1
|
Cui N, Wang J, Feng X, Zhang L, Yang Y. Deep vein thrombosis in severe community-acquired pneumonia patients undergoing thromboprophylaxis: Prevalence, risk factors, and outcome. Thromb J 2025; 23:23. [PMID: 40075406 PMCID: PMC11905501 DOI: 10.1186/s12959-025-00706-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 02/27/2025] [Indexed: 03/14/2025] Open
Abstract
BACKGROUND Even with adherence to thromboprophylaxis recommended by guidelines, the incidence of deep vein thrombosis (DVT) remains high among patients with severe community-acquired pneumonia (SCAP). There is an urgent need to identify the risk factors for DVT in these patients to optimize preventive strategies. STUDY DESIGN AND METHODS We retrospectively enrolled 309 adults with SCAP admitted to Beijing Chao-Yang Hospital between 1 January 2015 and 30 June 2023. All patients received guideline-recommended thromboprophylaxis and lower extremity venous compression ultrasound scanning. Clinical characteristics, including demographic information, clinical history, vital signs, laboratory findings, treatments, complications, and outcomes, were analyzed for patients with and without DVT in these two cohorts. RESULTS Of the 309 patients, 110 (35.6%) developed 1ower extremity DVT. There was no significant difference in the incidence of DVT among the different prophylactic measures (P = 0.393). Multivariate logistic regression analysis showed an association between a history of VTE (OR, 13.388, 95% CI: 2.179 ~ 82.257; P = 0.005), bedridden time > 3 days (OR, 17.672, 95% CI: 5.686 ~ 54.929; P < 0.001), D-dimer levels ≥ 1.0 µg/mL (OR, 2.109, 95% CI: 1.018 ~ 4.372; P = 0.045), LDH levels ≥ 400 U/L (OR, 2.548, 95% CI: 1.308 ~ 4.965; P = 0.006), IMV (OR, 2.479, 95% CI: 1.233 ~ 4.986; P = 0.011) and the occurrence of DVT. A new prediction model, including history of VTE, bedridden time, D-dimer levels, LDH levels and IMV, showed a better performance in predicting DVT (AUC = 0.856; 95% CI: 0.766 ~ 0.921; sensitivity: 80.6%; specificity: 81.4%) than Padua prediction score (AUC = 0.666) and Caprini prediction score (AUC = 0.688) for patients with SCAP. The 30-day mortality and in-hospital mortality in the DVT group were significantly higher than those in the non-DVT group. CONCLUSIONS Even received guideline-recommended thromboprophylaxis, the prevalence of DVT among patients with SCAP remains unexpectedly high which is also associated with a poor prognosis. It is necessary to identify people at high risk of DVT early and refine the preventive strategies accordingly to improve patient outcomes.
Collapse
Affiliation(s)
- Na Cui
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, 8 Gongren Tiyuchang Nanlua, Chaoyang District, Beijing, 100020, People's Republic of China
| | - Jing Wang
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, 8 Gongren Tiyuchang Nanlua, Chaoyang District, Beijing, 100020, People's Republic of China
| | - Xiaokai Feng
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, 8 Gongren Tiyuchang Nanlua, Chaoyang District, Beijing, 100020, People's Republic of China
| | - Liming Zhang
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, 8 Gongren Tiyuchang Nanlua, Chaoyang District, Beijing, 100020, People's Republic of China.
| | - Yuanhua Yang
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, 8 Gongren Tiyuchang Nanlua, Chaoyang District, Beijing, 100020, People's Republic of China.
| |
Collapse
|
2
|
Chen K, Wang D, Qian M, Weng M, Lu Z, Zhang K, Jin Y. Endothelial cell dysfunction and targeted therapeutic drugs in sepsis. Heliyon 2024; 10:e33340. [PMID: 39027563 PMCID: PMC11255673 DOI: 10.1016/j.heliyon.2024.e33340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 06/19/2024] [Accepted: 06/19/2024] [Indexed: 07/20/2024] Open
Abstract
Sepsis is a life-threatening organ dysfunction caused by an abnormal host response to microbial infections. During its pathogenesis, vascular endothelial cells (ECs) play a pivotal role as essential components in maintaining microcirculatory homeostasis. This article aims to comprehensively review the multifaceted physiological functions of vascular ECs, elucidate the alterations in their functionality throughout the course of sepsis, and explore recent advancements in research concerning sepsis-related therapeutic drugs targeting ECs.
Collapse
Affiliation(s)
- Kunwei Chen
- Department of Anesthesiology, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Dongdong Wang
- Department of Anesthesiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Minyue Qian
- Department of Anesthesiology, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Mengcao Weng
- Department of Anesthesiology, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhongteng Lu
- Children's Hospital, National Clinical Research Center for Child Health, Zhejiang University School of Medicine, Hangzhou, China
| | - Kai Zhang
- Department of Anesthesiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yue Jin
- Department of Anesthesiology, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Children's Hospital, National Clinical Research Center for Child Health, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
3
|
Lv Y, Yu W, Xuan R, Yang Y, Xue X, Ma X. Human Placental Mesenchymal Stem Cells-Exosomes Alleviate Endothelial Barrier Dysfunction via Cytoskeletal Remodeling through hsa-miR-148a-3p/ROCK1 Pathway. Stem Cells Int 2024; 2024:2172632. [PMID: 38681858 PMCID: PMC11055650 DOI: 10.1155/2024/2172632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 03/18/2024] [Accepted: 04/02/2024] [Indexed: 05/01/2024] Open
Abstract
Background Endothelial barrier disruption of human pulmonary vascular endothelial cells (HPVECs) is an important pathogenic factor for acute lung injury (ALI)/acute respiratory distress syndrome (ARDS). Mesenchymal stem cells-exosome (MSCs-Exo) represents an ideal carrier for cell-free therapy. The therapeutic implication and underlying mechanism of human placental MSCs-Exo (HPMSCs-Exo) in ALI/ARDS need to be further explored. Materials and Methods HPMSCs-Exo was extracted from HPMSCs and characterized. Then, the therapeutic effects of exosomes were evaluated in ALI mice and HPVECs. RNA-sequencing was applied to reveal the miRNA profile of HPMSCs-Exo and differentially expressed genes (DEGs) in HPMSCs-Exo-pretreated HPVECs. The targets of miRNAs were predicted by bioinformatics methods and correlated to DEGs. Finally, the role of hsa-miR-148a-3p/ROCK1 pathway in HPVECs has been further discussed. Results The results showed that HPMSCs-Exo could downregulate Rho-associated coiled-coil-containing protein kinase 1 (ROCK1), upregulate the expression of zonula occludens-1 (ZO-1) and F-actin, promote HPVECs migration and tube formation, reduce cytoskeletal disorders and cell permeability, and thus improve ALI/ARDS. RNA-sequencing revealed the DEGs were mainly enriched in cell junction, angiogenesis, inflammation, and energy metabolism. HPMSCs-Exo contains multiple miRNAs which are associated with cytoskeletal function; the expression abundance of hsa-miR-148a-3p is the highest. Bioinformatic analysis identified ROCK1 as a target of hsa-miR-148a-3p. The overexpression of hsa-miR-148a-3p in HPMSCs-Exo promoted the migration and tube formation of HPVECs and reduced ROCK1 expression. However, the overexpression of ROCK1 on HPVECs reduced the therapeutic effect of HPMSCs-Exo. Conclusions HPMSCs-Exo represents a protective regimen against endothelial barrier disruption of HPVECs in ALI/ARDS, and the hsa-miR-148a-3p/ROCK1 pathway plays an important role in this therapeutics implication.
Collapse
Affiliation(s)
- Yuzhen Lv
- School of Clinical, Ningxia Medical University, Yinchuan 750003, China
- Ningxia Institute for Human Stem Cell Research, General Hospital of Ningxia Medical University, Yinchuan 750003, China
| | - Wenqin Yu
- School of Clinical, Ningxia Medical University, Yinchuan 750003, China
- Ningxia Institute for Human Stem Cell Research, General Hospital of Ningxia Medical University, Yinchuan 750003, China
| | - Ruiui Xuan
- School of Clinical, Ningxia Medical University, Yinchuan 750003, China
| | - Yulu Yang
- School of Clinical, Ningxia Medical University, Yinchuan 750003, China
| | - Xiaolan Xue
- School of Clinical, Ningxia Medical University, Yinchuan 750003, China
| | - Xiaowei Ma
- Intensive Care Unit, Cardiocerebral Vascular Disease Hospital, General Hospital of Ningxia Medical University, Yinchuan 750003, China
| |
Collapse
|
4
|
Keith P, Bohn RIC, Nguyen T, Scott LK, Richmond M, Day M, Choe C, Perkins L, Burnside R, Pyke R, Rikard B, Guffey A, Saini A, Park HJ, Carcillo J. Improved survival in COVID-19 related sepsis and ARDS treated with a unique "triple therapy" including therapeutic plasma exchange: A single center retrospective analysis. J Clin Apher 2024; 39:e22107. [PMID: 38404046 DOI: 10.1002/jca.22107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 02/09/2024] [Accepted: 02/10/2024] [Indexed: 02/27/2024]
Abstract
BACKGROUND Throughout the COVID-19 pandemic, the mortality of critically ill patients remained high. Our group developed a treatment regimen targeting sepsis and ARDS which we labeled "triple therapy" consisting of (1) corticosteroids, (2) therapeutic plasma exchange (TPE), and (3) timely intubation with lung protective ventilation. Our propensity analysis assesses the impact of triple therapy on survival in COVID-19 patients with sepsis and ARDS. METHODS Retrospective propensity analysis comparing triple therapy to no triple therapy in adult critically ill COVID-19 patients admitted to the Intensive Care Unit at Lexington Medical Center from 1 March 2020 through 31 October 2021. RESULTS Eight hundred and fifty-one patients were admitted with COVID-19 and 53 clinical and laboratory variables were analyzed. Multivariable analysis revealed that triple therapy was associated with increased survival (OR: 1.91; P = .008). Two propensity score-adjusted models demonstrated an increased likelihood of survival in patients receiving triple therapy. Patients with thrombocytopenia were among those most likely to experience increased survival if they received early triple therapy. Decreased survival was observed with endotracheal intubation ≥7 days from hospital admission (P < .001) and there was a trend toward decreased survival if TPE was initiated ≥6 days from hospital admission (P = .091). CONCLUSION Our analysis shows that early triple therapy, defined as high-dose methylprednisolone, TPE, and timely invasive mechanical ventilation within the first 96 hours of admission, may improve survival in critically ill septic patients with ARDS secondary to COVID-19 infection. Further studies are needed to define specific phenotypes and characteristics that will identify those patients most likely to benefit.
Collapse
Affiliation(s)
- Philip Keith
- Lexington Medical Center, West Columbia, South Carolina, USA
| | | | - Trung Nguyen
- Baylor College of Medicine, Texas Children's Hospital, Houston, Texas, USA
| | - L Keith Scott
- Louisiana State University Health Sciences Center, Shreveport, Louisiana, USA
| | - Monty Richmond
- Medical Center Downtown, MUSC Health Columbia, Columbia, South Carolina, USA
| | - Matthew Day
- Lexington Medical Center, West Columbia, South Carolina, USA
| | - Carol Choe
- Lexington Medical Center, West Columbia, South Carolina, USA
| | - Linda Perkins
- Lexington Medical Center, West Columbia, South Carolina, USA
| | | | - Richard Pyke
- Lexington Medical Center, West Columbia, South Carolina, USA
| | - Ben Rikard
- Lexington Medical Center, West Columbia, South Carolina, USA
| | - Amanda Guffey
- Lexington Medical Center, West Columbia, South Carolina, USA
| | - Arun Saini
- Baylor College of Medicine, Texas Children's Hospital, Houston, Texas, USA
| | - H J Park
- Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Joseph Carcillo
- University of Pittsburgh Medical Center, Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
5
|
Tyagi T, Yarovinsky TO, Faustino EVS, Hwa J. Platelet Mitochondrial Fusion and Function in Vascular Integrity. Circ Res 2024; 134:162-164. [PMID: 38236952 PMCID: PMC10798220 DOI: 10.1161/circresaha.123.323867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2024]
Affiliation(s)
- Tarun Tyagi
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Timur O. Yarovinsky
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - E. Vincent S. Faustino
- Section of Critical Care, Department of Pediatrics, Yale University School of Medicine, New Haven, CT, USA
| | - John Hwa
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
- Yale Cooperative Center of Excellence in Hematology, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
6
|
Lipińska-Gediga M, Lemańska-Perek A, Gozdzik W, Adamik B. Changes in plasma endocan level are related to circulatory but not respiratory failure in critically ill patients with COVID-19. Sci Rep 2023; 13:22307. [PMID: 38102316 PMCID: PMC10724176 DOI: 10.1038/s41598-023-48912-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 12/01/2023] [Indexed: 12/17/2023] Open
Abstract
The aim of this prospective, observational study was to assess whether changes in the level of endocan, a marker of endothelial damage, may be an indicator of clinical deterioration and mortality in critically ill COVID-19 patients. Endocan and clinical parameters were evaluated in 40 patients with acute respiratory failure on days 1-5 after admission to the intensive care unit. Endocan levels were not related to the degree of respiratory failure, but to the presence of cardiovascular failure. In patients with cardiovascular failure, the level of endocan increased over the first 5 days (1.63, 2.50, 2.68, 2.77, 3.31 ng/mL, p = 0.016), while in patients without failure it decreased (1.51, 1.50, 1.56, 1.42, 1.13 ng/mL, p = 0.046). In addition, mortality was more than twice as high in patients with acute cardiovascular failure compared to those without failure (68% vs. 32%, p = 0.035). Baseline endocan levels were lower in viral than in bacterial infections (1.57 ng/mL vs. 5.25 ng/mL, p < 0.001), with a good discrimination between infections of different etiologies (AUC of 0.914, p < 0.001). In conclusion, endocan levels are associated with the occurrence of cardiovascular failure in COVID-19 and depend on the etiology of the infection, with higher values for bacterial than for viral sepsis.
Collapse
Affiliation(s)
- Małgorzata Lipińska-Gediga
- Clinical Department of Anesthesiology and Intensive Therapy, Wroclaw Medical University, Borowska 213, 50-556, Wrocław, Poland.
| | - Anna Lemańska-Perek
- Department of Chemistry and Immunochemistry, Wroclaw Medical University, Marii Sklodowskiej-Curie 48/50, 50-369, Wrocław, Poland
| | - Waldemar Gozdzik
- Clinical Department of Anesthesiology and Intensive Therapy, Wroclaw Medical University, Borowska 213, 50-556, Wrocław, Poland
| | - Barbara Adamik
- Clinical Department of Anesthesiology and Intensive Therapy, Wroclaw Medical University, Borowska 213, 50-556, Wrocław, Poland
| |
Collapse
|
7
|
Gong H, Zhong H, Xu HM, Liu XC, Li LP, Zhang DK. Insight into increased risk of portal vein thrombosis in nonalcoholic fatty liver disease. Eur J Intern Med 2023; 114:23-34. [PMID: 37330315 DOI: 10.1016/j.ejim.2023.06.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/09/2023] [Accepted: 06/13/2023] [Indexed: 06/19/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is one of the leading chronic liver diseases with increased morbidity and mortality rates for extrahepatic diseases (including cardiovascular disease, portal vein thrombosis, etc.). There is an increased risk of thrombosis in both the portal and systemic circulation in patients with NAFLD, independent of traditional liver cirrhosis. However, increased portal pressure, the most critical factor, is frequently observed in NAFLD patients, predisposing them to portal vein thrombosis (PVT). It has been reported that there is an 8.5% incidence of PVT among patients with non-cirrhotic NAFLD in a prospective cohort study. Based on the prothrombotic status of NAFLD itself, patients combined with cirrhosis may accelerate the development of PVT and lead to a poor prognosis. Moreover, PVT has been shown to complicate the procedure and adversely affect the outcome during liver transplantation surgery. NAFLD is in a prothrombotic state, and its underlying mechanisms have not been fully understood so far. Particularly noteworthy is that gastroenterologists currently overlook the higher risk of PVT in NAFLD. We investigate the pathogenesis of NAFLD complicated with PVT from the perspective of primary, secondary, and tertiary hemostasis, and also summarize relevant studies in humans. Some treatment options that may affect NAFLD and its PVT are also explored to improve patient-oriented outcomes.
Collapse
Affiliation(s)
- Hang Gong
- Department of Gastroenterology, Lanzhou University Second Hospital, Lanzhou, Gansu Province, China
| | - Huang Zhong
- Department of Gastroenterology, Zigong First People's Hospital, Zigong, Sichuan Province, China
| | - Hui-Mei Xu
- Department of Gastroenterology, Lanzhou University Second Hospital, Lanzhou, Gansu Province, China
| | - Xiong-Chang Liu
- Department of Gastroenterology, Lanzhou Second People's Hospital, Lanzhou, Gansu Province, China
| | - Liang-Ping Li
- Department of Gastroenterology, Sichuan Academy of Medical Sciences and Sichuan People's Hospital, Chengdu, Sichuan Province, China.
| | - De-Kui Zhang
- Department of Gastroenterology, Lanzhou University Second Hospital, Lanzhou, Gansu Province, China.
| |
Collapse
|
8
|
Marquis KM, Hammer MM, Steinbrecher K, Henry TS, Lin CY, Shifren A, Raptis CA. CT Approach to Lung Injury. Radiographics 2023; 43:e220176. [PMID: 37289644 DOI: 10.1148/rg.220176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Diffuse alveolar damage (DAD), which represents the pathologic changes seen after acute lung injury, is caused by damage to all three layers of the alveolar wall and can ultimately result in alveolar collapse with loss of the normal pulmonary architecture. DAD has an acute phase that predominantly manifests as airspace disease at CT owing to filling of the alveoli with cells, plasma fluids, and hyaline membranes. DAD then evolves into a heterogeneous organizing phase, with mixed airspace and interstitial disease characterized by volume loss, architectural distortion, fibrosis, and parenchymal loss. Patients with DAD have a severe clinical course and typically require prolonged mechanical ventilation, which may result in ventilator-induced lung injury. In those patients who survive DAD, the lungs will remodel over time, but most will have residual findings at chest CT. Organizing pneumonia (OP) is a descriptive term for a histologic pattern characterized by intra-alveolar fibroblast plugs. The significance and pathogenesis of OP are controversial. Some authors regard it as part of a spectrum of acute lung injury, while others consider it a marker of acute or subacute lung injury. At CT, OP manifests with various forms of airspace disease that are most commonly bilateral and relatively homogeneous in appearance at individual time points. Patients with OP most often have a mild clinical course, although some may have residual findings at CT. In patients with DAD and OP, imaging findings can be combined with clinical information to suggest the diagnosis in many cases, with biopsy reserved for difficult cases with atypical findings or clinical manifestations. To best participate in the multidisciplinary approach to patients with lung injury, radiologists must not only recognize these entities but also describe them with consistent and meaningful terminology, examples of which are emphasized in the article. © RSNA, 2023 See the invited commentary by Kligerman et al in this issue. Quiz questions for this article are available in the supplemental material.
Collapse
Affiliation(s)
- Kaitlin M Marquis
- From the Mallinckrodt Institute of Radiology, 510 S Kingshighway Blvd, St Louis, MO 63110 (K.M.M., K.S., C.A.R.); Department of Radiology, Brigham and Women's Hospital, Boston, Mass (M.M.H.); Department of Radiology, Duke University, Durham, NC (T.S.H.); and Department of Pathology & Immunology (C.Y.L.) and Department of Pulmonology (A.S.), Washington University, St Louis, Mo
| | - Mark M Hammer
- From the Mallinckrodt Institute of Radiology, 510 S Kingshighway Blvd, St Louis, MO 63110 (K.M.M., K.S., C.A.R.); Department of Radiology, Brigham and Women's Hospital, Boston, Mass (M.M.H.); Department of Radiology, Duke University, Durham, NC (T.S.H.); and Department of Pathology & Immunology (C.Y.L.) and Department of Pulmonology (A.S.), Washington University, St Louis, Mo
| | - Kacie Steinbrecher
- From the Mallinckrodt Institute of Radiology, 510 S Kingshighway Blvd, St Louis, MO 63110 (K.M.M., K.S., C.A.R.); Department of Radiology, Brigham and Women's Hospital, Boston, Mass (M.M.H.); Department of Radiology, Duke University, Durham, NC (T.S.H.); and Department of Pathology & Immunology (C.Y.L.) and Department of Pulmonology (A.S.), Washington University, St Louis, Mo
| | - Travis S Henry
- From the Mallinckrodt Institute of Radiology, 510 S Kingshighway Blvd, St Louis, MO 63110 (K.M.M., K.S., C.A.R.); Department of Radiology, Brigham and Women's Hospital, Boston, Mass (M.M.H.); Department of Radiology, Duke University, Durham, NC (T.S.H.); and Department of Pathology & Immunology (C.Y.L.) and Department of Pulmonology (A.S.), Washington University, St Louis, Mo
| | - Chieh-Yu Lin
- From the Mallinckrodt Institute of Radiology, 510 S Kingshighway Blvd, St Louis, MO 63110 (K.M.M., K.S., C.A.R.); Department of Radiology, Brigham and Women's Hospital, Boston, Mass (M.M.H.); Department of Radiology, Duke University, Durham, NC (T.S.H.); and Department of Pathology & Immunology (C.Y.L.) and Department of Pulmonology (A.S.), Washington University, St Louis, Mo
| | - Adrian Shifren
- From the Mallinckrodt Institute of Radiology, 510 S Kingshighway Blvd, St Louis, MO 63110 (K.M.M., K.S., C.A.R.); Department of Radiology, Brigham and Women's Hospital, Boston, Mass (M.M.H.); Department of Radiology, Duke University, Durham, NC (T.S.H.); and Department of Pathology & Immunology (C.Y.L.) and Department of Pulmonology (A.S.), Washington University, St Louis, Mo
| | - Constantine A Raptis
- From the Mallinckrodt Institute of Radiology, 510 S Kingshighway Blvd, St Louis, MO 63110 (K.M.M., K.S., C.A.R.); Department of Radiology, Brigham and Women's Hospital, Boston, Mass (M.M.H.); Department of Radiology, Duke University, Durham, NC (T.S.H.); and Department of Pathology & Immunology (C.Y.L.) and Department of Pulmonology (A.S.), Washington University, St Louis, Mo
| |
Collapse
|
9
|
Jandl K, Berg JL, Birnhuber A, Fliesser E, Borek I, Seeliger B, David S, Schmidt JJ, Gorkiewicz G, Zacharias M, Welte T, Olschewski H, Heinemann A, Wygrecka M, Kwapiszewska G. Basement membrane product, endostatin, as a link between inflammation, coagulation and vascular permeability in COVID-19 and non-COVID-19 acute respiratory distress syndrome. Front Immunol 2023; 14:1188079. [PMID: 37283766 PMCID: PMC10241244 DOI: 10.3389/fimmu.2023.1188079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 05/04/2023] [Indexed: 06/08/2023] Open
Abstract
Background Immune cell recruitment, endothelial cell barrier disruption, and platelet activation are hallmarks of lung injuries caused by COVID-19 or other insults which can result in acute respiratory distress syndrome (ARDS). Basement membrane (BM) disruption is commonly observed in ARDS, however, the role of newly generated bioactive BM fragments is mostly unknown. Here, we investigate the role of endostatin, a fragment of the BM protein collagen XVIIIα1, on ARDS associated cellular functions such as neutrophil recruitment, endothelial cell barrier integrity, and platelet aggregation in vitro. Methods In our study we analyzed endostatin in plasma and post-mortem lung specimens of patients with COVID-19 and non-COVID-19 ARDS. Functionally, we investigated the effect of endostatin on neutrophil activation and migration, platelet aggregation, and endothelial barrier function in vitro. Additionally, we performed correlation analysis for endostatin and other critical plasma parameters. Results We observed increased plasma levels of endostatin in our COVID-19 and non-COVID-19 ARDS cohort. Immunohistochemical staining of ARDS lung sections depicted BM disruption, alongside immunoreactivity for endostatin in proximity to immune cells, endothelial cells, and fibrinous clots. Functionally, endostatin enhanced the activity of neutrophils, and platelets, and the thrombin-induced microvascular barrier disruption. Finally, we showed a positive correlation of endostatin with soluble disease markers VE-Cadherin, c-reactive protein (CRP), fibrinogen, and interleukin (IL)-6 in our COVID-19 cohort. Conclusion The cumulative effects of endostatin on propagating neutrophil chemotaxis, platelet aggregation, and endothelial cell barrier disruption may suggest endostatin as a link between those cellular events in ARDS pathology.
Collapse
Affiliation(s)
- Katharina Jandl
- Otto Loewi Research Center, Division of Pharmacology, Medical University of Graz, Graz, Austria
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
| | - Johannes Lorenz Berg
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
- Otto Loewi Research Center, Division of Physiology and Pathophysiology, Medical University of Graz, Graz, Austria
| | - Anna Birnhuber
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
- Otto Loewi Research Center, Division of Physiology and Pathophysiology, Medical University of Graz, Graz, Austria
| | | | - Izabela Borek
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
| | - Benjamin Seeliger
- Department of Respiratory Medicine/Infectious Diseases, Hannover Medical School, Member of the German Lung Center (DZL), Hannover, Germany
| | - Sascha David
- Institute of Intensive Care, University Hospital Zurich, Zurich, Switzerland
| | - Julius J. Schmidt
- Department of Nephrology and Hypertension, Hannover Medical School, Hannover, Germany
| | - Gregor Gorkiewicz
- Diagnostic and Research Institute of Pathology, Medical University Graz, Graz, Austria
| | - Martin Zacharias
- Diagnostic and Research Institute of Pathology, Medical University Graz, Graz, Austria
| | - Tobias Welte
- Department of Respiratory Medicine/Infectious Diseases, Hannover Medical School, Member of the German Lung Center (DZL), Hannover, Germany
| | - Horst Olschewski
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
- Division of Pulmonology, Medical University of Graz, Graz, Austria
| | - Akos Heinemann
- Otto Loewi Research Center, Division of Pharmacology, Medical University of Graz, Graz, Austria
| | - Malgorzata Wygrecka
- Center for Infection and Genomics of the Lung, Universities of Giessen and Marburg Lung Center, Member of the German Lung Center (DZL), Giessen, Germany
- Institute for Lung Health, Member of the German Lung Center (DZL), Giessen, Germany
| | - Grazyna Kwapiszewska
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
- Otto Loewi Research Center, Division of Physiology and Pathophysiology, Medical University of Graz, Graz, Austria
- Institute for Lung Health, Member of the German Lung Center (DZL), Giessen, Germany
| |
Collapse
|
10
|
Mollura M, Baroncelli F, Mandelli G, Tricella G, Weissman GE, Poole D, Caironi P, Celi LA, Barbieri R, Finazzi S. Physiologic dead space is independently associated with mortality and discharge of mechanically ventilated patients with COVID-19 ARDS: a retrospective study. Sci Rep 2023; 13:5719. [PMID: 37029215 PMCID: PMC10081332 DOI: 10.1038/s41598-023-31999-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 03/21/2023] [Indexed: 04/09/2023] Open
Abstract
Physiologic dead space is a well-established independent predictor of death in patients with acute respiratory distress syndrome (ARDS). Here, we explore the association between a surrogate measure of dead space (DS) and early outcomes of mechanically ventilated patients admitted to Intensive Care Unit (ICU) because of COVID-19-associated ARDS. Retrospective cohort study on data derived from Italian ICUs during the first year of the COVID-19 epidemic. A competing risk Cox proportional hazard model was applied to test for the association of DS with two competing outcomes (death or discharge from the ICU) while adjusting for confounders. The final population consisted of 401 patients from seven ICUs. A significant association of DS with both death (HR 1.204; CI 1.019-1.423; p = 0.029) and discharge (HR 0.434; CI 0.414-0.456; p [Formula: see text]) was noticed even when correcting for confounding factors (age, sex, chronic obstructive pulmonary disease, diabetes, PaO[Formula: see text]/FiO[Formula: see text], tidal volume, positive end-expiratory pressure, and systolic blood pressure). These results confirm the important association between DS and death or ICU discharge in mechanically ventilated patients with COVID-19-associated ARDS. Further work is needed to identify the optimal role of DS monitoring in this setting and to understand the physiological mechanisms underlying these associations.
Collapse
Affiliation(s)
- Maximiliano Mollura
- Department of Electronic, Information and Bioengineering, Politecnico di Milano, Milan, Lombardia, Italy.
- Department of Medical Epidemiology, Mario Negri Institute for Pharmacological Research IRCCS, 24020, Ranica, Lombardia, Italy.
| | - Francesca Baroncelli
- Department of Anesthesia and Intensive Care, San Giovanni Bosco Hospital-ASL Città di Torino, Turin, Piemonte, Italy
| | - Giulia Mandelli
- Department of Medical Epidemiology, Mario Negri Institute for Pharmacological Research IRCCS, 24020, Ranica, Lombardia, Italy
| | - Giovanni Tricella
- Department of Medical Epidemiology, Mario Negri Institute for Pharmacological Research IRCCS, 24020, Ranica, Lombardia, Italy
| | - Gary E Weissman
- Palliative and Advanced Illness Research (PAIR) Center and Pulmonary, Allergy and Critical Care Division, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Daniele Poole
- Operative Unit ofAnesthesia and Intensive Care Unit, S. Martino Hospital, Belluno, Veneto, Italy
| | - Pietro Caironi
- Department of Anesthesia and Critical Care, Azienda Ospedaliero-Universitaria S. Luigi Gonzaga, Orbassano, Piemonte, Italy
- Department of Oncology, University of Turin, Turin, Piemonte, Italy
| | - Leo Anthony Celi
- Laboratory for Computational Physiology, Massachusetts Institute of Technology, Cambridge, MA, USA
- Division of Pulmonary, Critical Care and Sleep Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Riccardo Barbieri
- Department of Electronic, Information and Bioengineering, Politecnico di Milano, Milan, Lombardia, Italy
| | - Stefano Finazzi
- Department of Medical Epidemiology, Mario Negri Institute for Pharmacological Research IRCCS, 24020, Ranica, Lombardia, Italy
| |
Collapse
|
11
|
Yang Z, Nicholson SE, Cancio TS, Cancio LC, Li Y. Complement as a vital nexus of the pathobiological connectome for acute respiratory distress syndrome: An emerging therapeutic target. Front Immunol 2023; 14:1100461. [PMID: 37006238 PMCID: PMC10064147 DOI: 10.3389/fimmu.2023.1100461] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 02/27/2023] [Indexed: 03/19/2023] Open
Abstract
The hallmark of acute respiratory distress syndrome (ARDS) pathobiology is unchecked inflammation-driven diffuse alveolar damage and alveolar-capillary barrier dysfunction. Currently, therapeutic interventions for ARDS remain largely limited to pulmonary-supportive strategies, and there is an unmet demand for pharmacologic therapies targeting the underlying pathology of ARDS in patients suffering from the illness. The complement cascade (ComC) plays an integral role in the regulation of both innate and adaptive immune responses. ComC activation can prime an overzealous cytokine storm and tissue/organ damage. The ARDS and acute lung injury (ALI) have an established relationship with early maladaptive ComC activation. In this review, we have collected evidence from the current studies linking ALI/ARDS with ComC dysregulation, focusing on elucidating the new emerging roles of the extracellular (canonical) and intracellular (non-canonical or complosome), ComC (complementome) in ALI/ARDS pathobiology, and highlighting complementome as a vital nexus of the pathobiological connectome for ALI/ARDS via its crosstalking with other systems of the immunome, DAMPome, PAMPome, coagulome, metabolome, and microbiome. We have also discussed the diagnostic/therapeutic potential and future direction of ALI/ARDS care with the ultimate goal of better defining mechanistic subtypes (endotypes and theratypes) through new methodologies in order to facilitate a more precise and effective complement-targeted therapy for treating these comorbidities. This information leads to support for a therapeutic anti-inflammatory strategy by targeting the ComC, where the arsenal of clinical-stage complement-specific drugs is available, especially for patients with ALI/ARDS due to COVID-19.
Collapse
Affiliation(s)
- Zhangsheng Yang
- Combat Casualty Care Research Team (CRT) 3, United States (US) Army Institute of Surgical Research, Joint Base San Antonio (JBSA)-Fort Sam Houston, TX, United States
| | - Susannah E. Nicholson
- Division of Trauma Research, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Tomas S. Cancio
- Combat Casualty Care Research Team (CRT) 3, United States (US) Army Institute of Surgical Research, Joint Base San Antonio (JBSA)-Fort Sam Houston, TX, United States
| | - Leopoldo C. Cancio
- United States (US) Army Burn Center, United States (US) Army Institute of Surgical Research, Joint Base San Antonio (JBSA)-Fort Sam Houston, TX, United States
| | - Yansong Li
- Division of Trauma Research, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
- The Geneva Foundation, Immunological Damage Control Resuscitation Program, Tacoma, WA, United States
- *Correspondence: Yansong Li,
| |
Collapse
|
12
|
Chen X, Qi D, Fan S, He Y, Jing H, Wang D. Interferon regulatory factor 1 (IRF1) inhibits lung endothelial regeneration following inflammation-induced acute lung injury. Clin Sci (Lond) 2023; 137:367-383. [PMID: 36857175 PMCID: PMC10011169 DOI: 10.1042/cs20220876] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/27/2023] [Accepted: 03/01/2023] [Indexed: 03/02/2023]
Abstract
BACKGROUND Acute respiratory distress syndrome (ARDS) is a respiratory condition caused by severe endothelial barrier dysfunction within the lung. In ARDS, excessive inflammation, tissue edema, and immune cell influx prevents endothelial cell regeneration that is crucial in repairing the endothelial barrier. However, little is known about the molecular mechanism that underpin endothelial cell regeneration in ARDS. METHODS R-based bioinformatics tools were used to analyze microarray-derived transcription profiles in human lung microvascular endothelial cells (HLMVECs) subjected to non-treatment or lipopolysaccharide (LPS) exposure. We generated endothelial cell-specific interferon regulatory factor 1 (Irf1) knockout (Irf1EC-/-) and Irf1fl/fl control mice for use in an endotoxemic murine model of acute lung injury (ALI). In vitro studies (qPCR, immunoblotting, and ChIP-qPCR) were conducted in mouse lung endothelial cells (MLECs) and HLMVECs. Dual-luciferase promoter reporter assays were performed in HLMVECs. RESULTS Bioinformatics analyses identified IRF1 as a key up-regulated gene in HLMVECs post-LPS exposure. Endothelial-specific knockout of Irf1 in ALI mice resulted in enhanced regeneration of lung endothelium, while liposomal delivery of endothelial-specific Irf1 to wild-type ALI mice inhibited lung endothelial regeneration in a leukemia inhibitory factor (Lif)-dependent manner. Mechanistically, we demonstrated that LPS-induced Stat1Ser727 phosphorylation promotes Irf1 transactivation, resulting in downstream up-regulation of Lif that inhibits endothelial cell proliferation. CONCLUSIONS These results demonstrate the existence of a p-Stat1Ser727-Irf1-Lif axis that inhibits lung endothelial cell regeneration post-LPS injury. Thus, direct inhibition of IRF1 or LIF may be a promising strategy for enhancing endothelial cell regeneration and improving clinical outcomes in ARDS patients.
Collapse
Affiliation(s)
- Xiaorui Chen
- Department of Respiratory and Critical Care Medicine, the Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
- Correspondence: Xiaorui Chen () or Daoxin Wang ()
| | - Di Qi
- Department of Respiratory and Critical Care Medicine, the Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Shulei Fan
- Department of Respiratory and Critical Care Medicine, the Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Yirui He
- Department of Endocrinology, the Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Hekun Jing
- Department of Respiratory and Critical Care Medicine, the Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Daoxin Wang
- Department of Respiratory and Critical Care Medicine, the Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
- Correspondence: Xiaorui Chen () or Daoxin Wang ()
| |
Collapse
|
13
|
Girard TJ, Antunes L, Zhang N, Amrute JM, Subramanian R, Eldem I, Remy KE, Mazer M, Erlich EC, Cruchaga C, Steed AL, Randolph GJ, Di Paola J. Peripheral blood mononuclear cell tissue factor (F3 gene) transcript levels and circulating extracellular vesicles are elevated in severe coronavirus 2019 (COVID-19) disease. J Thromb Haemost 2023; 21:629-638. [PMID: 36696180 PMCID: PMC9773443 DOI: 10.1016/j.jtha.2022.11.033] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 10/20/2022] [Accepted: 11/01/2022] [Indexed: 01/26/2023]
Abstract
BACKGROUND Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is associated with excessive coagulation, thrombosis, and mortality. OBJECTIVE To provide insight into mechanisms that contribute to excessive coagulation in coronavirus 2019 (COVID-19) disease. PATIENTS/METHODS Blood from COVID-19 patients was investigated for coagulation-related gene expression and functional activities. RESULTS Single-cell RNA sequencing (scRNA-seq) of peripheral blood mononuclear cells from severe COVID-19 patients revealed a 5.2-fold increase in tissue factor (TF [F3 gene]) transcript expression levels (P < .05), the trigger of extrinsic coagulation; a 7.7-fold increase in C1-inhibitor (SERPING1 gene; P < .01) transcript expression levels, an inhibitor of intrinsic coagulation; and a 4.4-fold increase in anticoagulant thrombomodulin (TM [THBD gene]) transcript expression levels (P < .001). Bulk RNA-seq analysis of sorted CD14+ monocytes on an independent cohort of COVID-19 patients confirmed these findings (P < .05). Indicative of excessive coagulation, 41% of COVID-19 patients' plasma samples contained high D-dimer levels (P < .0001); of these, 19% demonstrated extracellular vesicle TF activity (P = .109). COVID-19 patients' ex vivo plasma-based thrombin generation correlated positively with D-dimer levels (P < .01). Plasma procoagulant extracellular vesicles were elevated ∼9-fold in COVID-19 patients (P < .01). Public scRNA-seq data sets from bronchoalveolar lung fluid and our peripheral blood mononuclear cell scRNA-seq data show CD14+ monocytes/macrophages TF transcript expression levels are elevated in severe but not mild or moderate COVID-19 patients. CONCLUSIONS Beyond local lung injury, SARS-CoV-2 infection increases systemic TF (F3) transcript levels and elevates circulating extracellular vesicles that likely contribute to disease-associated coagulation, thrombosis, and related mortality.
Collapse
Affiliation(s)
- Thomas J Girard
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Lilian Antunes
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Nan Zhang
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Junedh M Amrute
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Renumathi Subramanian
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Irem Eldem
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Kenneth E Remy
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Monty Mazer
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Emma C Erlich
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Carlos Cruchaga
- Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Ashley L Steed
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Gwendalyn J Randolph
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Jorge Di Paola
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri, USA.
| |
Collapse
|
14
|
Uhl B, Haring F, Slotta-Huspenina J, Luft J, Schneewind V, Hildinger J, Wu Z, Steiger K, Smiljanov B, Batcha AMN, Keppler OT, Hellmuth JC, Lahmer T, Stock K, Weiss BG, Canis M, Stark K, Bromberger T, Moser M, Schulz C, Weichert W, Zuchtriegel G, Reichel CA. Vitronectin promotes immunothrombotic dysregulation in the venular microvasculature. Front Immunol 2023; 14:1078005. [PMID: 36845099 PMCID: PMC9945350 DOI: 10.3389/fimmu.2023.1078005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 01/05/2023] [Indexed: 02/10/2023] Open
Abstract
Microvascular immunothrombotic dysregulation is a critical process in the pathogenesis of severe systemic inflammatory diseases. The mechanisms controlling immunothrombosis in inflamed microvessels, however, remain poorly understood. Here, we report that under systemic inflammatory conditions the matricellular glycoproteinvitronectin (VN) establishes an intravascular scaffold, supporting interactions of aggregating platelets with immune cells and the venular endothelium. Blockade of the VN receptor glycoprotein (GP)IIb/IIIa interfered with this multicellular interplay and effectively prevented microvascular clot formation. In line with these experimental data, particularly VN was found to be enriched in the pulmonary microvasculature of patients with non-infectious (pancreatitis-associated) or infectious (coronavirus disease 2019 (COVID-19)-associated) severe systemic inflammatory responses. Targeting the VN-GPIIb/IIIa axis hence appears as a promising, already feasible strategy to counteract microvascular immunothrombotic dysregulation in systemic inflammatory pathologies.
Collapse
Affiliation(s)
- Bernd Uhl
- Department of Otorhinolaryngology, University Hospital, Ludwig-Maximilians-Universität München (LMU), Munich, Germany,Walter Brendel Centre of Experimental Medicine, University Hospital, Ludwig-Maximilians-Universität München (LMU) Munich, Munich, Germany,*Correspondence: Bernd Uhl,
| | - Florian Haring
- Department of Otorhinolaryngology, University Hospital, Ludwig-Maximilians-Universität München (LMU), Munich, Germany,Walter Brendel Centre of Experimental Medicine, University Hospital, Ludwig-Maximilians-Universität München (LMU) Munich, Munich, Germany
| | | | - Joshua Luft
- Department of Otorhinolaryngology, University Hospital, Ludwig-Maximilians-Universität München (LMU), Munich, Germany,Walter Brendel Centre of Experimental Medicine, University Hospital, Ludwig-Maximilians-Universität München (LMU) Munich, Munich, Germany
| | - Vera Schneewind
- Department of Otorhinolaryngology, University Hospital, Ludwig-Maximilians-Universität München (LMU), Munich, Germany,Walter Brendel Centre of Experimental Medicine, University Hospital, Ludwig-Maximilians-Universität München (LMU) Munich, Munich, Germany
| | - Jonas Hildinger
- Department of Otorhinolaryngology, University Hospital, Ludwig-Maximilians-Universität München (LMU), Munich, Germany,Walter Brendel Centre of Experimental Medicine, University Hospital, Ludwig-Maximilians-Universität München (LMU) Munich, Munich, Germany
| | - Zhengquan Wu
- Department of Otorhinolaryngology, University Hospital, Ludwig-Maximilians-Universität München (LMU), Munich, Germany,Walter Brendel Centre of Experimental Medicine, University Hospital, Ludwig-Maximilians-Universität München (LMU) Munich, Munich, Germany
| | - Katja Steiger
- Department of Pathology, Technical University of Munich, Munich, Germany
| | - Bojan Smiljanov
- Department of Otorhinolaryngology, University Hospital, Ludwig-Maximilians-Universität München (LMU), Munich, Germany,Walter Brendel Centre of Experimental Medicine, University Hospital, Ludwig-Maximilians-Universität München (LMU) Munich, Munich, Germany
| | - Aarif M. N. Batcha
- Institute of Medical Data Processing, Biometrics, and Epidemiology (IBE), University Hospital, Ludwig-Maximilians-Universität München (LMU) Munich, Munich, Germany,Data Integration for Future Medicine (DiFuture), University Hospital, Ludwig-Maximilians-Universität München (LMU) Munich, Munich, Germany
| | - Oliver T. Keppler
- Max von Pettenkofer Institute and Gene Center, Virology, National Reference Center for Retroviruses, Ludwig-Maximilians-Universität München (LMU) Munich, Munich, Germany,German Centre for Infection Research (DZIF), Partner Site München, Munich, Germany
| | - Johannes C. Hellmuth
- Department of Medicine III, University Hospital, Ludwig-Maximilians-Universität München (LMU), Munich, Munich, Germany,COVID-19 Registry of the LMU Munich (CORKUM), University Hospital, Ludwig-Maximilians-Universität München (LMU) Munich, Munich, Germany
| | - Tobias Lahmer
- Department of Internal Medicine II, Technical University of Munich, Munich, Germany
| | - Konrad Stock
- Department of Nephrology, Technical University of Munich, Munich, Germany
| | - Bernhard G. Weiss
- Department of Otorhinolaryngology, University Hospital, Ludwig-Maximilians-Universität München (LMU), Munich, Germany
| | - Martin Canis
- Department of Otorhinolaryngology, University Hospital, Ludwig-Maximilians-Universität München (LMU), Munich, Germany
| | - Konstantin Stark
- Department of Cardiology, University Hospital, Ludwig-Maximilians-Universität München (LMU) Munich, Munich, Germany
| | - Thomas Bromberger
- Institute of Experimental Hematology, Technical University of Munich, Munich, Germany
| | - Markus Moser
- Institute of Experimental Hematology, Technical University of Munich, Munich, Germany
| | - Christian Schulz
- Department of Cardiology, University Hospital, Ludwig-Maximilians-Universität München (LMU) Munich, Munich, Germany
| | - Wilko Weichert
- Department of Pathology, Technical University of Munich, Munich, Germany
| | - Gabriele Zuchtriegel
- Department of Otorhinolaryngology, University Hospital, Ludwig-Maximilians-Universität München (LMU), Munich, Germany,Walter Brendel Centre of Experimental Medicine, University Hospital, Ludwig-Maximilians-Universität München (LMU) Munich, Munich, Germany
| | - Christoph A. Reichel
- Department of Otorhinolaryngology, University Hospital, Ludwig-Maximilians-Universität München (LMU), Munich, Germany,Walter Brendel Centre of Experimental Medicine, University Hospital, Ludwig-Maximilians-Universität München (LMU) Munich, Munich, Germany
| |
Collapse
|
15
|
Dianaty S, Khodadadi S, Alimoghaddam R, Mirzaei A. Comparison of outcomes and costs of extracorporeal blood purification therapies in critically ill COVID-19 patients. Ther Apher Dial 2022; 27:505-516. [PMID: 36324189 PMCID: PMC9878110 DOI: 10.1111/1744-9987.13948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 09/23/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022]
Abstract
INTRODUCTION Plasmapheresis and hemoperfusion are used against cytokine release syndrome in COVID-19. This study aims to compare their outcomes, costs, and side-effects. METHODS Survival, costs and side-effects were compared in intensive care unit (ICU) patients receiving plasmapheresis (n = 49), hemoperfusion (n = 20), or none (n = 107), followed until death or discharge. RESULTS Plasmapheresis survival time was higher than hemoperfusion or controls (HR = 0.764, p = 0.397 and HR = 0.483, p = 0.002, respectively), although the latter diminished after controlling for age and disease severity (p = 0.979). There was no significant difference in ICU costs for plasmapheresis and hemoperfusion (p = 0.738) while both costed more than controls (both p < 0.001). Hypocalcemia and thrombocytopenia incidence did not differ between two groups (p = 0.124 and p = 0.389, respectively) while being higher than controls in plasmapheresis (both p < 0.001) and hemoperfusion (p < 0.001 and p = 0.056, respectively). CONCLUSION Plasmapheresis and hemoperfusion do not differ significantly in patient survival, ICU costs and side-effects with a higher incidence of hypocalcemia and thrombocytopenia compared witcontrols.
Collapse
Affiliation(s)
- Soroush Dianaty
- Student Research Committee, Tehran Medical Sciences BranchIslamic Azad UniversityTehranIran,Universal Scientific Education and Research Network (USERN)TehranIran
| | - Sanaz Khodadadi
- Student Research Committee, Tehran Medical Sciences BranchIslamic Azad UniversityTehranIran
| | - Rojina Alimoghaddam
- Student Research Committee, Tehran Medical Sciences BranchIslamic Azad UniversityTehranIran
| | - Abasat Mirzaei
- Department of Health Care Management, Faculty of Health, Tehran Medical ScienceIslamic Azad UniversityTehranIran,Health Economic Policy Research Center, Tehran Medical SciencesIslamic Azad UniversityTehranIran,Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical SciencesIslamic Azad UniversityTehranIran
| |
Collapse
|
16
|
Chang JC. Novel Classification of Thrombotic Disorders Based on Molecular Hemostasis and Thrombogenesis Producing Primary and Secondary Phenotypes of Thrombosis. Biomedicines 2022; 10:2706. [PMID: 36359229 PMCID: PMC9687744 DOI: 10.3390/biomedicines10112706] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/26/2022] [Accepted: 10/11/2022] [Indexed: 09/29/2023] Open
Abstract
Thrombosis, the common and deadliest disorder among human diseases, develops as a result of the intravascular hemostasis following an intravascular injury, which can be caused by a variety of trauma, non-traumatic insults or clinical illnesses. Thrombosis can occur at any location of the vascular system supplied by blood from the heart to large and smallest arterial and venous systems and may affect the function and anatomy of the organ and tissue. It more commonly occurs in the smaller circulatory system of the vascular tree such as arterioles and capillaries, and venules of the organs, especially in the brain, lungs, heart, pancreas, muscle and kidneys, and sinusoids of the liver. Thrombosis has been referred as the disease of "blood clots", which concept is incompletely defined, but represents many different hemostatic diseases from microthrombosis to fibrin clot disease, macrothrombosis, and combined micro-macrothrombosis. Thrombosis is produced following an intravascular injury via one or more combination of four different mechanisms of thrombogenesis: microthrombogenesis, fibrinogenesis, macrothrombogenesis and micro-macrothrombogenesis initiated by normal physiological hemostasis in vivo. The clinical phenotype expression of thrombosis is determined by: (1) depth of the intravascular wall injury, (2) extent of the injury affecting the vascular tree system, (3) physiological character of the involved vascular system, (4) locality of the vascular injury, and (5) underlying non-hemostatic conditions interacting with hemostasis. Recent acquisition of "two-path unifying theory" of hemostasis and "two-activation theory of the endothelium" has opened a new frontier in science of medicine by identifying the pathophysiological mechanism of different thrombotic disorders and also contributing to the better understanding of many poorly defined human diseases, including different phenotypes of stroke and cardiovascular disease, trauma, sepsis and septic shock, multiorgan dysfunction syndrome, and autoimmune disease, and others. Reviewed are the fundamentals in hemostasis, thrombogenesis and thrombosis based on hemostatic theories, and proposed is a novel classification of thrombotic disorders.
Collapse
Affiliation(s)
- Jae Chan Chang
- Department of Medicine, School of Medicine, University of California Irvine School of Medicine, Irvine, CA 92868, USA
| |
Collapse
|
17
|
Molecular Pathogenesis of Endotheliopathy and Endotheliopathic Syndromes, Leading to Inflammation and Microthrombosis, and Various Hemostatic Clinical Phenotypes Based on "Two-Activation Theory of the Endothelium" and "Two-Path Unifying Theory" of Hemostasis. MEDICINA (KAUNAS, LITHUANIA) 2022; 58:medicina58091311. [PMID: 36143988 PMCID: PMC9504959 DOI: 10.3390/medicina58091311] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 09/05/2022] [Accepted: 09/14/2022] [Indexed: 12/21/2022]
Abstract
Endotheliopathy, according to the “two-activation theory of the endothelium”, can be triggered by the activated complement system in critical illnesses, such as sepsis and polytrauma, leading to two distinctly different molecular dysfunctions: (1) the activation of the inflammatory pathway due to the release of inflammatory cytokines, such as interleukin 6 and tumor necrosis factor-α, and (2) the activation of the microthrombotic pathway due to the exocytosis of hemostatic factors, such as ultra-large von Willebrand factor (ULVWF) multimers and FVIII. The former promotes inflammation, including inflammatory organ syndrome (e.g., myocarditis and encephalitis) and multisystem inflammatory syndrome (e.g., cytokine storm), and the latter provokes endotheliopathy-associated vascular microthrombotic disease (VMTD), orchestrating thrombotic thrombocytopenic purpura (TTP)-like syndrome in arterial endotheliopathy, and immune thrombocytopenic purpura (ITP)-like syndrome in venous endotheliopathy, as well as multiorgan dysfunction syndrome (MODS). Because the endothelium is widely distributed in the entire vascular system, the phenotype manifestations of endotheliopathy are variable depending on the extent and location of the endothelial injury, the cause of the underlying pathology, as well as the genetic factor of the individual. To date, because the terms of many human diseases have been defined based on pathological changes in the organ and/or physiological dysfunction, endotheliopathy has not been denoted as a disease entity. In addition to inflammation, endotheliopathy is characterized by the increased activity of FVIII, overexpressed ULVWF/VWF antigen, and insufficient ADAMTS13 activity, which activates the ULVWF path of hemostasis, leading to consumptive thrombocytopenia and microthrombosis. Endothelial molecular pathogenesis produces the complex syndromes of inflammation, VMTD, and autoimmunity, provoking various endotheliopathic syndromes. The novel conceptual discovery of in vivo hemostasis has opened the door to the understanding of the pathogeneses of many endotheliopathy-associated human diseases. Reviewed are the hemostatic mechanisms, pathogenesis, and diagnostic criteria of endotheliopathy, and identified are some of the endotheliopathic syndromes that are encountered in clinical medicine.
Collapse
|
18
|
Sabetian G, Azimi A, Kazemi A, Hoseini B, Asmarian N, Khaloo V, Zand F, Masjedi M, Shahriarirad R, Shahriarirad S. Prediction of Patients with COVID-19 Requiring Intensive Care: A Cross-sectional Study Based on Machine-learning Approach from Iran. Indian J Crit Care Med 2022; 26:688-695. [PMID: 35836646 PMCID: PMC9237161 DOI: 10.5005/jp-journals-10071-24226] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Golnar Sabetian
- Shiraz University of Medical Sciences, Anesthesiology and Critical Care Research Center, Shiraz, Iran
| | - Aram Azimi
- Shiraz University of Medical Sciences, Anesthesiology and Critical Care Research Center, Shiraz, Iran
- Aram Azimi, Shiraz University of Medical Sciences, Anesthesiology and Critical Care Research Center, Shiraz, Iran, e-mail:
| | - Azar Kazemi
- Department of Biomedical Informatics, Mashhad University of Medical Sciences, Mashhad, Iran
- Azar Kazemi, Department of Biomedical Informatics, Mashhad University of Medical Sciences, Mashhad, Iran,
| | - Benyamin Hoseini
- Mashhad University of Medical Sciences, Pharmaceutical Research Center, Mashhad, Razavi Khorasan Province, Iran
| | | | - Vahid Khaloo
- Shiraz University of Medical Sciences, Aliasghar Hospital, Shiraz, Iran
| | - Farid Zand
- Shiraz University of Medical Sciences, Anesthesiology and Critical Care Research Center, Shiraz, Iran
| | - Mansoor Masjedi
- Shiraz University of Medical Sciences, Anesthesiology and Critical Care Research Center, Shiraz, Iran
| | - Reza Shahriarirad
- Shiraz University of Medical Sciences, Thoracic and Vascular Surgery Research Center, Shiraz, Iran
| | - Sepehr Shahriarirad
- Shiraz University of Medical Sciences, Student Research Committee, Shiraz, Iran
| |
Collapse
|
19
|
Interleukin-6-Production Is Responsible for Induction of Hepatic Synthesis of Several Chemokines as Acute-Phase Mediators in Two Animal Models: Possible Significance for Interpretation of Laboratory Changes in Severely Ill Patients. BIOLOGY 2022; 11:biology11030470. [PMID: 35336843 PMCID: PMC8945369 DOI: 10.3390/biology11030470] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 03/16/2022] [Accepted: 03/17/2022] [Indexed: 12/23/2022]
Abstract
Simple Summary The release of acute-phase proteins and cytokine storms are considered critical parameters for the progression of COVID-19 disease. The increase in the serum levels of cytokines such as IL6 and IL8 observed in patients primarily infected with the SARS-CoV-2 virus has been used to determine the severity of clinical conditions resulting from infection and for prognostic purposes. Animal models have been used to understand the mechanisms of the changes in homeostasis observed under pathological conditions. In the present study, we therefore report the changes in serum levels and hepatic gene expression of cytokines and chemokines in two different animal models of acute-phase responses. The acute-phase response is a transient emergency response aimed at preserving life and bringing about the changes necessary to reduce and repair tissue damage after the removal of damaging noxious agents. Our data suggest that the liver may be responsible for the increase in the serum levels of cytokines and chemokines as part of the body’s defense response to tissue damage. It is therefore doubtful that inhibiting this response at any stage after infection could improve the prognosis of patients. These results may help to interpret the laboratory changes observed in critically ill patients, as may be the case following SARS-CoV-2 infection. Abstract A mild to moderate increase in acute-phase proteins (APPs) and a decrease in serum albumin levels are detected in hospitalized COVID-19 patients. A similar trend is also observed for acute-phase cytokines (APC), mainly IL6, besides chemokines (e.g., CXCL8 and CCL2). However, the source of the chemokines in these patients at different stages of disease remains to be elucidated. We investigated hepatic gene expression of CXC- and CC-chemokines in a model of a localized extrahepatic aseptic abscess and in a model of septicemia produced by the intramuscular injection of turpentine oil (TO) into each hindlimb or lipopolysaccharide (LPS) intraperitoneally (i.p.) in rats and mice (wild-type (WT) and IL6-KO). Together with a striking increase in the serum IL6 level, strong serum CXCL2 and CXCL8 concentrations were detected. Correspondingly, rapid (2 h) upregulation of CXCL1, CXCL2, CXCL5, and CXCL8 was observed in rat liver after intramuscular TO injection. The induction of the gene expression of CXCL1 and CXCL8 was the fastest and strongest. The hepatic CXC-chemokines behaved like positive APPs that depend on IL6 production by activated macrophages recruited to extrahepatic damaged tissue. Chemokine upregulation was greatly reduced in IL6-KO mice. However, IL6 was dispensable in the LPS–APR model, as massive induction of hepatic chemokines studied was measured in IL6-KO mice.
Collapse
|
20
|
Carvallo FR, Stevenson VB. Interstitial pneumonia and diffuse alveolar damage in domestic animals. Vet Pathol 2022; 59:586-601. [DOI: 10.1177/03009858221082228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Classification of pneumonia in animals has been controversial, and the most problematic pattern is interstitial pneumonia. This is true from the gross and histologic perspectives, and also from a mechanistic point of view. Multiple infectious and noninfectious diseases are associated with interstitial pneumonia, all of them converging in the release of inflammatory mediators that generate local damage and attract inflammatory cells that inevitably trigger a second wave of damage. Diffuse alveolar damage is one of the more frequently identified histologic types of interstitial pneumonia and involves injury to alveolar epithelial and/or endothelial cells, with 3 distinct stages. The first is the “exudative” stage, with alveolar edema and hyaline membranes. The second is the “proliferative” stage, with hyperplasia and reactive atypia of type II pneumocytes, infiltration of lymphocytes, plasma cells, and macrophages in the interstitium and early proliferation of fibroblasts. These stages are reversible and often nonfatal. If damage persists, there is a third “fibrosing” stage, characterized by fibrosis of the interstitium due to proliferation of fibroblasts/myofibroblasts, persistence of type II pneumocytes, segments of squamous metaplasia of alveolar epithelium, plus inflammation. Understanding the lesion patterns associated with interstitial pneumonias, their causes, and the underlying mechanisms aid in accurate diagnosis that involves an interdisciplinary collaborative approach involving pathologists, clinicians, and radiologists.
Collapse
Affiliation(s)
- Francisco R. Carvallo
- Virginia-Maryland College of Veterinary Medicine, Blacksburg, VA
- Virginia Department of Agriculture and Consumer Services, Harrisonburg, VA
| | | |
Collapse
|
21
|
Chang JC. Pathogenesis of Two Faces of DVT: New Identity of Venous Thromboembolism as Combined Micro-Macrothrombosis via Unifying Mechanism Based on "Two-Path Unifying Theory" of Hemostasis and "Two-Activation Theory of the Endothelium". Life (Basel) 2022; 12:220. [PMID: 35207507 PMCID: PMC8874373 DOI: 10.3390/life12020220] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/17/2022] [Accepted: 01/21/2022] [Indexed: 11/16/2022] Open
Abstract
Venous thrombosis includes deep venous thrombosis (DVT), venous thromboembolism (VTE), venous microthrombosis and others. Still, the pathogenesis of each venous thrombosis is not clearly established. Currently, isolated distal DVT and multiple proximal/central DVT are considered to be the same macrothrombotic disease affecting the venous system but with varying degree of clinical expression related to its localization and severity. The genesis of two phenotypes of DVT differing in clinical features and prognostic outcome can be identified by their unique hemostatic mechanisms. Two recently proposed hemostatic theories in vivo have clearly defined the character between "microthrombi" and "macrothrombus" in the vascular system. Phenotypic expression of thrombosis depends upon two major variables: (1) depth of vascular wall damage and (2) extent of the injury affecting the vascular tree system. Vascular wall injury limited to endothelial cells (ECs) in sepsis produces "disseminated" microthrombi, but intravascular injury due to trauma extending from ECs to subendothelial tissue (SET) produces "local" macrothrombus. Pathogen-induced sepsis activates the complement system leading to generalized endotheliopathy, which releases ultra large von Willebrand factor (ULVWF) multimers from ECs and promotes ULVWF path of hemostasis. In the venous system, the activated ULVWF path initiates microthrombogenesis to form platelet-ULVWF complexes, which become "microthrombi strings" that produce venous endotheliopathy-associated vascular microthrombotic disease (vEA-VMTD) and immune thrombocytopenic purpura (ITP)-like syndrome. In the arterial system, endotheliopathy produces arterial EA-VMTD (aEA-VMTD) with "life-threatening" thrombotic thrombocytopenic purpura (TTP)-like syndrome. Typically, vEA-VMTD is "silent" unless complicated by additional local venous vascular injury. A local venous vessel trauma without sepsis produces localized macrothrombosis due to activated ULVWF and tissue factor (TF) paths from damaged ECs and SET, which causes distal DVT with good prognosis. However, if a septic patient with "silent" vEA-VMTD is complicated by additional vascular injury from in-hospital vascular accesses, "venous combined micro-macrothrombosis" may develop as VTE via the unifying mechanism of the "two-path unifying theory" of hemostasis. This paradigm shifting pathogenetic difference between distal DVT and proximal/central DVT calls for a reassessment of current therapeutic approaches.
Collapse
Affiliation(s)
- Jae C Chang
- Department of Medicine, Irvine School of Medicine, University of California, Irvine, CA 92868, USA
| |
Collapse
|
22
|
Taha MS, Elbasheir ME, Abakar MA, Abdallah EI, Elbashier MM, Omer AE, Eltayeb LB. The Impact of COVID-19 on Blood Coagulation Profile among Sudanese Hospitalized Adult Patients. JOURNAL OF BIOCHEMICAL TECHNOLOGY 2022. [DOI: 10.51847/kppc5icdpq] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
23
|
Rodrigues CL, de Freitas HC, Lima PRO, de Oliveira Junior PH, Fernandes JMA, D’Almeida JAC, Nóbrega PR. Myasthenia gravis exacerbation and myasthenic crisis associated with COVID-19: case series and literature review. Neurol Sci 2022; 43:2271-2276. [PMID: 35039987 PMCID: PMC8763445 DOI: 10.1007/s10072-021-05823-w] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Accepted: 12/10/2021] [Indexed: 02/02/2023]
Abstract
BACKGROUND Myasthenia gravis (MG) is an autoimmune disorder of the neuromuscular junction that can be exacerbated by many viral infections, including COVID-19. The management of MG exacerbations is challenging in this scenario. We report 8 cases of MG exacerbation or myasthenic crisis associated with COVID-19 and discuss prognosis and treatment based on a literature review. RESULTS Most patients were female (7/8), with an average age of 47.1 years. Treatment was immunoglobulin (IVIG) in 3 patients, plasma exchange (PLEX) in 2 patients, and adjustment of baseline drugs in 3. In-hospital mortality was 25% and 37.5% in 2-month follow-up. DISCUSSION This is the largest case series of MG exacerbation or myasthenic crisis due to COVID-19 to this date. Mortality was considerably higher than in myasthenic crisis of other etiologies. Previous treatment for MG or acute exacerbation treatment did not seem to interfere with prognosis, although sample size was too small to draw definitive conclusions. Further studies are needed to understand the safety and effectiveness of interventions in this setting, particularly of PLEX, IVIG, rituximab, and tocilizumab.
Collapse
Affiliation(s)
- Cleonisio Leite Rodrigues
- grid.414722.60000 0001 0756 5686Department of Neurology, Hospital Geral de Fortaleza, Fortaleza, Brazil
| | | | - Paulo Reges Oliveira Lima
- grid.8395.70000 0001 2160 0329Division of Neurology, Department of Clinical Medicine, Universidade Federal Do Ceará, Fortaleza, Brazil
| | - Pedro Helder de Oliveira Junior
- grid.8395.70000 0001 2160 0329Division of Neurology, Department of Clinical Medicine, Universidade Federal Do Ceará, Fortaleza, Brazil
| | - José Marcelino Aragão Fernandes
- grid.8395.70000 0001 2160 0329Division of Neurology, Department of Clinical Medicine, Universidade Federal Do Ceará, Fortaleza, Brazil
| | | | - Paulo Ribeiro Nóbrega
- grid.8395.70000 0001 2160 0329Division of Neurology, Department of Clinical Medicine, Universidade Federal Do Ceará, Fortaleza, Brazil
| |
Collapse
|
24
|
NEUT-SFL in Patients with COVID-ARDS: A Novel Biomarker for Thrombotic Events? DISEASE MARKERS 2021; 2021:4361844. [PMID: 34840629 PMCID: PMC8612800 DOI: 10.1155/2021/4361844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 09/24/2021] [Accepted: 10/23/2021] [Indexed: 11/25/2022]
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is an enveloped RNA virus first identified in December 2019 in Wuhan, China, and responsible for coronavirus disease 2019 (COVID-19). The ongoing COVID-19 pandemic is impacting healthcare worldwide. Patients who develop coagulopathy have worse outcomes. The pathophysiology of COVID-19 suggests a strong interplay between hemostasis and immune cells, especially neutrophils. Our purpose was to assess neutrophil fluorescence as a potential biomarker of deep vein thrombosis (DVT) in patients with COVID-acute respiratory distress syndrome (COVID-ARDS). Sixty-one patients with COVID-ARDS admitted to the four intensive care units (ICUs) of a French general hospital were included in this prospective study. Neutrophil activation was assessed by measuring neutrophil fluorescence (NEUT-Side Fluorescence Light, NEUT-SFL) with a specific fluorescent dye staining analyzed by a routine automated flow cytometer Sysmex XN-3000™ (Sysmex, Kobe, Japan). DVT was diagnosed by complete duplex ultrasound (CDU). We found that NEUT-SFL was elevated on admission in patients with COVID-ARDS (49.76 AU, reference value 46.40 AU, p < 0.001), but did not differ between patients with DVT (49.99 AU) and those without (49.52 AU, p = 0.555). NEUT-SFL is elevated in patients with COVID-ARDS, reflecting neutrophil activation, but cannot be used as a marker of thrombosis. Because neutrophils are at interface between immune response and hemostasis through release of neutrophil extracellular traps, monitoring their activation could be an interesting approach to improve our management of coagulopathy during COVID-ARDS. Further research is needed to better understand the pathophysiology of COVID-19 and identify high-performance biomarkers.
Collapse
|
25
|
Acute Respiratory Distress Syndrome: Focus on Viral Origin and Role of Pulmonary Lymphatics. Biomedicines 2021; 9:biomedicines9111732. [PMID: 34829961 PMCID: PMC8615541 DOI: 10.3390/biomedicines9111732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/01/2021] [Accepted: 11/17/2021] [Indexed: 11/30/2022] Open
Abstract
Acute respiratory distress syndrome (ARDS) is a serious affection of the lung caused by a variety of pathologies. Great interest is currently focused on ARDS induced by viruses (pandemic influenza and corona viruses). The review describes pulmonary changes in ARDS and specific effects of the pandemic viruses in ARDS, and summarizes treatment options. Because the known pathogenic mechanisms cannot explain all aspects of the syndrome, the contribution of pulmonary lymphatics to the pathology is discussed. Organization and function of lymphatics in a healthy lung and in resorption of pulmonary edema are described. A future clinical trial may provide more insight into the role of hyaluronan in ARDS but the development of promising pharmacological treatments is unlikely because drugs play no important role in lymphedema therapy.
Collapse
|
26
|
Chang JC, Hawley HB. Vaccine-Associated Thrombocytopenia and Thrombosis: Venous Endotheliopathy Leading to Venous Combined Micro-Macrothrombosis. MEDICINA (KAUNAS, LITHUANIA) 2021; 57:1163. [PMID: 34833382 PMCID: PMC8621006 DOI: 10.3390/medicina57111163] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 10/18/2021] [Accepted: 10/19/2021] [Indexed: 01/08/2023]
Abstract
Serious vaccine-associated side effects are very rare. Major complications of vaccines are thrombocytopenia and thrombosis in which pathogenetic mechanism is consistent with endotheliopathy characterized by "attenuated" sepsis-like syndrome, leading to the activation of inflammatory and microthrombotic pathway. In the COVID-19 pandemic, acute respiratory distress syndrome caused by microthrombosis has been the major clinical phenotype from the viral sepsis in association with endotheliopathy-associated vascular microthrombotic disease (EA-VMTD), sometimes presenting with thrombotic thrombocytopenic purpura (TTP)-like syndrome. Often, venous thromboembolism has coexisted due to additional vascular injury. In contrast, clinical phenotypes of vaccine complication have included "silent" immune thrombocytopenic purpura (ITP-like syndrome), multiorgan inflammatory syndrome, and deep venous thrombosis (DVT), cerebral venous sinus thrombosis (CVST) in particular. These findings are consistent with venous (v) EA-VMTD. In vEA-VMTD promoted by activated complement system following vaccination, "consumptive" thrombocytopenia develops as ITP-like syndrome due to activated unusually large von Willebrand factor (ULVWF) path of hemostasis via microthrombogenesis. Thus, the pathologic phenotype of ITP-like syndrome is venous microthrombosis. Myocarditis/pericarditis and other rare cases of inflammatory organ syndrome are promoted by inflammatory cytokines released from activated inflammatory pathway, leading to various organ endotheliitis. Vaccine-associated CVST is a form of venous combined "micro-macrothrombosis" composed of binary components of "microthrombi strings" from vEA-VMTD and "fibrin meshes" from vaccine-unrelated incidental vascular injury perhaps such as unreported head trauma. This mechanism is identified based on "two-path unifying theory" of in vivo hemostasis. Venous combined micro-macrothrombosis due to vaccine is much more serious thrombosis than isolated distal DVT made of macrothrombus. This paradigm changing novel concept of combined micro-macrothrombosis implies the need of combined therapy of a complement inhibitor and anticoagulant for CVST and other complex forms of DVT.
Collapse
Affiliation(s)
- Jae C. Chang
- Department of Medicine, University of California Irvine School of Medicine, Irvine, CA 92868, USA
| | - H. Bradford Hawley
- Department of Medicine, Wright State University Boonshoft School of Medicine, Dayton, OH 45435, USA;
| |
Collapse
|
27
|
Cui N, Jiang C, Chen H, Zhang L, Feng X. Prevalence, risk, and outcome of deep vein thrombosis in acute respiratory distress syndrome. Thromb J 2021; 19:71. [PMID: 34645471 PMCID: PMC8511290 DOI: 10.1186/s12959-021-00325-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Accepted: 10/03/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Few data exist on deep vein thrombosis (DVT) in patients with acute respiratory distress syndrome (ARDS), a group of heterogeneous diseases characterized by acute hypoxemia. STUDY DESIGN AND METHODS We retrospectively enrolled 225 adults with ARDS admitted to the Beijing Chao-Yang Hospital and the First Affiliated Hospital of Shandong First Medical University between 1 January 2015 and 30 June 2020. We analyzed clinical, laboratory, and echocardiography data for groups with and without DVT and for direct (pulmonary) and indirect (extrapulmonary) ARDS subgroups. RESULTS Ninety (40.0%) patients developed DVT. Compared with the non-DVT group, patients with DVT were older, had lower serum creatinine levels, lower partial pressure of arterial oxygen/fraction of inspired oxygen, higher serum procalcitonin levels, higher Padua prediction scores, and higher proportions of sedation and invasive mechanical ventilation (IMV). Multivariate analysis showed an association between age, serum creatinine level, IMV, and DVT in the ARDS cohort. The sensitivity and specificity of corresponding receiver operating characteristic curves were not inferior to those of the Padua prediction score and the Caprini score for screening for DVT in the three ARDS cohorts. Patients with DVT had a significantly lower survival rate than those without DVT in the overall ARDS cohort and in the groups with direct and indirect ARDS. CONCLUSIONS The prevalence of DVT is high in patients with ARDS. The risk factors for DVT are age, serum creatinine level, and IMV. DVT is associated with decreased survival in patients with ARDS.
Collapse
Affiliation(s)
- Na Cui
- Department of Pulmonary and Critical Care Medicine, Beijing Chao-Yang Hospital, Capital Medical University, No. 8, Gongti South Road, Chaoyang District, Beijing, 100020, People's Republic of China
- Beijing Institute of Respiratory Medicine, Beijing, 100020, People's Republic of China
| | - Chunguo Jiang
- Department of Pulmonary and Critical Care Medicine, Beijing Chao-Yang Hospital, Capital Medical University, No. 8, Gongti South Road, Chaoyang District, Beijing, 100020, People's Republic of China
- Beijing Institute of Respiratory Medicine, Beijing, 100020, People's Republic of China
| | - Hairong Chen
- Department of Intensive Care Unit, Shandong Provincial Qianfoshan Hospital, The First Affiliated Hospital of Shandong First Medical University, Ji'nan, People's Republic of China
| | - Liming Zhang
- Department of Pulmonary and Critical Care Medicine, Beijing Chao-Yang Hospital, Capital Medical University, No. 8, Gongti South Road, Chaoyang District, Beijing, 100020, People's Republic of China.
- Beijing Institute of Respiratory Medicine, Beijing, 100020, People's Republic of China.
| | - Xiaokai Feng
- Department of Pulmonary and Critical Care Medicine, Beijing Chao-Yang Hospital, Capital Medical University, No. 8, Gongti South Road, Chaoyang District, Beijing, 100020, People's Republic of China.
- Beijing Institute of Respiratory Medicine, Beijing, 100020, People's Republic of China.
| |
Collapse
|
28
|
Xu G, Wan H, Yi L, Chen W, Luo Y, Huang Y, Liu X. Berberine administrated with different routes attenuates inhaled LPS-induced acute respiratory distress syndrome through TLR4/NF-κB and JAK2/STAT3 inhibition. Eur J Pharmacol 2021; 908:174349. [PMID: 34284014 PMCID: PMC8285933 DOI: 10.1016/j.ejphar.2021.174349] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 07/07/2021] [Accepted: 07/12/2021] [Indexed: 12/17/2022]
Abstract
Accumulating evidence showed that berberine possessed the anti-inflammatory action in various diseases caused by inflammation. However, it was still unclear whether both inhalation and injection with berberine produced pulmonary protective role in acute respiratory distress syndrome (ARDS). This study was aimed to evaluate the effects of both administration routes including inhalation and injection with berberine in ARDS induced by lipopolysaccharide (LPS) inhalation. Histopathological examination and weight of lung were evaluated. Phosphorylation of NF-κB, JAK2 and STAT3 were measured to assess the activity of inflammation related signaling pathways. Proinflammatory cytokines including interleukin (IL)-1β and tumor necrosis factor (TNF)-α in the bronchoalveolar lavage fluid (BALF) and serum were also detected. The results showed that LPS caused the lung injury, while both administration routes with berberine attenuated the injury and improved the pulmonary morphology. In addition, the primary TLR4/NF-κB and secondary JAK2/STAT3 signaling pathways which were activated by LPS in lung were totally inhibited by berberine administration. Moreover, proinflammatory cytokines in both BALF and serum were decreased by berberine. Considering that molecular docking simulation indicated that berberine could bind with TLR4, the present suggested that the inhibition of the inflammation related TLR4/NF-κB and JAK2/STAT3 signaling pathways might be involved in the pulmonary protective effect of berberine in LPS-induced ARDS.
Collapse
Affiliation(s)
- Guanghui Xu
- Pharmaceutical Research Center, Xiamen Medicine Research Institute, Xiamen, 361008, Fujian province, PR China.
| | - Huiqi Wan
- Pharmaceutical Research Center, Xiamen Medicine Research Institute, Xiamen, 361008, Fujian province, PR China
| | - Litao Yi
- Department of Chemical and Pharmaceutical Engineering, College of Chemical Engineering, Huaqiao University, Xiamen, 361021, Fujian province, PR China.
| | - Wei Chen
- Pharmaceutical Research Center, Xiamen Medicine Research Institute, Xiamen, 361008, Fujian province, PR China
| | - Youhua Luo
- Pharmaceutical Research Center, Xiamen Medicine Research Institute, Xiamen, 361008, Fujian province, PR China
| | - Yiqi Huang
- Pharmaceutical Research Center, Xiamen Medicine Research Institute, Xiamen, 361008, Fujian province, PR China
| | - Xiaojuan Liu
- Pharmaceutical Research Center, Xiamen Medicine Research Institute, Xiamen, 361008, Fujian province, PR China
| |
Collapse
|
29
|
Caramaschi S, Kapp ME, Miller SE, Eisenberg R, Johnson J, Epperly G, Maiorana A, Silvestri G, Giannico GA. Histopathological findings and clinicopathologic correlation in COVID-19: a systematic review. Mod Pathol 2021; 34:1614-1633. [PMID: 34031537 PMCID: PMC8141548 DOI: 10.1038/s41379-021-00814-w] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 04/06/2021] [Accepted: 04/07/2021] [Indexed: 02/07/2023]
Abstract
The severe acute respiratory syndrome Coronavirus-2 (SARS-CoV-2) pandemic has had devastating effects on global health and worldwide economy. Despite an initial reluctance to perform autopsies due to concerns for aerosolization of viral particles, a large number of autopsy studies published since May 2020 have shed light on the pathophysiology of Coronavirus disease 2019 (COVID-19). This review summarizes the histopathologic findings and clinicopathologic correlations from autopsies and biopsies performed in patients with COVID-19. PubMed and Medline (EBSCO and Ovid) were queried from June 4, 2020 to September 30, 2020 and histopathologic data from autopsy and biopsy studies were collected based on 2009 Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. A total of 58 studies reporting 662 patients were included. Demographic data, comorbidities at presentation, histopathologic findings, and virus detection strategies by organ system were collected. Diffuse alveolar damage, thromboembolism, and nonspecific shock injury in multiple organs were the main findings in this review. The pathologic findings emerging from autopsy and biopsy studies reviewed herein suggest that in addition to a direct viral effect in some organs, a unifying pathogenic mechanism for COVID-19 is ARDS with its known and characteristic inflammatory response, cytokine release, fever, inflammation, and generalized endothelial disturbance. This study supports the notion that autopsy studies are of utmost importance to our understanding of disease features and treatment effect to increase our knowledge of COVID-19 pathophysiology and contribute to more effective treatment strategies.
Collapse
Affiliation(s)
- Stefania Caramaschi
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia—AOU Policlinico of Modena, Modena, Italy
| | - Meghan E. Kapp
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Sara E. Miller
- Department of Pathology, Duke University Medical Center, Durham, NC, USA
| | - Rosana Eisenberg
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Joyce Johnson
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | | | - Antonino Maiorana
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia—AOU Policlinico of Modena, Modena, Italy
| | - Guido Silvestri
- Emory Vaccine Center and Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA,Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA, USA
| | - Giovanna A. Giannico
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
30
|
Cui N, Mi S, Jiang C, Sun W, Mao W, Zhang L, Feng X. Deep vein thrombosis in acute respiratory distress syndrome caused by bacterial pneumonia. BMC Pulm Med 2021; 21:264. [PMID: 34391407 PMCID: PMC8364306 DOI: 10.1186/s12890-021-01632-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 08/03/2021] [Indexed: 12/29/2022] Open
Abstract
Background Acute respiratory distress syndrome (ARDS) is a clinical syndrome characterized by acute hypoxaemia, and few studies have reported the incidence of deep vein thrombosis (DVT) in direct ARDS caused by bacterial pneumonia. We performed a study to evaluate the prevalence, risk factors, prognosis and potential thromboprophylaxis strategies of DVT in these patients. Methods Ninety patients were included. Demographic, and clinical data, laboratory data and outcome variables were obtained, and comparisons were made between the DVT and non-DVT groups. Results Of the 90 patients, 40 (44.4%) developed lower extremity DVT. Compared with non-DVT patients, DVT patients had higher systemic inflammatory response syndrome (SIRS) scores, lower serum creatinine levels, higher D-dimer levels, and higher rates of sedative therapy and invasive mechanical ventilation (IMV). Multivariate analysis showed an association between the SIRS score (OR 3.803, P = 0.027), level of serum creatinine (OR 0.988, P = 0.001), IMV (OR 5.822, P = 0.002) and DVT. The combination of SIRS score, serum creatinine level and IMV has a sensitivity of 80.0% and a specificity of 74.0% for screening for DVT. The survival rate within 28 days after ARDS in the DVT group was significantly lower than that in the non-DVT group (P = 0.003). There was no difference in the prevalence of DVT between the 41 patients who received thromboprophylaxis and the 49 patients who did not receive thromboprophylaxis (41.5% vs 46.9%; P = 0.603). Conclusions The prevalence of DVT is high in hospitalized patients with direct ARDS caused by bacterial pneumonia and may be associated with adverse outcomes. The current thromboprophylaxis strategies may need to be further optimized.
Collapse
Affiliation(s)
- Na Cui
- Department of Pulmonary and Critical Care Medicine, Beijing Chao-Yang Hospital, Capital Medical University, No. 8, Gongti South Road, Chaoyang District, Beijing, 100020, People's Republic of China.,Beijing Institute of Respiratory Medicine, Beijing, 100020, People's Republic of China
| | - Song Mi
- Department of Pulmonary and Critical Care Medicine, Beijing Chao-Yang Hospital, Capital Medical University, No. 8, Gongti South Road, Chaoyang District, Beijing, 100020, People's Republic of China.,Beijing Institute of Respiratory Medicine, Beijing, 100020, People's Republic of China
| | - Chunguo Jiang
- Department of Pulmonary and Critical Care Medicine, Beijing Chao-Yang Hospital, Capital Medical University, No. 8, Gongti South Road, Chaoyang District, Beijing, 100020, People's Republic of China.,Beijing Institute of Respiratory Medicine, Beijing, 100020, People's Republic of China
| | - Wanlu Sun
- Department of Pulmonary and Critical Care Medicine, Beijing Chao-Yang Hospital, Capital Medical University, No. 8, Gongti South Road, Chaoyang District, Beijing, 100020, People's Republic of China.,Beijing Institute of Respiratory Medicine, Beijing, 100020, People's Republic of China
| | - Wenping Mao
- Department of Pulmonary and Critical Care Medicine, Beijing Chao-Yang Hospital, Capital Medical University, No. 8, Gongti South Road, Chaoyang District, Beijing, 100020, People's Republic of China.,Beijing Institute of Respiratory Medicine, Beijing, 100020, People's Republic of China
| | - Liming Zhang
- Department of Pulmonary and Critical Care Medicine, Beijing Chao-Yang Hospital, Capital Medical University, No. 8, Gongti South Road, Chaoyang District, Beijing, 100020, People's Republic of China. .,Beijing Institute of Respiratory Medicine, Beijing, 100020, People's Republic of China.
| | - Xiaokai Feng
- Department of Pulmonary and Critical Care Medicine, Beijing Chao-Yang Hospital, Capital Medical University, No. 8, Gongti South Road, Chaoyang District, Beijing, 100020, People's Republic of China. .,Beijing Institute of Respiratory Medicine, Beijing, 100020, People's Republic of China.
| |
Collapse
|
31
|
Patidar GK, Land KJ, Vrielink H, Rahimi‐Levene N, Dann EJ, Al‐Humaidan H, Spitalnik SL, Dhiman Y, So ‐ Osman C, Hindawi SI. Understanding the role of therapeutic plasma exchange in COVID-19: preliminary guidance and practices. Vox Sang 2021; 116:798-807. [PMID: 33730761 PMCID: PMC8250601 DOI: 10.1111/vox.13067] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 12/09/2020] [Accepted: 12/10/2020] [Indexed: 12/11/2022]
Abstract
BACKGROUND AND OBJECTIVES Cytokine release syndrome in COVID-19 is due to a pathological inflammatory response of raised cytokines. Removal of these cytokines by therapeutic plasma exchange (TPE) prior to end-organ damage may improve clinical outcomes. This manuscript is intended to serve as a preliminary guidance document for application of TPE in patients with severe COVID-19. MATERIAL AND METHODS The available literature pertaining to the role of TPE for treatment of COVID-19 patients was reviewed to guide optimal management. It included indication, contraindication, optimal timing of initiation and termination of TPE, vascular access and anticoagulants, numbers and mode of procedures, outcome measures and adverse events. RESULTS Out of a total of 78 articles, only 65 were directly related to the topic. From these 65, only 32 were acceptable as primary source, while 33 were used as supporting references. TPE in critically ill COVID-19 patients may be classified under ASFA category III grade 2B. The early initiation of TPE for 1-1·5 patient's plasma volume with fresh frozen plasma, or 4-5% albumin or COVID-19 convalescent plasma as replacement fluids before multiorgan failure, has better chances of recovery. The number of procedures can vary from three to nine depending on patient response. CONCLUSION TPE in COVID-19 patients may help by removing toxic cytokines, viral particles and/or by correcting coagulopathy or restoring endothelial membrane. Severity score (SOFA & APACHE II) and cytokine levels (IL-6, C-reactive protein) can be used to execute TPE therapy and to monitor response in COVID-19 patients.
Collapse
Affiliation(s)
- Gopal K. Patidar
- Department of Transfusion MedicineAll India Institute of Medical SciencesNew DelhiIndia
| | - Kevin J. Land
- Clinical ServicesVitalantScottsdaleAZUSA
- Department of PathologyUT Health Science Center San AntonioSan AntonioTXUSA
| | - Hans Vrielink
- Dept Unit Transfusion MedicineSanquin Blood BankAmsterdamthe Netherlands
| | - Naomi Rahimi‐Levene
- Blood BankShamir Medical CenterZerifinIsrael
- Sackler Faculty of MedicineTel Aviv UniversityTel AvivIsrael
| | - Eldad J. Dann
- Blood Bank and Aphaeresis InstituteRAMBAM Health Care CampusHematology and MedicineRappaport Faculty of MedicineTechnionHaifaIsrael
| | - Hind Al‐Humaidan
- Blood Bank (DS & TS)/Stem Cell Cord Blood Bank Pathology and Laboratory MedicineKing Faisal Specialist Hospital & Research CentreRiyadhKingdom of Saudi Arabia
| | | | - Yashaswi Dhiman
- Department of Transfusion MedicineAll India Institute of Medical SciencesNew DelhiIndia
| | - Cynthia So ‐ Osman
- Dept Unit Transfusion MedicineSanquin Blood BankAmsterdamthe Netherlands
- Dept. of HaematologyErasmus Medical CenterRotterdamthe Netherlands
| | - Salwa I. Hindawi
- Haematology & Transfusion MedicineFaculty of MedicineKing Abdulaziz UniversityJeddahSaudi Arabia
| |
Collapse
|
32
|
What Is the Role of Therapeutic Plasma Exchange as an Adjunctive Treatment in Severe COVID-19: A Systematic Review. Viruses 2021; 13:v13081484. [PMID: 34452349 PMCID: PMC8402853 DOI: 10.3390/v13081484] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 07/22/2021] [Accepted: 07/26/2021] [Indexed: 12/13/2022] Open
Abstract
Introduction: Since the COVID-19 pandemic outbreak, multiple promising treatment modalities have been tested, however, only several of them were proven to be effective. Therapeutic plasma exchange (TPE) has been recently discussed as a possible supportive treatment for severe cases. Methods: To investigate a possible role of TPE in severe COVID-19 we used a structured systematic search strategy to retrieve all relevant publications in the field. We screened in PubMed, EMBASE, Web of Science, Cochrane Library and clinicaltrials.gov for data published until the 4 June 2021. Results: We identified 18 papers, enrolling 384 patients, 220 of whom received TPE. The number of TPE sessions ranged from 1 to 9 and the type of replacement fluid varied markedly between studies (fresh frozen plasma or 5% albumin solution, or convalescent plasma). Biochemical improvement was observed in majority of studies as far as C-reactive protein (CRP), interleukin-6 (IL-6), ferritin, lactate dehydrogenase (LDH), D-dimer concentrations and lymphocyte count are concerned. The improvement at a laboratory level was associated with enhancement of respiratory function. Adverse effects were limited to five episodes of transient hypotension and one femoral artery puncture and thrombophlebitis. Conclusions: Although the effect of therapeutic plasma exchange on mortality remains unclarified, the procedure seems to improve various secondary end-points such as PaO2/FiO2 ratio or biomarkers of inflammation. Therapeutic plasma exchange appears to be a safe treatment modality in COVID-19 patients in terms of side effects.
Collapse
|
33
|
Hawley HB, Chang JC. Complement-Induced Endotheliopathy-Associated Vascular Microthrombosis in Coronavirus Disease 2019. J Infect Dis 2021; 223:2198-2199. [PMID: 33715011 PMCID: PMC7989240 DOI: 10.1093/infdis/jiab136] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 03/11/2021] [Indexed: 12/14/2022] Open
Affiliation(s)
- H Bradford Hawley
- Department of Medicine, Boonshoft School of Medicine, Wright State University, Dayton, Ohio, USA
| | - Jae C Chang
- Department of Medicine, University of California, Irvine School of Medicine, Irvine, California, USA
| |
Collapse
|
34
|
Chang JC. COVID-19 Sepsis: Pathogenesis and Endothelial Molecular Mechanisms Based on "Two-Path Unifying Theory" of Hemostasis and Endotheliopathy-Associated Vascular Microthrombotic Disease, and Proposed Therapeutic Approach with Antimicrothrombotic Therapy. Vasc Health Risk Manag 2021; 17:273-298. [PMID: 34103921 PMCID: PMC8179800 DOI: 10.2147/vhrm.s299357] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Accepted: 03/24/2021] [Indexed: 12/15/2022] Open
Abstract
COVID-19 sepsis is characterized by acute respiratory distress syndrome (ARDS) as a consequence of pulmonary tropism of the virus and endothelial heterogeneity of the host. ARDS is a phenotype among patients with multiorgan dysfunction syndrome (MODS) due to disseminated vascular microthrombotic disease (VMTD). In response to the viral septicemia, the host activates the complement system which produces terminal complement complex C5b-9 to neutralize pathogen. C5b-9 causes pore formation on the membrane of host endothelial cells (ECs) if CD59 is underexpressed. Also, viral S protein attraction to endothelial ACE2 receptor damages ECs. Both affect ECs and provoke endotheliopathy. Disseminated endotheliopathy activates two molecular pathways: inflammatory and microthrombotic. The former releases inflammatory cytokines from ECs, which lead to inflammation. The latter initiates endothelial exocytosis of unusually large von Willebrand factor (ULVWF) multimers and FVIII from Weibel-Palade bodies. If ADAMTS13 is insufficient, ULVWF multimers activate intravascular hemostasis of ULVWF path. In activated ULVWF path, ULVWF multimers anchored to damaged endothelial cells recruit circulating platelets and trigger microthrombogenesis. This process produces "microthrombi strings" composed of platelet-ULVWF complexes, leading to endotheliopathy-associated VMTD (EA-VMTD). In COVID-19, microthrombosis initially affects the lungs per tropism causing ARDS, but EA-VMTD may orchestrate more complex clinical phenotypes, including thrombotic thrombocytopenic purpura (TTP)-like syndrome, hepatic coagulopathy, MODS and combined micro-macrothrombotic syndrome. In this pandemic, ARDS and pulmonary thromboembolism (PTE) have often coexisted. The analysis based on two hemostatic theories supports ARDS caused by activated ULVWF path is EA-VMTD and PTE caused by activated ULVWF and TF paths is macrothrombosis. The thrombotic disorder of COVID-19 sepsis is consistent with the notion that ARDS is virus-induced disseminated EA-VMTD and PTE is in-hospital vascular injury-related macrothrombosis which is not directly related to viral pathogenesis. The pathogenesis-based therapeutic approach is discussed for the treatment of EA-VMTD with antimicrothrombotic regimen and the potential need of anticoagulation therapy for coinciding macrothrombosis in comprehensive COVID-19 care.
Collapse
Affiliation(s)
- Jae C Chang
- Department of Medicine, University of California Irvine School of Medicine, Irvine, CA, USA
| |
Collapse
|
35
|
Morales-Quinteros L, Neto AS, Artigas A, Blanch L, Botta M, Kaufman DA, Schultz MJ, Tsonas AM, Paulus F, Bos LD. Dead space estimates may not be independently associated with 28-day mortality in COVID-19 ARDS. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2021; 25:171. [PMID: 34001222 PMCID: PMC8127435 DOI: 10.1186/s13054-021-03570-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 04/08/2021] [Indexed: 02/06/2023]
Abstract
BACKGROUND Estimates for dead space ventilation have been shown to be independently associated with an increased risk of mortality in the acute respiratory distress syndrome and small case series of COVID-19-related ARDS. METHODS Secondary analysis from the PRoVENT-COVID study. The PRoVENT-COVID is a national, multicenter, retrospective observational study done at 22 intensive care units in the Netherlands. Consecutive patients aged at least 18 years were eligible for participation if they had received invasive ventilation for COVID-19 at a participating ICU during the first month of the national outbreak in the Netherlands. The aim was to quantify the dynamics and determine the prognostic value of surrogate markers of wasted ventilation in patients with COVID-19-related ARDS. RESULTS A total of 927 consecutive patients admitted with COVID-19-related ARDS were included in this study. Estimations of wasted ventilation such as the estimated dead space fraction (by Harris-Benedict and direct method) and ventilatory ratio were significantly higher in non-survivors than survivors at baseline and during the following days of mechanical ventilation (p < 0.001). The end-tidal-to-arterial PCO2 ratio was lower in non-survivors than in survivors (p < 0.001). As ARDS severity increased, mortality increased with successive tertiles of dead space fraction by Harris-Benedict and by direct estimation, and with an increase in the VR. The same trend was observed with decreased levels in the tertiles for the end-tidal-to-arterial PCO2 ratio. After adjustment for a base risk model that included chronic comorbidities and ventilation- and oxygenation-parameters, none of the dead space estimates measured at the start of ventilation or the following days were significantly associated with 28-day mortality. CONCLUSIONS There is significant impairment of ventilation in the early course of COVID-19-related ARDS but quantification of this impairment does not add prognostic information when added to a baseline risk model. TRIAL REGISTRATION ISRCTN04346342. Registered 15 April 2020. Retrospectively registered.
Collapse
Affiliation(s)
- Luis Morales-Quinteros
- Intensive Care Unit, Hospital Universitari General de Catalunya, Grupo Quironsalud, Carrer Pedro i Pons, 1, 08195, Sant Cugat del Vallès, Barcelona, Spain. .,Universidad Autonoma de Barcelona, Barcelona, Spain. .,Institut D'Investigació, Innovació Parc Taulí I3PT, Sabadell, Spain.
| | - Ary Serpa Neto
- Department of Intensive Care & Laboratory of Experimental Intensive Care and Anaesthesiology (L·E·I·C·A), Amsterdam UMC Location AMC, Amsterdam, The Netherlands.,Department of Critical Care Medicine, Hospital Israelita Albert Einstein, São Paulo, Brazil.,Australian and New Zealand Intensive Care Research Centre (ANZIC-RC), Monash University, Melbourne, Australia.,Data Analytics Research and Evaluation (DARE) Centre, Austin Hospital and University of Melbourne, Melbourne, Australia
| | - Antonio Artigas
- Universidad Autonoma de Barcelona, Barcelona, Spain.,Institut D'Investigació, Innovació Parc Taulí I3PT, Sabadell, Spain.,Critical Care Center, Corporacion Sanitaria Universitaria Parc Taulí, Sabadell, Spain.,CIBER Enfermedades Respiratorias (ISCiii), Madrid, Spain
| | - Lluis Blanch
- Universidad Autonoma de Barcelona, Barcelona, Spain.,Institut D'Investigació, Innovació Parc Taulí I3PT, Sabadell, Spain.,Critical Care Center, Corporacion Sanitaria Universitaria Parc Taulí, Sabadell, Spain.,CIBER Enfermedades Respiratorias (ISCiii), Madrid, Spain
| | - Michela Botta
- Department of Intensive Care & Laboratory of Experimental Intensive Care and Anaesthesiology (L·E·I·C·A), Amsterdam UMC Location AMC, Amsterdam, The Netherlands
| | - David A Kaufman
- Division of Pulmonary, Critical Care, and Sleep Medicine, NYU School of Medicine, New York, NY, USA
| | - Marcus J Schultz
- Department of Intensive Care & Laboratory of Experimental Intensive Care and Anaesthesiology (L·E·I·C·A), Amsterdam UMC Location AMC, Amsterdam, The Netherlands.,Nuffield Department of Medicine, Oxford University, Oxford, UK.,Mahidol-Oxford Tropical Medicine Research Unit (MORU), Mahidol University, Bangkok, Thailand
| | - Anissa M Tsonas
- Department of Intensive Care & Laboratory of Experimental Intensive Care and Anaesthesiology (L·E·I·C·A), Amsterdam UMC Location AMC, Amsterdam, The Netherlands
| | - Frederique Paulus
- Department of Intensive Care & Laboratory of Experimental Intensive Care and Anaesthesiology (L·E·I·C·A), Amsterdam UMC Location AMC, Amsterdam, The Netherlands
| | - Lieuwe D Bos
- Department of Intensive Care & Laboratory of Experimental Intensive Care and Anaesthesiology (L·E·I·C·A), Amsterdam UMC Location AMC, Amsterdam, The Netherlands
| | | |
Collapse
|
36
|
Oliveira E, Parikh A, Lopez-Ruiz A, Carrilo M, Goldberg J, Cearras M, Fernainy K, Andersen S, Mercado L, Guan J, Zafar H, Louzon P, Carr A, Baloch N, Pratley R, Silverstry S, Hsu V, Sniffen J, Herrera V, Finkler N. ICU outcomes and survival in patients with severe COVID-19 in the largest health care system in central Florida. PLoS One 2021; 16:e0249038. [PMID: 33765049 PMCID: PMC7993561 DOI: 10.1371/journal.pone.0249038] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 03/09/2021] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Observational studies have consistently described poor clinical outcomes and increased ICU mortality in patients with severe coronavirus disease 2019 (COVID-19) who require mechanical ventilation (MV). Our study describes the clinical characteristics and outcomes of patients with severe COVID-19 admitted to ICU in the largest health care system in the state of Florida, United States. METHODS Retrospective cohort study of patients admitted to ICU due to severe COVID-19 in AdventHealth health system in Orlando, Florida from March 11th until May 18th, 2020. Patients were characterized based on demographics, baseline comorbidities, severity of illness, medical management including experimental therapies, laboratory markers and ventilator parameters. Major clinical outcomes analyzed at the end of the study period were: hospital and ICU length of stay, MV-related mortality and overall hospital mortality of ICU patients. RESULTS Out of total of 1283 patients with COVID-19, 131 (10.2%) met criteria for ICU admission (median age: 61 years [interquartile range (IQR), 49.5-71.5]; 35.1% female). Common comorbidities were hypertension (84; 64.1%), and diabetes (54; 41.2%). Of the 131 ICU patients, 109 (83.2%) required MV and 9 (6.9%) received ECMO. Lower positive end expiratory pressure (PEEP) were observed in survivors [9.2 (7.7-10.4)] vs non-survivors [10 (9.1-12.9] p = 0.004]. Compared to non-survivors, survivors had a longer MV length of stay (LOS) [14 (IQR 8-22) vs 8.5 (IQR 5-10.8) p< 0.001], Hospital LOS [21 (IQR 13-31) vs 10 (7-1) p< 0.001] and ICU LOS [14 (IQR 7-24) vs 9.5 (IQR 6-11), p < 0.001]. The overall hospital mortality and MV-related mortality were 19.8% and 23.8% respectively. After exclusion of hospitalized patients, the hospital and MV-related mortality rates were 21.6% and 26.5% respectively. CONCLUSIONS Our study demonstrates an important improvement in mortality of patients with severe COVID-19 who required ICU admission and MV in comparison to previous observational reports and emphasizes the importance of standard of care measures in the management of COVID-19.
Collapse
Affiliation(s)
- Eduardo Oliveira
- Division of Critical Care – AdventHealth Medical Group, AdventHealth Orlando, Orlando, Florida, United States of America
| | - Amay Parikh
- Division of Critical Care – AdventHealth Medical Group, AdventHealth Orlando, Orlando, Florida, United States of America
| | - Arnaldo Lopez-Ruiz
- Division of Critical Care – AdventHealth Medical Group, AdventHealth Orlando, Orlando, Florida, United States of America
| | - Maria Carrilo
- Division of Critical Care – AdventHealth Medical Group, AdventHealth Orlando, Orlando, Florida, United States of America
| | - Joshua Goldberg
- Division of Critical Care – AdventHealth Medical Group, AdventHealth Orlando, Orlando, Florida, United States of America
| | - Martin Cearras
- Division of Critical Care – AdventHealth Medical Group, AdventHealth Orlando, Orlando, Florida, United States of America
| | - Khaled Fernainy
- Division of Critical Care – AdventHealth Medical Group, AdventHealth Orlando, Orlando, Florida, United States of America
| | - Sonja Andersen
- Division of Critical Care – AdventHealth Medical Group, AdventHealth Orlando, Orlando, Florida, United States of America
| | - Luis Mercado
- Internal Medicine Residency Program, AdventHealth Orlando, Orlando, Florida, United States of America
| | - Jian Guan
- Internal Medicine Residency Program, AdventHealth Orlando, Orlando, Florida, United States of America
| | - Hammad Zafar
- Internal Medicine Residency Program, AdventHealth Orlando, Orlando, Florida, United States of America
| | - Patricia Louzon
- Pharmacy Department, AdventHealth Orlando, Orlando, Florida, United States of America
| | - Amy Carr
- Pharmacy Department, AdventHealth Orlando, Orlando, Florida, United States of America
| | - Natasha Baloch
- Division of Critical Care – AdventHealth Medical Group, AdventHealth Orlando, Orlando, Florida, United States of America
| | - Richard Pratley
- Research Institute, AdventHealth Orlando, Orlando, Florida, United States of America
| | - Scott Silverstry
- Transplant Institute, AdventHealth Orlando, Orlando, Florida, United States of America
| | - Vincent Hsu
- Division of Infectious Diseases, AdventHealth Orlando, Orlando, Florida, United States of America
| | - Jason Sniffen
- Division of Infectious Diseases, AdventHealth Orlando, Orlando, Florida, United States of America
| | - Victor Herrera
- Division of Infectious Diseases, AdventHealth Orlando, Orlando, Florida, United States of America
| | - Neil Finkler
- AdventHealth Orlando Central Florida Division, Orlando, Florida, United States of America
| |
Collapse
|
37
|
Rolla R, Puricelli C, Bertoni A, Boggio E, Gigliotti CL, Chiocchetti A, Cappellano G, Dianzani U. Platelets: 'multiple choice' effectors in the immune response and their implication in COVID-19 thromboinflammatory process. Int J Lab Hematol 2021; 43:895-906. [PMID: 33749995 PMCID: PMC8251141 DOI: 10.1111/ijlh.13516] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 02/05/2021] [Accepted: 02/26/2021] [Indexed: 12/12/2022]
Abstract
Although platelets are traditionally recognized for their central role in hemostasis, the presence of chemotactic factors, chemokines, adhesion molecules, and costimulatory molecules in their granules and membranes indicates that they may play an immunomodulatory role in the immune response, flanking their capacity to trigger blood coagulation and inflammation. Indeed, platelets play a role not only in the innate immune response, through the expression of Toll‐like receptors (TLRs) and release of inflammatory cytokines, but also in the adaptive immune response, through expression of key costimulatory molecules and major histocompatibility complex (MHC) molecules capable to activate T cells. Moreover, platelets release huge amounts of extracellular vesicles capable to interact with multiple immune players. The function of platelets thus extends beyond aggregation and implies a multifaceted interplay between hemostasis, inflammation, and the immune response, leading to the amplification of the body's defense processes on one hand, but also potentially degenerating into life‐threatening pathological processes on the other. This narrative review summarizes the current knowledge and the most recent updates on platelet immune functions and interactions with infectious agents, with a particular focus on their involvement in COVID‐19, whose pathogenesis involves a dysregulation of hemostatic and immune processes in which platelets may be determinant causative agents.
Collapse
Affiliation(s)
- Roberta Rolla
- IRCAD & Department of Health Sciences, Amedeo Avogadro University of Eastern Piedmont, Novara, Italy.,Clinical Chemistry Laboratory, Maggiore della Carità University Hospital, Novara, Italy
| | - Chiara Puricelli
- IRCAD & Department of Health Sciences, Amedeo Avogadro University of Eastern Piedmont, Novara, Italy.,Clinical Chemistry Laboratory, Maggiore della Carità University Hospital, Novara, Italy
| | - Alessandra Bertoni
- Department of Translational Medicine, Amedeo Avogadro University of Eastern Piedmont, Novara, Italy
| | - Elena Boggio
- IRCAD & Department of Health Sciences, Amedeo Avogadro University of Eastern Piedmont, Novara, Italy
| | - Casimiro Luca Gigliotti
- IRCAD & Department of Health Sciences, Amedeo Avogadro University of Eastern Piedmont, Novara, Italy
| | - Annalisa Chiocchetti
- IRCAD & Department of Health Sciences, Amedeo Avogadro University of Eastern Piedmont, Novara, Italy.,Center for translational research on autoimmune and allergic diseases - CAAD, Amedeo Avogadro University of Eastern Piedmont, Novara, Italy
| | - Giuseppe Cappellano
- IRCAD & Department of Health Sciences, Amedeo Avogadro University of Eastern Piedmont, Novara, Italy
| | - Umberto Dianzani
- IRCAD & Department of Health Sciences, Amedeo Avogadro University of Eastern Piedmont, Novara, Italy.,Clinical Chemistry Laboratory, Maggiore della Carità University Hospital, Novara, Italy
| |
Collapse
|
38
|
Iba T, Levy JH, Connors JM, Warkentin TE, Thachil J, Levi M. Managing thrombosis and cardiovascular complications of COVID-19: answering the questions in COVID-19-associated coagulopathy. Expert Rev Respir Med 2021; 15:1003-1011. [PMID: 33667146 DOI: 10.1080/17476348.2021.1899815] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
INTRODUCTION The first patients with Coronavirus disease 2019 (COVID-19) emerged at the end of 2019. This novel viral infection demonstrated unique features that include prothrombotic clinical presentations. However, one year after the first occurrence, there remain many unanswered questions. We tried to address some of the important queries in this review. AREAS COVERED We raised the following critical questions. 'Why is COVID-19 so hypercoagulable?', 'Why are most coagulation test results relatively normal?', 'Why is COVID-19-associated coagulopathy more thrombotic than most other infectious diseases?', 'Why is arterial thrombus formed frequently?', 'Is anticoagulant therapy for COVID-19 effective?', and 'Are there racial disparities in thrombosis in COVID-19?' EXPERT OPINION There are commonalities and differences in the pathogeneses and clinical features between COVID-19 and other infectious diseases. Correct understanding will help discussing appropriate anticoagulation prophylaxis or treatment for thromboembolism.
Collapse
Affiliation(s)
- Toshiaki Iba
- Department of Emergency and Disaster Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Jerrold H Levy
- Department of Anesthesiology, Critical Care, and Surgery, Duke University School of Medicine, Durham, NC, USA
| | - Jean Marie Connors
- Hematology Division Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Theodore E Warkentin
- Department of Pathology and Molecular Medicine, and Department of Medicine, McMaster University, Hamilton, Canada
| | - Jecko Thachil
- Department of Haematology, Manchester Royal Infirmary, Manchester, UK
| | - Marcel Levi
- Department of Medicine, University College London Hospitals NHS Foundation Trust, and Cardio-metabolic Programme-NIHR UCLH/UCL BRC London, UK
| |
Collapse
|
39
|
Ortega‐Paz L, Capodanno D, Montalescot G, Angiolillo DJ. Coronavirus Disease 2019-Associated Thrombosis and Coagulopathy: Review of the Pathophysiological Characteristics and Implications for Antithrombotic Management. J Am Heart Assoc 2021; 10:e019650. [PMID: 33228447 PMCID: PMC7955431 DOI: 10.1161/jaha.120.019650] [Citation(s) in RCA: 99] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Coronavirus disease 2019 (COVID-19) is an infectious disease caused by severe acute respiratory syndrome coronavirus-2, which has posed a significant threat to global health. Although the infection is frequently asymptomatic or associated with mild symptoms, in a small proportion of patients it can produce an intense inflammatory and prothrombotic state that can lead to acute respiratory distress syndrome, multiple organ failure, and death. Angiotensin-converting enzyme 2, highly expressed in the respiratory system, has been identified as a functional receptor for severe acute respiratory syndrome coronavirus-2. Notably, angiotensin-converting enzyme 2 is also expressed in the cardiovascular system, and there are multiple cardiovascular implications of COVID-19. Cardiovascular risk factors and cardiovascular disease have been associated with severe manifestations and poor prognosis in patients with COVID-19. More important, patients with COVID-19 may have thrombotic and coagulation abnormalities, promoting a hypercoagulable state and resulting in an increased rate of thrombotic and thromboembolic events. This review will describe the pathophysiological characteristics of the cardiovascular involvement following infection by severe acute respiratory syndrome coronavirus-2, with a focus on thrombotic and thromboembolic manifestations and implications for antithrombotic management.
Collapse
Affiliation(s)
- Luis Ortega‐Paz
- Cardiovascular InstituteInstitut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)BarcelonaSpain
| | - Davide Capodanno
- Division of Cardiology, Azienda Ospedaliero Universitaria "Policlinico‐Vittorio Emanuele"University of CataniaCataniaItaly
| | - Gilles Montalescot
- ACTION Study GroupInstitut de CardiologieAssistance Publique ‐ Hôpitaux de ParisHôpital Pitié‐SalpêtrièreUniversity Paris 6INSERM UMRS 1166ParisFrance
| | | |
Collapse
|
40
|
Bos LDJ, Artigas A, Constantin JM, Hagens LA, Heijnen N, Laffey JG, Meyer N, Papazian L, Pisani L, Schultz MJ, Shankar-Hari M, Smit MR, Summers C, Ware LB, Scala R, Calfee CS. Precision medicine in acute respiratory distress syndrome: workshop report and recommendations for future research. Eur Respir Rev 2021; 30:30/159/200317. [PMID: 33536264 DOI: 10.1183/16000617.0317-2020] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 11/11/2020] [Indexed: 12/18/2022] Open
Abstract
Acute respiratory distress syndrome (ARDS) is a devastating critical illness that can be triggered by a wide range of insults and remains associated with a high mortality of around 40%. The search for targeted treatment for ARDS has been disappointing, possibly due to the enormous heterogeneity within the syndrome. In this perspective from the European Respiratory Society research seminar on "Precision medicine in ARDS", we will summarise the current evidence for heterogeneity, explore the evidence in favour of precision medicine and provide a roadmap for further research in ARDS. There is evident variation in the presentation of ARDS on three distinct levels: 1) aetiological; 2) physiological and 3) biological, which leads us to the conclusion that there is no typical ARDS. The lack of a common presentation implies that intervention studies in patients with ARDS need to be phenotype aware and apply a precision medicine approach in order to avoid the lack of success in therapeutic trials that we faced in recent decades. Deeper phenotyping and integrative analysis of the sources of variation might result in identification of additional treatable traits that represent specific pathobiological mechanisms, or so-called endotypes.
Collapse
Affiliation(s)
- Lieuwe D J Bos
- Intensive Care, Amsterdam UMC - location AMC, University of Amsterdam, Amsterdam, The Netherlands .,Laboratory of Intensive Care and Anesthesiology Amsterdam UMC - location AMC, University of Amsterdam, Amsterdam, The Netherlands.,Dept of Respiratory Medicine, Amsterdam UMC - location AMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Antonio Artigas
- Critical Care Center, Corporació Sanitaria Universitaria Parc Tauli, CIBER Enfermedades Respiratorias, Autonomouus University of Barcelona, Sabadell, Spain
| | - Jean-Michel Constantin
- Dept of Anaesthesiology and Critical Care, Sorbonne University, GRC 29, AP-HP, DMU DREAM, Pitié-Salpêtrière Hospital, Paris, France
| | - Laura A Hagens
- Intensive Care, Amsterdam UMC - location AMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Nanon Heijnen
- Intensive care, Maastricht UMC, University of Maastricht, Maastricht, The Netherlands
| | - John G Laffey
- Anaesthesia and Intensive Care Medicine, School of Medicine, and Regenerative Medicine Institute (REMEDI) at CÚRAM Centre for Research in Medical Devices, National University of Ireland Galway, Galway, Ireland.,Dept of Anaesthesia, University Hospital Galway, Saolta Hospital Group, Galway, Ireland
| | - Nuala Meyer
- Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Laurent Papazian
- Intensive Care Medicine and regional ECMO center, North hospital - Aix-Marseille University, Marseille, France
| | - Lara Pisani
- Dipartimento Cardio-Toraco-Vascolare, Policlinico S.Orsola-Malpighi, Bologna, Italy
| | - Marcus J Schultz
- Intensive Care, Amsterdam UMC - location AMC, University of Amsterdam, Amsterdam, The Netherlands.,Laboratory of Intensive Care and Anesthesiology Amsterdam UMC - location AMC, University of Amsterdam, Amsterdam, The Netherlands.,Dept of Respiratory Medicine, Amsterdam UMC - location AMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Manu Shankar-Hari
- School of Immunology & Microbial Sciences, Kings College London, London, UK
| | - Marry R Smit
- Intensive Care, Amsterdam UMC - location AMC, University of Amsterdam, Amsterdam, The Netherlands
| | | | | | - Raffaele Scala
- Respiratory Division with Pulmonary Intensive Care Unit, S. Donato Hospital, Usl Toscana Sudest, Arezzo, Italy
| | - Carolyn S Calfee
- Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, Dept of Medicine, University of California, San Francisco, CA, USA.,Dept of Anesthesia, University of California, San Francisco, CA, USA
| |
Collapse
|
41
|
Zhang Q, Hu WT, Yin F, Qian H, Wang Y, Li BR, Qian J, Tang YJ, Ning BT. The Clinical Characteristics of ARDS in Children With Hematological Neoplasms. Front Pediatr 2021; 9:696594. [PMID: 34307258 PMCID: PMC8295493 DOI: 10.3389/fped.2021.696594] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 05/31/2021] [Indexed: 12/27/2022] Open
Abstract
In order to explore the clinical characteristics of pediatric patients admitted to the pediatric intensive care unit (PICU) who suffered from hematological neoplasms complicated with acute respiratory distress syndrome (ARDS), we retrospectively analyzed 45 ARDS children with hematological neoplasms who were admitted to the PICU of Shanghai Children's Medical Center from January 1, 2014, to December 31, 2020. The 45 children were divided into a survival group and a non-survival group, a pulmonary ARDS group and an exogenous pulmonary ARDS group, and an agranulocytosis group and a non-agranulocytosis group, for statistical analysis. The main clinical manifestations were fever, cough, progressive dyspnea, and hypoxemia; 55.6% (25/45) of the children had multiple organ dysfunction syndrome (MODS). The overall mortality rate was 55.6% (25/45). The vasoactive inotropic score (VIS), pediatric critical illness scoring (PCIS), average fluid volume in the first 3 days and the first 7 days, and the incidence of MODS in the non-survival group were all significantly higher than those in the survival group (P < 0.05). However, total length of mechanical ventilation and length of hospital stay and PICU days in the non-survival group were significantly lower than those in the survival group (P < 0.05). The PCIS (OR = 0.832, P = 0.004) and the average fluid volume in the first 3 days (OR = 1.092, P = 0.025) were independent risk factors for predicting death. Children with exogenous pulmonary ARDS were more likely to have MODS than pulmonary ARDS (P < 0.05). The mean values of VIS, C-reactive protein (CRP), and procalcitonin (PCT) in children with exogenous pulmonary ARDS were also higher (P < 0.05). After multivariate analysis, PCT was independently related to exogenous pulmonary ARDS. The total length of hospital stay, peak inspiratory pressure (PIP), VIS, CRP, and PCT in the agranulocytosis group were significantly higher than those in the non-agranulocytosis group (P < 0.05). Last, CRP and PIP were independently related to agranulocytosis. In conclusion, children with hematological neoplasms complicated with ARDS had a high overall mortality and poor prognosis. Children complicated with MODS, positive fluid balance, and high VIS and PCIS scores were positively correlated with mortality. In particular, PCIS score and average fluid volume in the first 3 days were independent risk factors for predicting death. Children with exogenous pulmonary ARDS and children with agranulocytosis were in a severely infected status and more critically ill.
Collapse
Affiliation(s)
- Qiao Zhang
- Department of Intensive Care Medicine, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Wen-Ting Hu
- Department of Hematology and Oncology, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Fan Yin
- Department of Intensive Care Medicine, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Han Qian
- Department of Intensive Care Medicine, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Ying Wang
- Department of Intensive Care Medicine, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Bi-Ru Li
- Department of Intensive Care Medicine, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Juan Qian
- Department of Intensive Care Medicine, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yan-Jing Tang
- Department of Hematology and Oncology, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Bo-Tao Ning
- Department of Intensive Care Medicine, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Shanghai Engineering Research Center of Intelligence Pediatrics (SERCIP), Shanghai, China
| |
Collapse
|
42
|
Vorobyev PA, Momot AP, Krasnova LS, Vorobiev AP, Talipov AK. [Pathogenesis, diagnosis, prevention and treatment of disseminated intravascular coagulation syndrome in COVID-19 infection]. TERAPEVT ARKH 2020; 92:51-56. [PMID: 33720604 DOI: 10.26442/00403660.2020.11.000887] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Accepted: 12/25/2020] [Indexed: 12/24/2022]
Abstract
AIM Clinical characteristics of disseminated intravascular coagulation (DIC) in COVID-19 infection and assessment of the effectiveness of complex therapy for this syndrome at the stages of prevention and treatment of various complications. MATERIALS AND METHODS The study of publications was carried out through search engines on the Internet using keywords. To diagnose the infection, the COVID-19 program was used on the MeDiCase platform, which is publicly available on www.medicase.pro, which suggests a diagnosis with a sensitivity of 89.47%. The study included 85 patients with acute COVID-19 with mild to moderate disease, aged 11 to 81 years. The presence of the pathogen was confirmed immunologically in 12% of patients; in other cases, the diagnosis was based on the results of an automated survey in the MeDiCase system. All patients, according to the MGNOT recommendations, were prescribed one of the oral direct anticoagulants - Eliquis at a dose of 5 mg 2 times a day, Ksarelto at a dose of 10 mg 2 times a day or Pradax at a dose of 110 mg 2 times a day for at least 2 weeks. All other drugs with antiviral, immunomodulatory effects, antibiotics were canceled. RESULTS The presence of DIC is substantiated by the morphological picture of changes in organs and tissues, clinical (hematoma-petechial type of bleeding in combination with thromboembolic syndrome and the presence of thrombovasculitis) and laboratory changes: an increase in the level of soluble fibrin-monomer complexes, D-dimer, hyperfibrinogenaemia, less often - thrombocytopenia, violation of fibrinolytic activity. The phenomenon of consumption of clotting factors and profuse bleeding are rare. Direct anticoagulants, fresh frozen plasma transfusions and plasmapheresis are used in the treatment of disseminated intravascular coagulation. The paper presents its own positive results of early prescription at the outpatient stage of direct oral anticoagulants in prophylactic doses (no case of disease progression), individual cases of the use of fresh frozen plasma and plasapheresis. CONCLUSION DIC syndrome with the development of thrombovasculitis is the most important pathogenetic mechanism for the development of microthrombotic and hemorrhagic disorders in organs during infection with COVID-19, leading to dysfunction of the lungs, brain and other nerve tissues, kidneys, thromboembolic complications, etc. Many symptoms of the disease may be associated with a violation of the nervous regulation of the functions of organs and systems. Prevention of thrombovasculitis is effective already at the stage of the first manifestation of the disease with the outpatient use of direct anticoagulants (oral, low molecular weight heparins). In case of more severe manifestations (complications) of the disease, additional use of freshly frozen plasma and plasmapheresis is effective.
Collapse
Affiliation(s)
- P A Vorobyev
- Moscow City Scientific Society of Physicians.,Moscow State University of Food Production
| | - A P Momot
- Altai branch of the National Medical Research Center of Hematology
| | - L S Krasnova
- Sechenov First Moscow State Medical University (Sechenov University)
| | | | | |
Collapse
|
43
|
Delrue M, Siguret V, Neuwirth M, Joly B, Beranger N, Sène D, Chousterman BG, Voicu S, Bonnin P, Mégarbane B, Stépanian A. von Willebrand factor/ADAMTS13 axis and venous thromboembolism in moderate-to-severe COVID-19 patients. Br J Haematol 2020; 192:1097-1100. [PMID: 33368196 DOI: 10.1111/bjh.17216] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 10/09/2020] [Indexed: 12/13/2022]
Affiliation(s)
- Maxime Delrue
- Department of Hematology, Lariboisière Hospital, Paris University, Paris, France.,EA 3518, Paris University, Paris, France
| | - Virginie Siguret
- Department of Hematology, Lariboisière Hospital, Paris University, Paris, France.,INSERM, UMRS 1140, Paris University, Paris, France
| | - Marie Neuwirth
- Department of Hematology, Lariboisière Hospital, Paris University, Paris, France.,INSERM, UMRS 1140, Paris University, Paris, France
| | - Bérangère Joly
- Department of Hematology, Lariboisière Hospital, Paris University, Paris, France.,EA 3518, Paris University, Paris, France
| | - Nicolas Beranger
- Department of Hematology, Lariboisière Hospital, Paris University, Paris, France.,EA 3518, Paris University, Paris, France
| | - Damien Sène
- Department of Internal Medicine, Lariboisière Hospital, Paris University, Paris, France
| | - Benjamin G Chousterman
- Department of Anesthesiology and Critical Care, Lariboisière Hospital, Paris University, Paris, France.,INSERM, UMRS 942, Université de Paris, Paris, France
| | - Sebastian Voicu
- Department of Medical and Toxicological Critical Care, Lariboisière Hospital, Paris University, Paris, France.,INSERM, UMRS 1144, Paris University, Paris, France
| | - Philippe Bonnin
- Department of Clinical Physiology, Lariboisière Hospital, Paris University, Paris, France.,INSERM U1265, INSERM, Université de Paris, Paris, France.,INSERM U1148-Laboratory for Vascular and Translational Science, Université de Paris, Paris, France
| | - Bruno Mégarbane
- Department of Medical and Toxicological Critical Care, Lariboisière Hospital, Paris University, Paris, France.,INSERM, UMRS 1144, Paris University, Paris, France
| | - Alain Stépanian
- Department of Hematology, Lariboisière Hospital, Paris University, Paris, France.,EA 3518, Paris University, Paris, France
| |
Collapse
|
44
|
Vacchi C, Meschiari M, Milic J, Marietta M, Tonelli R, Alfano G, Volpi S, Faltoni M, Franceschi G, Ciusa G, Bacca E, Tutone M, Raimondi A, Menozzi M, Franceschini E, Cuomo G, Orlando G, Santoro A, Di Gaetano M, Puzzolante C, Carli F, Bedini A, Cossarizza A, Castaniere I, Ligabue G, De Ruvo N, Manco G, Rolando G, Gelmini R, Maiorana A, Girardis M, Mascia MT, Mussini C, Salvarani C, Guaraldi G. COVID-19-associated vasculitis and thrombotic complications: from pathological findings to multidisciplinary discussion. Rheumatology (Oxford) 2020; 59:e147-e150. [PMID: 32968761 PMCID: PMC7543638 DOI: 10.1093/rheumatology/keaa581] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 07/20/2020] [Accepted: 07/21/2020] [Indexed: 01/05/2023] Open
Affiliation(s)
- Caterina Vacchi
- PhD Program in Clinical and Experimental Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - Marianna Meschiari
- Department of Infectious Diseases, University of Modena and Reggio Emilia, Modena, Italy
| | - Jovana Milic
- PhD Program in Clinical and Experimental Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - Marco Marietta
- Haematology Unit, Azienda Ospedaliero-Universitaria Policlinico di Modena, Modena, Italy
| | - Roberto Tonelli
- PhD Program in Clinical and Experimental Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - Gaetano Alfano
- PhD Program in Clinical and Experimental Medicine, University of Modena and Reggio Emilia, Modena, Italy
- Nephrology Dialysis and Transplant Unit, University Hospital of Modena, Modena, Italy
| | - Sara Volpi
- Department of Infectious Diseases, University of Modena and Reggio Emilia, Modena, Italy
| | - Matteo Faltoni
- Department of Infectious Diseases, University of Modena and Reggio Emilia, Modena, Italy
| | - Giacomo Franceschi
- Department of Infectious Diseases, University of Modena and Reggio Emilia, Modena, Italy
| | - Giacomo Ciusa
- Department of Infectious Diseases, University of Modena and Reggio Emilia, Modena, Italy
| | - Erica Bacca
- Department of Infectious Diseases, University of Modena and Reggio Emilia, Modena, Italy
| | - Marco Tutone
- Department of Infectious Diseases, University of Modena and Reggio Emilia, Modena, Italy
| | - Alessandro Raimondi
- Department of Infectious Diseases, University of Modena and Reggio Emilia, Modena, Italy
| | - Marianna Menozzi
- Department of Infectious Diseases, University of Modena and Reggio Emilia, Modena, Italy
| | - Erica Franceschini
- Department of Infectious Diseases, University of Modena and Reggio Emilia, Modena, Italy
| | - Gianluca Cuomo
- Department of Infectious Diseases, University of Modena and Reggio Emilia, Modena, Italy
| | - Gabriella Orlando
- Department of Infectious Diseases, University of Modena and Reggio Emilia, Modena, Italy
| | - Antonella Santoro
- Department of Infectious Diseases, University of Modena and Reggio Emilia, Modena, Italy
| | - Margherita Di Gaetano
- Department of Infectious Diseases, University of Modena and Reggio Emilia, Modena, Italy
| | - Cinzia Puzzolante
- Department of Infectious Diseases, University of Modena and Reggio Emilia, Modena, Italy
| | - Federica Carli
- Department of Infectious Diseases, University of Modena and Reggio Emilia, Modena, Italy
| | - Andrea Bedini
- Department of Infectious Diseases, University of Modena and Reggio Emilia, Modena, Italy
| | - Andrea Cossarizza
- Department of Infectious Diseases, University of Modena and Reggio Emilia, Modena, Italy
| | - Ivana Castaniere
- PhD Program in Clinical and Experimental Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - Guido Ligabue
- Nephrology Dialysis and Transplant Unit, University Hospital of Modena, Modena, Italy
- Department of Radiology, Azienda Ospedaliero-Universitaria Policlinico di Modena, University of Modena and Reggio Emilia, Modena, Italy
| | - Nicola De Ruvo
- Hepato-Pancreato-Biliary Surgery and Liver Transplantation Unit, University of Modena and Reggio Emilia, Modena, Italy
| | - Gianrocco Manco
- Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia
| | - Giovanni Rolando
- Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia
| | - Roberta Gelmini
- Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia
| | - Antonino Maiorana
- Department of Medical and Surgical Sciences, Institute of Pathology, University of Modena and Reggio Emilia, Modena, Italy
| | - Massimo Girardis
- Department of Anaesthesia and Intensive Care Unit, Azienda Ospedaliero-Universitaria Policlinico di Modena, University of Modena and Reggio Emilia, Modena, Italy
| | - Maria Teresa Mascia
- Rheumatology Unit, Azienda Ospedaliero-Universitaria Policlinico di Modena, University of Modena and Reggio Emilia, Modena, Italy
| | - Cristina Mussini
- Department of Infectious Diseases, University of Modena and Reggio Emilia, Modena, Italy
| | - Carlo Salvarani
- Rheumatology Unit, Azienda Ospedaliero-Universitaria Policlinico di Modena, University of Modena and Reggio Emilia, Modena, Italy
- Rheumatology Unit, Azienda USL-IRCCS, Reggio Emilia, Italy
| | - Giovanni Guaraldi
- Department of Infectious Diseases, University of Modena and Reggio Emilia, Modena, Italy
| |
Collapse
|
45
|
Pan P, Li Y, Xiao Y, Han B, Su L, Su M, Li Y, Zhang S, Jiang D, Chen X, Zhou F, Ma L, Bao P, Xie L. Prognostic Assessment of COVID-19 in the Intensive Care Unit by Machine Learning Methods: Model Development and Validation. J Med Internet Res 2020; 22:e23128. [PMID: 33035175 PMCID: PMC7661105 DOI: 10.2196/23128] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 09/06/2020] [Accepted: 10/08/2020] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Patients with COVID-19 in the intensive care unit (ICU) have a high mortality rate, and methods to assess patients' prognosis early and administer precise treatment are of great significance. OBJECTIVE The aim of this study was to use machine learning to construct a model for the analysis of risk factors and prediction of mortality among ICU patients with COVID-19. METHODS In this study, 123 patients with COVID-19 in the ICU of Vulcan Hill Hospital were retrospectively selected from the database, and the data were randomly divided into a training data set (n=98) and test data set (n=25) with a 4:1 ratio. Significance tests, correlation analysis, and factor analysis were used to screen 100 potential risk factors individually. Conventional logistic regression methods and four machine learning algorithms were used to construct the risk prediction model for the prognosis of patients with COVID-19 in the ICU. The performance of these machine learning models was measured by the area under the receiver operating characteristic curve (AUC). Interpretation and evaluation of the risk prediction model were performed using calibration curves, SHapley Additive exPlanations (SHAP), Local Interpretable Model-Agnostic Explanations (LIME), etc, to ensure its stability and reliability. The outcome was based on the ICU deaths recorded from the database. RESULTS Layer-by-layer screening of 100 potential risk factors finally revealed 8 important risk factors that were included in the risk prediction model: lymphocyte percentage, prothrombin time, lactate dehydrogenase, total bilirubin, eosinophil percentage, creatinine, neutrophil percentage, and albumin level. Finally, an eXtreme Gradient Boosting (XGBoost) model established with the 8 important risk factors showed the best recognition ability in the training set of 5-fold cross validation (AUC=0.86) and the verification queue (AUC=0.92). The calibration curve showed that the risk predicted by the model was in good agreement with the actual risk. In addition, using the SHAP and LIME algorithms, feature interpretation and sample prediction interpretation algorithms of the XGBoost black box model were implemented. Additionally, the model was translated into a web-based risk calculator that is freely available for public usage. CONCLUSIONS The 8-factor XGBoost model predicts risk of death in ICU patients with COVID-19 well; it initially demonstrates stability and can be used effectively to predict COVID-19 prognosis in ICU patients.
Collapse
Affiliation(s)
- Pan Pan
- Chinese PLA General Hospital, Medical School Of Chinese PLA, College of Pulmonary and Critical Care Medicine, Beijing, China
| | - Yichao Li
- DHC Mediway Technology Co Ltd, Beijing, China
| | - Yongjiu Xiao
- The 940th Hospital of Jiont Logistics Support Force of Chinese People's Liberation Army, Lanzhou, China
| | - Bingchao Han
- The 980th Hospital of Jiont Logistics Support Force of Chinese People's Liberation Army, Shijiazhuang, China
| | - Longxiang Su
- Peking Union Medical College Hospital, Beijing, China
| | | | - Yansheng Li
- DHC Mediway Technology Co Ltd, Beijing, China
| | - Siqi Zhang
- DHC Mediway Technology Co Ltd, Beijing, China
| | | | - Xia Chen
- DHC Mediway Technology Co Ltd, Beijing, China
| | - Fuquan Zhou
- DHC Mediway Technology Co Ltd, Beijing, China
| | - Ling Ma
- The 940th Hospital of Jiont Logistics Support Force of Chinese People's Liberation Army, Lanzhou, China
| | - Pengtao Bao
- College of Pulmonary and Critical Care Medicine, Chinese PLA General Hospital, Beijing, China
| | - Lixin Xie
- College of Pulmonary and Critical Care Medicine, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
46
|
Segrelles-Calvo G, de S Araújo GR, Frases S. Systemic mycoses: a potential alert for complications in COVID-19 patients. Future Microbiol 2020; 15:1405-1413. [PMID: 33085538 DOI: 10.2217/fmb-2020-0156] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
As the global COVID-19 pandemic spreads worldwide, new challenges arise in the clinical landscape. The need for reliable diagnostic methods, treatments and vaccines for COVID-19 is the major worldwide urgency. While these goals are especially important, the growing risk of co-infections is a major threat not only to the health systems but also to patients' lives. Although there is still not enough published statistical data, co-infections in COVID-19 patients found that a significant number of patients hospitalized with COVID-19 developed secondary systemic mycoses that led to serious complications and even death. This review will discuss some of these important findings with the major aim to warn the population about the high risk of concomitant systemic mycoses in individuals weakened by COVID-19.
Collapse
Affiliation(s)
- Gonzalo Segrelles-Calvo
- Servicio de Neumologia, Hospital Universitario Rey Juan Carlos, Instituto de Investigación Biomedica Fundación Jiménez Diaz, Madrid, España
| | - Glauber R de S Araújo
- Laboratorio de Biofísica de Fungos. Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil.,Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Susana Frases
- Laboratorio de Biofísica de Fungos. Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil.,Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
47
|
Balagholi S, Dabbaghi R, Eshghi P, Mousavi SA, Heshmati F, Mohammadi S. Potential of therapeutic plasmapheresis in treatment of COVID-19 patients: Immunopathogenesis and coagulopathy. Transfus Apher Sci 2020; 59:102993. [PMID: 33162341 PMCID: PMC7605792 DOI: 10.1016/j.transci.2020.102993] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Therapeutic plasmapheresis (TP) is the process of the separation and removal of plasma from other blood components and is considered as an adjunctive treatment strategy to the discarded abnormal agent in the management of respiratory viral pandemics. This article reviews the mechanisms of immunopathogenesis and coagulopathy induced by SARS-CoV-2 and the potential benefits of TP as adjunctive treatment in critically COVID-19 patients.
Collapse
Affiliation(s)
- Sahar Balagholi
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| | - Rasul Dabbaghi
- Ophtalmic Research Center, Research Institute for Ophtalmology and Vision Science, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Peyman Eshghi
- Pediatric Congenital Hematologic Disorders Research Center, Mofid Children's Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| | - Seyed Asadollah Mousavi
- Hematology, Oncology and Stem Cell Transplantation Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Saeed Mohammadi
- Hematology, Oncology and Stem Cell Transplantation Research Center, Tehran University of Medical Sciences, Tehran, Iran; Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran.
| |
Collapse
|
48
|
Varghese PM, Tsolaki AG, Yasmin H, Shastri A, Ferluga J, Vatish M, Madan T, Kishore U. Host-pathogen interaction in COVID-19: Pathogenesis, potential therapeutics and vaccination strategies. Immunobiology 2020; 225:152008. [PMID: 33130519 PMCID: PMC7434692 DOI: 10.1016/j.imbio.2020.152008] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/09/2020] [Accepted: 08/16/2020] [Indexed: 02/07/2023]
Abstract
The current coronavirus pandemic, COVID-19, is the third outbreak of disease caused by the coronavirus family, after Severe Acute Respiratory Syndrome and Middle East Respiratory Syndrome. It is an acute infectious disease caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). This severe disease is characterised by acute respiratory distress syndrome, septic shock, metabolic acidosis, coagulation dysfunction, and multiple organ dysfunction syndromes. Currently, no drugs or vaccines exist against the disease and the only course of treatment is symptom management involving mechanical ventilation, immune suppressants, and repurposed drugs. The severe form of the disease has a relatively high mortality rate. The last six months have seen an explosion of information related to the host receptors, virus transmission, virus structure-function relationships, pathophysiology, co-morbidities, immune response, treatment and the most promising vaccines. This review takes a critically comprehensive look at various aspects of the host-pathogen interaction in COVID-19. We examine the genomic aspects of SARS-CoV-2, modulation of innate and adaptive immunity, complement-triggered microangiopathy, and host transmission modalities. We also examine its pathophysiological impact during pregnancy, in addition to emphasizing various gaps in our knowledge. The lessons learnt from various clinical trials involving repurposed drugs have been summarised. We also highlight the rationale and likely success of the most promising vaccine candidates.
Collapse
Affiliation(s)
- Praveen Mathews Varghese
- Biosciences, College of Health and Life Sciences, Brunel University London, Uxbridge UB8 3PH, London, United Kingdom; School of Biosciences and Technology, Vellore Institute of Technology, Vellore, India
| | - Anthony G Tsolaki
- Biosciences, College of Health and Life Sciences, Brunel University London, Uxbridge UB8 3PH, London, United Kingdom
| | - Hadida Yasmin
- Immunology and Cell Biology Laboratory, Department of Zoology, Cooch Behar Panchanan Barma University, Cooch Behar, West Bengal, India
| | - Abhishek Shastri
- Central and North West London NHS Foundation Trust, London, United Kingdom
| | - Janez Ferluga
- Biosciences, College of Health and Life Sciences, Brunel University London, Uxbridge UB8 3PH, London, United Kingdom
| | - Manu Vatish
- Department of Obstetrics and Gynaecology, Women's Centre, John Radcliffe Oxford University Hospital, Oxford, OX3 9DU, United Kingdom
| | - Taruna Madan
- Department of Innate Immunity, ICMR - National Institute for Research in Reproductive Health, J.M. Street, Parel, Mumbai, Maharashtra, India
| | - Uday Kishore
- Biosciences, College of Health and Life Sciences, Brunel University London, Uxbridge UB8 3PH, London, United Kingdom.
| |
Collapse
|
49
|
Marietta M, Coluccio V, Luppi M. COVID-19, coagulopathy and venous thromboembolism: more questions than answers. Intern Emerg Med 2020; 15:1375-1387. [PMID: 32653981 PMCID: PMC7352087 DOI: 10.1007/s11739-020-02432-x] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Accepted: 07/02/2020] [Indexed: 02/06/2023]
Abstract
The acute respiratory illnesses caused by severe acquired respiratory syndrome corona Virus-2 (SARS-CoV-2) is a global health emergency, involving more than 8.6 million people worldwide with more than 450,000 deaths. Among the clinical manifestations of COVID-19, the disease that results from SARS-CoV-2 infection in humans, a prominent feature is a pro-thrombotic derangement of the hemostatic system, possibly representing a peculiar clinicopathologic manifestation of viral sepsis. The severity of the derangement of coagulation parameters in COVID-19 patients has been associated with a poor prognosis, and the use of low molecular weight heparin (LMWH) at doses registered for prevention of venous thromboembolism (VTE) has been endorsed by the World Health Organization and by Several Scientific societies. However, some relevant issues on the relationships between COVID-19, coagulopathy and VTE have yet to be fully elucidated. This review is particularly focused on four clinical questions: What is the incidence of VTE in COVID-19 patients? How do we frame the COVID-19 associated coagulopathy? Which role, if any, do antiphospolipid antibodies have? How do we tackle COVID-19 coagulopathy? In the complex scenario of an overwhelming pandemic, most everyday clinical decisions have to be taken without delay, although not yet supported by a sound scientific evidence. This review discusses the most recent findings of basic and clinical research about the COVID-associated coagulopathy, to foster a more thorough knowledge of the mechanisms underlying this compelling disease.
Collapse
Affiliation(s)
- Marco Marietta
- Hematology Unit, Azienda Ospepdaliero-Universitaria, Via del Pozzo 71, 41124, Modena, Italy.
| | - Valeria Coluccio
- Hematology Unit, Azienda Ospepdaliero-Universitaria, Via del Pozzo 71, 41124, Modena, Italy
| | - Mario Luppi
- Hematology Unit, Azienda Ospepdaliero-Universitaria, Via del Pozzo 71, 41124, Modena, Italy
- Department of Medical and Surgical Sciences, Section of Hematology, University of Modena and Reggio Emilia, Modena, Italy
| |
Collapse
|
50
|
Huber-Lang MS, Ignatius A, Köhl J, Mannes M, Braun CK. Complement in trauma-Traumatised complement? Br J Pharmacol 2020; 178:2863-2879. [PMID: 32880897 DOI: 10.1111/bph.15245] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/23/2020] [Accepted: 08/17/2020] [Indexed: 12/17/2022] Open
Abstract
Physical trauma represents a major global burden. The trauma-induced response, including activation of the innate immune system, strives for regeneration but can also lead to post-traumatic complications. The complement cascade is rapidly activated by damaged tissue, hypoxia, exogenous proteases and others. Activated complement can sense, mark and clear both damaged tissue and pathogens. However, excessive and insufficient activation of complement can result in a dysfunctional immune and organ response. Similar to acute coagulopathy, complementopathy can develop with enhanced anaphylatoxin generation and an impairment of complement effector functions. Various remote organ effects are induced or modulated by complement activation. Frequently, established trauma treatments are double-edged. On one hand, they help stabilising haemodynamics and oxygen supply as well as injured organs and on the other hand, they also drive complement activation. Immunomodulatory approaches aim to reset trauma-induced disbalance of complement activation and thus may change surgical trauma management procedures to improve outcome. LINKED ARTICLES: This article is part of a themed issue on Canonical and non-canonical functions of the complement system in health and disease. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v178.14/issuetoc.
Collapse
Affiliation(s)
- Markus S Huber-Lang
- Institute of Clinical and Experimental Trauma-Immunology, University Hospital of Ulm, Ulm, Germany
| | - Anita Ignatius
- Institue of Orthopaedic Research and Biomechanics, University Hospital of Ulm, Ulm, Germany
| | - Jörg Köhl
- Institute for Systemic Inflammatory Research, University of Lübeck, Lübeck, Germany.,Division of Immunobiology, Cincinnati Children's Hospital Medical Centre, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Marco Mannes
- Institute of Clinical and Experimental Trauma-Immunology, University Hospital of Ulm, Ulm, Germany
| | - Christian Karl Braun
- Institute of Clinical and Experimental Trauma-Immunology, University Hospital of Ulm, Ulm, Germany.,Department of Paediatrics and Adolescent Medicine, University Hospital of Ulm, Ulm, Germany
| |
Collapse
|