1
|
Ruttorf M, Filip J, Schaible T, Weis M, Zöllner F. White Matter Integrity Differences in 2-Year-Old Children Treated With ECMO: A Diffusion-Weighted Imaging Study. Eur J Neurosci 2025; 61:e70026. [PMID: 39963013 PMCID: PMC11833286 DOI: 10.1111/ejn.70026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 01/29/2025] [Accepted: 02/04/2025] [Indexed: 02/21/2025]
Abstract
School-aged and adolescent survivors of neonatal extracorporeal membrane oxygenation (ECMO) treatment still suffer from neurodevelopmental delays such as verbal, visuo-spatial and working memory problems, motor dysfunction and sensorineural hearing loss, respectively, later in life, which is well-documented by neuropsychological testing within follow-up programs. In this study, we demonstrate that diffusion-weighted imaging (DWI) in 2-year-old survivors of neonatal ECMO treatment reveals white matter (WM) alterations in brain regions related to neurodevelopmental outcome seen later in life. From the DWI data of 56 children, fractional anisotropy (FA), first fibre partial volume fraction estimate (F1), radial diffusivity (RD) and mean diffusivity (MD) are calculated and compared using tract-based spatial statistics adapted to a paediatric brain atlas. Significant differences in FA, F1, RD and MD between the no-ECMO and ECMO groups are seen in major WM tracts. Additionally, we examine individual diffusion measures by looking at 50 regions supplied with the paediatric brain atlas. We find the following regions to have significantly different means in the no-ECMO compared with the ECMO group matching reports of neuropsychological delays found in behavioural tests: left anterior corona radiata, left anterior limb of internal capsule, left anterior commissure, left and right corpus callosum (genu, body and splenium), left and right crus of fornix and left tapetum. Analysing diffusion measures at an early stage of life serves as a good tool to detect structural WM changes in survivors of neonatal ECMO treatment. Compared with neuropsychological testing, DWI does not depend on the child's active participation.
Collapse
Affiliation(s)
- Michaela Ruttorf
- Computer Assisted Clinical Medicine, Medical Faculty MannheimHeidelberg UniversityMannheimGermany
- Mannheim Institute for Intelligent Systems in Medicine, Medical Faculty MannheimHeidelberg UniversityMannheimGermany
| | - Julia Filip
- Computer Assisted Clinical Medicine, Medical Faculty MannheimHeidelberg UniversityMannheimGermany
- Mannheim Institute for Intelligent Systems in Medicine, Medical Faculty MannheimHeidelberg UniversityMannheimGermany
| | - Thomas Schaible
- Department of NeonatologyUniversity Medical Centre MannheimMannheimGermany
| | - Meike Weis
- Department of Radiology and Nuclear Medicine, University Medical Centre Mannheim, Medical Faculty MannheimHeidelberg UniversityMannheimGermany
| | - Frank G. Zöllner
- Computer Assisted Clinical Medicine, Medical Faculty MannheimHeidelberg UniversityMannheimGermany
- Mannheim Institute for Intelligent Systems in Medicine, Medical Faculty MannheimHeidelberg UniversityMannheimGermany
| |
Collapse
|
2
|
Xiong Q, Li X, Xia L, Yao Z, Shi X, Dong Z. Dihydroartemisinin attenuates hypoxic-ischemic brain damage in neonatal rats by inhibiting oxidative stress. Mol Brain 2022; 15:36. [PMID: 35484595 PMCID: PMC9052669 DOI: 10.1186/s13041-022-00921-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 04/13/2022] [Indexed: 02/08/2023] Open
Abstract
Neonatal hypoxic-ischemic encephalopathy (HIE) induced by perinatal asphyxia is a major cause of neurological disability among infants. Dihydroartemisinin (DHA), derived from artemisinin, well known as an anti-malarial medicine, was proved to be able to inhibit oxidative stress and inflammation. However, whether those functions of DHA play roles in hypoxic-ischemic brain damage (HIBD), an animal model of HIE in patient which also been observed to have oxidative stress and inflammation, is unknown. In this study, we demonstrated that the DHA treatment on newborn rats significantly relieved the neuron loss and motor and cognitive impairment caused by HIBD. One of the underlying mechanisms is that DHA enhanced the anti-oxidant capacity of HIBD rats by up-regulating the total antioxidant capacity (T-AOC), gluathione reductase (GR) and catalase (CAT) while down regulating the pro-oxidative substances including hydrogen peroxide (H2O2), total nitric oxide synthase (T-NOS) and inducible nitric oxide synthase (iNOS). Thus, our study illustrated that DHA could alleviate the damage of brains and improve the cognitive and motor function of HIBD rats by inhibiting oxidative stress, provided an opportunity to interrogate potential therapeutics for affected HIE patients.
Collapse
Affiliation(s)
- Qian Xiong
- Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Xiaohuan Li
- Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Lei Xia
- Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Zhengyu Yao
- Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Xiuyu Shi
- Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China.
| | - Zhifang Dong
- Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China.
| |
Collapse
|
3
|
Mikloska KV, Zrini ZA, Bernier NJ. Severe hypoxia exposure inhibits larval brain development but does not affect the capacity to mount a cortisol stress response in zebrafish. J Exp Biol 2021; 225:274120. [PMID: 34931659 DOI: 10.1242/jeb.243335] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 12/14/2021] [Indexed: 11/20/2022]
Abstract
Fish nursery habitats are increasingly hypoxic and the brain is recognized as highly hypoxia-sensitive, yet there is a lack of information on the effects of hypoxia on the development and function of the larval fish brain. Here, we tested the hypothesis that by inhibiting brain development, larval exposure to severe hypoxia has persistent functional effects on the cortisol stress response in zebrafish (Danio rerio). Exposing 5 days post-fertilization (dpf) larvae to 10% dissolved O2 (DO) for 16 h only marginally reduced survival, but it decreased forebrain neural proliferation by 55%, and reduced the expression of neurod1, gfap, and mbpa, markers of determined neurons, glia, and oligodendrocytes, respectively. The 5 dpf hypoxic exposure also elicited transient increases in whole body cortisol and in crf, uts1, and hsd20b2 expression, key regulators of the endocrine stress response. Hypoxia exposure at 5 dpf also inhibited the cortisol stress response to hypoxia in 10 dpf larvae and increased hypoxia tolerance. However, 10% DO exposure at 5 dpf for 16h did not affect the cortisol stress response to a novel stressor in 10 dpf larvae or the cortisol stress response to hypoxia in adult fish. Therefore, while larval exposure to severe hypoxia can inhibit brain development, it also increases hypoxia tolerance. These effects may transiently reduce the impact of hypoxia on the cortisol stress response but not its functional capacity to respond to novel stressors. We conclude that the larval cortisol stress response in zebrafish has a high capacity to cope with severe hypoxia-induced neurogenic impairment.
Collapse
Affiliation(s)
- Kristina V Mikloska
- Department of Integrative Biology, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Zoe A Zrini
- Department of Integrative Biology, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Nicholas J Bernier
- Department of Integrative Biology, University of Guelph, Guelph, ON, N1G 2W1, Canada
| |
Collapse
|
4
|
Gascoigne DA, Drobyshevsky A, Aksenov DP. The Contribution of Dysfunctional Chloride Channels to Neurovascular Deficiency and Neurodegeneration. Front Pharmacol 2021; 12:754743. [PMID: 34671264 PMCID: PMC8520995 DOI: 10.3389/fphar.2021.754743] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 09/21/2021] [Indexed: 01/11/2023] Open
Affiliation(s)
- David A. Gascoigne
- Department of Radiology, NorthShore University HealthSystem, Evanston, IL, United States
| | - Alexander Drobyshevsky
- Department of Pediatrics, NorthShore University HealthSystem, Evanston, IL, United States
| | - Daniil P. Aksenov
- Department of Radiology, NorthShore University HealthSystem, Evanston, IL, United States,Department of Anesthesiology, NorthShore University HealthSystem, Evanston, IL, United States,*Correspondence: Daniil P. Aksenov,
| |
Collapse
|
5
|
Tetorou K, Sisa C, Iqbal A, Dhillon K, Hristova M. Current Therapies for Neonatal Hypoxic-Ischaemic and Infection-Sensitised Hypoxic-Ischaemic Brain Damage. Front Synaptic Neurosci 2021; 13:709301. [PMID: 34504417 PMCID: PMC8421799 DOI: 10.3389/fnsyn.2021.709301] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 07/19/2021] [Indexed: 12/15/2022] Open
Abstract
Neonatal hypoxic-ischaemic brain damage is a leading cause of child mortality and morbidity, including cerebral palsy, epilepsy, and cognitive disabilities. The majority of neonatal hypoxic-ischaemic cases arise as a result of impaired cerebral perfusion to the foetus attributed to uterine, placental, or umbilical cord compromise prior to or during delivery. Bacterial infection is a factor contributing to the damage and is recorded in more than half of preterm births. Exposure to infection exacerbates neuronal hypoxic-ischaemic damage thus leading to a phenomenon called infection-sensitised hypoxic-ischaemic brain injury. Models of neonatal hypoxia-ischaemia (HI) have been developed in different animals. Both human and animal studies show that the developmental stage and the severity of the HI insult affect the selective regional vulnerability of the brain to damage, as well as the subsequent clinical manifestations. Therapeutic hypothermia (TH) is the only clinically approved treatment for neonatal HI. However, the number of HI infants needed to treat with TH for one to be saved from death or disability at age of 18-22 months, is approximately 6-7, which highlights the need for additional or alternative treatments to replace TH or increase its efficiency. In this review we discuss the mechanisms of HI injury to the immature brain and the new experimental treatments studied for neonatal HI and infection-sensitised neonatal HI.
Collapse
Affiliation(s)
| | | | | | | | - Mariya Hristova
- Perinatal Brain Repair Group, Department of Maternal and Fetal Medicine, UCL Institute for Women’s Health, London, United Kingdom
| |
Collapse
|
6
|
Zhang L, Wang H, Liu Y, Wang L, Pan W, Yuan B. Morroniside protects HT-22 cells against oxygen-glucose deprivation/reperfusion through activating the Nrf2/HO-1 signaling pathway. J Recept Signal Transduct Res 2020; 42:9-15. [PMID: 33100110 DOI: 10.1080/10799893.2020.1837872] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Neonatal hypoxic-ischemic encephalopathy (HIE) is a devastating condition that affects neurodevelopment and results in brain injury in infants. Morroniside (MOR), a natural secoiridoid glycoside, has been found to possess neuroprotective effect. However, the effects of MOR on neonatal HIE are unclear. An in vitro HIE model was established in murine hippocampal neurons HT-22 cells using oxygen-glucose deprivation/reoxygenation (OGD/R) stimulation. Our results showed that MOR improved OGD/R-caused cell viability reduction in HT-22 cells. MOR suppressed the production of reactive oxygen species (ROS) and malondialdehyde (MDA) in OGD/R-induced HT-22 cells in a dose-dependent manner. The activities of superoxide dismutase (SOD) and glutathione peroxidase (GPX) were significantly elevated by MOR. Moreover, MOR treatment caused a significant increase in bcl-2 expression, and obvious decreases in the expression levels of bax, cleaved caspase-3, and cleaved caspase-9 expression. Furthermore, MOR significantly upregulated the expression levels of nuclear Nrf2 and HO-1 in OGD/R-treated HT-22 cells. Additionally, knockdown of Nrf2 or HO-1 abrogated the effects of MOR on OGD/R-induced oxidative stress and apoptosis in HT-22 cells. In conclusion, these findings suggested that MOR protects HT-22 cells against OGD/R via regulating the Nrf2/HO-1 signaling pathway.
Collapse
Affiliation(s)
- Lan Zhang
- Department of Neonatology, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Huiping Wang
- Department of Neonatology, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yan Liu
- Department of Neonatology, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Li Wang
- Department of Neonatology, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Weikang Pan
- Pediatric Surgery, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Bo Yuan
- Department of General Surgery, Xi'an Central Hospital, Xi'an, China
| |
Collapse
|
7
|
Zhang X, Peng K, Zhang X. The Function of the NMDA Receptor in Hypoxic-Ischemic Encephalopathy. Front Neurosci 2020; 14:567665. [PMID: 33117117 PMCID: PMC7573650 DOI: 10.3389/fnins.2020.567665] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 08/28/2020] [Indexed: 12/17/2022] Open
Abstract
Hypoxic-ischemic encephalopathy (HIE) is one of the main forms of neonatal brain injury which could lead to neonatal disability or even cause neonatal death. Therefore, HIE strongly affects the health of newborns and brings heavy burden to the family and society. It has been well studied that N-methyl-D-aspartate (NMDA) receptors are involved in the excitotoxicity induced by hypoxia ischemia in adult brain. Recently, it has been shown that the NMDA receptor also plays important roles in HIE. In the present review, we made a summary of the molecular mechanism of NMDA receptor in the pathological process of HIE, focusing on the distinct role of GluN2A- and GluN2B-containing NMDA receptor subtypes and aiming to provide some insights into the clinical treatment and drug development of HIE.
Collapse
|
8
|
Ismail FY, Ljubisavljevic MR, Johnston MV. A conceptual framework for plasticity in the developing brain. HANDBOOK OF CLINICAL NEUROLOGY 2020; 173:57-66. [PMID: 32958193 DOI: 10.1016/b978-0-444-64150-2.00007-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
In this chapter, we highlight the various definitions of early brain plasticity commonly used in the scientific literature. We then present a conceptual framework of early brain plasticity that focuses on plasticity at the level of the synapse (synaptic plasticity) and the level of the network (connectivity). The proposed framework is organized around three main domains through which current theories and principles of early brain plasticity can be integrated: (1) the mechanisms of plasticity and constraints at the synaptic level and network connectivity, (2) the importance of temporal considerations related to the development of the immature brain, and (3) the functions early brain plasticity serve. We then apply this framework to discuss some clinical disorders caused by and/or associated with impaired plasticity mechanisms. We propose that a careful examination of the relationship between mechanisms, constraints, and functions of early brain plasticity in health and disease may provide an integrative understanding of the current theories and principles generated by experimental and observational studies.
Collapse
Affiliation(s)
- Fatima Y Ismail
- Department of Pediatrics, United Arab Emirates University, Al-Ain, United Arab Emirates; Department of Neurology (adjunct), Johns Hopkins School of Medicine, Baltimore, MD, United States.
| | | | - Michael V Johnston
- Department of Neurology and Developmental Medicine, Kennedy Krieger Institute, Baltimore, MD, United States
| |
Collapse
|
9
|
Rocha-Ferreira E, Sisa C, Bright S, Fautz T, Harris M, Contreras Riquelme I, Agwu C, Kurulday T, Mistry B, Hill D, Lange S, Hristova M. Curcumin: Novel Treatment in Neonatal Hypoxic-Ischemic Brain Injury. Front Physiol 2019; 10:1351. [PMID: 31798458 PMCID: PMC6863777 DOI: 10.3389/fphys.2019.01351] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Accepted: 10/10/2019] [Indexed: 12/20/2022] Open
Abstract
Hypoxic-ischemic encephalopathy (HIE) is a major cause of mortality and morbidity in neonates, with an estimated global incidence of 3/1,000 live births. HIE brain damage is associated with an inflammatory response and oxidative stress, resulting in the activation of cell death pathways. At present, therapeutic hypothermia is the only clinically approved treatment available for HIE. This approach, however, is only partially effective. Therefore, there is an unmet clinical need for the development of novel therapeutic interventions for the treatment of HIE. Curcumin is an antioxidant reactive oxygen species scavenger, with reported anti-tumor and anti-inflammatory activity. Curcumin has been shown to attenuate mitochondrial dysfunction, stabilize the cell membrane, stimulate proliferation, and reduce injury severity in adult models of spinal cord injury, cancer, and cardiovascular disease. The role of curcumin in neonatal HIE has not been widely studied due to its low bioavailability and limited aqueous solubility. The aim of this study was to investigate the effect of curcumin treatment in neonatal HIE, including time of administration and dose-dependent effects. Our results indicate that curcumin administration prior to HIE in neonatal mice elevated cell and tissue loss, as well as glial activation compared to HI alone. However, immediate post-treatment with curcumin was significantly neuroprotective, reducing grey and white matter tissue loss, TUNEL+ cell death, microglia activation, reactive astrogliosis, and iNOS oxidative stress when compared to vehicle-treated littermates. This effect was dose-dependent, with 200 μg/g body weight as the optimal dose-regimen, and was maintained when curcumin treatment was delayed by 60 or 120 min post-HI. Cell proliferation measurements showed no changes between curcumin and HI alone, suggesting that the protective effects of curcumin on the neonatal brain following HI are most likely due to curcumin’s anti-inflammatory and antioxidant properties, as seen in the reduced glial and iNOS activity. In conclusion, this study suggests curcumin as a potent neuroprotective agent with potential for the treatment of HIE. The delayed application of curcumin further increases its clinical relevance.
Collapse
Affiliation(s)
- Eridan Rocha-Ferreira
- Department of Maternal and Fetal Medicine, Perinatal Brain Repair Group, UCL Institute for Women's Health, London, United Kingdom.,Department of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Claudia Sisa
- Department of Maternal and Fetal Medicine, Perinatal Brain Repair Group, UCL Institute for Women's Health, London, United Kingdom
| | - Sarah Bright
- Department of Maternal and Fetal Medicine, Perinatal Brain Repair Group, UCL Institute for Women's Health, London, United Kingdom
| | - Tessa Fautz
- Department of Maternal and Fetal Medicine, Perinatal Brain Repair Group, UCL Institute for Women's Health, London, United Kingdom
| | - Michael Harris
- Department of Maternal and Fetal Medicine, Perinatal Brain Repair Group, UCL Institute for Women's Health, London, United Kingdom
| | - Ingrid Contreras Riquelme
- Department of Maternal and Fetal Medicine, Perinatal Brain Repair Group, UCL Institute for Women's Health, London, United Kingdom
| | - Chinedu Agwu
- Department of Maternal and Fetal Medicine, Perinatal Brain Repair Group, UCL Institute for Women's Health, London, United Kingdom
| | - Tugce Kurulday
- Department of Maternal and Fetal Medicine, Perinatal Brain Repair Group, UCL Institute for Women's Health, London, United Kingdom.,Department of Molecular Biology and Genetics, Izmir Institute of Technology, İzmir, Turkey
| | - Beenaben Mistry
- Department of Maternal and Fetal Medicine, Perinatal Brain Repair Group, UCL Institute for Women's Health, London, United Kingdom
| | - Daniel Hill
- Department of Maternal and Fetal Medicine, Perinatal Brain Repair Group, UCL Institute for Women's Health, London, United Kingdom.,Department of Visual Neuroscience, Glaucoma and Retinal Neurodegeneration Group, UCL Institute of Ophthalmology, London, United Kingdom
| | - Sigrun Lange
- School of Life Sciences, Tissue Architecture and Regeneration Research Group, University of Westminster, London, United Kingdom
| | - Mariya Hristova
- Department of Maternal and Fetal Medicine, Perinatal Brain Repair Group, UCL Institute for Women's Health, London, United Kingdom
| |
Collapse
|
10
|
Sisa C, Kholia S, Naylor J, Herrera Sanchez MB, Bruno S, Deregibus MC, Camussi G, Inal JM, Lange S, Hristova M. Mesenchymal Stromal Cell Derived Extracellular Vesicles Reduce Hypoxia-Ischaemia Induced Perinatal Brain Injury. Front Physiol 2019; 10:282. [PMID: 30941062 PMCID: PMC6433879 DOI: 10.3389/fphys.2019.00282] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 03/04/2019] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Neonatal hypoxic-ischemic (HI) insult is a leading cause of disability and death in newborns, with therapeutic hypothermia being the only currently available clinical intervention. Thus there is a great need for adjunct and novel treatments for enhanced or alternative post-HI neuroprotection. Extracellular vesicles (EVs) derived from mesenchymal stromal/stem cells (MSCs) have recently been shown to exhibit regenerative effects in various injury models. Here we present findings showing neuroprotective effects of MSC-derived EVs in the Rice-Vannucci model of severe HI-induced neonatal brain insult. METHODS Mesenchymal stromal/stem cell-derived EVs were applied intranasally immediately post HI-insult and behavioral outcomes were observed 48 h following MSC-EV treatment, as assessed by negative geotaxis. Brains were thereafter excised and assessed for changes in glial responses, cell death, and neuronal loss as markers of damage at 48 h post HI-insult. RESULTS Brains of the MSC-EV treated group showed a significant decrease in microglial activation, cell death, and percentage tissue volume loss in multiple brain regions, compared to the control-treated groups. Furthermore, negative geotaxis test showed improved behavioral outcomes at 48 h following MSC-EV treatment. CONCLUSION Our findings highlight the clinical potential of using MSC-derived EVs following neonatal hypoxia-ischaemia.
Collapse
Affiliation(s)
- Claudia Sisa
- Perinatal Brain Protection and Repair Group, EGA Institute for Women’s Health, University College London, London, United Kingdom
| | - Sharad Kholia
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Jordan Naylor
- Perinatal Brain Protection and Repair Group, EGA Institute for Women’s Health, University College London, London, United Kingdom
| | | | - Stefania Bruno
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Maria Chiara Deregibus
- 2i3T, Incubator and Technology Transfer, Molecular Biotechnology Center, University of Turin, Turin, Italy
| | - Giovanni Camussi
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Jameel M. Inal
- Extracellular Vesicle Research Unit and Bioscience Research Group, School of Life and Medical Sciences, University of Hertfordshire, Hatfield, United Kingdom
| | - Sigrun Lange
- Tissue Architecture and Regeneration Research Group, School of Life Sciences, University of Westminster, London, United Kingdom
| | - Mariya Hristova
- Perinatal Brain Protection and Repair Group, EGA Institute for Women’s Health, University College London, London, United Kingdom
| |
Collapse
|
11
|
Moss HG, Brown TR, Wiest DB, Jenkins DD. N-Acetylcysteine rapidly replenishes central nervous system glutathione measured via magnetic resonance spectroscopy in human neonates with hypoxic-ischemic encephalopathy. J Cereb Blood Flow Metab 2018; 38:950-958. [PMID: 29561203 PMCID: PMC5999009 DOI: 10.1177/0271678x18765828] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 02/19/2018] [Indexed: 01/02/2023]
Abstract
Persistent oxidative stress depletes reduced glutathione (GSH), an intracellular antioxidant and an important determinant of CNS injury after hypoxia ischemia. We used standard, short echo time Stimulated Echo Acquisition Mode (STEAM) to detect GSH by magnetic resonance spectroscopy (MRS) in 24 term neonates with hypoxic-ischemic encephalopathy (HIE), on day of life 5-6, after rewarming from therapeutic hypothermia. MRS demonstrated reliable, consistent GSH of 1·64 ± 0·20 mM in the basal ganglia immediately before intravenous infusion of N-acetylcysteine. N-acetylcysteine resulted in a rapid and significant GSH increase to 1·93 ± 0.23 mM within 12-30 min after completion of infusion ( n = 21, p < 0.0001, paired t-test), compared with those who did not receive N-acetylcysteine ( n = 3, GSH = 1.66 ± 0.06 mM and 1.64 ± 0.09 mM). In one perinatal stroke patient, GSH in the diffusion-restricted stroke area was 1.0 mM, indicating significant compromise of intracellular redox potential, which also improved after N-acetylcysteine. For comparison, GSH in healthy term neonates has been reported at 2.5 ± 0.9 mM in the thalamus. This is the first report to show persistent oxidative stress reflected in GSH during the subacute phase in neonates with HIE and rapid response to N-acetylcysteine, using a short echo MRS sequence that is available on all clinical scanners without spectral editing.
Collapse
MESH Headings
- Acetylcysteine/administration & dosage
- Adult
- Female
- Glutathione/metabolism
- Humans
- Hypothermia, Induced
- Hypoxia-Ischemia, Brain/diagnosis
- Hypoxia-Ischemia, Brain/metabolism
- Hypoxia-Ischemia, Brain/therapy
- Infant
- Infant, Newborn
- Infant, Newborn, Diseases/diagnosis
- Infant, Newborn, Diseases/metabolism
- Infant, Newborn, Diseases/therapy
- Magnetic Resonance Spectroscopy
- Male
- Oxidation-Reduction/drug effects
- Stroke/diagnosis
- Stroke/metabolism
- Stroke/therapy
Collapse
Affiliation(s)
- Hunter G Moss
- Department of Radiology, Medical University of South Carolina, Charleston, SC, USA
| | - Truman R Brown
- Department of Radiology, Medical University of South Carolina, Charleston, SC, USA
| | - Donald B Wiest
- Department of Pharmacy, Medical University of South Carolina, Charleston, SC, USA
| | - Dorothea D Jenkins
- Department of Pediatrics, Medical University of South Carolina, Charleston, SC, USA
| |
Collapse
|
12
|
Huang S, Turlova E, Li F, Bao MH, Szeto V, Wong R, Abussaud A, Wang H, Zhu S, Gao X, Mori Y, Feng ZP, Sun HS. Transient receptor potential melastatin 2 channels (TRPM2) mediate neonatal hypoxic-ischemic brain injury in mice. Exp Neurol 2017; 296:32-40. [PMID: 28668375 DOI: 10.1016/j.expneurol.2017.06.023] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 05/01/2017] [Accepted: 06/27/2017] [Indexed: 02/01/2023]
Abstract
Transient receptor potential melastatin 2 (TRPM2), a calcium-permeable non-selective cation channel, is reported to mediate brain damage following ischemic insults in adult mice. However, the role of TRPM2 channels in neonatal hypoxic-ischemic brain injury remains unknown. We hypothesize that TRPM2+/- and TRPM2-/- neonatal mice have reduced hypoxic-ischemic brain injury. To study the effect of TRPM2 on neonatal brain damage, we used 2,3,5-triphenyltetrazolium chloride (TTC) staining to assess the infarct volume and whole brain imaging to assess morphological changes in the brain. In addition, we also evaluated neurobehavioral outcomes for sensorimotor function 7days following hypoxic-ischemic brain injury. We report that the infarct volumes were significantly smaller and behavioral outcomes were improved in both TRPM2+/- and TRPM2-/- mice compared to that of wildtype mice. Next, we found that TRPM2-null mice showed reduced dephosphorylation of GSK-3β following hypoxic ischemic injury unlike sham mice. TRPM2+/- and TRPM2-/- mice also had reduced activation of astrocytes and microglia in ipsilateral hemispheres, compared to wildtype mice. These findings suggest that TRPM2 channels play an essential role in mediating hypoxic-ischemic brain injury in neonatal mice. Genetically eliminating TRPM2 channels can provide neuroprotection against hypoxic-ischemic brain injury and this effect is elicited in part through regulation of GSK-3β.
Collapse
Affiliation(s)
- Sammen Huang
- Department of Surgery, Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada; Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Ekaterina Turlova
- Department of Surgery, Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada; Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Feiya Li
- Department of Surgery, Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada; Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Mei-Hua Bao
- Department of Surgery, Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada; Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Vivian Szeto
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Raymond Wong
- Department of Surgery, Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada; Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Ahmed Abussaud
- Department of Surgery, Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Haitao Wang
- Department of Surgery, Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada; Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Shuzhen Zhu
- Department of Surgery, Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada; Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Xinzheng Gao
- Department of Surgery, Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada; Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Yasuo Mori
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura Campus, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Zhong-Ping Feng
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada.
| | - Hong-Shuo Sun
- Department of Surgery, Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada; Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada; Department of Pharmacology, Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada; Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada.
| |
Collapse
|
13
|
Ballester-Plané J, Schmidt R, Laporta-Hoyos O, Junqué C, Vázquez É, Delgado I, Zubiaurre-Elorza L, Macaya A, Póo P, Toro E, de Reus MA, van den Heuvel MP, Pueyo R. Whole-brain structural connectivity in dyskinetic cerebral palsy and its association with motor and cognitive function. Hum Brain Mapp 2017; 38:4594-4612. [PMID: 28608616 DOI: 10.1002/hbm.23686] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 06/01/2017] [Indexed: 12/31/2022] Open
Abstract
Dyskinetic cerebral palsy (CP) has long been associated with basal ganglia and thalamus lesions. Recent evidence further points at white matter (WM) damage. This study aims to identify altered WM pathways in dyskinetic CP from a standardized, connectome-based approach, and to assess structure-function relationship in WM pathways for clinical outcomes. Individual connectome maps of 25 subjects with dyskinetic CP and 24 healthy controls were obtained combining a structural parcellation scheme with whole-brain deterministic tractography. Graph theoretical metrics and the network-based statistic were applied to compare groups and to correlate WM state with motor and cognitive performance. Results showed a widespread reduction of WM volume in CP subjects compared to controls and a more localized decrease in degree (number of links per node) and fractional anisotropy (FA), comprising parieto-occipital regions and the hippocampus. However, supramarginal gyrus showed a significantly higher degree. At the network level, CP subjects showed a bilateral pathway with reduced FA, comprising sensorimotor, intraparietal and fronto-parietal connections. Gross and fine motor functions correlated with FA in a pathway comprising the sensorimotor system, but gross motor also correlated with prefrontal, temporal and occipital connections. Intelligence correlated with FA in a network with fronto-striatal and parieto-frontal connections, and visuoperception was related to right occipital connections. These findings demonstrate a disruption in structural brain connectivity in dyskinetic CP, revealing general involvement of posterior brain regions with relative preservation of prefrontal areas. We identified pathways in which WM integrity is related to clinical features, including but not limited to the sensorimotor system. Hum Brain Mapp 38:4594-4612, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Júlia Ballester-Plané
- Departament de Psicologia Clínica i Psicobiologia, Universitat de Barcelona, Barcelona, Spain.,Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain.,Institut de Recerca Pediàtrica Hospital Sant Joan de Déu, Barcelona, Spain
| | - Ruben Schmidt
- Department of Neurology, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Olga Laporta-Hoyos
- Departament de Psicologia Clínica i Psicobiologia, Universitat de Barcelona, Barcelona, Spain.,Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain.,Institut de Recerca Pediàtrica Hospital Sant Joan de Déu, Barcelona, Spain
| | - Carme Junqué
- Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain.,Departament de Medicina, Universitat de Barcelona, Barcelona, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Élida Vázquez
- Servei de Radiologia Pediàtrica, Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - Ignacio Delgado
- Servei de Radiologia Pediàtrica, Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - Leire Zubiaurre-Elorza
- Departamento de Fundamentos y Métodos de la Psicología, Facultad de Psicología y Educación, Universidad de Deusto, Bilbo-Bizkaia, Spain
| | - Alfons Macaya
- Grup de Recerca en Neurologia Pediàtrica, Vall d'Hebron Institut de Recerca, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Pilar Póo
- Servei de Neurologia, Hospital Universitari Sant Joan de Déu, Barcelona, Spain
| | - Esther Toro
- Servei de Rehabilitació i Medicina Física, Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - Marcel A de Reus
- Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Martijn P van den Heuvel
- Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Roser Pueyo
- Departament de Psicologia Clínica i Psicobiologia, Universitat de Barcelona, Barcelona, Spain.,Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain.,Institut de Recerca Pediàtrica Hospital Sant Joan de Déu, Barcelona, Spain
| |
Collapse
|
14
|
Ismail FY, Fatemi A, Johnston MV. Cerebral plasticity: Windows of opportunity in the developing brain. Eur J Paediatr Neurol 2017; 21:23-48. [PMID: 27567276 DOI: 10.1016/j.ejpn.2016.07.007] [Citation(s) in RCA: 303] [Impact Index Per Article: 37.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 07/06/2016] [Indexed: 12/31/2022]
Abstract
BACKGROUND Neuroplasticity refers to the inherently dynamic biological capacity of the central nervous system (CNS) to undergo maturation, change structurally and functionally in response to experience and to adapt following injury. This malleability is achieved by modulating subsets of genetic, molecular and cellular mechanisms that influence the dynamics of synaptic connections and neural circuitry formation culminating in gain or loss of behavior or function. Neuroplasticity in the healthy developing brain exhibits a heterochronus cortex-specific developmental profile and is heightened during "critical and sensitive periods" of pre and postnatal brain development that enable the construction and consolidation of experience-dependent structural and functional brain connections. PURPOSE In this review, our primary goal is to highlight the essential role of neuroplasticity in brain development, and to draw attention to the complex relationship between different levels of the developing nervous system that are subjected to plasticity in health and disease. Another goal of this review is to explore the relationship between plasticity responses of the developing brain and how they are influenced by critical and sensitive periods of brain development. Finally, we aim to motivate researchers in the pediatric neuromodulation field to build on the current knowledge of normal and abnormal neuroplasticity, especially synaptic plasticity, and their dependence on "critical or sensitive periods" of neural development to inform the design, timing and sequencing of neuromodulatory interventions in order to enhance and optimize their translational applications in childhood disorders of the brain. METHODS literature review. RESULTS We discuss in details five patterns of neuroplasticity expressed by the developing brain: 1) developmental plasticity which is further classified into normal and impaired developmental plasticity as seen in syndromic autism spectrum disorders, 2) adaptive (experience-dependent) plasticity following intense motor skill training, 3) reactive plasticity to pre and post natal CNS injury or sensory deprivation, 4) excessive plasticity (loss of homeostatic regulation) as seen in dystonia and refractory epilepsy, 6) and finally, plasticity as the brain's "Achilles tendon" which induces brain vulnerability under certain conditions such as hypoxic ischemic encephalopathy and epileptic encephalopathy syndromes. We then explore the unique feature of "time-sensitive heightened plasticity responses" in the developing brain in the in the context of neuromodulation. CONCLUSION The different patterns of neuroplasticity and the unique feature of heightened plasticity during critical and sensitive periods are important concepts for researchers and clinicians in the field of pediatric neurology and neurodevelopmental disabilities. These concepts need to be examined systematically in the context of pediatric neuromodulation. We propose that critical and sensitive periods of brain development in health and disease can create "windows of opportunity" for neuromodulatory interventions that are not commonly seen in adult brain and probably augment plasticity responses and improve clinical outcomes.
Collapse
Affiliation(s)
- Fatima Yousif Ismail
- Department of neurology and developmental medicine, The Kennedy Krieger Institute, Johns Hopkins Medical Institutions, MD, USA; Department of pediatrics, College of Medicine and Health Sciences, United Arab Emirates University, Al- Ain, UAE.
| | - Ali Fatemi
- Departments of Neurology and Pediatrics, The Kennedy Krieger Institute, and Johns Hopkins University School of Medicine, MD, USA
| | - Michael V Johnston
- Departments of Neurology and Pediatrics, The Kennedy Krieger Institute, and Johns Hopkins University School of Medicine, MD, USA
| |
Collapse
|
15
|
Plasticity in the Neonatal Brain following Hypoxic-Ischaemic Injury. Neural Plast 2016; 2016:4901014. [PMID: 27047695 PMCID: PMC4800097 DOI: 10.1155/2016/4901014] [Citation(s) in RCA: 122] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Revised: 01/12/2016] [Accepted: 02/07/2016] [Indexed: 12/03/2022] Open
Abstract
Hypoxic-ischaemic damage to the developing brain is a leading cause of child death, with high mortality and morbidity, including cerebral palsy, epilepsy, and cognitive disabilities. The developmental stage of the brain and the severity of the insult influence the selective regional vulnerability and the subsequent clinical manifestations. The increased susceptibility to hypoxia-ischaemia (HI) of periventricular white matter in preterm infants predisposes the immature brain to motor, cognitive, and sensory deficits, with cognitive impairment associated with earlier gestational age. In term infants HI causes selective damage to sensorimotor cortex, basal ganglia, thalamus, and brain stem. Even though the immature brain is more malleable to external stimuli compared to the adult one, a hypoxic-ischaemic event to the neonate interrupts the shaping of central motor pathways and can affect normal developmental plasticity through altering neurotransmission, changes in cellular signalling, neural connectivity and function, wrong targeted innervation, and interruption of developmental apoptosis. Models of neonatal HI demonstrate three morphologically different types of cell death, that is, apoptosis, necrosis, and autophagy, which crosstalk and can exist as a continuum in the same cell. In the present review we discuss the mechanisms of HI injury to the immature brain and the way they affect plasticity.
Collapse
|
16
|
Castex MT, Arabo A, Bénard M, Roy V, Le Joncour V, Prévost G, Bonnet JJ, Anouar Y, Falluel-Morel A. Selenoprotein T Deficiency Leads to Neurodevelopmental Abnormalities and Hyperactive Behavior in Mice. Mol Neurobiol 2015; 53:5818-5832. [DOI: 10.1007/s12035-015-9505-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Accepted: 10/19/2015] [Indexed: 01/27/2023]
|
17
|
Role of early life exposure and environment on neurodegeneration: implications on brain disorders. Transl Neurodegener 2014; 3:9. [PMID: 24847438 PMCID: PMC4028099 DOI: 10.1186/2047-9158-3-9] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2014] [Accepted: 04/17/2014] [Indexed: 12/12/2022] Open
Abstract
Neurodegenerative diseases such as Alzheimer's disease (AD), Parkinson's disease (PD), Amyotrophic lateral sclerosis (ALS) and retinal degeneration have been studied extensively and varying molecular mechanisms have been proposed for onset of such diseases. Although genetic analysis of these diseases has also been described, yet the mechanisms governing the extent of vulnerability to such diseases remains unresolved. Recent studies have, therefore, focused on the role of environmental exposure in progression of such diseases especially in the context of prenatal and postnatal life, explaining how molecular mechanisms mediate epigenetic changes leading to degenerative diseases. This review summarizes both the animal and human studies describing various environmental stimuli to which an individual or an animal is exposed during in-utero and postnatal period and mechanisms that promote neurodegeneration. The SNPs mediating gene environment interaction are also described. Further, preventive and therapeutic strategies are suggested for effective intervention.
Collapse
|
18
|
Neuronal gap junction coupling as the primary determinant of the extent of glutamate-mediated excitotoxicity. J Neural Transm (Vienna) 2013; 121:837-46. [PMID: 24178243 DOI: 10.1007/s00702-013-1109-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Accepted: 10/16/2013] [Indexed: 01/12/2023]
Abstract
In the mammalian central nervous system (CNS), coupling of neurons by gap junctions (electrical synapses) increases during early postnatal development, then decreases, but increases in the mature CNS following neuronal injury, such as ischemia, traumatic brain injury and epilepsy. Glutamate-dependent neuronal death also occurs in the CNS during development and neuronal injury, i.e., at the time when neuronal gap junction coupling is increased. Here, we review our recent studies on regulation of neuronal gap junction coupling by glutamate in developing and injured neurons and on the role of gap junctions in neuronal cell death. A modified model of the mechanisms of glutamate-dependent neuronal death is discussed, which includes neuronal gap junction coupling as a critical part of these mechanisms.
Collapse
|
19
|
Lu Q, Harris VA, Sun X, Hou Y, Black SM. Ca²⁺/calmodulin-dependent protein kinase II contributes to hypoxic ischemic cell death in neonatal hippocampal slice cultures. PLoS One 2013; 8:e70750. [PMID: 23976956 PMCID: PMC3747161 DOI: 10.1371/journal.pone.0070750] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Accepted: 06/27/2013] [Indexed: 01/23/2023] Open
Abstract
We have recently shown that p38MAP kinase (p38MAPK) stimulates ROS generation via the activation of NADPH oxidase during neonatal hypoxia-ischemia (HI) brain injury. However, how p38MAPK is activated during HI remains unresolved and was the focus of this study. Ca²⁺/calmodulin-dependent protein kinase II (CaMKII) plays a key role in brain synapse development, neural transduction and synaptic plasticity. Here we show that CaMKII activity is stimulated in rat hippocampal slice culture exposed to oxygen glucose deprivation (OGD) to mimic the condition of HI. Further, the elevation of CaMKII activity, correlated with enhanced p38MAPK activity, increased superoxide generation from NADPH oxidase as well as necrotic and apoptotic cell death. All of these events were prevented when CaMKII activity was inhibited with KN93. In a neonatal rat model of HI, KN93 also reduced brain injury. Our results suggest that CaMKII activation contributes to the oxidative stress associated with neural cell death after HI.
Collapse
Affiliation(s)
- Qing Lu
- Vascular Biology Center, Georgia Regents University, Augusta, Georgia, United States of America
| | - Valerie A. Harris
- Vascular Biology Center, Georgia Regents University, Augusta, Georgia, United States of America
| | - Xutong Sun
- Vascular Biology Center, Georgia Regents University, Augusta, Georgia, United States of America
| | - Yali Hou
- Vascular Biology Center, Georgia Regents University, Augusta, Georgia, United States of America
| | - Stephen M. Black
- Vascular Biology Center, Georgia Regents University, Augusta, Georgia, United States of America
| |
Collapse
|
20
|
Neuroprotective Effects of Dexmedetomidine against Glutamate Agonist-induced Neuronal Cell Death Are Related to Increased Astrocyte Brain-derived Neurotrophic Factor Expression. Anesthesiology 2013; 118:1123-32. [DOI: 10.1097/aln.0b013e318286cf36] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Abstract
Background:
Brain-derived neurotrophic factor (BDNF) plays a prominent role in neuroprotection against perinatal brain injury. Dexmedetomidine, a selective agonist of α2-adrenergic receptors, also provides neuroprotection against glutamate-induced damage. Because adrenergic receptor agonists can modulate BDNF expression, our goal was to examine whether dexmedetomidine’s neuroprotective effects are mediated by BDNF modulation in mouse perinatal brain injury.
Methods:
The protective effects against glutamate-induced injury of BDNF and dexmedetomidine alone or in combination with either a neutralizing BDNF antibody or an inhibitor of the extracellular signal-regulated kinase pathway (PD098059) were compared in perinatal ibotenate-induced cortical lesions (n = 10–20 pups/groups) and in mouse neuronal cultures (300 μm of ibotenate for 6 h). The effect of dexmedetomidine on BDNF expression was examined in vivo and in vitro with cortical neuronal and astrocyte isolated cultures.
Results:
Both BDNF and dexmedetomidine produced a significant neuroprotective effect in vivo and in vitro. Dexmedetomidine enhanced Bdnf4 and Bdnf5 transcription and BDNF protein cortical expression in vivo. Dexmedetomidine also enhanced Bdnf4 and Bdnf5 transcription and increased BDNF media concentration in isolated astrocyte cultures but not in neuronal cultures. Dexmedetomidine’s protective effect was inhibited with BDNF antibody (mean lesion size ± SD: 577 ± 148 μm vs. 1028 ± 213 μm, n = 14–20, P < 0.001) and PD098059 in vivo but not in isolated neuron cultures. Finally, PD098059 inhibited the increased release of BDNF induced by dexmedetomidine in astrocyte cultures.
Conclusion:
These results suggest that dexmedetomidine increased astrocyte expression of BDNF through an extracellular signal-regulated kinase-dependent pathway, inducing subsequent neuroprotective effects.
Collapse
|
21
|
Belousov AB, Fontes JD. Neuronal gap junctions: making and breaking connections during development and injury. Trends Neurosci 2013; 36:227-36. [PMID: 23237660 PMCID: PMC3609876 DOI: 10.1016/j.tins.2012.11.001] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Revised: 11/02/2012] [Accepted: 11/02/2012] [Indexed: 01/08/2023]
Abstract
In the mammalian central nervous system (CNS), coupling of neurons by gap junctions (i.e., electrical synapses) and the expression of the neuronal gap junction protein, connexin 36 (Cx36), transiently increase during early postnatal development. The levels of both subsequently decline and remain low in the adult, confined to specific subsets of neurons. However, following neuronal injury [such as ischemia, traumatic brain injury (TBI), and epilepsy], the coupling and expression of Cx36 rise. Here we summarize new findings on the mechanisms of regulation of Cx36-containing gap junctions in the developing and mature CNS and following injury. We also review recent studies suggesting various roles for neuronal gap junctions and in particular their role in glutamate-mediated neuronal death.
Collapse
Affiliation(s)
- Andrei B Belousov
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS 66160, USA.
| | | |
Collapse
|
22
|
Naylor DE, Liu H, Niquet J, Wasterlain CG. Rapid surface accumulation of NMDA receptors increases glutamatergic excitation during status epilepticus. Neurobiol Dis 2013; 54:225-38. [PMID: 23313318 DOI: 10.1016/j.nbd.2012.12.015] [Citation(s) in RCA: 149] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Revised: 12/20/2012] [Accepted: 12/28/2012] [Indexed: 02/06/2023] Open
Abstract
After 1h of lithium-pilocarpine status epilepticus (SE), immunocytochemical labeling of NMDA receptor NR1 subunits reveals relocation of subunits from the interior to the cell surface of dentate gyrus granule cells and CA3 pyramidal cells. Simultaneously, an increase in NMDA-miniature excitatory postsynaptic currents (mEPSC) as well as an increase in NMDA receptor-mediated tonic currents is observed in hippocampal slices after SE. Mean-variance analysis of NMDA-mEPSCs estimates that the number of functional postsynaptic NMDA receptors per synapse increases 38% during SE, and antagonism by ifenprodil suggests that an increase in the surface representation of NR2B-containing NMDA receptors is responsible for the augmentation of both the phasic and tonic excitatory currents with SE. These results provide a potential mechanism for an enhancement of glutamatergic excitation that maintains SE and may contribute to excitotoxic injury during SE. Therapies that directly antagonize NMDA receptors may be a useful therapeutic strategy during refractory SE.
Collapse
Affiliation(s)
- David E Naylor
- Department of Neurology, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, USA; Department of Neurology, Veterans Administration Greater Los Angeles Healthcare System, USA.
| | | | | | | |
Collapse
|
23
|
Sarkar A, Angeline MS, Anand K, Ambasta RK, Kumar P. Naringenin and quercetin reverse the effect of hypobaric hypoxia and elicit neuroprotective response in the murine model. Brain Res 2012; 1481:59-70. [DOI: 10.1016/j.brainres.2012.08.036] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2012] [Revised: 08/12/2012] [Accepted: 08/21/2012] [Indexed: 10/27/2022]
|
24
|
Raveendran AT, Skaria PC. Learning and Cognitive Deficits in Hypoxic Neonatal Rats Intensified by BAX Mediated Apoptosis: Protective Role of Glucose, Oxygen, and Epinephrine. Int J Neurosci 2012; 123:80-8. [DOI: 10.3109/00207454.2012.731457] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
25
|
Comprehensive Gene Expression Analysis of Cerebral Cortices from Mature Rats After Neonatal Hypoxic–Ischemic Brain Injury. J Mol Neurosci 2012; 49:320-7. [DOI: 10.1007/s12031-012-9830-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2012] [Accepted: 05/31/2012] [Indexed: 10/28/2022]
|
26
|
Short and long-term analysis and comparison of neurodegeneration and inflammatory cell response in the ipsilateral and contralateral hemisphere of the neonatal mouse brain after hypoxia/ischemia. Neurol Res Int 2012; 2012:781512. [PMID: 22701792 PMCID: PMC3372286 DOI: 10.1155/2012/781512] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2011] [Accepted: 02/02/2012] [Indexed: 12/21/2022] Open
Abstract
Understanding the evolution of neonatal hypoxic/ischemic is essential for novel neuroprotective approaches. We describe the neuropathology and glial/inflammatory response, from 3 hours to 100 days, after carotid occlusion and hypoxia (8% O2, 55 minutes) to the C57/BL6 P7 mouse. Massive tissue injury and atrophy in the ipsilateral (IL) hippocampus, corpus callosum, and caudate-putamen are consistently shown. Astrogliosis peaks at 14 days, but glial scar is still evident at day 100. Microgliosis peaks at 3–7 days and decreases by day 14. Both glial responses start at 3 hours in the corpus callosum and hippocampal fissure, to progressively cover the degenerating CA field. Neutrophils increase in the ventricles and hippocampal vasculature, showing also parenchymal extravasation at 7 days. Remarkably, delayed milder atrophy is also seen in the contralateral (CL) hippocampus and corpus callosum, areas showing astrogliosis and microgliosis during the first 72 hours. This detailed and long-term cellular response characterization of the ipsilateral and contralateral hemisphere after H/I may help in the design of better therapeutic strategies.
Collapse
|
27
|
Sun Y, Zhang Y, Wang X, Blomgren K, Zhu C. Apoptosis-inducing factor downregulation increased neuronal progenitor, but not stem cell, survival in the neonatal hippocampus after cerebral hypoxia-ischemia. Mol Neurodegener 2012; 7:17. [PMID: 22534064 PMCID: PMC3464153 DOI: 10.1186/1750-1326-7-17] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2012] [Accepted: 04/25/2012] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND A considerable proportion of all newly generated cells in the hippocampus will die before becoming fully differentiated, both under normal and pathological circumstances. The caspase-independent apoptosis-inducing factor (AIF) has not been investigated previously in this context. RESULTS Postnatal day 8 (P8) harlequin (Hq) mutant mice, expressing lower levels of AIF, and wild type littermates were injected with BrdU once daily for two days to label newborn cells. On P10 mice were subjected to hypoxia-ischemia (HI) and their brains were analyzed 4 h, 24 h or 4 weeks later. Overall tissue loss was 63.5% lower in Hq mice 4 weeks after HI. Short-term survival (4 h and 24 h) of labeled cells in the subgranular zone was neither affected by AIF downregulation, nor by HI. Long-term (4 weeks) survival of undifferentiated, BLBP-positive stem cells was reduced by half after HI, but this was not changed by AIF downregulation. Neurogenesis, however, as judged by BrdU/NeuN double labeling, was reduced by half after HI in wild type mice but preserved in Hq mice, indicating that primarily neural progenitors and neurons were protected. A wave of cell death started early after HI in the innermost layers of the granule cell layer (GCL) and moved outward, such that 24 h after HI dying cells could be detected in the entire GCL. CONCLUSIONS These findings demonstrate that AIF downregulation provides not only long-term overall neuroprotection after HI, but also protects neural progenitor cells, thereby rescuing hippocampal neurogenesis.
Collapse
Affiliation(s)
- Yanyan Sun
- Center for Brain Repair and Rehabilitation, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Pediatrics, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Department of Pediatrics, Zhengzhou Children’s Hospital, Zhengzhou, China
| | - Yu Zhang
- Center for Brain Repair and Rehabilitation, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Pediatrics, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiaoyang Wang
- Department of Pediatrics, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Perinatal Center, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Klas Blomgren
- Center for Brain Repair and Rehabilitation, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Pediatrics, The Queen Silvia Children’s Hospital, University of Gothenburg, Gothenburg, Sweden
- Department of Women’s and Children’s Health, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Changlian Zhu
- Center for Brain Repair and Rehabilitation, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Pediatrics, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
28
|
Bain E, Middleton P, Crowther CA. Different magnesium sulphate regimens for neuroprotection of the fetus for women at risk of preterm birth. Cochrane Database Syst Rev 2012; 2012:CD009302. [PMID: 22336863 PMCID: PMC11472847 DOI: 10.1002/14651858.cd009302.pub2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND The effectiveness of antenatal magnesium sulphate for neuroprotection of the fetus, infant, and child prior to very preterm birth, when given to women considered at risk of preterm birth, has been established. There is currently no consensus as to the regimen to use in terms of the dose, duration, the use of repeat dosing and timing. OBJECTIVES To assess the comparative effectiveness and adverse effects of different magnesium sulphate regimens for neuroprotection of the fetus in women considered at risk of preterm birth. SEARCH METHODS We searched the Cochrane Pregnancy and Childbirth Group's Trials Register (31 December 2011). SELECTION CRITERIA Randomised trials comparing different magnesium sulphate regimens when used for neuroprotection of the fetus in women considered at risk of preterm birth. We planned to include cluster trials. We planned to exclude quasi-randomised trials and those with a crossover design. We planned to include trials published as full-text papers, along with those published in abstract form only. DATA COLLECTION AND ANALYSIS We planned that at least two review authors would assess trial eligibility. MAIN RESULTS No eligible completed trials were identified. AUTHORS' CONCLUSIONS Although strong evidence supports the use of antenatal magnesium sulphate for neuroprotection of the fetus prior to very preterm birth, no trials comparing different treatment regimens have been completed. Research should be directed towards comparisons of different dosages and other variations in regimens, evaluating both maternal and infant outcomes.
Collapse
Affiliation(s)
- Emily Bain
- ARCH: Australian Research Centre for Health of Women and Babies, Discipline of Obstetrics and Gynaecology, The University of Adelaide, Adelaide, Australia.
| | | | | |
Collapse
|
29
|
Abstract
Knowledge of the nature, prognosis, and ways to treat brain lesions in neonatal infants has increased remarkably. Neonatal hypoxic-ischaemic encephalopathy (HIE) in term infants, mirrors a progressive cascade of excito-oxidative events that unfold in the brain after an asphyxial insult. In the laboratory, this cascade can be blocked to protect brain tissue through the process of neuroprotection. However, proof of a clinical effect was lacking until the publication of three positive randomised controlled trials of moderate hypothermia for term infants with HIE. These results have greatly improved treatment prospects for babies with asphyxia and altered understanding of the theory of neuroprotection. The studies show that moderate hypothermia within 6 h of asphyxia improves survival without cerebral palsy or other disability by about 40% and reduces death or neurological disability by nearly 30%. The search is on to discover adjuvant treatments that can further enhance the effects of hypothermia.
Collapse
|
30
|
Anju TR, Korah PK, Jayanarayanan S, Paulose CS. Enhanced brain stem 5HT₂A receptor function under neonatal hypoxic insult: role of glucose, oxygen, and epinephrine resuscitation. Mol Cell Biochem 2011; 354:151-60. [PMID: 21484469 DOI: 10.1007/s11010-011-0814-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2011] [Accepted: 04/05/2011] [Indexed: 01/23/2023]
Abstract
Molecular processes regulating brain stem serotonergic receptors play an important role in the control of respiration. We evaluated 5-HT(2A) receptor alterations in the brain stem of neonatal rats exposed to hypoxic insult and the effect of glucose, oxygen, and epinephrine resuscitation in ameliorating these alterations. Hypoxic stress increased the total 5-HT and 5-HT(2A) receptor number along with an up regulation of 5-HT Transporter and 5-HT(2A) receptor gene in the brain stem of neonates. These serotonergic alterations were reversed by glucose supplementation alone and along with oxygen to hypoxic neonates. The enhanced brain stem 5-HT(2A) receptors act as a modulator of ventilatory response to hypoxia, which can in turn result in pulmonary vasoconstriction and cognitive dysfunction. The adverse effects of 100% oxygenation and epinephrine administration to hypoxic neonates were also reported. This has immense clinical significance in neonatal care.
Collapse
MESH Headings
- Animals
- Animals, Newborn
- Binding, Competitive
- Brain Stem/metabolism
- Epinephrine/pharmacology
- Epinephrine/therapeutic use
- Glucose/pharmacology
- Glucose/therapeutic use
- Hypoxia/drug therapy
- Hypoxia/metabolism
- Hypoxia, Brain/drug therapy
- Hypoxia, Brain/metabolism
- Hypoxia-Inducible Factor 1, alpha Subunit/genetics
- Hypoxia-Inducible Factor 1, alpha Subunit/metabolism
- Ketanserin/pharmacology
- Maze Learning
- Memory
- Oxygen/pharmacology
- Oxygen/therapeutic use
- Rats
- Rats, Wistar
- Receptor, Serotonin, 5-HT2A/genetics
- Receptor, Serotonin, 5-HT2A/metabolism
- Resuscitation
- Serotonin/pharmacology
- Serotonin 5-HT2 Receptor Agonists/pharmacology
- Serotonin Antagonists/pharmacology
- Serotonin Plasma Membrane Transport Proteins/genetics
- Serotonin Plasma Membrane Transport Proteins/metabolism
- Transcription, Genetic
Collapse
Affiliation(s)
- T R Anju
- Molecular Neurobiology and Cell Biology Unit, Centre for Neuroscience, Department of Biotechnology, Cochin University of Science and Technology, Cochin, 682022 Kerala, India
| | | | | | | |
Collapse
|
31
|
Domowicz MS, Henry JG, Wadlington N, Navarro A, Kraig RP, Schwartz NB. Astrocyte precursor response to embryonic brain injury. Brain Res 2011; 1389:35-49. [PMID: 21396923 DOI: 10.1016/j.brainres.2011.03.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2010] [Revised: 02/23/2011] [Accepted: 03/02/2011] [Indexed: 02/06/2023]
Abstract
Penetrating traumatic insult during pregnancy is a leading cause of human fetal demise; in particular, trauma to the brain may lead to devastating long-term cognitive sequelae. Perinatal brain injury involves glial precursors, but the neural mechanisms controlling astrocyte ontogeny after injury remain incompletely understood, partly due to a lack of appropriate markers and animal models. We analyzed astrocyte precursor response to injury at the beginning (E11) and peak (E15) of gliogenesis in an avian tectal model of penetrating embryonic brain trauma, without confounding maternal and sibling effects. At both ages, lateral ventricular dilatation, necrotic foci, periventricular cysts and intraventricular hemorrhages were observed distal to stab wounds two days after a unilateral stab injury to optic tecta. Neuronal (TUBB3) and oligodendrocyte precursor (PLP) markers were down-regulated, even far-removed from the wound site. In contrast, the mature astrocyte marker, GFAP, was up-regulated at the wound site, around necrotic areas and cysts, plus in usual areas of GFAP expression. Increased inflammatory response and apoptotic cell death were also confirmed in the injured tecta. Increased expression of NFIA, SOX9 and GLAST at the wound site and in the ventricular zone (VZ) of the injured tecta indicated an astroglial precursor response. However, cell division increased in the VZ only in early (E11) injury, but not later (E15), indicating that in late injury the astrogliogenesis occurring after acute injury is predominantly due to precursor differentiation rather than precursor proliferation. The inability to replenish the glial precursor pool during the critical period of vulnerability to injury may be an important cause of subsequent developmental abnormalities.
Collapse
Affiliation(s)
- Miriam S Domowicz
- Department of Pediatrics, The University of Chicago Medical Center, 5841 S. Maryland Avenue, MC 5058, Chicago, IL 60637, USA.
| | | | | | | | | | | |
Collapse
|
32
|
Udayakumaran S, Beni Adani L. Unusual case of 'trapped fourth ventricle' in a child with posthemorrhagic hydrocephalus--lessons learnt. Pediatr Neurosurg 2011; 47:60-5. [PMID: 21821993 DOI: 10.1159/000325074] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2010] [Accepted: 02/02/2011] [Indexed: 11/19/2022]
Abstract
In most of the children with posthemorrhagic hydrocephalus (PHH), multidisciplinary follow-up is performed, with the focus on consequences of prematurity, cerebral palsy (CP) and hydrocephalus. A large fourth ventricle is common in these children but imaging performed in order to document ventricles and tissue damage is not oriented to exclude coexisting rare pathologies. We report a 3-year-old child with spastic CP, secondary to prematurity and PHH. A ventriculoperitoneal shunt was inserted at the age of 2 months. On follow-up imaging the child demonstrated well-drained supratentorial ventricles with a persistent large fourth ventricle. Because of a neurological change in spasticity and new-onset torticollis, a repeat MRI was performed, suggesting a cystic, nonenhancing lesion of the fourth ventricle. The surgical exploration revealed a large dermoid of the fourth ventricle. We analyze the differential diagnosis of a clinically significant large fourth ventricle in a shunted child with PHH and CP. This includes conditions without pressure in the posterior fossa such as tissue loss due to cerebellar atrophy, or pathologies causing a true increase in pressure of the fourth ventricle (isolated fourth ventricle, cystic lesions and neoplasms of the fourth ventricle). Neurologically compromised children pose additional challenges in reaching a definitive diagnosis and hence require a careful regular assessment of their clinical status with additional well-timed imaging with appropriate protocols to allow appropriate treatment when indicated and to avoid morbidity due to delayed diagnosis. We present a rare coexistence of a dermoid tumor within the fourth ventricle in a CP child with PHH and express the dilemmas associated with its management.
Collapse
Affiliation(s)
- Suhas Udayakumaran
- Department of Pediatric Neurosurgery, Dana Children's Hospital, Tel Aviv Sourasky Medical Center, Tel Aviv University, Tel Aviv, Israel
| | | |
Collapse
|
33
|
O'Driscoll C, Bressler JP. Hairless expression attenuates apoptosis in a mouse model and the COS cell line; involvement of p53. PLoS One 2010; 5:e12911. [PMID: 20886113 PMCID: PMC2944824 DOI: 10.1371/journal.pone.0012911] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2010] [Accepted: 08/04/2010] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Neurons are more likely to die through apoptosis in the immature brain after injury whereas adult neurons in the mature brain die by necrosis. Several studies have suggested that this maturational change in the mechanism of cell death is regulated, in part, by thyroid hormone. We examined the involvement of the hairless (Hr) gene which has been suspected of having a role in cell cycle regulation and apoptosis in the hair follicle and is strongly regulated by the thyroid hormone in the brain. METHODOLOGY Forced expression of Hr by transfection decreased the number of apoptotic nuclei, levels of caspase-3 activity, and cytosolic cytochrome C in COS cells exposed to staurosporine and tunicamycin. Similarly, caspase-3 activity was lower and the decrease in mitochondrial membrane potential was smaller in cultures of adult cerebellar granule neurons from wild type mice compared to Hr knockout mice induced to undergo apoptosis. In vivo, apoptosis as detected by positive TUNEL labeling and caspase 3 activity was lower in wild-type mice compared to Hr knockouts after exposure to trimethyltin. Hr expression lowered levels of p53, p53 mediated reporter gene activity, and lower levels of the pro-apoptotic Bcl2 family member Bax in COS cells. Finally, Hr expression did not attenuate apoptosis in mouse embryonic fibroblasts from p53 knockout mice but was effective in mouse embryonic fibroblasts from wild type mice. CONCLUSIONS/SIGNIFICANCE Overall, our studies demonstrate that Hr evokes an anti-apoptotic response by repressing expression of p53 and pro-apoptotic events regulated by p53.
Collapse
Affiliation(s)
- Cliona O'Driscoll
- Division of Toxicology, Department of Environmental Health Sciences, Bloomberg School of Public Health, Johns Hopkins University, and Hugo Moser Research Institute at Kennedy Krieger, Baltimore, Maryland, United States of America
| | - Joseph P. Bressler
- Division of Toxicology, Department of Environmental Health Sciences, Bloomberg School of Public Health, Johns Hopkins University, and Hugo Moser Research Institute at Kennedy Krieger, Baltimore, Maryland, United States of America
- * E-mail:
| |
Collapse
|
34
|
Zhu C, Hallin U, Ozaki Y, Grandér R, Gatzinsky K, Bahr BA, Karlsson JO, Shibasaki F, Hagberg H, Blomgren K. Nuclear translocation and calpain-dependent reduction of Bcl-2 after neonatal cerebral hypoxia-ischemia. Brain Behav Immun 2010; 24:822-30. [PMID: 19782128 DOI: 10.1016/j.bbi.2009.09.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2009] [Revised: 09/08/2009] [Accepted: 09/21/2009] [Indexed: 11/19/2022] Open
Abstract
Apoptosis-related mechanisms are important in the pathophysiology of hypoxic-ischemic injury in the neonatal brain. Caspases are the major executioners of apoptosis, but there are a number of upstream players that influence the cell death pathways. The Bcl-2 family proteins are important modulators of mitochondrial permeability, working either to promote or prevent apoptosis. In this study we focused on the anti-apoptotic Bcl-2 protein after neonatal cerebral hypoxia-ischemia (HI) in 8-day-old rats. Bcl-2 translocated to nuclei and accumulated there over the first 24h of reperfusion after HI, as judged by immunohistochemistry and immuno-electron microscopy. We also found that the total level of Bcl-2 decreased after HI in vivo and after ionophore challenge in cultured human neuroblastoma (IMR-32) cells in vitro. Furthermore, the Bcl-2 reduction was calpain-dependent, because it could be prevented by the calpain inhibitor CX295 both in vivo and in vitro, suggesting cross-talk between excitotoxic and apoptotic mechanisms.
Collapse
Affiliation(s)
- Changlian Zhu
- Center for Brain Repair and Rehabilitation, University of Gothenburg, Gothenburg, Sweden
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Liu B, Wang Z, Lu J. Response to chronic intermittent hypoxia in blood system of Mandarin vole (Lasiopodomys mandarinus). Comp Biochem Physiol A Mol Integr Physiol 2010; 156:469-74. [PMID: 20371298 DOI: 10.1016/j.cbpa.2010.03.034] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2010] [Revised: 03/27/2010] [Accepted: 03/28/2010] [Indexed: 11/18/2022]
Abstract
Mandarin voles (Lasiopodomys mandarinus) spend almost all their lives underground and must have evolved remarkable physiological adaptations to subterranean hypoxic stress. To understand the response to hypoxia in blood system of this rodent in a region with lower altitude, we tested and compared the responding characteristics between Mandarin vole and Kunming mouse (Mus musculus) under chronic normobaric hypoxic treatment (10.0% O(2), 4 w). The results showed that: 1) as for responses to chronic hypoxia, HIF-1 alpha, EPO and VEGF exhibited similar patterns in two species. The expression of HIF-1 alpha and VEGF significantly increased while EPO decreased significantly, and HIF-1 alpha showed a greater increase at 10.0% oxygen level in Mandarin voles; 2) both rodents responded to chronic hypoxia mainly by increasing MCH, though KM mouse responded more acutely; 3) the change in MCHC in Mandarin vole was ignorable though it is significantly higher than that in KM mouse whose MCHC changed extensively and 4) both before and after hypoxic treatment, the capillary density in Mandarin vole was significantly higher than that in KM mouse, and it increased sharply in KM mouse after treatment. Our results indicated that, compared to KM mice, Mandarin voles did respond effectively to hypoxia stress after long-term adaptation to subterranean life environment.
Collapse
Affiliation(s)
- Bin Liu
- Department of Bioengineering, Institute of Biodiversity and Ecology, Zhengzhou University, No 100 Kexue Dadao Road, Zhengzhou, Henan 450001, China
| | | | | |
Collapse
|
36
|
Tanaka H, Amamiya S, Takahashi S, Suzuki N, Araki A, Ohinata J, Fujieda K. Effect of neonatal hypoxia on the development of intraspinal serotonergic fibers in relation to spinal motoneurons. Brain Dev 2010; 32:268-74. [PMID: 19193506 DOI: 10.1016/j.braindev.2008.12.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2008] [Revised: 12/15/2008] [Accepted: 12/16/2008] [Indexed: 10/21/2022]
Abstract
Serotonin (5-hydroxytryptamine; 5-HT)-containing neurons trophically affect target neurons and modulate central nervous system neuronal activity. We studied effects of neonatal hypoxia on postnatal development of intraspinal 5-HT fibers in spinal motoneuron pools. Postnatal day (PND) 0 Sprague-Dawley rats received a hypoxic load and survivors were used for histological analyzes on PNDs 1, 7, and 14. Spinal motoneurons were labeled using choleratoxin B subunit as a retrograde neurotracer, and 5-HT fibers were detected immunohistochemically. On PND 1, 5-HT fibers were present in the lateral portion of the ventral horn at the cervical level, but were sparsely distributed at the lumbar level. On PND 14, cervical and lumbar level distributions were nearly identical. The 5-HT fibers and varicosities in close apposition to motoneurons increased from PNDs 1-14, however, the close apposition of cervical motoneurons was significantly different from lumbar motoneurons only on PND 1. Density of 5-HT fibers in control and hypoxic rats was not different on PND 1, while those in hypoxic rats were significantly reduced on PND 14. Close appositions of lumbar motoneurons were reduced more than cervical MNs after neonatal hypoxia. Neurodevelopmental deficit after neonatal hypoxia with a rostro-caudal gradient is associated with significant changes in the 5-HT system.
Collapse
Affiliation(s)
- Hajime Tanaka
- Department of Pediatrics, Asahikawa Medical College, Midorigaoka-higashi 2-1-1-1, Asahikawa 078-8510, Japan.
| | | | | | | | | | | | | |
Collapse
|
37
|
Gene network analysis to determine the effects of antioxidant treatment in a rat model of neonatal hypoxic-ischemic encephalopathy. J Mol Neurosci 2010; 42:154-61. [PMID: 20191329 DOI: 10.1007/s12031-010-9337-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2009] [Accepted: 01/27/2010] [Indexed: 10/19/2022]
Abstract
Neonatal hypoxic-ischemic (HI) encephalopathy can lead to severe brain damage, and is a common cause of neurological handicaps in adulthood. HI can be resolved by the administration of an antioxidant such as 3-methyl-1-phenyl-2-pyrazolin-5-one (MCI-186). In the present study, we performed comprehensive gene expression and gene network analyses using a DNA microarray to elucidate the molecular events responsible for the selective vulnerability of neurons in neonatal HI brain insult and to examine the underlying mechanisms of the effect of MCI-186 on the pathophysiological events in this condition. We used the modified Levine method (Rice model), which has been widely used as an animal model of this condition. A large difference in gene expression was observed between the Rice model and the control group. Up- and downregulated genes after the HI brain insult were mainly related to immune responses and cell death, and neuronal activity, respectively. The effect of MCI-186 administration on gene expression was much less than and contrary to that of the HI brain insult, reflecting the protective effect of MCI-186 in HI brain insult.
Collapse
|
38
|
Salmina AB, Okuneva OS, Malinovskaya NA, Zykova LD, Fursov AA, Morgun AV, Mikhutkina SV, Taranushenko TE. Changes in expression and activity of CD38 in astroglial cells after impairment of the neuron-glia relationship in the brain induced by perinatal hypoxia-ischemia. NEUROCHEM J+ 2009. [DOI: 10.1134/s181971240903009x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
39
|
Zhu C, Kang W, Xu F, Cheng X, Zhang Z, Jia L, Ji L, Guo X, Xiong H, Simbruner G, Blomgren K, Wang X. Erythropoietin improved neurologic outcomes in newborns with hypoxic-ischemic encephalopathy. Pediatrics 2009; 124:e218-26. [PMID: 19651565 DOI: 10.1542/peds.2008-3553] [Citation(s) in RCA: 240] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
OBJECTIVE The purpose of this study was to evaluate the efficacy and safety of erythropoietin in neonatal hypoxic-ischemic encephalopathy (HIE), by using a randomized, prospective study design. METHODS A total of 167 term infants with moderate/severe HIE were assigned randomly to receive either erythropoietin (N = 83) or conventional treatment (N = 84). Recombinant human erythropoietin, at either 300 U/kg (N = 52) or 500 U/kg (N = 31), was administered every other day for 2 weeks, starting <48 hours after birth. The primary outcome was death or disability. Neurodevelopmental outcomes were assessed at 18 months of age. RESULTS Complete outcome data were available for 153 infants. Nine patients dropped out during treatment, and 5 patients were lost to follow-up monitoring. Death or moderate/severe disability occurred for 35 (43.8%) of 80 infants in the control group and 18 (24.6%) of 73 infants in the erythropoietin group (P = .017) at 18 months. The primary outcomes were not different between the 2 erythropoietin doses. Subgroup analyses indicated that erythropoietin improved long-term outcomes only for infants with moderate HIE (P = .001) and not those with severe HIE (P = .227). No negative hematopoietic side effects were observed. CONCLUSION Repeated, low-dose, recombinant human erythropoietin treatment reduced the risk of disability for infants with moderate HIE, without apparent side effects.
Collapse
Affiliation(s)
- Changlian Zhu
- Department of Pediatrics, Third Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Protein ubiquitination in postsynaptic densities after hypoxia in rat neostriatum is blocked by hypothermia. Exp Neurol 2009; 219:404-13. [PMID: 19555686 DOI: 10.1016/j.expneurol.2009.06.007] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2009] [Revised: 05/24/2009] [Accepted: 06/14/2009] [Indexed: 11/23/2022]
Abstract
Synaptic dysfunction has been associated with neuronal cell death following hypoxia. The lack of knowledge on the mechanisms underlying this dysfunction prompted us to investigate the morphological changes in the postsynaptic densities (PSDs) induced by hypoxia. The results presented here demonstrate that PSDs of the rat neostriatum are highly modified and ubiquitinated 6 months after induction of hypoxia in a model of perinatal asphyxia. Using both two dimensional (2D) and three dimensional (3D) electron microscopic analyses of synapses stained with ethanolic phosphotungstic acid (E-PTA), we observed an increment of PSD thickness dependent on the duration and severity of the hypoxic insult. The PSDs showed clear signs of damage and intense staining for ubiquitin. These morphological and molecular changes were effectively blocked by hypothermia treatment, one of the most effective strategies for hypoxia-induced brain injury available today. Our data suggest that synaptic dysfunction following hypoxia may be caused by long-term misfolding and aggregation of proteins in the PSD.
Collapse
|
41
|
Intermittent Hypercapnic Hypoxia Induced Protein Changes in the Piglet Hippocampus Identified by MALDI-TOF-MS. Neurochem Res 2009; 34:2215-25. [DOI: 10.1007/s11064-009-0021-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/09/2009] [Indexed: 10/20/2022]
|
42
|
Conde-Agudelo A, Romero R. Antenatal magnesium sulfate for the prevention of cerebral palsy in preterm infants less than 34 weeks' gestation: a systematic review and metaanalysis. Am J Obstet Gynecol 2009; 200:595-609. [PMID: 19482113 PMCID: PMC3459676 DOI: 10.1016/j.ajog.2009.04.005] [Citation(s) in RCA: 165] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2009] [Revised: 04/02/2009] [Accepted: 04/15/2009] [Indexed: 11/27/2022]
Abstract
We conducted a systematic review and metaanalysis of randomized controlled trials to determine whether magnesium sulfate administered to women at risk of preterm delivery before 34 weeks of gestation may reduce the risk of cerebral palsy in their children. Six trials involving 4796 women and 5357 infants were included. Antenatal magnesium sulfate was associated with a significant reduction in the risk of cerebral palsy (relative risk [RR], 0.69; 95% confidence interval [CI], 0.55-0.88), moderate or severe cerebral palsy (RR, 0.64; 95% CI, 0.44-0.92), and substantial gross motor dysfunction (RR, 0.60; 95% CI, 0.43-0.83). There was no overall difference in the risk of total pediatric mortality (RR, 1.01; 95% CI, 0.89-1.14). Minor side effects were more frequent among women receiving magnesium sulfate. In conclusion, magnesium sulfate administered to women at risk of delivery before 34 weeks of gestation reduces the risk of cerebral palsy.
Collapse
Affiliation(s)
- Agustín Conde-Agudelo
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development/National Institutes of Health/Department of Health and Human Services, Bethesda, MD and Detroit, MI
| | - Roberto Romero
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development/National Institutes of Health/Department of Health and Human Services, Bethesda, MD and Detroit, MI
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI
| |
Collapse
|
43
|
Robertson CL, Scafidi S, McKenna MC, Fiskum G. Mitochondrial mechanisms of cell death and neuroprotection in pediatric ischemic and traumatic brain injury. Exp Neurol 2009; 218:371-80. [PMID: 19427308 DOI: 10.1016/j.expneurol.2009.04.030] [Citation(s) in RCA: 115] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2009] [Revised: 04/23/2009] [Accepted: 04/28/2009] [Indexed: 11/30/2022]
Abstract
There are several forms of acute pediatric brain injury, including neonatal asphyxia, pediatric cardiac arrest with global ischemia, and head trauma, that result in devastating, lifelong neurologic impairment. The only clinical intervention that appears neuroprotective is hypothermia initiated soon after the initial injury. Evidence indicates that oxidative stress, mitochondrial dysfunction, and impaired cerebral energy metabolism contribute to the brain cell death that is responsible for much of the poor neurologic outcome from these events. Recent results obtained from both in vitro and animal models of neuronal death in the immature brain point toward several molecular mechanisms that are either induced or promoted by oxidative modification of macromolecules, including consumption of cytosolic and mitochondrial NAD(+) by poly-ADP ribose polymerase, opening of the mitochondrial inner membrane permeability transition pore, and inactivation of key, rate-limiting metabolic enzymes, e.g., the pyruvate dehydrogenase complex. In addition, the relative abundance of pro-apoptotic proteins in immature brains and neurons, and particularly within their mitochondria, predisposes these cells to the intrinsic, mitochondrial pathway of apoptosis, mediated by Bax- or Bak-triggered release of proteins into the cytosol through the mitochondrial outer membrane. Based on these pathways of cell dysfunction and death, several approaches toward neuroprotection are being investigated that show promise toward clinical translation. These strategies include minimizing oxidative stress by avoiding unnecessary hyperoxia, promoting aerobic energy metabolism by repletion of NAD(+) and by providing alternative oxidative fuels, e.g., ketone bodies, directly interfering with apoptotic pathways at the mitochondrial level, and pharmacologic induction of antioxidant and anti-inflammatory gene expression.
Collapse
Affiliation(s)
- Courtney L Robertson
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, 21201, USA
| | | | | | | |
Collapse
|
44
|
Interleukin-10 and Interleukin refeceptor-I Are Upregulated in Glial Cells After an Excitotoxic Injury to the Postnatal Rat Brain. J Neuropathol Exp Neurol 2009; 68:391-403. [DOI: 10.1097/nen.0b013e31819dca30] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
|
45
|
ZEB1 links p63 and p73 in a novel neuronal survival pathway rapidly induced in response to cortical ischemia. PLoS One 2009; 4:e4373. [PMID: 19194497 PMCID: PMC2632749 DOI: 10.1371/journal.pone.0004373] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2008] [Accepted: 12/26/2008] [Indexed: 01/02/2023] Open
Abstract
Background Acute hypoxic/ischemic insults to the forebrain, often resulting in significant cellular loss of the cortical parenchyma, are a major cause of debilitating injury in the industrialized world. A clearer understanding of the pro-death/pro-survival signaling pathways and their downstream targets is critical to the development of therapeutic interventions to mitigate permanent neurological damage. Methodology/Principal Findings We demonstrate here that the transcriptional repressor ZEB1, thought to be involved in regulating the timing and spatial boundaries of basic-Helix-Loop-Helix transactivator-mediated neurogenic determination/differentiation programs, functions to link a pro-survival transcriptional cascade rapidly induced in cortical neurons in response to experimentally induced ischemia. Employing histological, tissue culture, and molecular biological read-outs, we show that this novel pro-survival response, initiated through the rapid induction of p63, is mediated ultimately by the transcriptional repression of a pro-apoptotic isoform of p73 by ZEB1. We show further that this phylogenetically conserved pathway is induced as well in the human cortex subjected to episodes of clinically relevant stroke. Conclusions/Significance The data presented here provide the first evidence that ZEB1 induction is part of a protective response by neurons to ischemia. The stroke-induced increase in ZEB1 mRNA and protein levels in cortical neurons is both developmentally and phylogenetically conserved and may therefore be part of a fundamental cellular response to this insult. Beyond the context of stroke, the finding that ZEB1 is regulated by a member of the p53 family has implications for cell survival in other tissue and cellular environments subjected to ischemia, such as the myocardium and, in particular, tumor masses.
Collapse
|
46
|
Zhu C, Qiu L, Wang X, Xu F, Nilsson M, Cooper-Kuhn C, Kuhn HG, Blomgren K. Age-dependent regenerative responses in the striatum and cortex after hypoxia-ischemia. J Cereb Blood Flow Metab 2009; 29:342-54. [PMID: 18985054 DOI: 10.1038/jcbfm.2008.124] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Regenerative responses after hypoxia-ischemia (HI) were investigated in the immature (P9) and juvenile (P21) mouse striatum and cortex by postischemic 5-bromo-2-deoxyuridine labeling and phenotyping of labeled cells 4 weeks later. HI stimulated the formation of new cells in striatum and cortex in immature, growing brains (P9), but when brain growth was finished (P21) proliferation could be stimulated only in striatum, not in cortex. However, the relative increase was higher in P21 (460%) than P9 striatum (50%), though starting from a lower level at P21. Starting from this lower level, HI-induced proliferation in P21 striatum reached the same level as in P9 striatum, but not higher. Phenotyping revealed that low levels of neurogenesis were still present in nonischemic P9 cortex and striatum, but only in striatum at P21. Ischemia-induced neurogenesis was found only in P9 striatum. Ischemia-induced gliogenesis occurred in P9 and P21 striatum as well as P9 cortex, but not in P21 cortex. Hence, the regenerative response was stronger in striatum than cortex, and stronger in P9 than P21 cortex. The biggest ischemia-induced change was the 49-fold increase in P21 striatal microglia, and this was accompanied by increased inflammation, as judged by the size and numbers of CCL2- and interleukin-18-positive cells.
Collapse
Affiliation(s)
- Changlian Zhu
- Center for Brain Repair and Rehabilitation, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Moretto MB, Boff B, Lavinsky D, Netto CA, Rocha JBT, Souza DO, Wofchuk ST. Importance of schedule of administration in the therapeutic efficacy of guanosine: early intervention after injury enhances glutamate uptake in model of hypoxia-ischemia. J Mol Neurosci 2008; 38:216-9. [PMID: 18846436 DOI: 10.1007/s12031-008-9154-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2008] [Accepted: 09/26/2008] [Indexed: 10/21/2022]
Abstract
Perinatal cerebral hypoxia-ischemia (HI) is an important cause of mortality and neurological disabilities such as cerebral palsy, epilepsy, and mental retardation. The potential for neuroprotection in HI can be achieved mainly during the recovery period. In previous work, we demonstrated that guanosine (Guo) prevented the decrease of glutamate uptake by hippocampal slices of neonatal rats exposed to a hypoxic-ischemic (HI) insult in vivo when administrated before and after insult. In the present study, we compared the effect of Guo administration only after HI using various protocols. When compared with the control, a decrease of [(3)H] glutamate uptake was avoided only when three doses of Guo were administered immediately, 24 h and 48 h after insult, or at 3 h, 24 h, and 48 h after injury or at 6 h, 24 h, and 48 h after HI. These findings indicate that early Guo administration (until 6 h) after HI, in three doses may enhance glutamate uptake into brain slices after hypoxia/ischemia, probably resulting in decreased excitotoxicity.
Collapse
Affiliation(s)
- M B Moretto
- Departamento de Análises Clínicas e Toxicológicas, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil.
| | | | | | | | | | | | | |
Collapse
|
48
|
Neurobehavioral Grand Rounds introduction: Does near drowning in ice water prevent anoxic induced brain injury? J Int Neuropsychol Soc 2008; 14:656-9. [PMID: 18577296 DOI: 10.1017/s1355617708080879] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Cold water near-drowning is often thought to be neuroprotective in individuals with anoxia of a longer duration than that usually required to produce irreversible neurologic damage. There is a paucity of data in adults with cold water near-drowning that assess neuropsychological outcomes. Information regarding long-term effects of near cold water near-drowning on neuropathology, neuropsychological and neurobehavioral outcomes are uncommon. This paper provides an introduction to two cases of cold water near-drowning reported in this issue of JINS by Sameulson and colleagues and provides background information for interpretation of the findings of these cases in the context of outcomes following anoxia.
Collapse
|
49
|
Soane L, Siegel ZT, Schuh RA, Fiskum G. Postnatal developmental regulation of Bcl-2 family proteins in brain mitochondria. J Neurosci Res 2008; 86:1267-76. [PMID: 18058945 DOI: 10.1002/jnr.21584] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Although it has been long recognized that the relative balance of pro- and antiapoptotic Bcl-2 proteins is critical in determining the susceptibility to apoptotic death, only a few studies have examined the level of these proteins specifically at mitochondria during postnatal brain development. In this study, we examined the age-dependent regulation of Bcl-2 family proteins using rat brain mitochondria isolated at various postnatal ages and from the adult. The results indicate that a general down-regulation of most of the proapoptotic Bcl-2 proteins present in mitochondria occurs during postnatal brain development. The multidomain proapoptotic Bax, Bak, and Bok are all expressed at high levels in mitochondria early postnatally but decline in the adult. Multiple BH3-only proteins, including direct activators (Bid, Bim, and Puma) and the derepressor BH3-only protein Bad, are also present in immature brain mitochondria and are down-regulated in the adult brain. Antiapoptotic Bcl-2 family members are differentially regulated, with a shift from high Bcl-2 expression in immature mitochondria to predominant Bcl-x(L) expression in the adult. These results support the concept that developmental differences in upstream regulators of the mitochondrial apoptotic pathway are responsible for the increased susceptibility of cells in the immature brain to apoptosis following injury.
Collapse
Affiliation(s)
- Lucian Soane
- Department of Anesthesiology, University of Maryland, School of Medicine, Baltimore, Maryland 21201, USA
| | | | | | | |
Collapse
|
50
|
Degos V, Loron G, Mantz J, Gressens P. Neuroprotective Strategies for the Neonatal Brain. Anesth Analg 2008; 106:1670-80. [DOI: 10.1213/ane.0b013e3181733f6f] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|