1
|
Livieratos A, Lockley SW, Tsiodras S. Post infectious fatigue and circadian rhythm disruption in long-COVID and other infections: a need for further research. EClinicalMedicine 2025; 80:103073. [PMID: 39896874 PMCID: PMC11787434 DOI: 10.1016/j.eclinm.2025.103073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 01/02/2025] [Accepted: 01/07/2025] [Indexed: 02/04/2025] Open
Abstract
Chronic fatigue syndrome (CFS) remains a subject of scientific research specifically with regards to its association with infections, including the more recently described Long COVID condition. Chronic fatigue and sleep disturbances in Long COVID are intricately linked to disruptions in circadian rhythms, driven by distinct molecular and cellular mechanisms triggered by SARS-CoV-2 infection. This can be driven by various mechanisms including dysregulation of key clock genes (CLOCK, BMAL1, PER2), mitochondrial dysfunction impairing oxidative phosphorylation, and cytokine-induced neuroinflammation (e.g., interleukin-6, tumor necrosis factor-alpha). Epigenetic changes, including DNA methylation at clock-related loci, particularly in peripheral tissues, further contribute to systemic circadian dysregulation. This work underscores the multifaceted molecular and systemic disruptions to circadian regulation in relation to fatigue and sleep disturbances identified as post-infectious sequelae, focusing on the Long COVID condition.
Collapse
Affiliation(s)
| | - Steven W Lockley
- Surrey Sleep Research Centre, School of Biosciences, University of Surrey, Surrey, GU2 7YW, UK
| | - Sotirios Tsiodras
- 4th Department of Internal Medicine, Attikon University Hospital, Athens 124 62, Greece
| |
Collapse
|
2
|
Gubin D, Boldyreva J, Stefani O, Kolomeichuk S, Danilova L, Shigabaeva A, Cornelissen G, Weinert D. Higher vulnerability to poor circadian light hygiene in individuals with a history of COVID-19. Chronobiol Int 2025; 42:133-146. [PMID: 39761104 DOI: 10.1080/07420528.2024.2449015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 12/13/2024] [Accepted: 12/29/2024] [Indexed: 01/07/2025]
Abstract
Seven-day actigraphy was performed within 1 month in 122 community-dwelling adults (mean age 24.40 y, 31 (25.4%) men) in the same city of Tyumen, Russia. Groups with different COVID-19 status (present, COVID-19(+), n = 79 vs absent, COVID-19(-), n = 43) did not differ in mean age, gender distribution, or body mass index. Vaccination status was equally represented in the COVID groups. We found that COVID-19 status, a history of SARS-CoV-2 infection, was differentially associated with daylight susceptibility. Daylight exposure was estimated using parametric and non-parametric indices: 24-h Amplitude, MESOR or M10 of white and blue light exposure (BLE) and compared between the groups. Distinctively in COVID-19(+) individuals, a smaller normalized 24-h amplitude of BLE (NAbl) was associated with lower circadian robustness, assessed by a smaller relative non-parametric amplitude (RA), a lower circadian function index (CFI), later bedtime, later onset of least active 5 h (L5), shorter total sleep duration, later phase and smaller circadian amplitude of physical motor activity. Such associations were absent in the overall COVID-19(-) population or in the vaccinated COVID(-) group. Considering COVID-status and light hygiene, defined as NAbl ≥ 1 versus NAbl < 1, only those with COVID(+) and NAbl < 1 (poorer light hygiene) had a statistically significantly delayed phase of activity and sleep, reduced circadian amplitude of physical activity, and lower circadian robustness. Accounting for gender and BMI, participants diagnosed with COVID-19 at an earlier date were older and had poorer circadian light hygiene. Altogether, our data suggest that those with COVID-19 were more vulnerable to circadian disruption due to poor circadian light hygiene, manifested as phase delay, small amplitude, a less robust circadian pattern of activity, and as delayed sleep. Our data suggest that the need for optimal circadian light hygiene is greater in individuals with a history of SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Denis Gubin
- Laboratory for Chronobiology and Chronomedicine, Research Institute of Biomedicine and Biomedical Technologies, Medical University, Tyumen, Russia
- Department of Biology, Medical University, Tyumen, Russia
- Tyumen Cardiology Research Center, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| | - Julia Boldyreva
- Department of Biochemistry, Medical University, Tyumen, Russia
| | - Oliver Stefani
- Engineering and Architecture, Lucerne University of Applied Sciences and Arts, Horw, Switzerland
| | - Sergey Kolomeichuk
- Institute of Biology, Karelian Research Centre of the Russian Academy of Sciences, Petrozavodsk, Russia
- Group of Somnology, Almazov National Research Medical Center, Saint Petersburg, Russia
- Laboratory for Genomics, Proteomics, and Metabolomics, Research Institute of Biomedicine and Biomedical Technologies, Tyumen State Medical University, Tyumen, Russia
| | - Liina Danilova
- Department of Biology, Medical University, Tyumen, Russia
| | - Aislu Shigabaeva
- Laboratory for Chronobiology and Chronomedicine, Research Institute of Biomedicine and Biomedical Technologies, Medical University, Tyumen, Russia
| | - Germaine Cornelissen
- Halberg Chronobiology Center, University of Minnesota, Minneapolis, Minnesota, USA
| | - Dietmar Weinert
- Institute of Biology/Zoology, Martin Luther University, Halle-Wittenberg, Germany
| |
Collapse
|
3
|
Wang Y, Chiu FH. Impact of obstructive sleep apnea on clinical outcomes of hospitalization due to influenza in children: A propensity score-matched analysis of the US Nationwide Inpatient Sample 2005-2018. Pediatr Pulmonol 2024; 59:1652-1660. [PMID: 38506379 DOI: 10.1002/ppul.26968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 03/07/2024] [Indexed: 03/21/2024]
Abstract
BACKGROUND Previous studies have explored the association between obstructive sleep apnea (OSA) and clinical outcomes of influenza in adults, whereas limited research examined this relationship in pediatric populations. This study aimed to evaluate the clinical impact of OSA on the outcomes of pediatric influenza hospitalizations. METHODS This was a population-based, retrospective study. Data of children aged 1-19 years hospitalized for influenza infection were extracted from the United States (US) Nationwide Inpatient Sample Database 2005-2018. Univariable and multivariable regression analyses determined associations between OSA, length of stay (LOS), total hospital costs, pneumonia, and life-threatening events. RESULTS After propensity-score matching, a total of 2100 children were analyzed. The logistic analysis revealed that children with OSA had a significantly increased LOS (β = 2.29 days; 95% confidence interval, CI: 1.01-3.57, p < .001) and total hospital costs (β = 26.06 thousand dollars; 95% CI: 6.62-45.51, p = .009), and higher odds of pneumonia (aged 6-10 years: odds ratio [OR] = 1.52; 95% CI: 1.01-2.27, p = .043; aged ≥ 11 years: OR = 1.83; 95% CI: 1.33-2.53, p < .001). CONCLUSIONS During influenza admissions, children with OSA had longer LOS, higher hospital costs, and an increased risk of pneumonia compared to those without OSA. These findings underscore the importance of recognizing and managing OSA in influenza-related infections among children.
Collapse
Affiliation(s)
- Yao Wang
- Department of Otolaryngology, Head and Neck Surgery, Tri-Service General Hospital, Taipei City, Taiwan
- National Defense Medical Center, Taipei City, Taiwan
| | - Feng-Hsiang Chiu
- Department of Otolaryngology, Head and Neck Surgery, Tri-Service General Hospital, Taipei City, Taiwan
- National Defense Medical Center, Taipei City, Taiwan
| |
Collapse
|
4
|
Zhou J, Wang H, Ouyang Q. Mathematical modeling of viral infection and the immune response controlled by the circadian clock. J Biol Phys 2024; 50:197-214. [PMID: 38641676 PMCID: PMC11106228 DOI: 10.1007/s10867-024-09655-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Accepted: 03/16/2024] [Indexed: 04/21/2024] Open
Abstract
Time of day affects how well the immune system responds to viral or bacterial infections. While it is well known that the immune system is regulated by the circadian clock, the dynamic origin of time-of-day-dependent immunity remains unclear. In this paper, we studied the circadian control of immune response upon infection of influenza A virus through mathematical modeling. Dynamic simulation analyses revealed that the time-of-day-dependent immunity was rooted in the relative phase between the circadian clock and the pulse of viral infection. The relative phase, which depends on the time the infection occurs, plays a crucial role in the immune response. It can drive the immune system to one of two distinct bistable states, a high inflammatory state with a higher mortality rate or a safe state characterized by low inflammation. The mechanism we found here also explained why the same species infected by different viruses has different time-of-day-dependent immunities. Further, the time-of-day-dependent immunity was found to be abolished when the immune system was regulated by an impaired circadian clock with decreased oscillation amplitude or without oscillations.
Collapse
Affiliation(s)
- Jiaxin Zhou
- The State Key Laboratory for Artificial Microstructures and Mesoscopic Physics, School of Physics, Peking University, Beijing, 100871, China
| | - Hongli Wang
- The State Key Laboratory for Artificial Microstructures and Mesoscopic Physics, School of Physics, Peking University, Beijing, 100871, China.
- Center for Quantitative Biology, Peking University, Beijing, 100871, China.
| | - Qi Ouyang
- School of Physics, Zhejiang University, Hangzhou, 310027, China
| |
Collapse
|
5
|
Cao W, Li X, Yan Y, Zhou J, Ye J, Lv Q. Changes in sleep patterns in primary care workers during the first wave of the COVID-19 pandemic in 2022 in Shanghai: a cross-sectional study. Sci Rep 2024; 14:12373. [PMID: 38811616 PMCID: PMC11137069 DOI: 10.1038/s41598-024-61311-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 05/03/2024] [Indexed: 05/31/2024] Open
Abstract
The coronavirus disease (COVID-19) pandemic has significantly affected the sleep health of healthcare workers (HCWs); however, no studies have assessed this effect in primary HCWs. This cross-sectional, web-based study explored the prevalence and factors associated with sleep disorders among primary HCWs during the first COVID-19 outbreak in Shanghai from 12 July to 15 August 2022. Sociodemographic and work-related characteristics, various sleep dimensions, and exposure to patients with COVID-19 were assessed. They were screened for common mental disorders (depression, burnout, and stress). Overall, 313 primary HCWs were recruited. At least one sleep dimension in 84% of respondents deteriorated compared with that observed pre-pandemic; sleep quality (decline of 66%) and daytime sleepiness (increase of 56%) were the most affected domains. After excluding 145 primary HCWs with pre-pandemic 'poor sleep', depression (odds ratio [OR] 3.08; 95% confidence interval [CI] 1.59-5.98), weekly burnout symptoms (OR 2.57; 95% CI 1.32-5.03), and high psychological stress (OR 4.51; 95% CI 2.09-9.72) were associated with poor sleep patterns during the pandemic. After adjusting for significant differences between groups, for every 1-point increase in the Perceived Stress Scale score, an associated 12% increased risk of poor sleep (adjusted OR 1.12; 95% CI 1.05-1.21; p = 0.002) was observed. Most primary HCWs showed significant worsening of sleep quality, with increases in daytime sleepiness during the first wave of the COVID-19 pandemic in Shanghai. HCWs with high stress levels were at greater risks of sleep disorders.
Collapse
Affiliation(s)
- Wenshu Cao
- Tianlin Community Health Center of Xuhui District, 500 Liuzhou Road, Shanghai, China
| | - Xiaoting Li
- Nanhui New Town Community Health Service Center of Pudong New Area, 280 Chaohe Road, Shanghai, China
| | - Yini Yan
- Tianlin Community Health Center of Xuhui District, 500 Liuzhou Road, Shanghai, China
| | - Jianfeng Zhou
- Tianlin Community Health Center of Xuhui District, 500 Liuzhou Road, Shanghai, China
| | - Jizhong Ye
- Tianlin Community Health Center of Xuhui District, 500 Liuzhou Road, Shanghai, China.
| | - Qiwei Lv
- Tianlin Community Health Center of Xuhui District, 500 Liuzhou Road, Shanghai, China.
| |
Collapse
|
6
|
Borrmann H, Rijo-Ferreira F. Crosstalk between circadian clocks and pathogen niche. PLoS Pathog 2024; 20:e1012157. [PMID: 38723104 PMCID: PMC11081299 DOI: 10.1371/journal.ppat.1012157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2024] Open
Abstract
Circadian rhythms are intrinsic 24-hour oscillations found in nearly all life forms. They orchestrate key physiological and behavioral processes, allowing anticipation and response to daily environmental changes. These rhythms manifest across entire organisms, in various organs, and through intricate molecular feedback loops that govern cellular oscillations. Recent studies describe circadian regulation of pathogens, including parasites, bacteria, viruses, and fungi, some of which have their own circadian rhythms while others are influenced by the rhythmic environment of hosts. Pathogens target specific tissues and organs within the host to optimize their replication. Diverse cellular compositions and the interplay among various cell types create unique microenvironments in different tissues, and distinctive organs have unique circadian biology. Hence, residing pathogens are exposed to cyclic conditions, which can profoundly impact host-pathogen interactions. This review explores the influence of circadian rhythms and mammalian tissue-specific interactions on the dynamics of pathogen-host relationships. Overall, this demonstrates the intricate interplay between the body's internal timekeeping system and its susceptibility to pathogens, which has implications for the future of infectious disease research and treatment.
Collapse
Affiliation(s)
- Helene Borrmann
- Berkeley Public Health, Molecular and Cell Biology Department, University of California Berkeley, Berkeley, California, United States of America
| | - Filipa Rijo-Ferreira
- Berkeley Public Health, Molecular and Cell Biology Department, University of California Berkeley, Berkeley, California, United States of America
- Chan Zuckerberg Biohub–San Francisco, San Francisco, California, United States of America
| |
Collapse
|
7
|
Yehia A, Abulseoud OA. Melatonin: a ferroptosis inhibitor with potential therapeutic efficacy for the post-COVID-19 trajectory of accelerated brain aging and neurodegeneration. Mol Neurodegener 2024; 19:36. [PMID: 38641847 PMCID: PMC11031980 DOI: 10.1186/s13024-024-00728-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 04/15/2024] [Indexed: 04/21/2024] Open
Abstract
The unprecedented pandemic of COVID-19 swept millions of lives in a short period, yet its menace continues among its survivors in the form of post-COVID syndrome. An exponentially growing number of COVID-19 survivors suffer from cognitive impairment, with compelling evidence of a trajectory of accelerated aging and neurodegeneration. The novel and enigmatic nature of this yet-to-unfold pathology demands extensive research seeking answers for both the molecular underpinnings and potential therapeutic targets. Ferroptosis, an iron-dependent cell death, is a strongly proposed underlying mechanism in post-COVID-19 aging and neurodegeneration discourse. COVID-19 incites neuroinflammation, iron dysregulation, reactive oxygen species (ROS) accumulation, antioxidant system repression, renin-angiotensin system (RAS) disruption, and clock gene alteration. These events pave the way for ferroptosis, which shows its signature in COVID-19, premature aging, and neurodegenerative disorders. In the search for a treatment, melatonin shines as a promising ferroptosis inhibitor with its repeatedly reported safety and tolerability. According to various studies, melatonin has proven efficacy in attenuating the severity of certain COVID-19 manifestations, validating its reputation as an anti-viral compound. Melatonin has well-documented anti-aging properties and combating neurodegenerative-related pathologies. Melatonin can block the leading events of ferroptosis since it is an efficient anti-inflammatory, iron chelator, antioxidant, angiotensin II antagonist, and clock gene regulator. Therefore, we propose ferroptosis as the culprit behind the post-COVID-19 trajectory of aging and neurodegeneration and melatonin, a well-fitting ferroptosis inhibitor, as a potential treatment.
Collapse
Affiliation(s)
- Asmaa Yehia
- Department of Neuroscience, Graduate School of Biomedical Sciences, Mayo Clinic College of Medicine, Phoenix, AZ, 58054, USA
- Department of Medical Physiology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Osama A Abulseoud
- Department of Neuroscience, Graduate School of Biomedical Sciences, Mayo Clinic College of Medicine, Phoenix, AZ, 58054, USA.
- Department of Psychiatry and Psychology, Mayo Clinic Arizona, 5777 E Mayo Blvd, Phoenix, AZ, 85054, USA.
| |
Collapse
|
8
|
Tauman R, Henig O, Rosenberg E, Marudi O, Dunietz TM, Grandner MA, Spitzer A, Zeltser D, Mizrahi M, Sprecher E, Ben-Ami R, Goldshmidt H, Goldiner I, Saiag E, Angel Y. Relationship among sleep, work features, and SARS-cov-2 vaccine antibody response in hospital workers. Sleep Med 2024; 116:90-95. [PMID: 38437781 DOI: 10.1016/j.sleep.2024.02.045] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 02/28/2024] [Indexed: 03/06/2024]
Abstract
STUDY OBJECTIVES Immunity is influenced by sleep and the circadian rhythm. Healthcare workers are predisposed to both insufficient sleep and circadian disruption. This study aimed to evaluate the relationship between sleep and work characteristics and the antibody response to the mRNA SARS-CoV-2 vaccine BNT162b2. METHODS The authors' prospective cohort study ("COVI3") evaluated the effect of a third (booster) dose of the BNT162b2 vaccine. A subset of participants provided information on anthropometric measures, sleep, stress and work characteristics including shift work and number of work hours per week. Blood samples for anti-S1-RBD IgG antibody levels were obtained 21 weeks following receipt of the third dose of the vaccine. RESULTS In total, 201 healthcare workers (73% women) were included. After adjustment for age, body mass index (BMI), shift work, smoking status, and perceived stress, short sleep duration (<7 h per night) was associated with lower anti-S1-RBD IgG levels (Odds ratio 2.36 [95% confidence interval 1.08-5.13]). Participants who performed shift work had higher odds of lower anti-S1-RBD IgG levels compared to those who did not work in shifts [odds ratio = 2.99 (95% confidence interval 1.40, 6.39)] after accounting for age, short sleep duration, BMI, smoking status and perceived stress. CONCLUSIONS Shift work and self-reported short sleep duration were associated with a lower antibody response following a booster dose of the SARS-CoV-2 vaccine. These findings suggest that the efficacy of vaccination, particularly among healthcare workers, may be augmented by addressing both sleep and circadian alignment.
Collapse
Affiliation(s)
- Riva Tauman
- Sieratzki-Sagol Institute for Sleep Medicine, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel; Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
| | - Oryan Henig
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel; Department of Infectious Diseases and Infection Control, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | | | - Or Marudi
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel; Department of Anesthesia, Pain Management and Intensive care, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Talia M Dunietz
- Sieratzki-Sagol Institute for Sleep Medicine, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Michael A Grandner
- Department of Psychiatry, Sleep and Health Research Program, Department of Psychiatry, University of Arizona College of Medicine, Tucson, AZ, United States
| | - Avishay Spitzer
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel; Departments of Oncology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel; Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - David Zeltser
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel; Department of Emergency Medicine, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Michal Mizrahi
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel; Department of Emergency Medicine, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Eli Sprecher
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel; Department of Dermatology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel; Department of Research and Development, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Ronen Ben-Ami
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel; Department of Infectious Diseases and Infection Control, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Hanoch Goldshmidt
- Department of Clinical Laboratories, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Ilana Goldiner
- Department of Clinical Laboratories, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Esther Saiag
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel; Department of Information Systems and Operations, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Yoel Angel
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel; Department of Anesthesia, Pain Management and Intensive care, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel; Department of Physician Affairs, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| |
Collapse
|
9
|
Mor O, Wax M, Arami SS, Yitzhaki M, Kriger O, Erster O, Zuckerman NS. Parvovirus B19 Outbreak in Israel: Retrospective Molecular Analysis from 2010 to 2023. Viruses 2024; 16:480. [PMID: 38543845 PMCID: PMC10974090 DOI: 10.3390/v16030480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 03/14/2024] [Accepted: 03/19/2024] [Indexed: 05/23/2024] Open
Abstract
This study presents an analysis of the epidemiological trends of parvovirus B19 (B19V) in Israel from 2010 to 2023, with particular emphasis on the outbreak in 2023. The analysis utilized molecular diagnostic data from individual patients obtained at the Central Virology Laboratory. Between 2010 and 2022, 8.5% of PCR-tested samples were positive for B19V, whereas in 2023, this percentage surged to 31% of PCR-tested samples. Throughout the study period, annual cycles consistently peaked in early spring/summer, with the most recent prominent outbreak occurring in 2016. Predominantly, diagnoses were made in children and women aged 20-39. Despite the notable surge in 2023, over 80% of positive cases continued to be observed in children and young women, with a decrease in cases during winter months. Furthermore, genotype 1a of the virus remained the predominant strain circulating during the outbreak. In light of these circumstances, consideration should be given to implementing screening measures, particularly among high-risk groups such as pregnant women.
Collapse
Affiliation(s)
- Orna Mor
- Medical School, Tel-Aviv University, Tel Aviv 6997801, Israel
- Central Virology Laboratory, Ministry of Health, Chaim Sheba Medical Center, Ramat Gan 5262112, Israel; (M.W.); (S.-S.A.); (M.Y.); (O.E.); (N.S.Z.)
| | - Marina Wax
- Central Virology Laboratory, Ministry of Health, Chaim Sheba Medical Center, Ramat Gan 5262112, Israel; (M.W.); (S.-S.A.); (M.Y.); (O.E.); (N.S.Z.)
| | - Shoshana-Shani Arami
- Central Virology Laboratory, Ministry of Health, Chaim Sheba Medical Center, Ramat Gan 5262112, Israel; (M.W.); (S.-S.A.); (M.Y.); (O.E.); (N.S.Z.)
| | - Maya Yitzhaki
- Central Virology Laboratory, Ministry of Health, Chaim Sheba Medical Center, Ramat Gan 5262112, Israel; (M.W.); (S.-S.A.); (M.Y.); (O.E.); (N.S.Z.)
| | - Or Kriger
- Clinical Microbiology and Pediatric Infectious Disease Unit, Chaim Sheba Medical Center, Ramat Gan 5262112, Israel;
| | - Oran Erster
- Central Virology Laboratory, Ministry of Health, Chaim Sheba Medical Center, Ramat Gan 5262112, Israel; (M.W.); (S.-S.A.); (M.Y.); (O.E.); (N.S.Z.)
| | - Neta S. Zuckerman
- Central Virology Laboratory, Ministry of Health, Chaim Sheba Medical Center, Ramat Gan 5262112, Israel; (M.W.); (S.-S.A.); (M.Y.); (O.E.); (N.S.Z.)
| |
Collapse
|
10
|
Kolben Y, Azmanov H, Gelman R, Dror D, Ilan Y. Using chronobiology-based second-generation artificial intelligence digital system for overcoming antimicrobial drug resistance in chronic infections. Ann Med 2023; 55:311-318. [PMID: 36594558 PMCID: PMC9815249 DOI: 10.1080/07853890.2022.2163053] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Antimicrobial resistance results from the widespread use of antimicrobial agents and is a significant obstacle to the effectiveness of these agents. Numerous methods are used to overcome this problem with moderate success. Besides efforts of antimicrobial stewards, several artificial intelligence (AI)-based technologies are being explored for preventing resistance development. These first-generation systems mainly focus on improving patients' adherence. Chronobiology is inherent in all biological systems. Host response to infections and pathogens activity are assumed to be affected by the circadian clock. This paper describes the problem of antimicrobial resistance and reviews some of the current AI technologies. We present the establishment of a second-generation AI chronobiology-based approach to help in preventing further resistance and possibly overcome existing resistance. An algorithm-controlled regimen that improves the long-term effectiveness of antimicrobial agents is being developed based on the implementation of variability in dosing and drug administration times. The method provides a means for ensuring a sustainable response and improved outcomes. Ongoing clinical trials determine the effectiveness of this second-generation system in chronic infections. Data from these studies are expected to shed light on a new aspect of resistance mechanisms and suggest methods for overcoming them.IMPORTANCE SECTIONThe paper presents the establishment of a second-generation AI chronobiology-based approach to help in preventing further resistance and possibly overcome existing resistance.Key messagesAntimicrobial resistance results from the widespread use of antimicrobial agents and is a significant obstacle to the effectiveness of these agents.We present the establishment of a second-generation AI chronobiology-based approach to help in preventing further resistance and possibly overcome existing resistance.
Collapse
Affiliation(s)
- Yotam Kolben
- Department of Medicine, Faculty of Medicine, Hadassah Medical Center, Hebrew University, Jerusalem, Israel
| | - Henny Azmanov
- Department of Medicine, Faculty of Medicine, Hadassah Medical Center, Hebrew University, Jerusalem, Israel
| | - Ram Gelman
- Department of Medicine, Faculty of Medicine, Hadassah Medical Center, Hebrew University, Jerusalem, Israel
| | - Danna Dror
- Department of Clinical Microbiology and Infectious Diseases, Faculty of Medicine, Hadassah Medical Center, Hebrew University, Jerusalem, Israel
| | - Yaron Ilan
- Department of Medicine, Faculty of Medicine, Hadassah Medical Center, Hebrew University, Jerusalem, Israel
| |
Collapse
|
11
|
Clark AD, Cumpstey AF, Santolini J, Jackson AA, Feelisch M. Uncoupled redox stress: how a temporal misalignment of redox-regulated processes and circadian rhythmicity exacerbates the stressed state. Open Biol 2023; 13:230151. [PMID: 37669692 PMCID: PMC10480010 DOI: 10.1098/rsob.230151] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 07/31/2023] [Indexed: 09/07/2023] Open
Abstract
Diurnal and seasonal rhythmicity, entrained by environmental and nutritional cues, is a vital part of all life on Earth operating at every level of organization; from individual cells, to multicellular organisms, whole ecosystems and societies. Redox processes are intrinsic to physiological function and circadian regulation, but how they are integrated with other regulatory processes at the whole-body level is poorly understood. Circadian misalignment triggered by a major stressor (e.g. viral infection with SARS-CoV-2) or recurring stressors of lesser magnitude such as shift work elicit a complex stress response that leads to desynchronization of metabolic processes. This in turn challenges the system's ability to achieve redox balance due to alterations in metabolic fluxes (redox rewiring). We infer that the emerging 'alternative redox states' do not always revert readily to their evolved natural states; 'Long COVID' and other complex disorders of unknown aetiology are the clinical manifestations of such rearrangements. To better support and successfully manage bodily resilience to major stress and other redox challenges needs a clear perspective on the pattern of the hysteretic response for the interaction between the redox system and the circadian clock. Characterization of this system requires repeated (ideally continuous) recording of relevant clinical measures of the stress responses and whole-body redox state (temporal redox phenotyping). The human/animal body is a complex 'system of systems' with multi-level buffering capabilities, and it requires consideration of the wider dynamic context to identify a limited number of stress-markers suitable for routine clinical decision making. Systematically mapping the patterns and dynamics of redox biomarkers along the stressor/disease trajectory will provide an operational model of whole-body redox regulation/balance that can serve as basis for the identification of effective interventions which promote health by enhancing resilience.
Collapse
Affiliation(s)
- Anna D. Clark
- Perioperative and Critical Care Research Group, Southampton NIHR Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, Southampton SO16 6YD, UK
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, SO16 6YD, UK
| | - Andrew F. Cumpstey
- Perioperative and Critical Care Research Group, Southampton NIHR Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, Southampton SO16 6YD, UK
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, SO16 6YD, UK
| | - Jérôme Santolini
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Universite Paris-Saclay, F-91198, Gif-sur-Yvette Cedex, France
| | - Alan A. Jackson
- Human Nutrition, University of Southampton and University Hospital Southampton, Tremona Road, Southampton, SO16 6YD, UK
| | - Martin Feelisch
- Perioperative and Critical Care Research Group, Southampton NIHR Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, Southampton SO16 6YD, UK
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, SO16 6YD, UK
| |
Collapse
|
12
|
Shafaati M, Sadeghniiat K, Priyanka, Najafia A, Zandi M, Akbarpour S, Choudhary OP. The relevance of the circadian timing system role in patients with HIV/AIDS: a quick glance. Int J Surg 2023; 109:2831-2834. [PMID: 36928027 PMCID: PMC10498842 DOI: 10.1097/js9.0000000000000103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 11/16/2022] [Indexed: 03/18/2023]
Affiliation(s)
- Maryam Shafaati
- Occupational Sleep Research Center, Baharloo Hospital, Tehran University of Medical Sciences, Tehran, Iran
- Department of Microbiology, Faculty Science, Jahrom Branch, Islamic Azad University, Jahrom, Iran
| | - Khosro Sadeghniiat
- Occupational Sleep Research Center, Baharloo Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Priyanka
- Department of Veterinary Microbiology, College of Veterinary Science, Guru Angad Dev Veterinary and Animal Sciences University (GADVASU), Rampura Phul, Bathinda, Punjab, India
| | - Arezu Najafia
- Occupational Sleep Research Center, Baharloo Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Milad Zandi
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Samaneh Akbarpour
- Occupational Sleep Research Center, Baharloo Hospital, Tehran University of Medical Sciences, Tehran, Iran
- Sleep Breathing Disorders Research Center (SBDRC), Tehran University of Medical Sciences, Tehran, Iran
| | - Om Prakash Choudhary
- Department of Veterinary Anatomy and Histology, College of Veterinary Sciences and Animal Husbandry, Central Agricultural University (I), Selesih, Aizawl, Mizoram, India
| |
Collapse
|
13
|
Ohdo S, Koyanagi S, Matsunaga N. Chronopharmacology of immune-related diseases. Allergol Int 2022; 71:437-447. [PMID: 35850747 DOI: 10.1016/j.alit.2022.06.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 06/07/2022] [Accepted: 06/15/2022] [Indexed: 11/01/2022] Open
Abstract
Clock genes, circadian pacemaker resides in the paired suprachiasmatic nuclei (SCN), control various circadian rhythms in many biological processes such as physiology and behavior. Clock gene regulates many diseases such as cancer, immunological dysfunction, metabolic syndrome and sleep disorders etc. Chronotherapy is especially relevant, when the risk and/or intensity of the symptoms of disease vary predicably over time as exemplified by allergic rhinitis, arthritis, asthma, myocardial infarction, congestive heart failure, stroke, and peptic ulcer disease. Dosing time influences the effectiveness and toxicity of many drugs. The pharmacodynamics of medications as well as pharmacokinetics influences chronopharmacological phenomena. To escape from host immunity in the tumor microenvironment, cancer cells have acquired several pathways. Immune checkpoint therapy targeting programmed death 1 (PD-1) and its ligand (PD-L1) interaction had been approved for the treatment of patients with several types of cancers. Circadian expression of PD-1 is identified on tumor associated macrophages (TAMs), which is rationale for selecting the most appropriate time of day for administration of PD-1/PD-L1 inhibitors. The therapies for chronic kidney disease (CKD) are urgently needed because of a global health problem. The mechanism of the cardiac complications in mice with CKD had been related the GRP68 in circulating monocytes and serum accumulation of retinol. Development of a strategy to suppress retinol accumulation will be useful to prevent the cardiac complications of CKD. Therefore, we introduce an overview of the dosing time-dependent changes in therapeutic outcome and safety of drug for immune-related diseases.
Collapse
Affiliation(s)
- Shigehiro Ohdo
- Department of Pharmaceutics, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan.
| | - Satoru Koyanagi
- Department of Glocal Healthcare, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Naoya Matsunaga
- Department of Clinical Pharmacokinetics, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
14
|
Rijo-Ferreira F, Takahashi JS. Circadian rhythms in infectious diseases and symbiosis. Semin Cell Dev Biol 2022; 126:37-44. [PMID: 34625370 PMCID: PMC9183220 DOI: 10.1016/j.semcdb.2021.09.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 09/01/2021] [Accepted: 09/07/2021] [Indexed: 10/20/2022]
Abstract
Timing is everything. Many organisms across the tree of life have evolved timekeeping mechanisms that regulate numerous of their cellular functions to optimize timing by anticipating changes in the environment. The specific environmental changes that are sensed depends on the organism. For animals, plants, and free-living microbes, environmental cues include light/dark cycles, daily temperature fluctuations, among others. In contrast, for a microbe that is never free-living, its rhythmic environment is its host's rhythmic biology. Here, we describe recent research on the interactions between hosts and microbes, from the perspective both of symbiosis as well as infections. In addition to describing the biology of the microbes, we focus specifically on how circadian clocks modulate these host-microbe interactions.
Collapse
Affiliation(s)
- Filipa Rijo-Ferreira
- Department of Neuroscience, Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX, United States.
| | - Joseph S Takahashi
- Department of Neuroscience, Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX, United States; Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX, United States.
| |
Collapse
|
15
|
Blanco JR, Verdugo-Sivianes EM, Amiama A, Muñoz-Galván S. The circadian rhythm of viruses and its implications on susceptibility to infection. Expert Rev Anti Infect Ther 2022; 20:1109-1117. [PMID: 35546444 DOI: 10.1080/14787210.2022.2072296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Circadian genes have an impact on multiple hormonal, metabolic, and immunological pathways and have recently been implicated in some infectious diseases. AREAS COVERED We review aspects related to the current knowledge about circadian rhythm and viral infections, their consequences, and the potential therapeutic options. EXPERT OPINION Expert opinion: In order to address a problem, it is necessary to know the topic in depth. Although in recent years there has been a growing interest in the role of circadian rhythms, many relevant questions remain to be resolved. Thus, the mechanisms linking the circadian machinery against viral infections are poorly understood. In a clear approach to personalized precision medicine, in order to treat a disease in the most appropriate phase of the circadian rhythm, and in order to achieve the optimal efficacy, it is highly recommended to carry out studies that improve the knowledge about the circadian rhythm.
Collapse
Affiliation(s)
- José-Ramon Blanco
- Servicio de Enfermedades Infecciosas, Hospital Universitario San Pedro, Logroño, Spain.,Centro de Investigación Biomédica de La Rioja (CIBIR), Logroño, Spain
| | - Eva M Verdugo-Sivianes
- Instituto de Biomedicina de Sevilla, IBIS, Hospital Universitario Virgen del Rocío, Universidad de Sevilla, Consejo Superior de Investigaciones Científicas, Sevilla, Spain.,CIBERONC, Instituto de Salud Carlos III, Madrid, Spain
| | - Ana Amiama
- Centro de Investigación Biomédica de La Rioja (CIBIR), Logroño, Spain
| | - Sandra Muñoz-Galván
- Instituto de Biomedicina de Sevilla, IBIS, Hospital Universitario Virgen del Rocío, Universidad de Sevilla, Consejo Superior de Investigaciones Científicas, Sevilla, Spain.,CIBERONC, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
16
|
Nino G, Restrepo-Gualteros SM, Gutierrez MJ. Pediatric sleep apnea and viral respiratory infections: what do clinicians need to know? Expert Rev Respir Med 2022; 16:253-255. [PMID: 35192783 PMCID: PMC8983587 DOI: 10.1080/17476348.2022.2045959] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 02/21/2022] [Indexed: 11/04/2022]
Affiliation(s)
- Gustavo Nino
- Division of Pediatric Pulmonary and Sleep Medicine. Children’s National Hospital, George Washington University, Washington, D.C, USA
| | - Sonia M. Restrepo-Gualteros
- Department of Pediatrics, School of Medicine, Universidad Nacional de Colombia, Bogota, Colombia; Department of Pediatric Pulmonology, Fundacion Hospital de La Misericordia, Bogota, Colombia
| | - Maria J. Gutierrez
- Division of Pediatric Allergy and Immunology, Johns Hopkins University, Baltimore, MD, United States
| |
Collapse
|
17
|
Abstract
To evaluate the sleep and circadian rest-activity pattern of critical COVID-19 survivors 3 months after hospital discharge.
Collapse
|
18
|
Lauwers M, Au M, Yuan S, Wen C. COVID-19 in Joint Ageing and Osteoarthritis: Current Status and Perspectives. Int J Mol Sci 2022; 23:720. [PMID: 35054906 PMCID: PMC8775477 DOI: 10.3390/ijms23020720] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 01/05/2022] [Accepted: 01/06/2022] [Indexed: 12/16/2022] Open
Abstract
COVID-19 is a trending topic worldwide due to its immense impact on society. Recent trends have shifted from acute effects towards the long-term morbidity of COVID-19. In this review, we hypothesize that SARS-CoV-2 contributes to age-related perturbations in endothelial and adipose tissue, which are known to characterize the early aging process. This would explain the long-lasting symptoms of SARS-CoV-2 as the result of an accelerated aging process. Connective tissues such as adipose tissue and musculoskeletal tissue are the primary sites of aging. Therefore, current literature was analyzed focusing on the musculoskeletal symptoms in COVID-19 patients. Hypovitaminosis D, increased fragility, and calcium deficiency point towards bone aging, while joint and muscle pain are typical for joint and muscle aging, respectively. These characteristics could be classified as early osteoarthritis-like phenotype. Exploration of the impact of SARS-CoV-2 and osteoarthritis on endothelial and adipose tissue, as well as neuronal function, showed similar perturbations. At a molecular level, this could be attributed to the angiotensin-converting enzyme 2 expression, renin-angiotensin system dysfunction, and inflammation. Finally, the influence of the nicotinic cholinergic system is being evaluated as a new treatment strategy. This is combined with the current knowledge of musculoskeletal aging to pave the road towards the treatment of long-term COVID-19.
Collapse
Affiliation(s)
- Marianne Lauwers
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, 11 Yuk Choi Rd, Hung Hom, Hong Kong; (M.L.); (M.A.)
| | - Manting Au
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, 11 Yuk Choi Rd, Hung Hom, Hong Kong; (M.L.); (M.A.)
| | - Shuofeng Yuan
- Department of Microbiology, The University of Hong Kong, Pok Fu Lam, Hong Kong;
| | - Chunyi Wen
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, 11 Yuk Choi Rd, Hung Hom, Hong Kong; (M.L.); (M.A.)
| |
Collapse
|
19
|
Multi-Modal Regulation of Circadian Physiology by Interactive Features of Biological Clocks. BIOLOGY 2021; 11:biology11010021. [PMID: 35053019 PMCID: PMC8772734 DOI: 10.3390/biology11010021] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 12/21/2021] [Accepted: 12/23/2021] [Indexed: 12/26/2022]
Abstract
The circadian clock is a fundamental biological timing mechanism that generates nearly 24 h rhythms of physiology and behaviors, including sleep/wake cycles, hormone secretion, and metabolism. Evolutionarily, the endogenous clock is thought to confer living organisms, including humans, with survival benefits by adapting internal rhythms to the day and night cycles of the local environment. Mirroring the evolutionary fitness bestowed by the circadian clock, daily mismatches between the internal body clock and environmental cycles, such as irregular work (e.g., night shift work) and life schedules (e.g., jet lag, mistimed eating), have been recognized to increase the risk of cardiac, metabolic, and neurological diseases. Moreover, increasing numbers of studies with cellular and animal models have detected the presence of functional circadian oscillators at multiple levels, ranging from individual neurons and fibroblasts to brain and peripheral organs. These oscillators are tightly coupled to timely modulate cellular and bodily responses to physiological and metabolic cues. In this review, we will discuss the roles of central and peripheral clocks in physiology and diseases, highlighting the dynamic regulatory interactions between circadian timing systems and multiple metabolic factors.
Collapse
|
20
|
Máčová L, Bičíková M, Hampl R. Endocrine risk factors for COVID-19 in context of aging. Physiol Res 2021; 70:S153-S159. [PMID: 34913349 DOI: 10.33549/physiolres.934723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Aged people are the most susceptible group to COVID-19 infection. Immunosenescence characterized by impairment of immune function with inflamm-aging contributes to pathophysiological alterations, among which endocrine and metabolic diseases are not exception. Diabetes, obesity along with impairment of disorders of thyroid functions are the most frequent ones, the common feature of which is failure of immune system including autoimmune processes. In the minireview we discussed how COVID-19 and aging impact innate and adaptive immunity, diabetes and selected neuroendocrine processes. Mentioned is also beneficial effect of vitamin D for attenuation of these diseases and related epigenetic issues. Particular attention is devoted to the role of ACE2 protein in the light of its intimate link with renin-angiotensin regulating system.
Collapse
Affiliation(s)
- L Máčová
- Institute of Endocrinology, Prague 1, Czech Republic.
| | | | | |
Collapse
|
21
|
Liu Z, Ting S, Zhuang X. COVID-19, circadian rhythms and sleep: from virology to chronobiology. Interface Focus 2021; 11:20210043. [PMID: 34956600 PMCID: PMC8504895 DOI: 10.1098/rsfs.2021.0043] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/31/2021] [Indexed: 12/15/2022] Open
Abstract
Various aspects of our physiology and immune response to pathogens are under 24 h circadian control and its role in clinical and research practice is becoming increasingly recognized. Severe acute respiratory syndrome coronavirus-2, the causative agent of Coronavirus disease 2019 (COVID-19) has affected millions of people to date. Cross-disciplinary approaches and collaborative efforts have led to an unprecedented speed in developing novel therapies and vaccines to tackle the COVID-19 pandemic. Circadian misalignment and sleep disruption have a profound impact on immune function and subsequently on the ability of individuals to combat infections. This review summarizes the evidence on the interplay between circadian biology, sleep and COVID-19 with the aim to identify areas of translational potentials that may inform diagnostic and therapeutic strategies in this pandemic.
Collapse
Affiliation(s)
- Zulian Liu
- Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Sharlene Ting
- National Institute for Health and Care Excellence, UK
| | - Xiaodong Zhuang
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
22
|
Wang W, Balfe P, Eyre DW, Lumley SF, O'Donnell D, Warren F, Crook DW, Jeffery K, Matthews PC, Klerman EB, McKeating JA. Time of Day of Vaccination Affects SARS-CoV-2 Antibody Responses in an Observational Study of Health Care Workers. J Biol Rhythms 2021; 37:124-129. [PMID: 34866459 PMCID: PMC8825702 DOI: 10.1177/07487304211059315] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The COVID-19 pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a global crisis with unprecedented challenges for public health. Vaccinations against SARS-CoV-2 have slowed the incidence of new infections and reduced disease severity. As the time of day of vaccination has been reported to influence host immune responses to multiple pathogens, we quantified the influence of SARS-CoV-2 vaccination time, vaccine type, participant age, sex, and days post-vaccination on anti-Spike antibody responses in health care workers. The magnitude of the anti-Spike antibody response is associated with the time of day of vaccination, vaccine type, participant age, sex, and days post-vaccination. These results may be relevant for optimising SARS-CoV-2 vaccine efficacy.
Collapse
Affiliation(s)
- Wei Wang
- Division of Sleep and Circadian Disorders and Division of Sleep Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Peter Balfe
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - David W Eyre
- Big Data Institute, Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Sheila F Lumley
- Nuffield Department of Medicine, University of Oxford, Oxford, UK.,John Radcliffe Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Denise O'Donnell
- John Radcliffe Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Fiona Warren
- John Radcliffe Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Derrick W Crook
- Nuffield Department of Medicine, University of Oxford, Oxford, UK.,John Radcliffe Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK.,NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, UK
| | - Katie Jeffery
- John Radcliffe Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK.,Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Philippa C Matthews
- Nuffield Department of Medicine, University of Oxford, Oxford, UK.,John Radcliffe Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Elizabeth B Klerman
- Division of Sleep and Circadian Disorders and Division of Sleep Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA.,Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Jane A McKeating
- Nuffield Department of Medicine, University of Oxford, Oxford, UK.,Chinese Academy of Medical Sciences Oxford Institute, University of Oxford, Oxford, UK
| |
Collapse
|
23
|
McNaughton CD, Adams NM, Hirschie Johnson C, Ward MJ, Schmitz JE, Lasko TA. Diurnal Variation in SARS-CoV-2 PCR Test Results: Test Accuracy May Vary by Time of Day. J Biol Rhythms 2021; 36:595-601. [PMID: 34696614 PMCID: PMC8599649 DOI: 10.1177/07487304211051841] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
False negative tests for SARS-CoV-2 are common and have important public health and medical implications. We tested the hypothesis of diurnal variation in viral shedding by assessing the proportion of positive versus negative SARS-CoV-2 reverse transcription polymerase chain reaction (RT-PCR) tests and cycle time (Ct) values among positive samples by the time of day. Among 86,342 clinical tests performed among symptomatic and asymptomatic patients in a regional health care network in the southeastern United States from March to August 2020, we found evidence for diurnal variation in the proportion of positive SARS-CoV-2 tests, with a peak around 1400 h and 1.7-fold variation over the day after adjustment for age, sex, race, testing location, month, and day of week and lower Ct values during the day for positive samples. These findings have important implications for public health testing and vaccination strategies.
Collapse
Affiliation(s)
- Candace D McNaughton
- Department of Emergency Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA.,Geriatric Research Education Clinical Center, Tennessee Valley Healthcare System VA Medical Center, Nashville, Tennessee, USA.,Institute for Clinical Evaluative Sciences, Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON, Canada
| | - Nicholas M Adams
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, USA
| | | | - Michael J Ward
- Department of Emergency Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA.,Geriatric Research Education Clinical Center, Tennessee Valley Healthcare System VA Medical Center, Nashville, Tennessee, USA
| | - Jonathan E Schmitz
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Thomas A Lasko
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, Tennessee, USA.,Department of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, Tennessee, USA
| |
Collapse
|
24
|
Zhuang X, Tsukuda S, Wrensch F, Wing PA, Schilling M, Harris JM, Borrmann H, Morgan SB, Cane JL, Mailly L, Thakur N, Conceicao C, Sanghani H, Heydmann L, Bach C, Ashton A, Walsh S, Tan TK, Schimanski L, Huang KYA, Schuster C, Watashi K, Hinks TS, Jagannath A, Vausdevan SR, Bailey D, Baumert TF, McKeating JA. The circadian clock component BMAL1 regulates SARS-CoV-2 entry and replication in lung epithelial cells. iScience 2021; 24:103144. [PMID: 34545347 PMCID: PMC8443536 DOI: 10.1016/j.isci.2021.103144] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 09/11/2021] [Accepted: 09/13/2021] [Indexed: 12/15/2022] Open
Abstract
The coronavirus disease 2019 pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) coronavirus, is a global health issue with unprecedented challenges for public health. SARS-CoV-2 primarily infects cells of the respiratory tract via spike glycoprotein binding to angiotensin-converting enzyme (ACE2). Circadian rhythms coordinate an organism's response to its environment and can regulate host susceptibility to virus infection. We demonstrate that silencing the circadian regulator Bmal1 or treating lung epithelial cells with the REV-ERB agonist SR9009 reduces ACE2 expression and inhibits SARS-CoV-2 entry and replication. Importantly, treating infected cells with SR9009 limits SARS-CoV-2 replication and secretion of infectious particles, showing that post-entry steps in the viral life cycle are influenced by the circadian system. Transcriptome analysis revealed that Bmal1 silencing induced interferon-stimulated gene transcripts in Calu-3 lung epithelial cells, providing a mechanism for the circadian pathway to limit SARS-CoV-2 infection. Our study highlights alternative approaches to understand and improve therapeutic targeting of SARS-CoV-2.
Collapse
Affiliation(s)
- Xiaodong Zhuang
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Senko Tsukuda
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Florian Wrensch
- Université de Strasbourg, Strasbourg, France and INSERM, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, Strasbourg, France
| | - Peter A.C. Wing
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Chinese Academy of Medical Sciences (CAMS) Oxford Institute (COI), University of Oxford, Oxford, UK
| | - Mirjam Schilling
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - James M. Harris
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Helene Borrmann
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Sophie B. Morgan
- Respiratory Medicine Unit and National Institute for Health Research Oxford Biomedical Research Centre, Nuffield Department of Medicine, Experimental Medicine, University of Oxford, UK
| | - Jennifer L. Cane
- Respiratory Medicine Unit and National Institute for Health Research Oxford Biomedical Research Centre, Nuffield Department of Medicine, Experimental Medicine, University of Oxford, UK
| | - Laurent Mailly
- Université de Strasbourg, Strasbourg, France and INSERM, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, Strasbourg, France
| | - Nazia Thakur
- The Pirbright Institute, Ash Road, Pirbright, Woking, Surrey, UK
| | - Carina Conceicao
- The Pirbright Institute, Ash Road, Pirbright, Woking, Surrey, UK
| | - Harshmeena Sanghani
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Laura Heydmann
- Université de Strasbourg, Strasbourg, France and INSERM, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, Strasbourg, France
| | - Charlotte Bach
- Université de Strasbourg, Strasbourg, France and INSERM, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, Strasbourg, France
| | - Anna Ashton
- Department of Pharmacology, University of Oxford, Oxford, UK
| | - Steven Walsh
- Department of Pharmacology, University of Oxford, Oxford, UK
| | - Tiong Kit Tan
- MRC Human Immunology Unit, MRC Weatherall Institute, John Radcliffe Hospital, Oxford 17 OX3 9DS, UK
| | - Lisa Schimanski
- Chinese Academy of Medical Sciences (CAMS) Oxford Institute (COI), University of Oxford, Oxford, UK
- MRC Human Immunology Unit, MRC Weatherall Institute, John Radcliffe Hospital, Oxford 17 OX3 9DS, UK
| | - Kuan-Ying A. Huang
- Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University and Division of Pediatric Infectious Diseases, Department of Pediatrics, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Catherine Schuster
- Université de Strasbourg, Strasbourg, France and INSERM, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, Strasbourg, France
| | - Koichi Watashi
- Department of Virology II, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
- Department of Applied Biological Science, Tokyo University of Science, Noda 278-8510, Japan
| | - Timothy S.C. Hinks
- Respiratory Medicine Unit and National Institute for Health Research Oxford Biomedical Research Centre, Nuffield Department of Medicine, Experimental Medicine, University of Oxford, UK
| | - Aarti Jagannath
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | | | - Dalan Bailey
- The Pirbright Institute, Ash Road, Pirbright, Woking, Surrey, UK
| | - Thomas F. Baumert
- Université de Strasbourg, Strasbourg, France and INSERM, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, Strasbourg, France
- Pole Hépato-digestif, IHU, Hopitaux Universitaires de Strasbourg, Strasbourg, France
| | - Jane A. McKeating
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Chinese Academy of Medical Sciences (CAMS) Oxford Institute (COI), University of Oxford, Oxford, UK
| |
Collapse
|
25
|
Herz RS, Herzog ED, Merrow M, Noya SB. The Circadian Clock, the Brain, and COVID-19: The Cases of Olfaction and the Timing of Sleep. J Biol Rhythms 2021; 36:423-431. [PMID: 34396817 PMCID: PMC8442129 DOI: 10.1177/07487304211031206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Daily rhythms of behavior and neurophysiology are integral to the
circadian clocks of all animals. Examples of circadian clock
regulation in the human brain include daily rhythms in sleep-wake,
cognitive function, olfactory sensitivity, and risk for ischemic
stroke, all of which overlap with symptoms displayed by many COVID-19
patients. Motivated by the relatively unexplored, yet pervasive,
overlap between circadian functions and COVID-19 neurological
symptoms, this perspective piece uses daily variations in the sense of
smell and the timing of sleep and wakefulness as illustrative
examples. We propose that time-stamping clinical data and testing may
expand and refine diagnosis and treatment of COVID-19.
Collapse
Affiliation(s)
- Rachel S Herz
- Department of Psychiatry and Human Behavior, Warren Alpert Medical School, Brown University, Providence, Rhode Island, USA.,Department of Psychology and Neuroscience, Boston College, Chestnut Hill, Massachusetts, USA
| | - Erik D Herzog
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Martha Merrow
- Institute of Medical Psychology, Faculty of Medicine, Ludwig Maximilian University of Munich, Munich, Germany
| | - Sara B Noya
- Institute of Pharmacology and Toxicology, University of Zürich, Zürich, Switzerland.,Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
26
|
Zhuang X, Tsukuda S, Wrensch F, Wing PA, Schilling M, Harris JM, Borrmann H, Morgan SB, Cane JL, Mailly L, Thakur N, Conceicao C, Sanghani H, Heydmann L, Bach C, Ashton A, Walsh S, Tan TK, Schimanski L, Huang KYA, Schuster C, Watashi K, Hinks TS, Jagannath A, Vausdevan SR, Bailey D, Baumert TF, McKeating JA. The circadian clock component BMAL1 regulates SARS-CoV-2 entry and replication in lung epithelial cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021:2021.03.20.436163. [PMID: 33758862 PMCID: PMC7987021 DOI: 10.1101/2021.03.20.436163] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The COVID-19 pandemic, caused by SARS-CoV-2 coronavirus, is a global health issue with unprecedented challenges for public health. SARS-CoV-2 primarily infects cells of the respiratory tract, via Spike glycoprotein binding angiotensin-converting enzyme (ACE2). Circadian rhythms coordinate an organism’s response to its environment and can regulate host susceptibility to virus infection. We demonstrate a circadian regulation of ACE2 in lung epithelial cells and show that silencing BMAL1 or treatment with a synthetic REV-ERB agonist SR9009 reduces ACE2 expression and inhibits SARS-CoV-2 entry. Treating infected cells with SR9009 limits viral replication and secretion of infectious particles, showing that post-entry steps in the viral life cycle are influenced by the circadian system. Transcriptome analysis revealed that Bmal1 silencing induced a wide spectrum of interferon stimulated genes in Calu-3 lung epithelial cells, providing a mechanism for the circadian pathway to dampen SARS-CoV-2 infection. Our study suggests new approaches to understand and improve therapeutic targeting of SARS-CoV-2.
Collapse
|
27
|
Oved S, Mofaz M, Lan A, Einat H, Kronfeld-Schor N, Yamin D, Shmueli E. Differential effects of COVID-19 lockdowns on well-being: interaction between age, gender and chronotype. J R Soc Interface 2021; 18:20210078. [PMID: 34062107 PMCID: PMC8169206 DOI: 10.1098/rsif.2021.0078] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 05/12/2021] [Indexed: 01/02/2023] Open
Abstract
The unprecedented restrictions imposed due to the COVID-19 pandemic altered our daily habits and severely affected our well-being and physiology. The effect of these changes is yet to be fully understood. Here, we analysed highly detailed data on 169 participants for two to six months, before and during the second COVID-19 lockdown in Israel. We extracted 12 well-being indicators from sensory data of smartwatches and from self-reported questionnaires, filled daily using a designated mobile application. We found that, in general, lockdowns resulted in significant changes in mood, sleep duration, sport duration, social encounters, resting heart rate and number of steps. Examining subpopulations, we found that younger participants (aged 20-40 years) suffered from a greater decline in mood and number of steps than older participants (aged 60-80 years). Likewise, women suffered from a higher increase in stress and reduction in social encounters than men. Younger early chronotypes did not increase their sleep duration and exhibited the highest drop in mood. Our findings underscore that while lockdowns severely impacted our well-being and physiology in general, greater damage has been identified in certain subpopulations. Accordingly, special attention should be given to younger people, who are usually not in the focus of social support, and to women.
Collapse
Affiliation(s)
- Shay Oved
- Department of Industrial Engineering, Tel-Aviv University, Tel-Aviv, Israel
| | - Merav Mofaz
- Department of Industrial Engineering, Tel-Aviv University, Tel-Aviv, Israel
| | - Anat Lan
- School of Behavioral Sciences, The Academic College of Tel Aviv-Yafo, Tel-Aviv, Israel
| | - Haim Einat
- School of Behavioral Sciences, The Academic College of Tel Aviv-Yafo, Tel-Aviv, Israel
| | - Noga Kronfeld-Schor
- School of Zoology and Sagol School of Neuroscience, Tel-Aviv University, Tel-Aviv, Israel
| | - Dan Yamin
- Department of Industrial Engineering, Tel-Aviv University, Tel-Aviv, Israel
- Center for Combating Pandemics, Tel-Aviv University, Tel-Aviv, Israel
| | - Erez Shmueli
- Department of Industrial Engineering, Tel-Aviv University, Tel-Aviv, Israel
| |
Collapse
|
28
|
Costa R. Frontiers in Chronobiology: Endogenous Clocks at the Core of Signaling Pathways in Physiology. Front Physiol 2021; 12:684745. [PMID: 34093241 PMCID: PMC8173170 DOI: 10.3389/fphys.2021.684745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 04/14/2021] [Indexed: 11/29/2022] Open
Affiliation(s)
- Rodolfo Costa
- Department of Biology, University of Padova, Italian National Research Council (CNR) Institute of Neuroscience, Padova, Italy
| |
Collapse
|
29
|
Varella MAC, Luoto S, Soares RBDS, Valentova JV. COVID-19 Pandemic on Fire: Evolved Propensities for Nocturnal Activities as a Liability Against Epidemiological Control. Front Psychol 2021; 12:646711. [PMID: 33828510 PMCID: PMC8019933 DOI: 10.3389/fpsyg.2021.646711] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 02/19/2021] [Indexed: 12/19/2022] Open
Abstract
Humans have been using fire for hundreds of millennia, creating an ancestral expansion toward the nocturnal niche. The new adaptive challenges faced at night were recurrent enough to amplify existing psychological variation in our species. Night-time is dangerous and mysterious, so it selects for individuals with higher tendencies for paranoia, risk-taking, and sociability (because of security in numbers). During night-time, individuals are generally tired and show decreased self-control and increased impulsive behaviors. The lower visibility during night-time favors the partial concealment of identity and opens more opportunities for disinhibition of self-interested behaviors. Indeed, individuals with an evening-oriented chronotype are more paranoid, risk-taking, extraverted, impulsive, promiscuous, and have higher antisocial personality traits. However, under some circumstances, such as respiratory pandemics, the psychobehavioral traits favored by the nocturnal niche might be counter-productive, increasing contagion rates of a disease that can evade the behavioral immune system because its disease cues are often nonexistent or mild. The eveningness epidemiological liability hypothesis presented here suggests that during the COVID-19 pandemic, the evening-oriented psychobehavioral profile can have collectively harmful consequences: there is a clash of core tendencies between the nocturnal chronotype and the recent viral transmission-mitigating safety guidelines and rules. The pandemic safety protocols disrupt much normal social activity, particularly at night when making new social contacts is desired. The SARS-CoV-2 virus is contagious even in presymptomatic and asymptomatic individuals, which enables it to mostly evade our evolved contagious disease avoidance mechanisms. A growing body of research has indirectly shown that individual traits interfering with social distancing and anti-contagion measures are related to those of the nocturnal chronotype. Indeed, some of the social contexts that have been identified as superspreading events occur at night, such as in restaurants, bars, and nightclubs. Furthermore, nocturnal environmental conditions favor the survival of the SARS-CoV-2 virus much longer than daytime conditions. We compare the eveningness epidemiological liability hypothesis with other factors related to non-compliance with pandemic safety protocols, namely sex, age, and life history. Although there is not yet a direct link between the nocturnal chronotype and non-compliance with pandemic safety protocols, security measures and future empirical research should take this crucial evolutionary mismatch and adaptive metaproblem into account, and focus on how to avoid nocturnal individuals becoming superspreaders, offering secure alternatives for nocturnal social activities.
Collapse
Affiliation(s)
| | - Severi Luoto
- English, Drama and Writing Studies, University of Auckland, Auckland, New Zealand
- School of Psychology, University of Auckland, Auckland, New Zealand
| | - Rafael Bento da Silva Soares
- Center for Science Communication and Education Studies, Department of Genetics, Evolution, Microbiology, and Immunology, Institute of Biology, University of Campinas, Campinas, Brazil
| | | |
Collapse
|
30
|
Haspel J, Kim M, Zee P, Schwarzmeier T, Montagnese S, Panda S, Albani A, Merrow M. A Timely Call to Arms: COVID-19, the Circadian Clock, and Critical Care. J Biol Rhythms 2021; 36:55-70. [PMID: 33573430 PMCID: PMC7882674 DOI: 10.1177/0748730421992587] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
We currently find ourselves in the midst of a global coronavirus disease 2019 (COVID-19) pandemic, caused by the highly infectious novel coronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Here, we discuss aspects of SARS-CoV-2 biology and pathology and how these might interact with the circadian clock of the host. We further focus on the severe manifestation of the illness, leading to hospitalization in an intensive care unit. The most common severe complications of COVID-19 relate to clock-regulated human physiology. We speculate on how the pandemic might be used to gain insights on the circadian clock but, more importantly, on how knowledge of the circadian clock might be used to mitigate the disease expression and the clinical course of COVID-19.
Collapse
Affiliation(s)
- Jeffrey Haspel
- Division of Pulmonary and Critical Care Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Minjee Kim
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Phyllis Zee
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Tanja Schwarzmeier
- Institute of Medical Psychology, Faculty of Medicine, LMU Munich, Munich, Germany
| | | | | | - Adriana Albani
- Institute of Medical Psychology, Faculty of Medicine, LMU Munich, Munich, Germany
- Department of Medicine IV, LMU Munich, Munich, Germany
| | - Martha Merrow
- Institute of Medical Psychology, Faculty of Medicine, LMU Munich, Munich, Germany
| |
Collapse
|