylul University, Faculty of Medicine, Department of Obstetrics and Gynecology, Izmir, Turkey
| | - Başak Baykara
- Dokuz Eylul University, Faculty of Medicine, Department of Histology and Embryology, Izmir, Turkey
| |
Collapse
|
11
|
Arroyave-Ospina JC, Buist-Homan M, Schmidt M, Moshage H. Protective effects of caffeine against palmitate-induced lipid toxicity in primary rat hepatocytes is associated with modulation of adenosine receptor A1 signaling. Biomed Pharmacother 2023; 165:114884. [PMID: 37423170 DOI: 10.1016/j.biopha.2023.114884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 05/05/2023] [Accepted: 05/12/2023] [Indexed: 07/11/2023] Open
Abstract
BACKGROUND Epidemiological evidence has shown an association between coffee consumption and reduced risk for chronic liver diseases, including metabolic-dysfunction-associated liver disease (MALFD). Lipotoxicity is a key cause of hepatocyte injury during MAFLD. The coffee component caffeine is known to modulate adenosine receptor signaling via the antagonism of adenosine receptors. The involvement of these receptors in the prevention of hepatic lipotoxicity has not yet been explored. The aim of this study was to explore whether caffeine protects against palmitate-induced lipotoxicity by modulating adenosine receptor signaling. METHODS Primary hepatocytes were isolated from male rats. Hepatocytes were treated with palmitate with or without caffeine or 1,7DMX. Lipotoxicity was verified using Sytox viability staining and mitochondrial JC-10 staining. PKA activation was verified by Western blotting. Selective (ant)agonists of A1AR (DPCPX and CPA, respectively) and A2AR (istradefyline and regadenoson, respectively), the AMPK inhibitor compound C, and the Protein Kinase A (PKA) inhibitor Rp8CTP were used. Lipid accumulation was verified by ORO and BODIPY 453/50 staining. RESULTS Caffeine and its metabolite 1,7DMX prevented palmitate-induced toxicity in hepatocytes. The A1AR antagonist DPCPX also prevented lipotoxicity, whereas both the inhibition of PKA and the A1AR agonist CPA (partially) abolished the protective effect. Caffeine and DPCPX increased lipid droplet formation only in palmitate-treated hepatocytes and decreased mitochondrial ROS production. CONCLUSIONS The protective effect of caffeine against palmitate lipotoxicity was shown to be dependent on A1AR receptor and PKA activation. Antagonism of A1AR also protects against lipotoxicity. Targeting A1AR receptor may be a potential therapeutic intervention with which to treat MAFLD.
Collapse
Affiliation(s)
- Johanna C Arroyave-Ospina
- Department of Laboratory Medicine, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands; Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands.
| | - Manon Buist-Homan
- Department of Laboratory Medicine, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands; Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Martina Schmidt
- Department Molecular Pharmacology, Groningen Research Institute of Pharmacy, Groningen Research Institute for Asthma and COPD, GRIAC, University Medical Center Groningen University of Groningen, Groningen, the Netherlands
| | - Han Moshage
- Department of Laboratory Medicine, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands; Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| |
Collapse
|
12
|
Alqrad MAI, El-Agamy DS, Ibrahim SRM, Sirwi A, Abdallah HM, Abdel-Sattar E, El-Halawany AM, Elsaed WM, Mohamed GA. SIRT1/Nrf2/NF-κB Signaling Mediates Anti-Inflammatory and Anti-Apoptotic Activities of Oleanolic Acid in a Mouse Model of Acute Hepatorenal Damage. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1351. [PMID: 37512162 PMCID: PMC10383078 DOI: 10.3390/medicina59071351] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/18/2023] [Accepted: 07/20/2023] [Indexed: 07/30/2023]
Abstract
Background and objectives: Oleanolic acid (OA) is a penta-cyclic triterpene with diverse bioactivities such as anticarcinogenic, antiviral, antimicrobial, hepatoprotective, anti-atherosclerotic, hypolipidemic, and gastroprotective. However, its effects on hepatorenal damage remain unclear. The protective activity of OA, separated from Viscum schimperi (Loranthaceae), against TAA (thioacetamide)-produced acute hepatic and renal damage was explored. Materials and Methods: Mice were treated with OA for 7 days before TAA (200 mg/kg, i.p.). Serum indices of hepatorenal injury, pathological lesions, molecular biological indexes, and inflammatory/apoptotic genes were estimated. Results: The tissues of both organs were greatly affected by the TAA injection. That was evident through increased serum markers of hepato-renal injury as well as remarkable histopathological lesions. TAA-induced injury was associated with oxidative and inflammatory responses in both organs as there was an elevation of oxidative stress parameters (4-HNE (4-hydroxy-nonenal), MDA (malondialdehyde), NOx (nitric oxide)), decline of antioxidants (reduced glutathione (GSH), superoxide dismutase (SOD), and total antioxidant capacity (TAC)), and an increase in the gene expression/level of inflammatory mediators (interleukins (1β&6)). The inflammatory response was linked to a significant activation of NF-κB (nuclear-factor kappa-B)/TNF-α (tumor-necrosis factor-alpha) signaling. The inflammatory response in both organs was accompanied by apoptotic changes, including a rise in the gene expression and level of apoptotic parameters (caspase-3 and Bax) along with a decline in Bcl-2 (anti-apoptotic parameter) gene expression and level. These pathogenic events were found to be closely related to the suppression of the antioxidant signaling pathway, Nrf2 (nuclear-factor erythroid 2-related factor-2)/SIRT1 (sirtuin-1)/HO-1 (heme-oxygenase 1). On the other hand, OA significantly ameliorated TAA-induced injury in both organs. On the other hand, OA counterpoised the inflammatory response as it ameliorated NF-κB/TNF-α signaling and cytokine release. OA enhanced Nrf2/SIRT1/HO-1 signaling and counteracted apoptotic damage. Conclusions: OA showed anti-inflammation and antiapoptotic capacities that effectively suppressed TAA-induced acute hepatorenal damage.
Collapse
Affiliation(s)
- Manea A. I. Alqrad
- Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (M.A.I.A.); (A.S.); (H.M.A.)
| | - Dina S. El-Agamy
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt;
| | - Sabrin R. M. Ibrahim
- Department of Chemistry, Preparatory Year Program, Batterjee Medical College, Jeddah 21442, Saudi Arabia;
- Department of Pharmacognosy, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt
| | - Alaa Sirwi
- Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (M.A.I.A.); (A.S.); (H.M.A.)
| | - Hossam M. Abdallah
- Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (M.A.I.A.); (A.S.); (H.M.A.)
| | - Essam Abdel-Sattar
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Giza 12613, Egypt; (E.A.-S.); (A.M.E.-H.)
| | - Ali M. El-Halawany
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Giza 12613, Egypt; (E.A.-S.); (A.M.E.-H.)
| | - Wael M. Elsaed
- Department of Anatomy and Embryology, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt;
| | - Gamal A. Mohamed
- Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (M.A.I.A.); (A.S.); (H.M.A.)
| |
Collapse
|
13
|
Vargas-Pozada EE, Ramos-Tovar E, Acero-Hernández C, Cardoso-Lezama I, Galindo-Gómez S, Tsutsumi V, Muriel P. The antioxidant and anti-inflammatory activities of caffeine effectively attenuate nonalcoholic steatohepatitis and thioacetamide-induced hepatic injury in male rats. Can J Physiol Pharmacol 2023; 101:147-159. [PMID: 36744700 DOI: 10.1139/cjpp-2022-0303] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The antioxidant effect of caffeine, associated with its ability to upregulate the nuclear factor-E2-related factor-2 (Nrf2)-signaling pathway, was explored as a possible mechanism for the attenuation of liver damage. Nonalcoholic steatohepatitis (NASH) was induced in rats by the administration of a high-fat, high-sucrose, high-cholesterol diet (HFSCD) for 15 weeks. Liver damage was induced in rats by intraperitoneal administration of thioacetamide (TAA) for six weeks. Caffeine was administered orally at a daily dose of 50 mg/kg body weight during the period of NASH induction to evaluate its ability to prevent disease development. Meanwhile, rats received TAA for three weeks, after which 50 mg/kg caffeine was administered daily for three weeks with TAA to evaluate its capacity to interfere with the progression of hepatic injury. HFSCD administration induced hepatic steatosis, decreased Nrf2 levels, increased oxidative stress, induced the activation of nuclear factor-κB (NF-κB), and elevated proinflammatory cytokine levels, leading to hepatic damage. TAA administration produced similar effects, excluding steatosis. Caffeine increased Nrf2 levels; attenuated oxidative stress markers, including malondialdehyde and 4-hydroxynonenal; restored normal, reduced glutathione levels; and reduced NF-κB activation, inflammatory cytokine levels, and damage. Our findings suggest that caffeine may be useful in the treatment of human liver diseases.
Collapse
Affiliation(s)
- Eduardo E Vargas-Pozada
- Laboratory of Experimental Hepatology, Department of Pharmacology, Cinvestav-IPN, Mexico City 14-740, Mexico
| | - Erika Ramos-Tovar
- Postgraduate Studies and Research Section, School of Higher Education in Medicine-IPN, Plan de San Luis y Díaz Mirón s/n, Casco de Santo Tomás, Mexico City 11340, Mexico
| | - Consuelo Acero-Hernández
- Laboratory of Experimental Hepatology, Department of Pharmacology, Cinvestav-IPN, Mexico City 14-740, Mexico
| | - Irina Cardoso-Lezama
- Laboratory of Experimental Hepatology, Department of Pharmacology, Cinvestav-IPN, Mexico City 14-740, Mexico
| | - Silvia Galindo-Gómez
- Department of Infectomics and Molecular Pathogenesis, Cinvestav-IPN, Mexico City 14-740, Mexico
| | - Víctor Tsutsumi
- Department of Infectomics and Molecular Pathogenesis, Cinvestav-IPN, Mexico City 14-740, Mexico
| | - Pablo Muriel
- Laboratory of Experimental Hepatology, Department of Pharmacology, Cinvestav-IPN, Mexico City 14-740, Mexico
| |
Collapse
|
14
|
Peerapen P, Chanthick C, Thongboonkerd V. Quantitative proteomics reveals common and unique molecular mechanisms underlying beneficial effects of caffeine and trigonelline on human hepatocytes. Biomed Pharmacother 2023; 158:114124. [PMID: 36521247 DOI: 10.1016/j.biopha.2022.114124] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 11/26/2022] [Accepted: 12/09/2022] [Indexed: 12/15/2022] Open
Abstract
Caffeine and trigonelline are the major bioactive compounds in coffee. Caffeine alone or combined with other coffee compounds shows hepatoprotective effects. However, molecular mechanisms underlying such hepatoprotective effects remain unclear. We therefore addressed molecular effects of caffeine and trigonelline on human hepatocytes using quantitative proteomics followed by bioinformatic analyses to obtain topological and functional significance. HepG2 cells were treated with 100 μM caffeine or trigonelline for 24-h and evaluated by quantitative proteomics using nanoLC-ESI-LTQ-Orbitrap MS/MS. A total of 26 and 25 significantly altered proteins were identified in caffeine-treated and trigonelline-treated cells, respectively, compared with control cells. Topological analyses revealed that ribosomal and translation regulatory proteins predominantly served as the hub proteins associated with protein clusters. Functional analyses also revealed that these two bioactive compounds shared some molecular mechanisms via induction of translational processes. There were also other unique molecular functions and biological processes triggered or suppressed by either caffeine or trigonelline. These data highlight common and unique molecular mechanisms underlying the hepatoprotective effects of caffeine and trigonelline that may be useful for future clinical applications.
Collapse
Affiliation(s)
- Paleerath Peerapen
- Medical Proteomics Unit, Office for Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Chanettee Chanthick
- Medical Proteomics Unit, Office for Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Visith Thongboonkerd
- Medical Proteomics Unit, Office for Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand.
| |
Collapse
|
15
|
Abstract
Liver fibrosis has a high incidence worldwide and is the common pathological basis of many chronic liver diseases. Liver fibrosis is caused by the excessive deposition of extracellular matrix and concomitant collagen accumulation in livers and can lead to the development of liver cirrhosis and even liver cancer. A large number of studies have provided evidence that liver fibrosis can be blocked or even reversed by appropriate medical interventions. However, the antifibrosis drugs with ideal clinical efficacy are still insufficient. The edible plant-derived natural compounds have been reported to exert effective antifibrotic effects with few side-effects, representing a kind of promising source for the treatment of liver fibrosis. In this article, we reviewed the current progress of the natural compounds derived from dietary plants in the treatment of liver fibrosis, including phenolic compounds (capsaicin, chlorogenic acid, curcumin, ellagic acid, epigallocatechin-3-gallate, resveratrol, sinapic acid, syringic acid, vanillic acid and vitamin E), flavonoid compounds (genistein, hesperidin, hesperetin, naringenin, naringin and quercetin), sulfur-containing compounds (S-allylcysteine, ergothioneine, lipoic acid and sulforaphane) and other compounds (betaine, caffeine, cucurbitacin B, lycopene, α-mangostin, γ-mangostin, ursolic acid, vitamin C and yangonin). The pharmacological effects and related mechanisms of these compounds in in-vivo and in-vitro models of liver fibrosis are focused.
Collapse
|
16
|
Wu X, Zhang D, Wang F, Luo L, Chen Y, Lu S. Risk assessment of metal(loid)s in tea from seven producing provinces in China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 856:159140. [PMID: 36191717 DOI: 10.1016/j.scitotenv.2022.159140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 09/24/2022] [Accepted: 09/27/2022] [Indexed: 06/16/2023]
Abstract
To evaluate metal(loid) contamination in tea leaves and assess health risks of tea drinking in China, metal(loid) concentrations in tea leaves from major tea-producing provinces were determined. Nine metal(loid)s (Al, Cr, Co, Ni, Cu, Zn, As, Cd and Pb) were measured in a total of 217 tea samples representing five tea varieties (black tea, dark tea, green tea, oolong tea and white tea) from seven major tea-producing provinces of China (Fujian, Guangdong, Henan, Hunan, Jiangsu, Yunnan and Zhejiang). The results indicated that tea samples from Hunan Province had the highest metal(loid) concentrations, likely due its high prevalence of heavy industrial activities and soil pollution. The concentrations of As and Pb in dark tea were markedly higher than those in other tea varieties. A strong Spearman correlation coefficient (0.78, P < 0.001) of As and Pb in all the tea varieties has also been found, indicating their similar sources. Human health risk assessment for the nine analyzed metal(loid)s indicated that co-exposure to these metal(loids) may not cause significant health risks (hazard index [HI] > 1 suggests considerable health risks). Among the five tea varieties, metal(loids)s in dark and green tea induced relatively higher health risks, with 90th percentile HI values approached 0.8. Co (53.6 %-84.5 %) and Al (3.33 %-15.8 %) made the highest contributions to the HI of the selected tea commodities. Thus, public and regulatory agencies should reduce excessive Co and Al accumulation in these tea varieties during cultivation and production processes.
Collapse
Affiliation(s)
- Xiaoling Wu
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Duo Zhang
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Fu Wang
- Longhua Center for Disease Control and Prevention, Shenzhen 518054, China
| | - Lan Luo
- Longhua Center for Disease Control and Prevention, Shenzhen 518054, China
| | - Yining Chen
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Shaoyou Lu
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China.
| |
Collapse
|
17
|
Ősz BE, Jîtcă G, Ștefănescu RE, Pușcaș A, Tero-Vescan A, Vari CE. Caffeine and Its Antioxidant Properties-It Is All about Dose and Source. Int J Mol Sci 2022; 23:13074. [PMID: 36361861 PMCID: PMC9654796 DOI: 10.3390/ijms232113074] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/23/2022] [Accepted: 10/24/2022] [Indexed: 08/16/2023] Open
Abstract
Caffeine is the most frequently used substance with a central nervous system stimulant effect, but its consumption is most often due to the intake of foods and drinks that contain it (coffee, tea, chocolate, food supplements with plant extracts of Guarana, Mate herba, Cola nuts). Due to its innocuity, caffeine is a safe xanthine alkaloid for human consumption in a wide range of doses, being used for its central nervous stimulating effect, lipolytic and diuresis-enhancing properties, but also as a permitted ergogenic compound in athletes. In addition to the mechanisms that explain the effects of caffeine on the targeted organ, there are many proposed mechanisms by which this substance would have antioxidant effects. As such, its consumption prevents the occurrence/progression of certain neurodegenerative diseases as well as other medical conditions associated with increased levels of reactive oxygen or nitrogen species. However, most studies that have assessed the beneficial effects of caffeine have used pure caffeine. The question, therefore, arises whether the daily intake of caffeine from food or drink has similar benefits, considering that in foods or drinks with a high caffeine content, there are other substances that could interfere with this action, either by potentiating or decreasing its antioxidant capacity. Natural sources of caffeine often combine plant polyphenols (phenol-carboxylic acids, catechins) with known antioxidant effects; however, stimulant drinks and dietary supplements often contain sugars or artificial sweeteners that can significantly reduce the effects of caffeine on oxidative stress. The objective of this review is to clarify the effects of caffeine in modulating oxidative stress and assess these benefits, considering the source and the dose administered.
Collapse
Affiliation(s)
- Bianca-Eugenia Ősz
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540139 Targu Mures, Romania
| | - George Jîtcă
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540139 Targu Mures, Romania
| | - Ruxandra-Emilia Ștefănescu
- Department of Pharmacognosy and Phytotherapy, Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540139 Targu Mures, Romania
| | - Amalia Pușcaș
- Department of Biochemistry and Chemistry of Environmental Factors, Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540139 Targu Mures, Romania
| | - Amelia Tero-Vescan
- Department of Biochemistry, Faculty of Medicine, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540139 Targu Mures, Romania
| | - Camil-Eugen Vari
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540139 Targu Mures, Romania
| |
Collapse
|
18
|
Shan L, Wang F, Zhai D, Meng X, Liu J, Lv X. Caffeine in liver diseases: Pharmacology and toxicology. Front Pharmacol 2022; 13:1030173. [PMID: 36324678 PMCID: PMC9618645 DOI: 10.3389/fphar.2022.1030173] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 10/05/2022] [Indexed: 11/29/2022] Open
Abstract
We have previously shown that adenosine A1AR antagonists, adenosine A2aAR antagonists, and caffeine have significant inhibitory effects on the activation and proliferation of hepatic stellate cells in alcoholic liver fibrosis. Many recent studies have found that moderate coffee consumption is beneficial for various liver diseases. The main active ingredient of coffee is caffeine, which is a natural non-selective adenosine receptor antagonist. Moreover, numerous preclinical epidemiological studies and clinical trials have examined the association between frequent coffee consumption and the risk of developing different liver diseases. In this review, we summarize and analyze the prophylactic and therapeutic effects of caffeine on various liver diseases, with an emphasis on cellular assays, animal experiments, and clinical trials. To review the prevention and treatment effects of caffeine on different liver diseases, we searched all literature before 19 July 2022, using “caffeine” and “liver disease” as keywords from the PubMed and ScienceDirect databases. We found that moderate coffee consumption has beneficial effects on various liver diseases, possibly by inhibiting adenosine binding to its receptors. Caffeine is a potential drug for the prevention and treatment of various liver diseases.
Collapse
Affiliation(s)
- Liang Shan
- Department of Pharmacy, The Second People’s Hospital of Hefei, Hefei Hospital Affiliated to Anhui Medical University, Hefei, Anhui, China
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, Hefei, Anhui, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, China
- The Key Laboratory of Major Autoimmune Diseases, Hefei, Anhui, China
| | - Fengling Wang
- Department of Pharmacy, The Second People’s Hospital of Hefei, Hefei Hospital Affiliated to Anhui Medical University, Hefei, Anhui, China
| | - Dandan Zhai
- Department of Pharmacy, The Second People’s Hospital of Hefei, Hefei Hospital Affiliated to Anhui Medical University, Hefei, Anhui, China
| | - Xiangyun Meng
- Department of Pharmacy, The Second People’s Hospital of Hefei, Hefei Hospital Affiliated to Anhui Medical University, Hefei, Anhui, China
| | - Jianjun Liu
- Department of Pharmacy, The Second People’s Hospital of Hefei, Hefei Hospital Affiliated to Anhui Medical University, Hefei, Anhui, China
- *Correspondence: Jianjun Liu, ; Xiongwen Lv,
| | - Xiongwen Lv
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, Hefei, Anhui, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, China
- The Key Laboratory of Major Autoimmune Diseases, Hefei, Anhui, China
- *Correspondence: Jianjun Liu, ; Xiongwen Lv,
| |
Collapse
|
19
|
Bouabsa F, Tir Touil A, Al Zoubi MS, Chelli N, Leke A, Meddah B. Caffeine citrate effects on gastrointestinal permeability, bacterial translocation and biochemical parameters in newborn rats after long-term oral administration. MEDITERRANEAN JOURNAL OF NUTRITION AND METABOLISM 2022; 15:307-321. [DOI: 10.3233/mnm-211544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND: Caffeine is a potent central and respiratory acting agent used in neonatology to treat apnea in premature newborns. OBJECTIVE: This study investigates the effects of caffeine orally administered to newborn rats on gastrointestinal permeability, bacterial translocation and different biochemical parameters. METHODS: Newborn rats were divided into different groups ( N = 06). The treated newborn rats were orally administered with standard caffeine doses (12 mg/kg per day), and the control groups received a placebo. The animals were weighed daily until sacrifice. Blood samples, mesenteric lymph nodes (MLN) and organs were aseptically collected. Furthermore, different biochemical (D-Lactate) and oxidative stress biomarkers (MDA, CAT, SOD and GSH) were examined. Microbiological analyses were performed to assess microbiota alterations and bacterial translocation. RESULTS: Preliminary results showed that caffeine administration decreased the level of bacterial translocation over time. The treatment reduced plasma D-lactate levels ( p < 0.05). Additionally, caffeine induced a disturbance in the concentrations of biochemical parameters and oxidative stress biomarkers. Indeed, liver enzymes (AST and ALT) were significantly ( p < 0.05) risen after caffeine treatment. Glutathione (GSH) levels were significantly higher in caffeine treated groups (75.12±0.32; 51.98±1.12 U/mg; p < 0.05) comparing to control ones (40.82±0.25; 42.91±0.27 U/mg; p < 0.05) in the ileum and the colon, respectively. CONCLUSIONS: Thus, besides improving gastrointestinal permeability, our data show that caffeine has beneficial effects on the intestinal antioxidant system.
Collapse
Affiliation(s)
- Foufa Bouabsa
- Bioconversion, Microbiology Engineering and Health Safety Laboratory (LBGMSS), Nature and Life Sciences Faculty, Mustapha Stambouli University, Mascara, Algeria
| | - Aicha Tir Touil
- Bioconversion, Microbiology Engineering and Health Safety Laboratory (LBGMSS), Nature and Life Sciences Faculty, Mustapha Stambouli University, Mascara, Algeria
| | - Mazhar Salim Al Zoubi
- Department of Basic Medical Sciences, Faculty of Medicine, Yarmouk University, Irbid, Jordan
| | - Nadia Chelli
- Bioconversion, Microbiology Engineering and Health Safety Laboratory (LBGMSS), Nature and Life Sciences Faculty, Mustapha Stambouli University, Mascara, Algeria
| | - André Leke
- Pediatric Neonatal Department, CHU Nord-Amiens, France
| | - Boumediene Meddah
- Bioconversion, Microbiology Engineering and Health Safety Laboratory (LBGMSS), Nature and Life Sciences Faculty, Mustapha Stambouli University, Mascara, Algeria
| |
Collapse
|
20
|
Caffeine Inhibits NLRP3 Inflammasome Activation by Downregulating TLR4/MAPK/NF-κB Signaling Pathway in an Experimental NASH Model. Int J Mol Sci 2022; 23:ijms23179954. [PMID: 36077357 PMCID: PMC9456282 DOI: 10.3390/ijms23179954] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 08/26/2022] [Accepted: 08/29/2022] [Indexed: 12/13/2022] Open
Abstract
Caffeine elicits protective effects against liver diseases, such as NASH; however, its mechanism of action involving the pyrin domain-containing-3 (NLRP3) inflammasome signaling pathway remains to be elucidated. This study aimed to evaluate the effect of caffeine on the NLRP3 inflammasome signaling pathway in a rat model of NASH. NASH was induced by feeding rats a high-fat, -sucrose, and -cholesterol diet (HFSCD) for 15 weeks along with a weekly low dose (400 mg/kg, i.p.) of CCl4. Caffeine was administered at 50 mg/kg p.o. The effects of HFSCD+CCl4 and caffeine on the liver were evaluated using biochemical, ultrastructural, histological, and molecular biological approaches. The HFSCD+CCl4-treated rats showed fat accumulation in the liver, elevated levels of inflammatory mediators, NLRP3 inflammasome activation, antioxidant dysregulation, and liver fibrosis. Caffeine reduced necrosis, cholestasis, oxidative stress, and fibrosis. Caffeine exhibited anti-inflammatory effects by attenuating NLRP3 inflammasome activation. Moreover, caffeine prevented increases in toll-like receptor 4 (TLR4) and nuclear factor-κB (NF-κB) protein levels and mitigated the phosphorylation of mitogen-activated protein kinase (MAPK). Importantly, caffeine prevented the activation of hepatic stellate cells. This study is the first to report that caffeine ameliorates NASH by inhibiting NLRP3 inflammasome activation through the suppression of the TLR4/MAPK/NF-κB signaling pathway.
Collapse
|
21
|
Raoofi A, Delbari A, Nasiry D, Golmohammadi R, Javadinia SS, Sadrzadeh R, Mojadadi MS, Rustamzadeh A, Khaneghah AM, Ebrahimi V, Rezaie MJ. Caffeine modulates apoptosis, oxidative stress, and inflammation damage induced by tramadol in cerebellum of male rats. J Chem Neuroanat 2022; 123:102116. [PMID: 35660069 DOI: 10.1016/j.jchemneu.2022.102116] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 05/27/2022] [Accepted: 05/28/2022] [Indexed: 11/25/2022]
Abstract
Tramadol, an opioid used as analgesic, can induce neurotoxic effects associated to cognitive dysfunction. Moreover, caffeine has been reported to have neuroprotective effects. In this regard, we hypothesized that administration of caffeine can modulate tramadol-induced damages in cerebellum. For this study, forty male Wistar rats were divided into four groups: the control group, the tramadol group (50mg/kg), the caffeine group (37.5mg/kg), and the tramadol+caffeine group (50mg/kg tramadol+37.5mg/kg caffeine). At the end of study (day 21), after performing rotarod behavioral test, cerebellum tissue samples were removed and prepared for further evaluations including biochemical profile markers (MDA, GPx, and SOD), immunohistochemistry for Caspase-3, as well as the expression of genes involved in cellular processes such as inflammation markers (IL-1β, HMGB1, IL-6, and TNF), apoptosis markers (Caspase-3, Caspase-8, Bax, and P21), and autophagy markers (LAMP2, ATG5, BECN1, and ATG12). Stereological evaluations were performed to determine the total volume of granular and molecular layers and white matter of cerebellum tissue and numerical density of the Purkinje cells. Our results showed that the stereological parameters, biochemical profiles (except MDA) and behavioral function were significantly higher in the tramadol+caffeine group compared to the tramadol group. Autophagy-related genes were significantly upregulated in tramadol+caffeine group compared to the tramadol group. While the expression of inflammatory and apoptosis genes, MDA level, as well as density of apoptosis cells were significantly lower in the tramadol+caffeine group compared to the tramadol group. Briefly, it can be concluded that administration of caffeine has neuroprotective effects in cerebellar damages induced by tramadol.
Collapse
Affiliation(s)
- Amir Raoofi
- Cellular and Molecular Research Center, Sabzevar University of Medical Sciences, Sabzevar, Iran; Department of Anatomy, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Ali Delbari
- Cellular and Molecular Research Center, Sabzevar University of Medical Sciences, Sabzevar, Iran; Department of Anatomy, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Davood Nasiry
- Amol Faculty of Paramedicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Rahim Golmohammadi
- Cellular and Molecular Research Center, Sabzevar University of Medical Sciences, Sabzevar, Iran; Department of Anatomy, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Sara Sadat Javadinia
- Cellular and Molecular Research Center, Sabzevar University of Medical Sciences, Sabzevar, Iran; Department of Anatomy, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Reza Sadrzadeh
- Student Research Committee, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Mohammad-Shafi Mojadadi
- Leishmaniasis Research Center, Department of Immunology, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Auob Rustamzadeh
- Department of Anatomical Sciences, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Amin Mousavi Khaneghah
- Department of Food Science, Faculty of Food Engineering, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Vahid Ebrahimi
- Department of Anatomy, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Applied Biomedical Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Mohammad Jafar Rezaie
- Department of Anatomical Sciences, School of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran.
| |
Collapse
|
22
|
Saimaiti A, Zhou DD, Li J, Xiong RG, Gan RY, Huang SY, Shang A, Zhao CN, Li HY, Li HB. Dietary sources, health benefits, and risks of caffeine. Crit Rev Food Sci Nutr 2022; 63:9648-9666. [PMID: 35574653 DOI: 10.1080/10408398.2022.2074362] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Dietary intake of caffeine has significantly increased in recent years, and beneficial and harmful effects of caffeine have been extensively studied. This paper reviews antioxidant and anti-inflammatory activities of caffeine as well as its protective effects on cardiovascular diseases, obesity, diabetes mellitus, cancers, and neurodegenerative and liver diseases. In addition, we summarize the side effects of long-term or excessive caffeine consumption on sleep, migraine, intraocular pressure, pregnant women, children, and adolescents. The health benefits of caffeine depend on the amount of caffeine intake and the physical condition of consumers. Moderate intake of caffeine helps to prevent and modulate several diseases. However, the long-term or over-consumption of caffeine can lead to addiction, insomnia, migraine, and other side effects. In addition, children, adolescents, pregnant women, and people who are sensitive to caffeine should be recommended to restrict/reduce their intake to avoid potential adverse effects.
Collapse
Affiliation(s)
- Adila Saimaiti
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou, China
| | - Dan-Dan Zhou
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou, China
| | - Jiahui Li
- School of Science, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Ruo-Gu Xiong
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou, China
| | - Ren-You Gan
- Research Center for Plants and Human Health, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, National Agricultural Science & Technology Center, Chengdu, China
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Si-Yu Huang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou, China
| | - Ao Shang
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Cai-Ning Zhao
- Department of Clinical Oncology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Hang-Yu Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou, China
| | - Hua-Bin Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
23
|
Vargas-Pozada EE, Ramos-Tovar E, Acero-Hernández C, Cardoso-Lezama I, Galindo-Gómez S, Tsutsumi V, Muriel P. Caffeine mitigates experimental nonalcoholic steatohepatitis and the progression of thioacetamide-induced liver fibrosis by blocking the MAPK and TGF-β/Smad3 signaling pathways. Ann Hepatol 2022; 27:100671. [PMID: 35065262 DOI: 10.1016/j.aohep.2022.100671] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 01/13/2022] [Indexed: 02/04/2023]
Abstract
INTRODUCTION AND OBJECTIVES Caffeine consumption is associated with beneficial effects on hepatic disorders. The objectives of this study were to evaluate the antifibrotic effects of caffeine on experimental nonalcoholic steatohepatitis (NASH) induced with a high-fat, high-sucrose, high-cholesterol diet (HFSCD), as well as to evaluate the ability of caffeine to prevent the progression of experimental liver fibrosis induced by the administration of thioacetamide (TAA) in rats and explore the mechanisms of action. METHODS NASH and fibrosis were induced in rats by the administration of an HFSCD for 15 weeks, and liver fibrosis was induced by intraperitoneal administration of 200 mg/kg TAA 3 times per week, for 6 weeks. Caffeine was administered at a dose of 50 mg/kg body weight. The effects of diet, TAA, and caffeine on fibrosis were evaluated by biochemical and histological examinations. The profibrotic pathways were analyzed by western blotting and immunohistochemistry. RESULTS Rats exhibited liver fibrosis after HFSCD feeding and the administration of TAA. Caffeine could reduce the hepatic level of collagen and the fibrotic area in the liver. Caffeine prevented the progression of liver fibrosis by decreasing transforming growth factor-beta (TGF-β), connective tissue growth factor (CTGF), and alpha-smooth muscle actin (α-SMA) expression and by inhibiting the activation of mitogen-activated protein kinases (MAPKs) and Smad3 phosphorylation. CONCLUSIONS Caffeine attenuates NASH and the progression of liver fibrosis due to its antifibrotic effects and modulating the MAPK and TGF-β pathways. Therefore, caffeine could be a suitable candidate for treating liver diseases associated with fibrosis.
Collapse
Affiliation(s)
- Eduardo E Vargas-Pozada
- Laboratory of Experimental Hepatology, Department of Pharmacology, Cinvestav-IPN, Apartado 14-740 Mexico City, Mexico
| | - Erika Ramos-Tovar
- Postgraduate Studies and Research Section, School of Higher Education in Medicine-IPN, Apartado 11340 Plan de San Luis y Díaz Mirón s/n, Casco de Santo Tomás, Mexico City, Mexico
| | - Consuelo Acero-Hernández
- Laboratory of Experimental Hepatology, Department of Pharmacology, Cinvestav-IPN, Apartado 14-740 Mexico City, Mexico
| | - Irina Cardoso-Lezama
- Laboratory of Experimental Hepatology, Department of Pharmacology, Cinvestav-IPN, Apartado 14-740 Mexico City, Mexico
| | - Silvia Galindo-Gómez
- Department of Infectomics and Molecular Pathogenesis, Cinvestav-IPN, Apartado 14-740 Mexico City, Mexico
| | - Víctor Tsutsumi
- Department of Infectomics and Molecular Pathogenesis, Cinvestav-IPN, Apartado 14-740 Mexico City, Mexico
| | - Pablo Muriel
- Laboratory of Experimental Hepatology, Department of Pharmacology, Cinvestav-IPN, Apartado 14-740 Mexico City, Mexico.
| |
Collapse
|
24
|
Xin X, Cheng C, Bei-Yu C, Hong-Shan L, Hua-Jie T, Xin W, Zi-Ming A, Qin-Mei S, Yi-Yang H, Qin F. Caffeine and EGCG Alleviate High-Trans Fatty Acid and High-Carbohydrate Diet-Induced NASH in Mice: Commonality and Specificity. Front Nutr 2021; 8:784354. [PMID: 34881283 PMCID: PMC8647766 DOI: 10.3389/fnut.2021.784354] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 10/27/2021] [Indexed: 12/19/2022] Open
Abstract
Caffeine and epigallocatechin-3-gallate (EGCG), which respectively, are the main functional extracts from coffee and green tea, and present protective effects against non-alcoholic fatty liver diseases (NAFLD). These two beverages and their functional extracts are highly recommended as potential treatments for obesity and NAFLD in clinics; however, their pharmacodynamic effects and pharmacological mechanisms in non-alcoholic steatohepatitis (NASH) remain unclear. Therefore, the aim of this study was to explore the commonality and specificity of the pharmacodynamic effects and pharmacological mechanisms of caffeine and EGCG on NASH mice, which were fed with a high-trans fatty acid/high-carbohydrate (HFHC) diet. C57BL/6J mice were fed a normal diet (control group) or an HFHC diet (HFHC group) for 24 weeks. HFHC group mice were additionally treated with caffeine (75 mg/kg) or EGCG (100 mg/kg) for 6 weeks, using obeticholic acid (OCA,10 mg/kg) as a positive control group. The pharmacological effects of the drugs, including effects on glucose and lipid metabolism and liver inflammation and fibrosis, were evaluated. Gene expression in liver tissue samples from the different groups were assessed. Both caffeine and EGCG significantly reduced the liver manifestations of NASH induced by HFHC. The pathological aspects of liver lipid deposition, inflammation, and liver fibrosis in both groups were strongly ameliorated. Of note, most indexes were strongly reversed in the caffeine group, although AST activity, fasting blood glucose, and the HOMA-IR index were improved in the ECGC group. There were 714 differentially expressed genes between the caffeine and HFHC groups and 268 differentially expressed genes between the EGCG and HFHC groups. Twenty and 17 NASH-related KEGG signaling pathways were enriched by caffeine and EGCG. This study confirmed that 75 mg/kg caffeine and 100 mg/kg EGCG could significantly improve liver lipid deposition, glucose metabolism, inflammation, and fibrosis in a mouse model of NASH induced by HFHC. The bioinformatics platform we built for caffeine and EGCG in NASH disease found that the two drugs may greatly overlap in improving the mechanism related to NASH inflammation. However, caffeine may have better potential in regulating glucose metabolism and EGCG may have better potential in regulating lipid metabolism.
Collapse
Affiliation(s)
- Xin Xin
- Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Chen Cheng
- Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Cai Bei-Yu
- Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Li Hong-Shan
- Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Tian Hua-Jie
- Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wang Xin
- Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - An Zi-Ming
- Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Sun Qin-Mei
- Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hu Yi-Yang
- Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai, China.,Key Laboratory of Liver and Kidney Diseases, Shanghai University of Traditional Chinese Medicine, Ministry of Education, Shanghai, China
| | - Feng Qin
- Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai, China.,Key Laboratory of Liver and Kidney Diseases, Shanghai University of Traditional Chinese Medicine, Ministry of Education, Shanghai, China
| |
Collapse
|
25
|
Tseng YP, Liu C, Chan LP, Liang CH. Coffee pulp supplement affects antioxidant status and favors anti-aging of skin in healthy subjects. J Cosmet Dermatol 2021; 21:2189-2199. [PMID: 34265165 DOI: 10.1111/jocd.14341] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 05/17/2021] [Accepted: 07/11/2021] [Indexed: 01/18/2023]
Abstract
BACKGROUND Coffee and coffee products are known potentially to reduce levels of oxidative stress biomarkers in humans. OBJECTIVE This investigation evaluates the effects of coffee pulp extract as a functional supplement (in coffee pulp drink, CPD) and a cosmetic ingredient (coffee pulp serum, CPS). PATIENTS/METHODS The effects of CPD and CPS for anti-oxidation and anti-aging were investigated. Forty subjects were randomly allocated to CPD or placebo drink groups (50 ml of a CPD/placebo drink daily for 8 weeks for each subject), and another 40 subjects were recruited to CPS or placebo serum groups (about 3 ml of a CPS/placebo serum day and night/daily for 4 weeks for each subject) in a double-blind study. RESULTS The CPD and CPS (20%) can increase free radical scavenging activities by 93.3% and 85% (p < 0.001) for DPPH, 94.5% and 61.3% (p < 0.01) for ABTS·+ , 43.8% and 15.3% (p < 0.05) for NO· than placebo. The inhibition of tyrosinase activity was increased by 91.6% and 51.0% (p < 0.05) after CPD and CPS application. The CPD comprehensively improved the moisture, brightness, elasticity, spotting, texture, and collagen content of skin for most subjects after 8 weeks, relative to the baseline without treatment (p < 0.05). After 4 weeks of CPS serum consumption, the brightness, elasticity, spotting, UV spots, and collagen content of skin were slightly better than those at week 0 (p < 0.05). CONCLUSIONS The daily consumption of coffee pulp extract products can slow the skin aging process and improve skin health.
Collapse
Affiliation(s)
- Ya-Ping Tseng
- Institute of Basic Medical Sciences, National Cheng Kung University, Tainan, Taiwan
| | - Cheng Liu
- Department of Health and Beauty, Shu-Zen Junior College of Medicine and Management, Kaohsiung, Taiwan.,Department of Optometry, Shu-Zen Junior College of Medicine and Management, Kaohsiung, Taiwan.,Department of Dental Technology, Shu-Zen Junior College of Medicine and Management, Kaohsiung, Taiwan
| | - Leong-Perng Chan
- Department of Otorhinolaryngology-Head and Neck Surgery, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Otorhinolaryngology-Head and Neck Surgery, Kaohsiung Medical University Hospital, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chia-Hua Liang
- Department of Cosmetic Science and Institute of Cosmetic Science, Chia Nan University of Pharmacy and Science, Tainan, Taiwan
| |
Collapse
|
26
|
El-Gendy ZA, El-Marasy SA, Ahmed RF, El-Batran SA, Abd El-Rahman SS, Ramadan A, Youssef SAH. Hepatoprotective effect of Saccharomyces Cervisciae Cell Wall Extract against thioacetamide-induced liver fibrosis in rats. Heliyon 2021; 7:e07159. [PMID: 34159266 PMCID: PMC8203708 DOI: 10.1016/j.heliyon.2021.e07159] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 11/04/2020] [Accepted: 05/25/2021] [Indexed: 12/28/2022] Open
Abstract
Fibrosis represents a common outcome of almost all chronic liver diseases and leads to an impairment of liver function that requires medical intervention. The current study aimed to evaluate the potential anti-fibrotic effect of Saccharomyces cervisciae cell wall extract (SCCWE) against thioacetamide (TAA)-induced liver fibrosis in rats (200mg/kg b.w. i.p. twice weekly for 6 weeks) using Ursodeoxycholic acid (UDCA) as a reference anti-fibrotic product. SCCWE at two doses (50 and 100 mg/kg) significantly ameliorated the rise in serum alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP), gamma glutamide transferase (GGT) activities, total bilirubin and direct bilirubin, increased total protein and albumin. SCCWE significantly reduced glutathione depletion (GSH), Nitric oxide (NOx) and malondialdehyde (MDA), thioredoxin (Trx) contents and elevated nuclear factor erythroid 2–related factor 2 (Nrf-2) content. Its anti-inflammatory effects were confirmed by observing a decrease in nuclear factor-κB (NF- κβ), interleukin-1b (IL-1β) and inducible nitric oxide synthase (iNOS) content. The anti-fibrotic effects of SCCWE were explored by assessing fibrosis related markers as it significantly reduced transform growth factor-β (TGF-β) and autotaxin (ATX) contents. Administration of SCCWE significantly decreased matrix metalloproteinase-3 and 9 (MMP-3 and -9). Furthermore, it also decreased alpha smooth muscle actin (α-SMA) and caspase-3 as assessed immunohistochemically those results were similar to that of the standard drug UDCA. This study shows that SCCWE protects against TAA-induced liver fibrosis in rats, through attenuating oxidative stress, and inflammation, ameliorating MMPs, combating apoptosis and thereby fibrotic biomarkers in addition to improving histopathological changes.
Collapse
Affiliation(s)
| | | | - Rania F Ahmed
- Department of Pharmacology, National Research Centre, Giza, Egypt
| | | | - Sahar S Abd El-Rahman
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - A Ramadan
- Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - S A H Youssef
- Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| |
Collapse
|
27
|
Roy P, Tomassoni D, Traini E, Martinelli I, Micioni Di Bonaventura MV, Cifani C, Amenta F, Tayebati SK. Natural Antioxidant Application on Fat Accumulation: Preclinical Evidence. Antioxidants (Basel) 2021; 10:antiox10060858. [PMID: 34071903 PMCID: PMC8227384 DOI: 10.3390/antiox10060858] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/20/2021] [Accepted: 05/24/2021] [Indexed: 12/24/2022] Open
Abstract
Obesity represents one of the most important challenges in the contemporary world that must be overcome. Different pathological consequences of these physical conditions have been studied for more than 30 years. The most nagging effects were found early in the cardiovascular system. However, later, its negative impact was also investigated in several other organs. Damage at cellular structures due to overexpression of reactive oxygen species together with mechanisms that cause under-production of antioxidants leads to the development of obesity-related complications. In this view, the negative results of oxidant molecules due to obesity were studied in various districts of the body. In the last ten years, scientific literature has reported reasonable evidence regarding natural and synthetic compounds' supplementation, which showed benefits in reducing oxidative stress and inflammatory processes in animal models of obesity. This article attempts to clarify the role of oxidative stress due to obesity and the opposing role of antioxidants to counter it, reported in preclinical studies. This analysis aims to clear-up different mechanisms that lead to the build-up of pro-oxidants during obesity and how various molecules of different origins hinder this phenomenon, behaving as antioxidants.
Collapse
Affiliation(s)
- Proshanta Roy
- School of Biosciences and Veterinary Medicine, University of Camerino, 62032 Camerino, Italy; (P.R.); (D.T.)
| | - Daniele Tomassoni
- School of Biosciences and Veterinary Medicine, University of Camerino, 62032 Camerino, Italy; (P.R.); (D.T.)
| | - Enea Traini
- School of Pharmacy, University of Camerino, 62032 Camerino, Italy; (E.T.); (I.M.); (M.V.M.D.B.); (C.C.); (F.A.)
| | - Ilenia Martinelli
- School of Pharmacy, University of Camerino, 62032 Camerino, Italy; (E.T.); (I.M.); (M.V.M.D.B.); (C.C.); (F.A.)
| | | | - Carlo Cifani
- School of Pharmacy, University of Camerino, 62032 Camerino, Italy; (E.T.); (I.M.); (M.V.M.D.B.); (C.C.); (F.A.)
| | - Francesco Amenta
- School of Pharmacy, University of Camerino, 62032 Camerino, Italy; (E.T.); (I.M.); (M.V.M.D.B.); (C.C.); (F.A.)
| | - Seyed Khosrow Tayebati
- School of Pharmacy, University of Camerino, 62032 Camerino, Italy; (E.T.); (I.M.); (M.V.M.D.B.); (C.C.); (F.A.)
- Correspondence:
| |
Collapse
|
28
|
Shil A, Davies C, Gautam L, Roberts J, Chichger H. Investigating the Opposing Effect of Two Different Green Tea Supplements on Oxidative Stress, Mitochondrial Function and Cell Viability in HepG2 Cells. J Diet Suppl 2021; 19:459-482. [PMID: 33729080 DOI: 10.1080/19390211.2021.1894304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Green tea extract (GTE) improves exercise outcomes and reduces obesity. However, case studies indicate contradictory physiology regarding liver function and toxicity. We studied the effect of two different decaffeinated GTE (dGTE) products, from a non-commercial (dGTE1) and commercial (dGTE2) supplier, on hepatocyte function using the human cell model, HepG2. dGTE1 was protective against hydrogen peroxide (H2O2)-induced apoptosis and cell death by attenuating oxidative stress pathways. Conversely, dGTE2 increased cellular and mitochondrial oxidative stress and apoptosis. A bioavailability study with dGTE showed the major catechin in GTE, EGCG, reached 0.263 µg·ml-1. In vitro, at this concentration, EGCG mimicked the protective effect of dGTE1. GC/MS analysis identified steric acid and higher levels of palmitic acid in dGTE2 versus dGTE1 supplements. We demonstrate the significant biological differences between two GTE supplements which may have potential implications for manufacturers and consumers to be aware of the biological effects of supplementation.
Collapse
Affiliation(s)
- Aparna Shil
- School of Life Sciences, Faculty of Science and Engineering, Anglia Ruskin University, Cambridge, UK
| | - Chris Davies
- School of Life Sciences, Faculty of Science and Engineering, Anglia Ruskin University, Cambridge, UK
| | - Lata Gautam
- School of Life Sciences, Faculty of Science and Engineering, Anglia Ruskin University, Cambridge, UK
| | - Justin Roberts
- School of Psychology and Sport Science, Faculty of Science and Engineering, Anglia Ruskin University, Cambridge, UK
| | - Havovi Chichger
- School of Life Sciences, Faculty of Science and Engineering, Anglia Ruskin University, Cambridge, UK
| |
Collapse
|
29
|
Simental-Mendía LE, Gamboa-Gómez CI, Guerrero-Romero F, Simental-Mendía M, Sánchez-García A, Rodríguez-Ramírez M. Beneficial Effects of Plant-Derived Natural Products on Non-alcoholic Fatty Liver Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1308:257-272. [PMID: 33861449 DOI: 10.1007/978-3-030-64872-5_18] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Non-alcoholic fatty liver disease is becoming in one of the most prevalent liver diseases that leads to liver transplantation. This health problem is a multisystem disease with a complex pathogenesis that involves liver, adipose tissue, gut, and muscle. Although several pharmacological agents have been investigated to prevent or treat non-alcoholic fatty liver disease, currently there is no effective treatment for the management of this chronic liver disease. Nonetheless, the use of natural products has emerged as a alternative therapeutic for the treatment of hepatic diseases, including non-alcoholic fatty liver disease, due to its anti-inflammatory, antioxidant, antidiabetic, insulin-sensitizing, antiobesity, hypolipidemic, and hepatoprotective properties. In the present review, we have discussed the evidence from experimental and clinical studies regarding the potential beneficial effects of plant-derived natural products (quercetin, resveratrol, berberine, pomegranate, curcumin, cinnamon, green tea, coffee, garlic, ginger, ginseng, and gingko biloba) for the treatment or prevention of non-alcoholic fatty liver disease.
Collapse
Affiliation(s)
- Luis E Simental-Mendía
- Unidad de Investigación Biomédica, Delegación Durango, Instituto Mexicano del Seguro Social, Durango, México.
| | - Claudia I Gamboa-Gómez
- Unidad de Investigación Biomédica, Delegación Durango, Instituto Mexicano del Seguro Social, Durango, México
| | - Fernando Guerrero-Romero
- Unidad de Investigación Biomédica, Delegación Durango, Instituto Mexicano del Seguro Social, Durango, México
| | - Mario Simental-Mendía
- Department of Orthopedics and Traumatology, Hospital Universitario "Dr. José E. González", Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey, NL, México
| | - Adriana Sánchez-García
- Endocrinology Division, Hospital Universitario "Dr. José E. González", Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey, NL, México
| | - Mariana Rodríguez-Ramírez
- Unidad de Investigación Biomédica, Delegación Durango, Instituto Mexicano del Seguro Social, Durango, México
| |
Collapse
|
30
|
Völker JM, Koch N, Becker M, Klenk A. Caffeine and Its Pharmacological Benefits in the Management of Androgenetic Alopecia: A Review. Skin Pharmacol Physiol 2020; 33:93-109. [PMID: 32599587 DOI: 10.1159/000508228] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 04/26/2020] [Indexed: 11/19/2022]
Abstract
Caffeine, particularly after ingestion, is well known to exert various pharmacological effects. A growing body of evidence implicates the ingestion of caffeine with beneficial effects on several diseases. The easy penetration of caffeine across the skin barrier and into human skin makes caffeine an ideal compound for topical application. Hair loss is known to negatively affect the quality of life and predispose to depression and anxiety. Androgenetic alopecia (AGA) is the most common type of hair loss in both men and women. To date, only few approved drug-based treatments for AGA exist, and these are inevitably associated with side effects. Therefore, the development of topical treatments based on well-tolerated natural ingredients such as caffeine to alleviate hair loss may provide a much-needed alternative to drug-based approaches.
Collapse
Affiliation(s)
| | - Nadine Koch
- Research Department, Dr. Kurt Wolff GmbH & Co. KG, Bielefeld, Germany
| | - Maike Becker
- Research Department, Dr. Kurt Wolff GmbH & Co. KG, Bielefeld, Germany
| | - Adolf Klenk
- Research Department, Dr. Kurt Wolff GmbH & Co. KG, Bielefeld, Germany
| |
Collapse
|
31
|
Nilnumkhum A, Kanlaya R, Yoodee S, Thongboonkerd V. Caffeine inhibits hypoxia-induced renal fibroblast activation by antioxidant mechanism. Cell Adh Migr 2020; 13:260-272. [PMID: 31271106 PMCID: PMC6650197 DOI: 10.1080/19336918.2019.1638691] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Caffeine has been demonstrated to possess anti-fibrotic activity against liver fibrosis. However, its role in renal fibrosis remained unclear. This study investigated the effects of caffeine on renal fibroblast activation induced by hypoxia (one of the inducers for renal fibrosis). BHK-21 fibroblasts were cultured under normoxia or hypoxia with or without caffeine treatment. Hypoxia increased levels of fibronectin, α-smooth muscle actin, actin stress fibers, intracellular reactive oxygen species (ROS), and oxidized proteins. However, caffeine successfully preserved all these activated fibroblast markers to their basal levels. Cellular catalase activity was dropped under hypoxic condition but could be reactivated by caffeine. Hif1a gene and stress-responsive Nrf2 signaling molecule were elevated/activated by hypoxia, but only Nrf2 could be partially recovered by caffeine. These data suggest that caffeine exhibits anti-fibrotic effect against hypoxia-induced renal fibroblast activation through its antioxidant property to eliminate intracellular ROS, at least in part, via downstream catalase and Nrf2 mechanisms.
Collapse
Affiliation(s)
- Angkhana Nilnumkhum
- a Medical Proteomics Unit, Office for Research and Development, Faculty of Medicine Siriraj Hospital , Mahidol University , Bangkok , Thailand
| | - Rattiyaporn Kanlaya
- a Medical Proteomics Unit, Office for Research and Development, Faculty of Medicine Siriraj Hospital , Mahidol University , Bangkok , Thailand
| | - Sunisa Yoodee
- a Medical Proteomics Unit, Office for Research and Development, Faculty of Medicine Siriraj Hospital , Mahidol University , Bangkok , Thailand
| | - Visith Thongboonkerd
- a Medical Proteomics Unit, Office for Research and Development, Faculty of Medicine Siriraj Hospital , Mahidol University , Bangkok , Thailand
| |
Collapse
|
32
|
Wang Q, Wei S, Zhou S, Qiu J, Shi C, Liu R, Zhou H, Lu L. Hyperglycemia aggravates acute liver injury by promoting liver-resident macrophage NLRP3 inflammasome activation via the inhibition of AMPK/mTOR-mediated autophagy induction. Immunol Cell Biol 2019; 98:54-66. [PMID: 31625631 PMCID: PMC7004066 DOI: 10.1111/imcb.12297] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 09/08/2019] [Accepted: 10/15/2019] [Indexed: 12/14/2022]
Abstract
Although the detrimental effects of diabetes mellitus/hyperglycemia have been observed in many liver disease models, the function and mechanism of hyperglycemia regulating liver‐resident macrophages, Kupffer cells (KCs), in thioacetamide (TAA)‐induced liver injury remain largely unknown. In this study, we evaluated the role of hyperglycemia in regulating NOD‐like receptor family pyrin domain‐containing 3 protein (NLRP3) inflammasome activation by inhibiting autophagy induction in KCs in the TAA‐induced liver injury model. Type I diabetes/hyperglycemia was induced by streptozotocin treatment. Compared with the control group, hyperglycemic mice exhibited a significant increase in intrahepatic inflammation and liver injury. Enhanced NLRP3 inflammasome activation was detected in KCs from hyperglycemic mice, as shown by increased gene induction and protein levels of NLRP3, cleaved caspase‐1, apoptosis‐associated speck‐like protein containing a caspase recruitment domain and interleukin‐1β, compared with control mice. NLRP3 inhibition by its antagonist CY‐09 effectively suppressed inflammasome activation in KCs and attenuated liver injury in hyperglycemic mice. Furthermore, inhibited autophagy activation was revealed by transmission electron microscope detection, decreased LC3B protein expression and p‐62 protein degradation in KCs isolated from TAA‐stressed hyperglycemic mice. Interestingly, inhibited 5′ AMP‐activated protein kinase (AMPK) but enhanced mammalian target of rapamycin (mTOR) activation was found in KCs from TAA‐stressed hyperglycemic mice. AMPK activation by its agonist 5‐aminoimidazole‐4‐carboxamide ribonucleotide (AICAR) or mTOR signaling knockdown by small interfering RNA restored autophagy activation, and subsequently, inhibited NLRP3 inflammasome activation in KCs, leading to ultimately reduced TAA‐induced liver injury in the hyperglycemic mice. Our findings demonstrated that hyperglycemia aggravated TAA‐induced acute liver injury by promoting liver‐resident macrophage NLRP3 inflammasome activation via inhibiting AMPK/mTOR‐mediated autophagy. This study provided a novel target for prevention of toxin‐induced acute liver injury under hyperglycemia.
Collapse
Affiliation(s)
- Qi Wang
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences, Nanjing, China.,Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing, China.,NHC Key Laboratory of Living Donor Liver Transplantation, Nanjing, China
| | - Song Wei
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences, Nanjing, China.,Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing, China.,NHC Key Laboratory of Living Donor Liver Transplantation, Nanjing, China.,School of Medical, Southeast University, Nanjing, China
| | - Shun Zhou
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences, Nanjing, China.,Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing, China.,NHC Key Laboratory of Living Donor Liver Transplantation, Nanjing, China
| | - Jiannan Qiu
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences, Nanjing, China.,Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing, China.,NHC Key Laboratory of Living Donor Liver Transplantation, Nanjing, China
| | - Chenyu Shi
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences, Nanjing, China.,Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing, China.,NHC Key Laboratory of Living Donor Liver Transplantation, Nanjing, China
| | - Rui Liu
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences, Nanjing, China.,Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing, China.,NHC Key Laboratory of Living Donor Liver Transplantation, Nanjing, China
| | - Haoming Zhou
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences, Nanjing, China.,Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing, China.,NHC Key Laboratory of Living Donor Liver Transplantation, Nanjing, China
| | - Ling Lu
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences, Nanjing, China.,Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing, China.,NHC Key Laboratory of Living Donor Liver Transplantation, Nanjing, China.,School of Medical, Southeast University, Nanjing, China
| |
Collapse
|
33
|
Higashi Y. Coffee and Endothelial Function: A Coffee Paradox? Nutrients 2019; 11:nu11092104. [PMID: 31487926 PMCID: PMC6770186 DOI: 10.3390/nu11092104] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 08/28/2019] [Accepted: 09/01/2019] [Indexed: 02/07/2023] Open
Abstract
Coffee is a popular beverage throughout the world. Coffee contains various chemical compounds (e.g., caffeine, chlorogenic acids, hydroxyhydroquinone, kahweol, cafestol, and complex chemical mixtures). Caffeine is also the most widely consumed pharmacological substance in the world and is included in various beverages (e.g., coffee, tea, soft drinks, and energy drinks), products containing chocolate, and drugs. The effects of coffee and caffeine on cardiovascular diseases remain controversial. It is well known that there are J-curve-type or U-curve-type associations of coffee consumption with cardiovascular events including myocardial infarction and stroke. However, there is little information on the direct and indirect effects of coffee consumption on endothelial function in humans. It is likely that the coffee paradox or caffeine paradox exists the association of coffee intake with cardiovascular diseases, cardiovascular outcomes, and endothelial function. This review focusses on the effects of coffee and caffeine on endothelial function from molecular mechanisms to clinical perspectives.
Collapse
Affiliation(s)
- Yukihito Higashi
- Department of Cardiovascular Regeneration and Medicine, Research Institute for Radiation Biology and Medicine, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8551, Japan.
- Division of Regeneration and Medicine, Medical Center for Translational and Clinical Research, Hiroshima University Hospital, Hiroshima 734-8551, Japan.
| |
Collapse
|
34
|
Akomolafe SF, Olasehinde TA, Ogunsuyi OB, Oyeleye SI, Oboh G. Caffeine improves sperm quality, modulates steroidogenic enzyme activities, restore testosterone levels and prevent oxidative damage in testicular and epididymal tissues of scopolamine-induced rat model of amnesia. J Pharm Pharmacol 2019; 71:1565-1575. [DOI: 10.1111/jphp.13142] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 06/29/2019] [Indexed: 12/12/2022]
Abstract
Abstract
Objectives
This study was designed to assess the role of caffeine on fertility parameters in testicular and epididymal tissues of scopolamine-induced model of amnesia in rats.
Methods
Adult male rats were treated with scopolamine with or without caffeine. The modulatory effects of caffeine or scopolamine on fertility parameters were assessed in rats' testicular and epididymal homogenates.
Key findings
Scopolamine-induced sperm abnormalities, reduced steroidogenic enzyme 3β-Hydroxysteroid dehydrogenase (3β-HSD) and 17β-Hydroxysteroid dehydrogenase (17β-HSD) activities and serum testosterone levels in rats' testicular tissues. Treatment with caffeine increased 3β-HSD and 17β-HSD as well as testosterone levels. Caffeine also reversed sperm viability, sperm motility and sperm count in testicular tissues of scopolamine-treated rats. Furthermore, scopolamine-induced oxidative damage in rats' epididymal and testicular tissues via reduction of thiol and non-protein thiol content as well as increase in reactive oxygen species (ROS) and malondialdehyde (MDA) levels. Caffeine attenuated oxidative stress in testicular and epididymal tissues of rats treated with scopolamine via increase in non-protein and protein thiol levels with concomitant reduction in ROS and MDA levels.
Conclusion
This study revealed that caffeine (5 and 25 mg/kg) improved sperm quality, increased steroidogenic enzyme activities and attenuated oxidative damage in testis and epididymis of rats treated with scopolamine.
Collapse
Affiliation(s)
- Seun F Akomolafe
- Biochemistry Department, Ekiti State University, Ado Ekiti, Nigeria
| | - Tosin A Olasehinde
- Department of Biochemistry and Microbiology, University of Fort Hare, Alice, South Africa
- Nutrition and Toxicology Division, Food Technology Department, Federal Institute of Industrial Research Oshodi, Lagos, Nigeria
| | - Opeyemi B Ogunsuyi
- Biomedical Technology Department, Federal University of Technology, Akure, Nigeria
- Functional Foods and Nutraceuticals Unit, Department of Biochemistry, Federal University of Technology, Akure, Nigeria
| | - Sunday I Oyeleye
- Biomedical Technology Department, Federal University of Technology, Akure, Nigeria
- Functional Foods and Nutraceuticals Unit, Department of Biochemistry, Federal University of Technology, Akure, Nigeria
| | - Ganiyu Oboh
- Biomedical Technology Department, Federal University of Technology, Akure, Nigeria
| |
Collapse
|
35
|
Fang C, Cai X, Hayashi S, Hao S, Sakiyama H, Wang X, Yang Q, Akira S, Nishiguchi S, Fujiwara N, Tsutsui H, Sheng J. Caffeine-stimulated muscle IL-6 mediates alleviation of non-alcoholic fatty liver disease. Biochim Biophys Acta Mol Cell Biol Lipids 2019; 1864:271-280. [PMID: 30553055 DOI: 10.1016/j.bbalip.2018.12.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 11/20/2018] [Accepted: 12/10/2018] [Indexed: 02/05/2023]
Abstract
Caffeine intake is associated with a reduced risk developing non-alcoholic fatty liver disease (NAFLD), but the underlying molecular mechanisms remain to be fully elucidated. We report here that caffeine markedly improved high fat diet-induced NAFLD in mice resulting in a 10-fold increase in circulating IL-6 levels, leading to STAT3 activation in the liver. Interestingly, the expression of IL-6 mRNA was not increased in the liver, but increased substantially in the muscles of caffeine-treated mice. Caffeine was found to stimulate IL-6 production in cultured myotubes but not in hepatocytes, adipocytes, or macrophages. The inhibition of p38/MAPK abrogated caffeine-induced IL-6 production in muscle cells. Caffeine failed to improve NAFLD in IL-6 and hepatocyte-specific STAT3 knockout mice, indicating that the IL-6/STAT3 pathway is vital for the hepatoprotective effects of caffeine in NAFLD. The possibility that IL-6/STAT3-mediated hepatic autophagosome induction and hepatocytic oxygen consumption are involved in the anti-NAFLD effects of caffeine cannot be excluded, based on the findings presented here. Our results reveal that caffeine ameliorates NAFLD via crosstalk between muscle IL-6 production and liver STAT3 activation.
Collapse
Affiliation(s)
- Chongye Fang
- Key Laboratory of Pu-erh Tea Science, the Ministry of Education, Yunnan Agricultural University, Kunming 650201, China; Department of Pu-erh Tea and Medical Science, Hyogo College of Medicine, 1-1 Mukogawa-cho, Nishinomiya, Hyogo 663-8501, Japan
| | - Xianbin Cai
- Department of Internal Medicine, Hyogo College of Medicine, 1-1 Mukogawa-cho, Nishinomiya, Hyogo 663-8501, Japan; Department of Gastroenterology, First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong 515041, China
| | - Shuhei Hayashi
- Department of Pu-erh Tea and Medical Science, Hyogo College of Medicine, 1-1 Mukogawa-cho, Nishinomiya, Hyogo 663-8501, Japan; Department of Microbiology, Hyogo College of Medicine, 1-1 Mukogawa-cho, Nishinomiya, Hyogo 663-8501, Japan.
| | - Shumei Hao
- Yunnan University, Kunming 650091, China
| | - Haruhiko Sakiyama
- Department of Biochemistry, Hyogo College of Medicine, 1-1 Mukogawa, Nishinomiya, Hyogo 663-8501, Japan
| | - Xuanjun Wang
- Key Laboratory of Pu-erh Tea Science, the Ministry of Education, Yunnan Agricultural University, Kunming 650201, China
| | - Qin Yang
- Department of Internal Medicine, Division of Endocrinology, University of California at Irvine, Irvine, CA 92697, USA
| | - Shizuo Akira
- Laboratory of Host Defense, World Premier International Research Center Immunology Frontier Research Center, Osaka University, Osaka 565-0871, Japan; Department of Host Defense, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan
| | - Shuhei Nishiguchi
- Department of Internal Medicine, Hyogo College of Medicine, 1-1 Mukogawa-cho, Nishinomiya, Hyogo 663-8501, Japan
| | - Noriko Fujiwara
- Department of Biochemistry, Hyogo College of Medicine, 1-1 Mukogawa, Nishinomiya, Hyogo 663-8501, Japan
| | - Hiroko Tsutsui
- Key Laboratory of Pu-erh Tea Science, the Ministry of Education, Yunnan Agricultural University, Kunming 650201, China; Department of Microbiology, Hyogo College of Medicine, 1-1 Mukogawa-cho, Nishinomiya, Hyogo 663-8501, Japan
| | - Jun Sheng
- Key Laboratory of Pu-erh Tea Science, the Ministry of Education, Yunnan Agricultural University, Kunming 650201, China; State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Kunming, China; Pu'erh Tea Research Institute, Pu'erh, China.
| |
Collapse
|
36
|
Shoukry H, Taher M, Enany A, Ahmed T, Hassan I. Combination of Caffeine and Liver Albumin Plus Protects against Smoking-Induced Liver Injury in Rats. DUBAI MEDICAL JOURNAL 2019. [DOI: 10.1159/000497078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
<b><i>Background:</i></b> A number of studies have revealed the hepatoprotective effect of coffee and tea. However, the role of caffeine on smoking-induced liver injury is not well elucidated. Liver Albumin Plus (LAP) is a liver supplement given in different liver diseases; to our knowledge, its role in smoking-induced liver injury is not clear. <b><i>Objectives:</i></b> This study aimed to find out the protective effect of caffeine and LAP alone and in combination in attenuation of smoking-induced liver injury. <b><i>Methods:</i></b> Thirty male albino rats were divided into a control group and a smoking group; the smoking group was then subdivided into a smoking group, a smoking + caffeine group, a smoking + LAP group, and a smoking + caffeine + LAP group. At the end of the experimental study, blood samples were collected for assessment of liver enzymes, alpha-fetoprotein (AFP), and interleukin 6, and livers were excised. Biochemical analysis of hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>), superoxide dismutase (SOD), and hypoxia-inducible factor (HIF) as well as histological examination were done. <b><i>Results:</i></b> The results showed that smoking elevated liver enzymes, AFP, H<sub>2</sub>O<sub>2</sub>, and HIF and decreased SOD; histologically, deterioration of the liver was observed. On administration of caffeine, significant (<i>p</i> < 0.05) improvement in all measured parameters and preserved liver histological structure were observed, while intake of LAP alone showed some improvement. In combination, all liver parameters were improved and histological structure was preserved in contrast to each drug alone. <b><i>Conclusion:</i></b> It is better to give a combination of caffeine and LAP with cigarettes smoking to attenuate smoking-induced liver injury.
Collapse
|
37
|
Kalschne DL, Viegas MC, De Conti AJ, Corso MP, Benassi MDT. Effect of steam treatment on the profile of bioactive compounds and antioxidant activity of defective roasted coffee (Coffea canephora). Lebensm Wiss Technol 2019. [DOI: 10.1016/j.lwt.2018.09.080] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
38
|
Consumption of decaffeinated coffee protects against the development of early non-alcoholic steatohepatitis: Role of intestinal barrier function. Redox Biol 2018; 21:101092. [PMID: 30605883 PMCID: PMC6313826 DOI: 10.1016/j.redox.2018.101092] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 12/18/2018] [Accepted: 12/20/2018] [Indexed: 02/08/2023] Open
Abstract
Background Non-alcoholic fatty liver disease (NAFLD) is one of the most common liver diseases worldwide lacking universally accepted therapies. Studies suggest that coffee consumption is associated with a reduced risk of NAFLD; however, molecular mechanisms and ingredients involved remain to be fully understood. Here, we determined the effects of regular intake of decaffeinated coffee on the development of NAFLD in mice, and molecular mechanisms involved. Methods Female C57BL/6J mice (n = 6–7/ group) were pair-fed either a liquid control diet (C) or fat-, fructose- and cholesterol-rich diet (FFC) +/- decaffeinated coffee (DeCaf, 6 g/kg BW) for 4 days or 6 weeks. Indices of liver damage, hepatic inflammation and parameters of insulin resistance and intestinal permeability as well as nitric oxide system were determined. Results Early signs of insulin resistance and non-alcoholic steatohepatitis (NASH) found after 6 weeks of FFC feeding were significantly lower in FFC+DeCaf-fed mice when compared to FFC-fed animals. Moreover, elevation of portal endotoxin levels and loss of tight junction proteins in proximal small intestine found in FFC-fed mice were significantly attenuated in FFC+DeCaf-fed animals. These beneficial effects of DeCaf were associated with a protection against the significant induction of inducible NO-synthase protein levels and 3-nitrotyrosine protein adducts found in proximal small intestine of FFC-fed mice. Similar protective effects of DeCaf were also found in mice fed the FFC diet short-term. Conclusion Our results suggest that protective effects of DeCaf on the development of NAFLD are at least in part related to maintaining intestinal barrier function. decaffeinated coffee protects mice from the development of NAFLD. decaffeinated coffee attenuated increased translocation of bacterial endotoxins. decaffeinated coffee prevents diet-induced induction of iNOS in small intestine.
Collapse
|
39
|
Luo YX, Wang XY, Huang YJ, Fang SH, Wu J, Zhang YB, Xiong TQ, Yang C, Shen JG, Sang CL, Wang Q, Fang JS. Systems pharmacology-based investigation of Sanwei Ganjiang Prescription: related mechanisms in liver injury. Chin J Nat Med 2018; 16:756-765. [PMID: 30322609 DOI: 10.1016/s1875-5364(18)30115-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Indexed: 12/14/2022]
Abstract
Liver injury remains a significant global health problem and has a variety of causes, including oxidative stress (OS), inflammation, and apoptosis of liver cells. There is currently no curative therapy for this disorder. Sanwei Ganjiang Prescription (SWGJP), derived from traditional Chinese medicine (TCM), has shown its effectiveness in long-term liver damage therapy, although the underlying molecular mechanisms are still not fully understood. To explore the underlining mechanisms of action for SWGJP in liver injury from a holistic view, in the present study, a systems pharmacology approach was developed, which involved drug target identification and multilevel data integration analysis. Using a comprehensive systems approach, we identified 43 candidate compounds in SWGJP and 408 corresponding potential targets. We further deciphered the mechanisms of SWGJP in treating liver injury, including compound-target network analysis, target-function network analysis, and integrated pathways analysis. We deduced that SWGJP may protect hepatocytes through several functional modules involved in liver injury integrated-pathway, such as Nrf2-dependent anti-oxidative stress module. Notably, systems pharmacology provides an alternative way to investigate the complex action mode of TCM.
Collapse
Affiliation(s)
- Yun-Xia Luo
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Xin-Yue Wang
- Cancer Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Yu-Jie Huang
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Shu-Huan Fang
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Jun Wu
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Yong-Bin Zhang
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Tian-Qin Xiong
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Cong Yang
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Jian-Gang Shen
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, SAR, China
| | - Chuan-Lan Sang
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Qi Wang
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou 510405, China.
| | - Jian-Song Fang
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou 510405, China.
| |
Collapse
|
40
|
Elmotasem H, Farag HK, Salama AA. In vitro and in vivo evaluation of an oral sustained release hepatoprotective caffeine loaded w/o Pickering emulsion formula – Containing wheat germ oil and stabilized by magnesium oxide nanoparticles. Int J Pharm 2018; 547:83-96. [DOI: 10.1016/j.ijpharm.2018.05.038] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 04/12/2018] [Accepted: 05/15/2018] [Indexed: 02/07/2023]
|
41
|
Fagonia indica Repairs Hepatic Damage through Expression Regulation of Toll-Like Receptors in a Liver Injury Model. J Immunol Res 2018; 2018:7967135. [PMID: 30057922 PMCID: PMC6051044 DOI: 10.1155/2018/7967135] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 05/15/2018] [Accepted: 05/29/2018] [Indexed: 02/08/2023] Open
Abstract
Fagonia indica is a traditionally used phytomedicine to cure hepatic ailments. However, efficient validation of its hepatoprotective effect and molecular mechanisms involved are not yet well established. Therefore, the present study was designed to evaluate the hepatoprotective activity of Fagonia indica and to understand the molecular mechanisms involved in the reversal of hepatic injury. The liver injury mouse model was established by thioacetamide followed by oral administration of plant extract. Serum biochemical and histological analyses were performed to assess the level of hepatic injury. Expression analysis of proinflammatory, hepatic, and immune regulatory genes was performed with RT-PCR. Results of serological and histological analyses described the restoration of normal liver function and architecture in mice treated with plant extract. In addition, altered expression of proinflammatory (IL-1β, IL-6, TNF-α, and TGF-β) and hepatic (krt-18 and albumin) markers further strengthens the liver injury reversal effects of Fagonia indica. Furthermore, a significant expression regulation of innate immunity components such as toll-like receptors 4 and 9 and MyD-88 was observed suggesting an immune regulatory role of the plant in curing liver injury. In conclusion, the current study not only proposes Fagonia indica, a strong hepatoprotective candidate, but also recommends an immune regulatory toll-like receptor pathway as an important therapeutic target in liver diseases.
Collapse
|
42
|
Eraky SM, El-Mesery M, El-Karef A, Eissa LA, El-Gayar AM. Silymarin and caffeine combination ameliorates experimentally-induced hepatic fibrosis through down-regulation of LPAR1 expression. Biomed Pharmacother 2018; 101:49-57. [PMID: 29477472 DOI: 10.1016/j.biopha.2018.02.064] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 02/14/2018] [Accepted: 02/15/2018] [Indexed: 01/08/2023] Open
Abstract
AIMS Lysophosphatidic acid is a lipid mediator that is supposed to be implicated in hepatic fibrosis. Silymarin and caffeine are natural compounds known for their anti-inflammatory and antioxidant effects. Our study aimed to explore the effect of silymarin, caffeine, and their combination on lysophosphatidic acid receptor 1 (LPAR1) pathway in thioacetamide (TAA)-induced hepatic fibrosis. MAIN METHODS Hepatic fibrosis was induced in male Sprague-Dawley rats by intraperitoneal injection of 200 mg/kg of TAA twice a week for 8 weeks. Silymarin (50 mg/kg), caffeine (50 mg/kg), and their combination (50 mg/kg silymarin + 50 mg/kg caffeine) were orally given to rats every day for 8 weeks along with TAA injection. Liver functions were measured. Histopathological examination of liver tissues was performed using hematoxylin and eosin and Masson's trichrome staining. mRNA expressions of LPAR1, transforming growth factor beta 1 (TGF-β1), connective tissue growth factor (CTGF), and alpha smooth muscle actin (α-SMA) were measured using RT-PCR. LPAR1 tissue expression was scored using immunohistochemistry. KEY FINDINGS Silymarin, caffeine, and their combination significantly improved liver function. They caused significant decrease in fibrosis and necro-inflammatory scores. Combination of silymain and caffeine caused a significant decrease in the necro-inflammatory score than the single treatment with silymarin or caffeine. In addition, silymarin, caffeine, and their combination significantly decreased hepatic LPAR1, TGF-β1, CTGF, and α-SMA gene expressions and LPAR1 tissue expression. SIGNIFICANCE Silymarin, caffeine, and their combination protect against liver fibrosis through down-regulation of LPAR1, TGF-β1, and CTGF.
Collapse
Affiliation(s)
- Salma M Eraky
- Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt.
| | - Mohamed El-Mesery
- Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Amro El-Karef
- Department of Pathology, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Laila A Eissa
- Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt.
| | - Amal M El-Gayar
- Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| |
Collapse
|
43
|
Zheng L, Yin L, Xu L, Qi Y, Li H, Xu Y, Han X, Liu K, Peng J. Protective effect of dioscin against thioacetamide-induced acute liver injury via FXR/AMPK signaling pathway in vivo. Biomed Pharmacother 2018; 97:481-488. [PMID: 29091898 DOI: 10.1016/j.biopha.2017.10.153] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 10/25/2017] [Accepted: 10/25/2017] [Indexed: 12/30/2022] Open
|
44
|
Roderfeld M. Matrix metalloproteinase functions in hepatic injury and fibrosis. Matrix Biol 2017; 68-69:452-462. [PMID: 29221811 DOI: 10.1016/j.matbio.2017.11.011] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 11/29/2017] [Accepted: 11/29/2017] [Indexed: 01/18/2023]
Abstract
Liver fibrosis is the most common final outcome for chronic liver diseases. The complex pathogenesis includes hepatic parenchymal damage as a result of a persistent noxe, activation and recruitment of immune cells, activation of hepatic stellate cells, and the synthesis of fibrotic extracellular matrix (ECM) components leading to scar formation. Clinical studies and animal models demonstrated that fibrosis can be reversible. In this regard matrix metalloproteinases (MMPs) have been focused as therapeutic targets due to their ability to modulate tissue turnover during fibrogenesis as well as regeneration and, of special interest, due to their influence on cellular behavior like proliferation, gene expression, and apoptosis that, in turn, impact fibrosis and regeneration. The current review aims to summarize and update the knowledge about expression pattern and the central roles of MMPs in hepatic fibrosis.
Collapse
Affiliation(s)
- Martin Roderfeld
- Department of Gastroenterology, Justus-Liebig-University Giessen, Gaffkystr. 11c, D-35392 Giessen, Germany.
| |
Collapse
|
45
|
Lebda MA, Sadek KM, Abouzed TK, Tohamy HG, El-Sayed YS. Melatonin mitigates thioacetamide-induced hepatic fibrosis via antioxidant activity and modulation of proinflammatory cytokines and fibrogenic genes. Life Sci 2017; 192:136-143. [PMID: 29180002 DOI: 10.1016/j.lfs.2017.11.036] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 11/18/2017] [Accepted: 11/23/2017] [Indexed: 12/11/2022]
Abstract
AIMS The potential antifibrotic effects of melatonin against induced hepatic fibrosis were explored. MAIN METHODS Rats were allocated into four groups: placebo; thioacetamide (TAA) (200mg/kg bwt, i.p twice weekly for two months); melatonin (5mg/kgbwt, i.p daily for a week before TAA and continued for an additional two months); and melatonin plus TAA. Hepatic fibrotic changes were evaluated biochemically and histopathologically. Hepatic oxidative/antioxidative indices were assessed. The expression of hepatic proinflammatory cytokines (tumor necrosis factor-α, and interleukin-1β), fibrogenic-related genes (transforming growth factor-1β, collagen I, collagen, III, laminin, and autotaxin) and an antioxidant-related gene (thioredoxin-1) were detected by qRT-PCR. KEY FINDINGS In fibrotic rats, melatonin lowered serum aspartate aminotransferase, alanine aminotransferase, and autotaxin activities, bilirubin, hepatic hydroxyproline and plasma ammonia levels. Melatonin displayed hepatoprotective and antifibrotic potential as indicated by mild hydropic degeneration of some hepatocytes and mild fibroplasia. In addition, TAA induced the depletion of glutathione, glutathione s-transferase, glutathione peroxidase, superoxide dismutase, catalase, and paraoxonase-1 (PON-1), while inducing the accumulation of malondialdehyde, protein carbonyl (C=O) and nitric oxide (NO), and DNA fragmentation. These effects were restored by melatonin pretreatment. Furthermore, melatonin markedly attenuated the expression of proinflammatory cytokines and fibrogenic genes via the upregulation of thioredoxin-1 mRNA transcripts. SIGNIFICANCE Melatonin exhibits potent anti-inflammatory, antioxidant and fibrosuppressive activities against TAA-induced hepatic fibrogenesis via the suppression of oxidative stress, DNA damage, proinflammatory cytokines and fibrogenic gene transcripts. In addition, we demonstrate that the antifibrotic activity of melatonin is mediated by the induction of thioredoxin-1 with attenuation of autotaxin expressions.
Collapse
Affiliation(s)
- Mohamed A Lebda
- Department of Biochemistry, Faculty of Veterinary Medicine, Alexandria University, Egypt.
| | - Kadry M Sadek
- Department of Biochemistry, Faculty of Veterinary Medicine, Damanhur University, Egypt
| | - Tarek K Abouzed
- Department of Biochemistry, Faculty of Veterinary Medicine, Kafr Elsheikh University, Egypt
| | - Hossam G Tohamy
- Department of Pathology, Faculty of Veterinary Medicine, Alexandria University, Egypt
| | - Yasser S El-Sayed
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Damanhur University, Egypt.
| |
Collapse
|
46
|
Exosomes, DAMPs and miRNA: Features of Stress Physiology and Immune Homeostasis. Trends Immunol 2017; 38:768-776. [PMID: 28838855 DOI: 10.1016/j.it.2017.08.002] [Citation(s) in RCA: 144] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 08/01/2017] [Accepted: 08/01/2017] [Indexed: 02/06/2023]
Abstract
Psychological/physical stressors and local tissue damage increase inflammatory proteins in tissues and blood in humans and animals, in the absence of pathogenic disease. Stress-evoked cytokine/chemokine responses, or sterile inflammation, can facilitate host survival and/or negatively affect health, depending on context. Recent evidence supports the hypothesis that systemic stress-evoked sterile inflammation is initiated by the sympathetic nervous system, resulting in the elevation of exosome-associated immunostimulatory endogenous danger/damage associated molecular patterns (DAMPs) and a reduction in immunoinhibitory miRNA, which are carried in the circulation to tissues throughout the body. We propose that sterile inflammation should be considered an elemental feature of the stress response and that circulating exosomes transporting immunomodulatory signals, may play a role fundamental role in immune homeostasis.
Collapse
|
47
|
Selected Literature Watch. JOURNAL OF CAFFEINE RESEARCH 2017. [DOI: 10.1089/jcr.2017.29004.slw] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|