1
|
Neamah AS, Wadan AHS, Lafta FM, Elakwa DES. The potential role of targeting the leptin receptor as a treatment for breast cancer in the context of hyperleptinemia: a literature review. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:3451-3466. [PMID: 39565396 DOI: 10.1007/s00210-024-03592-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 10/31/2024] [Indexed: 11/21/2024]
Abstract
Since cancer is becoming a leading cause of death worldwide, efforts should be concentrated on understanding its underlying biological alterations that would be utilized in disease management, especially prevention strategies. Within this context, multiple bodies of evidence have highlighted leptin's practical and promising role, a peptide hormone extracted from adipose and fatty tissues with other adipokines, in promoting the proliferation, migration, and metastatic invasion of breast carcinoma cells. Excessive blood leptin levels and hyperleptinemia increase body fat content and stimulate appetite. Also, high leptin level is believed to be associated with several conditions, including overeating, emotional stress, inflammation, obesity, and gestational diabetes. It has been noted that when leptin has impaired signaling in CNS, causing the lack of its normal function in energy balance, it results in leptin resistance, leading to a rise in its concentration in peripheral tissues. Our research paper will shed highlighting on potentially targeting the leptin receptor and its cellular signaling in suppressing breast cancer progression.
Collapse
Affiliation(s)
- Abbas S Neamah
- Department of Biology, College of Sciences, University of Baghdad, Baghdad, Iraq.
| | - Al-Hassan Soliman Wadan
- Oral Biology Department, Faculty of Dentistry, Galala University, Galala Plateau, Attaka, Suez Governorate, 15888, Egypt
| | - Fadhel M Lafta
- Department of Biology, College of Sciences, University of Baghdad, Baghdad, Iraq
| | - Doha El-Sayed Elakwa
- Department of Biochemistry & Molecular Biology, Faculty of Pharmacy for Girls, Al-Azhar University, Cairo, Egypt
- Department of Biochemistry, Faculty of Pharmacy, Sinai University, Kantra Branch, Ismailia, Egypt
| |
Collapse
|
2
|
Iqbal S, Malik ZI, Farooq U, Abid J, Shah HBU, Ahmad AMR. Consumption of Sugar Sweetened Beverages (SSBs) and Breast Cancer: A Narrative Review. IRANIAN JOURNAL OF PUBLIC HEALTH 2025; 54:489-498. [PMID: 40330181 PMCID: PMC12051794 DOI: 10.18502/ijph.v54i3.18242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Accepted: 10/17/2024] [Indexed: 05/08/2025]
Abstract
Sugar sweetened beverages (SSBs) have become a cause of concern because of their growing consumption levels across age groups and associated chronic diseases such as diabetes mellitus, cardiovascular diseases and cancers. The aim of this review was to provide a detailed profile of the SSBs trends and associated health risk, with special focus on its role in breast cancer development. A review of current literature has depicted increased in-takes of SSBs across the globe with servings ranging from 3 to 11 per day in different countries, while children, adolescents and young adults report the highest intake levels. These increased intakes further contribute to different metabolic diseases via increased body adiposity, blood glucose and insulin levels, and increased post-menopausal estrogen levels, all of which contribute to chronic diseases, including cancers. Nutrition interventions including ones that target SSBs reduction seem to have a positive impact on reducing the development of these non-communicable diseases and are also associated with better prognosis and survival chances in cancer patients. However, the implementation of SSBs taxation and mass awareness campaign interventions remains poor due to lack of policy development and regulation for these beverages. The control of SSBs intake across the world requires rigorous research to construct efficient and practical policies to reduce the accessibility and marketing of SSBs while simultaneously increasing awareness in the public regarding the health risks of these beverages. To achieve this, a coordinated approach involving different public and private sectors is needed.
Collapse
Affiliation(s)
- Sehar Iqbal
- College of Pharmacy, Al-Ain University, Abu Dhabi Campus, Abu Dhabi, United Arab Emirates
| | - Zoha Imtiaz Malik
- Department of Public Health, Health Services Academy, Islamabad, Pakistan
| | - Umar Farooq
- Department of Nutrition and Dietetics, National University of Medical Sciences (NUMS), Rawalpindi, Pakistan
| | - Juweria Abid
- Department of Nutrition and Dietetics, National University of Medical Sciences (NUMS), Rawalpindi, Pakistan
| | | | - Abdul Momin Rizwan Ahmad
- Department of Human Nutrition & Dietetics, School of Health Sciences, National University of Sciences & Technology (NUST), Islamabad, Pakistan
| |
Collapse
|
3
|
Rodríguez YM, Koomson AA, Perry RJ. Breast cancer shares many epidemiological, lifestyle, and local hormonal and metabolic underpinnings with endometrial and ovarian cancer: a narrative review. TRANSLATIONAL BREAST CANCER RESEARCH : A JOURNAL FOCUSING ON TRANSLATIONAL RESEARCH IN BREAST CANCER 2025; 6:8. [PMID: 39980815 PMCID: PMC11836739 DOI: 10.21037/tbcr-24-39] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 11/20/2024] [Indexed: 02/22/2025]
Abstract
Background and Objective Breast, endometrial, and ovarian cancers (OCs) are significant public health concerns. Approximately three million patients are diagnosed with one of the three tumor types annually. The three tumor types exhibit related epidemiological trends, lifestyle risk factors, and tumor-specific characteristics which may influence their incidence and outcomes. While the majority of the literature examining hormone dependence of cancer appropriately is centered around breast cancer (BC), insufficient attention has been paid to how lessons from the biology of endometrial and OC may inform what we know about the biology of BC and vice versa. This narrative review seeks to address that unmet need. Methods The construction of this narrative review involved searching PubMed in April and July 2024 for manuscripts related to breast cancer metabolism, ovarian cancer metabolism, and endometrial cancer metabolism. Only manuscripts written in English were considered. Key Content and Findings This narrative review discusses epidemiologic, systemic, and local factors that may affect breast, endometrial, and OC. Simultaneously analyzing these three tumors offers an opportunity to gain unifying insights into reproductive hormone-dependent cancer biology; unfortunately, the field lacks studies directly comparing the impact of the aforementioned factors on these three tumor types. Therefore, we are limited to comparing the impact of similar systemic factors on tumor progression in each tumor type. Conclusions There is some convergence of systemic metabolic changes, particularly with regard to factors associated with obesity, on the biology of breast, ovarian, and endometrial cancer. However, future research is needed in order to clarify the convergent-or potentially divergent-mechanism(s) by which obesity affects breast, endometrial and OC.
Collapse
Affiliation(s)
- Yanitza M Rodríguez
- Department of Cellular & Molecular Physiology, Internal Medicine (Endocrinology), and Comparative Medicine, Yale University, New Haven, CT, USA
| | - Abigail A Koomson
- Department of Cellular & Molecular Physiology, Internal Medicine (Endocrinology), and Comparative Medicine, Yale University, New Haven, CT, USA
| | - Rachel J Perry
- Department of Cellular & Molecular Physiology, Internal Medicine (Endocrinology), and Comparative Medicine, Yale University, New Haven, CT, USA
| |
Collapse
|
4
|
Sergi D, Melloni M, Passaro A, Neri LM. Influence of Type 2 Diabetes and Adipose Tissue Dysfunction on Breast Cancer and Potential Benefits from Nutraceuticals Inducible in Microalgae. Nutrients 2024; 16:3243. [PMID: 39408212 PMCID: PMC11478231 DOI: 10.3390/nu16193243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 09/23/2024] [Accepted: 09/24/2024] [Indexed: 10/20/2024] Open
Abstract
Breast cancer (BC) represents the most prevalent cancer in women at any age after puberty. From a pathogenetic prospective, despite a wide array of risk factors being identified thus far, poor metabolic health is emerging as a putative risk factor for BC. In particular, type 2 diabetes mellitus (T2DM) provides a perfect example bridging the gap between poor metabolic health and BC risk. Indeed, T2DM is preceded by a status of hyperinsulinemia and is characterised by hyperglycaemia, with both factors representing potential contributors to BC onset and progression. Additionally, the aberrant secretome of the dysfunctional, hypertrophic adipocytes, typical of obesity, characterised by pro-inflammatory mediators, is a shared pathogenetic factor between T2DM and BC. In this review, we provide an overview on the effects of hyperglycaemia and hyperinsulinemia, hallmarks of type 2 diabetes mellitus, on breast cancer risk, progression, treatment and prognosis. Furthermore, we dissect the role of the adipose-tissue-secreted adipokines as additional players in the pathogenesis of BC. Finally, we focus on microalgae as a novel superfood and a source of nutraceuticals able to mitigate BC risk by improving metabolic health and targeting cellular pathways, which are disrupted in the context of T2DM and obesity.
Collapse
Affiliation(s)
- Domenico Sergi
- Department of Translational Medicine, University of Ferrara, Via Luigi Borsari 46, 44121 Ferrara, Italy; (D.S.); (M.M.)
| | - Mattia Melloni
- Department of Translational Medicine, University of Ferrara, Via Luigi Borsari 46, 44121 Ferrara, Italy; (D.S.); (M.M.)
| | - Angelina Passaro
- Department of Translational Medicine, University of Ferrara, Via Luigi Borsari 46, 44121 Ferrara, Italy; (D.S.); (M.M.)
| | - Luca Maria Neri
- Department of Translational Medicine, University of Ferrara, Via Luigi Borsari 46, 44121 Ferrara, Italy; (D.S.); (M.M.)
- Laboratory for Technologies of Advanced Therapies (LTTA)—Electron Microscopy Center, University of Ferrara, Via Luigi Borsari 46, 44121 Ferrara, Italy
| |
Collapse
|
5
|
Sudan SK, Sharma A, Vikramdeo KS, Davis W, Deshmukh SK, Poosarla T, Holliday NP, Prodduturvar P, Nelson C, Singh KP, Singh AP, Singh S. Obesity and Early-Onset Breast Cancer and Specific Molecular Subtype Diagnosis in Black and White Women: NIMHD Social Epigenomics Program. JAMA Netw Open 2024; 7:e2421846. [PMID: 39073818 PMCID: PMC11287389 DOI: 10.1001/jamanetworkopen.2024.21846] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 03/22/2024] [Indexed: 07/30/2024] Open
Abstract
Importance Epidemiologic data suggest an association of obesity with breast cancer (BC); however, obesity's contribution to early onset and risk of diagnosis with specific molecular subtypes by race is uncertain. Objective To examine the race-specific association of body mass index with early onset and diagnosis of specific molecular subtypes. Design, Setting, and Participants This retrospective cohort study included patients with BC diagnosed between October 1, 2017, and March 31, 2022, at 3 University of South Alabama Mitchell Cancer Institute clinics. Participants were also prospectively enrolled for serum leptin measurement. Main Outcomes and Measures The primary outcome was age at BC onset and specific subtype diagnosis. The secondary outcome was race-specific differences. Odds ratios (ORs) for associations of body mass index with age at onset and subtype were estimated using the Fisher exact test. Race was self-reported. Results Of the 1085 study patients, 332 (30.6%) were Black with a median age of 58 (IQR, 50-66) years, and 753 (69.4%) were White with a median age of 63 (IQR, 53-71) years. A total of 499 patients (46.0%) had obesity, with Black women with obesity receiving more frequent BC diagnosis than their White counterparts (OR, 2.40; 95% CI, 1.87-3.15; P < .001). In addition, Black women had a significantly higher incidence of early-onset disease (OR, 1.95; 95% CI, 1.33-2.86; P = .001) than White women, and obesity increased this risk significantly in Black women (OR, 2.92; 95% CI, 1.35-6.22; P = .006). Black women with obesity also had a significantly higher risk of luminal A BC (OR, 2.53; 95% CI, 1.81-3.56; P < .001) and triple-negative BC (TNBC) (OR, 2.48; 95% CI, 1.43-4.22; P = .002) diagnosis than White counterparts. Black women, with or without BC, had significantly higher serum leptin levels (median [IQR], 55.3 [40.3-66.2] ng/mL and 29.1 [21.1-46.5] ng/mL, respectively, P < .001) than White women (median [IQR], 33.4 [18.9-47.7] ng/mL and 16.5 [10.0-22.9] ng/mL, respectively), which was associated with higher odds of luminal A disease (OR, 5.25; 95% CI, 1.69-14.32, P = .003). Higher odds of early-onset disease (OR, 3.50; 95% CI, 0.43-23.15; P = .33 for trend), and TNBC diagnosis (OR, 6.00; 95% CI, 0.83-37.27; P = .14 for trend) were also seen, although these outcomes were not statistically significant. Conclusions and Relevance In this cohort study of patients with BC, obesity and high serum leptin levels were associated with an enhanced risk of early-onset BC and diagnosis of luminal A and TNBC subtypes in Black women. These findings should help in developing strategies to narrow the existing disparity gaps.
Collapse
Affiliation(s)
- Sarabjeet Kour Sudan
- Cancer Biology Program, Mitchell Cancer Institute, University of South Alabama, Mobile
- Department of Pathology, Frederick P. Whiddon College of Medicine, University of South Alabama, Mobile
- Department of Cell and Molecular Biology and Cancer Center and Research Institute, University of Mississippi Medical Center, Jackson, Mississippi
| | - Amod Sharma
- Cancer Biology Program, Mitchell Cancer Institute, University of South Alabama, Mobile
- Department of Pathology, Frederick P. Whiddon College of Medicine, University of South Alabama, Mobile
- Department of Cell and Molecular Biology and Cancer Center and Research Institute, University of Mississippi Medical Center, Jackson, Mississippi
| | - Kunwar Somesh Vikramdeo
- Cancer Biology Program, Mitchell Cancer Institute, University of South Alabama, Mobile
- Department of Pathology, Frederick P. Whiddon College of Medicine, University of South Alabama, Mobile
- Department of Cell and Molecular Biology and Cancer Center and Research Institute, University of Mississippi Medical Center, Jackson, Mississippi
| | - Wade Davis
- Cancer Biology Program, Mitchell Cancer Institute, University of South Alabama, Mobile
- Department of Pathology, Frederick P. Whiddon College of Medicine, University of South Alabama, Mobile
| | - Sachin K. Deshmukh
- Cancer Biology Program, Mitchell Cancer Institute, University of South Alabama, Mobile
- Department of Pathology, Frederick P. Whiddon College of Medicine, University of South Alabama, Mobile
| | - Teja Poosarla
- Interdisciplinary Clinical Oncology, Mitchell Cancer Institute, University of South Alabama, Mobile
| | - Nicolette P. Holliday
- Department of Obstetrics and Gynecology, Frederick P. Whiddon College of Medicine, University of South Alabama, Mobile
| | - Pranitha Prodduturvar
- Cancer Biology Program, Mitchell Cancer Institute, University of South Alabama, Mobile
| | - Cindy Nelson
- Cancer Biology Program, Mitchell Cancer Institute, University of South Alabama, Mobile
| | - Karan P. Singh
- Department of Epidemiology & Biostatistics, School of Medicine, University of Texas Health Science Center at Tyler, Tyler
| | - Ajay P. Singh
- Cancer Biology Program, Mitchell Cancer Institute, University of South Alabama, Mobile
- Department of Pathology, Frederick P. Whiddon College of Medicine, University of South Alabama, Mobile
- Department of Cell and Molecular Biology and Cancer Center and Research Institute, University of Mississippi Medical Center, Jackson, Mississippi
- Department of Biochemistry and Molecular Biology, Frederick P. Whiddon College of Medicine, University of South Alabama, Mobile
| | - Seema Singh
- Cancer Biology Program, Mitchell Cancer Institute, University of South Alabama, Mobile
- Department of Pathology, Frederick P. Whiddon College of Medicine, University of South Alabama, Mobile
- Department of Cell and Molecular Biology and Cancer Center and Research Institute, University of Mississippi Medical Center, Jackson, Mississippi
- Department of Biochemistry and Molecular Biology, Frederick P. Whiddon College of Medicine, University of South Alabama, Mobile
| |
Collapse
|
6
|
Marlin S, Goepp M, Desiderio A, Rougé S, Aldekwer S, Le Guennec D, Goncalves-Mendes N, Talvas J, Farges MC, Rossary A. Long-Term High-Fat Diet Limits the Protective Effect of Spontaneous Physical Activity on Mammary Carcinogenesis. Int J Mol Sci 2024; 25:6221. [PMID: 38892407 PMCID: PMC11172547 DOI: 10.3390/ijms25116221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/31/2024] [Accepted: 06/03/2024] [Indexed: 06/21/2024] Open
Abstract
Breast cancer is influenced by factors such as diet, a sedentary lifestyle, obesity, and postmenopausal status, which are all linked to prolonged hormonal and inflammatory exposure. Physical activity offers protection against breast cancer by modulating hormones, immune responses, and oxidative defenses. This study aimed to assess how a prolonged high-fat diet (HFD) affects the effectiveness of physical activity in preventing and managing mammary tumorigenesis. Ovariectomised C57BL/6 mice were provided with an enriched environment to induce spontaneous physical activity while being fed HFD. After 44 days (short-term, ST HFD) or 88 days (long-term, LT HFD), syngenic EO771 cells were implanted into mammary glands, and tumour growth was monitored until sacrifice. Despite similar physical activity and food intake, the LT HFD group exhibited higher visceral adipose tissue mass and reduced skeletal muscle mass. In the tumour microenvironment, the LT HFD group showed decreased NK cells and TCD8+ cells, with a trend toward increased T regulatory cells, leading to a collapse of the T8/Treg ratio. Additionally, the LT HFD group displayed decreased tumour triglyceride content and altered enzyme activities indicative of oxidative stress. Prolonged exposure to HFD was associated with tumour growth despite elevated physical activity, promoting a tolerogenic tumour microenvironment. Future studies should explore inter-organ exchanges between tumour and tissues.
Collapse
MESH Headings
- Animals
- Diet, High-Fat/adverse effects
- Female
- Mice
- Mice, Inbred C57BL
- Physical Conditioning, Animal
- Tumor Microenvironment
- Oxidative Stress
- Carcinogenesis
- Mammary Neoplasms, Experimental/pathology
- Mammary Neoplasms, Experimental/metabolism
- Mammary Neoplasms, Experimental/prevention & control
- Cell Line, Tumor
- Mammary Neoplasms, Animal/pathology
- Mammary Neoplasms, Animal/metabolism
- Mammary Neoplasms, Animal/prevention & control
- Intra-Abdominal Fat/metabolism
- Killer Cells, Natural/immunology
- Killer Cells, Natural/metabolism
Collapse
Affiliation(s)
- Sébastien Marlin
- UNH—Unité de Nutrition Humaine, CRNH-Auvergne, Université Clermont-Auvergne, INRAe, F-63000 Clermont-Ferrand, France; (S.M.); (A.D.); (S.R.); (S.A.); (D.L.G.); (N.G.-M.); (J.T.)
| | - Marie Goepp
- Resolution Therapeutics, University of Edinburgh, Edinburgh EH16 4UU, UK
| | - Adrien Desiderio
- UNH—Unité de Nutrition Humaine, CRNH-Auvergne, Université Clermont-Auvergne, INRAe, F-63000 Clermont-Ferrand, France; (S.M.); (A.D.); (S.R.); (S.A.); (D.L.G.); (N.G.-M.); (J.T.)
| | - Stéphanie Rougé
- UNH—Unité de Nutrition Humaine, CRNH-Auvergne, Université Clermont-Auvergne, INRAe, F-63000 Clermont-Ferrand, France; (S.M.); (A.D.); (S.R.); (S.A.); (D.L.G.); (N.G.-M.); (J.T.)
| | - Sahar Aldekwer
- UNH—Unité de Nutrition Humaine, CRNH-Auvergne, Université Clermont-Auvergne, INRAe, F-63000 Clermont-Ferrand, France; (S.M.); (A.D.); (S.R.); (S.A.); (D.L.G.); (N.G.-M.); (J.T.)
| | - Delphine Le Guennec
- UNH—Unité de Nutrition Humaine, CRNH-Auvergne, Université Clermont-Auvergne, INRAe, F-63000 Clermont-Ferrand, France; (S.M.); (A.D.); (S.R.); (S.A.); (D.L.G.); (N.G.-M.); (J.T.)
| | - Nicolas Goncalves-Mendes
- UNH—Unité de Nutrition Humaine, CRNH-Auvergne, Université Clermont-Auvergne, INRAe, F-63000 Clermont-Ferrand, France; (S.M.); (A.D.); (S.R.); (S.A.); (D.L.G.); (N.G.-M.); (J.T.)
| | - Jérémie Talvas
- UNH—Unité de Nutrition Humaine, CRNH-Auvergne, Université Clermont-Auvergne, INRAe, F-63000 Clermont-Ferrand, France; (S.M.); (A.D.); (S.R.); (S.A.); (D.L.G.); (N.G.-M.); (J.T.)
| | - Marie-Chantal Farges
- UNH—Unité de Nutrition Humaine, CRNH-Auvergne, Université Clermont-Auvergne, INRAe, F-63000 Clermont-Ferrand, France; (S.M.); (A.D.); (S.R.); (S.A.); (D.L.G.); (N.G.-M.); (J.T.)
| | - Adrien Rossary
- UNH—Unité de Nutrition Humaine, CRNH-Auvergne, Université Clermont-Auvergne, INRAe, F-63000 Clermont-Ferrand, France; (S.M.); (A.D.); (S.R.); (S.A.); (D.L.G.); (N.G.-M.); (J.T.)
| |
Collapse
|
7
|
Akad F, Mocanu V, Filip B, Poroh M, Oboroceanu T, Akad N, Peiu SN, Scripcariu D, Scripcariu V. The Link between Obesity and Gastrointestinal Cancers: a Short Review. MAEDICA 2024; 19:360-364. [PMID: 39188821 PMCID: PMC11345048 DOI: 10.26574/maedica.2024.19.2.360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
Gastrointestinal cancer represents one of the most encountered oncologic pathologies and research studies are performed thoroughly in order to identify the exact causes and possible novel therapies. Obesity is a complex manifestation associated with numerous physiological and primarily molecular changes capable of tackling the behavior of tumoral cells and the nearby or faraway microenvironment. Adipose tissue has been once considered to have limited physiological roles, but in recent years it has been recognized as an active endocrine organ, secreting substances such as growth factors and adipokines. From an epidemiological perspective, obesity - particularly morbid obesity - is linked to an unfavorable progression of cancer. A key mechanism that may elucidate the association between obesity and cancer involves the insulin and insulin-like growth factor (IGF-1) pathway, sex hormones, and adipokines.
Collapse
Affiliation(s)
- Fawzy Akad
- "Grigore T. Popa" University of Medicine and Pharmacy Iasi, Romania
| | - Veronica Mocanu
- "Grigore T. Popa" University of Medicine and Pharmacy Iasi, Romania
- Center for Obesity BioBehavioral Experimental Research, 16, Universitatii Street, 700115 Iasi, Romania
| | - Bogdan Filip
- "Grigore T. Popa" University of Medicine and Pharmacy Iasi, Romania
- Surgery Department, "Regional Institute of Oncology" Iasi, Romania
| | - Manuela Poroh
- "Grigore T. Popa" University of Medicine and Pharmacy Iasi, Romania
| | - Teodor Oboroceanu
- "Grigore T. Popa" University of Medicine and Pharmacy Iasi, Romania
- Center for Obesity BioBehavioral Experimental Research, 16, Universitatii Street, 700115 Iasi, Romania
| | - Nada Akad
- "Grigore T. Popa" University of Medicine and Pharmacy Iasi, Romania
- Department of Endocrinology, "Saint Spiridon Emergency County Hospital" Iasi, Romania
| | - Sorin Nicolae Peiu
- "Grigore T. Popa" University of Medicine and Pharmacy Iasi, Romania
- Department of Vascular Surgery, "Saint Spiridon Emergency County Hospital" Iasi, Romania
| | - Dragos Scripcariu
- "Grigore T. Popa" University of Medicine and Pharmacy Iasi, Romania
- Surgery Department, "Regional Institute of Oncology" Iasi, Romania
| | - Viorel Scripcariu
- "Grigore T. Popa" University of Medicine and Pharmacy Iasi, Romania
- Surgery Department, "Regional Institute of Oncology" Iasi, Romania
| |
Collapse
|
8
|
Al-Mhanna SB, Batrakoulis A, Norhayati MN, Mohamed M, Drenowatz C, Irekeola AA, Afolabi HA, Gülü M, Alkhamees NH, Wan Ghazali WS. Combined Aerobic and Resistance Training Improves Body Composition, Alters Cardiometabolic Risk, and Ameliorates Cancer-Related Indicators in Breast Cancer Patients and Survivors with Overweight/Obesity: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. J Sports Sci Med 2024; 23:366-395. [PMID: 38841642 PMCID: PMC11149074 DOI: 10.52082/jssm.2024.366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 04/11/2024] [Indexed: 06/07/2024]
Abstract
Breast cancer survivors with obesity are at a high risk of cancer recurrence, comorbidity, and mortality. This review aims to systematically evaluate the effects of combined aerobic and resistance training (CART) on body composition, lipid homeostasis, inflammation, adipokines, cancer-related fatigue, sleep, and quality of life in breast cancer patients and survivors with overweight/obesity. An electronic search was conducted in PubMed, Web of Science, Scopus, Science Direct, Cochrane, and Google Scholar databases from inception up to January 8, 2024. Randomized controlled trials (RCTs) meeting the inclusion criteria were selected for the analysis. The Cochrane risk of bias tool was used to assess eligible studies, and the GRADE method to evaluate the quality of evidence. A random-effects model was used, and data were analyzed using mean (MD) and standardized mean differences (SMD) for continuous variables with 95% confidence intervals (CI). We assessed the data for risk of bias, heterogeneity, sensitivity, reporting bias, and quality of evidence. A total of 17 randomized controlled trials were included in the systematic review involving 1,148 female patients and survivors (mean age: 54.0 ± 3.4 years). The primary outcomes showed significant improvements in body mass index (SMD -0.57 kg/m2, p = 0.04), body fat (SMD -0.50%, p = 0.02), fat mass (SMD -0.63 kg, p = 0.04), hip circumference (MD -3.14 cm, p = 0.02), and fat-free mass (SMD 1.03 kg, p < 0.001). The secondary outcomes indicated significant increases in high-density lipoprotein cholesterol (MD -0.05 mmol/L, p = 0.008), natural killer cells (SMD 0.42%, p = 0.04), reductions in triglycerides (MD -81.90 mg/dL, p < 0.01), total cholesterol (SMD -0.95 mmol/L, p < 0.01), tumor necrosis factor α (SMD -0.89 pg/mL, p = 0.03), and leptin (SMD -0.63 ng/mL, p = 0.03). Also, beneficial alterations were found in cancer-related fatigue (SMD -0.98, p = 0.03), sleep (SMD -1.17, p < 0.001), and quality of life (SMD 2.94, p = 0.02) scores. There was very low to low confidence in the estimated effect of most of the outcomes. The present findings reveal that CART could be considered an adjunct therapy in supporting the conventional clinical approach observed following exercise. However, further high-quality research is needed to evaluate whether CART would be a valuable intervention to lower aggressive pharmacologic use in breast cancer patients with overweight/obesity.
Collapse
Affiliation(s)
- Sameer Badri Al-Mhanna
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, India
- Department of Physiology, School of Medical Sciences, University Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
| | - Alexios Batrakoulis
- Department of Physical Education and Sport Science, School of Physical Education, Sport Science and Dietetics, University of Thessaly, Karies, Trikala, Greece
- Department of Physical Education and Sport Science, School of Physical Education and Sport Science, Democritus University of Thrace, Komotini, Greece
| | - Mohd Noor Norhayati
- Department of Family Medicine, School of Medical Sciences, Kubang Keria, Malaysia
| | - Mahaneem Mohamed
- Department of Physiology, School of Medical Sciences, University Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
| | - Clemens Drenowatz
- Division of Sport, Physical Activity and Health, University of Teacher Education Upper Austria, Linz, Austria
| | - Ahmad Adebayo Irekeola
- Department of Medical Microbiology and Parasitology, School of Medical Sciences, University Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
| | - Hafeez Abiola Afolabi
- Department of General Surgery, School of Medical Sciences, Hospital University Sains Malaysia, University Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
| | - Mehmet Gülü
- Department of Sports Management, Faculty of Sport Sciences, Kirikkale University, Kirikkale, Turkey
| | - Nouf H Alkhamees
- Department of Rehabilitation, College of Health and Rehabilitation Sciences Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Wan Syaheedah Wan Ghazali
- Department of Physiology, School of Medical Sciences, University Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
| |
Collapse
|
9
|
Tang W, Wang J, Dai T, Qiu H, Liu C, Chen S, Hu Z. Association of leptin receptor polymorphisms with susceptibility of non-small cell lung cancer: Evidence from 2249 subjects. Cancer Med 2024; 13:e7178. [PMID: 38659416 PMCID: PMC11043686 DOI: 10.1002/cam4.7178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 03/20/2024] [Accepted: 03/28/2024] [Indexed: 04/26/2024] Open
Abstract
Non-small cell lung cancer (NSCLC) is increasing dramatically. It is believed that energy metabolism-related genes could play an important role in etiology of NSCLC. In this study, we sought to assess the correlation between three LEPR single nucleotide polymorphisms (rs1137101, rs1137100 and rs6588147) with NSCLS susceptibility. In total, 1193 NSCLC cases and 1056 controls were included. SNPscan™ genotyping method was used to analyze the genotypes of LEPR polymorphisms. Compared to rs6588147 GG in LEPR gene, this study identified a protective role of LEPR rs6588147 GA and GA/AA for the occurrence of NSCLC (GA vs. GG [p = 0.021] and GA/AA vs. GG [p = 0.030]). As well, we found that a protective role of LEPR rs6588147 for the occurrence of non-SCC subgroup (p < 0.05). By logistic regression analysis, we found that the rs6588147 A allele related genotypes might play a protective role for the occurrence of NSCLC in drinking, BMI ≥24 kg/m2, smoking and male subgroups. We also found that the rs1137101 A allele related genotypes played a protective role for the occurrence of NSCLC in male, younger participants (under 59 years) and overweight/obesity (BMI ≥24 kg/m2) subgroups. We found that LEPR Ars1037100Ars1037101Ars6588147 haplotype might play a protective role for the occurrence of NSCLC (p = 0.013). In addition, our findings indicated that LEPR rs1137100 G>A SNP might increase the risk of lymph node metastases (p = 0.038). This study highlights that LEPR rs6588147, rs1137101 genotypes and LEPR Ars1037100Ars1037101Ars6588147 haplotype are correlated with the occurrence of NSCLC. LEPR rs1137100 G>A SNP increases the risk of lymph node metastases.
Collapse
Affiliation(s)
- Weifeng Tang
- Departments of Esophageal Surgery and Thoracic SurgeryNanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical SchoolNanjing210008Jiangsu ProvinceChina
| | - Jian Wang
- Department of Cardiothoracic SurgeryAffiliated Yixing People's Hospital of Jiangsu UniversityYixingJiangsu ProvinceChina
| | - Ting Dai
- Department of PharmacyAffiliated Yixing People's Hospital of Jiangsu UniversityYixingJiangsu ProvinceChina
| | - Hao Qiu
- Department of Laboratory Medicine, School of MedicineJiangsu UniversityZhenjiangJiangsu ProvinceChina
| | - Chao Liu
- Department of Cardiothoracic SurgeryAffiliated People's Hospital of Jiangsu UniversityZhenjiangJiangsu ProvinceChina
| | - Shuchen Chen
- Department of Thoracic SurgeryFujian Medical University Union HospitalFuzhouFujian ProvinceChina
| | - Zhendong Hu
- Departments of Esophageal Surgery and Thoracic SurgeryNanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical SchoolNanjing210008Jiangsu ProvinceChina
| |
Collapse
|
10
|
Lim PW, Stucky CCH, Wasif N, Etzioni DA, Harold KL, Madura JA, Ven Fong Z. Bariatric Surgery and Longitudinal Cancer Risk: A Review. JAMA Surg 2024; 159:331-338. [PMID: 38294801 DOI: 10.1001/jamasurg.2023.5809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Importance Cancer is one of the leading causes of death in the United States, with the obesity epidemic contributing to its steady increase every year. Recent cohort studies find an association between bariatric surgery and reduced longitudinal cancer risk, but with heterogeneous findings. Observations This review summarizes how obesity leads to an increased risk of developing cancer and synthesizes current evidence behind the potential for bariatric surgery to reduce longitudinal cancer risk. Overall, bariatric surgery appears to have the strongest and most consistent association with decreased incidence of developing breast, ovarian, and endometrial cancers. The association of bariatric surgery and the development of esophageal, gastric, liver, and pancreas cancer is heterogenous with studies showing either no association or decreased longitudinal incidences. Conversely, there have been preclinical and cohort studies implying an increased risk of developing colon and rectal cancer after bariatric surgery. A review and synthesis of the existing literature reveals epidemiologic shortcomings of cohort studies that potentially explain incongruencies observed between studies. Conclusions and Relevance Studies examining the association of bariatric surgery and longitudinal cancer risk remain heterogeneous and could be explained by certain epidemiologic considerations. This review provides a framework to better define subgroups of patients at higher risk of developing cancer who would potentially benefit more from bariatric surgery, as well as subgroups where more caution should be exercised.
Collapse
Affiliation(s)
- Pei-Wen Lim
- Division of General Surgery, Department of Surgery, Mayo Clinic Arizona, Phoenix
| | - Chee-Chee H Stucky
- Division of Surgical Oncology and Endocrine Surgery, Department of Surgery, Mayo Clinic Arizona, Phoenix
| | - Nabil Wasif
- Division of Surgical Oncology and Endocrine Surgery, Department of Surgery, Mayo Clinic Arizona, Phoenix
| | - David A Etzioni
- Division of General Surgery, Department of Surgery, Mayo Clinic Arizona, Phoenix
| | - Kristi L Harold
- Division of General Surgery, Department of Surgery, Mayo Clinic Arizona, Phoenix
| | - James A Madura
- Division of General Surgery, Department of Surgery, Mayo Clinic Arizona, Phoenix
| | - Zhi Ven Fong
- Division of Surgical Oncology and Endocrine Surgery, Department of Surgery, Mayo Clinic Arizona, Phoenix
| |
Collapse
|
11
|
Li X, Li J, Hu Q, Zhang X, Chen F. Association of physical weight statuses defined by body mass index (BMI) with molecular subtypes of premenopausal breast cancer: a systematic review and meta-analysis. Breast Cancer Res Treat 2024; 203:429-447. [PMID: 37882920 DOI: 10.1007/s10549-023-07139-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 09/25/2023] [Indexed: 10/27/2023]
Abstract
BACKGROUND AND PURPOSE The association between overweight/obesity and postmenopausal breast cancer has been proven. However, uncertainty exists regarding the association between physical weight statuses and premenopausal breast cancer subtypes. This study aimed to explore the association of body weight statuses with molecular subtypes of premenopausal breast cancer. METHOD A systematic search of Medline, PubMed, Embase, and Web of Science was performed. The Newcastle-Ottawa Scale (NOS) and the Joanna Briggs Institute (JBI) Critical Appraisal tools were used to evaluate the quality of the literature. STATA and R software were used to analyze the extracted data. RESULT The meta-analysis included 35 observational studies with a total of 41,049 premenopausal breast cancer patients. The study showed that the proportion of underweight patients was 4.8% (95% CI = 3.9-5.8%, P = 0.01), overweight was 29% (95%CI = 27.1-30.9%, P < 0.01), obesity was 17.8% (95% CI = 14.9-21.2%, P < 0.0001), and normal weight was 51.6% (95% CI = 46.7-56.5%, P < 0.0001). The pooled results showed that in comparison to the normal weight group, being physically underweight is related to a 1.44-fold risk (OR = 1.44, 95%CI = 1.28-1.63, P < 0.0001) of HER2 + breast cancer. Overweight is related to a 1.16-fold risk (OR = 1.16, 95%CI = 1.06-1.26, P = 0.002) of TNBC and a 16% lower risk (OR = 0.84, 95%CI = 0.75-0.93, P = 0.001) of ER + breast cancer. When compared to underweight/normal weight populations, both overweight (OR = 0.74, 95%CI = 0.56-0.97, P = 0.032) and obesity (OR = 0.70, 95%CI = 0.50-0.98, P = 0.037) can reduce the risk of ER + PR + breast cancer. CONCLUSION In the premenopausal breast cancer population, the distribution of patients' numbers with different weight statuses was significantly distinct among the various breast cancer subtypes. Additionally, the associations between physical weight statuses and the risk of premenopausal breast cancer subtypes are divergent.
Collapse
Affiliation(s)
- Xuchu Li
- Department of Medical, Queen Mary School, Nanchang University, 461 Bayi Avenue, Donghu District, Nanchang City, 330006, Jiangxi Province, China
| | - Jinping Li
- Department of General Medical, People's Hospital of Fu City, Yan'an, 727505, Shaanxi Province, China
| | - Qirui Hu
- College of Food Science, Nanchang University, Nanchang, 330047, Jiangxi Province, China
| | - Xu Zhang
- Jiangxi Provincial Key Laboratory of Preventive Medicine, School of Public Health, Nanchang University, Nanchang, 330006, Jiangxi Province, China
| | - Fang Chen
- College of Food Science, Nanchang University, Nanchang, 330047, Jiangxi Province, China.
- Jiangxi Provincial Key Laboratory of Preventive Medicine, School of Public Health, Nanchang University, Nanchang, 330006, Jiangxi Province, China.
| |
Collapse
|
12
|
Kim JW, Kim JH, Lee YJ. The Role of Adipokines in Tumor Progression and Its Association with Obesity. Biomedicines 2024; 12:97. [PMID: 38255203 PMCID: PMC10813163 DOI: 10.3390/biomedicines12010097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 12/26/2023] [Accepted: 12/27/2023] [Indexed: 01/24/2024] Open
Abstract
Obesity is a well-established risk factor for various malignancies and emerging evidence suggests that adipokines play a pivotal role in linking excess adiposity to tumorigenesis. Adipokines are bioactive molecules secreted by adipose tissue and their altered expression in obesity contributes to a pro-inflammatory, pro-angiogenic, and growth-promoting microenvironment conducive to tumorigenesis. Leptin, a key adipokine, activates survival and proliferative signaling pathways whereas adiponectin exhibits tumor-suppressive effects by inducing apoptosis and cell cycle arrest. Visfatin has also been documented to promote tumor growth, angiogenesis, migration, and invasion. Moreover, emerging studies suggest that adipokines, such as resistin, apelin, and chemerin, which are overexpressed in obesity, may also possess oncogenic functions. Despite advancements in our understanding of the roles of individual adipokines in cancer, the intricate interplay and crosstalk between adipokines, tumor cells, and the tumor microenvironment remain complex and multifaceted. This review highlights the evolving knowledge of how adipokines contribute to obesity-related tumorigenesis, shedding light on the potential of targeting adipokine signaling pathways as a novel therapeutic approach for obesity-associated cancers. Further research on the specific mechanisms and interactions between adipokines and tumor cells is crucial for a comprehensive understanding of obesity-associated cancer pathogenesis.
Collapse
Affiliation(s)
| | | | - Yoon Jae Lee
- Department of Plastic and Reconstructive Surgery, Yeouido St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 07345, Republic of Korea; (J.W.K.); (J.H.K.)
| |
Collapse
|
13
|
Wang NN, Tang M, Zhang HY, Yang QZ, Yang GL. Association between leptin receptor polymorphisms and polycystic ovary syndrome risk: a meta-analysis based on 11 studies. Gynecol Endocrinol 2023; 39:2279565. [PMID: 37935245 DOI: 10.1080/09513590.2023.2279565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 10/31/2023] [Indexed: 11/09/2023] Open
Abstract
OBJECTIVE Published evidence indicated that the leptin receptor (LEPR) gene polymorphisms are associated with polycystic ovary syndrome (PCOS) risk. However, studies on the association between the polymorphisms of LEPR gene are inconsistent or even controversial. MATERIAL AND METHODS We conducted this meta-analysis to explore the more precise relationship between LEPR polymorphisms and PCOS risk. Relevant articles were searched with five online databases up to March 1 2023. Odds ratios (OR) with 95% confidence intervals (CI) were selected to examine the statistical strength of each genetic model. Moreover, RNA secondary structure and variant effects of these loci were examined with in silico analysis. RESULTS Overall, 11 publications were analyzed, and the pooled results did not present any significant association between rs1137101 A/G polymorphism and PCOS risk in general population and some subgroup analysis. But the significant association were observed in Asian population (AG vs. AA: OR = 0.51, 95%CI = 0.32-0.81, p = .01, I2=0%; AG + GG vs. AA: OR = 0.41, 95%CI = 0.26-0.65, p < .01, I2=25.9%). Moreover, similar positive associations were also observed in rs1805096 polymorphism with PCOS risk. CONCLUSION In summary, our meta-analysis suggested that the LEPR gene polymorphisms might be associated with PCOS susceptibility. Owing to the limited studies and small sample size in our meta-analysis, more well-designed studies from different races were needed to be conducted to verify the current results.
Collapse
Affiliation(s)
- Na-Na Wang
- Department of Clinical Nutrition, Taihe Hospital, Hubei University of Medicine, Shiyan, P. R. China
| | - Min Tang
- Department of Clinical Nutrition, Taihe Hospital, Hubei University of Medicine, Shiyan, P. R. China
| | - Han-Yu Zhang
- Department of Clinical Nutrition, Taihe Hospital, Hubei University of Medicine, Shiyan, P. R. China
| | - Qiao-Zhen Yang
- Department of Clinical Nutrition, Taihe Hospital, Hubei University of Medicine, Shiyan, P. R. China
| | - Gong-Li Yang
- Department of Gastroenterology, Shenzhen University General Hospital, Shenzhen University, Shenzhen, P. R. China
| |
Collapse
|
14
|
Chen X, Shi X, Yu Z, Ma X. High-intensity interval training in breast cancer patients: A systematic review and meta-analysis. Cancer Med 2023; 12:17692-17705. [PMID: 37587859 PMCID: PMC10524023 DOI: 10.1002/cam4.6387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 06/18/2023] [Accepted: 07/19/2023] [Indexed: 08/18/2023] Open
Abstract
BACKGROUND Women with breast cancer and improved survival often experience treatment-related impairments. High-intensity interval training (HIIT) has emerged as a promising exercise therapy modality for adult cancer patients. However, the overall effects of HIIT in breast cancer patients remain scarce and controversial. Therefore, we conducted a systematic review and meta-analysis to comprehensively evaluate the impact of HIIT on health-related outcomes in breast cancer patients. METHODS We searched the PubMed, Embase, and Web of Science from inception to November 7, 2022. Eligible studies included randomized controlled trials that compared HIIT interventions with usual care (UC) or MICT in breast cancer patients. The primary outcome assessed was physical fitness, and exploratory outcomes included body composition, blood-borne biomarkers, and patient-reported outcomes. Summary data were extracted, and standardized mean differences (SMD) were calculated for meta-analysis. For outcomes that could not be pooled, a systematic review was conducted. RESULTS Our analysis included 19 articles from 10 studies, encompassing 532 participants who met the inclusion criteria. Pooled results demonstrated that HIIT was superior to UC in improving peak oxygen uptake (VO2peak ). The SMD for VO2peak (L/min) and VO2peak (mL/kg/min) was 0.79 (95% CI 0.13, 1.45) and 0.59 (95% CI 0.01, 1.16), respectively. No significant differences in VO2peak were found between the HIIT and MICT groups. Meta-analyses on body composition and blood-borne biomarkers showed no significant differences between HIIT and UC. Systematic review indicated favorable effects of HIIT on muscle strength, fatigue, and emotional well-being. CONCLUSIONS HIIT is a time-efficient alternative to MICT for improving VO2peak and may also enhance muscle strength and alleviate fatigue and emotional symptoms in breast cancer patients. HIIT should be considered as an important component of exercise prescription in breast cancer care. Further studies with larger cohorts are needed to determine the clinical significance of HIIT-induced changes in terms of other outcomes in women with breast cancer.
Collapse
Affiliation(s)
- Xudong Chen
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China HospitalSichuan UniversityChengduChina
- West China School of Medicine, West China HospitalSichuan UniversityChengduChina
| | - Xuyuan Shi
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China HospitalSichuan UniversityChengduChina
- West China School of Medicine, West China HospitalSichuan UniversityChengduChina
| | - Zhiruo Yu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China HospitalSichuan UniversityChengduChina
- West China School of Medicine, West China HospitalSichuan UniversityChengduChina
| | - Xuelei Ma
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China HospitalSichuan UniversityChengduChina
| |
Collapse
|
15
|
Sarkar MS, Mia MM, Amin MA, Hossain MS, Islam MZ. Bioinformatics and network biology approach to identifying type 2 diabetes genes and pathways that influence the progression of breast cancer. Heliyon 2023; 9:e16151. [PMID: 37234659 PMCID: PMC10205526 DOI: 10.1016/j.heliyon.2023.e16151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 04/28/2023] [Accepted: 05/07/2023] [Indexed: 05/28/2023] Open
Abstract
Breast cancer is the second most prevalent malignancy affecting women. Postmenopausal women breast tumor is one of the top causes of death in women, accounting for 23% of cancer cases. Type 2 diabetes, a worldwide pandemic, has been connected to a heightened risk of several malignancies, although its association with breast cancer is still uncertain. In comparison to non-diabetic women, women with T2DM had a 23% elevated likelihood of developing breast cancer. It is difficult to determine causative or genetic susceptibility that connect T2DM and breast cancer. We created a large-scale network-based quantitative approach employing unbiased methods to discover abnormally amplified genes in both T2DM and breast cancer, to solve these issues. We performed transcriptome analysis to uncover identical genetic biomarkers and pathways to clarify the connection between T2DM and breast cancer patients. In this study, two RNA-seq datasets (GSE103001 and GSE86468) from the Gene Expression Omnibus (GEO) are used to identify mutually differentially expressed genes (DEGs) for breast cancer and T2DM, as well as common pathways and prospective medicines. Firstly, 45 shared genes (30 upregulated and 15 downregulated) between T2D and breast cancer were detected. We employed gene ontology and pathway enrichment to characterize prevalent DEGs' molecular processes and signal transduction pathways and observed that T2DM has certain connections to the progression of breast cancer. Using several computational and statistical approaches, we created a protein-protein interactions (PPI) network and revealed hub genes. These hub genes can be potential biomarkers, which may also lead to new therapeutic strategies for investigated diseases. We conducted TF-gene interactions, gene-microRNA interactions, protein-drug interactions, and gene-disease associations to find potential connections between T2DM and breast cancer pathologies. We assume that the potential drugs that emerged from this study could be useful therapeutic values. Researchers, doctors, biotechnologists, and many others may benefit from this research.
Collapse
Affiliation(s)
- Md Sumon Sarkar
- Department of Pharmacy, Islamic University, Kushtia-7003, Bangladesh
| | - Md Misor Mia
- Department of Pharmacy, Islamic University, Kushtia-7003, Bangladesh
| | - Md Al Amin
- Department of Computer Science & Engineering, Prime University, Dhaka-1216, Bangladesh
| | - Md Sojib Hossain
- Department of Mathematics, Govt. Bangla College, Dhaka-1216, Bangladesh
| | - Md Zahidul Islam
- Department of Information & Communication Technology, Islamic University, Kushtia-7003, Bangladesh
| |
Collapse
|
16
|
Wilson RB, Lathigara D, Kaushal D. Systematic Review and Meta-Analysis of the Impact of Bariatric Surgery on Future Cancer Risk. Int J Mol Sci 2023; 24:ijms24076192. [PMID: 37047163 PMCID: PMC10094585 DOI: 10.3390/ijms24076192] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/13/2023] [Accepted: 03/20/2023] [Indexed: 03/29/2023] Open
Abstract
The study aimed to perform a systematic review and meta-analysis of the evidence for the prevention of future cancers following bariatric surgery. A systematic literature search of the Cochrane Library, Embase, Scopus, Web of Science and PubMed databases (2007–2023), Google Scholar and grey literature was conducted. A meta-analysis was performed using the inverse variance method and random effects model. Thirty-two studies involving patients with obesity who received bariatric surgery and control patients who were managed with conventional treatment were included. The meta-analysis suggested bariatric surgery was associated with a reduced overall incidence of cancer (RR 0.62, 95% CI 0.46–0.84, p < 0.002), obesity-related cancer (RR 0.59, 95% CI 0.39–0.90, p = 0.01) and cancer-associated mortality (RR 0.51, 95% CI 0.42–0.62, p < 0.00001). In specific cancers, bariatric surgery was associated with reduction in the future incidence of hepatocellular carcinoma (RR 0.35, 95% CI 0.22–0.55, p < 0.00001), colorectal cancer (RR 0.63, CI 0.50–0.81, p = 0.0002), pancreatic cancer (RR 0.52, 95% CI 0.29–0.93, p = 0.03) and gallbladder cancer (RR 0.41, 95% CI 0.18–0.96, p = 0.04), as well as female specific cancers, including breast cancer (RR 0.56, 95% CI 0.44–0.71, p < 0.00001), endometrial cancer (RR 0.38, 95% CI 0.26–0.55, p < 0.00001) and ovarian cancer (RR 0.45, 95% CI 0.31–0.64, p < 0.0001). There was no significant reduction in the incidence of oesophageal, gastric, thyroid, kidney, prostate cancer or multiple myeloma after bariatric surgery as compared to patients with morbid obesity who did not have bariatric surgery. Obesity-associated carcinogenesis is closely related to metabolic syndrome; visceral adipose dysfunction; aromatase activity and detrimental cytokine, adipokine and exosomal miRNA release. Bariatric surgery results in long-term weight loss in morbidly obese patients and improves metabolic syndrome. Bariatric surgery may decrease future overall cancer incidence and mortality, including the incidence of seven obesity-related cancers.
Collapse
|
17
|
Dana N, Ferns GA, Nedaeinia R, Haghjooy Javanmard S. Leptin signaling in breast cancer and its crosstalk with peroxisome proliferator-activated receptors α and γ. Clin Transl Oncol 2023; 25:601-610. [PMID: 36348225 DOI: 10.1007/s12094-022-02988-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 10/18/2022] [Indexed: 11/09/2022]
Abstract
Obesity may create a mitogenic microenvironment that influences tumor initiation and progression. The obesity-associated adipokine, leptin regulates energy metabolism and has been implicated in cancer development. It has been shown that some cell types other than adipocytes can express leptin and leptin receptors in tumor microenvironments. It has been shown that peroxisome proliferator-activated receptors (PPAR) agonists can affect leptin levels and vice versa leptin can affect PPARs. Activation of PPARs affects the expression of several genes involved in aspects of lipid metabolism. In addition, PPARs regulate cancer cell progression through their action on the tumor cell proliferation, metabolism, and cellular environment. Some studies have shown an association between obesity and several types of cancer, including breast cancer. There is some evidence that suggests that there is crosstalk between PPARs and leptin during the development of breast cancer. Through a systematic review of previous studies, we have reviewed the published relevant articles regarding leptin signaling in breast cancer and its crosstalk with peroxisome proliferator-activated receptors α and γ.
Collapse
Affiliation(s)
- Nasim Dana
- Applied Physiology Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Gordon A Ferns
- Division of Medical Education, Brighton and Sussex Medical School, Falmer, Brighton, BN1 9PH, Sussex, UK
| | - Reza Nedaeinia
- Pediatric Inherited Diseases Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Shaghayegh Haghjooy Javanmard
- Applied Physiology Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
18
|
Peng J, Madduri S, Clontz AD, Stewart DA. Clinical trial-identified inflammatory biomarkers in breast and pancreatic cancers. Front Endocrinol (Lausanne) 2023; 14:1106520. [PMID: 37181043 PMCID: PMC10173309 DOI: 10.3389/fendo.2023.1106520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 04/04/2023] [Indexed: 05/16/2023] Open
Abstract
Breast cancer and pancreatic cancer are two common cancer types characterized by high prevalence and high mortality rates, respectively. However, breast cancer has been more well-studied than pancreatic cancer. This narrative review curated inflammation-associated biomarkers from clinical studies that were systematically selected for both breast and pancreatic cancers and discusses some of the common and unique elements between the two endocrine-regulated malignant diseases. Finding common ground between the two cancer types and specifically analyzing breast cancer study results, we hoped to explore potential feasible methods and biomarkers that may be useful also in diagnosing and treating pancreatic cancer. A PubMed MEDLINE search was used to identify articles that were published between 2015-2022 of different kinds of clinical trials that measured immune-modulatory biomarkers and biomarker changes of inflammation defined in diagnosis and treatment of breast cancer and pancreatic cancer patients. A total of 105 papers (pancreatic cancer 23, breast cancer 82) were input into Covidence for the title and abstract screening. The final number of articles included in this review was 73 (pancreatic cancer 19, breast cancer 54). The results showed some of the frequently cited inflammatory biomarkers for breast and pancreatic cancers included IL-6, IL-8, CCL2, CD8+ T cells and VEGF. Regarding unique markers, CA15-3 and TNF-alpha were two of several breast cancer-specific, and CA19 and IL-18 were pancreatic cancer-specific. Moreover, we discussed leptin and MMPs as emerging biomarker targets with potential use for managing pancreatic cancer based on breast cancer studies in the future, based on inflammatory mechanisms. Overall, the similarity in how both types of cancers respond to or result in further disruptive inflammatory signaling, and that point to a list of markers that have been shown useful in diagnosis and/or treatment method response or efficacy in managing breast cancer could potentially provide insights into developing the same or more useful diagnostic and treatment measurement inflammatory biomarkers for pancreatic cancer. More research is needed to investigate the relationship and associated inflammatory markers between the similar immune-associated biological mechanisms that contribute to breast and pancreatic cancer etiology, drive disease progression or that impact treatment response and reflect survival outcomes.
Collapse
Affiliation(s)
- Jing Peng
- Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Supradeep Madduri
- Nutrition Research Institute, University of North Carolina at Chapel Hill, Kannapolis, NC, United States
| | - Angela D. Clontz
- Department of Nutrition, Meredith College, Raleigh, NC, United States
| | - Delisha A. Stewart
- Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Nutrition Research Institute, University of North Carolina at Chapel Hill, Kannapolis, NC, United States
- *Correspondence: Delisha A. Stewart,
| |
Collapse
|
19
|
Shveid Gerson D, Gerson‐Cwilich R, Lara Torres CO, Chousleb de Kalach A, Ventura Gallegos JL, Badillo‐Garcia LE, Bargalló Rocha JE, Maffuz‐Aziz A, Sánchez Forgach ER, Castorena Roji G, Robles Vidal CD, Vargas‐Castillo A, Torres N, Tovar AR, Contreras Jarquín M, Gómez Osnaya JT, Zentella‐Dehesa A. Establishment of triple-negative breast cancer cells based on BMI: A novel model in the correlation between obesity and breast cancer. Front Oncol 2022; 12:988968. [PMID: 36591465 PMCID: PMC9795201 DOI: 10.3389/fonc.2022.988968] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 11/14/2022] [Indexed: 12/15/2022] Open
Abstract
Introduction Obesity has been associated with an increased risk of biologically aggressive variants in breast cancer. Women with obesity often have tumors diagnosed at later stages of the disease, associated with a poorer prognosis and a different response to treatment. Human cell lines have been derived from specific subtypes of breast cancer and have served to define the cell physiology of corresponding breast cancer subtypes. However, there are no current cell lines for breast cancer specifically derived from patients with different BMIs. The availability of those breast cancer cell lines should allow to describe and unravel functional alterations linked to these comorbidities. Methods Cell cultures were established from tumor explants. Once generated, the triple negative subtype in a patient with obesity and a patient with a normal BMI were chosen for comparison. For cellular characterization, the following assays were conducted: proliferation assays, chemo - sensitivity assays for doxorubicin and paclitaxel, wound healing motility assays, matrix invasion assays, breast cancer cell growth to estradiol by chronic exposure to leptin, induction of endothelial permeability and tumorigenic potential in athymic mice with normo - versus hypercaloric diets with an evaluation of the epithelium - mesenchymal transformation proteins. Results Two different cell lines, were established from patients with breast cancer: DSG-BC1, with a BMI of 21.9 kg/m2 and DSG-BC2, with a BMI of 31.5 kg/m2. In vitro, these two cell lines show differential growth rates, motility, chemosensitivity, vascular permeability, response to leptin with an activation of the JAK2/STAT3/AKT signaling pathway. In vivo, they displayed distinct tumorigenic potential. In particular, DSG-BC2, presented higher tumorigenicity when implanted in mice fed with a hypercaloric diet. Discussion To our knowledge, these primary cultures are the first in vitro representation of both breast cancer and obesity. DSG - BC2 presented a more aggressive in vivo and in vitro phenotype. These results support the hypothesis that breast cancer generated in an obese metabolic state may represent a contrasting variant within the same disease. This new model will allow both further comprehension, functional studies and the analysis of altered molecular mechanisms under the comorbidity of obesity and breast cancer.
Collapse
Affiliation(s)
- Daniela Shveid Gerson
- Cancer Center, American British Cowdray (ABC) Medical Center, Mexico City, Mexico,*Correspondence: Daniela Shveid Gerson,
| | | | - Cesar Octavio Lara Torres
- Pathology Department, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán (INCMNSZ), Mexico City, Mexico
| | | | - José Luis Ventura Gallegos
- Department of Genomic Medicine and Environmental Toxicology, Institute of Biomedical Research, National Autonomous University of Mexico, Mexico City, Mexico
| | - Luis Ernesto Badillo‐Garcia
- Department of Genomic Medicine and Environmental Toxicology, Institute of Biomedical Research, National Autonomous University of Mexico, Mexico City, Mexico
| | | | - Antonio Maffuz‐Aziz
- Cancer Center, American British Cowdray (ABC) Medical Center, Mexico City, Mexico
| | | | | | | | - Ariana Vargas‐Castillo
- Biochemistry Unit, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán (INCMNSZ), Mexico City, Mexico,Department of Nutrition Physiology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán (INCMNSZ), Mexico City, Mexico
| | - Nimbe Torres
- Department of Nutrition Physiology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán (INCMNSZ), Mexico City, Mexico
| | - Armando R. Tovar
- Department of Nutrition Physiology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán (INCMNSZ), Mexico City, Mexico
| | - Mariela Contreras Jarquín
- Department of Genomic Medicine and Environmental Toxicology, Institute of Biomedical Research, National Autonomous University of Mexico, Mexico City, Mexico
| | - Jesús Tenahuatzin Gómez Osnaya
- Department of Genomic Medicine and Environmental Toxicology, Institute of Biomedical Research, National Autonomous University of Mexico, Mexico City, Mexico
| | - Alejandro Zentella‐Dehesa
- Cancer Center, American British Cowdray (ABC) Medical Center, Mexico City, Mexico,Biochemistry Unit, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán (INCMNSZ), Mexico City, Mexico
| |
Collapse
|
20
|
RBCK1 regulates the progression of ER-positive breast cancer through the HIF1α signaling. Cell Death Dis 2022; 13:1023. [PMID: 36473847 PMCID: PMC9726878 DOI: 10.1038/s41419-022-05473-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 11/24/2022] [Accepted: 11/25/2022] [Indexed: 12/12/2022]
Abstract
Breast cancer is the most common malignancy in women on a global scale. It can generally be divided into four main categories, of which estrogen receptor ER-positive breast cancer accounts for most breast cancer cases. RBCK1 protein is an E3 ubiquitin ligase containing the UBL, NZF, and RBR domains. It is well known to exhibit abnormal expression in breast tumors, making it a valuable diagnostic marker and drug target. Additionally, studies have confirmed that in breast cancer, about 25 to 40% of tumors appear as visible hypoxic regions, while in hypoxia, tumor cells can activate the hypoxia-inducing factor HIF1 pathway and widely activate the expression of downstream genes. Previous studies have confirmed that in the hypoxic environment of tumors, HIF1α promotes the remodeling of extracellular matrix, induces the recruitment of tumor-associated macrophages (TAM) and immunosuppression of allogeneic tumors, thereby influencing tumor recurrence and metastasis. This research aims to identify RBCK1 as an important regulator of HIF1α signaling pathway. Targeted therapy with RBCK1 could be a promising treatment strategy for ER-positive breast cancer.
Collapse
|
21
|
Marchi PH, Vendramini THA, Perini MP, Zafalon RVA, Amaral AR, Ochamotto VA, Da Silveira JC, Dagli MLZ, Brunetto MA. Obesity, inflammation, and cancer in dogs: Review and perspectives. Front Vet Sci 2022; 9:1004122. [PMID: 36262532 PMCID: PMC9573962 DOI: 10.3389/fvets.2022.1004122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 08/31/2022] [Indexed: 11/13/2022] Open
Abstract
Obesity is the most common nutritional disease in dogs, and its prevalence has increased in recent decades. Several countries have demonstrated a prevalence of obesity in dogs similar to that observed in humans. Chronic low-grade inflammation is a prominent basis used to explain how obesity results in numerous negative health consequences. This is well known and understood, and recent studies have pointed to the association between obesity and predisposition to specific types of cancers and their complications. Such elucidations are important because, like obesity, the prevalence of cancer in dogs has increased in recent decades, establishing cancer as a significant cause of death for these animals. In the same way, intensive advances in technology in the field of human and veterinary medicine (which even proposes the use of animal models) have optimized existing therapeutic methods, led to the development of innovative treatments, and shortened the time to diagnosis of cancer. Despite the great challenges, this review aims to highlight the evidence obtained to date on the association between obesity, inflammation, and cancer in dogs, and the possible pathophysiological mechanisms that link obesity and carcinogenesis. The potential to control cancer in animals using existing knowledge is also presented.
Collapse
Affiliation(s)
- Pedro H. Marchi
- Pet Nutrology Research Center, Department of Animal Nutrition and Production of the School of Veterinary Medicine and Animal Science, University of São Paulo, Pirassununga, Brazil
| | - Thiago H. A. Vendramini
- Pet Nutrology Research Center, Department of Animal Nutrition and Production of the School of Veterinary Medicine and Animal Science, University of São Paulo, Pirassununga, Brazil
| | - Mariana P. Perini
- Pet Nutrology Research Center, Department of Animal Nutrition and Production of the School of Veterinary Medicine and Animal Science, University of São Paulo, Pirassununga, Brazil
| | - Rafael V. A. Zafalon
- Pet Nutrology Research Center, Department of Animal Nutrition and Production of the School of Veterinary Medicine and Animal Science, University of São Paulo, Pirassununga, Brazil
| | - Andressa R. Amaral
- Veterinary Nutrology Service, Veterinary Teaching Hospital of the School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | - Vanessa A. Ochamotto
- Pet Nutrology Research Center, Department of Animal Nutrition and Production of the School of Veterinary Medicine and Animal Science, University of São Paulo, Pirassununga, Brazil
| | - Juliano C. Da Silveira
- Laboratory of Molecular, Morphophysiology and Development (LMMD), Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, University of São Paulo, Pirassununga, Brazil
| | - Maria L. Z. Dagli
- Laboratory of Experimental and Comparative Oncology, Department of Pathology, School of Veterinary Medicine and Animal Science of the University of São Paulo, São Paulo, Brazil
| | - Marcio A. Brunetto
- Pet Nutrology Research Center, Department of Animal Nutrition and Production of the School of Veterinary Medicine and Animal Science, University of São Paulo, Pirassununga, Brazil,Veterinary Nutrology Service, Veterinary Teaching Hospital of the School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil,*Correspondence: Marcio A. Brunetto
| |
Collapse
|
22
|
Cejudo-Arteaga S, Guerrero-Ramos MÁ, Kuri-Exome R, Martínez-Cordero E, Farias-Serratos F, Maldonado-Vega M. Epidemiology of Breast Cancer in Mexican Women with Obesity as a Risk Factor. Int J Mol Sci 2022; 23:10742. [PMID: 36142655 PMCID: PMC9503491 DOI: 10.3390/ijms231810742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 08/30/2022] [Accepted: 09/05/2022] [Indexed: 11/17/2022] Open
Abstract
Purpose. Adipose tissue in overweight and obesity shows metabolic imbalance in the function of adipocytes and macrophages, this leads to altered regulation of hunger, lipid storage, and chronic inflammation possibly related to the development of breast cancer. Methods. The study was retrospective of 653 breast cancer patients treated at a tertiary care hospital. Histopathology, hormone receptors, grade, clinical stage, clinical biometry analysis, CEA and CA 15-3 antigens were analyzed. The analyses were performed at diagnosis and at the end of oncological treatments. Results. Mexican women studied and treated for breast cancer have an BMI of 29 from diagnosis and at the end of their cancer treatments. The average age was 52 ± 12 years, 54% in women older than 55 years. Cancer recurrence occurs in any molecular type; however, the common factor was overweight and obesity with 73% vs. 21% in normal weight patients. The most frequent tumor tissue in the population was positive hormone receptors of the luminal type (65%), HER2 (15%), and NT (15%). The analyses of macrophages/lymphocytes (M/L), CEA, and CA 15-3 antigens evaluated in women >55 and <55 years, with and without recurrence are elevated at the end of oncological treatments. Conclusions. The analysis of Mexican women with breast cancer showed a predominance of overweight and obesity at diagnosis and at the end of treatment. A relationship between obesity and cancer recurrence with a low response to treatment due to elevation in Ag CEA and CA 15-3 is suggested. The L/M ratio could be an indicator of inflammation related to adipose tissue since diagnosis.
Collapse
Affiliation(s)
- Shaila Cejudo-Arteaga
- Colonia Centro, Facultad de Medicina, Benemérita Universidad Autónoma de Puebla, 4 Sur #104, Puebla 72420, Mexico
| | - Miguel Ángel Guerrero-Ramos
- Hospital Regional de Alta Especialidad del Bajío, Servicio de Oncología Médica, Blvd. Milenio #130, Colonia San Carlos La Roncha, León 37660, Mexico
| | - Roberto Kuri-Exome
- Hospital Regional de Alta Especialidad del Bajío, Servicio de Oncología Médica, Blvd. Milenio #130, Colonia San Carlos La Roncha, León 37660, Mexico
| | - Erika Martínez-Cordero
- Hospital Regional de Alta Especialidad del Bajío, Dirección de Planeación, Enseñanza e Investigación, Unidad de Enseñanza e Investigación, Blvd. Milenio #130, Colonia San Carlos La Roncha, León 37660, Mexico
| | - Felipe Farias-Serratos
- Hospital Regional de Alta Especialidad del Bajío, Dirección de Planeación, Enseñanza e Investigación, Unidad de Enseñanza e Investigación, Blvd. Milenio #130, Colonia San Carlos La Roncha, León 37660, Mexico
| | - María Maldonado-Vega
- Hospital Regional de Alta Especialidad del Bajío, Dirección de Planeación, Enseñanza e Investigación, Unidad de Enseñanza e Investigación, Blvd. Milenio #130, Colonia San Carlos La Roncha, León 37660, Mexico
| |
Collapse
|
23
|
Bohm MS, Sipe LM, Pye ME, Davis MJ, Pierre JF, Makowski L. The role of obesity and bariatric surgery-induced weight loss in breast cancer. Cancer Metastasis Rev 2022; 41:673-695. [PMID: 35870055 PMCID: PMC9470652 DOI: 10.1007/s10555-022-10050-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 07/06/2022] [Indexed: 02/07/2023]
Abstract
Obesity is a complex metabolic condition considered a worldwide public health crisis, and a deeper mechanistic understanding of obesity-associated diseases is urgently needed. Obesity comorbidities include many associated cancers and are estimated to account for 20% of female cancer deaths in the USA. Breast cancer, in particular, is associated with obesity and is the focus of this review. The exact causal links between obesity and breast cancer remain unclear. Still, interactions have emerged between body mass index, tumor molecular subtype, genetic background, and environmental factors that strongly suggest obesity influences the risk and progression of certain breast cancers. Supportive preclinical research uses various diet-induced obesity models to demonstrate that weight loss, via dietary interventions or changes in energy expenditure, reduces the onset or progression of breast cancers. Ongoing and future studies are now aimed at elucidating the underpinning mechanisms behind weight-loss-driven observations to improve therapy and outcomes in patients with breast cancer and reduce risk. This review aims to summarize the rapidly emerging literature on obesity and weight loss strategies with a focused discussion of bariatric surgery in both clinical and preclinical studies detailing the complex interactions between metabolism, immune response, and immunotherapy in the setting of obesity and breast cancer.
Collapse
Affiliation(s)
- Margaret S Bohm
- Department of Microbiology, Immunology, and Biochemistry, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Laura M Sipe
- Division of Hematology and Oncology, Department of Medicine, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Madeline E Pye
- Division of Hematology and Oncology, Department of Medicine, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Matthew J Davis
- Division of Bariatric Surgery, Department of Surgery, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Joseph F Pierre
- Department of Microbiology, Immunology, and Biochemistry, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN, 38163, USA
- Department of Nutritional Sciences, College of Agriculture and Life Science, The University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Liza Makowski
- Department of Microbiology, Immunology, and Biochemistry, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN, 38163, USA.
- Division of Hematology and Oncology, Department of Medicine, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN, 38163, USA.
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN, 38163, USA.
- College of Medicine, UTHSC Center for Cancer Research, The University of Tennessee Health Science Center, Cancer Research Building Room 322, 19 S Manassas Street, Memphis, TN, 38163, USA.
| |
Collapse
|
24
|
Papakonstantinou E, Piperigkou Z, Karamanos NK, Zolota V. Altered Adipokine Expression in Tumor Microenvironment Promotes Development of Triple Negative Breast Cancer. Cancers (Basel) 2022; 14:4139. [PMID: 36077676 PMCID: PMC9454958 DOI: 10.3390/cancers14174139] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/23/2022] [Accepted: 08/24/2022] [Indexed: 11/16/2022] Open
Abstract
Obesity is a remarkably important factor for breast carcinogenesis and aggressiveness. The implication of increased BMI in triple negative breast cancer (TNBC) development is also well established. A malignancy-promoting role of the adipose tissue has been supposed, where the adipocytes that constitute the majority of stromal cells release pro-inflammatory cytokines and growth factors. Alterations in adipokines and their receptors play significant roles in breast cancer initiation, progression, metastasis, and drug response. Classic adipokines, such as leptin, adiponectin, and resistin, have been extensively studied in breast cancer and connected with breast cancer risk and progression. Notably, new molecules are constantly being discovered and the list is continuously growing. Additionally, substantial progress has been made concerning their differential expression in association with clinical and pathological parameters of tumors and the prognostic and predictive value of their dysregulation in breast cancer carcinogenesis. However, evidence regarding the mechanisms by which adipose tissue is involved in the development of TNBC is lacking. In the present article we comment on current data on the suggested involvement of these mediators in breast cancer development and progression, with particular emphasis on TNBC, to draw attention to the design of novel targeted therapies and biomarkers.
Collapse
Affiliation(s)
- Efthymia Papakonstantinou
- Department of Gynecology and Obstetrics, School of Medicine, University of Patras, 26504 Patras, Greece or
| | - Zoi Piperigkou
- Biochemistry, Biochemical Analysis and Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, 26504 Patras, Greece
- Foundation for Research and Technology-Hellas (FORTH), Institute of Chemical Engineering Sciences (ICE-HT), 26504 Patras, Greece
| | - Nikos K. Karamanos
- Biochemistry, Biochemical Analysis and Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, 26504 Patras, Greece
- Foundation for Research and Technology-Hellas (FORTH), Institute of Chemical Engineering Sciences (ICE-HT), 26504 Patras, Greece
| | - Vasiliki Zolota
- Department of Pathology, School of Medicine, University of Patras, 26504 Patras, Greece
| |
Collapse
|
25
|
Pantelimon I, Gales LN, Anghel RM, Gruia MI, Nita I, Matei CV, Bodea D, Stancu AM, Pirvu E, Radu MC, Dumitrescu AI, Manolescu LSC. Aspects Regarding the Influence of Obesity on the Molecular Characteristics of Breast Tumors. Cureus 2022; 14:e26952. [PMID: 35989732 PMCID: PMC9381069 DOI: 10.7759/cureus.26952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/17/2022] [Indexed: 11/05/2022] Open
|
26
|
Benot-Dominguez R, Cimini A, Barone D, Giordano A, Pentimalli F. The Emerging Role of Cyclin-Dependent Kinase Inhibitors in Treating Diet-Induced Obesity: New Opportunities for Breast and Ovarian Cancers? Cancers (Basel) 2022; 14:2709. [PMID: 35681689 PMCID: PMC9179653 DOI: 10.3390/cancers14112709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/26/2022] [Accepted: 05/26/2022] [Indexed: 12/24/2022] Open
Abstract
Overweight and obesity constitute the most impactful lifestyle-dependent risk factors for cancer and have been tightly linked to a higher number of tumor-related deaths nowadays. The excessive accumulation of energy can lead to an imbalance in the level of essential cellular biomolecules that may result in inflammation and cell-cycle dysregulation. Nutritional strategies and phytochemicals are gaining interest in the management of obesity-related cancers, with several ongoing and completed clinical studies that support their effectiveness. At the same time, cyclin-dependent kinases (CDKs) are becoming an important target in breast and ovarian cancer treatment, with various FDA-approved CDK4/6 inhibitors that have recently received more attention for their potential role in diet-induced obesity (DIO). Here we provide an overview of the most recent studies involving nutraceuticals and other dietary strategies affecting cell-cycle pathways, which might impact the management of breast and ovarian cancers, as well as the repurposing of already commercialized chemotherapeutic options to treat DIO.
Collapse
Affiliation(s)
- Reyes Benot-Dominguez
- Sbarro Institute for Cancer Research and Molecular Medicine and Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA; (R.B.-D.); (A.G.)
| | - Annamaria Cimini
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy;
| | - Daniela Barone
- Cell Biology and Biotherapy Unit, Istituto Nazionale Tumori, IRCCS, Fondazione G. Pascale, 80131 Napoli, Italy;
| | - Antonio Giordano
- Sbarro Institute for Cancer Research and Molecular Medicine and Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA; (R.B.-D.); (A.G.)
- Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy
| | | |
Collapse
|
27
|
Li L, Meng X, Liu L, Xiang Y, Wang F, Yu L, Zhou F, Zheng C, Zhou W, Cui S, Tian F, Fan Z, Geng C, Cao X, Yang Z, Wang X, Liang H, Wang S, Jiang H, Duan X, Wang H, Li G, Wang Q, Zhang J, Jin F, Tang J, Li L, Zhu S, Zuo W, Ye C, Yin G, Ma Z, Huang S, Yu Z. Single-Nucleotide Polymorphisms in LEP and LEPR Associated With Breast Cancer Risk: Results From a Multicenter Case-Control Study in Chinese Females. Front Oncol 2022; 12:809570. [PMID: 35223490 PMCID: PMC8866686 DOI: 10.3389/fonc.2022.809570] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 01/14/2022] [Indexed: 11/16/2022] Open
Abstract
Background Leptin (LEP) plays a physiological role through its specific receptor (LEPR) and is involved in the occurrence and development of breast cancer. Our current study aimed at determining the influence of single-nucleotide polymorphisms (SNPs) in the genes coding for LEP and LEPR on breast cancer risk. Methods In the present study, 963 breast cancer cases and 953 controls were enrolled. Five SNPs of LEP and two of LEPR were chosen to evaluate the correlation of selected SNPs with breast cancer susceptibility among women in northern and eastern China. Analyses were further stratified by body mass index (BMI), waist–hip rate (WHR), estrogen receptor, and progesterone receptor status. The expression patterns of risk variant-associated genes were detected by expression quantitative trait locus (eQTL) analysis with eQTLGen and The Cancer Genome Atlas database. Results There were significant differences between breast cancer cases and control groups in the menopausal status and family history of breast cancer. Two SNPs (rs1137101 and rs4655555) of the LEPR gene decreased overall breast cancer risk, and other five SNPs showed no significant association with breast cancer risk. rs1137101 (GA vs. GG; adjusted OR = 0.719, 95% CI = 0.578–0.894, p = 0.003) and rs4655555 (TT vs. AA; adjusted OR = 0.574, 95% CI = 0.377–0.873, p = 0.009) significantly decreased breast cancer risk after Bonferroni correction for multiple testing. In subgroup analyses, the GA and GA + AA genotypes of LEPR rs1137101 associated with decreased breast cancer risk in the subgroup of BMI ≤ 24 kg/m2 or WHR ≥ 0.85 after Bonferroni correction. Furthermore, we found that the expressions of rs4655555-associated gene LEPR and leptin receptor overlapping transcript (LEPROT) were upregulated in breast cancer tumor tissues compared with adjacent normal tissues, and a higher expression of LEPR in tumor tissues was correlated with poor prognosis of breast cancer patients using The Cancer Genome Atlas Breast Invasive Carcinoma (TCGA-BRCA) data. Conclusion Our study demonstrated that the polymorphisms rs1137101 and rs4655555 located in the LEPR gene decreased breast cancer risk in Chinese females, which might be a research-worthy bio-diagnostic marker and applied for early prediction and risk assessment of breast cancer.
Collapse
Affiliation(s)
- Liang Li
- Department of Breast Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,School of Medicine, Cheeloo College of Medicine, Shandong University, Jinan, China.,Institute of Translational Medicine of Breast Disease Prevention and Treatment, Shandong University, Jinan, China.,Shandong Provincial Engineering Laboratory of Translational Research on Prevention and Treatment of Breast Disease, Jinan, China
| | - Xingchen Meng
- Department of Breast Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,School of Medicine, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Liyuan Liu
- Department of Breast Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Institute of Translational Medicine of Breast Disease Prevention and Treatment, Shandong University, Jinan, China.,Shandong Provincial Engineering Laboratory of Translational Research on Prevention and Treatment of Breast Disease, Jinan, China
| | - Yujuan Xiang
- Department of Breast Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Institute of Translational Medicine of Breast Disease Prevention and Treatment, Shandong University, Jinan, China.,Shandong Provincial Engineering Laboratory of Translational Research on Prevention and Treatment of Breast Disease, Jinan, China
| | - Fei Wang
- Department of Breast Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Institute of Translational Medicine of Breast Disease Prevention and Treatment, Shandong University, Jinan, China.,Shandong Provincial Engineering Laboratory of Translational Research on Prevention and Treatment of Breast Disease, Jinan, China
| | - Lixiang Yu
- Department of Breast Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Institute of Translational Medicine of Breast Disease Prevention and Treatment, Shandong University, Jinan, China.,Shandong Provincial Engineering Laboratory of Translational Research on Prevention and Treatment of Breast Disease, Jinan, China
| | - Fei Zhou
- Department of Breast Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Institute of Translational Medicine of Breast Disease Prevention and Treatment, Shandong University, Jinan, China.,Shandong Provincial Engineering Laboratory of Translational Research on Prevention and Treatment of Breast Disease, Jinan, China
| | - Chao Zheng
- Department of Breast Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Institute of Translational Medicine of Breast Disease Prevention and Treatment, Shandong University, Jinan, China.,Shandong Provincial Engineering Laboratory of Translational Research on Prevention and Treatment of Breast Disease, Jinan, China
| | - Wenzhong Zhou
- Department of Breast Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Institute of Translational Medicine of Breast Disease Prevention and Treatment, Shandong University, Jinan, China.,Shandong Provincial Engineering Laboratory of Translational Research on Prevention and Treatment of Breast Disease, Jinan, China
| | - Shude Cui
- Department of Breast Surgery, Affiliated Tumor Hospital of Zhengzhou University, Zhengzhou, China
| | - Fuguo Tian
- Department of Breast Surgery, Shanxi Cancer Hospital, Taiyuan, China
| | - Zhimin Fan
- Department of Breast Surgery, The First Hospital of Jilin University, Changchun, China
| | - Cuizhi Geng
- Department of Breast Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Xuchen Cao
- Department of Breast Surgery, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Zhenlin Yang
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Binzhou Medical University, Binzhou, China
| | - Xiang Wang
- Department of Breast Surgery, Cancer Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Hong Liang
- Department of General Surgery, Linyi People's Hospital, Linyi, China
| | - Shu Wang
- Department of Breast Disease Center, Peking University People's Hospital, Beijing, China
| | - Hongchuan Jiang
- Department of General Surgery, Beijing Chaoyang Hospital, Beijing, China
| | - Xuening Duan
- Department of Breast Disease Center, Peking University First Hospital, Beijing, China
| | - Haibo Wang
- Department of Breast Center, Qingdao University Affiliated Hospital, Qingdao, China
| | - Guolou Li
- Department of Breast and Thyroid Surgery, Weifang Traditional Chinese Hospital, Weifang, China
| | - Qitang Wang
- Department of Breast Surgery, The Second Affiliated Hospital of Qingdao Medical College, Qingdao Central Hospital, Qingdao, China
| | - Jianguo Zhang
- Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Feng Jin
- Department of Breast Surgery, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Jinhai Tang
- Department of General Surgery, Nanjing Medical University Affiliated Cancer Hospital, Cancer Institute of Jiangsu Province, Nanjing, China
| | - Liang Li
- Department of Breast and Thyroid Surgery, Zibo Central Hospital, Zibo, China
| | - Shiguang Zhu
- Department of Breast Surgery, Yantai Yuhuangding Hospital, Yantai, China
| | - Wenshu Zuo
- Department of Breast Cancer Center, Shandong Cancer Hospital, Jinan, China
| | - Chunmiao Ye
- Department of Breast Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,School of Medicine, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Gengshen Yin
- Department of Breast Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,School of Medicine, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Zhongbing Ma
- Department of Breast Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Institute of Translational Medicine of Breast Disease Prevention and Treatment, Shandong University, Jinan, China.,Shandong Provincial Engineering Laboratory of Translational Research on Prevention and Treatment of Breast Disease, Jinan, China
| | - Shuya Huang
- Department of Breast Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Institute of Translational Medicine of Breast Disease Prevention and Treatment, Shandong University, Jinan, China.,Shandong Provincial Engineering Laboratory of Translational Research on Prevention and Treatment of Breast Disease, Jinan, China
| | - Zhigang Yu
- Department of Breast Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Institute of Translational Medicine of Breast Disease Prevention and Treatment, Shandong University, Jinan, China.,Shandong Provincial Engineering Laboratory of Translational Research on Prevention and Treatment of Breast Disease, Jinan, China
| |
Collapse
|
28
|
Petrescu AD, Grant S, Williams E, An SY, Seth N, Shell M, Amundsen T, Tan C, Nadeem Y, Tjahja M, Weld L, Chu CS, Venter J, Frampton G, McMillin M, DeMorrow S. Leptin Enhances Hepatic Fibrosis and Inflammation in a Mouse Model of Cholestasis. THE AMERICAN JOURNAL OF PATHOLOGY 2022; 192:484-502. [PMID: 34896073 PMCID: PMC8895426 DOI: 10.1016/j.ajpath.2021.11.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 10/27/2021] [Accepted: 11/17/2021] [Indexed: 01/09/2023]
Abstract
Leptin is an adipokine with roles in food intake and energy metabolism through its actions on neurons in the hypothalamus. The role of leptin in obesity and cardiovascular disorders is well documented. However, its influence on liver conditions such as cholestasis is poorly understood. The effects of exogenous leptin and leptin-neutralizing antibody on biliary hyperplasia, hepatic fibrosis, and inflammation in the multidrug resistance protein 2 knockout (Mdr2KO) mouse model of cholestasis were assessed by quantifying markers specific for cholangiocytes, activated hepatic stellate cells (HSCs), and cytokines. Serum and hepatic leptin were increased in Mdr2KO mice compared with FVB/NJ (FVBN) controls, and exogenous leptin enhanced biliary hyperplasia and liver fibrosis in Mdr2KO and FVBN mice. Leptin administration increased hepatic expression of C-C motif chemokine ligand 2 and IL-6 in Mdr2KO mice. In contrast, leptin-neutralizing antibody reduced intrahepatic bile duct mass and decreased HSC activation in Mdr2KO mice compared with FVBN controls. Sex-related differences were noted, with female Mdr2KO mice having more leptin than males. In cholangiocytes and LX2 cells in vitro, leptin increased phosphorylated Akt and stimulated cell proliferation. Leptin receptor siRNA and inhibitors of Akt phosphorylation impaired leptin-induced cell proliferation and proinflammatory cytokines. The current data suggest that leptin is abnormally increased in cholestatic mice, and excess leptin increases ductular reaction, hepatic fibrosis, and inflammation via leptin receptor-mediated phosphorylation of Akt in cholangiocytes and HSCs.
Collapse
Affiliation(s)
- Anca D Petrescu
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, Texas; Department of Internal Medicine, Dell Medical School, The University of Texas at Austin, Austin, Texas
| | - Stephanie Grant
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, Texas; Department of Internal Medicine, Dell Medical School, The University of Texas at Austin, Austin, Texas
| | - Elaina Williams
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, Texas; Department of Internal Medicine, Dell Medical School, The University of Texas at Austin, Austin, Texas
| | - Su Yeon An
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, Texas; Department of Internal Medicine, Dell Medical School, The University of Texas at Austin, Austin, Texas
| | - Nikhil Seth
- Department of Internal Medicine, Baylor Scott & White Health, Temple, Texas
| | - Mark Shell
- Department of Internal Medicine, Baylor Scott & White Health, Temple, Texas
| | - Tyson Amundsen
- Department of Internal Medicine, Baylor Scott & White Health, Temple, Texas
| | - Christopher Tan
- Department of Internal Medicine, Baylor Scott & White Health, Temple, Texas
| | - Yusra Nadeem
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, Texas
| | - Matthew Tjahja
- Department of Internal Medicine, Baylor Scott & White Health, Temple, Texas
| | - Lancaster Weld
- Department of Internal Medicine, Baylor Scott & White Health, Temple, Texas
| | - Christopher S Chu
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, Texas; Department of Internal Medicine, Dell Medical School, The University of Texas at Austin, Austin, Texas
| | - Julie Venter
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, Texas; Department of Internal Medicine, Dell Medical School, The University of Texas at Austin, Austin, Texas
| | - Gabriel Frampton
- Department of Internal Medicine, Dell Medical School, The University of Texas at Austin, Austin, Texas; Central Texas Veterans Health Care System, Temple, Texas
| | - Matthew McMillin
- Department of Internal Medicine, Dell Medical School, The University of Texas at Austin, Austin, Texas; Central Texas Veterans Health Care System, Temple, Texas
| | - Sharon DeMorrow
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, Texas; Department of Internal Medicine, Dell Medical School, The University of Texas at Austin, Austin, Texas; Central Texas Veterans Health Care System, Temple, Texas.
| |
Collapse
|
29
|
Chen P, Wang B, Li M, Cui C, Liu F, Gao Y. Celastrol inhibits the proliferation and migration of MCF-7 cells through the leptin-triggered PI3K/AKT pathway. Comput Struct Biotechnol J 2022; 20:3173-3181. [PMID: 35782744 PMCID: PMC9234344 DOI: 10.1016/j.csbj.2022.06.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 06/15/2022] [Accepted: 06/16/2022] [Indexed: 11/16/2022] Open
Abstract
Leptin is the pivotal modulator in the onset and progression of breast cancer and obesity. Celastrol, which is extracted from the roots of Tripterygium wilfordi plants, exerts various anticancer bioactivities and has recently emerged as a candidate to treat obesity by improving leptin sensitivity. However, the relationship between leptin and celastrol in the treatment of breast cancer is unknown. Here, the growth and migration of MCF-7 cells induced by leptin were tested to demonstrate the antineoplastic activity of celastrol. Transcriptomic analysis and western blotting were conducted to explore the biological roles of leptin in treating breast cancer with celastrol. The present findings showed that celastrol remarkably reversed leptin-triggered cell proliferation and migration in MCF-7 cells. Fifty-two mRNAs with fivefold higher counts and 149 mRNAs with fivefold lower counts were identified in the celastrol-treated MCF-7 cells. According to the GO and KEGG analyses, the effects of celastrol on MCF-7 cells forced lipid metabolism and the endocrine system. Moreover, leptin treatment induced phosphorylation of leptin receptor and PI3K/AKT in MCF-7 cells, whereas pretreatment with celastrol partly abrogated leptin activation. The binding of celastrol to the leptin receptor was also confirmed by molecular docking. The antitumor effect of celastrol is proposed to be mediated by its binding to the leptin receptor and controlled downregulation of the PI3K/AKT pathway.
Collapse
|
30
|
Atoum MF, Alparrey AAH. Association of Leptin Receptor Q223R Gene Polymorphism and Breast Cancer Patients: A Case Control Study. Asian Pac J Cancer Prev 2022; 23:177-182. [PMID: 35092386 PMCID: PMC9258657 DOI: 10.31557/apjcp.2022.23.1.177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 01/16/2022] [Indexed: 11/25/2022] Open
Abstract
INTRODUCTION Leptin is a hormone secreted from adipocytes that regulates metabolism and energy homeostasis through the leptin receptor (LEPR). The aim of this study was to investigate the association of leptin receptor gene Q223R gene polymorphism, and plasma leptin level among obese breast cancer females. MATERIALS AND METHODS The study enrolled 160 breast cancer patients and 160 healthy control females. LEPR Q223R polymorphism was determined by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP). Serum leptin was determined using enzyme-linked immunosorbent assay human leptin kit. Immunohistochemical tests from paraffin blocks were carried out for estrogen and progesterone staging using the precise antibodies. RESULTS An association was found between LEPR gene Q223R gene polymorphism among obese breast cancer females. Statistical difference was found between GG (60.6%) Arg/Arg genotype (OR=2.986; 95%CI=1.540 to 5.789; p= 0.001) compared to AA (33.1%) Gln/Gln genotype. GG Q223R LEPR polymorphism showed statistically significant difference among obese breast cancer patients (BMI more than 25) compared to control (P < 0.0001). GG genotype of Q223R LEPR polymorphism showed statistically significant increased leptin level (p-value =0.0001) among obese patients (mean± SD; 23.39±4.32) compared to control (17.83±5.67). CONCLUSIONS Q223R LEPR polymorphism GG genotype was associated with increased leptin profile among obese breast cancer females.
Collapse
Affiliation(s)
- Manar F Atoum
- Department Medical Laboratory Sciences, Faculty Applied Health Sciences, Hashemite University, Zarqa, Jordan.
| | | |
Collapse
|
31
|
Shastri AA, Lombardo J, Okere SC, Higgins S, Smith BC, DeAngelis T, Palagani A, Hines K, Monti DA, Volpe S, Mitchell EP, Simone NL. Personalized Nutrition as a Key Contributor to Improving Radiation Response in Breast Cancer. Int J Mol Sci 2021; 23:175. [PMID: 35008602 PMCID: PMC8745527 DOI: 10.3390/ijms23010175] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 12/21/2021] [Accepted: 12/23/2021] [Indexed: 02/06/2023] Open
Abstract
Understanding metabolic and immune regulation inherent to patient populations is key to improving the radiation response for our patients. To date, radiation therapy regimens are prescribed based on tumor type and stage. Patient populations who are noted to have a poor response to radiation such as those of African American descent, those who have obesity or metabolic syndrome, or senior adult oncology patients, should be considered for concurrent therapies with radiation that will improve response. Here, we explore these populations of breast cancer patients, who frequently display radiation resistance and increased mortality rates, and identify the molecular underpinnings that are, in part, responsible for the radiation response and that result in an immune-suppressive tumor microenvironment. The resulting immune phenotype is discussed to understand how antitumor immunity could be improved. Correcting nutrient deficiencies observed in these populations should be considered as a means to improve the therapeutic index of radiation therapy.
Collapse
Affiliation(s)
- Anuradha A. Shastri
- Department of Radiation Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA; (A.A.S.); (J.L.); (S.C.O.); (S.H.); (B.C.S.); (T.D.); (A.P.); (K.H.)
| | - Joseph Lombardo
- Department of Radiation Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA; (A.A.S.); (J.L.); (S.C.O.); (S.H.); (B.C.S.); (T.D.); (A.P.); (K.H.)
| | - Samantha C. Okere
- Department of Radiation Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA; (A.A.S.); (J.L.); (S.C.O.); (S.H.); (B.C.S.); (T.D.); (A.P.); (K.H.)
| | - Stephanie Higgins
- Department of Radiation Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA; (A.A.S.); (J.L.); (S.C.O.); (S.H.); (B.C.S.); (T.D.); (A.P.); (K.H.)
| | - Brittany C. Smith
- Department of Radiation Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA; (A.A.S.); (J.L.); (S.C.O.); (S.H.); (B.C.S.); (T.D.); (A.P.); (K.H.)
| | - Tiziana DeAngelis
- Department of Radiation Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA; (A.A.S.); (J.L.); (S.C.O.); (S.H.); (B.C.S.); (T.D.); (A.P.); (K.H.)
| | - Ajay Palagani
- Department of Radiation Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA; (A.A.S.); (J.L.); (S.C.O.); (S.H.); (B.C.S.); (T.D.); (A.P.); (K.H.)
| | - Kamryn Hines
- Department of Radiation Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA; (A.A.S.); (J.L.); (S.C.O.); (S.H.); (B.C.S.); (T.D.); (A.P.); (K.H.)
| | - Daniel A. Monti
- Department of Integrative Medicine and Nutritional Sciences, Marcus Institute of Integrative Health, Thomas Jefferson University, Philadelphia, PA 19107, USA;
| | - Stella Volpe
- Department of Human Nutrition, Foods and Exercise, College of Agriculture and Life Sciences, Virginia Tech, Blacksburg, VA 24061, USA;
| | - Edith P. Mitchell
- Department of Medical Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA;
| | - Nicole L. Simone
- Department of Radiation Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA; (A.A.S.); (J.L.); (S.C.O.); (S.H.); (B.C.S.); (T.D.); (A.P.); (K.H.)
| |
Collapse
|
32
|
Coradini D. Adipokines, cell polarity disruption and breast cancer. Aging (Albany NY) 2021; 13:22625-22626. [PMID: 34669587 PMCID: PMC8544314 DOI: 10.18632/aging.203621] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Accepted: 09/24/2021] [Indexed: 11/25/2022]
Affiliation(s)
- Danila Coradini
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| |
Collapse
|
33
|
Leptin as a Biomarker of Stress: A Systematic Review and Meta-Analysis. Nutrients 2021; 13:nu13103350. [PMID: 34684349 PMCID: PMC8541372 DOI: 10.3390/nu13103350] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/17/2021] [Accepted: 09/20/2021] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Leptin is a satiety hormone mainly produced by white adipose tissue. Decreasing levels have been described following acute stress. OBJECTIVE To conduct a systematic review and meta-analysis to determine if leptin can be a biomarker of stress, with levels decreasing following acute stress. METHODS PubMed, Cochrane Library, Embase, and ScienceDirect were searched to obtain all articles studying leptin levels after acute stress on 15 February 2021. We included articles reporting leptin levels before and after acute stress (physical or psychological) and conducted random effects meta-analysis (DerSimonian and Laird approach). We conducted Meta-regressions and sensitivity analyses after exclusion of groups outside the metafunnel. RESULTS We included seven articles-four cohort and three case-control studies-(28 groups) from 27,983 putative articles. Leptin levels decreased after the stress intervention (effect size = -0.34, 95%CI -0.66 to -0.02) compared with baseline levels, with a greater decrease after 60 min compared to mean decrease (-0.45, -0.89 to -0.01) and in normal weight compared to overweight individuals (-0.79, -1.38 to -0.21). There was no difference in the overweight population. Sensitivity analyses demonstrated similar results. Levels of leptin after stress decreased with sex ratio-i.e., number of men/women-(-0.924, 95%CI -1.58 to -0.27) and increased with the baseline levels of leptin (0.039, 0.01 to 0.07). CONCLUSIONS Leptin is a biomarker of stress, with a decrease following acute stress. Normal-weight individuals and women also have a higher variation of leptin levels after stress, suggesting that leptin may have implications in obesity development in response to stress in a sex-dependent manner.
Collapse
|
34
|
Batty MJ, Chabrier G, Sheridan A, Gage MC. Metabolic Hormones Modulate Macrophage Inflammatory Responses. Cancers (Basel) 2021; 13:cancers13184661. [PMID: 34572888 PMCID: PMC8467249 DOI: 10.3390/cancers13184661] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/31/2021] [Accepted: 09/13/2021] [Indexed: 12/17/2022] Open
Abstract
Simple Summary Macrophages are a type of immune cell which play an important role in the development of cancer. Obesity increases the risk of cancer and obesity also causes disruption to the normal levels of hormones that are produced to coordinate metabolism. Recent research now shows that these metabolic hormones also play important roles in macrophage immune responses and so through macrophages, disrupted metabolic hormone levels may promote cancer. This review article aims to highlight and summarise these recent findings so that the scientific community may better understand how important this new area of research is, and how these findings can be capitalised on for future scientific studies. Abstract Macrophages are phagocytotic leukocytes that play an important role in the innate immune response and have established roles in metabolic diseases and cancer progression. Increased adiposity in obese individuals leads to dysregulation of many hormones including those whose functions are to coordinate metabolism. Recent evidence suggests additional roles of these metabolic hormones in modulating macrophage inflammatory responses. In this review, we highlight key metabolic hormones and summarise their influence on the inflammatory response of macrophages and consider how, in turn, these hormones may influence the development of different cancer types through the modulation of macrophage functions.
Collapse
|
35
|
Pu X, Chen D. Targeting Adipokines in Obesity-Related Tumors. Front Oncol 2021; 11:685923. [PMID: 34485124 PMCID: PMC8415167 DOI: 10.3389/fonc.2021.685923] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 07/22/2021] [Indexed: 12/18/2022] Open
Abstract
Obesity, a global epidemic, is an independent risk factor for the occurrence and development of a variety of tumors, such as breast cancer, pancreatic cancer, ovarian cancer and colorectal cancer. Adipocytes are important endocrine cells in the tumor microenvironment of obesity-related tumors, which can secrete a variety of adipokines (such as leptin, adiponectin, estrogen, resistin, MIF and MCP-1, etc.), among which leptin, adiponectin and estrogen are the most in-depth and valuable ones. These adipokines are closely related to tumorigenesis and the progression of tumors. In recent years, more and more studies have shown that under chronic inflammatory conditions such as obesity, adipocytes secrete more adipokines to promote the tumorigenesis and development of tumors. However, it is worth noting that although adiponectin is also secreted by adipocytes, it has an anti-tumor effect, and can cross-talk with other adipokines (such as leptin and estrogen) and insulin to play an anti-tumor effect together. In addition, obesity is the main cause of insulin resistance, which can lead to the increase of the expression levels of insulin and insulin-like growth factor (IGF). As important regulators of blood glucose and lipid metabolism, insulin and IGF also play an important role in the progress of obesity related tumors. In view of the important role of adipokines secreted by adipocytes and insulin/IGF in tumors, this article not only elaborates leptin, adiponectin and estrogen secreted by adipocytes and their mechanism of action in the development of obesity- related tumors, but also introduces the relationship between insulin/IGF, a regulator of lipid metabolism, and obesity related tumors. At the same time, it briefly describes the cancer-promoting mechanism of resistin, MIF and MCP-1 in obesity-related tumors, and finally summarizes the specific treatment opinions and measures for various adipokines and insulin/insulin-like growth factors in recent years.
Collapse
Affiliation(s)
- Xi Pu
- Institute of Oncology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Deyu Chen
- Institute of Oncology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| |
Collapse
|
36
|
Hooshmand Moghadam B, Golestani F, Bagheri R, Cheraghloo N, Eskandari M, Wong A, Nordvall M, Suzuki K, Pournemati P. The Effects of High-Intensity Interval Training vs. Moderate-Intensity Continuous Training on Inflammatory Markers, Body Composition, and Physical Fitness in Overweight/Obese Survivors of Breast Cancer: A Randomized Controlled Clinical Trial. Cancers (Basel) 2021; 13:4386. [PMID: 34503198 PMCID: PMC8430701 DOI: 10.3390/cancers13174386] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 08/10/2021] [Accepted: 08/25/2021] [Indexed: 12/16/2022] Open
Abstract
Background: Chronic inflammation associated with breast cancer (BC) poses a major challenge in care management and may be ameliorated by physical activity. This randomized controlled trial assessed the effects of a 12-week high-intensity interval training (HIIT) and moderate-intensity continuous training (MICT) on inflammatory markers, body composition, and physical fitness in BC survivors (BCS). Methods: Forty BCS (age = 57 ± 1 years; body mass [BM] = 74.8 ± 1.5 kg; VO2peak = 20.8 ± 2.1 mL·kg-1·min-1) were randomly assigned to three groups: HIIT (n = 15), MICT (n = 15), or control (CON; n = 15). The intervention groups (HIIT and MICT) performed their respective exercise protocols on a cycle ergometer 3 days/week for 12 weeks while the CON group maintained their current lifestyle. Baseline and post-intervention assessments included body composition (BM, fat mass (FM), lean mass (LM)), physical fitness (VO2peak, lower body strength (LBS), upper body strength (UBS)), and serum concentrations of tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), interleukin-8 (IL-8), interleukin-10 (IL-10), leptin, and adiponectin. Results: Both intervention groups significantly (p < 0.05) decreased BM (HIIT = -1.8 kg, MICT = -0.91 kg), FM (HIIT = -0.81 kg, MICT = -0.18 kg), TNF-α (HIIT = -1.84 pg/mL, MICT = -0.99 pg/mL), IL-6 (HIIT = -0.71 pg/mL, MICT = -0.36 pg/mL), leptin (HIIT = -0.35 pg/mL, MICT = -0.16 pg/mL) and increased VO2peak (HIIT = 0.95 mL·kg-1·min-1, MICT = 0.67 mL·kg-1·min-1), LBS (HIIT = 2.84 kg, MICT = 1.53 kg), UBS (HIIT = 0.53 kg, MICT = 0.53 kg), IL-10 (HIIT = 0.63 pg/mL, MICT = 0.38 pg/mL), and adiponectin (HIIT = 0.23 ng/mL, MICT = 0.1 ng/mL) compared to baseline. The changes in BM, FM, TNF-α, leptin, and LBS were significantly greater in HIIT compared to all other groups. Conclusions: Our findings indicate that compared to the often-recommended MICT, HIIT may be a more beneficial exercise therapy for the improvement of inflammation, body composition and LBS in BCS; and consequently, merits long-term study.
Collapse
Affiliation(s)
- Babak Hooshmand Moghadam
- Department of Exercise Physiology, University of Tehran, Tehran 1961733114, Iran;
- Department of Exercise Physiology, Ferdowsi University of Mashhad, Mashhad 9177948974, Iran
| | - Fateme Golestani
- Department of Exercise Physiology, University of Birjand, Birjand 9717434765, Iran; (F.G.); (M.E.)
| | - Reza Bagheri
- Department of Exercise Physiology, University of Isfahan, Isfahan 8174673441, Iran;
| | - Neda Cheraghloo
- Department of Epidemiology and Biostatistics, School of Public Health, Tehran University of Medical Sciences, Tehran 1417613151, Iran;
| | - Mozhgan Eskandari
- Department of Exercise Physiology, University of Birjand, Birjand 9717434765, Iran; (F.G.); (M.E.)
| | - Alexei Wong
- Department of Health and Human Performance, Marymount University, Arlington, VA 22207, USA; (A.W.); (M.N.)
| | - Michael Nordvall
- Department of Health and Human Performance, Marymount University, Arlington, VA 22207, USA; (A.W.); (M.N.)
| | - Katsuhiko Suzuki
- Faculty of Sport Sciences, Waseda University, 2-579-15 Mikajima, Tokorozawa 359-1192, Japan
| | - Parisa Pournemati
- Department of Exercise Physiology, University of Tehran, Tehran 1961733114, Iran;
| |
Collapse
|
37
|
Karami K, Anbari K. Breast Cancer: A Review of Risk Factors and New Insights into Treatment. CURRENT CANCER THERAPY REVIEWS 2021. [DOI: 10.2174/1573394717999210120195208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Today, despite significant advances in cancer treatment have been made, breast cancer
remains one of the main health problems and considered a top biomedical investigation urgency.
The present study reviewed the common conventional chemotherapy agents and also some alternative
and complementary approaches such as oncolytic virotherapy, bacteriotherapy, nanotherapy,
immunotherapy, and natural products, which are recommended for breast cancer treatment. In addition
to current surgery approaches such as mastectomy, in recent years, a number of novel techniques
such as robotic mastectomies, nipple-sparing mastectomy, skin-sparing mastectomy, daycase
mastectomy were used in breast cancer surgery. In this review, we summarize new insights
into risk factors, surgical and non-surgical treatments for breast cancer.
Collapse
Affiliation(s)
- Kimia Karami
- Social Determinants of Health Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Khatereh Anbari
- Social Determinants of Health Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
| |
Collapse
|
38
|
Tayyab Imtiaz M, Anwar F, Saleem U, Ahmad B, Hira S, Mehmood Y, Bashir M, Najam S, Ismail T. Triazine Derivative as Putative Candidate for the Reduction of Hormone-Positive Breast Tumor: In Silico, Pharmacological, and Toxicological Approach. Front Pharmacol 2021; 12:686614. [PMID: 34122114 PMCID: PMC8193840 DOI: 10.3389/fphar.2021.686614] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 05/10/2021] [Indexed: 01/22/2023] Open
Abstract
Background and objectives: Breast cancer is a heterogeneous disease that poses the highest incidence of morbidity among women and presents many treatment challenges. In search of novel breast cancer therapies, several triazine derivatives have been developed for their potential chemotherapeutic activity. This study aims to evaluate the N-nitroso-N-methyl urea (NMU)-induced anti-mammary gland tumor activity of 2,4,6 (O-nitrophenyl amino) 1,3,5-triazine (O-NPAT). Methods: The in silico modeling and in vitro cytotoxicity assay were performed to strengthen the research hypothesis. For in vivo experimentation, 30 female rats were divided into five groups. Group I (normal control) received normal saline. Group II (disease control) received NMU (50 mg/kg). Group III (standard control) was treated with tamoxifen (5 mg/kg). Groups IV and V received O-NPAT at a dose level of 30 and 60 mg/kg, respectively. For tumor induction, 3 intraperitoneal doses of NMU were given at a 3-week interval, whereas all treatment compounds were administered orally for 14 consecutive days. Biochemical and oxidative stress markers were estimated for all experimental animals. DNA strand breakage alongside inflammatory markers was also measured for the analysis of inflammation. The hormonal profile of progesterone and estrogen was also estimated. Results: The test compound presented a significant reduction in organ weight and restored the hepatic and renal enzymes. O-NPAT treatments enhanced the antioxidant enzyme level of catalase (CAT), superoxide dismutase (SOD), and total sulfhydryl (TSH), with a highly significant reduction in lactate dehydrogenase (LDH) and lipid peroxidation. Also, the decrease in fragmented DNA, hormonal levels (estradiol and progesterone), and inflammatory cytokines (IL-6 and TNF-α) justified the dosage efficacy further supported by histopathological findings. Conclusion: All results indicated the anti-breast tumor activity of O-NPAT and presented its possibility of exploitation for beneficial effects in breast cancer treatment.
Collapse
Affiliation(s)
- Muhammad Tayyab Imtiaz
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Lahore, Pakistan
| | - Fareeha Anwar
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Lahore, Pakistan
| | - Uzma Saleem
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Government College University, Faisalabad, Pakistan
| | - Bashir Ahmad
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Lahore, Pakistan
| | - Sundas Hira
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Lahore, Pakistan
| | - Yumna Mehmood
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Lahore, Pakistan
| | - Manal Bashir
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Lahore, Pakistan
| | - Saima Najam
- Faculty of Pharmacy, Lahore College of Pharmaceutical Sciences, Lahore, Pakistan
| | - Tariq Ismail
- Department of Pharmacy, COMSAT University, Abbottabad, Pakistan
| |
Collapse
|
39
|
Zhang Y, Zhang H, Wang M, Schmid T, Xin Z, Kozhuharova L, Yu WK, Huang Y, Cai F, Biskup E. Hypoxia in Breast Cancer-Scientific Translation to Therapeutic and Diagnostic Clinical Applications. Front Oncol 2021; 11:652266. [PMID: 33777815 PMCID: PMC7991906 DOI: 10.3389/fonc.2021.652266] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 02/12/2021] [Indexed: 12/13/2022] Open
Abstract
Breast cancer has been the leading cause of female cancer deaths for decades. Intratumoral hypoxia, mainly caused by structural and functional abnormalities in microvasculature, is often associated with a more aggressive phenotype, increased risk of metastasis and resistance to anti-malignancy treatments. The response of cancer cells to hypoxia is ascribed to hypoxia-inducible factors (HIFs) that activate the transcription of a large battery of genes encoding proteins promoting primary tumor vascularization and growth, stromal cell recruitment, extracellular matrix remodeling, cell motility, local tissue invasion, metastasis, and maintenance of the cancer stem cell properties. In this review, we summarized the role of hypoxia specifically in breast cancer, discuss the prognostic and predictive value of hypoxia factors, potential links of hypoxia and endocrine resistance, cancer hypoxia measurements, further involved mechanisms, clinical application of hypoxia-related treatments and open questions.
Collapse
Affiliation(s)
- Ying Zhang
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Hongyi Zhang
- Department of Breast Surgery, Yangpu Hospital, Tongji University School of Medicine, Shanghai, China
| | - Minghong Wang
- Department of Health Management, Shanghai Public Health Clinical Center, Shanghai, China
| | - Thomas Schmid
- Department of Medical Oncology, St. Claraspital, Basel, Switzerland
| | - Zhaochen Xin
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | | | - Wai-Kin Yu
- Cellomics International Limited, Hong Kong, China
| | - Yuan Huang
- Cellomics International Limited, Hong Kong, China
| | - Fengfeng Cai
- Department of Breast Surgery, Yangpu Hospital, Tongji University School of Medicine, Shanghai, China
| | - Ewelina Biskup
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Division of Internal Medicine, University Hospital of Basel, University of Basel, Basel, Switzerland.,Department of Advanced Biomedical Sciences, Federico II University of Naples, Naples, Italy
| |
Collapse
|
40
|
Soni S, Torvund M, Mandal CC. Molecular insights into the interplay between adiposity, breast cancer and bone metastasis. Clin Exp Metastasis 2021; 38:119-138. [PMID: 33591548 DOI: 10.1007/s10585-021-10076-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Accepted: 02/03/2021] [Indexed: 01/20/2023]
Abstract
Cancer is a complex disease, with various pre-existing health ailments enhancing its pathology. In cancer, the extracellular environment contains various intrinsic physiological factors whose levels are altered with aging and pre-existing conditions. In obesity, the tumor microenvironment and metastases are enriched with factors that are both derived locally, and from other physiological compartments. Similarly, in obesity, the cancer cell environment both at the site of origin and at the secondary site i.e., metastatic niche, contains significantly more phenotypically-altered adipocytes than that of un-obese cancer patients. Indeed, obesity has been linked with cancer progression, metastasis, and therapy resistance. Adipocytes not only interact with tumor cells, but also with adjacent stromal cells at primary and metastatic sites. This review emphasizes the importance of bidirectional interactions between adipocytes and breast tumor cells in breast cancer progression and its bone metastases. This paper not only chronicles the role of various adipocyte-derived factors in tumor growth, but also describes the significance of adipocyte-derived bone metastatic factors in the development of bone metastasis of breast cancer. It provides a molecular view of the interplay between the adipocytes and tumor cells involved in breast cancer bone metastasis. However, more research is needed to determine if targeting cancer-associated adipocytes holds promise as a potential therapeutic approach for breast cancer bone metastasis treatment. Interplay between adipocytes and breast cancer cells at primary cancer site and metastatic bone microenvironment. AMSC Adipose-derived mesenchymal stem cell, CAA Cancer associated adipocytes, CAF Cancer associated fibroblast, BMSC Bone marrow derived mesenchymal stem cell, BMA Bone marrow adipocyte.
Collapse
Affiliation(s)
- Sneha Soni
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, NH-8, Bandarsindri, Kishangarh, Ajmer, Rajasthan, 305817, India
| | - Meaghan Torvund
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ, USA
| | - Chandi C Mandal
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, NH-8, Bandarsindri, Kishangarh, Ajmer, Rajasthan, 305817, India.
| |
Collapse
|
41
|
Luo Y, Li HB, Zhang Y, Wu YX, Shen D, Che YQ. Combination of Endogenous Estradiol and Adipokine Leptin in Breast Cancer Risk and Prognosis Assessment in Postmenopausal Chinese Women. Front Endocrinol (Lausanne) 2021; 12:766463. [PMID: 34970222 PMCID: PMC8712642 DOI: 10.3389/fendo.2021.766463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Accepted: 11/05/2021] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVE Our study aims to clarify the role of estradiol and leptin in breast cancer risk and prognostic assessment in postmenopausal Chinese women. DESIGN The serum circulating estradiol and leptin level was detected by ELISA. Then the correlation between estradiol, leptin level, and clinical characteristics was analyzed using Fisher's exact test. Next, the Kaplan-Meier model was used to analyze the association between estradiol, leptin, and prognosis of postmenopausal breast cancer patients in our cohort and the TCGA dataset. SETTING The study was conducted at the National Cancer Center, Cancer Hospital, Chinese Academy of Medical Sciences, and Peking Union Medical College. PATIENTS A total of 182 postmenopausal breast cancer patients and 111 healthy subjects from January 2010 to August 2010 were included in the analysis. Another 702 cases with breast cancer were retrieved from The Cancer Genome Atlas (TCGA) database for subsequent analysis. MAIN OUTCOME MEASURE Serum circulating estradiol and leptin level. RESULTS The level of estradiol was significantly higher (P<0.001) but the level of leptin had no significant difference (P = 0.764) in postmenopausal breast cancer patients compared with healthy subjects. The level of estradiol and leptin was not significantly different between estrogen receptor (ER) positive and ER-negative groups (P>0.05). Estradiol was significantly correlated with tumor T stage (P = 0.002) and leptin was significantly associated with perineural invasion (P = 0.014). In addition, the disease-free survival of patients with a high level of estradiol was significantly shorter (P = 0.025) but leptin tended to be a protective factor for overall survival in TCGA analysis (P = 0.038). CONCLUSION Circulating estradiol and leptin played important roles in the risk of postmenopausal breast cancer even in low-estrogen nations with an independent expression of ER status. High circulating estradiol was a poor prognostic factor and leptin may be a protection signal in Chinese postmenopausal patients with breast cancer.
Collapse
Affiliation(s)
- Yang Luo
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Han-Bing Li
- Department of Clinical Laboratory, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yue Zhang
- Department of Clinical Laboratory, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yu-Xin Wu
- Department of Clinical Laboratory, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Di Shen
- Department of Clinical Laboratory, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yi-Qun Che
- Center for Clinical Laboratory, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- *Correspondence: Yi-Qun Che,
| |
Collapse
|
42
|
Kiesel L, Eichbaum C, Baumeier A, Eichbaum M. Obesity Epidemic-The Underestimated Risk of Endometrial Cancer. Cancers (Basel) 2020; 12:E3860. [PMID: 33371216 PMCID: PMC7767192 DOI: 10.3390/cancers12123860] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 12/13/2020] [Accepted: 12/15/2020] [Indexed: 12/24/2022] Open
Abstract
Endometrial cancer (EC) is the most frequently observed malignant gynecologic disease in developed countries. There is a strong association between the established risk factor obesity and the incidence of EC. Furthermore, the rate of women with a body mass index (BMI) > 30 kg/m2 is increasing worldwide, correspondingly leading to a higher prevalence of EC. Understanding the adipose tissue as an endocrine organ, elementary pathophysiological pathways of tumorigenesis have been revealed. This includes the fundamental role of hyperglycemia, insulin resistance, and hyperestrogenemia, as well as interactions with a chronic proinflammatory microenvironment. Therapeutic options potentially include metformin or bariatric surgery. Moreover, changes in individual lifestyle such as weight reduction, physical activity, and an awareness of healthy nutrition are effective in preventing the disease.
Collapse
Affiliation(s)
- Ludwig Kiesel
- Department of Gynecology and Obstetrics, University of Münster Medical School, Albert-Schweitzer-Campus 1, 48149 Münster, Germany;
| | - Christine Eichbaum
- Department of Gynecology and Obstetrics, University of Frankfurt Medical School, Theodor-Stern-Kai 7, 60596 Frankfurt, Germany;
| | - Ariane Baumeier
- Department of Gynecology and Obstetrics, University of Münster Medical School, Albert-Schweitzer-Campus 1, 48149 Münster, Germany;
| | - Michael Eichbaum
- Department of Gynecology and Obstetrics, Helios Dr. Horst-Schmidt-Kliniken Wiesbaden, Ludwig-Erhard-Str. 100, 65199 Wiesbaden, Germany
| |
Collapse
|
43
|
Endurance Exercise Mitigates Immunometabolic Adipose Tissue Disturbances in Cancer and Obesity. Int J Mol Sci 2020; 21:ijms21249745. [PMID: 33371214 PMCID: PMC7767095 DOI: 10.3390/ijms21249745] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 11/05/2020] [Accepted: 11/11/2020] [Indexed: 02/06/2023] Open
Abstract
Adipose tissue is considered an endocrine organ whose complex biology can be explained by the diversity of cell types that compose this tissue. The immune cells found in the stromal portion of adipose tissue play an important role on the modulation of inflammation by adipocytokines secretion. The interactions between metabolic active tissues and immune cells, called immunometabolism, is an important field for discovering new pathways and approaches to treat immunometabolic diseases, such as obesity and cancer. Moreover, physical exercise is widely known as a tool for prevention and adjuvant treatment on metabolic diseases. More specifically, aerobic exercise training is able to increase the energy expenditure, reduce the nutrition overload and modify the profile of adipocytokines and myokines with paracrine and endocrine effects. Therefore, our aim in this review was to cover the effects of aerobic exercise training on the immunometabolism of adipose tissue in obesity and cancer, focusing on the exercise-related modification on adipose tissue or immune cells isolated as well as their interaction.
Collapse
|
44
|
Li M, Song L, Yuan J, Zhang D, Zhang C, Liu Y, Lin Q, Wang H, Su K, Li Y, Ma Z, Liu D, Dong J. Association Between Serum Insulin and C-Peptide Levels and Breast Cancer: An Updated Systematic Review and Meta-Analysis. Front Oncol 2020; 10:553332. [PMID: 33194614 PMCID: PMC7658676 DOI: 10.3389/fonc.2020.553332] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Accepted: 10/08/2020] [Indexed: 01/07/2023] Open
Abstract
Background Several studies have reported that hyperinsulinemia plays a part in the etiology of breast cancer. However, no consensus has been reached. Therefore, we conducted a meta-analysis to explore the role of insulin and C-peptide in breast cancer. Methods A systematic search in PubMed, Embase, and The Cochrane Library was conducted up to September, 2020. Standardized mean differences (SMDs) with 95% confidence intervals (CIs) were used to measure effect sizes. Publication bias was assessed using the Egger test. Stability of these results was evaluated using sensitivity analyses. Results Fourteen articles including 27,084 cases and five articles including 2,513 cases were extracted for serum insulin levels and C-peptide levels. We found that C-peptide levels were positively associated with breast cancer with overall SMD = 0.37 (95% CI = 0.09–0.65, I2 = 89.1%). Subgroup analysis by control source illustrated a positive relationship between breast cancer and C-peptide levels in population-based control. Subgroup analysis by C-peptide level indicated a positive correlation between breast cancer and C-peptide levels no matter C-peptide levels in case group is ≤3 ng/ml or >3 ng/ml. Subgroup analysis by age showed that C-peptide level positively correlated to breast cancer in women between the ages of 50 and 60. However, we did not identify any relationship between breast cancer and insulin levels (SMD = 0.22, 95% CI = −0.06–0.50, I2 = 97.3%). Conclusion This meta-analysis demonstrated that C-peptide levels were positively related to breast cancer in women, and no relationship between insulin levels and breast cancer was found.
Collapse
Affiliation(s)
- Manwen Li
- Special Medicine Department, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Limin Song
- Special Medicine Department, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Junhua Yuan
- Special Medicine Department, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Di Zhang
- Special Medicine Department, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Caishun Zhang
- Special Medicine Department, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Yuan Liu
- Special Medicine Department, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Qian Lin
- Special Medicine Department, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Haidan Wang
- Special Medicine Department, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Kaizhen Su
- Clinical Medicine Department, Medical College, Qingdao University, Qingdao, China
| | - Yanrun Li
- Clinical Medicine Department, Medical College, Qingdao University, Qingdao, China
| | - Zhengye Ma
- Clinical Medicine Department, Medical College, Qingdao University, Qingdao, China
| | - Defeng Liu
- Clinical Medicine Department, Medical College, Qingdao University, Qingdao, China
| | - Jing Dong
- Special Medicine Department, School of Basic Medicine, Qingdao University, Qingdao, China.,Physiology Department, Medical College, Qingdao University, Qingdao, China
| |
Collapse
|
45
|
Jiang J, Guo Z, Xu J, Sun T, Zheng X. Identification of Aurora Kinase A as a Biomarker for Prognosis in Obesity Patients with Early Breast Cancer. Onco Targets Ther 2020; 13:4971-4985. [PMID: 32581556 PMCID: PMC7276210 DOI: 10.2147/ott.s250619] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 04/25/2020] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Obesity is associated both with a higher risk of developing breast cancer, particularly in postmenopausal women, and with worse disease outcome for women of all ages. Previous investigation suggested Aurora A kinase was able to partially restore the functionalities of obese adipose-derived mesenchymal stem cells by stabilizing their primary cilia and reestablishing a balance of multiple stemness-associated genes. The association between Aurora A and obesity breast cancer is still unclear. We hypothesized that overexpression of Aurora A was associated with poor survival in obesity breast cancer and the related axis mechanism was involved. METHODS A total of 517 primary breast cancer specimens were collected from the First Affiliated Hospital of China Medical University between January 2011 and November 2016. Our independent variable was BMI at baseline, categorized as overweight (BMI ≥25 kg/m2, as obesity cohort), and normal (18.5 ≤ BMI <25 kg/m2, as non-obesity cohort). The immunohistochemical (IHC) staining was performed with Aurora A, Survivin, MMP11, Cyclin B1, and Cathepsin L. Kaplan-Meier curve was used to analyze overall survival in our cohorts and TCGA-BRCA data (GSE3494). Log rank test was used to calculate P values. Protein-protein interaction (PPI) network analysis and MCODE model were used to analyze the Aurora-altered signal pathway from GSE78958. RESULTS Among 517 breast patients, Aurora A-positive (staining scores ≥4) was significantly higher in obesity breast carcinoma compared with non-obesity cancer carcinoma (χ 2=9.79, P=0.002), with more frequency in hormone receptor-negative (68.4% vs 77.9%, P=0.015) and HER2-positive patients (28.7% vs 17.9%, P=0.003). High Aurora A expression was remarkably and significantly associated with overall survival (OS) (8-year OS ratio: 69.5% vs 81.1%, OR=1.76, 95% CI: 1.03~3.02, P=0.041) in obesity cohort. Interestingly, higher expression of Aurora A was not associated with a shorter overall survival time among the non-obesity breast cancer (8-year OS ratio: 81.4% vs 85.8%, OR=1.40, 95% CI: 0.79~2.45, P=0.229). As for RFS, the expression levels of Aurora A expression genes have no significance with RFS statistically in non-obesity and obesity patients. Aurora A and lymph node metastases were significantly poor prognostic factors for OS, and borderline significance was noted for high BMI. Kaplan-Meier survival analysis from TCGA database confirmed that the high Aurora A expression group had worse prognosis (HR=1.47, 95% CI: 1.14-1.90, P=0.003). The KEGG pathway enrichment results were consistent with GO biological process term analysis, in which CCNB1 was enriched for upregulated Aurora A. In our samples, Aurora A level on tumor cytoplasm had broad connections with Cyclin B1 by IHC correlation analysis (correlation coefficient = 0.227, P=0.001). CONCLUSION Our finding demonstrates here for the first time that high expression of Aurora A was notably correlated with early recurrence and poor overall survival in obesity patients with early breast cancer. The Aurora A-Cyclin B1 axis could be a potential promising therapeutic target for cancer intervention and therapy.
Collapse
Affiliation(s)
- Junhan Jiang
- Department of Breast Surgery, The First Affiliated Hospital of China Medical University, Shenyang, People’s Republic of China
| | - Zihe Guo
- Department of Breast Surgery, The First Affiliated Hospital of China Medical University, Shenyang, People’s Republic of China
| | - Junnan Xu
- Department of Breast Medical, Cancer Hospital of China Medical University, Liaoning Cancer Hospital, Shenyang, People’s Republic of China
| | - Tao Sun
- Department of Breast Medical, Cancer Hospital of China Medical University, Liaoning Cancer Hospital, Shenyang, People’s Republic of China
| | - Xinyu Zheng
- Department of Breast Surgery, The First Affiliated Hospital of China Medical University, Shenyang, People’s Republic of China
- Laboratory 1, Cancer Institute, The First Affiliated Hospital of China Medical University, Shenyang, People’s Republic of China
| |
Collapse
|
46
|
Moldogazieva NT, Mokhosoev IM, Terentiev AA. Metabolic Heterogeneity of Cancer Cells: An Interplay between HIF-1, GLUTs, and AMPK. Cancers (Basel) 2020; 12:E862. [PMID: 32252351 PMCID: PMC7226606 DOI: 10.3390/cancers12040862] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 03/30/2020] [Accepted: 03/31/2020] [Indexed: 02/06/2023] Open
Abstract
It has been long recognized that cancer cells reprogram their metabolism under hypoxia conditions due to a shift from oxidative phosphorylation (OXPHOS) to glycolysis in order to meet elevated requirements in energy and nutrients for proliferation, migration, and survival. However, data accumulated over recent years has increasingly provided evidence that cancer cells can revert from glycolysis to OXPHOS and maintain both reprogrammed and oxidative metabolism, even in the same tumor. This phenomenon, denoted as cancer cell metabolic plasticity or hybrid metabolism, depends on a tumor micro-environment that is highly heterogeneous and influenced by an intensity of vasculature and blood flow, oxygen concentration, and nutrient and energy supply, and requires regulatory interplay between multiple oncogenes, transcription factors, growth factors, and reactive oxygen species (ROS), among others. Hypoxia-inducible factor-1 (HIF-1) and AMP-activated protein kinase (AMPK) represent key modulators of a switch between reprogrammed and oxidative metabolism. The present review focuses on cross-talks between HIF-1, glucose transporters (GLUTs), and AMPK with other regulatory proteins including oncogenes such as c-Myc, p53, and KRAS; growth factor-initiated protein kinase B (PKB)/Akt, phosphatydyl-3-kinase (PI3K), and mTOR signaling pathways; and tumor suppressors such as liver kinase B1 (LKB1) and TSC1 in controlling cancer cell metabolism. The multiple switches between metabolic pathways can underlie chemo-resistance to conventional anti-cancer therapy and should be taken into account in choosing molecular targets to discover novel anti-cancer drugs.
Collapse
Affiliation(s)
- Nurbubu T. Moldogazieva
- Laboratory of Bioinformatics, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia
| | - Innokenty M. Mokhosoev
- Department of Biochemistry and Molecular Biology, N.I. Pirogov Russian National Research Medical University, 117997 Moscow, Russia; (I.M.M.); (A.A.T.)
| | - Alexander A. Terentiev
- Department of Biochemistry and Molecular Biology, N.I. Pirogov Russian National Research Medical University, 117997 Moscow, Russia; (I.M.M.); (A.A.T.)
| |
Collapse
|
47
|
Kim SH, Hahm ER, Singh KB, Singh SV. Diallyl Trisulfide Inhibits Leptin-induced Oncogenic Signaling in Human Breast Cancer Cells but Fails to Prevent Chemically-induced Luminal-type Cancer in Rats. J Cancer Prev 2020; 25:1-12. [PMID: 32266174 PMCID: PMC7113410 DOI: 10.15430/jcp.2020.25.1.1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 03/17/2020] [Accepted: 03/17/2020] [Indexed: 12/14/2022] Open
Abstract
Previous studies have demonstrated inhibitory effect of garlic component diallyl trisulfide (DATS) on growth of breast cancer cells in vitro and in vivo. This study investigated the effect of DATS on oncogenic signaling regulated by leptin, which plays an important role in breast carcinogenesis. Leptin-induced phosphorylation and nuclear translocation of STAT3 was inhibited significantly in the presence of DATS in MCF-7 (a luminal-type human breast cancer cell line) and MDA-MB-231 (a basal-like human breast cancer cell line). Leptin-stimulated cell proliferation, clonogenic cell survival, and migration and/or invasion ability in MCF-7 and/or MDA-MB-231 cells were also suppressed by DATS treatment. DATS exposure resulted in inhibition of leptin-stimulated expression of protein and/or mRNA levels of Bcl-2, Bcl-xL, Cyclin D1, vascular endothelial growth factor, and matrix metalloproteinase-2. Western blotting revealed a decrease in protein levels of phosphorylated STAT3 in breast cancer xenografts from DATS-treated mice when compared to controls in vivo. However, the incidence of N-methyl-N-nitrosourea-induced luminal-type breast cancer development in rats was not affected by oral administration of 5 mg/kg or 25 mg/kg DATS. The present study reveals that oncogenic signaling induced by leptin is inhibited in the presence of DATS but higher doses of this phytochemical may be required to achieve chemopreventive activity.
Collapse
Affiliation(s)
- Su-Hyeong Kim
- Department of Pharmacology and Chemical Biology, UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Eun-Ryeong Hahm
- Department of Pharmacology and Chemical Biology, UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Krishna B Singh
- Department of Pharmacology and Chemical Biology, UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Shivendra V Singh
- Department of Pharmacology and Chemical Biology, UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|