1
|
Harry JL, Shezi NB, Mwazha A. Molecular classification of medulloblastoma using immunohistochemistry: A single centre study. Ann Diagn Pathol 2025; 76:152463. [PMID: 40056547 DOI: 10.1016/j.anndiagpath.2025.152463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 03/02/2025] [Accepted: 03/03/2025] [Indexed: 03/10/2025]
Abstract
Medulloblastoma (MB) is the second most common malignant paediatric central nervous system (CNS) tumour. The World Health Organisation (WHO) advocates an integrated pathological and molecular approach to diagnosis. Immunohistochemistry (IHC) has been proven to be a valid surrogate for molecular subtyping in low resource settings. This study aimed to use IHC to classify MB into different molecular subtypes. Patients diagnosed with medulloblastoma between 2011 and 2021 were included in the study. Clinicopathological characteristics, treatment patterns and outcomes were reviewed. Molecular subgrouping into wingless signalling activated (WNT), sonic hedgehog (SHH), and non-WNT/non-SHH was performed by immunohistochemical staining, using β-catenin, Yes-associated protein 1 (YAP1) and GRB2-Associated Binding Protein 1 (GAB1) antibodies. Of the 32 children evaluated, the mean age at diagnosis was 9.9 years with M: F ratio of 1.5:1. Classic (75.8 %) and desmoplastic/nodular (24.2 %) were the only two histopathological variants reported. Non-WNT/non-SHH constituted the majority of cases (54.5 %), followed by SHH (36.4 %) and WNT subgroups (9.1 %). The 5-year overall survival and 5-year progression-free survival was 41 % and 38 % respectively. The 30-day operative mortality rate was 28.1 %. Molecular subgroups determined by immunohistochemistry, can be easily incorporated into routine practice in low resource settings. The overall survival rate in our cohort is lower than thate reported in the literature due to high post-operative mortality and low uptake of adjuvant oncotherapy.
Collapse
Affiliation(s)
- Jason L Harry
- Department of Anatomical Pathology, National Health Laboratory Service, Durban, South Africa; Discipline of Anatomical Pathology, University of KwaZulu-Natal, Durban, South Africa
| | - Nomusa B Shezi
- Department of Neurosurgery, Inkosi Albert Luthuli Central Hospital, Durban, South Africa; Discipline of Neurosurgery, University of KwaZulu-Natal, Durban, South Africa
| | - Absalom Mwazha
- Department of Anatomical Pathology, National Health Laboratory Service, Durban, South Africa; Discipline of Anatomical Pathology, University of KwaZulu-Natal, Durban, South Africa.
| |
Collapse
|
2
|
Fontão P, Teixeira GR, Moreno DA, Marques RF, Stavale JN, Malheiros SMF, Júnior CA, Mançano BM, Reis RM. High B7-H3 protein expression in Medulloblastoma is associated with metastasis and unfavorable patient outcomes. Diagn Pathol 2025; 20:49. [PMID: 40269882 PMCID: PMC12016131 DOI: 10.1186/s13000-025-01645-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Accepted: 04/04/2025] [Indexed: 04/25/2025] Open
Abstract
BACKGROUND Medulloblastoma (MB) is the most common malignant brain tumor in children. Although the 5-year survival rate is approximately 70-80%, the current standard treatment results in severe and long-term side effects. The search for new anticancer immunotherapeutic targets has identified B7-H3 as a promising candidate in various solid tumors. However, the role of B7-H3 in MB remains unclear, and studies reporting its protein expression and association with clinicopathological characteristics are still limited. METHODS In this study, B7-H3 protein expression was evaluated by immunohistochemistry in seven non-tumor samples and 43 molecularly characterized MB tissues. Its expression profile was correlated with B7-H3 (CD276) mRNA levels, which were previously determined by nCounter, as well as with the patients' clinical features. RESULTS Only 14.3% (1/7) of non-tumor brain and cerebellum tissues showed B7-H3 positivity, whereas 95.6% (41/43) of the MB samples expressed this protein at distinct levels. B7-H3 was found in the cytoplasm and on the membrane of cancer cells. A significant positive correlation was observed between CD276 mRNA and B7-H3 protein levels. Moreover, high expression of B7-H3 protein was associated with worse overall survival and the presence of metastasis at diagnosis. CONCLUSIONS This is the first study to associate CD276 mRNA and B7-H3 protein levels in MB, revealing a significant positive correlation. We observed that B7-H3 was overexpressed in MB compared to non-tumor brain tissue. High B7-H3 expression was associated with a worse outcome and with the presence of metastasis at diagnosis.
Collapse
Affiliation(s)
- Patrícia Fontão
- Molecular Oncology Research Center, Barretos Cancer Hospital, Rua Antenor Duarte Vilela, 1331, Barretos, SP, 14784-400, Brazil
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3Bs-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Gustavo Ramos Teixeira
- Barretos School of Health Sciences, Dr. Paulo Prata - FACISB, Barretos, São Paulo, Brazil
- Department of Pathology, Barretos Cancer Hospital, Barretos, São Paulo, Brazil
| | - Daniel Antunes Moreno
- Molecular Oncology Research Center, Barretos Cancer Hospital, Rua Antenor Duarte Vilela, 1331, Barretos, SP, 14784-400, Brazil
| | - Rui Ferreira Marques
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3Bs-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | | | | | | | - Bruna Minniti Mançano
- Molecular Oncology Research Center, Barretos Cancer Hospital, Rua Antenor Duarte Vilela, 1331, Barretos, SP, 14784-400, Brazil
| | - Rui Manuel Reis
- Molecular Oncology Research Center, Barretos Cancer Hospital, Rua Antenor Duarte Vilela, 1331, Barretos, SP, 14784-400, Brazil.
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.
- ICVS/3Bs-PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| |
Collapse
|
3
|
Kim SY, van de Wetering M, Clevers H, Sanders K. The future of tumor organoids in precision therapy. Trends Cancer 2025:S2405-8033(25)00073-1. [PMID: 40185656 DOI: 10.1016/j.trecan.2025.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 03/07/2025] [Accepted: 03/10/2025] [Indexed: 04/07/2025]
Abstract
Tumoroids are cultures of patient-derived tumor cells, which are grown in 3D in the presence of an extracellular matrix extract and specific growth factors. Tumoroids can be generated from adult as well as pediatric cancers, including epithelial cancers, sarcomas, and brain cancers. Tumoroids retain multi-omic characteristics of their corresponding tumor and recapitulate interpatient and intratumor heterogeneity. Retrospective and prospective studies have demonstrated that tumoroids predict patient responses to anticancer therapies, making them a promising tool for precision oncology. However, several challenges remain before tumoroids can be fully integrated into clinical decision-making, including success rates of tumoroid establishment and turnaround times. This review discusses the current advances, challenges, and future directions of tumoroid-based models in cancer research and precision therapy.
Collapse
Affiliation(s)
- Seok-Young Kim
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | | | - Hans Clevers
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands; Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences and University Medical Center, Utrecht, The Netherlands; Current address: Roche Pharmaceutical Research and Early Development (pRED) of F. Hoffmann-La Roche Ltd, Basel, Switzerland.
| | - Karin Sanders
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands.
| |
Collapse
|
4
|
Cong G, Zhu X, Chen XR, Chen H, Chong W. Mechanisms and therapeutic potential of the hedgehog signaling pathway in cancer. Cell Death Discov 2025; 11:40. [PMID: 39900571 PMCID: PMC11791101 DOI: 10.1038/s41420-025-02327-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 12/25/2024] [Accepted: 01/24/2025] [Indexed: 02/05/2025] Open
Abstract
A sort of major malignant disease, cancer can compromise human health wherever. Some mechanisms of the occurrence and evolution of cancer still seem elusive even now. Consequently, the therapeutic strategies for cancer must continually evolve. The hedgehog signaling pathway, a critical mediator in the normal development of numerous organs and the pathogenesis of cancer, is typically quiescent but is aberrantly activated in several malignancies. Extensive research has delineated that the aberrant activity of the hedgehog signaling pathway, whether autocrine or paracrine, is implicated in the initiation and progression of various neoplasms, including medulloblastoma (MB), basal cell carcinoma (BCC) and so on. Thus, notably Smo inhibitors, the opening of inhibitors of the hedgehog signaling pathway has become a topic of research attention. This review aims to summarize four aberrant activation pathways and the influence of hedgehog signaling pathway associated chemicals on tumor formation and development. Additionally, it will explore the therapeutic potential of targeted interventions in the hedgehog signaling pathway for cancer treatment.
Collapse
Affiliation(s)
- Ge Cong
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 250021, Jinan, China
- Shandong Provincial Laboratory of Translational Medicine Engineering for Digestive Tumors, Shandong Provincial Hospital, 250021, Jinan, China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, 250021, Jinan, China
| | - Xingyu Zhu
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 250021, Jinan, China
- Shandong Provincial Laboratory of Translational Medicine Engineering for Digestive Tumors, Shandong Provincial Hospital, 250021, Jinan, China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, 250021, Jinan, China
| | - Xin Ru Chen
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 250021, Jinan, China
- Shandong Provincial Laboratory of Translational Medicine Engineering for Digestive Tumors, Shandong Provincial Hospital, 250021, Jinan, China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, 250021, Jinan, China
| | - Hao Chen
- Clinical Research Center of Shandong University, Clinical Epidemiology Unit, Qilu Hospital of Shandong University, 250021, Jinan, China.
| | - Wei Chong
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 250021, Jinan, China.
- Shandong Provincial Laboratory of Translational Medicine Engineering for Digestive Tumors, Shandong Provincial Hospital, 250021, Jinan, China.
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, 250021, Jinan, China.
| |
Collapse
|
5
|
Barateiro LGRP, de Oliveira Cavagna R, dos Reis MB, de Paula FE, Teixeira GR, Moreno DA, Bonatelli M, Santana I, Saggioro FP, Neder L, Stavale JN, Malheiros SMF, Garcia‐Rivello H, Christiansen S, Nunes S, da Costa MJG, Pinheiro J, Júnior CA, Mançano BM, Reis RM. Somatic mutational profiling and clinical impact of driver genes in Latin-Iberian medulloblastomas: Towards precision medicine. Neuropathology 2025; 45:30-37. [PMID: 38736183 PMCID: PMC11788001 DOI: 10.1111/neup.12979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/16/2024] [Accepted: 04/18/2024] [Indexed: 05/14/2024]
Abstract
Medulloblastoma (MB) is the most prevalent malignant brain tumor in children, known for its heterogeneity and treatment-associated toxicity, and there is a critical need for new therapeutic targets. We analyzed the somatic mutation profile of 15 driver genes in 69 Latin-Iberian molecularly characterized medulloblastomas using the Illumina TruSight Tumor 15 panel. We classified the variants based on their clinical impact and oncogenicity. Among the patients, 66.7% were MBSHH, 13.0% MBWNT, 7.3% MBGrp3, and 13.0% MBGrp4. Among the 63 variants found, 54% were classified as Tier I/II and 31.7% as oncogenic/likely oncogenic. We observed 33.3% of cases harboring at least one mutation. TP53 (23.2%, 16/69) was the most mutated gene, followed by PIK3CA (5.8%, 4/69), KIT (4.3%, 3/69), PDGFRA (2.9%, 2/69), EGFR (1.4%, 1/69), ERBB2 (1.4%, 1/69), and NRAS (1.4%, 1/69). Approximately 41% of MBSHH tumors exhibited mutations, TP53 (32.6%) being the most frequently mutated gene. Tier I/II and oncogenic/likely oncogenic TP53 variants were associated with relapse, progression, and lower survival rates. Potentially actionable variants in the PIK3CA and KIT genes were identified. Latin-Iberian medulloblastomas, particularly the MBSHH, exhibit higher mutation frequencies than other populations. We corroborate the TP53 mutation status as an important prognostic factor, while PIK3CA and KIT are potential therapeutic targets.
Collapse
Affiliation(s)
| | | | | | | | - Gustavo Ramos Teixeira
- Molecular Diagnostic LaboratoryBarretos Cancer HospitalBarretosBrazil
- Department of PathologyBarretos Cancer HospitalBarretosBrazil
| | | | - Murilo Bonatelli
- Molecular Diagnostic LaboratoryBarretos Cancer HospitalBarretosBrazil
| | - Iara Santana
- Department of PathologyBarretos Cancer HospitalBarretosBrazil
| | | | - Luciano Neder
- Ribeirão Preto Medical SchoolUniversity of São PauloSão PauloBrazil
| | | | | | | | | | | | | | | | | | | | - Rui Manuel Reis
- Molecular Oncology Research CenterBarretos Cancer HospitalBarretosBrazil
- Molecular Diagnostic LaboratoryBarretos Cancer HospitalBarretosBrazil
- Life and Health Sciences Research Institute (ICVS), Medical SchoolUniversity of MinhoBragaPortugal
| |
Collapse
|
6
|
He Y, Liu Y, Zhang M. The beneficial effects of curcumin on aging and age-related diseases: from oxidative stress to antioxidant mechanisms, brain health and apoptosis. Front Aging Neurosci 2025; 17:1533963. [PMID: 39906716 PMCID: PMC11788355 DOI: 10.3389/fnagi.2025.1533963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 01/06/2025] [Indexed: 02/06/2025] Open
Abstract
Aging and age-related disease are among the most common and challenging issues worldwide. During the aging process, the accumulation of oxidative stress, DNA damage, telomere dysfunction, and other related changes lead to cellular dysfunction and the development of diseases such as neurodegenerative and cardiovascular conditions. Curcumin is a widely-used dietary supplement against various diseases such as cancer, diabetes, cardiovascular diseases and aging. This agent mediates its effects through several mechanisms, including the reduction of reactive oxygen species (ROS) and oxidative stress-induced damage, as well as the modulation of subcellular signaling pathways such as AMPK, AKT/mTOR, and NF-κB. These pathways are involved in cellular senescence and inflammation, and their modulation can improve cell function and help prevent disease. In cancer, Curcumin can induce apoptosis in a variety of different tumor cell lines. Curcumin also activates redox reactions within cells inducing ROS production that leads to the upregulation of apoptosis receptors on the tumor cell membrane. Curcumin can also upregulate the expression and activity of p53 that inhibits tumor cell proliferation and increases apoptosis. Furthermore, curcumin has a potent inhibitory effect on the activity of nuclear factor kappa B (NF-κB) and cyclooxygenase-2 (COX-2), which are involved in the overexpression of antiapoptosis genes such as Bcl-2. It can also attenuate the regulation of antiapoptosis phosphoinositide 3-kinases (PI3K) signaling and increase the expression of mitogen-activated protein kinases (MAPKs) to induce endogenous production of ROS. Therefore, herein, we aim to summarize how curcumin affect different epigenetic processes (such as apoptosis and oxidative stress) in order to change aging-related mechanisms. Furthermore, we discuss its roles in age-related diseases, such as Alzheimer, Parkinson, osteoporosis, and cardiovascular diseases.
Collapse
Affiliation(s)
- Ying He
- Department of Biological and Food Engineering, Lyuliang University, Lishi, Shanxi, China
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Yongqing Liu
- Department of Biological and Food Engineering, Lyuliang University, Lishi, Shanxi, China
| | - Min Zhang
- Key Laboratory of Agro-Products Primary Processing, Academy of Agricultural Planning and Engineering, MARA, Beijing, China
| |
Collapse
|
7
|
Kapplingattu SV, Bhattacharya S, Adlakha YK. MiRNAs as major players in brain health and disease: current knowledge and future perspectives. Cell Death Discov 2025; 11:7. [PMID: 39805813 PMCID: PMC11729916 DOI: 10.1038/s41420-024-02283-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 12/16/2024] [Accepted: 12/23/2024] [Indexed: 01/16/2025] Open
Abstract
MicroRNAs are regulators of gene expression and their dysregulation can lead to various diseases. MicroRNA-135 (MiR-135) exhibits brain-specific expression, and performs various functions such as neuronal morphology, neural induction, and synaptic function in the human brain. Dysfunction of miR-135 has been reported in brain tumors, and neurodegenerative and neurodevelopmental disorders. Several reports show downregulation of miR-135 in glioblastoma, indicating its tumor suppressor role in the pathogenesis of brain tumors. In this review, by performing in silico analysis of molecular targets of miR-135, we reveal the significant pathways and processes modulated by miR-135. We summarize the biological significance, roles, and signaling pathways of miRNAs in general, with a focus on miR-135 in different neurological diseases including brain tumors, and neurodegenerative and neurodevelopmental disorders. We also discuss methods, limitations, and potential of glioblastoma organoids in recapitulating disease initiation and progression. We highlight the promising therapeutic potential of miRNAs as antitumor agents for aggressive human brain tumors including glioblastoma.
Collapse
Affiliation(s)
- Sarika V Kapplingattu
- Amity Institute of Molecular Medicine and Stem Cell Research, Amity University, Noida, Uttar Pradesh 201303, India
| | - Sujata Bhattacharya
- Amity Institute of Molecular Medicine and Stem Cell Research, Amity University, Noida, Uttar Pradesh 201303, India
| | - Yogita K Adlakha
- Amity Institute of Molecular Medicine and Stem Cell Research, Amity University, Noida, Uttar Pradesh 201303, India.
| |
Collapse
|
8
|
Desterke C, Fu Y, Bonifacio-Mundaca J, Monge C, Pineau P, Mata-Garrido J, Francés R. Single-Cell RNA Sequencing Reveals LEF1-Driven Wnt Pathway Activation as a Shared Oncogenic Program in Hepatoblastoma and Medulloblastoma. Curr Oncol 2025; 32:35. [PMID: 39851951 PMCID: PMC11763369 DOI: 10.3390/curroncol32010035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 01/06/2025] [Accepted: 01/06/2025] [Indexed: 01/26/2025] Open
Abstract
(1) Background: Hepatoblastoma and medulloblastoma are two types of pediatric tumors with embryonic origins. Both tumor types can exhibit genetic alterations that affect the β-catenin and Wnt pathways; (2) Materials and Methods: This study used bioinformatics and integrative analysis of multi-omics data at both the tumor and single-cell levels to investigate two distinct pediatric tumors: medulloblastoma and hepatoblastoma; (3) Results: The cross-transcriptome analysis revealed a commonly regulated expression signature between hepatoblastoma and medulloblastoma tumors. Among the commonly upregulated genes, the transcription factor LEF1 was significantly expressed in both tumor types. In medulloblastoma, LEF1 upregulation is associated with the WNT-subtype. The analysis of LEF1 genome binding occupancy in H1 embryonic stem cells identified 141 LEF1 proximal targets activated in WNT medulloblastoma, 13 of which are involved in Wnt pathway regulation: RNF43, LEF1, NKD1, AXIN2, DKK4, DKK1, LGR6, FGFR2, NXN, TCF7L1, STK3, YAP1, and NFATC4. The ROC curve analysis of the combined expression of these 13 WNT-related LEF1 targets yielded an area under the curve (AUC) of 1.00, indicating 100% specificity and sensitivity for predicting the WNT subtype in the PBTA medulloblastoma cohort. An expression score based on these 13 WNT-LEF1 targets accurately predicted the WNT subtype in two independent medulloblastoma transcriptome cohorts. At the single-cell level, the WNT-LEF1 expression score was exclusively positive in WNT-medulloblastoma tumor cells. This WNT-LEF1-dependent signature was also confirmed as activated in the hepatoblastoma tumor transcriptome. At the single-cell level, the WNT-LEF1 expression score was higher in tumor cells from both human hepatoblastoma samples and a hepatoblastoma patient-derived xenotransplant model; (4) Discussion: This study uncovered a shared transcriptional activation of a LEF1-dependent embryonic program, which orchestrates the regulation of the Wnt signaling pathway in tumor cells from both hepatoblastoma and medulloblastoma.
Collapse
Affiliation(s)
- Christophe Desterke
- Faculté de Médecine du Kremlin Bicêtre, Université Paris-Saclay, INSERM UMRS-1310, 94805 Villejuif, France;
| | - Yuanji Fu
- Institut Necker Enfants Malades, INSERM, CNRS, Université Paris Cité, 75015 Paris, France;
| | - Jenny Bonifacio-Mundaca
- National Tumor Bank, Department of Pathology, National Institute of Neoplastic Diseases, Lima 15024, Peru;
| | - Claudia Monge
- Institut Pasteur, Université Paris Cité, Unité Organisation Nucléaire et Oncogenèse, INSERM U993, 75015 Paris, France; (C.M.); (P.P.)
| | - Pascal Pineau
- Institut Pasteur, Université Paris Cité, Unité Organisation Nucléaire et Oncogenèse, INSERM U993, 75015 Paris, France; (C.M.); (P.P.)
| | - Jorge Mata-Garrido
- Institut Pasteur, Université Paris Cité, Unité Organisation Nucléaire et Oncogenèse, INSERM U993, 75015 Paris, France; (C.M.); (P.P.)
| | - Raquel Francés
- Energy & Memory, Brain Plasticity Unit, CNRS, ESPCI Paris, PSL Research University, 75006 Paris, France
| |
Collapse
|
9
|
Balasubramanian K, Kharbat AF, Call-Orellana F, Tavakol SA, Fassina GR, Janssen C, Bin Alamer O, Zuccato JA, Dunn IF. Adult Cerebellopontine Angle Medulloblastoma: A Systematic Review of Clinical Features, Management Approaches, and Patient Outcomes. Cancers (Basel) 2024; 16:4242. [PMID: 39766141 PMCID: PMC11674105 DOI: 10.3390/cancers16244242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 12/17/2024] [Accepted: 12/18/2024] [Indexed: 01/11/2025] Open
Abstract
OBJECTIVE The aim of this study was to systematically review the existing individual patient data in the literature on adult cerebellopontine angle (CPA) medulloblastoma (MB) and characterize the patient presentation, management strategies used, and oncological outcomes of this rare entity to guide future clinical practice. METHODS Following PRISMA guidelines, a systematic review was conducted by searching PubMed, EMBASE, Web of Science, and Cochrane databases from inception to 19 June 2024. Studies regarding adult patients with histologically confirmed MB radiographically confirmed to be located in the CPA were included. Clinical data were synthesized, and predictors of outcomes were evaluated. RESULTS Twenty-seven studies with 42 adult CPAMB patients were included. The median age was 32 years (range: 19-56). Headaches (81%), cranial neuropathy (90%), cerebellar dysfunction (79%), and nausea/vomiting (50%) were typical presenting features. The predominant histological subtype was the classic variant. Maximal safe surgical resection was performed, most commonly using a retrosigmoid approach, and 60% of cases received a gross total resection. Most patients received adjuvant treatment (93%), typically chemoradiotherapy. The recurrence rate was 11% after a median of 18 months of follow-up. Relatively high survival rates of 96%, 85%, and 85% were observed at 1, 3, and 5 years, respectively. Patients who received adjuvant therapy had significantly better recurrence and greater overall survival outcomes. CONCLUSIONS These results support the consideration of MB in young adult patients presenting with CPA tumors with radiographical features suggestive of hypercellularity and the utilization of a management strategy of maximal safe resection plus post-operative craniospinal irradiation along with chemotherapy to optimally treat these rare patients.
Collapse
Affiliation(s)
- Kishore Balasubramanian
- College of Medicine, Texas A&M University, 8447 Riverside Parkway, Bryan, TX 77807, USA; (K.B.); (C.J.)
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, 1000 N. Lincoln Ave. #4000, Oklahoma City, OK 73104, USA; (A.F.K.); (S.A.T.); (G.R.F.); (J.A.Z.)
| | - Abdurrahman F. Kharbat
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, 1000 N. Lincoln Ave. #4000, Oklahoma City, OK 73104, USA; (A.F.K.); (S.A.T.); (G.R.F.); (J.A.Z.)
| | - Francisco Call-Orellana
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, 1400 Holcombe Boulevard, Houston, TX 77030, USA;
| | - Sherwin A. Tavakol
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, 1000 N. Lincoln Ave. #4000, Oklahoma City, OK 73104, USA; (A.F.K.); (S.A.T.); (G.R.F.); (J.A.Z.)
| | - Grace R. Fassina
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, 1000 N. Lincoln Ave. #4000, Oklahoma City, OK 73104, USA; (A.F.K.); (S.A.T.); (G.R.F.); (J.A.Z.)
| | - Christopher Janssen
- College of Medicine, Texas A&M University, 8447 Riverside Parkway, Bryan, TX 77807, USA; (K.B.); (C.J.)
| | - Othman Bin Alamer
- Department of Neurosurgery, Loma Linda University Medical Center, 11234 Anderson St., Loma Linda, CA 92354, USA;
| | - Jeffrey A. Zuccato
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, 1000 N. Lincoln Ave. #4000, Oklahoma City, OK 73104, USA; (A.F.K.); (S.A.T.); (G.R.F.); (J.A.Z.)
| | - Ian F. Dunn
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, 1000 N. Lincoln Ave. #4000, Oklahoma City, OK 73104, USA; (A.F.K.); (S.A.T.); (G.R.F.); (J.A.Z.)
| |
Collapse
|
10
|
Ronsley R, Cole B, Ketterl T, Wright J, Ermoian R, Hoffman LM, Margol AS, Leary SES. Pediatric Central Nervous System Embryonal Tumors: Presentation, Diagnosis, Therapeutic Strategies, and Survivorship-A Review. Pediatr Neurol 2024; 161:237-246. [PMID: 39447443 DOI: 10.1016/j.pediatrneurol.2024.09.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 05/28/2024] [Accepted: 09/29/2024] [Indexed: 10/26/2024]
Abstract
Central nervous system (CNS) embryonal tumors represent a diverse group of neoplasms and have a peak incidence in early childhood. These tumors can be located anywhere within the CNS, and presenting symptoms typically represent tumor location. These tumors display distinctive findings on neuroimaging and are staged using magnetic resonance imaging of the brain and spine as well as evaluation of cerebrospinal fluid. Diagnosis is made based on an integrated analysis of histologic and molecular features via tissue sampling. Risk stratification is based on integration of clinical staging and extent of resection with histologic and molecular risk factors. The therapeutic approach for these tumors is multimodal and includes surgery, chemotherapy, and radiation, tailored to the individual patient factors (including age) and specific tumor type. Comprehensive supportive care including management of nausea, nutrition support, pain, fertility preservation, and mitigation of therapy-related morbidity (including hearing protection) is imperative through treatment of CNS embryonal tumors. Despite advances in therapy and supportive care, the long-term consequences of current treatment strategies are substantial. Integration of less toxic, molecularly targeted therapies and a comprehensive, multidisciplinary approach to survivorship care are essential to improving survival and the overall quality of life for survivors.
Collapse
Affiliation(s)
- Rebecca Ronsley
- Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute, Seattle, Washington; Division of Hematology, Oncology and Bone Marrow Transplant, Department of Pediatrics, Seattle Children's Hospital, University of Washington, Seattle, Washington; Fred Hutch Cancer Center, Seattle, Washington.
| | - Bonnie Cole
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, Washington; Department of Laboratories, Seattle Children's Hospital, Seattle, Washington
| | - Tyler Ketterl
- Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute, Seattle, Washington; Division of Hematology, Oncology and Bone Marrow Transplant, Department of Pediatrics, Seattle Children's Hospital, University of Washington, Seattle, Washington; Fred Hutch Cancer Center, Seattle, Washington
| | - Jason Wright
- Department of Radiology, University of Washington School of Medicine and Seattle Children's Hospital, Seattle, Washington
| | - Ralph Ermoian
- Department of Radiation Oncology, University of Washington, Seattle, Washington
| | - Lindsey M Hoffman
- Center for Cancer and Blood Disorder, Phoenix Childrens Hospital, Arizona
| | - Ashley S Margol
- Keck School of Medicine of University of Southern California, Cancer and Blood Disease Institute at Children's Hospital Los Angeles, Los Angeles, California
| | - Sarah E S Leary
- Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute, Seattle, Washington; Division of Hematology, Oncology and Bone Marrow Transplant, Department of Pediatrics, Seattle Children's Hospital, University of Washington, Seattle, Washington; Fred Hutch Cancer Center, Seattle, Washington
| |
Collapse
|
11
|
Lukoseviciute M, Need E, Birgersson M, Dalianis T, Kostopoulou ON. Enhancing targeted therapy by combining PI3K and AKT inhibitors with or without cisplatin or vincristine in medulloblastoma cell lines in vitro. Biomed Pharmacother 2024; 180:117500. [PMID: 39326108 DOI: 10.1016/j.biopha.2024.117500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/17/2024] [Accepted: 09/24/2024] [Indexed: 09/28/2024] Open
Abstract
AIM Despite current intensive therapy, survival rates of medulloblastoma (MB) greatly vary according to molecular subgroup, so new therapies are needed. Recently, we showed that combining phosphoinositide 3-kinase (PI3K), fibroblast growth factor receptor and cyclin-dependent-kinase-4/6 inhibitors (BYL719, JNJ-42756493 and PD-0332991, respectively) or poly (ADP-ribose) polymerase (PARP) and WEE-1 inhibitors (BMN673 and MK1775 respectively) had synergistic effects on MB. Here, in continuation, we investigated the effects of single and combined administrations of PI3K and AKT inhibitors, with/without cisplatin or vincristine on adherent or suspension cultures of different MB subgroups as well as in a spheroid culture of one MB line. MATERIAL AND METHODS MB cell lines DAOY, UW228-3, D425, Med8A, and D283 were treated with single and combined administrations of BYL719, AZD5363, cisplatin or vincristine and followed for viability, cell confluence, cytotoxicity, and cell migration. DAOY was also tested as a spheroid culture. KEY FINDINGS Single BYL719, AZD5363, cisplatin, or vincristine administrations gave dose-dependent responses with regard to inhibition of viability and cell confluence. Combining AZD5363 with BYL719, cisplatin or vincristine resulted in synergistic effects with regard to inhibition of viability in all cell lines, and confluence and migration in all tested cell lines. The administration of single and combined treatments to DAOY spheroids produced largely similar effects. SIGNIFICANCE This study provides pre-clinical evidence that AKT inhibitors combined with PI3K inhibitors, cisplatin, or vincristine exhibit additive/synergistic anti-MB activity, and lower doses could be used. The latter also applied to one MB line grown as spheroids, further supporting their future potential use.
Collapse
Affiliation(s)
- Monika Lukoseviciute
- Department of Oncology-Pathology, Karolinska Institutet, Karolinska University Hospital, Stockholm 171 64, Sweden
| | - Emma Need
- Department of Oncology-Pathology, Karolinska Institutet, Karolinska University Hospital, Stockholm 171 64, Sweden
| | - Madeleine Birgersson
- Department of Oncology-Pathology, Karolinska Institutet, Karolinska University Hospital, Stockholm 171 64, Sweden
| | - Tina Dalianis
- Department of Oncology-Pathology, Karolinska Institutet, Karolinska University Hospital, Stockholm 171 64, Sweden
| | - Ourania N Kostopoulou
- Department of Oncology-Pathology, Karolinska Institutet, Karolinska University Hospital, Stockholm 171 64, Sweden.
| |
Collapse
|
12
|
Ren P, Yu J, Wang D, Zeng L, Zhang X, Liu X, Cao Y, Hu Z, Zhao X, Yang K. Newcastle disease virus promotes pyroptosis in medulloblastoma cells by regulating interferon-gamma-mediated guanylate-binding protein 1 expression and activating caspase-4. Cytojournal 2024; 21:39. [PMID: 39563668 PMCID: PMC11574683 DOI: 10.25259/cytojournal_39_2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 05/23/2024] [Indexed: 11/21/2024] Open
Abstract
Objective The literature has reported that Newcastle disease virus (NDV) can have inhibitory effects on various tumors. This study aims to investigate the mechanism by which NDV induces pyroptosis in medulloblastoma (MB) cells. Material and Methods We treated MB cell lines Daoy and D283 with NDV or recombinant interferon-gamma (IFN-g) proteins. Guanylate-binding proteins (GBPs) were measured using real-time quantitative polymerase chain reaction. Small interfering RNA-specific targeting GBP1 was transfected into MB cells. Apoptosis was assessed using Terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nucleoside nick end labeling and flow cytometry assays. Pyroptosis-related proteins, including caspase-4, caspase-1, and gasdermin D (GSDMD), were detected using Western blotting. Results Bioinformatics analysis revealed that GBP family genes and interferon-related genes might be responsive to NDV stimulation in MB cells. Treatment with NDV resulted in increased IFN-g levels and upregulated GBP expression, particularly GBP1. In addition, IFN-g treatment induced GBP1 expression and enhanced cell apoptosis. GBP1 knockdown attenuated the decreased cell proliferation and increased cell apoptosis induced by NDV in MB cells. GBP1 overexpression upregulated the expression of pyroptosis-related proteins, including caspase-4, caspase-1, and GSDMD, subsequently leading to inhibition of cell proliferation and an increase in cell apoptosis levels. The silencing of caspase-4 confirmed the regulatory role of GBP1 in MB cell pyroptosis. Conclusion Our findings suggest that NDV elevates IFN-g and GBP1 expression in MB cells, potentially contributing to caspase-4-mediated pyroptosis activation.
Collapse
Affiliation(s)
- Pengwu Ren
- Department of Neurosurgery, Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong
| | - Jiayan Yu
- Department of Neurosurgery, Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong
| | - Dongxiang Wang
- Department of Dermatology, The First Clinical Medical School of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Lijuan Zeng
- Department of Neurosurgery, Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong
| | - Xianqiang Zhang
- Department of Neurosurgery, Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong
| | - Xiaohe Liu
- Department of Neurosurgery, Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong
| | - Yongfu Cao
- Department of Neurosurgery, Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong
| | - Zijian Hu
- Department of Neurosurgery, Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong
| | - Xiaoyong Zhao
- Department of Neurosurgery, Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong
| | - Kongbin Yang
- Department of Neurosurgery, Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong
| |
Collapse
|
13
|
Huang R, Lu X, Sun X, Wu H. Metabolomic profiling of childhood medulloblastoma: contributions and relevance to diagnosis and molecular subtyping. J Cancer Res Clin Oncol 2024; 150:471. [PMID: 39441459 PMCID: PMC11499513 DOI: 10.1007/s00432-024-05990-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 10/05/2024] [Indexed: 10/25/2024]
Abstract
The incidence of brain tumors among children is second only to acute lymphoblastic leukemia, but the mortality rate of brain tumors has exceeded that of leukemia, making it the most common cause of death among children. Medulloblastoma (MB) is the most common type of brain tumor among children. Malignant brain tumors have strong invasion and metastasis capabilities, can spread through cerebrospinal fluid, and have a high mortality rate. In 2010, the World Health Organization first divided MB into four molecular subtypes based on molecular markers: WNT, Sonic hedgehog (SHH), Group 3, and Group 4. MB is a highly heterogeneous tumor. Different molecular subtypes of MB have significantly different clinical, pathological, and molecular characteristics. The prognosis of MB varies significantly among patients with different subtypes of this cancer. Thus, it is needed to study new diagnostic and therapeutic strategies. Metabolomics is an advanced analytical technology that uses various spectroscopic, electrochemical, and data analysis technologies to study and analyze the body's metabolites. By detecting changes in metabolite types and quantities in different types of samples, it can sensitively discover the physiological and pathological changes in the body. It has great potential for clinical application and personalized medicine. It is promising and can help develop personalized treatment strategies based on the metabolic profiles of individuals. It can unravel the unique metabolic profiles of MB, which may revolutionize our understanding of the disease and improve patients' outcomes.
Collapse
Affiliation(s)
- Rong Huang
- Department of Radiation Oncology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, 450008, China
| | - Xiaoxu Lu
- Department of Radiation Oncology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, 450008, China
| | - Xueming Sun
- Department of Radiation Oncology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, 450008, China
| | - Hui Wu
- Department of Radiation Oncology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, 450008, China.
| |
Collapse
|
14
|
Muñoz Perez N, Pensabene JM, Galbo PM, Sadeghipour N, Xiu J, Moziak K, Yazejian RM, Welch RL, Bell WR, Sengupta S, Aulakh S, Eberhart CG, Loeb DM, Eskandar E, Zheng D, Zang X, Martin AM. VISTA Emerges as a Promising Target against Immune Evasion Mechanisms in Medulloblastoma. Cancers (Basel) 2024; 16:2629. [PMID: 39123357 PMCID: PMC11312086 DOI: 10.3390/cancers16152629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/12/2024] [Accepted: 07/18/2024] [Indexed: 08/12/2024] Open
Abstract
BACKGROUND Relapsed medulloblastoma (MB) poses a significant therapeutic challenge due to its highly immunosuppressive tumor microenvironment. Immune checkpoint inhibitors (ICIs) have struggled to mitigate this challenge, largely due to low T-cell infiltration and minimal PD-L1 expression. Identifying the mechanisms driving low T-cell infiltration is crucial for developing more effective immunotherapies. METHODS We utilize a syngeneic mouse model to investigate the tumor immune microenvironment of MB and compare our findings to transcriptomic and proteomic data from human MB. RESULTS Flow cytometry reveals a notable presence of CD45hi/CD11bhi macrophage-like and CD45int/CD11bint microglia-like tumor-associated macrophages (TAMs), alongside regulatory T-cells (Tregs), expressing high levels of the inhibitory checkpoint molecule VISTA. Compared to sham control mice, the CD45hi/CD11bhi compartment significantly expands in tumor-bearing mice and exhibits a myeloid-specific signature composed of VISTA, CD80, PD-L1, CTLA-4, MHCII, CD40, and CD68. These findings are corroborated by proteomic and transcriptomic analyses of human MB samples. Immunohistochemistry highlights an abundance of VISTA-expressing myeloid cells clustering at the tumor-cerebellar border, while T-cells are scarce and express FOXP3. Additionally, tumor cells exhibit immunosuppressive properties, inhibiting CD4 T-cell proliferation in vitro. Identification of VISTA's binding partner, VSIG8, on tumor cells, and its correlation with increased VISTA expression in human transcriptomic analyses suggests a potential therapeutic target. CONCLUSIONS This study underscores the multifaceted mechanisms of immune evasion in MB and highlights the therapeutic potential of targeting the VISTA-VSIG axis to enhance anti-tumor responses.
Collapse
Affiliation(s)
- Natalia Muñoz Perez
- Department of Pediatrics, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA; (J.M.P.); (P.M.G.J.); (K.M.); (R.M.Y.); (R.L.W.); (D.M.L.); (E.E.); (D.Z.); (X.Z.)
| | - Juliana M. Pensabene
- Department of Pediatrics, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA; (J.M.P.); (P.M.G.J.); (K.M.); (R.M.Y.); (R.L.W.); (D.M.L.); (E.E.); (D.Z.); (X.Z.)
| | - Phillip M. Galbo
- Department of Pediatrics, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA; (J.M.P.); (P.M.G.J.); (K.M.); (R.M.Y.); (R.L.W.); (D.M.L.); (E.E.); (D.Z.); (X.Z.)
| | | | - Joanne Xiu
- Caris Life Sciences, Phoenix, AZ 85040, USA; (N.S.); (J.X.)
| | - Kirsten Moziak
- Department of Pediatrics, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA; (J.M.P.); (P.M.G.J.); (K.M.); (R.M.Y.); (R.L.W.); (D.M.L.); (E.E.); (D.Z.); (X.Z.)
| | - Rita M. Yazejian
- Department of Pediatrics, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA; (J.M.P.); (P.M.G.J.); (K.M.); (R.M.Y.); (R.L.W.); (D.M.L.); (E.E.); (D.Z.); (X.Z.)
| | - Rachel L. Welch
- Department of Pediatrics, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA; (J.M.P.); (P.M.G.J.); (K.M.); (R.M.Y.); (R.L.W.); (D.M.L.); (E.E.); (D.Z.); (X.Z.)
| | - W. Robert Bell
- Department of Clinical Pathology & Laboratory Medicine, School of Medicine, Indiana University, 340 West 10th Street Fairbanks Hall, Indianapolis, IN 46202, USA;
| | - Soma Sengupta
- Department of Neurology & Neurosurgery, University of North Carolina at Chapel Hill, 170 Manning Drive, Chapel Hill, NC 27599, USA;
| | - Sonikpreet Aulakh
- Department of Internal Medicine, West Virginia University, 64 Medical Center Drive, Morgantown, WV 26506, USA;
| | - Charles G. Eberhart
- Department of Pathology, Johns Hopkins School of Medicine, 600 N Wolfe St., Baltimore, MD 21287, USA;
| | - David M. Loeb
- Department of Pediatrics, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA; (J.M.P.); (P.M.G.J.); (K.M.); (R.M.Y.); (R.L.W.); (D.M.L.); (E.E.); (D.Z.); (X.Z.)
| | - Emad Eskandar
- Department of Pediatrics, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA; (J.M.P.); (P.M.G.J.); (K.M.); (R.M.Y.); (R.L.W.); (D.M.L.); (E.E.); (D.Z.); (X.Z.)
| | - Deyou Zheng
- Department of Pediatrics, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA; (J.M.P.); (P.M.G.J.); (K.M.); (R.M.Y.); (R.L.W.); (D.M.L.); (E.E.); (D.Z.); (X.Z.)
| | - Xingxing Zang
- Department of Pediatrics, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA; (J.M.P.); (P.M.G.J.); (K.M.); (R.M.Y.); (R.L.W.); (D.M.L.); (E.E.); (D.Z.); (X.Z.)
| | - Allison M. Martin
- Department of Pediatrics, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA; (J.M.P.); (P.M.G.J.); (K.M.); (R.M.Y.); (R.L.W.); (D.M.L.); (E.E.); (D.Z.); (X.Z.)
| |
Collapse
|
15
|
Chien F, Michaud ME, Bakhtiari M, Schroff C, Snuderl M, Velazquez Vega JE, MacDonald TJ, Bhasin MK. Medulloblastoma Spatial Transcriptomics Reveals Tumor Microenvironment Heterogeneity with High-Density Progenitor Cell Regions Correlating with High-Risk Disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.25.600684. [PMID: 38979174 PMCID: PMC11230370 DOI: 10.1101/2024.06.25.600684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
The tumor microenvironment (TME) of medulloblastoma (MB) influences progression and therapy response, presenting a promising target for therapeutic advances. Prior single-cell analyses have characterized the cellular components of the TME but lack spatial context. To address this, we performed spatial transcriptomic sequencing on sixteen pediatric MB samples obtained at diagnosis, including two matched diagnosis-relapse pairs. Our analyses revealed inter- and intra-tumoral heterogeneity within the TME, comprised of tumor-associated astrocytes (TAAs), macrophages (TAMs), stromal components, and distinct subpopulations of MB cells at different stages of neuronal differentiation and cell cycle progression. We identified dense regions of quiescent progenitor-like MB cells enriched in patients with high-risk (HR) features and an increase in TAAs, TAMs, and dysregulated vascular endothelium following relapse. Our study presents novel insights into the spatial architecture and cellular landscape of the medulloblastoma TME, highlighting spatial patterns linked to HR features and relapse, which may serve as potential therapeutic targets.
Collapse
Affiliation(s)
- Franklin Chien
- Department of Pediatrics, Emory School of Medicine, Atlanta, GA 30322, USA
- Aflac Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta, GA 30322, USA
| | - Marina E. Michaud
- Department of Pediatrics, Emory School of Medicine, Atlanta, GA 30322, USA
| | - Mojtaba Bakhtiari
- Department of Pediatrics, Emory School of Medicine, Atlanta, GA 30322, USA
| | - Chanel Schroff
- Department of Pathology, NYU Langone Health and Grossman School of Medicine, New York, NY 10016, USA
| | - Matija Snuderl
- Department of Pathology, NYU Langone Health and Grossman School of Medicine, New York, NY 10016, USA
| | - Jose E. Velazquez Vega
- Department of Pathology and Laboratory Medicine, Children’s Healthcare of Atlanta and Emory School of Medicine, Atlanta, GA 30322, USA
| | - Tobey J. MacDonald
- Department of Pediatrics, Emory School of Medicine, Atlanta, GA 30322, USA
- Aflac Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta, GA 30322, USA
| | - Manoj K. Bhasin
- Department of Pediatrics, Emory School of Medicine, Atlanta, GA 30322, USA
- Aflac Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta, GA 30322, USA
- Department of Biomedical Engineering, Emory University, Atlanta, GA 30322, USA
| |
Collapse
|
16
|
Slika H, Shahani A, Wahi R, Miller J, Groves M, Tyler B. Overcoming Treatment Resistance in Medulloblastoma: Underlying Mechanisms and Potential Strategies. Cancers (Basel) 2024; 16:2249. [PMID: 38927954 PMCID: PMC11202166 DOI: 10.3390/cancers16122249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/10/2024] [Accepted: 06/13/2024] [Indexed: 06/28/2024] Open
Abstract
Medulloblastoma is the most frequently encountered malignant brain tumor in the pediatric population. The standard of care currently consists of surgical resection, craniospinal irradiation, and multi-agent chemotherapy. However, despite this combination of multiple aggressive modalities, recurrence of the disease remains a substantial concern, and treatment resistance is a rising issue. The development of this resistance results from the interplay of a myriad of anatomical properties, cellular processes, molecular pathways, and genetic and epigenetic alterations. In fact, several efforts have been directed towards this domain and characterizing the major contributors to this resistance. Herein, this review highlights the different mechanisms that drive relapse and are implicated in the occurrence of treatment resistance and discusses them in the context of the latest molecular-based classification of medulloblastoma. These mechanisms include the impermeability of the blood-brain barrier to drugs, the overactivation of specific molecular pathways, the resistant and multipotent nature of cancer stem cells, intratumoral and intertumoral heterogeneity, and metabolic plasticity. Subsequently, we build on that to explore potential strategies and targeted agents that can abrogate these mechanisms, undermine the development of treatment resistance, and augment medulloblastoma's response to therapeutic modalities.
Collapse
Affiliation(s)
- Hasan Slika
- Hunterian Neurosurgical Laboratory, Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; (H.S.); (A.S.); (R.W.); (J.M.)
| | - Aanya Shahani
- Hunterian Neurosurgical Laboratory, Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; (H.S.); (A.S.); (R.W.); (J.M.)
| | - Riddhpreet Wahi
- Hunterian Neurosurgical Laboratory, Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; (H.S.); (A.S.); (R.W.); (J.M.)
- Grant Government Medical College and Sir J.J Group of Hospitals, Mumbai 400008, India
| | - Jackson Miller
- Hunterian Neurosurgical Laboratory, Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; (H.S.); (A.S.); (R.W.); (J.M.)
- Department of English, Rhetoric, and Humanistic Studies, Virginia Military Institute, Lexington, VA 24450, USA
| | - Mari Groves
- Division of Pediatric Neurosurgery, Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA;
- Department of Neurosurgery, University of Maryland Medical Center, Baltimore, MD 21201, USA
| | - Betty Tyler
- Hunterian Neurosurgical Laboratory, Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; (H.S.); (A.S.); (R.W.); (J.M.)
| |
Collapse
|
17
|
Okonechnikov K, Schrimpf D, Koster J, Sievers P, Milde T, Sahm F, Jones DTW, von Deimling A, Pfister SM, Kool M, Korshunov A. Clinically unfavorable transcriptome subtypes of non-WNT/non-SHH medulloblastomas are associated with a predominance in proliferating and progenitor-like cell subpopulations. Acta Neuropathol 2024; 147:95. [PMID: 38847845 DOI: 10.1007/s00401-024-02746-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 05/10/2024] [Accepted: 05/24/2024] [Indexed: 06/23/2024]
Abstract
The non-WNT/non-SHH (Grp3/Grp4) medulloblastomas (MBs) include eight second-generation subgroups (SGS; I-VIII) each with distinct molecular and clinical characteristics. Recently, we also identified two prognostically relevant transcriptome subtypes within each SGS MB, which are associated with unique gene expression signatures and signaling pathways. These prognostic subsets may be in connection to the intra-tumoral cell landscape that underlies SGS MB clinical-molecular diversity. Here, we performed a deconvolution analysis of the Grp3/Grp4 MB bulk RNA profiles using the previously identified single-cell RNA-seq reference dataset and focusing on variability in the cellular composition of SGS MB. RNA deconvolution analysis of the Grp3/Grp4 MB disclosed the subgroup-specific neoplastic cell subpopulations. Neuronally differentiated axodendritic GP3-C1 and glutamatergic GP4-C1 subpopulations were distributed within Grp3- and Grp4-associated SGS MB, respectively. Progenitor GP3-B2 subpopulation was prominent in aggressive SGS II MB, whereas photoreceptor/visual perception GP3/4-C2 cell content was typical for SGS III/IV MB. The current study also revealed significant variability in the proportions of cell subpopulations between clinically relevant SGS MB transcriptome subtypes, where unfavorable cohorts were enriched with cell cycle and progenitor-like cell subpopulations and, vice versa, favorable subtypes were composed of neuronally differentiated cell fractions predominantly. A higher than median proportion of proliferating and progenitor cell subpopulations conferred the shortest survival of the Grp3 and Grp 4 MB, and similar survival associations were identified for all SGS MB except SGS IV MB. In summary, the recently identified clinically relevant Grp3/Grp4 MB transcriptome subtypes are composed of different cell populations. Future studies should aim to validate the prognostic and therapeutic role of the identified Grp3/Grp4 MB inter-tumoral cellular heterogeneity. The application of the single-cell techniques on each SGS MB separately could help to clarify the clinical significance of subgroup-specific variability in tumor cell content and its relation with prognostic transcriptome signatures identified before.
Collapse
Affiliation(s)
- Konstantin Okonechnikov
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Division of Pediatric Neuro-Oncology, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Daniel Schrimpf
- Clinical Cooperation Unit Neuropathology (B300), German Cancer Research Center (DKFZ), National Center for Tumor Diseases (NCT), German Cancer Consortium (DKTK), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
- Department of Neuropathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Jan Koster
- Center for Experimental and Molecular Medicine, Amsterdam University Medical Centers, University of Amsterdam and Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Philipp Sievers
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Clinical Cooperation Unit Neuropathology (B300), German Cancer Research Center (DKFZ), National Center for Tumor Diseases (NCT), German Cancer Consortium (DKTK), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
- Department of Neuropathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Till Milde
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Clinical Cooperation Unit Pediatric Oncology, German Cancer Research Center (DKFZ), German Consortium for Translational Cancer Research (DKTK), National Center for Tumor Diseases (NCT), Heidelberg, Germany
- Department of Pediatric Hematology and Oncology, Heidelberg University Hospital, Heidelberg, Germany
| | - Felix Sahm
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Clinical Cooperation Unit Neuropathology (B300), German Cancer Research Center (DKFZ), National Center for Tumor Diseases (NCT), German Cancer Consortium (DKTK), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
- Department of Neuropathology, Heidelberg University Hospital, Heidelberg, Germany
| | - David T W Jones
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Division of Pediatric Glioma Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Andreas von Deimling
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Clinical Cooperation Unit Neuropathology (B300), German Cancer Research Center (DKFZ), National Center for Tumor Diseases (NCT), German Cancer Consortium (DKTK), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
- Department of Neuropathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Stefan M Pfister
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Division of Pediatric Neuro-Oncology, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Heidelberg, Germany
- Department of Pediatric Hematology and Oncology, Heidelberg University Hospital, Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Marcel Kool
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Division of Pediatric Neuro-Oncology, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Heidelberg, Germany
- Princess Máxima Center for Pediatric Oncology, 3584CS, Utrecht, The Netherlands
- University Medical Center Utrecht, Utrecht, the Netherlands
| | - Andrey Korshunov
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany.
- Clinical Cooperation Unit Neuropathology (B300), German Cancer Research Center (DKFZ), National Center for Tumor Diseases (NCT), German Cancer Consortium (DKTK), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany.
- Department of Neuropathology, Heidelberg University Hospital, Heidelberg, Germany.
| |
Collapse
|
18
|
Pasdaran A, Grice ID, Hamedi A. A review of natural products and small-molecule therapeutics acting on central nervous system malignancies: Approaches for drug development, targeting pathways, clinical trials, and challenges. Drug Dev Res 2024; 85:e22180. [PMID: 38680103 DOI: 10.1002/ddr.22180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 08/09/2023] [Accepted: 03/19/2024] [Indexed: 05/01/2024]
Abstract
In 2021, the World Health Organization released the fifth edition of the central nervous system (CNS) tumor classification. This classification uses histopathology and molecular pathogenesis to group tumors into more biologically and molecularly defined entities. The prognosis of brain cancer, particularly malignant tumors, has remained poor worldwide, approximately 308,102 new cases of brain and other CNS tumors were diagnosed in the year 2020, with an estimated 251,329 deaths. The cost and time-consuming nature of studies to find new anticancer agents makes it necessary to have well-designed studies. In the present study, the pathways that can be targeted for drug development are discussed in detail. Some of the important cellular origins, signaling, and pathways involved in the efficacy of bioactive molecules against CNS tumorigenesis or progression, as well as prognosis and common approaches for treatment of different types of brain tumors, are reviewed. Moreover, different study tools, including cell lines, in vitro, in vivo, and clinical trial challenges, are discussed. In addition, in this article, natural products as one of the most important sources for finding new chemotherapeutics were reviewed and over 700 reported molecules with efficacy against CNS cancer cells are gathered and classified according to their structure. Based on the clinical trials that have been registered, very few of these natural or semi-synthetic derivatives have been studied in humans. The review can help researchers understand the involved mechanisms and design new goal-oriented studies for drug development against CNS malignancies.
Collapse
Affiliation(s)
- Ardalan Pasdaran
- Medicinal Plants Processing Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Pharmacognosy, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Irwin Darren Grice
- Institute for Glycomics, Griffith University, Gold Coast Campus, Southport, Queensland, Australia
- School of Medical Science, Griffith University, Gold Coast, Southport, Queensland, Australia
| | - Azadeh Hamedi
- Medicinal Plants Processing Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Pharmacognosy, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
19
|
Buccarelli M, Castellani G, Fiorentino V, Pizzimenti C, Beninati S, Ricci-Vitiani L, Scattoni ML, Mischiati C, Facchiano F, Tabolacci C. Biological Implications and Functional Significance of Transglutaminase Type 2 in Nervous System Tumors. Cells 2024; 13:667. [PMID: 38667282 PMCID: PMC11048792 DOI: 10.3390/cells13080667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/04/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024] Open
Abstract
Transglutaminase type 2 (TG2) is the most ubiquitously expressed member of the transglutaminase family. TG2 catalyzes the transamidation reaction leading to several protein post-translational modifications and it is also implicated in signal transduction thanks to its GTP binding/hydrolyzing activity. In the nervous system, TG2 regulates multiple physiological processes, such as development, neuronal cell death and differentiation, and synaptic plasticity. Given its different enzymatic activities, aberrant expression or activity of TG2 can contribute to tumorigenesis, including in peripheral and central nervous system tumors. Indeed, TG2 dysregulation has been reported in meningiomas, medulloblastomas, neuroblastomas, glioblastomas, and other adult-type diffuse gliomas. The aim of this review is to provide an overview of the biological and functional relevance of TG2 in the pathogenesis of nervous system tumors, highlighting its involvement in survival, tumor inflammation, differentiation, and in the resistance to standard therapies.
Collapse
Affiliation(s)
- Mariachiara Buccarelli
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy; (M.B.); (G.C.); (L.R.-V.); (F.F.)
| | - Giorgia Castellani
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy; (M.B.); (G.C.); (L.R.-V.); (F.F.)
| | - Vincenzo Fiorentino
- Department of Human Pathology in Adult and Developmental Age “Gaetano Barresi”, University of Messina, 98125 Messina, Italy;
| | - Cristina Pizzimenti
- Department of Biomedical, Dental, Morphological and Functional Imaging Sciences, University of Messina, 98125 Messina, Italy;
| | - Simone Beninati
- Department of Biology, University of Rome “Tor Vergata”, 00133 Rome, Italy;
| | - Lucia Ricci-Vitiani
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy; (M.B.); (G.C.); (L.R.-V.); (F.F.)
| | - Maria Luisa Scattoni
- Research Coordination and Support Service, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy;
| | - Carlo Mischiati
- Department of Neuroscience and Rehabilitation, University of Ferrara, 44121 Ferrara, Italy;
| | - Francesco Facchiano
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy; (M.B.); (G.C.); (L.R.-V.); (F.F.)
| | - Claudio Tabolacci
- Research Coordination and Support Service, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy;
| |
Collapse
|
20
|
Rechberger JS, Power EA, DeCuypere M, Daniels DJ. Evolution of neurosurgical advances and nuances in medulloblastoma therapy. Childs Nerv Syst 2024; 40:1031-1044. [PMID: 38112693 DOI: 10.1007/s00381-023-06239-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 11/21/2023] [Indexed: 12/21/2023]
Abstract
Medulloblastoma, the most common malignant brain tumor in children, presents a complex treatment challenge due to its propensity for infiltrative growth within the posterior fossa and its potential attachment to critical anatomical structures. Central to the management of medulloblastoma is the surgical resection of the tumor, which is a key determinant of patient prognosis. However, the extent of surgical resection (EOR), ranging from gross total resection (GTR) to subtotal resection (STR) or even biopsy, has been the subject of extensive debate and investigation within the medical community. Today, the impact of neurosurgical EOR on the prognosis of medulloblastoma patients remains a complex and evolving area of investigation. The conflicting findings in the literature, the challenges posed by critical surrounding anatomical structures, the potential for surgical complications and neurologic morbidity, and the nuanced interactions with molecular subgroups all contribute to the complexity of this issue. As the field continues to advance, the imperative to strike a delicate balance between maximizing resection and preserving quality of life remains central to the management of medulloblastoma patients.
Collapse
Affiliation(s)
- Julian S Rechberger
- Department of Neurologic Surgery, Mayo Clinic, 200 1st St SW, Rochester, MN, 55905, USA
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, 55905, USA
| | - Erica A Power
- Department of Neurologic Surgery, Mayo Clinic, 200 1st St SW, Rochester, MN, 55905, USA
- Loyola Stritch School of Medicine, Maywood, IL, 60153, USA
| | - Michael DeCuypere
- Division of Pediatric Neurosurgery, Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, 60611, USA
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - David J Daniels
- Department of Neurologic Surgery, Mayo Clinic, 200 1st St SW, Rochester, MN, 55905, USA.
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, 55905, USA.
| |
Collapse
|
21
|
Dias SF, Richards O, Elliot M, Chumas P. Pediatric-Like Brain Tumors in Adults. Adv Tech Stand Neurosurg 2024; 50:147-183. [PMID: 38592530 DOI: 10.1007/978-3-031-53578-9_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
Pediatric brain tumors are different to those found in adults in pathological type, anatomical site, molecular signature, and probable tumor drivers. Although these tumors usually occur in childhood, they also rarely present in adult patients, either as a de novo diagnosis or as a delayed recurrence of a pediatric tumor in the setting of a patient that has transitioned into adult services.Due to the rarity of pediatric-like tumors in adults, the literature on these tumor types in adults is often limited to small case series, and treatment decisions are often based on the management plans taken from pediatric studies. However, the biology of these tumors is often different from the same tumors found in children. Likewise, adult patients are often unable to tolerate the side effects of the aggressive treatments used in children-for which there is little or no evidence of efficacy in adults. In this chapter, we review the literature and summarize the clinical, pathological, molecular profile, and response to treatment for the following pediatric tumor types-medulloblastoma, ependymoma, craniopharyngioma, pilocytic astrocytoma, subependymal giant cell astrocytoma, germ cell tumors, choroid plexus tumors, midline glioma, and pleomorphic xanthoastrocytoma-with emphasis on the differences to the adult population.
Collapse
Affiliation(s)
- Sandra Fernandes Dias
- Department of Neurosurgery, Leeds Teaching Hospitals NHS Trust, Leeds, UK
- Division of Pediatric Neurosurgery, University Children's Hospital of Zurich - Eleonor Foundation, Zurich, Switzerland
| | - Oliver Richards
- Department of Neurosurgery, Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | - Martin Elliot
- Department of Paediatric Oncology and Haematology, Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | - Paul Chumas
- Department of Neurosurgery, Leeds Teaching Hospitals NHS Trust, Leeds, UK.
| |
Collapse
|
22
|
Buccilli B, Rodriguez Molina MA, Redrovan Palomeque DP, Herrera Sabán CA, C Caliwag FM, Contreras Flores CJS, Abeysiriwardana CWJ, Diarte E, Arruarana VS, Calderon Martinez E. Liquid Biopsies for Monitoring Medulloblastoma: Circulating Tumor DNA as a Biomarker for Disease Progression and Treatment Response. Cureus 2024; 16:e51712. [PMID: 38313884 PMCID: PMC10838584 DOI: 10.7759/cureus.51712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/05/2024] [Indexed: 02/06/2024] Open
Abstract
Pediatric brain tumors, including medulloblastoma (MB), represent a significant challenge in clinical oncology. Early diagnosis, accurate monitoring of therapeutic response, and the detection of minimal residual disease (MRD) are crucial for improving outcomes in these patients. This review aims to explore recent advancements in liquid biopsy techniques for monitoring pediatric brain tumors, with a specific focus on medulloblastoma. The primary research question is how liquid biopsy techniques can be effectively utilized for these purposes. Liquid biopsies, particularly the analysis of circulating tumor DNA (ctDNA) in cerebrospinal fluid (CSF), are investigated as promising noninvasive tools. This comprehensive review examines the components of liquid biopsies, including ctDNA, cell-free DNA (cfDNA), and microRNA (miRNA). Their applications in diagnosis, prognosis, and MRD assessment are critically assessed. The review also discusses the role of liquid biopsies in categorizing medulloblastoma subgroups, risk stratification, and the identification of therapeutic targets. Liquid biopsies have shown promising applications in the pediatric brain tumor field, particularly in medulloblastoma. They offer noninvasive means of diagnosis, monitoring treatment response, and detecting MRD. These biopsies have played a pivotal role in subgroup classification and risk stratification of medulloblastoma patients, aiding in the identification of therapeutic targets. However, challenges related to sensitivity and specificity are noted. In conclusion, this review highlights the growing importance of liquid biopsies, specifically ctDNA analysis in CSF, in pediatric brain tumor management, with a primary focus on medulloblastoma. Liquid biopsies have the potential to revolutionize patient care by enabling early diagnosis, accurate monitoring, and MRD detection. Nevertheless, further research is essential to validate their clinical utility fully. The evolving landscape of liquid biopsy applications underscores their promise in improving outcomes for pediatric brain tumor patients.
Collapse
Affiliation(s)
- Barbara Buccilli
- Department of Human Neuroscience, Sapienza University of Rome, Rome, ITA
- Department of Neurosurgery, Mount Sinai Hospital, New York, USA
| | | | | | - Cindy A Herrera Sabán
- Department of General Practice, Facultad de Ciencias Médicas, Universidad de San Carlos de Guatemala, San Carlos, GTM
| | - Fides M C Caliwag
- Department of General Practice, Ateneo School of Medicine and Public Health, Pasig City, PHL
| | | | | | - Edna Diarte
- Department of Medicine, Universidad Autónoma de Sinaloa, Culiacán, MEX
| | - Victor S Arruarana
- Department of Internal Medicine, Brookdale University Hospital Medical Center, New York, USA
| | | |
Collapse
|
23
|
Li H, Liu Y, Liu Y, Xu L, Sun Z, Zheng D, Liu X, Song C, Zhang Y, Liang H, Yang B, Tian X, Luo J, Chang Q. Tumor-associated astrocytes promote tumor progression of Sonic Hedgehog medulloblastoma by secreting lipocalin-2. Brain Pathol 2024; 34:e13212. [PMID: 37721122 PMCID: PMC10711256 DOI: 10.1111/bpa.13212] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 08/28/2023] [Indexed: 09/19/2023] Open
Abstract
Sonic Hedgehog (SHH) subgroup of medulloblastoma (MB) accounts for about 25% of all subgroups of MB. Tumor microenvironment (TME) may play a key role in the tumor progression and therapeutic resistance. Tumor-associated astrocytes (TAAs) are reshaped to drive tumor progression through multiple paracrine signals. However, the mechanism by which TAAs modulate MB cells remains elusive. Here, we illuminated that TAAs showed a specific and dynamic pattern during SHH-MB development. Most TAAs gathered to the tumor margin during the tumor progression, rather than evenly distributed in the early-stage tumors. We further demonstrated that lipocalin-2 (LCN2) secreted by TAAs could promote the tumor growth and was correlated with the poor prognosis of MB patients. Knocking down LCN2 in TAAs in vitro impeded the proliferation and migration abilities of MB cells. In addition, we identified that TAAs accelerated the tumor growth by secreting LCN2 via STAT3 signaling pathway. Accordingly, blockade of STAT3 signaling by its inhibitor WP1066 and AAV-Lcn2 shRNA, respectively, in TAAs abrogated the effects of LCN2 on tumor progression in vitro and in vivo. In summary, we for the first time clarified that LCN2, secreted by TAAs, could promote MB tumor progression via STAT3 pathway and has potential prognostic value. Our findings unveiled a new sight in reprogramming the TME of SHH-MB and provided a potential therapeutic strategy targeting TAAs.
Collapse
Affiliation(s)
- Haishuang Li
- Department of Pathology, School of Basic Medical Sciences, Peking University Third HospitalPeking University Health Science CenterBeijingChina
- Department of Neuropathology, Beijing Neurosurgical Institute, Tiantan HospitalCapital Medical UniversityBeijingChina
- Beijing Key Laboratory of Research and Transformation of Biomarkers for Neurodegenerative Diseases, Peking University Third HospitalPeking University Health Science CenterBeijingChina
| | - Yuqing Liu
- Department of Neuropathology, Beijing Neurosurgical Institute, Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Yantao Liu
- Department of Pathology, School of Basic Medical Sciences, Peking University Third HospitalPeking University Health Science CenterBeijingChina
- Department of Neuropathology, Beijing Neurosurgical Institute, Tiantan HospitalCapital Medical UniversityBeijingChina
- Beijing Key Laboratory of Research and Transformation of Biomarkers for Neurodegenerative Diseases, Peking University Third HospitalPeking University Health Science CenterBeijingChina
| | - Luzheng Xu
- Department of Medical and Health Analysis CenterPeking University Health Science CenterBeijingChina
| | - Ziwen Sun
- Department of Pathology, School of Basic Medical Sciences, Peking University Third HospitalPeking University Health Science CenterBeijingChina
- Department of Neuropathology, Beijing Neurosurgical Institute, Tiantan HospitalCapital Medical UniversityBeijingChina
- Beijing Key Laboratory of Research and Transformation of Biomarkers for Neurodegenerative Diseases, Peking University Third HospitalPeking University Health Science CenterBeijingChina
| | - Danfeng Zheng
- Department of Pathology, School of Basic Medical Sciences, Peking University Third HospitalPeking University Health Science CenterBeijingChina
- Beijing Key Laboratory of Research and Transformation of Biomarkers for Neurodegenerative Diseases, Peking University Third HospitalPeking University Health Science CenterBeijingChina
| | - Xiaodan Liu
- Department of Pathology, School of Basic Medical Sciences, Peking University Third HospitalPeking University Health Science CenterBeijingChina
- Beijing Key Laboratory of Research and Transformation of Biomarkers for Neurodegenerative Diseases, Peking University Third HospitalPeking University Health Science CenterBeijingChina
| | - Chen Song
- Department of Medical Genetics, Center for Medical GeneticsPeking University Health Science CenterBeijingChina
| | - Yu Zhang
- Department of Medical Genetics, Center for Medical GeneticsPeking University Health Science CenterBeijingChina
| | - Hui Liang
- Department of Pathology, School of Basic Medical Sciences, Peking University Third HospitalPeking University Health Science CenterBeijingChina
| | - Bao Yang
- Department of Neurosurgery, Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Xinxia Tian
- Department of Pathology, School of Basic Medical Sciences, Peking University Third HospitalPeking University Health Science CenterBeijingChina
| | - Jianyuan Luo
- Department of Medical Genetics, Center for Medical GeneticsPeking University Health Science CenterBeijingChina
- Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Molecular BiologyPeking University Health Science CenterBeijingChina
| | - Qing Chang
- Department of Neuropathology, Beijing Neurosurgical Institute, Tiantan HospitalCapital Medical UniversityBeijingChina
- Beijing Key Laboratory of Research and Transformation of Biomarkers for Neurodegenerative Diseases, Peking University Third HospitalPeking University Health Science CenterBeijingChina
| |
Collapse
|
24
|
Rousseau J, Bennett J, Lim-Fat MJ. Brain Tumors in Adolescents and Young Adults: A Review. Semin Neurol 2023; 43:909-928. [PMID: 37949116 DOI: 10.1055/s-0043-1776775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
Brain tumors account for the majority of cancer-related deaths in adolescents and young adults (AYAs), defined as individuals aged 15 to 39. AYAs constitute a distinct population in which both pediatric- and adult-type central nervous system (CNS) tumors can be observed. Clinical manifestations vary depending on tumor location and often include headaches, seizures, focal neurological deficits, and signs of increased intracranial pressure. With the publication of the updated World Health Organization CNS tumor classification in 2021, diagnoses have been redefined to emphasize key molecular alterations. Gliomas represent the majority of malignant brain tumors in this age group. Glioneuronal and neuronal tumors are associated with longstanding refractory epilepsy. The classification of ependymomas and medulloblastomas has been refined, enabling better identification of low-risk tumors that could benefit from treatment de-escalation strategies. Owing to their midline location, germ cell tumors often present with oculomotor and visual alterations as well as endocrinopathies. The management of CNS tumors in AYA is often extrapolated from pediatric and adult guidelines, and generally consists of a combination of surgical resection, radiation therapy, and systemic therapy. Ongoing research is investigating multiple agents targeting molecular alterations, including isocitrate dehydrogenase inhibitors, SHH pathway inhibitors, and BRAF inhibitors. AYA patients with CNS tumors should be managed by multidisciplinary teams and counselled regarding fertility preservation, psychosocial comorbidities, and risks of long-term comorbidities. There is a need for further efforts to design clinical trials targeting CNS tumors in the AYA population.
Collapse
Affiliation(s)
- Julien Rousseau
- Division of Neurology, Department of Medicine, Universite de Montreal, Montreal, Quebec, Canada
| | - Julie Bennett
- Division of Haematology/Oncology, The Hospital for Sick Children, Toronto, Ontario, Canada
- Canadian AYA Neuro-Oncology Network (CANON), Toronto, Ontario, Canada
| | - Mary Jane Lim-Fat
- Canadian AYA Neuro-Oncology Network (CANON), Toronto, Ontario, Canada
- Division of Neurology, Department of Medicine, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
25
|
Gharbaran R. Insights into the molecular roles of FOXR2 in the pathology of primary pediatric brain tumors. Crit Rev Oncol Hematol 2023; 192:104188. [PMID: 37879492 DOI: 10.1016/j.critrevonc.2023.104188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 08/23/2023] [Accepted: 10/16/2023] [Indexed: 10/27/2023] Open
Abstract
Forkhead box gene R2 (FOXR2) belongs to the family of FOX genes which codes for highly conserved transcription factors (TFs) with critical roles in biological processes ranging from development to organogenesis to metabolic and immune regulation to cellular homeostasis. A number of FOX genes are associated with cancer development and progression and poor prognosis. A growing body of evidence suggests that FOXR2 is an oncogene. Studies suggested important roles for FOXR2 in cancer cell growth, metastasis, and drug resistance. Recent studies showed that FOXR2 is overexpressed by a subset of newly identified entities of embryonal tumors. This review discusses the role(s) FOXR2 plays in the pathology of pediatric brain cancers and its potential as a therapeutic target.
Collapse
Affiliation(s)
- Rajendra Gharbaran
- Biological Sciences Department, Bronx Community College/City University of New York, 2155 University Avenue, Bronx, NY 10453, USA.
| |
Collapse
|
26
|
Zhang Q, Zou W, He L, Zhang C, Wang Y. The Sonic hedgehog pathway inhibitor GDC0449 induces autophagic death in human Medulloblastoma Daoy cells. Ultrastruct Pathol 2023; 47:529-539. [PMID: 37953603 DOI: 10.1080/01913123.2023.2270676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 10/10/2023] [Indexed: 11/14/2023]
Abstract
Medulloblastoma (MB) is a frequently occurring malignant brain tumor in children, and many of these tumors are identified by the abnormal activation of the Sonic Hedgehog (SHH) pathway. Although the Shh inhibitor GDC0449 initially shows some effectiveness in certain tumors, they eventually recur due to drug resistance mechanisms, highlighting the need for new treatment options. In this study, we explore whether GDC0449 induces autophagy in the human MB cell lines. To investigate the ultrastructural pathology changes of GDC0449-treated Daoy and D283 cells, we employed Transmission Electron Microscopy (TEM) technology to identify the expression of autophagic vacuoles. Our results indicate that GDC0449 only increases autophagy in Daoy cells by increasing the LC3-II/LC3-I ratio and autophagosome formation.We also analyzed Beclin1, LC3, Bax, and Cleaved-caspase3 protein and mRNA expression levels of autophagic and apoptotic markers using fluorescence confocal microscopy, RT-PCR, and Western blot. We found that cell autophagy and apoptosis increased in a dose-dependent manner with GDC0449 treatment. Additionally, we observed increased mammalian target of rapamycin (mTOR) phosphorylation and decreased protein kinase B (AKT/PKB), Ribosomal Protein S6, eIF4E-binding protein (4EBP1) phosphorylation in GDC0449-treated Daoy cells. It was observed that inhibiting autophagy using Beclin1 siRNA significantly blocked the apoptosis-inducing effects of GDC0449, suggesting that GDC0449 mediates its apoptotic effects by inducing autophagy.Our data suggests that GDC0449 inhibits the growth of human MB Daoy cells by autophagy-mediated apoptosis. The mechanism of GDC0449-induced autophagy in Daoy cells may be related to the inhibition of the PI3K/AKT/mTOR signaling pathway.
Collapse
Affiliation(s)
- Qi Zhang
- Ultrastructural Pathology, Beijing Neurosurgical Institute, Beijing, China
| | - Wanjing Zou
- Neuropathology, Beijing Neurosurgical Institute, Beijing, China
| | - Longtao He
- Ultrastructural Pathology, Beijing Neurosurgical Institute, Beijing, China
| | - Cuiping Zhang
- Ultrastructural Pathology, Beijing Neurosurgical Institute, Beijing, China
| | - Ying Wang
- Neural Reconstructional Department, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| |
Collapse
|
27
|
Manfreda L, Rampazzo E, Persano L, Viola G, Bortolozzi R. Surviving the hunger games: Metabolic reprogramming in medulloblastoma. Biochem Pharmacol 2023; 215:115697. [PMID: 37481140 DOI: 10.1016/j.bcp.2023.115697] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/10/2023] [Accepted: 07/11/2023] [Indexed: 07/24/2023]
Abstract
Medulloblastoma is a highly malignant pediatric brain tumor characterized by its aggressive nature and limited treatment options. Metabolic changes have recently emerged as key factors in the development, progression, and response to therapy in various types of cancer. Cancer cells exhibit remarkable adaptability by modulating glucose, lipids, amino acids, and nucleotide metabolism to survive in nutrient- and oxygen-deprived environments. Although medulloblastoma has been extensively studied from a genomic perspective, leading to the identification of four subgroups and their respective subcategories, the investigation of its metabolic phenotype has remained relatively understudied. This review focus on the available literature, aiming to summarize the current knowledge about the main metabolic pathways that are deregulated in medulloblastoma tumors, while emphasizing the controversial aspects and the progress that is yet to be made. Furthermore, we underscored the insights gained so far regarding the impact of metabolism on the development of drug resistance in medulloblastoma and the therapeutic strategies employed to target specific metabolic pathways.
Collapse
Affiliation(s)
- Lorenzo Manfreda
- Department of Women's and Children's Health, University of Padova, Padova, Italy; Pediatric Research Institute, Padova, Italy
| | - Elena Rampazzo
- Department of Women's and Children's Health, University of Padova, Padova, Italy; Pediatric Research Institute, Padova, Italy
| | - Luca Persano
- Department of Women's and Children's Health, University of Padova, Padova, Italy; Pediatric Research Institute, Padova, Italy
| | - Giampietro Viola
- Department of Women's and Children's Health, University of Padova, Padova, Italy; Pediatric Research Institute, Padova, Italy
| | - Roberta Bortolozzi
- Department of Women's and Children's Health, University of Padova, Padova, Italy; Pediatric Research Institute, Padova, Italy; Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy.
| |
Collapse
|
28
|
Rechberger JS, Toll SA, Vanbilloen WJF, Daniels DJ, Khatua S. Exploring the Molecular Complexity of Medulloblastoma: Implications for Diagnosis and Treatment. Diagnostics (Basel) 2023; 13:2398. [PMID: 37510143 PMCID: PMC10378552 DOI: 10.3390/diagnostics13142398] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/07/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023] Open
Abstract
Medulloblastoma is the most common malignant brain tumor in children. Over the last few decades, significant progress has been made in revealing the key molecular underpinnings of this disease, leading to the identification of distinct molecular subgroups with different clinical outcomes. In this review, we provide an update on the molecular landscape of medulloblastoma and treatment strategies. We discuss the four main molecular subgroups (WNT-activated, SHH-activated, and non-WNT/non-SHH groups 3 and 4), highlighting the key genetic alterations and signaling pathways associated with each entity. Furthermore, we explore the emerging role of epigenetic regulation in medulloblastoma and the mechanism of resistance to therapy. We also delve into the latest developments in targeted therapies and immunotherapies. Continuing collaborative efforts are needed to further unravel the complex molecular mechanisms and profile optimal treatment for this devastating disease.
Collapse
Affiliation(s)
- Julian S Rechberger
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN 55905, USA
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA
| | - Stephanie A Toll
- Department of Pediatrics, Division of Hematology/Oncology, Children's Hospital of Michigan, Detroit, MI 48201, USA
| | - Wouter J F Vanbilloen
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN 55905, USA
- Department of Neurology, Elisabeth-Tweesteden Hospital, 5022 Tilburg, The Netherlands
| | - David J Daniels
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN 55905, USA
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA
| | - Soumen Khatua
- Department of Pediatric Hematology/Oncology, Section of Neuro-Oncology, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
29
|
Eibl RH, Schneemann M. Medulloblastoma: From TP53 Mutations to Molecular Classification and Liquid Biopsy. BIOLOGY 2023; 12:267. [PMID: 36829544 PMCID: PMC9952923 DOI: 10.3390/biology12020267] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/30/2023] [Accepted: 02/02/2023] [Indexed: 02/11/2023]
Abstract
A recent paradigm shift in the diagnostics of medulloblastoma allowed the distinction of four major groups defined by genetic data rather than histology. This new molecular classification correlates better with prognosis and will allow for the better clinical management of therapies targeting druggable mutations, but also offer a new combination of monitoring tumor development in real-time and treatment response by sequential liquid biopsy. This review highlights recent developments after a century of milestones in neurosurgery and radio- and chemotherapy, but also controversial theories on the cell of origin, animal models, and the use of liquid biopsy.
Collapse
Affiliation(s)
- Robert H. Eibl
- c/o M. Schneemann; Department of Internal Medicine, Hospitals of Schaffhausen, 8208 Schaffhausen, Switzerland
| | - Markus Schneemann
- Department of Internal Medicine, Hospitals of Schaffhausen, 8208 Schaffhausen, Switzerland
| |
Collapse
|
30
|
Perkins RS, Davis A, Campagne O, Owens TS, Stewart CF. CNS penetration of methotrexate and its metabolite 7-hydroxymethotrexate in mice bearing orthotopic Group 3 medulloblastoma tumors and model-based simulations for children. Drug Metab Pharmacokinet 2023; 48:100471. [PMID: 36669926 DOI: 10.1016/j.dmpk.2022.100471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 07/28/2022] [Accepted: 08/06/2022] [Indexed: 01/22/2023]
Abstract
The brain penetration of methotrexate (MTX) and its metabolite 7-hydroxymethotrexate (7OHMTX) was characterized in non-tumor bearing mice and mice bearing orthotopic Group 3 medulloblastoma. Plasma pharmacokinetic studies and cerebral and ventricular microdialysis studies were performed in animals dosed with 200 or 1000 mg/kg MTX by IV bolus. Plasma, brain/tumor extracellular fluid (ECF) and lateral ventricle cerebrospinal fluid (CSF) MTX and 7OHMTX concentration-time data were analyzed by validated LC-MS/MS methods and modeled using a population-based pharmacokinetic approach and a hybrid physiologically-based model structure for the brain compartments. Brain penetration was similar for MTX and 7OHMTX and was not significantly different between non-tumor and tumor bearing mice. Overall, mean (±SD) model-derived unbound plasma to ECF partition coefficient Kp,uu were 0.17 (0.09) and 0.17 (0.12) for MTX and 7OHMTX, respectively. Unbound plasma to CSF Kp,uu were 0.11 (0.06) and 0.18 (0.09) for MTX and 7OHMTX, respectively. The plasma and brain model were scaled to children using allometric principles and pediatric physiological parameters. Model-based simulations were adequately overlaid with digitized plasma and CSF lumbar data collected in children receiving different MTX systemic infusions. This model can be used to further explore and optimize methotrexate dosing regimens in children with brain tumors.
Collapse
Affiliation(s)
- Rachel S Perkins
- Department of Pharmacy and Pharmaceutical Sciences, St Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA
| | - Abigail Davis
- Department of Pharmacy and Pharmaceutical Sciences, St Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA
| | - Olivia Campagne
- Department of Pharmacy and Pharmaceutical Sciences, St Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA
| | - Thandranese S Owens
- Department of Pharmacy and Pharmaceutical Sciences, St Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA
| | - Clinton F Stewart
- Department of Pharmacy and Pharmaceutical Sciences, St Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA.
| |
Collapse
|
31
|
Okonechnikov K, Federico A, Schrimpf D, Sievers P, Sahm F, Koster J, Jones DTW, von Deimling A, Pfister SM, Kool M, Korshunov A. Comparison of transcriptome profiles between medulloblastoma primary and recurrent tumors uncovers novel variance effects in relapses. Acta Neuropathol Commun 2023; 11:7. [PMID: 36635768 PMCID: PMC9837941 DOI: 10.1186/s40478-023-01504-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 12/27/2022] [Indexed: 01/13/2023] Open
Abstract
Nowadays medulloblastoma (MB) tumors can be treated with risk-stratified approaches with up to 80% success rate. However, disease relapses occur in approximately 30% of patients and successful salvage treatment strategies at relapse remain scarce. Acquired copy number changes or TP53 mutations are known to occur frequently in relapses, while methylation profiles usually remain highly similar to those of the matching primary tumors, indicating that in general molecular subgrouping does not change during the course of the disease. In the current study, we have used RNA sequencing data to analyze the transcriptome profiles of 43 primary-relapse MB pairs in order to identify specific molecular features of relapses within various tumor groups. Gene variance analysis between primary and relapse samples demonstrated the impact of age in SHH-MB: the changes in gene expression relapse profiles were more pronounced in the younger patients (< 10 years old), which were also associated with increased DNA aberrations and somatic mutations at relapse probably driving this effect. For Group 3/4 MB transcriptome data analysis uncovered clear sets of genes either active or decreased at relapse that are significantly associated with survival, thus could be potential predictive markers. In addition, deconvolution analysis of bulk transcriptome data identified progression-associated differences in cell type enrichment. The proportion of undifferentiated progenitors increased in SHH-MB relapses with a concomitant decrease of differentiated neuron-like cells, while in Group 3/4 MB relapses cell cycle activity increases and differentiated neuron-like cells proportion decreases as well. Thus, our findings uncovered significant transcriptome changes in the molecular signatures of relapsed MB and could be potentially useful for further clinical purposes.
Collapse
Affiliation(s)
- Konstantin Okonechnikov
- grid.510964.fHopp Children’s Cancer Center Heidelberg (KiTZ), Heidelberg, Germany ,grid.7497.d0000 0004 0492 0584Division of Pediatric Neuro-Oncology, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Aniello Federico
- grid.510964.fHopp Children’s Cancer Center Heidelberg (KiTZ), Heidelberg, Germany ,grid.7497.d0000 0004 0492 0584Division of Pediatric Neuro-Oncology, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Daniel Schrimpf
- grid.7497.d0000 0004 0492 0584Clinical Cooperation Unit Neuropathology, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Heidelberg, Germany ,grid.5253.10000 0001 0328 4908Department of Neuropathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Philipp Sievers
- grid.7497.d0000 0004 0492 0584Clinical Cooperation Unit Neuropathology, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Heidelberg, Germany ,grid.5253.10000 0001 0328 4908Department of Neuropathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Felix Sahm
- grid.510964.fHopp Children’s Cancer Center Heidelberg (KiTZ), Heidelberg, Germany ,grid.7497.d0000 0004 0492 0584Clinical Cooperation Unit Neuropathology, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Heidelberg, Germany ,grid.5253.10000 0001 0328 4908Department of Neuropathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Jan Koster
- grid.7177.60000000084992262Center for Experimental and Molecular Medicine, Amsterdam University Medical Centers, University of Amsterdam and Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - David T. W. Jones
- grid.510964.fHopp Children’s Cancer Center Heidelberg (KiTZ), Heidelberg, Germany ,grid.7497.d0000 0004 0492 0584Division of Pediatric Glioma Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Andreas von Deimling
- grid.510964.fHopp Children’s Cancer Center Heidelberg (KiTZ), Heidelberg, Germany ,grid.7497.d0000 0004 0492 0584Clinical Cooperation Unit Neuropathology, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Heidelberg, Germany ,grid.5253.10000 0001 0328 4908Department of Neuropathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Stefan M. Pfister
- grid.510964.fHopp Children’s Cancer Center Heidelberg (KiTZ), Heidelberg, Germany ,grid.7497.d0000 0004 0492 0584Division of Pediatric Neuro-Oncology, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Heidelberg, Germany ,grid.5253.10000 0001 0328 4908Department of Pediatric Hematology and Oncology, Heidelberg University Hospital, Heidelberg, Germany
| | - Marcel Kool
- grid.510964.fHopp Children’s Cancer Center Heidelberg (KiTZ), Heidelberg, Germany ,grid.7497.d0000 0004 0492 0584Division of Pediatric Neuro-Oncology, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Heidelberg, Germany ,grid.487647.ePrincess Máxima Center for Pediatric Oncology, 3584 CS Utrecht, The Netherlands
| | - Andrey Korshunov
- grid.510964.fHopp Children’s Cancer Center Heidelberg (KiTZ), Heidelberg, Germany ,grid.7497.d0000 0004 0492 0584Clinical Cooperation Unit Neuropathology, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Heidelberg, Germany ,grid.5253.10000 0001 0328 4908Department of Neuropathology, Heidelberg University Hospital, Heidelberg, Germany
| |
Collapse
|
32
|
Halfpenny AM, Wood MD. Review of the Recent Changes in the WHO Classification for Pediatric Brain and Spinal Cord Tumors. Pediatr Neurosurg 2023; 58:337-355. [PMID: 36617415 PMCID: PMC10664345 DOI: 10.1159/000528957] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 12/15/2022] [Indexed: 01/07/2023]
Abstract
BACKGROUND Periodic updates to the World Health Organization (WHO) classification system for central nervous system (CNS) tumors reflect advances in the pathological diagnosis, categorization, and molecular underpinnings of primary brain, spinal cord, and peripheral nerve tumors. The 5th edition of the WHO Classification of CNS Tumors was published in 2021. This review discusses the guiding principles of the revision, introduces the more common new diagnostic entities, and describes tumor classification and nomenclature changes that are relevant for pediatric neurological surgeons. SUMMARY Revisions to the WHO CNS tumor classification system introduced new diagnostic entities, restructured and renamed other entities with particular impact in the diffuse gliomas and CNS embryonal tumors, and expanded the requirements for incorporating both molecular and histological features of CNS tumors into a unified integrated diagnosis. Many of the new diagnostic entities occur at least occasionally in pediatric patients and will thus be encountered by pediatric neurosurgeons. New nomenclature impacts the terminology that is applied in communication between pathologists, surgeons, clinicians, and patients. Requirements for molecular information in tumor diagnosis are expected to refine diagnostic categories while also introducing practical considerations for intraoperative consultation, preliminary histological evaluation, and triaging of neurosurgical tissue samples for histology, molecular testing, and clinical trial requirements. KEY MESSAGES Pediatric brain tumor diagnosis and clinical management are a multidisciplinary effort that is rapidly advancing in the molecular era. Interdisciplinary collaboration is critical for providing the best care for pediatric CNS tumor patients. Pediatric neurosurgeons and their local neuropathologists and neuro-oncologists must work collaboratively to put the most current CNS tumor diagnostic guidelines into standard practice.
Collapse
Affiliation(s)
| | - Matthew D. Wood
- Department of Pathology and Laboratory Medicine, Oregon Health & Science University, Portland, Oregon, USA
| |
Collapse
|
33
|
Familiar AM, Mahtabfar A, Fathi Kazerooni A, Kiani M, Vossough A, Viaene A, Storm PB, Resnick AC, Nabavizadeh A. Radio-pathomic approaches in pediatric neuro-oncology: Opportunities and challenges. Neurooncol Adv 2023; 5:vdad119. [PMID: 37841693 PMCID: PMC10576517 DOI: 10.1093/noajnl/vdad119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2023] Open
Abstract
With medical software platforms moving to cloud environments with scalable storage and computing, the translation of predictive artificial intelligence (AI) models to aid in clinical decision-making and facilitate personalized medicine for cancer patients is becoming a reality. Medical imaging, namely radiologic and histologic images, has immense analytical potential in neuro-oncology, and models utilizing integrated radiomic and pathomic data may yield a synergistic effect and provide a new modality for precision medicine. At the same time, the ability to harness multi-modal data is met with challenges in aggregating data across medical departments and institutions, as well as significant complexity in modeling the phenotypic and genotypic heterogeneity of pediatric brain tumors. In this paper, we review recent pathomic and integrated pathomic, radiomic, and genomic studies with clinical applications. We discuss current challenges limiting translational research on pediatric brain tumors and outline technical and analytical solutions. Overall, we propose that to empower the potential residing in radio-pathomics, systemic changes in cross-discipline data management and end-to-end software platforms to handle multi-modal data sets are needed, in addition to embracing modern AI-powered approaches. These changes can improve the performance of predictive models, and ultimately the ability to advance brain cancer treatments and patient outcomes through the development of such models.
Collapse
Affiliation(s)
- Ariana M Familiar
- Center for Data-Driven Discovery in Biomedicine, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Aria Mahtabfar
- Center for Data-Driven Discovery in Biomedicine, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Neurosurgery, Thomas Jefferson University Hospital, Philadelphia, PA, USA
| | - Anahita Fathi Kazerooni
- Center for Data-Driven Discovery in Biomedicine, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Neurosurgery, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Mahsa Kiani
- Center for Data-Driven Discovery in Biomedicine, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Arastoo Vossough
- Center for Data-Driven Discovery in Biomedicine, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Radiology, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Angela Viaene
- Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Phillip B Storm
- Center for Data-Driven Discovery in Biomedicine, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Neurosurgery, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Adam C Resnick
- Center for Data-Driven Discovery in Biomedicine, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Neurosurgery, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Ali Nabavizadeh
- Center for Data-Driven Discovery in Biomedicine, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
34
|
Viaene AN. Pediatric brain tumors: A neuropathologist's approach to the integrated diagnosis. Front Pediatr 2023; 11:1143363. [PMID: 36969278 PMCID: PMC10030595 DOI: 10.3389/fped.2023.1143363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 02/14/2023] [Indexed: 03/29/2023] Open
Abstract
The classification of tumors of the central nervous system (CNS) is a rapidly evolving field. While tumors were historically classified on the basis of morphology, the recent integration of molecular information has greatly refined this process. In some instances, molecular alterations provide significant prognostic implications beyond what can be ascertained by morphologic examination alone. Additionally, tumors may harbor molecular alterations that provide a therapeutic target. Pediatric CNS tumors, in particular, rely heavily on the integration of molecular data with histologic, clinical, and radiographic features to reach the most accurate diagnosis. This review aims to provide insight into a neuropathologist's approach to the clinical workup of pediatric brain tumors with an ultimate goal of reaching an integrated diagnosis that provides the most accurate classification and informs prognosis and therapy selection. The primary focus will center on how histology and molecular findings are used in combination with clinical and radiographic information to reach a final, integrated diagnosis.
Collapse
Affiliation(s)
- Angela N. Viaene
- Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA, United States
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States
- Correspondence: Angela N. Viaene
| |
Collapse
|
35
|
Fang H, Wang L, Yu L, Shen F, Yang Z, Yang Y, Li S, Dai H, Tan F, Lin J, Sheng H. Effects of metformin on Sonic hedgehog subgroup medulloblastoma progression: In vitro and in vivo studies. Front Pharmacol 2022; 13:928853. [PMID: 36278239 PMCID: PMC9585190 DOI: 10.3389/fphar.2022.928853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 09/20/2022] [Indexed: 11/30/2022] Open
Abstract
Metformin is a first-line drug for type 2 diabetes, and its anticancer effects have also been widely studied in recent years. The Sonic hedgehog (Shh) signaling pathway is involved in the initiation and progression of medulloblastoma. In order to develop a new treatment strategy for medulloblastoma (MB), this study investigated the inhibitory effect of metformin on MB and the underlying mechanism of metformin on the Shh signaling pathway. The effect of metformin on proliferation was evaluated by the cell counting kit-8 (CCK-8) test and colony formation experiment. The effect of metformin on metastasis was assessed by the scratch-wound assay and transwell invasion assay. Cell cycle and apoptosis were evaluated by flow cytometry, and the associated proteins were examined by western blotting. The mRNA and protein expression levels related to the Shh pathway were measured by quantitative PCR, western blotting, and immunofluorescence staining. The xenograft murine model was carried out to evaluate the anticancer effect of metformin on medulloblastoma in vivo. Metformin inhibited proliferation and metastasis of the Shh subgroup MB cell line, and the inhibitory effect on proliferation was related to apoptosis and the block of the cell cycle at the G0/G1 phase. Animal experiments showed that metformin inhibits medulloblastoma growth in vivo. Moreover, metformin decreased mRNA and protein expression levels of the Shh pathway, and this effect was reversed by the AMP-activated protein kinase (AMPK) siRNA. Furthermore, the pro-apoptotic and cell cycle arrest effects of metformin on Daoy cells could be reversed by the Shh pathway activators. Our findings demonstrated that metformin could inhibit medulloblastoma progression in vitro and in vivo, and this effect was associated with AMPK-mediated inhibition of the Shh signaling pathway in vitro studies.
Collapse
Affiliation(s)
- Huangyi Fang
- Department of Neurosurgery, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Lingfei Wang
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Lisheng Yu
- Department of Neurosurgery, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Fang Shen
- Department of Surgery, Box Hill Hospital Eastern Health, VIC, Australia
| | - Zelin Yang
- Department of Neurosurgery, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yue Yang
- Department of Neurosurgery, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Shize Li
- Department of Neurosurgery, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Haipeng Dai
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Feng Tan
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
- *Correspondence: Feng Tan, ; Jian Lin, ; Hansong Sheng,
| | - Jian Lin
- Department of Neurosurgery, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- *Correspondence: Feng Tan, ; Jian Lin, ; Hansong Sheng,
| | - Hansong Sheng
- Department of Neurosurgery, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- *Correspondence: Feng Tan, ; Jian Lin, ; Hansong Sheng,
| |
Collapse
|
36
|
Zhang Y, Yang H, Wang L, Zhou H, Zhang G, Xiao Z, Xue X. TOP2A correlates with poor prognosis and affects radioresistance of medulloblastoma. Front Oncol 2022; 12:918959. [PMID: 35912241 PMCID: PMC9337862 DOI: 10.3389/fonc.2022.918959] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 06/27/2022] [Indexed: 12/05/2022] Open
Abstract
Radiotherapy remains the standard treatment for medulloblastoma (MB), and the radioresistance contributes to tumor recurrence and poor clinical outcomes. Nuclear DNA topoisomerase II-alpha (TOP2A) is a key catalytic enzyme that initiates DNA replication, and studies have shown that TOP2A is closely related to the therapeutic effects of radiation. In this study, we found that TOP2A was significantly upregulated in MB, and high expression of TOP2A related to poor prognosis of MB patients. Knockdown of TOP2A inhibited MB cell proliferation, migration, and invasion, whereas overexpression of TOP2A enhanced the proliferative and invasive ability of MB cells. Moreover, si-TOP2A transfection in combination with irradiation (IR) significantly reduced the tumorigenicity of MB cells, compared with those transfected with si-TOP2A alone. Cell survival curve analysis revealed that the survival fraction of MB cells was significantly reduced upon TOP2A downregulation and that si-TOP2A-transfected cells had decreased D0, Dq, and SF2 values, indicating that TOP2A knockdown suppresses the resistance to radiotherapy in MB cells. In addition, western blot analysis demonstrated that the activity of Wnt/β-catenin signaling pathway was inhibited after TOP2A downregulation alone or in combination with IR treatment, whereas overexpression of TOP2A exhibited the opposite effects. Gene set enrichment analysis also revealed that Wnt/β-catenin signaling pathway is enriched in TOP2A high-expression phenotypes. Collectively, these data indicate that high expression of TOP2A leads to poor prognosis of MB, and downregulation of TOP2A inhibits the malignant behaviour as well as the radioresistance of MB cells. The Wnt/β-catenin signaling pathway may be involved in the molecular mechanisms of TOP2A mediated reduced tumorigenicity and radioresistance of MB cells.
Collapse
Affiliation(s)
- Yufeng Zhang
- Department of Radiotherapy, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Haiyan Yang
- Department of Pathology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Liwen Wang
- Department of Radiotherapy, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Huandi Zhou
- Department of Radiotherapy, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Ge Zhang
- Department of Radiotherapy, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Zhiqing Xiao
- Department of Radiotherapy, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Xiaoying Xue
- Department of Radiotherapy, The Second Hospital of Hebei Medical University, Shijiazhuang, China
- *Correspondence: Xiaoying Xue,
| |
Collapse
|