1
|
Konen FF, Wurster U, Schwenkenbecher P, Gerritzen A, Groß CC, Eichhorn P, Harrer A, Isenmann S, Lewczuk P, Lewerenz J, Leypoldt F, Otto M, Regeniter A, Roskos M, Ruprecht K, Spreer A, Strik H, Uhr M, Wick M, Wildemann B, Wiltfang J, Zimmermann T, Hannich M, Khalil M, Tumani H, Süße M, Skripuletz T. Oligoclonal bands and kappa free light chains: Competing parameters or complementary biomarkers? Autoimmun Rev 2025; 24:103765. [PMID: 39947571 DOI: 10.1016/j.autrev.2025.103765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 02/06/2025] [Accepted: 02/10/2025] [Indexed: 02/21/2025]
Abstract
BACKGROUND The 2024-revised McDonald criteria for multiple sclerosis (MS) proposed to incorporate cerebrospinal fluid (CSF)-specific oligoclonal bands and kappa free light chains (KFLC) as diagnostic biomarkers. While the 2017-revised criteria highlighted CSF-specific oligoclonal bands to indicate intrathecal IgG synthesis, significantly enhancing early MS diagnosis, KFLC have emerged as additional marker. Now, the question rises of whether both biomarkers serve as competing or complementary tools in MS diagnostics. METHODS In this narrative review, we extensively searched the literature on oligoclonal bands and KFLC determination in CSF and serum across neurological disorders, with a focus on MS, using the PubMed database to demonstrate the complementarity of both biomarkers. RESULTS Oligoclonal bands have long been a reliable marker of intrathecal IgG synthesis in MS, valued for their high diagnostic sensitivity, unique patient "fingerprints," clonality differentiation, semi-quantitative analysis, and pre-analytic robustness. However, they present challenges in standardization, labor-intensity, method variability, examiner dependency, and limited data on non-IgG immunoglobulins. Quantitative KFLC measurement provides rapid, examiner-independent, and cost-effective assessment across all immunoglobulin classes but might have lower specificity, lacked consensus on standardized interpretation in recent years, and is not yet supported by comprehensive prospective multinational studies on its prognostic role. CONCLUSION Both oligoclonal bands and KFLC have unique strengths and limitations that complement each other, potentially serving as complementary markers for evaluating intrathecal Ig synthesis in MS diagnosis. Further evidence is needed to establish the value of KFLC in MS diagnosis, thus multicenter prospective studies are being conducted to compare the diagnostic utility of both markers.
Collapse
Affiliation(s)
- Franz F Konen
- Department of Neurology, Hannover Medical School, 30625 Hannover, Germany.
| | - Ulrich Wurster
- Department of Neurology, Hannover Medical School, 30625 Hannover, Germany.
| | | | | | - Catharina C Groß
- Department of Neurology with Institute of Translational Neurology, University Hospital and University Münster, 48149 Münster, Germany.
| | - Peter Eichhorn
- Institute of Laboratory Medicine, LMU University Hospital, LMU Munich, 81377 München, Germany.
| | - Andrea Harrer
- Department of Neurology, Christian-Doppler University Hospital, Paracelsus Medical University, Centre for Cognitive Neuroscience, 5020 Salzburg, Austria; Department of Dermatology and Allergology, Paracelsus Medical University, 5020 Salzburg, Austria.
| | - Stefan Isenmann
- Department of Neurology, GFO Kliniken Niederrhein, St. Josef Krankenhaus Moers, 47441 Moers, Germany.
| | - Piotr Lewczuk
- Department of Psychiatry and Psychotherapy, Universitätsklinikum Erlangen and Friedrich-Alexander Universität Erlangen-Nürnberg, 91054 Erlangen, Germany; Department of Neurodegeneration Diagnostics, Medical University of Białystok, and Department of Biochemical Diagnostics, University Hospital of Białystok, 15-269 Białystok, Poland.
| | - Jan Lewerenz
- Department of Neurology, University of Ulm, 89081 Ulm, Germany.
| | - Frank Leypoldt
- Institute of Clinical Chemistry and Department of Neurology, University Hospital Schleswig-Holstein and Kiel University, 24105 Kiel, Germany.
| | - Markus Otto
- Department of Neurology, Martin-Luther-University Halle-Wittenberg, Halle (Saale) 06120, Germany.
| | - Axel Regeniter
- Infectious Disease Serology and Immunology, Medica Medizinische Laboratorien Dr. F. Kaeppeli AG, 8032 Zurich, Switzerland.
| | - Martin Roskos
- SYNLAB Holding Deutschland GmbH, 86156 Augsburg, Germany.
| | - Klemens Ruprecht
- Department of Neurology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany.
| | - Annette Spreer
- Department of Neurology, Klinikum Braunschweig, 38126 Braunschweig, Germany.
| | - Herwig Strik
- Department of Neurology, Sozialstiftung Bamberg, 96049 Bamberg, Germany.
| | - Manfred Uhr
- Department of Psychiatry, Max Planck Institute of Psychiatry, 80804 Munich, Germany.
| | - Manfred Wick
- Institute of Laboratory Medicine, LMU University Hospital, LMU Munich, 81377 München, Germany.
| | - Brigitte Wildemann
- Molecular Neuroimmunology Group, Department of Neurology, University of Heidelberg, 69120 Heidelberg, Germany.
| | - Jens Wiltfang
- Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, 37075 Göttingen, Germany.
| | | | - Malte Hannich
- Institute of Clinical Chemistry and Laboratory Medicine, University Medicine Greifswald, 17489 Greifswald, Germany.
| | - Michael Khalil
- Department of Neurology, Medical University of Graz, 8036 Graz, Austria.
| | | | - Marie Süße
- Department of Neurology, University Medicine Greifswald, Germany.
| | - Thomas Skripuletz
- Department of Neurology, Hannover Medical School, 30625 Hannover, Germany.
| |
Collapse
|
2
|
Higgins V, Chen Y, Freedman MS, Rodriguez-Capote K, Beriault DR. A review of laboratory practices for CSF oligoclonal banding and associated tests. Crit Rev Clin Lab Sci 2025:1-23. [PMID: 40254719 DOI: 10.1080/10408363.2025.2490166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 02/26/2025] [Accepted: 04/03/2025] [Indexed: 04/22/2025]
Abstract
Multiple sclerosis (MS) is a chronic autoimmune disorder affecting the central nervous system, often emerging in early adulthood and representing a leading cause of neurological disability in young adults. Diagnosing MS involves a combination of clinical assessment, imaging and laboratory tests, with cerebrospinal fluid (CSF)-specific immunoglobulin G (IgG) oligoclonal bands (OCB) being an important marker for fulfilling the dissemination in time criteria. A recent survey of Canadian clinical laboratories highlighted considerable variation in OCB reporting practices nationwide, spanning quality control (QC) practices, acceptable time limits between paired CSF and serum sample collections, protocols for reporting band counts, interpretation and reporting of mirrored patterns, testing panels, and interpretive thresholds. These inconsistencies impact patient care and the comparability of laboratory results across different laboratories. The Harmonized CSF Analysis for MS Investigation (hCAMI) subcommittee of the Canadian Society of Clinical Chemists Reference Interval Harmonization Working Group was established to generate recommendations for laboratory processes and reporting of CSF OCB and associated tests supporting MS diagnosis. This review serves as a foundation for these efforts, summarizing the available evidence in areas where practice variations have been noted. This review begins by examining current practices and guidelines for standardized quality assurance, including optimal QC materials, frequency, documentation, and participation in external quality assurance programs. The disparity between paired CSF and serum sample acceptability time limits was further examined by reviewing current practices and recommendations as well as compiling evidence on IgG synthesis, turnover rate, biological variation, and stability in CSF and serum samples. Additionally, this review addresses the lack of consensus on reporting the number of CSF-specific and CSF-serum matched bands, focusing on interpreter variability and clinical utility. Contributing factors and clinical implications of mirror patterns, including discussion on monoclonal gammopathies and cases of matched bands of differing staining intensity, is provided. Testing panel components including adjunctive CSF tests, such as the IgG index, to support MS investigations despite their absence from clinical guidelines is also discussed. This review also provides a comprehensive analysis of current practices, guidelines, and the evidence surrounding different cutoffs for IgG index and CSF-specific bands. Finally, the review considers emerging biomarkers, such as the kappa free light chain index and serum neurofilament light chain, which show promise for MS diagnosis and management. This comprehensive review of current practices, guidelines, and evolving evidence will guide the hCAMI subcommittee's efforts to harmonize CSF OCB analysis and improve MS diagnosis.
Collapse
Affiliation(s)
- Victoria Higgins
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada
- Alberta Precision Laboratories, Edmonton, Alberta, Canada
| | - Yu Chen
- Department of Pathology, Dalhousie University, Halifax, Nova Scotia, Canada
- Discipline of Laboratory Medicine, Memorial University, St John's, Newfoundland and Labrador, Canada
- Department of Laboratory Medicine, Dr. Everett Chalmers Regional Hospital, Horizon Health Network, Fredericton, New Brunswick, Canada
| | - Mark S Freedman
- Department of Medicine, Division of Neurology, University of Ottawa, Ottawa, Ontario, Canada
| | - Karina Rodriguez-Capote
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- Interior Health Authority, Kelowna, British Columbia, Canada
| | - Daniel R Beriault
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada
| |
Collapse
|
3
|
Galota F, Marcheselli S, De Biasi S, Gibellini L, Vitetta F, Fiore A, Smolik K, De Napoli G, Cardi M, Cossarizza A, Ferraro D. Impact of High-Efficacy Therapies for Multiple Sclerosis on B Cells. Cells 2025; 14:606. [PMID: 40277931 PMCID: PMC12025603 DOI: 10.3390/cells14080606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2025] [Revised: 04/09/2025] [Accepted: 04/10/2025] [Indexed: 04/26/2025] Open
Abstract
Multiple sclerosis (MS) is a chronic inflammatory and neurodegenerative autoimmune disorder of the central nervous system characterized by demyelination and neurodegeneration. Traditionally considered a T-cell-mediated disease, the crucial role of B lymphocytes in its pathogenesis, through different mechanisms contributing to inflammation and autoreactivity, is increasingly recognized. The risk of long-term disability in MS patients can be reduced by an early treatment initiation, in particular with high-efficacy therapies. The aim of this review is to provide an overview of the mechanisms of action of high-efficacy therapies for MS, with a focus on their impact on B cells and how this contributes to the drugs' efficacy and safety profiles. Anti-CD20 monoclonal antibodies, Alemtuzumab, Cladribine and sequestering therapies encompassing Natalizumab and S1P receptors modulators will be discussed and emerging therapies, including Bruton's Tyrosine Kinase inhibitors, will be presented.
Collapse
Affiliation(s)
- Federica Galota
- Department of Biomedical, Metabolic and Neurosciences, University of Modena and Reggio Emilia, 41121 Modena, Italy; (F.G.); (S.M.); (K.S.); (M.C.)
| | - Simone Marcheselli
- Department of Biomedical, Metabolic and Neurosciences, University of Modena and Reggio Emilia, 41121 Modena, Italy; (F.G.); (S.M.); (K.S.); (M.C.)
| | - Sara De Biasi
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia School of Medicine, 41125 Modena, Italy; (S.D.B.); (L.G.); (A.C.)
| | - Lara Gibellini
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia School of Medicine, 41125 Modena, Italy; (S.D.B.); (L.G.); (A.C.)
| | - Francesca Vitetta
- Neurology Unit, Department of Neurosciences, Ospedale Civile di Baggiovara, Azienda Ospedaliero-Universitaria di Modena, 41126 Modena, Italy; (F.V.); (A.F.)
| | - Alessia Fiore
- Neurology Unit, Department of Neurosciences, Ospedale Civile di Baggiovara, Azienda Ospedaliero-Universitaria di Modena, 41126 Modena, Italy; (F.V.); (A.F.)
| | - Krzysztof Smolik
- Department of Biomedical, Metabolic and Neurosciences, University of Modena and Reggio Emilia, 41121 Modena, Italy; (F.G.); (S.M.); (K.S.); (M.C.)
| | - Giulia De Napoli
- Department of Biomedical, Metabolic and Neurosciences, University of Modena and Reggio Emilia, 41121 Modena, Italy; (F.G.); (S.M.); (K.S.); (M.C.)
| | - Martina Cardi
- Department of Biomedical, Metabolic and Neurosciences, University of Modena and Reggio Emilia, 41121 Modena, Italy; (F.G.); (S.M.); (K.S.); (M.C.)
| | - Andrea Cossarizza
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia School of Medicine, 41125 Modena, Italy; (S.D.B.); (L.G.); (A.C.)
- National Institute for Cardiovascular Research, 40126 Bologna, Italy
| | - Diana Ferraro
- Department of Biomedical, Metabolic and Neurosciences, University of Modena and Reggio Emilia, 41121 Modena, Italy; (F.G.); (S.M.); (K.S.); (M.C.)
- Neurology Unit, Department of Neurosciences, Ospedale Civile di Baggiovara, Azienda Ospedaliero-Universitaria di Modena, 41126 Modena, Italy; (F.V.); (A.F.)
| |
Collapse
|
4
|
Liampas A, Tseriotis VS, Mavridis T, Vavougios GD, Zis P, Hadjigeorgiou GM, Bargiotas P, Pourzitaki C, Artemiadis A. Effects of natalizumab on oligoclonal bands in the cerebrospinal fluid of patients with multiple sclerosis: a systematic review and meta-analysis. Neurol Sci 2025; 46:1541-1553. [PMID: 39673046 DOI: 10.1007/s10072-024-07930-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 12/04/2024] [Indexed: 12/15/2024]
Abstract
INTRODUCTION Oligoclonal bands (OCBs) in cerebrospinal fluid (CSF) are utilized for diagnosing multiple sclerosis (MS), as they are found in 95% of patients. Additionally, OCBs are linked to disease prognosis. The primary contributors to OCB production are long-lived plasma cells. This study aims to quantify the impact of natalizumab (NTZ) on OCB levels in the CSF of MS patients. METHODS A systematic search on MEDLINE, SCOPUS and Web of Science for English-written and peer-reviewed longitudinal studies on adults was performed. Methodological quality was assessed with the Newcastle-Ottawa Scale. Proportional meta-analysis was performed in R using a generalized linear mixed-effects model. We investigated heterogeneity with influence diagnostics, sensitivity analysis and meta-regression. RESULTS Eight eligible studies of adequate quality with a total sample of 326 relapsing-remitting MS patients were included. A summary rate of 14.07% [95% CI, 4.48%-36.36%] for complete loss of OCBs and 42.02% [95% CI, 15.23%-74.51%] for reduction in OCB number or intensity was observed, both with considerable heterogeneity. Pooled estimates dropped (11% [95% CI, 0.04%-0.29%] and 34% [95% CI, 0.11%-0.68%] respectively) after the identification of an influential study. Multivariable meta-regression identified IgG index as a factor contributing to heterogeneity (adj. p = 0.0279), regarding reduction of OCB number or intensity. DISCUSSION In conclusion, our systematic review and meta-analysis showed that NTZ can lead to reduction of intrathecal OCBs in MS patients, indicating a possible effect of NTZ on memory plasma cells, which are the main source of OCBs in MS.
Collapse
Affiliation(s)
- Andreas Liampas
- Department of Neurology, Nicosia General Hospital, Nicosia Limassol Old Road 215, P.C. 2029, Strovolos, Nicosia, Cyprus.
| | - Vasilis-Spyridon Tseriotis
- "Agios Pavlos" General Hospital of Thessaloniki, 161 Ethnikis Antistaseos Leof., P.C. 55134, 12 Kalamaria, Thessaloniki, Greece
- Laboratory of Clinical Pharmacology, Aristotle University of Thessaloniki, P.C. 54124, Thessaloniki, Greece
| | - Theodoros Mavridis
- Department of Neurology, Tallaght University Hospital (TUH)/The Adelaide and Meath Hospital, Dublin, Incorporating the National Children's Hospital (AMNCH), Dublin, D24 NR0A, Ireland
- 21St Department of Neurology, Eginition Hospital, Medical School, National and Kapodistrian University of Athens, 11528, Athens, Greece
| | - George D Vavougios
- Medical School, University of Cyprus, 75 Kallipoleos Street, P.C. 1678, 10 Nicosia, Nicosia, Cyprus
| | - Panagiotis Zis
- Medical School, University of Cyprus, 75 Kallipoleos Street, P.C. 1678, 10 Nicosia, Nicosia, Cyprus
| | - Georgios M Hadjigeorgiou
- Medical School, University of Cyprus, 75 Kallipoleos Street, P.C. 1678, 10 Nicosia, Nicosia, Cyprus
| | - Panagiotis Bargiotas
- Medical School, University of Cyprus, 75 Kallipoleos Street, P.C. 1678, 10 Nicosia, Nicosia, Cyprus
| | - Chryssa Pourzitaki
- Laboratory of Clinical Pharmacology, Aristotle University of Thessaloniki, P.C. 54124, Thessaloniki, Greece
| | - Artemios Artemiadis
- Medical School, University of Cyprus, 75 Kallipoleos Street, P.C. 1678, 10 Nicosia, Nicosia, Cyprus
| |
Collapse
|
5
|
Mari JF, de Miranda ÉJFP, Mendes-Correa MC, Chow FC, Vidal JE. Progressive multifocal leukoencephalopathy and spectrum of predisposing conditions: a 20-year retrospective cohort study in a tertiary center in São Paulo, Brazil. Neurol Sci 2025; 46:365-379. [PMID: 39007964 DOI: 10.1007/s10072-024-07669-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 06/20/2024] [Indexed: 07/16/2024]
Abstract
BACKGROUND Epidemiological studies on predisposing conditions and outcomes of progressive multifocal leukoencephalopathy (PML) cases have been carried out exclusively in high-income countries. We aim to report and compare the main characteristics and outcomes of patients with PML and several underlying diseases in a referral center in a middle-income country. METHODS We performed a retrospective cohort study of PML cases admitted to a tertiary care hospital in São Paulo, Brazil during 2000-2022. Demographic and PML-specific variables were recorded. One-year case-fatality rate and factors associated with death were identified using a multivariate Cox proportional hazards regression model. RESULTS Ninety-nine patients with PML were included. HIV infection (84.8%) and malignancy (14.1%) were the most prevalent underlying conditions. Other predisposing diseases were autoimmune/inflammatory diseases (5.1%) and solid organ transplantation (1.0%). One (1.0%) patient had liver cirrhosis and another (1.0%) patient was previously healthy. Focal motor deficits (64.2%) and gait instability (55.1%) were the most common signs. The one-year case-fatality rate was 52.5% (95% CI 42.2-62.7). The one-year case-fatality rate (95% CI) in patients with or without malignancy (85.7%, 95% CI 57.2-98.2% and 47.1%, 95% CI 36.1-58.2%, respectively) were statistically different (P = 0.009). Crude and adjusted Cox regression models identified malignancy as independently associated with death (adjusted HR = 3.92, 95% CI 1.76-8.73, P = 0.001). CONCLUSIONS HIV/AIDS was the predisposing condition in 84.8% of PML cases. The one-year case-fatality rate was 52.5% and having a malignancy was independently associated with death. This study reports emerging data on the epidemiology and outcome of PML in a middle-income country.
Collapse
Affiliation(s)
- Julia Ferreira Mari
- Departamento de Moléstias Infecciosas e Parasitárias, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | | | - Maria Cassia Mendes-Correa
- Laboratório de Investigação Médica (LIM 52) do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Felicia C Chow
- Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, CA, USA
- Department of Medicine (Infectious Diseases), University of California, San Francisco, CA, USA
| | - José Ernesto Vidal
- Departamento de Moléstias Infecciosas e Parasitárias, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil.
- Departamento de Neurologia, Instituto de Infectologia Emílio Ribas, São Paulo, Brazil.
- Laboratório de Investigação Médica (LIM 49) do Hospital das Clínicas da Faculdade de Medicina da, Universidade de São Paulo, São Paulo, Brazil.
| |
Collapse
|
6
|
Chisari CG, Aguglia U, Amato MP, Bergamaschi R, Bertolotto A, Bonavita S, Morra VB, Cavalla P, Cocco E, Conte A, Cottone S, De Luca G, Di Sapio A, Filippi M, Gallo A, Gasperini C, Granella F, Lus G, Maimone D, Maniscalco GT, Marfia G, Moiola L, Paolicelli D, Pesci I, Ragonese P, Rovaris M, Salemi G, Solaro C, Totaro R, Trojano M, Vianello M, Zaffaroni M, Lepore V, Patti F. Long-term effectiveness of natalizumab in secondary progressive multiple sclerosis: A propensity-matched study. Neurotherapeutics 2024; 21:e00363. [PMID: 38714462 PMCID: PMC11284548 DOI: 10.1016/j.neurot.2024.e00363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 04/12/2024] [Indexed: 05/09/2024] Open
Abstract
Treatment options for secondary progressive MS (SPMS) are limited, especially considering that the new drugs recently approved are licensed for actively relapsing patients. We aimed to compare the disability progression in a real-world cohort of SPMS patients treated with natalizumab (NTZ) or interferon beta-1b (IFNb-1b). This multicenter retrospective enrolled patients with a diagnosis of SPMS according to 2014 Lublin criteria, who received NTZ or IFNb-1b for at least 48 months between the 1st June 2012 and the 15th May 2018 at 33 Italian MS centers contributing to the Italian MS Registry NTZ or IFNb-1b. Confirmed Expanded Disability Status Scale worsening (CEW) and progression independent of relapse (PIRA) were evaluated. In order to correct for non-randomization, a propensity score matching of the groups was performed. Out of 5206 MS patients identified at the time of data extraction, 421 SPMS patients treated with NTZ (224 [53.2%] females, mean age 45.3 ± 25.4 years) and 353 with IFNb-1b (133 [37.8%] females, mean age 48.5 ± 19.8 years) were enrolled. After applying the matching procedure, 102 patients were retained in the NTZ group and 98 in the IFNb-2b group. The proportion of patients who reached the 48-month 1-point CEW was significantly higher in IFNb-1b compared to NTZ group (58.2% versus 30.4%, p = 0.01). The proportion of patients who developed PIRA at 48 months were significantly higher in IFNb-1b compared to NTZ (72.4% versus 40.2%, p = 0.01). EDSS before treatment initiation and SPMS duration were risk factors for disability progression in terms of PIRA (HR 2.54, 25%CI 1.67-5.7; p = 0.006 and HR 2.04, 25%CI 1.22-3.35; p = 0.01, respectively). Patients treated with IFNb-1b were 1.64 times more to likely to develop PIRA (HR 1.64, 25%CI 1.04-4.87; p = 0.001). Treatment with NTZ in SPMS patients showed more favorable disability outcomes compared to IFNb-1b with beneficial effects over 48 months.
Collapse
Affiliation(s)
- Clara G Chisari
- Department "GF. Ingrassia"; Section of Neurosciences, University of Catania, Italy; UOS Sclerosi Multipla, AOU Policlinico "G. Rodolico-San Marco", University of Catania, Catania, Italy
| | - Umberto Aguglia
- Regional Epilepsy Centre, Great Metropolitan "Bianchi-Melacrino-Morelli" Hospital, Reggio Calabria, Italy
| | - Maria Pia Amato
- Department NEUROFARBA, Section Neurosciences, University of Florence, Florence, Italy; IRCCS Fondazione Don Carlo Gnocchi, Florence, Italy
| | | | - Antonio Bertolotto
- Department of Neurology and Multiple Sclerosis Regional Referral Centre, AOU San Luigi Gonzaga, Orbassano, Turin, Italy
| | - Simona Bonavita
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli" Naples, Italy
| | | | - Paola Cavalla
- Multiple Sclerosis Center, Department of Neuroscience and Mental Health, City of Health and Science University Hospital of Torino, Torino, Italy
| | - Eleonora Cocco
- Multiple Sclerosis Centre Binaghi Hospital, ATS Sardegna-University of Cagliari, Italy
| | - Antonella Conte
- Department of Human Neurosciences, Sapienza University of Rome, Italy; IRCCS Neuromed Pozzili, Italy
| | | | - Giovanna De Luca
- Multiple Sclerosis Center, Neurology Clinic, Policlinico SS Annunziata, University of Chieti-Pescara, Chieti, Italy
| | - Alessia Di Sapio
- Department of Neurology and Multiple Sclerosis Regional Referral Centre, AOU San Luigi Gonzaga, Orbassano, Turin, Italy
| | - Massimo Filippi
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy; Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy; Neurorehabilitation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy; Neurophysiology Service, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Antonio Gallo
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli" Naples, Italy
| | - Claudio Gasperini
- Department of Neuroscience, UOC Neurology, San Camillo-Forlanini Hospital, Rome, Italy
| | - Franco Granella
- Neurosciences Unit, Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Giacomo Lus
- Department of Advanced Medical and Surgical Sciences, II Division of Neurology, Multiple Sclerosis Center, University of Campania 'L. Vanvitelli', Naples, Italy
| | - Davide Maimone
- Centro Sclerosi Multipla, UOC Neurologia, Azienda Ospedaliera Cannizzaro, Catania, Italy
| | | | - Girolama Marfia
- Multiple Sclerosis Clinical and Research Unit, Department of Systems Medicine, Tor Vergata University, Rome, Italy
| | - Lucia Moiola
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Damiano Paolicelli
- Department of Translational Biomedicines and Neurosciences University of Bari, A. Moro, Bari, Italy
| | - Ilaria Pesci
- Centro Sclerosi Multipla Unità Operativa Neurologia, Azienda Unità Sanitaria Locale, Ospedale Di Vaio, Fidenza, Parma, Italy
| | - Paolo Ragonese
- Unit of Neurology, Department of Biomedicine, Neurosciences and Advanced Diagnostics, Palermo University, Palermo, Italy
| | | | - Giuseppe Salemi
- Unit of Neurology, Department of Biomedicine, Neurosciences and Advanced Diagnostics, Palermo University, Palermo, Italy
| | - Claudio Solaro
- Department of Rehabilitation, C.R.R.F. "Mons. L. Novarese", Loc. Trompone, Moncrivello, (VC), Italy
| | - Rocco Totaro
- Demyelinating Disease Center, Neurology Unit, University of L'Aquila, L'Aquila, Italy
| | - Maria Trojano
- School of Medicine, University "Aldo Moro", Bari, Italy
| | | | - Mauro Zaffaroni
- Multiple Sclerosis Center, ASST della Valle Olona, Ospedale di Gallarate, (VA), Italy
| | - Vito Lepore
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Francesco Patti
- Department "GF. Ingrassia"; Section of Neurosciences, University of Catania, Italy; UOS Sclerosi Multipla, AOU Policlinico "G. Rodolico-San Marco", University of Catania, Catania, Italy.
| |
Collapse
|
7
|
Londoño AC, Mora CA. Continued dysregulation of the B cell lineage promotes multiple sclerosis activity despite disease modifying therapies. F1000Res 2023; 10:1305. [PMID: 37655229 PMCID: PMC10467621 DOI: 10.12688/f1000research.74506.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/27/2023] [Indexed: 09/02/2023] Open
Abstract
A clear understanding of the origin and role of the different subtypes of the B cell lineage involved in the activity or remission of multiple sclerosis (MS) is important for the treatment and follow-up of patients living with this disease. B cells, however, are dynamic and can play an anti-inflammatory or pro-inflammatory role, depending on their milieu. Depletion of B cells has been effective in controlling the progression of MS, but it can have adverse side effects. A better understanding of the role of the B cell subtypes, through the use of surface biomarkers of cellular activity with special attention to the function of memory and other regulatory B cells (Bregs), will be necessary in order to offer specific treatments without inducing undesirable effects.
Collapse
Affiliation(s)
- Ana C. Londoño
- Neurologia y Neuroimagen, Instituto Neurologico de Colombia (INDEC), Medellin, Antioquia, Colombia
| | - Carlos A. Mora
- Spine & Brain Institute, Ascension St. Vincent's Riverside Hospital, Jacksonville, FL, 32204, USA
| |
Collapse
|
8
|
Polak J, Wagnerberger JH, Torsetnes SB, Lindeman I, Høglund RAA, Vartdal F, Sollid LM, Lossius A. Single-cell transcriptomics combined with proteomics of intrathecal IgG reveal transcriptional heterogeneity of oligoclonal IgG-secreting cells in multiple sclerosis. Front Cell Neurosci 2023; 17:1189709. [PMID: 37362001 PMCID: PMC10285169 DOI: 10.3389/fncel.2023.1189709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 05/19/2023] [Indexed: 06/28/2023] Open
Abstract
The phenotypes of B lineage cells that produce oligoclonal IgG in multiple sclerosis have not been unequivocally determined. Here, we utilized single-cell RNA-seq data of intrathecal B lineage cells in combination with mass spectrometry of intrathecally synthesized IgG to identify its cellular source. We found that the intrathecally produced IgG matched a larger fraction of clonally expanded antibody-secreting cells compared to singletons. The IgG was traced back to two clonally related clusters of antibody-secreting cells, one comprising highly proliferating cells, and the other consisting of more differentiated cells expressing genes associated with immunoglobulin synthesis. These findings suggest some degree of heterogeneity among cells that produce oligoclonal IgG in multiple sclerosis.
Collapse
Affiliation(s)
- Justyna Polak
- Department of Immunology, Oslo University Hospital, University of Oslo, Oslo, Norway
- K.G. Jebsen Coeliac Disease Research Centre, University of Oslo, Oslo, Norway
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Johanna H. Wagnerberger
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | | | - Ida Lindeman
- Department of Immunology, Oslo University Hospital, University of Oslo, Oslo, Norway
- K.G. Jebsen Coeliac Disease Research Centre, University of Oslo, Oslo, Norway
| | - Rune A. Aa. Høglund
- Department of Neurology, Akershus University Hospital, Lørenskog, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Frode Vartdal
- Department of Immunology, Oslo University Hospital, University of Oslo, Oslo, Norway
- K.G. Jebsen Coeliac Disease Research Centre, University of Oslo, Oslo, Norway
| | - Ludvig M. Sollid
- Department of Immunology, Oslo University Hospital, University of Oslo, Oslo, Norway
- K.G. Jebsen Coeliac Disease Research Centre, University of Oslo, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Andreas Lossius
- K.G. Jebsen Coeliac Disease Research Centre, University of Oslo, Oslo, Norway
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
- Department of Neurology, Akershus University Hospital, Lørenskog, Norway
| |
Collapse
|
9
|
Maor M, Naftali J, Wilf-Yarkoni A, Lotan I, Hellmann MA, Steiner I. Repeated lumbar puncture in search of oligoclonal bands – What is the yield? J Neurol Sci 2022; 439:120298. [DOI: 10.1016/j.jns.2022.120298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 05/22/2022] [Indexed: 10/18/2022]
|
10
|
Decreased Intrathecal Concentrations of Free Light Chains Kappa in Multiple Sclerosis Patients Taking Very High Effective Disease-Modifying Treatment. Diagnostics (Basel) 2022; 12:diagnostics12030720. [PMID: 35328273 PMCID: PMC8947149 DOI: 10.3390/diagnostics12030720] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/11/2022] [Accepted: 03/13/2022] [Indexed: 11/30/2022] Open
Abstract
Free light chains kappa (FLCκ) in cerebrospinal fluid (CSF) are a part of the intrathecal immune response. This observational study was conducted to investigate the effects of different disease-modifying therapies (DMT) on the humoral intrathecal immune response in the CSF of patients with multiple sclerosis (MS). FLCκ were analyzed in CSF and serum samples from MS patients taking DMT (n = 60) and those in a control cohort of treatment-naïve MS patients (n = 90). DMT was classified as moderately effective (including INFß-1a, INFß-1b, glatiramer acetate, dimethyl fumarate, teriflunomide, triamcinolone); highly effective (including fingolimod, daclizumab) and very highly effective (alemtuzumab, natalizumab, rituximab/ocrelizumab, mitoxantrone). FLCκ were measured using a nephelometric FLCκ kit. Intrathecal FLCκ and IgG concentrations were assessed in relation to the hyperbolic reference range in quotient diagrams. Intrathecal FLCκ concentrations and IgG concentrations were significantly lower in samples from the cohort of MS patients taking very highly effective DMT than in samples from the cohort of MS patients taking highly effective DMT and in the treatment-naïve cohort (FLCκ: p = 0.004, p < 0.0001 respectively/IgG: p = 0.013; p = 0.021). The reduction in FLCκ could contribute to an anti-inflammatory effect in the CNS through this mechanism. There was no difference in the appearance of CSF-specific oligoclonal bands (p = 0.830). Longitudinal analyses are required to confirm these results.
Collapse
|
11
|
Carta S, Ferraro D, Ferrari S, Briani C, Mariotto S. Oligoclonal bands: clinical utility and interpretation cues. Crit Rev Clin Lab Sci 2022; 59:391-404. [DOI: 10.1080/10408363.2022.2039591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Sara Carta
- Department of Neurosciences, Biomedicine, and Movement Sciences, Neurology Unit, University of Verona, Verona, Italy
| | - Diana Ferraro
- Department of Biomedicine, Metabolic, and Neurosciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Sergio Ferrari
- Department of Neurosciences, Biomedicine, and Movement Sciences, Neurology Unit, University of Verona, Verona, Italy
| | - Chiara Briani
- Department of Neurosciences, University of Padova, Padova, Italy
| | - Sara Mariotto
- Department of Neurosciences, Biomedicine, and Movement Sciences, Neurology Unit, University of Verona, Verona, Italy
| |
Collapse
|
12
|
Natalizumab Induces Changes of Cerebrospinal Fluid Measures in Multiple Sclerosis. Diagnostics (Basel) 2021; 11:diagnostics11122230. [PMID: 34943468 PMCID: PMC8699923 DOI: 10.3390/diagnostics11122230] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/19/2021] [Accepted: 11/25/2021] [Indexed: 11/17/2022] Open
Abstract
Background: There is a lack of knowledge about the evolution of cerebrospinal fluid (CSF) markers in multiple sclerosis (MS) patients undergoing natalizumab treatment. Aim: We aimed to evaluate the effect of natalizumab on basic inflammatory CSF and MRI measures. Methods: Together, 411 patients were screened for eligibility and 93 subjects with ≥2 CSF examinations ≤6 months before and ≥12 months after natalizumab initiation were recruited. The effect of natalizumab on CSF as well as clinical and paraclinical measures was analyzed using adjusted mixed models. Results: Natalizumab induced a decrease in CSF leukocytes (p < 1 × 10−15), CSF protein (p = 0.00007), the albumin quotient (p = 0.007), the IgG quotient (p = 6 × 10−15), the IgM quotient (p = 0.0002), the IgG index (p = 0.0004), the IgM index (p = 0.003) and the number of CSF-restricted oligoclonal bands (OCBs) (p = 0.0005). CSF-restricted OCBs positivity dropped from 94.6% to 86% but 26 patients (28%) had an increased number of OCBs at the follow-up. The baseline to follow-up EDSS and T2-LV were stable; a decrease in the relapse rate was consistent with a decrease in the CSF inflammatory markers and previous knowledge about the effectiveness of natalizumab. The average annualized brain volume loss during the follow-up was −0.50% (IQR = −0.96, −0.16) and was predicted by the baseline IgM index (B = −0.37; p = 0.003). Conclusions: Natalizumab is associated with a reduction of basic CSF inflammatory measures supporting its strong anti-inflammatory properties. The IgM index at the baseline predicted future brain volume loss during the course of natalizumab treatment.
Collapse
|
13
|
Cerebrospinal fluid oligoclonal immunoglobulin gamma bands and long-term disability progression in multiple sclerosis: a retrospective cohort study. Sci Rep 2021; 11:14987. [PMID: 34294805 PMCID: PMC8298473 DOI: 10.1038/s41598-021-94423-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Accepted: 07/07/2021] [Indexed: 12/12/2022] Open
Abstract
Multiple sclerosis (MS) patients with immunoglobulin gamma (IgG) oligoclonal bands (OCB) in the cerebrospinal fluid (CSF) have different genetic backgrounds and brain MRI features compared to those without. In this study, we aimed to determine whether CSF-OCB status is associated with long-term disability outcomes. We used Swedish MS register data on clinically definite MS patients with known OCB status. Date of birth, age at MS onset, and time to sustained Expanded Disability Status Scale (EDSS) milestones 3, 4, and 6; time to conversion to secondary progressive (SP) MS, sex, and immunomodulatory treatment (IMTs) duration were collected. Multivariate Cox regression models were used to investigate the association between OCB status and risk of reaching each milestone. The OCB-positive group reached disability milestones at an earlier time and younger age. OCB-positivity significantly increased the risk of reaching EDSS 3.0 (HR = 1.29, 95% CI 1.12 to 1.48, P < 0.001) and 4.0 (HR = 1.38, 95% CI 1.17 to 1.63, P < 0.001). The OCB-positive group had a 20% higher risk of conversion to SPMS. CSF-OCB presence is associated with higher risk of reaching EDSS milestones and conversion to SPMS. Our findings suggest higher disease modifying effect of OCB presence in the early inflammatory stages of MS.
Collapse
|
14
|
Schlüter M, Oswald E, Winklmeier S, Meinl I, Havla J, Eichhorn P, Meinl E, Kümpfel T. Effects of Natalizumab Therapy on Intrathecal Immunoglobulin G Production Indicate Targeting of Plasmablasts. NEUROLOGY-NEUROIMMUNOLOGY & NEUROINFLAMMATION 2021; 8:8/5/e1030. [PMID: 34210800 PMCID: PMC8265584 DOI: 10.1212/nxi.0000000000001030] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 04/16/2021] [Indexed: 12/25/2022]
Abstract
OBJECTIVES To evaluate the long-term effects of natalizumab (NTZ) on different features of intrathecal immunoglobulin (Ig) synthesis in patients with multiple sclerosis (MS) and to quantify the expression of α4-integrin in stages of B-cell maturation. METHODS We combined a cross-sectional (49 NTZ-treated MS patients, mean treatment duration 5.1 years, and 47 untreated MS patients) and a longitudinal study (33 patients with MS before and during NTZ, mean treatment duration: 4.8 years), analyzing paired serum and CSF samples for IgG, IgA, and IgM levels, reactivity against selected viruses (measles virus, rubella virus, and varicella zoster virus [MRZ] reaction), and oligoclonal bands (OCBs). Banding patterns before and after therapy were directly compared by isoelectric focusing in 1 patient. In addition, we determined the expression of α4-integrin by FACS analysis on blood-derived B-cell subsets (plasmablasts, memory B cells, and naive B cells) of healthy controls. RESULTS In serum, NTZ decreased IgM and IgG, but not IgA, levels. IgM hypogammaglobulinemia occurred in 28% of NTZ-treated patients. In CSF, NTZ treatment resulted in a strong reduction of intrathecally produced IgG and, to a lesser extent, IgA, whereas IgM indices [(Ig CSF/Serum)/(Albumin CSF/Serum)] remained largely unchanged. Reduction of the IgG index correlated with NTZ treatment duration, as did serum IgM and IgA levels. MRZ reaction was unchanged and OCB persisted. Direct comparison of OCB pattern before and after NTZ revealed the persistence of individual bands. α4-Integrin expression was highest on plasmablasts (CD19+CD38+CD27+). CONCLUSION Our data indicate that NTZ reduces short-lived plasmablasts in the CNS compartment but has little effect on locally persisting long-lived plasma cells.
Collapse
Affiliation(s)
- Miriam Schlüter
- From the Institute of Clinical Neuroimmunology (M.S., E.O., S.W., I.M., J.H., E.M., T.K.), Biomedical Center and LMU Klinikum; and Institute of Laboratory Medicine (P.E.), LMU Klinikum, Munich, Germany
| | - Eva Oswald
- From the Institute of Clinical Neuroimmunology (M.S., E.O., S.W., I.M., J.H., E.M., T.K.), Biomedical Center and LMU Klinikum; and Institute of Laboratory Medicine (P.E.), LMU Klinikum, Munich, Germany
| | - Stephan Winklmeier
- From the Institute of Clinical Neuroimmunology (M.S., E.O., S.W., I.M., J.H., E.M., T.K.), Biomedical Center and LMU Klinikum; and Institute of Laboratory Medicine (P.E.), LMU Klinikum, Munich, Germany
| | - Ingrid Meinl
- From the Institute of Clinical Neuroimmunology (M.S., E.O., S.W., I.M., J.H., E.M., T.K.), Biomedical Center and LMU Klinikum; and Institute of Laboratory Medicine (P.E.), LMU Klinikum, Munich, Germany
| | - Joachim Havla
- From the Institute of Clinical Neuroimmunology (M.S., E.O., S.W., I.M., J.H., E.M., T.K.), Biomedical Center and LMU Klinikum; and Institute of Laboratory Medicine (P.E.), LMU Klinikum, Munich, Germany
| | - Peter Eichhorn
- From the Institute of Clinical Neuroimmunology (M.S., E.O., S.W., I.M., J.H., E.M., T.K.), Biomedical Center and LMU Klinikum; and Institute of Laboratory Medicine (P.E.), LMU Klinikum, Munich, Germany
| | - Edgar Meinl
- From the Institute of Clinical Neuroimmunology (M.S., E.O., S.W., I.M., J.H., E.M., T.K.), Biomedical Center and LMU Klinikum; and Institute of Laboratory Medicine (P.E.), LMU Klinikum, Munich, Germany
| | - Tania Kümpfel
- From the Institute of Clinical Neuroimmunology (M.S., E.O., S.W., I.M., J.H., E.M., T.K.), Biomedical Center and LMU Klinikum; and Institute of Laboratory Medicine (P.E.), LMU Klinikum, Munich, Germany.
| |
Collapse
|
15
|
Natalizumab differentially affects plasmablasts and B cells in multiple sclerosis. Mult Scler Relat Disord 2021; 52:102987. [PMID: 33984651 DOI: 10.1016/j.msard.2021.102987] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 03/28/2021] [Accepted: 04/26/2021] [Indexed: 01/07/2023]
Abstract
BACKGROUND Natalizumab treatment increases the frequencies of B cells in blood but reduces IgG in blood and CSF. Plasmablasts are important in the production of IgG, and the development of plasmablasts is CD49d dependent. OBJECTIVE We hypothesized that natalizumab treatment affects the development of plasmablasts. METHODS We retrospectively analyzed frequencies and absolute counts of B cell subsets by flow cytometry from a longitudinal cohort of 9 progressive multiple sclerosis (MS) patients treated with natalizumab for 60 weeks, and a cross-sectional relapsing-remitting MS (RRMS) cohort with 17 untreated and 37 treated with natalizumab (17 stable and 20 unstable patients with relapse activity). Additionally, CD49d expression on B cell subsets was examined in 10 healthy controls, and blood and cerebrospinal fluid (CSF) frequencies of B cell subsets were quantified in untreated and natalizumab treated RRMS patients. RESULTS In progressive MS, levels of IgG decreased in plasma (p<0.001) from baseline to 60 weeks follow-up. In the progressive MS and RRMS cohorts we observed that natalizumab treatment significantly increased the frequency of B cells (p=0.004; p<0.0001) and several B cell subsets, most pronounced for memory B cell subsets (p=0.0001; p<0.0001), while there was a decrease in plasmablast frequency (p=0.008; p=0.008). In both progressive MS and RRMS the absolute cell counts of B cells increased (p=0.004; p<0.001), which was explained by a significant increase in all subsets, except for plasmablasts. Furthermore, we found decreased memory B cell counts in unstable compared to stable natalizumab-treated patients (p=0.02). The expression of CD49d was higher on plasmablasts compared to other B cell subsets (p<0.0001). In CSF, plasmablasts could not be detected in patients treated with natalizumab, in contrast to an increased frequency in untreated RRMS patients. CONCLUSION We confirm previous studies showing that natalizumab increases circulating number of B cells, particularly memory cells, concomitant with a decrease in plasma IgG concentrations. Moreover, we demonstrate in two separate cohorts that natalizumab treatment markedly decreases frequencies of plasmablasts while the absolute number is stable. Additionally, plasmablasts have high expression of CD49d, and plasmablasts could not be detected in the CSF of natalizumab-treated patients. Finally, memory B cells were found to be reduced in unstable natalizumab-treated patients, which could possibly indicate increased recruitment to the CNS.
Collapse
|
16
|
Graf LM, Rosenkranz SC, Hölzemer A, Hagel C, Goebell E, Jordan S, Friese MA, Addo MM, Schulze Zur Wiesch J, Beisel C. Clinical Presentation and Disease Course of 37 Consecutive Cases of Progressive Multifocal Leukoencephalopathy (PML) at a German Tertiary-Care Hospital: A Retrospective Observational Study. Front Neurol 2021; 12:632535. [PMID: 33613439 PMCID: PMC7890249 DOI: 10.3389/fneur.2021.632535] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 01/04/2021] [Indexed: 01/27/2023] Open
Abstract
Background: Progressive multifocal leukoencephalopathy (PML) caused by JCV is a rare but frequently fatal disease of the central nervous system, usually affecting immunocompromised individuals. Our study aims to expand the data on patient characteristics, diagnosis, clinical course, possible PML-directed treatment, and outcome of patients with PML at a German tertiary-care hospital. Methods:In this single-center observational cohort study, 37 consecutive patients with a confirmed diagnosis of PML seen at the University Medical Center Hamburg-Eppendorf from 2013 until 2019 were retrospectively analyzed by chart review with a special focus on demographics, risk factors, and clinical aspects as well as PML-directed treatment and survival. Results:We identified 37 patients with definite, probable, and possible PML diagnosis. 36 patients (97%) had underlying immunosuppressive disorders such as HIV/AIDS (n = 17; 46%), previous treatment with monoclonal antibodies (n = 6; 16%), hematological or oncological malignancies (n = 6; 16%), sarcoidosis (n = 5; 14%), solid organ transplantation (n = 1; 3%), and diagnosis of mixed connective tissue disease (n = 1; 3%). In only one patient no evident immunocompromised condition was detected (n = 1; 3%). Treatment attempts to improve the outcome of PML were reported in 13 patients (n = 13; 35%). Twenty seven percent of patients were lost to follow-up (n = 10). Twenty four-month survival rate after diagnosis of PML was 56% (n = 15). Conclusion: This interdisciplinary retrospective study describes epidemiology, risk factors, clinical course, and treatment trials in patients with PML at a German tertiary-care hospital. Acquired immunosuppression due to HIV-1 constituted the leading cause of PML in this monocenter cohort.
Collapse
Affiliation(s)
- Lisa M Graf
- Division of Infectious Disease, I. Department of Internal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sina C Rosenkranz
- Institute of Neuroimmunology and Multiple Sclerosis, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Angelique Hölzemer
- Division of Infectious Disease, I. Department of Internal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany.,Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Christian Hagel
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Einar Goebell
- Department of Diagnostic and Interventional Neuroradiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sabine Jordan
- Division of Infectious Disease, I. Department of Internal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Department of Tropical Medicine, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Manuel A Friese
- Institute of Neuroimmunology and Multiple Sclerosis, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Marylyn M Addo
- Division of Infectious Disease, I. Department of Internal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany
| | - Julian Schulze Zur Wiesch
- Division of Infectious Disease, I. Department of Internal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany
| | - Claudia Beisel
- Division of Infectious Disease, I. Department of Internal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany.,Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| |
Collapse
|
17
|
Evidence of Oligoclonal Bands Does Not Exclude Non-Inflammatory Neurological Diseases. Diagnostics (Basel) 2020; 11:diagnostics11010037. [PMID: 33379245 PMCID: PMC7824674 DOI: 10.3390/diagnostics11010037] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 12/21/2020] [Accepted: 12/22/2020] [Indexed: 12/17/2022] Open
Abstract
Cerebrospinal fluid analysis is an essential part of the diagnostic workup in various neurological disorders. Evidence of an intrathecal immunoglobulin synthesis, as demonstrated by Reiber’s diagram or the more sensitive oligoclonal bands (OCB), are typical for neuroinflammatory diseases, and normally not expected in non-inflammatory neurological diseases. Therefore, patients with non-inflammatory neurological diseases are often used in control groups in studies investigating autoimmune diseases of the central nervous system. However, data about the frequency of intrathecal immunoglobulin synthesis in non-inflammatory neurological disease are scarce. The cerebrospinal fluid (CSF) records of a total of 3622 patients were screened and 2114 patients included with presumably non-inflammatory neurological diseases like dementia, idiopathic peripheral neuropathy, motoneuron disease, stroke, and epileptic seizures. Evidence of an intrathecal immunoglobulin synthesis can be found with low frequency also in non-inflammatory neurological diseases. A much higher rate of patients showed intrathecal immunoglobulin synthesis as demonstrated by OCB than by Reiber’s diagram. In patients with disorders of the peripheral nervous system the frequency of OCB was much lower than in patients presenting with central nervous system manifestations. Evidence of an intrathecal immunoglobulin synthesis should not automatically lead to exclusion of non-inflammatory neurological diseases but should rather prompt the way to investigate for the origin of the intrathecal immunoglobulin synthesis.
Collapse
|
18
|
Möhn N, Luo Y, Skripuletz T, Schwenkenbecher P, Ladwig A, Warnke C, Meuth SG, Wiendl H, Gross CC, Schröder C, Haghikia A, Stangel M. Cerebrospinal fluid analysis in 108 patients with progressive multifocal leukoencephalopathy. Fluids Barriers CNS 2020; 17:65. [PMID: 33109245 PMCID: PMC7590675 DOI: 10.1186/s12987-020-00227-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 10/17/2020] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Progressive multifocal leukoencephalopathy (PML) is caused by an opportunistic infection with JC polyoma virus (JCPyV) and mainly affects immunocompromised patients. It leads to pronounced demyelination of the central nervous system (CNS) resulting in severe disability or even death. Detection of JCPyV DNA in the cerebrospinal fluid (CSF) is usually accepted as proof for the diagnosis of PML. Routine CSF parameters, like CSF cell count, protein concentration, Qalbumin, or intrathecal immunoglobulin synthesis are mostly considered normal. However, this has not been investigated systematically. METHODS We analyzed routine CSF parameters in a cohort of 108 PML patients that were treated at four different neurological centers in Germany. The patients exhibited different underlying conditions with natalizumab-treated multiple sclerosis (n = 54) and human immunodeficiency virus (HIV)-infection (n = 25) being the most frequent. The data were collected at the respective centers in accordance with local requirements and then jointly analyzed. The total PML cohort was compared with a control group of patients with normal pressure hydrocephalus (NPH) and idiopathic intracranial hypertension (IIH). Multiple sclerosis and HIV patients were additionally compared with their own non-PML control groups. RESULTS The PML group showed an elevated cell count (p < 0.001) compared to the control group, however, this effect was mainly driven by HIV-PML patients. This subgroup also demonstrated a significantly higher proportion of patients with a disturbed blood-CSF-barrier function. CONCLUSIONS This comprehensive, retrospective study on CSF diagnostic analysis in PML patients provides insight into the CSF of those patients. It demonstrates that CSF composition in PML patients may be specific for the underlying condition that predisposes for the development of PML and thus data have to be interpreted in this context.
Collapse
Affiliation(s)
- Nora Möhn
- Clinical Neuroimmunology and Neurochemistry, Department of Neurology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Yi Luo
- Clinical Neuroimmunology and Neurochemistry, Department of Neurology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Thomas Skripuletz
- Clinical Neuroimmunology and Neurochemistry, Department of Neurology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Philipp Schwenkenbecher
- Clinical Neuroimmunology and Neurochemistry, Department of Neurology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Anne Ladwig
- Department of Neurology, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Clemens Warnke
- Department of Neurology, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Sven G Meuth
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, Münster, Germany
| | - Heinz Wiendl
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, Münster, Germany
| | - Catharina C Gross
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, Münster, Germany
| | - Christoph Schröder
- Department of Neurology, Ruhr-University Bochum, St. Josef-Hospital Bochum, Bochum, Germany
| | - Aiden Haghikia
- Department of Neurology, Ruhr-University Bochum, St. Josef-Hospital Bochum, Bochum, Germany
| | - Martin Stangel
- Clinical Neuroimmunology and Neurochemistry, Department of Neurology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany.
| |
Collapse
|
19
|
Khoy K, Mariotte D, Defer G, Petit G, Toutirais O, Le Mauff B. Natalizumab in Multiple Sclerosis Treatment: From Biological Effects to Immune Monitoring. Front Immunol 2020; 11:549842. [PMID: 33072089 PMCID: PMC7541830 DOI: 10.3389/fimmu.2020.549842] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 09/04/2020] [Indexed: 12/13/2022] Open
Abstract
Multiple sclerosis is a chronic demyelinating disease of the central nervous system (CNS) with an autoimmune component. Among the recent disease-modifying treatments available, Natalizumab, a monoclonal antibody directed against the alpha chain of the VLA-4 integrin (CD49d), is a potent inhibitor of cell migration toward the tissues including CNS. It potently reduces relapses and active brain lesions in the relapsing remitting form of the disease. However, it has also been associated with a severe infectious complication, the progressive multifocal leukoencephalitis (PML). Using the standard protocol with an injection every 4 weeks it has been shown by a close monitoring of the drug that trough levels soon reach a plateau with an almost saturation of the target cell receptor as well as a down modulation of this receptor. In this review, mechanisms of action involved in therapeutic efficacy as well as in PML risk will be discussed. Furthermore the interest of a biological monitoring that may be helpful to rapidly adapt treatment is presented. Indeed, development of anti-NAT antibodies, although sometimes unapparent, can be detected indirectly by normalization of CD49d expression on circulating mononuclear cells and might require to switch to another drug. On the other hand a stable modulation of CD49d expression might be useful to follow the circulating NAT levels and apply an extended interval dose scheme that could contribute to limiting the risk of PML.
Collapse
Affiliation(s)
- Kathy Khoy
- Laboratory of Immunology, Department of Biology, CHU Caen Normandie, Caen, France
| | - Delphine Mariotte
- Laboratory of Immunology, Department of Biology, CHU Caen Normandie, Caen, France
| | - Gilles Defer
- Department of Neurology, MS Expert Centre, CHU Caen Normandie, Caen, France.,UMR-S1237, Physiopathology and Imaging of Neurological Disorders, INSERM, Caen, France.,Normandie Université, UNICAEN, Caen, France
| | - Gautier Petit
- Laboratory of Immunology, Department of Biology, CHU Caen Normandie, Caen, France
| | - Olivier Toutirais
- Laboratory of Immunology, Department of Biology, CHU Caen Normandie, Caen, France.,UMR-S1237, Physiopathology and Imaging of Neurological Disorders, INSERM, Caen, France.,Normandie Université, UNICAEN, Caen, France
| | - Brigitte Le Mauff
- Laboratory of Immunology, Department of Biology, CHU Caen Normandie, Caen, France.,UMR-S1237, Physiopathology and Imaging of Neurological Disorders, INSERM, Caen, France.,Normandie Université, UNICAEN, Caen, France
| |
Collapse
|
20
|
Differential Effects of MS Therapeutics on B Cells-Implications for Their Use and Failure in AQP4-Positive NMOSD Patients. Int J Mol Sci 2020; 21:ijms21145021. [PMID: 32708663 PMCID: PMC7404039 DOI: 10.3390/ijms21145021] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 07/11/2020] [Accepted: 07/13/2020] [Indexed: 12/25/2022] Open
Abstract
B cells are considered major contributors to multiple sclerosis (MS) pathophysiology. While lately approved disease-modifying drugs like ocrelizumab deplete B cells directly, most MS medications were not primarily designed to target B cells. Here, we review the current understanding how approved MS medications affect peripheral B lymphocytes in humans. These highly contrasting effects are of substantial importance when considering these drugs as therapy for neuromyelitis optica spectrum disorders (NMOSD), a frequent differential diagnosis to MS, which is considered being a primarily B cell- and antibody-driven diseases. Data indicates that MS medications, which deplete B cells or induce an anti-inflammatory phenotype of the remaining ones, were effective and safe in aquaporin-4 antibody positive NMOSD. In contrast, drugs such as natalizumab and interferon-β, which lead to activation and accumulation of B cells in the peripheral blood, lack efficacy or even induce catastrophic disease activity in NMOSD. Hence, we conclude that the differential effect of MS drugs on B cells is one potential parameter determining the therapeutic efficacy or failure in antibody-dependent diseases like seropositive NMOSD.
Collapse
|
21
|
S1 guidelines "lumbar puncture and cerebrospinal fluid analysis" (abridged and translated version). Neurol Res Pract 2020; 2:8. [PMID: 33324914 PMCID: PMC7650145 DOI: 10.1186/s42466-020-0051-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Accepted: 02/03/2020] [Indexed: 12/12/2022] Open
Abstract
Introduction Cerebrospinal fluid (CSF) analysis is important for detecting inflammation of the nervous system and the meninges, bleeding in the area of the subarachnoid space that may not be visualized by imaging, and the spread of malignant diseases to the CSF space. In the diagnosis and differential diagnosis of neurodegenerative diseases, the importance of CSF analysis is increasing. Measuring the opening pressure of CSF in idiopathic intracranial hypertension and at spinal tap in normal pressure hydrocephalus constitute diagnostic examination procedures with therapeutic benefits.Recommendations (most important 3-5 recommendations on a glimpse): The indications and contraindications must be checked before lumbar puncture (LP) is performed, and sampling CSF requires the consent of the patient.Puncture with an atraumatic needle is associated with a lower incidence of postpuncture discomfort. The frequency of postpuncture syndrome correlates inversely with age and body mass index, and it is more common in women and patients with a history of headache. The sharp needle is preferably used in older or obese patients, also in punctures expected to be difficult.In order to avoid repeating LP, a sufficient quantity of CSF (at least 10 ml) should be collected. The CSF sample and the serum sample taken at the same time should be sent to a specialized laboratory immediately so that the emergency and basic CSF analysis program can be carried out within 2 h.The indication for LP in anticoagulant therapy should always be decided on an individual basis. The risk of interrupting anticoagulant therapy must be weighed against the increased bleeding risk of LP with anticoagulant therapy.As a quality assurance measure in CSF analysis, it is recommended that all cytological, clinical-chemical, and microbiological findings are combined in an integrated summary report and evaluated by an expert in CSF analysis. Conclusions In view of the importance and developments in CSF analysis, the S1 guideline "Lumbar puncture and cerebrospinal fluid analysis" was recently prepared by the German Society for CSF analysis and clinical neurochemistry (DGLN) and published in German in accordance with the guidelines of the AWMF (https://www.awmf.org). /uploads/tx_szleitlinien/030-141l_S1_Lumbalpunktion_und_Liquordiagnostik_2019-08.pdf). The present article is an abridged translation of the above cited guideline. The guideline has been jointly edited by the DGLN and DGN.
Collapse
|
22
|
Tolf A, Fagius J, Carlson K, Åkerfeldt T, Granberg T, Larsson E, Burman J. Sustained remission in multiple sclerosis after hematopoietic stem cell transplantation. Acta Neurol Scand 2019; 140:320-327. [PMID: 31297793 DOI: 10.1111/ane.13147] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 06/24/2019] [Accepted: 07/03/2019] [Indexed: 01/21/2023]
Abstract
OBJECTIVES To determine whether treatment with autologous hematopoietic stem cell transplantation (HSCT) can induce sustained complete remission in patients with multiple sclerosis (MS). MATERIAL AND METHODS Case series of patients with relapsing-remitting MS (n = 10) treated at a single center between 2004 and 2007 and followed up for 10 years. The patients were treated with a BEAM/ATG conditioning regimen (n = 9) or a cyclophosphamide/ATG conditioning regimen (n = 1) followed by infusion of unmanipulated autologous hematopoietic stem cells. The primary endpoint was sustained complete remission. Sustained complete remission was defined as "no evidence of disease activity-4," sustained for a period of at least 5 years without any ongoing disease-modifying treatment. Furthermore, MS was considered as "resolved" if intrathecal IgG production and cerebrospinal fluid neurofilament light levels were normalized as well. RESULTS Five out of 10 patients were in sustained complete remission at the end of the study. In three of them, MS was resolved. CONCLUSIONS Our data demonstrate that sustained complete remission after autologous HSCT for MS is possible.
Collapse
Affiliation(s)
- Andreas Tolf
- Department of Neuroscience Uppsala University Uppsala Sweden
| | - Jan Fagius
- Department of Neuroscience Uppsala University Uppsala Sweden
| | - Kristina Carlson
- Department of Medical Sciences Uppsala University Uppsala Sweden
| | - Torbjörn Åkerfeldt
- Section of Clinical Chemistry and Pharmacology Uppsala University Hospital Uppsala Sweden
| | - Tobias Granberg
- Department of Clinical Neuroscience Karolinska Institutet Stockholm Sweden
- Division of Neuroradiology, Department of Radiology Karolinska University Hospital Stockholm Sweden
| | - Elna‐Marie Larsson
- Department of Surgical Sciences/Radiology Uppsala University Uppsala Sweden
| | - Joachim Burman
- Department of Neuroscience Uppsala University Uppsala Sweden
| |
Collapse
|
23
|
Largey F, Jelcic I, Sospedra M, Heesen C, Martin R, Jelcic I. Effects of natalizumab therapy on intrathecal antiviral antibody responses in MS. NEUROLOGY-NEUROIMMUNOLOGY & NEUROINFLAMMATION 2019; 6:6/6/e621. [PMID: 31554671 PMCID: PMC6807967 DOI: 10.1212/nxi.0000000000000621] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 07/31/2019] [Indexed: 12/25/2022]
Abstract
Objective To investigate the effects of natalizumab (NAT) treatment on intrathecally produced antiviral antibodies in MS. Methods We performed a longitudinal, observational study analyzing both serum and CSF samples collected before and during NAT treatment for antibodies against measles, rubella, mumps, influenza, entero, herpes, and polyoma viruses, including JC polyomavirus (JCV) and its nearest homologue BK polyomavirus (BKV), and bacterial control antigens by ELISA to determine the antigen-specific CSF antibody index (CAI). CAI ≥1.5 indicated intrathecal synthesis of antigen-specific antibodies. Oligoclonal bands (OCBs) by isoelectric focusing and total IgG, IgM, and IgA by immunonephelometry were analyzed additionally. Results Intrathecal synthesis of JCV- and BKV-specific IgG was detected in 20% of patients with MS at baseline and was lost significantly more frequently during NAT treatment compared with other intrathecal antiviral and antibacterial antibody reactivities. Peripheral JCV- and BKV-specific antibody responses persisted, and no cross-reactivity between JCV- and BKV-specific CSF antibodies was found. Intrathecal production of antibodies against measles, rubella, and zoster antigens (MRZ reaction) was most prevalent and persisted (73.3% before vs 66.7% after 1 year of NAT therapy). CSF OCBs also persisted (93.3% vs 80.0%), but total CSF IgG and IgM levels declined significantly. Conclusions These data indicate that JCV-specific antibodies are produced intrathecally in a minority of patients with MS, and NAT treatment affects the intrathecal humoral immune response against JCV relatively specifically compared with other neurotropic viruses. Further studies are needed to determine whether this effect translates to higher risk of progressive multifocal leukoencephalopathy development.
Collapse
Affiliation(s)
- Fabienne Largey
- From the Neuroimmunology and Multiple Sclerosis Research Section (F.L., Ivan Jelcic, M.S., R.M., Ilijas Jelcic), Department of Neurology, University Hospital of Zurich, Switzerland; and Institute for Neuroimmunology and Multiple Sclerosis (inims) (C.H.), Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ivan Jelcic
- From the Neuroimmunology and Multiple Sclerosis Research Section (F.L., Ivan Jelcic, M.S., R.M., Ilijas Jelcic), Department of Neurology, University Hospital of Zurich, Switzerland; and Institute for Neuroimmunology and Multiple Sclerosis (inims) (C.H.), Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Mireia Sospedra
- From the Neuroimmunology and Multiple Sclerosis Research Section (F.L., Ivan Jelcic, M.S., R.M., Ilijas Jelcic), Department of Neurology, University Hospital of Zurich, Switzerland; and Institute for Neuroimmunology and Multiple Sclerosis (inims) (C.H.), Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christoph Heesen
- From the Neuroimmunology and Multiple Sclerosis Research Section (F.L., Ivan Jelcic, M.S., R.M., Ilijas Jelcic), Department of Neurology, University Hospital of Zurich, Switzerland; and Institute for Neuroimmunology and Multiple Sclerosis (inims) (C.H.), Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Roland Martin
- From the Neuroimmunology and Multiple Sclerosis Research Section (F.L., Ivan Jelcic, M.S., R.M., Ilijas Jelcic), Department of Neurology, University Hospital of Zurich, Switzerland; and Institute for Neuroimmunology and Multiple Sclerosis (inims) (C.H.), Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ilijas Jelcic
- From the Neuroimmunology and Multiple Sclerosis Research Section (F.L., Ivan Jelcic, M.S., R.M., Ilijas Jelcic), Department of Neurology, University Hospital of Zurich, Switzerland; and Institute for Neuroimmunology and Multiple Sclerosis (inims) (C.H.), Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| |
Collapse
|
24
|
Larsson D, Åkerfeldt T, Carlson K, Burman J. Intrathecal immunoglobulins and neurofilament light after autologous haematopoietic stem cell transplantation for multiple sclerosis. Mult Scler 2019; 26:1351-1359. [PMID: 31347948 DOI: 10.1177/1352458519863983] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Oligoclonal bands (OCB) are widely believed to be stable over time and rarely affected by disease-modifying treatment in MS. It is presently unknown how intrathecal immunoglobulin production and other cerebrospinal fluid (CSF) biomarkers are impacted by a highly efficacious procedure such as autologous haematopoietic stem cell transplantation (aHSCT). OBJECTIVE To describe the evolution of intrathecal immunoglobulin and neurofilament light (NFL) over time in MS patients treated with aHSCT. METHODS In this retrospective study, available data from previously made CSF investigations in 46 patients treated with aHSCT were analysed. RESULTS After a median follow-up time of 745 days, immunoglobulin G (IgG) OCB remained detectable in 74% of patients, the proportion of patients with a pathological IgG index went down from 70% to 46%, and the proportion of patients with a pathological NFL went down from 72% to 24%. In patients with follow-up time >1500 days, IgG OCB were detectable in 50% of patients, 14% had a pathological IgG index and none a pathological NFL. CONCLUSIONS Intrathecal immunoglobulin production and NFL were lower after treatment with aHSCT, decreased over time and were normalised in a significant portion of patients. This challenges the notion that OCB are unaffected by therapeutic intervention in MS.
Collapse
Affiliation(s)
- Diane Larsson
- Department of Neurosciences, Uppsala University, Uppsala, Sweden
| | | | - Kristina Carlson
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Joachim Burman
- Department of Neuroscience, Uppsala University, Uppsala, Sweden
| |
Collapse
|
25
|
Jarius S, Haas J, Paul F, Wildemann B. Myelinoclastic diffuse sclerosis (Schilder's disease) is immunologically distinct from multiple sclerosis: results from retrospective analysis of 92 lumbar punctures. J Neuroinflammation 2019; 16:51. [PMID: 30819213 PMCID: PMC6396538 DOI: 10.1186/s12974-019-1425-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 01/31/2019] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Myelinoclastic diffuse sclerosis (MDS; also termed Schilder's disease) is a rare inflammatory demyelinating disorder of the central nervous system characterised by demyelination of vast areas of the white matter. It is unclear whether MDS is a variant of multiple sclerosis (MS) or a disease entity in its own right. OBJECTIVE To compare the cerebrospinal fluid (CSF) features of MDS with those of MS. METHODS Retrospective analysis of the CSF profile of all patients with MDS reported in the medical literature between 1960 and 2018. RESULTS The most striking finding was a substantial lack of oligoclonal bands (OCBs) in MDS, which were absent in at least 77% (30/39) of all lumbar punctures (LP) in the total cohort and in 86% in the subgroup of patients with normal very long-chain fatty acid serum ratios (VLCFA). Almost all cases published in the past 15 years were negative for OCBs. These findings are in contrast to MS, in which OCBs are present in up to 98% of cases (p < 0.00001 when compared with reference works in MS; both in adult and in pediatric patients). CSF pleocytosis was absent in at least 79% (46/58) of all LP (p < 0.0001 vs. MS) and in 92% (24/26) of LPs in the VLCFA-tested subgroup. CSF total protein levels were elevated in 56% of all LPs (p < 0.0001 vs. MS) and in 63% of LPs in the VLCFA-tested subgroup and were often higher than in typical MS (> 100 mg/dL in 13/22; up to 220 mg/dL). EBV serum antibodies, which are present in virtually all patients with MS, and the so-called MRZ (measles/rubella/zoster) reaction, a highly specific marker of MS, were absent in all of the few patients tested. In addition, we discuss further differences between MS and MDS, taking into account also Schilder's original comprehensive case description from 1912. CONCLUSION In the majority of patients diagnosed with MDS, CSF features differ significantly from those typically found in MS and are more similar to those previously reported in patients with myelin oligodendrocyte glycoprotein-immunoglobulin G (IgG)-positive encephalomyelitis, aquaporin-4-IgG-positive neuromyelitis optica spectrum disorders or Baló's concentric sclerosis. Our data suggest that MDS and MS are immunopathologically distinct entities in the majority of cases.
Collapse
Affiliation(s)
- S Jarius
- Molecular Neuroimmunology Group, Department of Neurology, University of Heidelberg, Heidelberg, Germany.
| | - J Haas
- Molecular Neuroimmunology Group, Department of Neurology, University of Heidelberg, Heidelberg, Germany
| | - F Paul
- NeuroCure Clinical Research Center, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Department of Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Clinical and Experimental Multiple Sclerosis Research Center, Department of Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Experimental and Clinical Research Center, Max Delbrueck Center for Molecular Medicine, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - B Wildemann
- Molecular Neuroimmunology Group, Department of Neurology, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
26
|
Giotaki I, Lange P, Weber MS. Modification of CSF findings in multiple sclerosis in the era of rapidly expanding treatment options. Expert Rev Neurother 2019; 19:277-283. [PMID: 30786785 DOI: 10.1080/14737175.2019.1583557] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
BACKGROUND The detection of cerebrospinal fluid (CSF)-specific oligoclonal bands (OCB) as well as an elevated antibody production directed against neurotrophic viruses remain hallmark findings in multiple sclerosis (MS). In general, individual patients show a unique pattern of OCB, which is believed to persist over time. Here, the authors revisited this assumption and investigated to what extent common anti-inflammatory MS medications can alter the level of immunoglobulins produced within the CSF. METHODS The authors analyzed three patients and compared CSF findings longitudinally. Two of these patients received corticosteroids, either systemically or intrathecally, the third patient was treated continuously with natalizumab. RESULTS In line with reports from other groups, the authors observed that continuous natalizumab treatment dampened the intrathecal immunoglobulin production in our patient. Exceeding this anticipated scenario, the authors detected that the continued administration of corticosteroids similarly reduced the production of CSF immunoglobulins, down to a level at which these parameters are considered normal. CONCLUSION These observations suggest that inflammatory CSF findings are more accessible to immunomodulatory MS treatment than previously thought, and that accordingly, their significance may transition from a sole diagnostic finding to a valuable therapeutic biomarker which may help to assess effective targeting of CNS-established inflammation in MS.
Collapse
Affiliation(s)
- Ioanna Giotaki
- a Department of Neurology , University Medical Center , Göttingen , Germany
| | - Peter Lange
- a Department of Neurology , University Medical Center , Göttingen , Germany
| | - Martin S Weber
- a Department of Neurology , University Medical Center , Göttingen , Germany.,b Institute of Neuropathology , University Medical Center , Göttingen , Germany
| |
Collapse
|
27
|
Baker D, Pryce G, Herrod SS, Schmierer K. Potential mechanisms of action related to the efficacy and safety of cladribine. Mult Scler Relat Disord 2019; 30:176-186. [PMID: 30785074 DOI: 10.1016/j.msard.2019.02.018] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 02/09/2019] [Accepted: 02/12/2019] [Indexed: 12/31/2022]
Abstract
Oral cladribine is a novel treatment for relapsing multiple sclerosis (MS). This appears to be a semi-selective immune-reconstitution therapy that induces long-term therapy from short treatment cycles. It has a relatively good safety profile that currently does not require extensive monitoring associated with some continuous immunosuppressive and relatively non-selective immune reconstitution therapies. The efficacy and safety of cladribine relates to its particular physicochemical properties, the function of the lymphocyte subsets that are selectively targeted by the drug and the repopulation kinetics of these subsets. As such, there is marked and long-term depletion of memory B cell subsets, which probably relates to the therapeutic efficacy. This is also coupled with a more limited, but likewise long-term, depletion of CD4 T subsets. There is limited depletion of cells of the innate immune system and modest effects on CD8 and probably plasma cells, which provide immediate and durable protection from infection. Targeting of CD4 T regulatory cells, CD8 T suppressor cells and regulatory B cell subsets appears more limited as these populations recover rapidly and so repopulating pathogenic cells re-emerge into a regulatory environment. This appears to lead to re-establishment of immune-tolerance that produces long-term control of MS. Although this hypothesis contains a number of unknown details, it is based on knowledge about the biology of cladribine, basic immunology and the effects of other high-efficacy B and T cell depleting agents that exhibit stereotyped repopulation behaviours. These concepts are relatively simple to interrogate, and can be modified as new knowledge about the durability of disease control and safety with cladribine emerges.
Collapse
Affiliation(s)
- David Baker
- BartsMS, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, 4 Newark Street, London E1 2AT, United Kingdom.
| | - Gareth Pryce
- BartsMS, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, 4 Newark Street, London E1 2AT, United Kingdom
| | - Samuel S Herrod
- BartsMS, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, 4 Newark Street, London E1 2AT, United Kingdom
| | - Klaus Schmierer
- BartsMS, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, 4 Newark Street, London E1 2AT, United Kingdom; Clinical Board:Medicine (Neuroscience), The Royal London Hospital, Barts Health NHS Trust, London E1 1BB, United Kingdom
| |
Collapse
|
28
|
Abstract
B cells play a vital function in multiple sclerosis (MS) pathogenesis through an array of effector functions. All currently approved MS disease-modifying therapies alter the frequency, phenotype, or homing of B cells in one way or another. The importance of this mechanism of action has been reinforced with the successful development and clinical testing of B-cell-depleting monoclonal antibodies that target the CD20 surface antigen. Ocrelizumab, a humanized anti-CD20 monoclonal antibody, was approved by the Food and Drug Administration (FDA) in March 2017 after pivotal trials showed dramatic reductions in inflammatory disease activity in relapsing MS as well as lessening of disability progression in primary progressive MS. These and other clinical studies place B cells at the center of the inflammatory cascade in MS and provide a launching point for development of therapies that target selective pathogenic B-cell populations.
Collapse
Affiliation(s)
- Joseph J Sabatino
- Multiple Sclerosis Center, Department of Neurology, University of California, San Francisco, California 94158
| | - Scott S Zamvil
- Multiple Sclerosis Center, Department of Neurology, University of California, San Francisco, California 94158
| | - Stephen L Hauser
- Multiple Sclerosis Center, Department of Neurology, University of California, San Francisco, California 94158
| |
Collapse
|
29
|
Giovannoni G, Hawkes C, Levy M, Lechner-Scott J, Waubant E. Should our treatment target in MS include the intrathecal plasma cell response? Mult Scler Relat Disord 2019; 27:A1-A2. [PMID: 30642567 DOI: 10.1016/j.msard.2018.12.039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
30
|
Negron A, Robinson RR, Stüve O, Forsthuber TG. The role of B cells in multiple sclerosis: Current and future therapies. Cell Immunol 2018; 339:10-23. [PMID: 31130183 DOI: 10.1016/j.cellimm.2018.10.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 10/19/2018] [Accepted: 10/20/2018] [Indexed: 02/07/2023]
Abstract
While it was long held that T cells were the primary mediators of multiple sclerosis (MS) pathogenesis, the beneficial effects observed in response to treatment with Rituximab (RTX), a monoclonal antibody (mAb) targeting CD20, shed light on a key contributor to MS that had been previously underappreciated: B cells. This has been reaffirmed by results from clinical trials testing the efficacy of subsequently developed B cell-depleting mAbs targeting CD20 as well as studies revisiting the effects of previous disease-modifying therapies (DMTs) on B cell subsets thought to modulate disease severity. In this review, we summarize current knowledge regarding the complex roles of B cells in MS pathogenesis and current and potential future B cell-directed therapies.
Collapse
Affiliation(s)
- Austin Negron
- Department of Biology, University of Texas at San Antonio, TX 78249, USA
| | - Rachel R Robinson
- Department of Biology, University of Texas at San Antonio, TX 78249, USA
| | - Olaf Stüve
- Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, TX, USA; Neurology Section, VA North Texas Health Care System, Medical Service, Dallas, TX, USA
| | | |
Collapse
|
31
|
Oligoclonal bands in multiple sclerosis; Functional significance and therapeutic implications. Does the specificity matter? Mult Scler Relat Disord 2018; 25:131-137. [DOI: 10.1016/j.msard.2018.07.030] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 07/13/2018] [Accepted: 07/16/2018] [Indexed: 01/24/2023]
|
32
|
Simon M, Ipek R, Homola GA, Rovituso DM, Schampel A, Kleinschnitz C, Kuerten S. Anti-CD52 antibody treatment depletes B cell aggregates in the central nervous system in a mouse model of multiple sclerosis. J Neuroinflammation 2018; 15:225. [PMID: 30098594 PMCID: PMC6086993 DOI: 10.1186/s12974-018-1263-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 07/30/2018] [Indexed: 02/07/2023] Open
Abstract
Background Multiple sclerosis (MS) is a chronic autoimmune disease of the central nervous system (CNS) for which several new treatment options were recently introduced. Among them is the monoclonal anti-CD52 antibody alemtuzumab that depletes mainly B cells and T cells in the immune periphery. Considering the ongoing controversy about the involvement of B cells and in particular the formation of B cell aggregates in the brains of progressive MS patients, an in-depth understanding of the effects of anti-CD52 antibody treatment on the B cell compartment in the CNS itself is desirable. Methods We used myelin basic protein (MBP)-proteolipid protein (PLP)-induced experimental autoimmune encephalomyelitis (EAE) in C57BL/6 (B6) mice as B cell-dependent model of MS. Mice were treated intraperitoneally either at the peak of EAE or at 60 days after onset with 200 μg murine anti-CD52 vs. IgG2a isotype control antibody for five consecutive days. Disease was subsequently monitored for 10 days. The antigen-specific B cell/antibody response was measured by ELISPOT and ELISA. Effects on CNS infiltration and B cell aggregation were determined by immunohistochemistry. Neurodegeneration was evaluated by Luxol Fast Blue, SMI-32, and Olig2/APC staining as well as by electron microscopy and phosphorylated heavy neurofilament serum ELISA. Results Treatment with anti-CD52 antibody attenuated EAE only when administered at the peak of disease. While there was no effect on the production of MP4-specific IgG, the treatment almost completely depleted CNS infiltrates and B cell aggregates even when given as late as 60 days after onset. On the ultrastructural level, we observed significantly less axonal damage in the spinal cord and cerebellum in chronic EAE after anti-CD52 treatment. Conclusion Anti-CD52 treatment abrogated B cell infiltration and disrupted existing B cell aggregates in the CNS. Electronic supplementary material The online version of this article (10.1186/s12974-018-1263-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Micha Simon
- Department of Anatomy and Cell Biology, University of Würzburg, Würzburg, Germany
| | - Rojda Ipek
- Department of Anatomy and Cell Biology, University of Würzburg, Würzburg, Germany
| | - György A Homola
- Department of Diagnostic and Interventional Neuroradiology, University Hospital Würzburg, Würzburg, Germany
| | - Damiano M Rovituso
- Department of Anatomy and Cell Biology, University of Würzburg, Würzburg, Germany
| | - Andrea Schampel
- Department of Anatomy and Cell Biology, University of Würzburg, Würzburg, Germany
| | - Christoph Kleinschnitz
- Department of Neurology, University Hospital Würzburg, Würzburg, Germany.,Department of Neurology, University Hospital Essen, Essen, Germany
| | - Stefanie Kuerten
- Department of Anatomy and Cell Biology, University of Würzburg, Würzburg, Germany. .,Institute of Anatomy and Cell Biology, Friedrich Alexander University Erlangen-Nürnberg (FAU), Krankenhausstr. 9, 91054, Erlangen, Bavaria, Germany.
| |
Collapse
|
33
|
Bonnan M, Gianoli-Guillerme M, Courtade H, Demasles S, Krim E, Marasescu R, Dréau H, Debeugny S, Barroso B. Estimation of intrathecal IgG synthesis: simulation of the risk of underestimation. Ann Clin Transl Neurol 2018; 5:524-537. [PMID: 29761116 PMCID: PMC5945966 DOI: 10.1002/acn3.548] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 01/14/2018] [Accepted: 02/11/2018] [Indexed: 12/15/2022] Open
Abstract
Objective The low level of passively diffused IgG through the blood–brain barrier is sufficient to blur the estimation of intrathecal IgG synthesis (ITS). Therefore, this estimation requires a mathematical calculation derived from empirical laws, but the range of normal values in healthy controls is wide enough to prevent a precise calculation. This study investigated the precision of various methods of ITS estimations and their application to two clinical situations: plasma exchange and immune suppression targeting ITS. Methods Based on a mathematical model of ITS, we constructed a population of healthy controls and applied a tunable ITS. Results We demonstrate the following results: underestimation of ITS is common at individual level but true ITS is well fitted by cohorts; QIgG increases after plasma exchange; IgGLoc calculation based on Qlim falsely increases when QAlb decreases; the sample size required to demonstrate a decrease in ITS increases exponentially with larger QAlb. Interpretation Studies evaluating changes in ITS level should be adjusted to QAlb. Low amounts of ITS could be largely underestimated.
Collapse
Affiliation(s)
- Mickael Bonnan
- Service de neurologie Centre Hospitalier de Pau 4 bd Hauterive Pau 64046 France
| | | | - Henri Courtade
- Biologie médicale Centre Hospitalier de Pau 4 bd Hauterive Pau 64046 France
| | - Stéphanie Demasles
- Service de neurologie Centre Hospitalier de Pau 4 bd Hauterive Pau 64046 France
| | - Elsa Krim
- Service de neurologie Centre Hospitalier de Pau 4 bd Hauterive Pau 64046 France
| | - Raluca Marasescu
- Service de neurologie Centre Hospitalier de Pau 4 bd Hauterive Pau 64046 France
| | - Hervé Dréau
- Unité de recherche clinique Centre Hospitalier de Pau 4 bd Hauterive Pau 64046 France
| | - Stéphane Debeugny
- Unité de recherche clinique Centre Hospitalier de Pau 4 bd Hauterive Pau 64046 France
| | - Bruno Barroso
- Service de neurologie Centre Hospitalier de Pau 4 bd Hauterive Pau 64046 France
| |
Collapse
|
34
|
Jarius S, Würthwein C, Behrens JR, Wanner J, Haas J, Paul F, Wildemann B. Baló's concentric sclerosis is immunologically distinct from multiple sclerosis: results from retrospective analysis of almost 150 lumbar punctures. J Neuroinflammation 2018; 15:22. [PMID: 29347989 PMCID: PMC5774135 DOI: 10.1186/s12974-017-1043-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 12/14/2017] [Indexed: 01/01/2023] Open
Abstract
Background Baló’s concentric sclerosis (BCS) is a rare inflammatory demyelinating disorder of the central nervous system characterised by concentric layers of demyelination. It is unclear whether BCS is a variant of multiple sclerosis (MS) or a disease entity in its own right. Objective To compare the cerebrospinal fluid (CSF) features of BCS to those of MS. Methods Retrospective analysis of the CSF profile of all patients with BCS reported in the medical literature between 1980 and 2017. Results In total, the results of 146 lumbar punctures (LP) in 132 patients were analysed. The most striking finding was a lack of CSF-restricted oligoclonal bands (OCB) in 66% (56/85) of all LP in the total BCS group, in 74% (14/19) in the subgroup of patients with both MRI and histological evidence for BCS, and in 82% (18/22) in the subgroup of patients with highest radiological confidence (high MRI quality, ≥ 3 layers of demyelination). OCB disappeared in 1/2 initially OCB-positive patients. These findings are in stark contrast to MS, in which OCB are present in ≥ 95% of patients and are thought to remain stably detectable over the entire course of disease (p < 0.000001). OCB frequency was low both in ‘historic’ patients (1980–2009; 37%) and in more recent patients (2010–2017; 31%). OCB-positive and OCB-negative patients did not differ significantly with regard to age, sex, disease duration, number of Baló-like lesions on MRI, number of relapses, treatment or final outcome. In accordance with the high rate of OCB negativity, Link’s IgG index was negative in 63% of all tested samples (p < 0.000001 vs. MS). CSF pleocytosis was present in 28% (27/96; p < 0.000001 vs. MS) and elevated CSF total protein levels in 41% (31/76) of samples. Conclusion OCB and IgG index frequencies in BCS are much more similar to those reported in neuromyelitis optica or myelin oligodendrocyte glycoprotein antibody-associated encephalomyelitis than to those in MS. Our findings suggest that in most cases, BCS-like lesions denote the presence of a disease entity immunologically distinct from MS. In addition, we provide data on the demographics, clinical course and radiological features of BCS based on the largest cohort analysed to date.
Collapse
Affiliation(s)
- S Jarius
- Molecular Neuroimmunology Group, Department of Neurology, University of Heidelberg, Heidelberg, Germany.
| | - C Würthwein
- Molecular Neuroimmunology Group, Department of Neurology, University of Heidelberg, Heidelberg, Germany
| | - J R Behrens
- NeuroCure Clinical Research Center, Charité-Universitätsmedizin Berlin, Berlin, Germany.,Department of Neurology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - J Wanner
- NeuroCure Clinical Research Center, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - J Haas
- Molecular Neuroimmunology Group, Department of Neurology, University of Heidelberg, Heidelberg, Germany
| | - F Paul
- NeuroCure Clinical Research Center, Charité-Universitätsmedizin Berlin, Berlin, Germany.,Clinical and Experimental Multiple Sclerosis Research Center, Department of Neurology, Charité-Universitätsmedizin Berlin, Berlin, Germany.,Experimental and Clinical Research Center, Max Delbrueck Center for Molecular Medicine and Charité Universitätsmedizin Berlin, Berlin, Germany
| | - B Wildemann
- Molecular Neuroimmunology Group, Department of Neurology, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
35
|
Eggers EL, Michel BA, Wu H, Wang SZ, Bevan CJ, Abounasr A, Pierson NS, Bischof A, Kazer M, Leitner E, Greenfield AL, Demuth S, Wilson MR, Henry RG, Cree BA, Hauser SL, von Büdingen HC. Clonal relationships of CSF B cells in treatment-naive multiple sclerosis patients. JCI Insight 2017; 2:92724. [PMID: 29202449 DOI: 10.1172/jci.insight.92724] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 10/17/2017] [Indexed: 12/29/2022] Open
Abstract
A role of B cells in multiple sclerosis (MS) is well established, but there is limited understanding of their involvement during active disease. Here, we examined cerebrospinal fluid (CSF) and peripheral blood (PB) B cells in treatment-naive patients with MS or high-risk clinically isolated syndrome. Using flow cytometry, we found increased CSF lymphocytes with a disproportionate increase of B cells compared with T cells in patients with gadolinium-enhancing (Gd+) lesions on brain MRI. Ig gene heavy chain variable region (Ig-VH) repertoire sequencing of CSF and PB B cells revealed clonal relationships between intrathecal and peripheral B cell populations, which could be consistent with migration of B cells to and activation in the CNS in active MS. In addition, we found evidence for bystander immigration of B cells from the periphery, which could be supported by a CXCL13 gradient between CSF and blood. Understanding what triggers B cells to migrate and home to the CNS may ultimately aid in the rational selection of therapeutic strategies to limit progression in MS.
Collapse
|
36
|
Jarius S, König FB, Metz I, Ruprecht K, Paul F, Brück W, Wildemann B. Pattern II and pattern III MS are entities distinct from pattern I MS: evidence from cerebrospinal fluid analysis. J Neuroinflammation 2017; 14:171. [PMID: 28851393 PMCID: PMC5576197 DOI: 10.1186/s12974-017-0929-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 07/26/2017] [Indexed: 01/01/2023] Open
Abstract
Background The diagnosis of multiple sclerosis (MS) is currently based solely on clinical and magnetic resonance imaging features. However, histopathological studies have revealed four different patterns of lesion pathology in patients diagnosed with MS, suggesting that MS may be a pathologically heterogeneous syndrome rather than a single disease entity. Objective The aim of this study was to investigate whether patients with pattern I MS differ from patients with pattern II or III MS with regard to cerebrospinal fluid (CSF) findings, especially with reference to intrathecal IgG synthesis, which is found in most patients with MS but is frequently missing in MS mimics such as aquaporin-4-IgG-positive neuromyelitis optica spectrum disorders and myelin oligodendrocyte glycoprotein-IgG-positive encephalomyelitis. Methods Findings from 68 lumbar punctures in patients who underwent brain biopsy as part of their diagnostic work-up and who could be unequivocally classified as having pattern I, pattern II or pattern III MS were analysed retrospectively. Results Oligoclonal bands (OCBs) were present in 88.2% of samples from pattern I MS patients but in only 27% of samples from patients with pattern II or pattern III MS (P < 0.00004); moreover, OCBs were present only transiently in some of the latter patients. A polyspecific intrathecal IgG response to measles, rubella and/or varicella zoster virus (so-called MRZ reaction) was previously reported in 60–80% of MS patients, but was absent in all pattern II or III MS patients tested (P < 0.00001 vs. previous cohorts). In contrast, the albumin CSF/serum ratio (QAlb), a marker of blood–CSF barrier function, was more frequently elevated in samples from pattern II and III MS patients (P < 0.002). Accordingly, QAlb values and albumin and total protein levels were higher in pattern II and III MS samples than in pattern I MS samples (P < 0.005, P < 0.009 and P < 0.006, respectively). Conclusions Patients with pattern II or pattern III MS differ significantly from patients with pattern I MS as well as from previous, histologically non-classified MS cohorts with regard to both intrathecal IgG synthesis and blood–CSF barrier function. Our findings strongly corroborate the notion that pattern II and pattern III MS are entities distinct from pattern I MS.
Collapse
Affiliation(s)
- S Jarius
- Molecular Neuroimmunology Group, Department of Neurology, University of Heidelberg, Heidelberg, Germany.
| | - F B König
- Department of Neuropathology, University of Göttingen, Göttingen, Germany
| | - I Metz
- Department of Neuropathology, University of Göttingen, Göttingen, Germany
| | - K Ruprecht
- Department of Neurology, Charité University Medicine Berlin, Berlin, Germany
| | - F Paul
- Department of Neurology, Charité University Medicine Berlin, Berlin, Germany.,NeuroCure Clinical Research Center and Clinical and Experimental Multiple Sclerosis Research Center, Berlin, Germany
| | - W Brück
- Department of Neuropathology, University of Göttingen, Göttingen, Germany.
| | - B Wildemann
- Molecular Neuroimmunology Group, Department of Neurology, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
37
|
Staun-Ram E, Miller A. Effector and regulatory B cells in Multiple Sclerosis. Clin Immunol 2017; 184:11-25. [PMID: 28461106 DOI: 10.1016/j.clim.2017.04.014] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 04/27/2017] [Indexed: 12/21/2022]
Abstract
The role of B cells in the pathogenesis of Multiple Sclerosis (MS), an autoimmune neurodegenerative disease, is becoming eminent in recent years, but the specific contribution of the distinct B cell subsets remains to be elucidated. Several B cell subsets have shown regulatory, anti-inflammatory capacities in response to stimuli in vitro, as well as in the animal model of MS: Experimental Autoimmune Encephalomyelitis (EAE). However, the functional role of the B regulatory cells (Bregs) in vivo and specifically in the human disease is yet to be clarified. In the present review, we have summarized the updated information on the roles of effector and regulatory B cells in MS and the immune-modulatory effects of MS therapeutic agents on their phenotype and function.
Collapse
Affiliation(s)
- Elsebeth Staun-Ram
- Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Ariel Miller
- Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel; Neuroimmunology Unit & Multiple Sclerosis Center, Carmel Medical Center, Haifa, Israel.
| |
Collapse
|
38
|
Feng JJ, Ontaneda D. Treating primary-progressive multiple sclerosis: potential of ocrelizumab and review of B-cell therapies. Degener Neurol Neuromuscul Dis 2017; 7:31-45. [PMID: 30050376 PMCID: PMC6053100 DOI: 10.2147/dnnd.s100096] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Multiple sclerosis (MS) therapy has evolved rapidly with an increased availability of several immunomodulating therapies over the past two decades. Disease-modifying therapies have proven to be effective in treating relapse-remitting MS (RRMS). However, clinical trials involving some of the same agents for secondary-progressive and primary-progressive MS (SPMS and PPMS) have been largely negative. The pathogenesis of progressive MS remains unclear, but B-cells may play a significant role in chronic compartmentalized inflammation, likely contributing to disease progression. Biologics targeted at B-cells, such as rituximab, are effective in treating RRMS. Ocrelizumab is a humanized monoclonal antibody to CD20+ B-cells that has shown positive results in PPMS with a significant reduction in disease progression. This review aims to discuss in detail the involvement of B-cells in MS pathogenesis, current progress of currently available and investigational biologics, with focus on ocrelizumab, and future prospects for B-cell therapy in PPMS.
Collapse
Affiliation(s)
| | - Daniel Ontaneda
- Mellen Center for Multiple Sclerosis, Cleveland Clinic, Cleveland, OH, USA,
| |
Collapse
|
39
|
Gastaldi M, Zardini E, Franciotta D. An update on the use of cerebrospinal fluid analysis as a diagnostic tool in multiple sclerosis. Expert Rev Mol Diagn 2016; 17:31-46. [DOI: 10.1080/14737159.2017.1262260] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Matteo Gastaldi
- Laboratory of Neuroimmunology, and Dept. of General Neurology, C. Mondino National Neurological Institute, University of Pavia, Pavia, Italy
| | - Elisabetta Zardini
- Laboratory of Neuroimmunology, and Dept. of General Neurology, C. Mondino National Neurological Institute, University of Pavia, Pavia, Italy
| | - Diego Franciotta
- Laboratory of Neuroimmunology, and Dept. of General Neurology, C. Mondino National Neurological Institute, University of Pavia, Pavia, Italy
| |
Collapse
|
40
|
Abstract
Over the last decade, evidence condensed that B cells, B cell-derived plasma cells and antibodies play a key role in the pathogenesis and progression of multiple sclerosis (MS). In many patients with MS, peripheral B cells show signs of chronic activation; within the cerebrospinal fluid clonally expanded plasma cells produce oligoclonal immunoglobulins, which remain a hallmark diagnostic finding. Confirming the clinical relevance of these immunological alterations, recent trials testing anti-CD20-mediated depletion of peripheral B cells showed an instantaneous halt in development of new central nervous system lesions and occurrence of relapses. Notwithstanding this enormous success, not all B cells or B cell subsets may contribute in a pathogenic manner, and may, in contrast, exert anti-inflammatory and, thus, therapeutically desirable properties in MS. Naïve B cells, in MS patients similar to healthy controls, are a relevant source of regulatory cytokines such as interleukin-10, which dampens the activity of other immune cells and promotes recovery from acute disease flares in experimental MS models. In this review, we describe in detail pathogenic but also regulatory properties of B and plasma cells in the context of MS and its animal model experimental autoimmune encephalomyelitis. In the second part, we review what impact current and future therapies may have on these B cell properties. Within this section, we focus on the highly encouraging data on anti-CD20 antibodies as future therapy for MS. Lastly, we discuss how B cell-directed therapy in MS could be possibly advanced even further in regard to efficacy and safety by integrating the emerging information on B cell regulation in MS into future therapeutic strategies.
Collapse
Affiliation(s)
- Silke Kinzel
- Department of Neuropathology, University Medical Center, Georg August University, Robert-Koch-Str. 40, 37099, Göttingen, Germany
| | - Martin S Weber
- Department of Neuropathology, University Medical Center, Georg August University, Robert-Koch-Str. 40, 37099, Göttingen, Germany.
- Department of Neurology, University Medical Center, 37075, Göttingen, Germany.
| |
Collapse
|
41
|
Bhise V, Dhib-Jalbut S. Further understanding of the immunopathology of multiple sclerosis: impact on future treatments. Expert Rev Clin Immunol 2016; 12:1069-89. [PMID: 27191526 DOI: 10.1080/1744666x.2016.1191351] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION The understanding of the immunopathogenesis of multiple sclerosis (MS) has expanded with more research into T-cell subtypes, cytokine contributors, B-cell participation, mitochondrial dysfunction, and more. Treatment options have rapidly expanded with three relatively recent oral therapy alternatives entering the arena. AREAS COVERED In the following review, we discuss current mechanisms of immune dysregulation in MS, how they relate to current treatments, and the impact these findings will have on the future of therapy. Expert commentary: The efficacy of these medications and understanding their mechanisms of actions validates the immunopathogenic mechanisms thought to underlie MS. Further research has exposed new targets, while new promising therapies have shed light on new aspects into the pathophysiology of MS.
Collapse
Affiliation(s)
- Vikram Bhise
- a Rutgers Biomedical and Health Sciences - Departments of Pediatrics , Robert Wood Johnson Medical School , New Brunswick , NJ , USA
| | - Suhayl Dhib-Jalbut
- b Rutgers Biomedical and Health Sciences - Departments of Neurology , Robert Wood Johnson Medical School , New Brunswick , NJ , USA
| |
Collapse
|
42
|
Sellebjerg F, Cadavid D, Steiner D, Villar LM, Reynolds R, Mikol D. Exploring potential mechanisms of action of natalizumab in secondary progressive multiple sclerosis. Ther Adv Neurol Disord 2016; 9:31-43. [PMID: 26788129 DOI: 10.1177/1756285615615257] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Multiple sclerosis (MS) is a common and chronic central nervous system (CNS) demyelinating disease and a leading cause of permanent disability. Patients most often present with a relapsing-remitting disease course, typically progressing over time to a phase of relentless advancement in secondary progressive MS (SPMS), for which approved disease-modifying therapies are limited. In this review, we summarize the pathophysiological mechanisms involved in the development of SPMS and the rationale and clinical potential for natalizumab, which is currently approved for the treatment of relapsing forms of MS, to exert beneficial effects in reducing disease progression unrelated to relapses in SPMS. In both forms of MS, active brain-tissue injury is associated with inflammation; but in SPMS, the inflammatory response occurs at least partly behind the blood-brain barrier and is followed by a cascade of events, including persistent microglial activation that may lead to chronic demyelination and neurodegeneration associated with irreversible disability. In patients with relapsing forms of MS, natalizumab therapy is known to significantly reduce intrathecal inflammatory responses which results in reductions in brain lesions and brain atrophy as well as beneficial effects on clinical measures, such as reduced frequency and severity of relapse and reduced accumulation of disability. Natalizumab treatment also reduces levels of cerebrospinal fluid chemokines and other biomarkers of intrathecal inflammation, axonal damage and demyelination, and has demonstrated the ability to reduce innate immune activation and intrathecal immunoglobulin synthesis in patients with MS. The efficacy of natalizumab therapy in SPMS is currently being investigated in a randomized, double-blind, placebo-controlled trial.
Collapse
Affiliation(s)
- Finn Sellebjerg
- Danish Multiple Sclerosis Center, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | | | | | - Luisa Maria Villar
- Department of Immunology, Ramón y Cajal University Hospital, Institute Ramón y Cajal for Biomedical Research, Madrid, Spain
| | - Richard Reynolds
- Division of Brain Sciences, Imperial College London, Hammersmith Hospital Campus, London, UK
| | | |
Collapse
|
43
|
Claes N, Fraussen J, Stinissen P, Hupperts R, Somers V. B Cells Are Multifunctional Players in Multiple Sclerosis Pathogenesis: Insights from Therapeutic Interventions. Front Immunol 2015; 6:642. [PMID: 26734009 PMCID: PMC4685142 DOI: 10.3389/fimmu.2015.00642] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 12/07/2015] [Indexed: 01/07/2023] Open
Abstract
Multiple sclerosis (MS) is a severe disease of the central nervous system (CNS) characterized by autoimmune inflammation and neurodegeneration. Historically, damage to the CNS was thought to be mediated predominantly by activated pro-inflammatory T cells. B cell involvement in the pathogenesis of MS was solely attributed to autoantibody production. The first clues for the involvement of antibody-independent B cell functions in MS pathology came from positive results in clinical trials of the B cell-depleting treatment rituximab in patients with relapsing-remitting (RR) MS. The survival of antibody-secreting plasma cells and decrease in T cell numbers indicated the importance of other B cell functions in MS such as antigen presentation, costimulation, and cytokine production. Rituximab provided us with an example of how clinical trials can lead to new research opportunities concerning B cell biology. Moreover, analysis of the antibody-independent B cell functions in MS has gained interest since these trials. Limited information is present on the effects of current immunomodulatory therapies on B cell functions, although effects of both first-line (interferon, glatiramer acetate, dimethyl fumarate, and teriflunomide), second-line (fingolimod, natalizumab), and even third-line (monoclonal antibody therapies) treatments on B cell subtype distribution, expression of functional surface markers, and secretion of different cytokines by B cells have been studied to some extent. In this review, we summarize the effects of different MS-related treatments on B cell functions that have been described up to now in order to find new research opportunities and contribute to the understanding of the pathogenesis of MS.
Collapse
Affiliation(s)
- Nele Claes
- Hasselt University, Biomedical Research Institute and Transnationale Universiteit Limburg, School of Life Sciences , Diepenbeek , Belgium
| | - Judith Fraussen
- Hasselt University, Biomedical Research Institute and Transnationale Universiteit Limburg, School of Life Sciences , Diepenbeek , Belgium
| | - Piet Stinissen
- Hasselt University, Biomedical Research Institute and Transnationale Universiteit Limburg, School of Life Sciences , Diepenbeek , Belgium
| | - Raymond Hupperts
- Department of Neuroscience, School of Mental Health and Neuroscience, Maastricht University, Maastricht, Netherlands; Department of Neurology, Academic MS Center Limburg, Zuyderland Medisch Centrum, Sittard, Netherlands
| | - Veerle Somers
- Hasselt University, Biomedical Research Institute and Transnationale Universiteit Limburg, School of Life Sciences , Diepenbeek , Belgium
| |
Collapse
|
44
|
Dalla Costa G, Passerini G, Messina MJ, Moiola L, Rodegher M, Colombo B, Locatelli M, Comi G, Furlan R, Martinelli V. Clinical significance of the number of oligoclonal bands in patients with clinically isolated syndromes. J Neuroimmunol 2015; 289:62-7. [DOI: 10.1016/j.jneuroim.2015.10.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Revised: 10/12/2015] [Accepted: 10/15/2015] [Indexed: 01/25/2023]
|
45
|
Intrathecal BCR transcriptome in multiple sclerosis versus other neuroinflammation: Equally diverse and compartmentalized, but more mutated, biased and overlapping with the proteome. Clin Immunol 2015; 160:211-25. [PMID: 26055752 DOI: 10.1016/j.clim.2015.06.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Revised: 05/28/2015] [Accepted: 06/01/2015] [Indexed: 12/22/2022]
Abstract
The mechanisms driving the intrathecal synthesis of IgG in multiple sclerosis (MS) are unknown. We combined high-throughput sequencing of transcribed immunoglobulin heavy-chain variable (IGHV) genes and mass spectrometry to chart the diversity and compartmentalization of IgG-producing B cells in the cerebrospinal fluid (CSF) of MS patients and controls with other neuroinflammatory diseases. In both groups, a few clones dominated the intrathecal IGHV transcriptome. In most MS patients and some controls, dominant transcripts matched the CSF IgG. The IGHV transcripts in CSF of MS patients frequently carried IGHV4 genes and had more replacement mutations compared to controls. In both groups, dominant IGHV transcripts were identified within clusters of clonally related B cells that had identical or related IGHV transcripts in the blood. These findings suggest more pronounced affinity maturation, but an equal degree of diversity and compartmentalization of the intrathecal B-cell response in MS compared to other neuroinflammatory diseases.
Collapse
|
46
|
Muto M, Mori M, Hiwasa T, Takiguchi M, Iwadate Y, Uzawa A, Uchida T, Masuda H, Sugimoto K, Kuwabara S. Novel serum autoantibodies against talin1 in multiple sclerosis: Possible pathogenetic roles of the antibodies. J Neuroimmunol 2015; 284:30-6. [PMID: 26025055 DOI: 10.1016/j.jneuroim.2015.05.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Revised: 04/21/2015] [Accepted: 05/04/2015] [Indexed: 10/23/2022]
Abstract
In the pathogenesis of multiple sclerosis (MS), B cell/antibody-related mechanisms have recently received attention. To investigate the role of autoantibody in MS, we performed SEREX which can identify autoantibody cyclopedically. We identified serum antibodies against cytoskeletal protein talin1, and the levels of whom were remarkably higher in 39 MS than 43 normal controls (P < 0.01) and 35 disease controls (P = 0.06), and in MS patients without oligoclonal bands than ones with them. Moreover, we found negative-correlations between serum anti-talin1 antibody and IgG index in MS (P = 0.03). Anti-talin1 antibody exists in MS patients' sera, which may have some protective factor.
Collapse
Affiliation(s)
- Mayumi Muto
- Department of Neurology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Masahiro Mori
- Department of Neurology, Graduate School of Medicine, Chiba University, Chiba, Japan.
| | - Takaki Hiwasa
- Department of Biochemistry and Genetics, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Masaki Takiguchi
- Department of Biochemistry and Genetics, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Yasuo Iwadate
- Department of Neurological Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Akiyuki Uzawa
- Department of Neurology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Tomohiko Uchida
- Department of Neurology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Hiroki Masuda
- Department of Neurology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Kazuo Sugimoto
- Department of Neurology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Satoshi Kuwabara
- Department of Neurology, Graduate School of Medicine, Chiba University, Chiba, Japan
| |
Collapse
|
47
|
Harrer A, Pilz G, Wipfler P, Oppermann K, Sellner J, Hitzl W, Haschke-Becher E, Afazel S, Rispens T, van der Kleij D, Trinka E, Kraus J. High interindividual variability in the CD4/CD8 T cell ratio and natalizumab concentration levels in the cerebrospinal fluid of patients with multiple sclerosis. Clin Exp Immunol 2015; 180:383-92. [PMID: 25603898 DOI: 10.1111/cei.12590] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Revised: 12/17/2014] [Accepted: 01/07/2015] [Indexed: 02/04/2023] Open
Abstract
Strongly decreased leucocyte counts and a reduced CD4/CD8 T cell ratio in the cerebrospinal fluid (CSF) of natalizumab (NZB)-treated multiple sclerosis (MS) patients may have implications on central nervous (CNS) immune surveillance. With regard to NZB-associated progressive multi-focal leucoencephalopathy, we aimed at delineating a relationship between free NZB, cell-bound NZB, adhesion molecule (AM) expression and the treatment-associated shift in the CSF T cell ratio. Peripheral blood (PB) and CSF T cells from 15 NZB-treated MS patients, and CSF T cells from 10 patients with non-inflammatory neurological diseases and five newly diagnosed MS patients were studied. Intercellular adhesion molecule-1 (ICAM-1), leucocyte function antigen-1 (LFA-1), very late activation antigen-4 (VLA-4), NZB saturation levels, and T cell ratios were analysed by flow cytometry. NZB concentrations were measured by enzyme-linked immunosorbent assay (ELISA). Lower NZB saturation levels (P<0.02) and a higher surface expression of ICAM-1 and LFA-1 (P<0.001) were observed on CSF CD8 T cells. CSF T cell ratios (0.3-2.1) and NZB concentrations (0.01-0.42 µg/ml) showed a pronounced interindividual variance. A correlation between free NZB, cell-bound NZB or AM expression levels and the CSF T cell ratio was not found. Extremely low NZB concentrations and a normalized CSF T cell ratio were observed in one case. The differential NZB saturation and AM expression of CSF CD8 T cells may contribute to their relative enrichment in the CSF. The reduced CSF T cell ratio appeared sensitive to steady-state NZB levels, as normalization occurred quickly. The latter may be important concerning a fast reconstitution of CNS immune surveillance.
Collapse
Affiliation(s)
- A Harrer
- Department of Neurology, Paracelsus Medical University, Salzburg, Austria
| | - G Pilz
- Department of Neurology, Paracelsus Medical University, Salzburg, Austria
| | - P Wipfler
- Department of Neurology, Paracelsus Medical University, Salzburg, Austria
| | - K Oppermann
- Department of Neurology, Paracelsus Medical University, Salzburg, Austria
| | - J Sellner
- Department of Neurology, Paracelsus Medical University, Salzburg, Austria.,Department of Neurology, Klinikum rechts der Isar, Technische Universät München, Germany
| | - W Hitzl
- Research Office (Biostatistics), Paracelsus Medical University, Salzburg, Austria
| | - E Haschke-Becher
- Department of Laboratory Medicine, Paracelsus Medical University, Salzburg, Austria
| | - S Afazel
- Department of Laboratory Medicine, Paracelsus Medical University, Salzburg, Austria
| | - T Rispens
- Department of Immunopathology, Sanquin Research and Academic Medical Centre, Amsterdam, the Netherlands
| | - D van der Kleij
- Laboratory for Monoclonal Therapeutics, Sanquin Diagnostics, Amsterdam, the Netherlands
| | - E Trinka
- Department of Neurology, Paracelsus Medical University, Salzburg, Austria
| | - J Kraus
- Department of Neurology, Paracelsus Medical University, Salzburg, Austria.,Department of Neurology, A.ö. Krankenhaus Zell am See, Teaching Hospital of the Paracelsus Medical University Salzburg, Zell am See, Austria
| |
Collapse
|
48
|
Palanichamy A, Apeltsin L, Kuo TC, Sirota M, Wang S, Pitts SJ, Sundar PD, Telman D, Zhao LZ, Derstine M, Abounasr A, Hauser SL, von Büdingen HC. Immunoglobulin class-switched B cells form an active immune axis between CNS and periphery in multiple sclerosis. Sci Transl Med 2015; 6:248ra106. [PMID: 25100740 DOI: 10.1126/scitranslmed.3008930] [Citation(s) in RCA: 176] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
In multiple sclerosis (MS), lymphocyte--in particular B cell--transit between the central nervous system (CNS) and periphery may contribute to the maintenance of active disease. Clonally related B cells exist in the cerebrospinal fluid (CSF) and peripheral blood (PB) of MS patients; however, it remains unclear which subpopulations of the highly diverse peripheral B cell compartment share antigen specificity with intrathecal B cell repertoires and whether their antigen stimulation occurs on both sides of the blood-brain barrier. To address these questions, we combined flow cytometric sorting of PB B cell subsets with deep immune repertoire sequencing of CSF and PB B cells. Immunoglobulin (IgM and IgG) heavy chain variable (VH) region repertoires of five PB B cell subsets from MS patients were compared with their CSF Ig-VH transcriptomes. In six of eight patients, we identified peripheral CD27(+)IgD(-) memory B cells, CD27(hi)CD38(hi) plasma cells/plasmablasts, or CD27(-)IgD(-) B cells that had an immune connection to the CNS compartment. Pinpointing Ig class-switched B cells as key component of the immune axis thought to contribute to ongoing MS disease activity strengthens the rationale of current B cell-targeting therapeutic strategies and may lead to more targeted approaches.
Collapse
Affiliation(s)
| | | | - Tracy C Kuo
- Rinat-Pfizer Inc., 230 East Grand Avenue, South San Francisco, CA 94080, USA
| | - Marina Sirota
- Rinat-Pfizer Inc., 230 East Grand Avenue, South San Francisco, CA 94080, USA
| | - Shengzhi Wang
- Department of Neurology, UCSF, San Francisco, CA 94148 USA
| | - Steven J Pitts
- Rinat-Pfizer Inc., 230 East Grand Avenue, South San Francisco, CA 94080, USA
| | - Purnima D Sundar
- Rinat-Pfizer Inc., 230 East Grand Avenue, South San Francisco, CA 94080, USA
| | - Dilduz Telman
- Rinat-Pfizer Inc., 230 East Grand Avenue, South San Francisco, CA 94080, USA
| | - Lora Z Zhao
- Rinat-Pfizer Inc., 230 East Grand Avenue, South San Francisco, CA 94080, USA
| | - Mia Derstine
- Department of Neurology, UCSF, San Francisco, CA 94148 USA
| | - Aya Abounasr
- Department of Neurology, UCSF, San Francisco, CA 94148 USA
| | | | | |
Collapse
|
49
|
Stern JNH, Yaari G, Vander Heiden JA, Church G, Donahue WF, Hintzen RQ, Huttner AJ, Laman JD, Nagra RM, Nylander A, Pitt D, Ramanan S, Siddiqui BA, Vigneault F, Kleinstein SH, Hafler DA, O'Connor KC. B cells populating the multiple sclerosis brain mature in the draining cervical lymph nodes. Sci Transl Med 2015; 6:248ra107. [PMID: 25100741 DOI: 10.1126/scitranslmed.3008879] [Citation(s) in RCA: 327] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Multiple sclerosis (MS) is an inflammatory disease of the central nervous system (CNS) characterized by autoimmune-mediated demyelination and neurodegeneration. The CNS of patients with MS harbors expanded clones of antigen-experienced B cells that reside in distinct compartments including the meninges, cerebrospinal fluid (CSF), and parenchyma. It is not understood whether this immune infiltrate initiates its development in the CNS or in peripheral tissues. B cells in the CSF can exchange with those in peripheral blood, implying that CNS B cells may have access to lymphoid tissue that may be the specific compartment(s) in which CNS-resident B cells encounter antigen and experience affinity maturation. Paired tissues were used to determine whether the B cells that populate the CNS mature in the draining cervical lymph nodes (CLNs). High-throughput sequencing of the antibody repertoire demonstrated that clonally expanded B cells were present in both compartments. Founding members of clones were more often found in the draining CLNs. More mature clonal members derived from these founders were observed in the draining CLNs and also in the CNS, including lesions. These data provide new evidence that B cells traffic freely across the tissue barrier, with the majority of B cell maturation occurring outside of the CNS in the secondary lymphoid tissue. Our study may aid in further defining the mechanisms of immunomodulatory therapies that either deplete circulating B cells or affect the intrathecal B cell compartment by inhibiting lymphocyte transmigration into the CNS.
Collapse
Affiliation(s)
- Joel N H Stern
- Department of Neurology, Yale School of Medicine, New Haven, CT 06511, USA
| | - Gur Yaari
- Department of Pathology, Yale School of Medicine, New Haven, CT 06511, USA. Bioengineering Program, Faculty of Engineering, Bar-Ilan University, Ramat Gan 52900, Israel
| | - Jason A Vander Heiden
- Interdepartmental Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT 06511, USA
| | - George Church
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | | | - Rogier Q Hintzen
- Department of Neurology, Erasmus MC, University Medical Center Rotterdam, and MS Centrum ErasMS, 3000 CA Rotterdam, the Netherlands
| | - Anita J Huttner
- Department of Pathology, Yale School of Medicine, New Haven, CT 06511, USA
| | - Jon D Laman
- Department of Immunology, Erasmus MC, University Medical Center Rotterdam, and MS Centrum ErasMS, 3000 CA Rotterdam, the Netherlands
| | - Rashed M Nagra
- Neurology Research, West Los Angeles VA Medical Center, Los Angeles, CA 90073, USA
| | - Alyssa Nylander
- Department of Neurology, Yale School of Medicine, New Haven, CT 06511, USA
| | - David Pitt
- Department of Neurology, Yale School of Medicine, New Haven, CT 06511, USA
| | - Sriram Ramanan
- Department of Neurology, Yale School of Medicine, New Haven, CT 06511, USA
| | - Bilal A Siddiqui
- Department of Neurology, Yale School of Medicine, New Haven, CT 06511, USA
| | - Francois Vigneault
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA. AbVitro Incorporated, Boston, MA 02210, USA
| | - Steven H Kleinstein
- Department of Pathology, Yale School of Medicine, New Haven, CT 06511, USA. Interdepartmental Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT 06511, USA.
| | - David A Hafler
- Department of Neurology, Yale School of Medicine, New Haven, CT 06511, USA. Department of Immunobiology, Yale School of Medicine, New Haven, CT 06511, USA.
| | - Kevin C O'Connor
- Department of Neurology, Yale School of Medicine, New Haven, CT 06511, USA.
| |
Collapse
|
50
|
Lauda F, Fangerau T, Javaheripour-Otto K, Pinkhardt E, Kassubek J, Tumani H. Natalizumab-associated cerebellar PML: a case report on how to slow down IRIS. J Neurol 2015; 262:1055-7. [DOI: 10.1007/s00415-015-7658-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Revised: 01/24/2015] [Accepted: 01/28/2015] [Indexed: 11/24/2022]
|