1
|
Asmaz ED, Güler S, Zık B. Effects of royal jelly on ovary cancer cells proliferation and apoptosis. Med Oncol 2025; 42:89. [PMID: 40038175 PMCID: PMC11880105 DOI: 10.1007/s12032-025-02638-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Accepted: 02/24/2025] [Indexed: 03/06/2025]
Abstract
The aim of the present study is to investigate the proliferative or apoptotic effects of different doses and durations of Royal jelly (RJ) on serous type epithelial ovarian cancer, which is the most common epithelial ovarian cancer. For this purpose, cells of the Skov-3 human ovarian adenocarcinoma cell line were grown in McCoy medium and seeded in 6-well plates. RJ was prepared as a stock solution (1000 mg RJ/10 ml dH2O) and 1, 5, 10, 20, and 50 mg/ml RJ doses from the prepared stock solution were added to the medium for 24, 48, and 72 h incubated. After the treatment of RJ, the cell viability test (Tripan Blue), Ki-67 to determine the proliferative effect, cleaved-Caspase-3 and cleaved PARP expressions to determine its apoptotic effect were examined by immunocytochemical and immunofluorescence methods. In addition, findings were supported by the TUNEL method. As a result of the experiments, it was determined that 1 mg/ml and 24 h treatment of RJ did not affect cell proliferation and apoptosis, but generally, 50 mg/ml of RJ for 72 h inhibited proliferation in cancer cells and induced apoptosis. The use of royal jelly both monotherapeutically and in combination as an alternative treatment for ovarian cancer may provide the basis for new experimental protocols.
Collapse
Affiliation(s)
- Ender Deniz Asmaz
- Department of Histology and Embryology, Faculty of Medicine Ankara Medipol University Ankara, Ankara, Turkey
| | - Sabire Güler
- Department of Histology Embryology, Faculty of Veterinary Medicine, Uludag University, Bursa, Turkey
| | - Berrin Zık
- Department of Histology Embryology, Faculty of Veterinary Medicine, Uludag University, Bursa, Turkey.
| |
Collapse
|
2
|
Gosecka M, Gosecki M, Ziemczonek P, Urbaniak M, Wielgus E, Marcinkowska M, Janaszewska A, Klajnert-Maculewicz B. Selective Anticervical Cancer Injectable and Self-Healable Hydrogel Platforms Constructed of Drug-Loaded Cross-Linkable Unimolecular Micelles in a Single and Combination Therapy. ACS APPLIED MATERIALS & INTERFACES 2024; 16:14605-14625. [PMID: 38488848 PMCID: PMC10982937 DOI: 10.1021/acsami.4c01524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 02/28/2024] [Accepted: 03/01/2024] [Indexed: 04/04/2024]
Abstract
In the face of severe side effects of systemic chemotherapy used in cervical cancer, topical selective drug carriers with long-lasting effects are being sought. Hydrogels are suitable platforms, but their use is problematic in the case of delivery of hydrophobic drugs with anticancer activity. Herein, hydrogels constructed of unimolecular micelles displaying enhanced solubilization of aromatic lipophilic bioactive compounds are presented. Star-shaped poly(benzyl glycidyl ether)-block-poly(glycidyl glycerol ether) with an aryl-enriched core show high encapsulation capacity of poor water-soluble nifuratel and clotrimazole. Nifuratel attained selectivity against cervical cancer cells, whereas clotrimazole preserved its original selectivity. The combination of unimolecular micelles loaded with both drugs provided synergism; however, they were still selective against cervical cancer cells. The cross-linking of drug-loaded unimolecular micelles via dynamic boronic esters provided injectable and self-healable hydrogel drug carriers also displaying synergistic anticancer activity, suitable for intravaginal administration and assuring the effective coverage of the afflicted tissue area and efficient tissue permeability with hydrophobic bioactive compounds. Here, we show that the combination of star-shaped polyether amphiphiles and boronic ester cross-linking chemistry provides a new strategy for obtaining hydrogel platforms suitable for efficient hydrophobic drug delivery.
Collapse
Affiliation(s)
- Monika Gosecka
- Centre
of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland
| | - Mateusz Gosecki
- Centre
of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland
| | - Piotr Ziemczonek
- Centre
of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland
| | - Malgorzata Urbaniak
- Centre
of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland
| | - Ewelina Wielgus
- Centre
of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland
| | - Monika Marcinkowska
- Department
of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 141/143 Pomorska Street, 90-236 Lodz, Poland
| | - Anna Janaszewska
- Department
of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 141/143 Pomorska Street, 90-236 Lodz, Poland
| | - Barbara Klajnert-Maculewicz
- Department
of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 141/143 Pomorska Street, 90-236 Lodz, Poland
| |
Collapse
|
3
|
Zhang H, Lv JL, Zheng QS, Li J. Active components of Solanum nigrum and their antitumor effects: a literature review. Front Oncol 2023; 13:1329957. [PMID: 38192621 PMCID: PMC10773844 DOI: 10.3389/fonc.2023.1329957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 12/07/2023] [Indexed: 01/10/2024] Open
Abstract
Cancer poses a serious threat to human health and overall well-being. Conventional cancer treatments predominantly encompass surgical procedures and radiotherapy. Nevertheless, the substantial side effects and the emergence of drug resistance in patients significantly diminish their quality of life and overall prognosis. There is an acute need for innovative, efficient therapeutic agents to address these challenges. Plant-based herbal medicines and their derived compounds offer promising potential for cancer research and treatment due to their numerous advantages. Solanum nigrum (S. nigrum), a traditional Chinese medicine, finds extensive use in clinical settings. The steroidal compounds within S. nigrum, particularly steroidal alkaloids, exhibit robust antitumor properties either independently or when combined with other drugs. Many researchers have delved into unraveling the antitumor mechanisms of the active components present in S. nigrum, yielding notable progress. This literature review provides a comprehensive analysis of the research advancements concerning the active constituents of S. nigrum. Furthermore, it outlines the action mechanisms of select monomeric anticancer ingredients. Overall, the insights derived from this review offer a new perspective on the development of clinical anticancer drugs.
Collapse
Affiliation(s)
- Han Zhang
- School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, China
- College of Pharmacy, Shihezi University, Shihezi, China
| | - Jun-lin Lv
- School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, China
| | - Qiu-sheng Zheng
- School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, China
- College of Pharmacy, Shihezi University, Shihezi, China
| | - Jie Li
- School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, China
| |
Collapse
|
4
|
Alarcon-Zapata P, Perez AJ, Toledo-Oñate K, Contreras H, Ormazabal V, Nova-Lamperti E, Aguayo CA, Salomon C, Zuniga FA. Metabolomics profiling and chemoresistance mechanisms in ovarian cancer cell lines: Implications for targeting glutathione pathway. Life Sci 2023; 333:122166. [PMID: 37827232 DOI: 10.1016/j.lfs.2023.122166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/29/2023] [Accepted: 10/08/2023] [Indexed: 10/14/2023]
Abstract
Ovarian cancer presents a significant challenge due to its high rate of chemoresistance, which complicates the effectiveness of drug-response therapy. This study provides a comprehensive metabolomic analysis of ovarian cancer cell lines OVCAR-3 and SK-OV-3, characterizing their distinct metabolic landscapes. Metabolomics coupled with chemometric analysis enabled us to discriminate between the metabolic profiles of these two cell lines. The OVCAR-3 cells, which are sensitive to doxorubicin (DOX), exhibited a preference for biosynthetic pathways associated with cell proliferation. Conversely, DOX-resistant SK-OV-3 cells favored fatty acid oxidation for energy maintenance. Notably, a marked difference in glutathione (GSH) metabolism was observed between these cell lines. Our investigations further revealed that GSH depletion led to a profound change in drug sensitivity, inducing a shift from a cytostatic to a cytotoxic response. The results derived from this comprehensive metabolomic analysis offer potential targets for novel therapeutic strategies to overcome drug resistance. Our study suggests that targeting the GSH pathway could potentially enhance chemotherapy's efficacy in treating ovarian cancer.
Collapse
Affiliation(s)
- Pedro Alarcon-Zapata
- Department of Clinical Biochemistry and Immunology, Faculty of Pharmacy, University of Concepcion, Chile; Departamento de Ciencias Básicas, Facultad de Ciencias, Universidad Santo Tomás, Concepción, Chile
| | - Andy J Perez
- Department of Instrumental Analysis, Faculty of Pharmacy, University of Concepcion, Chile
| | - Karin Toledo-Oñate
- Department of Clinical Biochemistry and Immunology, Faculty of Pharmacy, University of Concepcion, Chile
| | - Hector Contreras
- Department of Clinical Biochemistry and Immunology, Faculty of Pharmacy, University of Concepcion, Chile
| | - Valeska Ormazabal
- Department of Pharmacology, Faculty of Biological Sciences, University of Concepcion, Chile
| | - Estefania Nova-Lamperti
- Department of Clinical Biochemistry and Immunology, Faculty of Pharmacy, University of Concepcion, Chile
| | - Claudio A Aguayo
- Department of Clinical Biochemistry and Immunology, Faculty of Pharmacy, University of Concepcion, Chile
| | - Carlos Salomon
- Translational Extracellular Vesicles in Obstetrics and Gynae-Oncology Group, Faculty of Medicine, University of Queensland Centre for Clinical Research, Royal Brisbane and Women's Hospital, The University of Queensland, Brisbane QLD 4029, Australia
| | - Felipe A Zuniga
- Department of Clinical Biochemistry and Immunology, Faculty of Pharmacy, University of Concepcion, Chile.
| |
Collapse
|
5
|
Zhang J, Feng J, Li Y, Wang J, Mo P, Luo C. Anticancer and Biological Effects of Some Natural Compounds and Theoretical Investigation of them Against RdRP of SARS-COV-2: In Silico and In Vitro Studies. Mol Biotechnol 2023; 65:1764-1776. [PMID: 36780057 PMCID: PMC9923641 DOI: 10.1007/s12033-023-00678-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 01/18/2023] [Indexed: 02/14/2023]
Abstract
In this study, Skullcapflavone I and Skullcapflavone II molecules showed good inhibitory activities against α-glucosidase and sorbitol dehydrogenase enzymes with IC50 values of 102.66 ± 8.43 and 95.04 ± 11.52 nM for α-glucosidase and 38.42 ± 3.82 and 28.81 ± 3.26 µM for sorbitol dehydrogenase. The chemical activities of Skullcapflavone I and Skullcapflavone II against α-glucosidase and sorbitol dehydrogenase were assessed by conducting the molecular docking study. The anticancer activities of the compounds were examined against SW-626, SK-OV-3, OVCAR3, and Caov-3 cell lines. The chemical activities of Skullcapflavone I and Skullcapflavone II against some of the expressed surface receptor proteins (estrogen receptor, EGFR, androgen receptor, and GnRH receptor) in the mentioned cell lines were investigated using in silico calculations. Moreover, the activity of the compounds against RNA polymerase of SARS-COVE-2 was also assessed using the molecular modeling study. These compounds created strong contacts with the enzymes and receptors. The considerable binding affinity of the compounds to the enzymes and proteins showed their ability as inhibitors. Furthermore, even at modest dosages, these substances markedly reduced the viability of ovarian cancer cells. Additionally, the viability of ovarian cancer cells was significantly decreased by a 300 μM dosage of all compounds. Antiovarian cancer results of Skullcapflavone I on SK-OV-3, SW-626, OVCAR3, and Caov-3 were 63.14, 1.55, 19.42, and 52.04 µM, respectively. Also, cytotoxicity results of Skullcapflavone II on SK-OV-3, SW-626, OVCAR3, and Caov-3 were 5.18, 21.44, 33.87, and 72.66 µM, respectively.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Oncology, Shenzhen Bao'an Traditional Chinese Medicine Hospital, Shenzhen, 518000, China
- Department of Oncology, The First Clinical Medical College of Guangzhou University of Traditional Chinese Medicine, Guangzhou, China
| | - Jingyu Feng
- Department of Oncology, Shenzhen Bao'an Traditional Chinese Medicine Hospital, Shenzhen, 518000, China
| | - Yang Li
- Department of Oncology, Shenzhen Bao'an Traditional Chinese Medicine Hospital, Shenzhen, 518000, China
| | - Jiguo Wang
- Department of Oncology, Shenzhen Bao'an Traditional Chinese Medicine Hospital, Shenzhen, 518000, China
| | - Panyan Mo
- Department of Oncology, Shenzhen Bao'an Traditional Chinese Medicine Hospital, Shenzhen, 518000, China
| | - Changguo Luo
- Department of Oncology, Shenzhen Bao'an Traditional Chinese Medicine Hospital, Shenzhen, 518000, China.
| |
Collapse
|
6
|
Mrug G, Hodyna D, Metelytsia L, Kovalishyn V, Trokhimenko O, Bondarenko S, Kondratyuk K, Kozitskiy A, Frasinyuk M. Structure-Activity Relationship Prediction-Based Synthesis and Cytotoxicity Evaluation against the HEp-2 Laryngeal Carcinoma Cell of Isoflavone-Cytisine Mannich Bases. Chem Biodivers 2023; 20:e202300560. [PMID: 37477067 DOI: 10.1002/cbdv.202300560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 07/15/2023] [Accepted: 07/20/2023] [Indexed: 07/22/2023]
Abstract
QSAR analysis of previously synthesized and nature-inspired virtual isoflavone-cytisine hybrids against the HEp-2 laryngeal carcinoma cell lines was performed using the OCHEM web platform. The validation of the models using an external test set proved that the models can be used to predict the activity of newly designed compounds such as 8-cytisinylmethyl derivatives of 5,7- and 6,7-dihydroxyisoflavones. The synthetic procedure for selective aminomethylation of 5,7-dihydroxyisoflavones with cytisine was developed. In vitro testing identified compound 7 f with cisplatin-level cytotoxicity against HEp-2 cell lines and compound 10 which was twice active than cisplatin after 72 h of incubation.
Collapse
Affiliation(s)
- Galyna Mrug
- V. P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry of National Academy of Science of Ukraine, Kyiv, 02094, Ukraine
| | - Diana Hodyna
- V. P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry of National Academy of Science of Ukraine, Kyiv, 02094, Ukraine
| | - Larysa Metelytsia
- V. P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry of National Academy of Science of Ukraine, Kyiv, 02094, Ukraine
| | - Vasyl Kovalishyn
- V. P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry of National Academy of Science of Ukraine, Kyiv, 02094, Ukraine
| | - Olena Trokhimenko
- Shupyk National Healthcare University of Ukraine, Kyiv, 04112, Ukraine
| | - Svitlana Bondarenko
- Department of Food Chemistry, National University of Food Technologies, Kyiv, 01601, Ukraine
| | - Kostyantyn Kondratyuk
- V. P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry of National Academy of Science of Ukraine, Kyiv, 02094, Ukraine
| | | | - Mykhaylo Frasinyuk
- V. P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry of National Academy of Science of Ukraine, Kyiv, 02094, Ukraine
- Enamine Ltd., Kyiv, 02094, Ukraine
| |
Collapse
|
7
|
Gull N, Arshad F, Naikoo GA, Hassan IU, Pedram MZ, Ahmad A, Aljabali AAA, Mishra V, Satija S, Charbe N, Negi P, Goyal R, Serrano-Aroca Á, Al Zoubi MS, El-Tanani M, Tambuwala MM. Recent Advances in Anticancer Activity of Novel Plant Extracts and Compounds from Curcuma longa in Hepatocellular Carcinoma. J Gastrointest Cancer 2023; 54:368-390. [PMID: 35285010 PMCID: PMC8918363 DOI: 10.1007/s12029-022-00809-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/20/2022] [Indexed: 02/06/2023]
Abstract
PURPOSE Among all forms of cancers, hepatocellular carcinoma (HCC) is the fifth most common cancer worldwide. There are several treatment options for HCC ranging from loco-regional therapy to surgical treatment. Yet, there is high morbidity and mortality. Recent research focus has shifted towards more effective and less toxic cancer treatment options. Curcumin, the active ingredient in the Curcuma longa plant, has gained widespread attention in recent years because of its multifunctional properties as an antioxidant, anti-inflammatory, antimicrobial, and anticancer agent. METHODS A systematic search of PubMed, Embase and Google Scholar was performed for studies reporting incidence of HCC, risk factors associated with cirrhosis and experimental use of curcumin as an anti-cancer agent. RESULTS This review exclusively encompasses the anti-cancer properties of curcumin in HCC globally and it's postulated molecular targets of curcumin when used against liver cancers. CONCLUSIONS This review is concluded by presenting the current challenges and future perspectives of novel plant extracts derived from C. longa and the treatment options against cancers.
Collapse
Affiliation(s)
- Nighat Gull
- School of Sciences, Maulana Azad National Urdu University, 32, Hyderabad, TS, India
| | - Fareeha Arshad
- Department of Biochemistry, Aligarh Muslim University, U.P., India
| | - Gowhar A Naikoo
- Department of Mathematics and Sciences, College of Arts and Applied Sciences, Dhofar University, Salalah, Sultanate of Oman.
| | - Israr Ul Hassan
- College of Engineering, Dhofar University, Salalah, Sultanate of Oman
| | - Mona Zamani Pedram
- Faculty of Mechanical Engineering-Energy Division, K. N. Toosi University of Technology, P.O. Box: 19395-1999, No. 15-19, Pardis St., Mollasadra Ave., Vanak Sq., Tehran, 1999 143344, Iran
| | - Arif Ahmad
- School of Sciences, Maulana Azad National Urdu University, 32, Hyderabad, TS, India
| | - Alaa A A Aljabali
- Department of Pharmaceutics & Pharmaceutical Technology, Yarmouk University, Irbid, 21163, Jordan
| | - Vijay Mishra
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Saurabh Satija
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Nitin Charbe
- Department of Pharmaceutical Sciences, Rangel College of Pharmacy, Texas A&M University, Kingsville, TX, 78363, USA
| | - Poonam Negi
- School of Pharmaceutical Sciences, Shoolini University of Biotechnology & Management Sciences, Solan, 173229, India
| | - Rohit Goyal
- School of Pharmaceutical Sciences, Shoolini University of Biotechnology & Management Sciences, Solan, 173229, India
| | - Ángel Serrano-Aroca
- Biomaterials & Bioengineering Lab, Centro de Investigación Traslacional San Alberto Magno, Universidad Católica de Valencia, San Vicente Mártir, 46001, Valencia, Spain
| | - Mazhar S Al Zoubi
- Department of Basic Medical Sciences, Faculty of Medicine, Yarmouk University, Irbid, Jordan
| | - Mohamed El-Tanani
- Pharmacological and Diagnostic Research Centre, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman, Jordan
| | - Murtaza M Tambuwala
- School of Pharmacy & Pharmaceutical Sciences, Ulster University, Northern Ireland, Coleraine, BT52 1SA, County Londonderry, UK.
| |
Collapse
|
8
|
Shroff S, Baitharu I, Ahmad Mir S, Nayak B, Kumar Behera A. Microwave-assisted synthesis and biological evaluation of some Arylidene derivatives of 3-Methyl-1-phenyl-1H-pyrazol-5(4H)-one with potential anti-cancer activity. RESULTS IN CHEMISTRY 2022. [DOI: 10.1016/j.rechem.2022.100647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
9
|
Kowalczyk T, Merecz-Sadowska A, Rijo P, Mori M, Hatziantoniou S, Górski K, Szemraj J, Piekarski J, Śliwiński T, Bijak M, Sitarek P. Hidden in Plants-A Review of the Anticancer Potential of the Solanaceae Family in In Vitro and In Vivo Studies. Cancers (Basel) 2022; 14:1455. [PMID: 35326606 PMCID: PMC8946528 DOI: 10.3390/cancers14061455] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/01/2022] [Accepted: 03/09/2022] [Indexed: 02/04/2023] Open
Abstract
Many of the anticancer agents that are currently in use demonstrate severe side effects and encounter increasing resistance from the target cancer cells. Thus, despite significant advances in cancer therapy in recent decades, there is still a need to discover and develop new, alternative anticancer agents. The plant kingdom contains a range of phytochemicals that play important roles in the prevention and treatment of many diseases. The Solanaceae family is widely used in the treatment of various diseases, including cancer, due to its bioactive ingredient content. The purpose of this literature review is to highlight the antitumour activity of Solanaceae extracts-single isolated compounds and nanoparticles with extracts-and their synergistic effect with chemotherapeutic agents in various in vitro and in vivo cancer models. In addition, the biological properties of many plants of the Solanaceae family have not yet been investigated, which represents a challenge and an opportunity for future anticancer therapy.
Collapse
Affiliation(s)
- Tomasz Kowalczyk
- Department of Molecular Biotechnology and Genetics, University of Lodz, 90-237 Lodz, Poland;
| | - Anna Merecz-Sadowska
- Department of Computer Science in Economics, University of Lodz, 90-214 Lodz, Poland;
| | - Patricia Rijo
- CBIOS—Research Center for Biosciences & Health Technologies, Universidade Lusófona de Humanidades e Tecnologias, 1749-024 Lisbon, Portugal;
- iMed.ULisboa—Research Institute for Medicines, Faculdade de Farmácia da Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal
| | - Mattia Mori
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy;
| | - Sophia Hatziantoniou
- Laboratory of Pharmaceutical Technology, Department of Pharmacy, School of Health Sciences, University of Patras, 26504 Patras, Greece;
| | - Karol Górski
- Department of Clinical Pharmacology, Medical University of Lodz, 90-151 Lodz, Poland;
| | - Janusz Szemraj
- Department of Medical Biochemistry, Medical University of Lodz, 92-215 Lodz, Poland;
| | - Janusz Piekarski
- Department of Surgical Oncology, Chair of Oncology, Medical University in Lodz, Nicolaus Copernicus Multidisciplinary Centre for Oncology and Traumatology, 93-513 Lodz, Poland;
| | - Tomasz Śliwiński
- Laboratory of Medical Genetics, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland;
| | - Michał Bijak
- Biohazard Prevention Centre, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland;
| | - Przemysław Sitarek
- Department of Biology and Pharmaceutical Botany, Medical University of Lodz, 90-151 Lodz, Poland
| |
Collapse
|
10
|
Münz S, Feger M, Edemir B, Föller M. Up-Regulation of Fibroblast Growth Factor 23 Gene Expression in UMR106 Osteoblast-like Cells with Reduced Viability. Cells 2021; 11:40. [PMID: 35011602 PMCID: PMC8750768 DOI: 10.3390/cells11010040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 12/17/2021] [Accepted: 12/20/2021] [Indexed: 02/07/2023] Open
Abstract
Fibroblast growth factor 23 (FGF23) controls vitamin D and phosphate homeostasis in the kidney and has additional paracrine effects elsewhere. As a biomarker, its plasma concentration is associated with progression of inflammatory, renal, and cardiovascular diseases. Major stimuli of FGF23 synthesis include active vitamin D and inflammation. Antineoplastic chemotherapy treats cancer by inducing cellular damage ultimately favoring cell death (apoptosis and necrosis) and causing inflammation. Our study explored whether chemotherapeutics and other apoptosis inducers impact on Fgf23 expression. Experiments were performed in osteoblast-like UMR106 cells, Fgf23 gene expression and protein synthesis were determined by qRT-PCR and ELISA, respectively. Viability was assessed by MTT assay and NFκB activity by Western Blotting. Antineoplastic drugs cisplatin and doxorubicin as well as apoptosis inducers procaspase-activating compound 1 (PAC-1), a caspase 3 activator, and serum depletion up-regulated Fgf23 transcripts while reducing cell proliferation and viability. The effect of cisplatin on Fgf23 transcription was paralleled by Il-6 up-regulation and NFκB activation and attenuated by Il-6 and NFκB signaling inhibitors. To conclude, cell viability-decreasing chemotherapeutics as well as apoptosis stimulants PAC-1 and serum depletion up-regulate Fgf23 gene expression. At least in part, Il-6 and NFκB may contribute to this effect.
Collapse
Affiliation(s)
- Sina Münz
- Department of Physiology, University of Hohenheim, 70599 Stuttgart, Germany; (S.M.); (M.F.)
| | - Martina Feger
- Department of Physiology, University of Hohenheim, 70599 Stuttgart, Germany; (S.M.); (M.F.)
| | - Bayram Edemir
- Department of Hematology and Oncology, Martin Luther University Halle-Wittenberg, 06120 Halle, Germany;
| | - Michael Föller
- Department of Physiology, University of Hohenheim, 70599 Stuttgart, Germany; (S.M.); (M.F.)
| |
Collapse
|
11
|
Eilenberger C, Rothbauer M, Selinger F, Gerhartl A, Jordan C, Harasek M, Schädl B, Grillari J, Weghuber J, Neuhaus W, Küpcü S, Ertl P. A Microfluidic Multisize Spheroid Array for Multiparametric Screening of Anticancer Drugs and Blood-Brain Barrier Transport Properties. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2004856. [PMID: 34105271 PMCID: PMC8188192 DOI: 10.1002/advs.202004856] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/30/2021] [Indexed: 05/08/2023]
Abstract
Physiological-relevant in vitro tissue models with their promise of better predictability have the potential to improve drug screening outcomes in preclinical studies. Despite the advances of spheroid models in pharmaceutical screening applications, variations in spheroid size and consequential altered cell responses often lead to nonreproducible and unpredictable results. Here, a microfluidic multisize spheroid array is established and characterized using liver, lung, colon, and skin cells as well as a triple-culture model of the blood-brain barrier (BBB) to assess the effects of spheroid size on (a) anticancer drug toxicity and (b) compound penetration across an advanced BBB model. The reproducible on-chip generation of 360 spheroids of five dimensions on a well-plate format using an integrated microlens technology is demonstrated. While spheroid size-related IC50 values vary up to 160% using the anticancer drugs cisplatin (CIS) or doxorubicin (DOX), reduced CIS:DOX drug dose combinations eliminate all lung microtumors independent of their sizes. A further application includes optimizing cell seeding ratios and size-dependent compound uptake studies in a perfused BBB model. Generally, smaller BBB-spheroids reveal an 80% higher compound penetration than larger spheroids while verifying the BBB opening effect of mannitol and a spheroid size-related modulation on paracellular transport properties.
Collapse
Affiliation(s)
- Christoph Eilenberger
- Faculty of Technical ChemistryVienna University of TechnologyGetreidemarkt 9Vienna1060Austria
| | - Mario Rothbauer
- Faculty of Technical ChemistryVienna University of TechnologyGetreidemarkt 9Vienna1060Austria
- Karl Chiari Lab for Orthopaedic BiologyDepartment of Orthopedics and Trauma SurgeryMedical University of ViennaWähringer Gürtel 18‐20Vienna1090Austria
| | - Florian Selinger
- Faculty of Technical ChemistryVienna University of TechnologyGetreidemarkt 9Vienna1060Austria
| | - Anna Gerhartl
- AIT Austrian Institute of Technology GmbHCenter Health and BioresourcesCompetence Unit Molecular DiagnosticsGiefinggasse 4Vienna1210Austria
| | - Christian Jordan
- Faculty of Technical ChemistryVienna University of TechnologyGetreidemarkt 9Vienna1060Austria
| | - Michael Harasek
- Faculty of Technical ChemistryVienna University of TechnologyGetreidemarkt 9Vienna1060Austria
| | - Barbara Schädl
- Ludwig‐Boltzmann‐Institute for Experimental and Clinical TraumatologyDonaueschingenstraße 13Vienna1200Austria
| | - Johannes Grillari
- Ludwig‐Boltzmann‐Institute for Experimental and Clinical TraumatologyDonaueschingenstraße 13Vienna1200Austria
- Institute for Molecular BiotechnologyDepartment of BiotechnologyUniversity of Natural Resources and Life SciencesMuthgasse 18Vienna1190Austria
| | - Julian Weghuber
- School of EngineeringUniversity of Applied Sciences Upper AustriaStelzhamerstraße 23Wels4600Austria
- FFoQSI GmbH‐Austrian Competence Centre for Feed and Food QualitySafety and InnovationTechnopark 1CTulln3430Austria
| | - Winfried Neuhaus
- AIT Austrian Institute of Technology GmbHCenter Health and BioresourcesCompetence Unit Molecular DiagnosticsGiefinggasse 4Vienna1210Austria
| | - Seta Küpcü
- Institute of Synthetic BioarchitecturesDepartment of NanobiotechnologyUniversity of Natural Resources and Life SciencesVienna, Muthgasse 11Vienna1190Austria
| | - Peter Ertl
- Faculty of Technical ChemistryVienna University of TechnologyGetreidemarkt 9Vienna1060Austria
| |
Collapse
|
12
|
Lin S, Chang C, Hsu C, Tsai M, Cheng H, Leong MK, Sung P, Chen J, Weng C. Natural compounds as potential adjuvants to cancer therapy: Preclinical evidence. Br J Pharmacol 2020; 177:1409-1423. [PMID: 31368509 PMCID: PMC7056458 DOI: 10.1111/bph.14816] [Citation(s) in RCA: 230] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Revised: 07/19/2019] [Accepted: 07/26/2019] [Indexed: 12/11/2022] Open
Abstract
Traditional chemotherapy is being considered due to hindrances caused by systemic toxicity. Currently, the administration of multiple chemotherapeutic drugs with different biochemical/molecular targets, known as combination chemotherapy, has attained numerous benefits like efficacy enhancement and amelioration of adverse effects that has been broadly applied to various cancer types. Additionally, seeking natural-based alternatives with less toxicity has become more important. Experimental evidence suggests that herbal extracts such as Solanum nigrum and Claviceps purpurea and isolated herbal compounds (e.g., curcumin, resveratrol, and matairesinol) combined with antitumoral drugs have the potential to attenuate resistance against cancer therapy and to exert chemoprotective actions. Plant products are not free of risks: Herb adverse effects, including herb-drug interactions, should be carefully considered. LINKED ARTICLES: This article is part of a themed section on The Pharmacology of Nutraceuticals. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v177.6/issuetoc.
Collapse
Affiliation(s)
- Shian‐Ren Lin
- Department of Life Science and Institute of BiotechnologyNational Dong Hwa UniversityHualienTaiwan
| | - Chia‐Hsiang Chang
- Department of Life Science and Institute of BiotechnologyNational Dong Hwa UniversityHualienTaiwan
| | - Che‐Fang Hsu
- Department of Life Science and Institute of BiotechnologyNational Dong Hwa UniversityHualienTaiwan
- Center for Prevention and Therapy of Gynaecological Cancers, Department of ResearchTzu Chi HospitalHualienTaiwan
| | - May‐Jwan Tsai
- Neural Regeneration Laboratory, Neurological InstituteTaipei Veterans General HospitalTaipei CityTaiwan
| | - Henrich Cheng
- Neural Regeneration Laboratory, Neurological InstituteTaipei Veterans General HospitalTaipei CityTaiwan
| | - Max K. Leong
- Department of ChemistryNational Dong Hwa UniversityHualienTaiwan
| | - Ping‐Jyun Sung
- Graduate Institute of Marine BiotechnologyNational Dong Hwa UniversityPingtungTaiwan
| | - Jian‐Chyi Chen
- Department of BiotechnologySouthern Taiwan University of Science and TechnologyTainan CityTaiwan
| | - Ching‐Feng Weng
- Graduate Institute of Marine BiotechnologyNational Dong Hwa UniversityPingtungTaiwan
- Department of Basic Medical Science, Center for Transitional MedicineXiamen Medical CollegeXiamenChina
| |
Collapse
|
13
|
Lin LT, Choong CY, Tai CJ. Solanine Attenuates Hepatocarcinoma Migration and Invasion Induced by Acetylcholine. Integr Cancer Ther 2020; 19:1534735420909895. [PMID: 32975458 PMCID: PMC7522814 DOI: 10.1177/1534735420909895] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 01/30/2020] [Accepted: 02/03/2020] [Indexed: 11/24/2022] Open
Abstract
AIM Evidence has provided an explanation of the correlation between the nervous system and the tumor microenvironment. Neurotransmitters may be involved in different aspects of cancer progression. The glycoalkaloid solanine has been reported to suppress neural signaling pathways and exists in numerous plants, including Solanum nigrum, which have been demonstrated to inhibit cancer cell proliferation. METHODS We evaluated the potentials of solanine on inhibiting acetylcholine-induced cell proliferation and migration in hepatocellular carcinoma cells. RESULTS The results indicated that solanine markedly attenuated cell proliferation and migration via inhibiting epithelial-mesenchymal transition and matrix metalloproteinases in acetylcholine-treated Hep G2 cells. In addition, exosomes derived from acetylcholine-treated Hep G2 cells were isolated, and solanine showed inhibiting effects of extrahepatic metastasis on blocking cell proliferation in exosome-treated A549 lung carcinoma cells through regulating microRNA-21 expression. CONCLUSION Solanine has strong potential for application in integrative cancer therapy.
Collapse
Affiliation(s)
- Liang-Tzung Lin
- Department of Microbiology and Immunology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chen-Yen Choong
- Division of Hematology and Oncology, Department of Internal Medicine, Taipei Medicine University Hospital, Taipei 11042, Taiwan
| | - Chen-Jei Tai
- Department of Traditional Chinese Medicine, Taipei Medical University Hospital, Taipei, Taiwan
- Department of Obstetrics and Gynecology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
14
|
Su PH, Tai CJ. Current development in integrative therapy of traditional Chinese medicine for cancer treatment: A mini-review. J Tradit Complement Med 2019; 10:429-433. [PMID: 32953557 PMCID: PMC7484962 DOI: 10.1016/j.jtcme.2019.07.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Revised: 04/27/2019] [Accepted: 07/07/2019] [Indexed: 01/27/2023] Open
Abstract
Cancer is a major public health problem worldwide, and there has been a sustained rise in its incidence in both developing and developed countries. Although there are currently numerous effective therapeutic options for cancer, they sometimes exhibit resistance and obvious side effects. Traditional Chinese medicine (TCM) currently plays a major role in cancer therapy by downregulating the growth of cancer cells through various pathways and by relieving side effects. Studies in cultured human malignant cell lines have demonstrated that Solanum nigrum can control cancer cell proliferation and cancer progression by inducing autophagic and apoptotic cell death. Case–control studies have indicated that TCM can relieve the side effects of cancer therapy. This review provides brief insights into the anticancer effects of TCM, the side effects relieved by TCM, and the role of TCM doctors in cancer treatment. Aqueous extracts of Solanum nigrum can control cancer cell proliferation and cancer progression by inducing autophagic and apoptotic cell death. TCM can relieve side effects such as hematotoxicity, hepatotoxicity, and paronychia caused by conventional anticancer treatments. A TCM doctor consulting and referral system for patients with cancer should be established.
Collapse
Key Words
- AESN, aqueous extract of Solanum nigrum
- ALT, alanine transaminase
- AST, aspartate transaminase
- Aqueous extract of Solanum nigrum (AESN)
- Autophagic pathway
- Cancer treatment
- EGFR, epidermal growth factor receptor
- EMT, epithelial–mesenchymal transition
- Hematotoxicity
- Hepatotoxicity
- IC50, half maximal inhibitory concentration
- MTT, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide
- Paronychia
- ROS, reactive oxygen species
- SN, Solanum nigrum
- SQDBT, Shi Quan Da Bu Tang
- TCM, traditional Chinese medicine
- Traditional Chinese medicine (TCM)
Collapse
Affiliation(s)
- Po-Hsuan Su
- Department of Traditional Chinese Medicine, Taipei Medical University Hospital, Taipei, 11031, Taiwan
| | - Chen-Jei Tai
- Department of Traditional Chinese Medicine, Taipei Medical University Hospital, Taipei, 11031, Taiwan.,Department of OB/GYN, School of Medicine, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan
| |
Collapse
|
15
|
Shi F, Wang C, Wang L, Song X, Yang H, Fu Q, Zhao W. Preparative isolation and purification of steroidal glycoalkaloid from the ripe berries of
Solanum nigrum
L. by preparative HPLC–MS and UHPLC–TOF‐MS/MS and its anti‐non‐small cell lung tumors effects in vitro and in vivo. J Sep Sci 2019; 42:2471-2481. [DOI: 10.1002/jssc.201801165] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Revised: 04/07/2019] [Accepted: 04/20/2019] [Indexed: 12/25/2022]
Affiliation(s)
- Fengqiang Shi
- School of Pharmaceutical SciencesCapital Medical University Beijing P. R. China
| | - Caifang Wang
- School of Pharmaceutical SciencesCapital Medical University Beijing P. R. China
| | - Lixue Wang
- School of Pharmaceutical SciencesCapital Medical University Beijing P. R. China
| | - Xueying Song
- School of Pharmaceutical SciencesCapital Medical University Beijing P. R. China
| | - Hua Yang
- School of Pharmaceutical SciencesCapital Medical University Beijing P. R. China
| | - Qi Fu
- Department of OncologyBeijing Hospital of Traditional Chinese Medicine Affiliated to Capital Medical University Beijing P. R. China
| | - Wenhua Zhao
- School of Pharmaceutical SciencesCapital Medical University Beijing P. R. China
| |
Collapse
|
16
|
Campisi A, Acquaviva R, Raciti G, Duro A, Rizzo M, Santagati NA. Antioxidant Activities of Solanum Nigrum L. Leaf Extracts Determined in in vitro Cellular Models. Foods 2019; 8:foods8020063. [PMID: 30744041 PMCID: PMC6406898 DOI: 10.3390/foods8020063] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 01/28/2019] [Accepted: 01/30/2019] [Indexed: 01/06/2023] Open
Abstract
Several medicinal foods abound in traditional medicine with antioxidant potentials that could be of importance for the management of several diseases but with little or no scientific justification to substantiate their use. Thus, the objective of this study was the assessment of the antioxidant effect of two leave extracts of Solanum nigrum L. (SN), which is a medicinal plant member of the Solanaceae family, mainly used for soup preparation in different parts of the world. Then methanolic/water (80:20) (SN1) and water (SN2) leaves extracts were prepared. The total polyphenolic content and the concentration of phenolic acids and flavones compounds were determined. In order to verify whether examined extracts were able to restore the oxidative status, modified by glutamate in primary cultures of astrocytes, the study evaluated the glutathione levels, the intracellular oxidative stress, and the cytotoxicity of SN1 and SN2 extracts. Both extracts were able to quench the radical in an in vitro free cellular system and restore the oxidative status in in vitro primary cultures of rat astroglial cells exposed to glutamate. These extracts prevented the increase in glutamate uptake and inhibited glutamate excitotoxicity, which leads to cell damage and shows a notable antioxidant property.
Collapse
Affiliation(s)
- Agata Campisi
- Department of Drug Science, University of Catania, Viale Andrea Doria 6, 95125 Catania, Italy.
| | - Rosaria Acquaviva
- Department of Drug Science, University of Catania, Viale Andrea Doria 6, 95125 Catania, Italy.
| | - Giuseppina Raciti
- Department of Drug Science, University of Catania, Viale Andrea Doria 6, 95125 Catania, Italy.
| | - Anna Duro
- Department of Biological, Geological and Environmental Sciences, University of Catania,Via A. Longo 19, 95125 Catania, Italy.
| | - Milena Rizzo
- Department of Drug Science, University of Catania, Viale Andrea Doria 6, 95125 Catania, Italy.
| | | |
Collapse
|
17
|
Butt G, Romero MA, Tahir F, Farooqi AA. Emerging themes of regulation of oncogenic proteins by Solanum nigrum and its bioactive molecules in different cancers. J Cell Biochem 2018; 119:9640-9644. [PMID: 30076759 DOI: 10.1002/jcb.27258] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 06/21/2018] [Indexed: 01/11/2023]
Abstract
Research over the decades has sequentially and systematically provided a near-complete resolution of multifaceted and therapeutically challenging nature of cancer. Drug discovery from plants has enjoyed a renaissance in the past few years. Natural products have provided many of the lead structures, which are currently being used as templates for the design and synthesis of novel compounds with biologically enhanced properties. With the maturity and diversification of technologies, there is a growing need to design high-throughput functional assays for the evaluation of the myriad of compounds being catalogued. This review sheds light on the tumor suppressive properties of Solanum nigrum and its bioactive ingredients. Several worthy of mention include uttroside B, solanine, solamargine, and physalins, which have been tested for efficacy in cancer cell lines and xenografted mice. We have summarized the most recent findings related to S. nigrum-mediated regulation of intracellular protein network in different cancers. α-Solanine, an active component of S. nigrum, is involved in the regulation of microRNA-21 (miRNA-21) (oncogenic) and miRNA-138 (tumor suppressor) in prostate cancer. However, this is the only available evidence that gives us a clue related to the tumor suppressive effects exerted by components of S. nigrum at a posttranscriptional level. More interestingly, S. nigrum and its components exerted inhibitory effects on different pathways including PI3K/AKT, JAK-STAT, VEGF/VEGFR, and matrix metalloproteinases in different cancers. We also provide an overview of new tools, methodologies, and approaches, which will allow researchers to extract as much information as possible out of the tremendous data sets currently being generated. The use of computational tools will be helpful in processing structurally complex natural products and also in prediction of their macromolecular targets.
Collapse
Affiliation(s)
| | - Mirna Azalea Romero
- Laboratorio de Investigación Clínica, Facultad de Medicina, Universidad Autónoma de Guerrero, Acapulco, Guerrero, México
| | | | - Ammad Ahmad Farooqi
- Department of Molecular Oncology, Institute of Biomedical and Genetic Engineering (IBGE), Islamabad, Pakistan
| |
Collapse
|
18
|
Uen WC, Lee BH, Shi YC, Wu SC, Tai CJ, Tai CJ. Inhibition of aqueous extracts of Solanum nigrum (AESN) on oral cancer through regulation of mitochondrial fission. J Tradit Complement Med 2017; 8:220-225. [PMID: 29322012 PMCID: PMC5756017 DOI: 10.1016/j.jtcme.2017.05.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 05/18/2017] [Accepted: 05/24/2017] [Indexed: 12/14/2022] Open
Abstract
The present study is designed to investigate the anti-oral cancer properties of Solanum nigrum on oral squamous cell carcinoma. S. nigrum is a Chinese herb used for suppression of various cancers. However, the inhibition of S. nigrum on oral cancer is unclear. Therefore, human oral squamous cancer cells (SCC)-4 were used to evaluate the effect of aqueous extracts of S. nigrum (AESN) on cancer cell proliferation, cell cycle, mitochondrial function and apoptosis. The SCC-4 cells were treated by AESN to evaluate the inhibition of cell proliferation and mitochondrial function in vitro. Our results suggested that AESN markedly increased reactive oxygen species production. AESN also promoted caspase-9 and caspase-3 activation and subsequent triggering of the mitochondrial apoptotic pathway. The inhibition of glucose uptake was alleviated mediated by a dose-dependent manner in SCC-4 cells with AESN treatment for 24 h, resulting in mitochondrial fission. These results suggested that AESN has potential to be used as a functional food in adjuvant chemotherapy for treating human oral cancer by suppression of mitochondrial function.
Collapse
Affiliation(s)
- Wu-Ching Uen
- School of Medicine, Fujen Catholic University, New Taipei City, 11458, Taiwan.,Department of Hematology and Oncology, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, 11042, Taiwan
| | - Bao-Hong Lee
- Taiwan Indigena Botanica Co., Ltd., Taipei, 11042, Taiwan
| | - Yeu-Ching Shi
- Taiwan Indigena Botanica Co., Ltd., Taipei, 11042, Taiwan
| | - She-Ching Wu
- Department of Food Science, National Chiayi University, Chiayi, 89250, Taiwan
| | - Chen-Jei Tai
- Department of Obstetrics and Gynecology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, 11042, Taiwan.,Department of Chinese Medicine, Taipei University Hospital, Taipei, 11042, Taiwan.,Traditional Herbal Medicine Research Center, Taipei Medical University Hospital, Taipei, 11042, Taiwan
| | - Cheng-Jeng Tai
- Division of Hematology and Oncology, Department of Internal Medicine, Taipei Medical University Hospital, Taipei, 11042, Taiwan.,Division of Hematology and Oncology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, 11042, Taiwan
| |
Collapse
|
19
|
Baek N, Seo OW, Kim M, Hulme J, An SSA. Monitoring the effects of doxorubicin on 3D-spheroid tumor cells in real-time. Onco Targets Ther 2016; 9:7207-7218. [PMID: 27920558 PMCID: PMC5125797 DOI: 10.2147/ott.s112566] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Recently, increasing numbers of cell culture experiments with 3D spheroids presented better correlating results in vivo than traditional 2D cell culture systems. 3D spheroids could offer a simple and highly reproducible model that would exhibit many characteristics of natural tissue, such as the production of extracellular matrix. In this paper numerous cell lines were screened and selected depending on their ability to form and maintain a spherical shape. The effects of increasing concentrations of doxorubicin (DXR) on the integrity and viability of the selected spheroids were then measured at regular intervals and in real-time. In total 12 cell lines, adenocarcinomic alveolar basal epithelial (A549), muscle (C2C12), prostate (DU145), testis (F9), pituitary epithelial-like (GH3), cervical cancer (HeLa), HeLa contaminant (HEp2), embryo (NIH3T3), embryo (PA317), neuroblastoma (SH-SY5Y), osteosarcoma U2OS, and embryonic kidney cells (293T), were screened. Out of the 12, 8 cell lines, NIH3T3, C2C12, 293T, SH-SY5Y, A549, HeLa, PA317, and U2OS formed regular spheroids and the effects of DXR on these structures were measured at regular intervals. Finally, 5 cell lines, A549, HeLa, SH-SY5Y, U2OS, and 293T, were selected for real-time monitoring and the effects of DXR treatment on their behavior were continuously recorded for 5 days. A potential correlation regarding the effects of DXR on spheroid viability and ATP production was measured on days 1, 3, and 5. Cytotoxicity of DXR seemed to occur after endocytosis, since the cellular activities and ATP productions were still viable after 1 day of the treatment in all spheroids, except SH-SY5Y. Both cellular activity and ATP production were halted 3 and 5 days from the start of the treatment in all spheroids. All cell lines maintained their spheroid shape, except SHSY-5, which behaved in an unpredictable manner when exposed to toxic concentrations of DXR. Cytotoxic effects of DXR towards SH-SY5Y seemed to cause degradation of the extracellular matrix, since all cells were dismantled from the spheroid upon cell death. On the other hand, 293T spheroids revealed retarded cellular activity and ATP productions upon DXR treatment throughout the experiment. Since 293T was the embryonic kidney cells, the fast clearance or neutralizations could have made them resistant towards DXR. In conclusion, the same degree of sensitivity from the 2D system did not translate to a 3D culture system, resulting in higher IC50 values than the 2D system. The varying sensitivities and tolerances to drugs could be better understood with a 3D cell culture system.
Collapse
Affiliation(s)
- NamHuk Baek
- Department of R & D, NanoEntek Inc., Seoul, Republic of Korea
| | - Ok Won Seo
- Department of R & D, NanoEntek Inc., Seoul, Republic of Korea
| | - MinSung Kim
- Department of R & D, NanoEntek Inc., Seoul, Republic of Korea
| | - John Hulme
- Department of BioNano Technology Gachon University, Gyeonggi-do, Republic of Korea
| | - Seong Soo A An
- Department of BioNano Technology Gachon University, Gyeonggi-do, Republic of Korea
| |
Collapse
|
20
|
Baek N, Seo OW, Lee J, Hulme J, An SSA. Real-time monitoring of cisplatin cytotoxicity on three-dimensional spheroid tumor cells. DRUG DESIGN DEVELOPMENT AND THERAPY 2016; 10:2155-65. [PMID: 27445462 PMCID: PMC4938242 DOI: 10.2147/dddt.s108004] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Three-dimensional (3D) cell cultivation is a powerful technique for monitoring and understanding diverse cellular mechanisms in developmental cancer and neuronal biology, tissue engineering, and drug development. 3D systems could relate better to in vivo models than two-dimensional (2D) cultures. Several factors, such as cell type, survival rate, proliferation rate, and gene and protein expression patterns, determine whether a particular cell line can be adapted to a 3D system. The 3D system may overcome some of the limitations of 2D cultures in terms of cell–cell communication and cell networks, which are essential for understanding differentiation, structural organization, shape, and extended connections with other cells or organs. Here, the effect of the anticancer drug cisplatin, also known as cis-diamminedichloroplatinum (II) or CDDP, on adenosine triphosphate (ATP) generation was investigated using 3D spheroid-forming cells and real-time monitoring for 7 days. First, 12 cell lines were screened for their ability to form 3D spheroids: prostate (DU145), testis (F9), embryonic fibroblast (NIH-3T3), muscle (C2C12), embryonic kidney (293T), neuroblastoma (SH-SY5Y), adenocarcinomic alveolar basal epithelial cell (A549), cervical cancer (HeLa), HeLa contaminant (HEp2), pituitary epithelial-like cell (GH3), embryonic cell (PA317), and osteosarcoma (U-2OS) cells. Of these, eight cell lines were selected: NIH-3T3, C2C12, 293T, SH-SY5Y, A549, HeLa, PA317, and U-2OS; and five underwent real-time monitoring of CDDP cytotoxicity: HeLa, A549, 293T, SH-SY5Y, and U-2OS. ATP generation was blocked 1 day after addition of 50 μM CDDP, but cytotoxicity in HeLa, A549, SH-SY5Y, and U-2OS cells could be visualized only 4 days after treatment. In 293T cells, CDDP failed to kill entirely the culture and ATP generation was only partially blocked after 1 day. This suggests potential CDDP resistance of 293T cells or metabolic clearance of the drug. Real-time monitoring and ATP measurements directly confirmed the cytotoxicity of CDDP, indicating that CDDP may interfere with mitochondrial activity.
Collapse
Affiliation(s)
- NamHuk Baek
- Department of Research and Development, NanoEntek Inc., Seoul
| | - Ok Won Seo
- Department of Research and Development, NanoEntek Inc., Seoul
| | - Jaehwa Lee
- Department of Research and Development, NanoEntek Inc., Seoul
| | - John Hulme
- Department of BioNano Technology, Gachon University, Gyeonggi-do, Korea
| | - Seong Soo A An
- Department of BioNano Technology, Gachon University, Gyeonggi-do, Korea
| |
Collapse
|
21
|
Anti-Cancer Activity of Solanum nigrum (AESN) through Suppression of Mitochondrial Function and Epithelial-Mesenchymal Transition (EMT) in Breast Cancer Cells. Molecules 2016; 21:molecules21050553. [PMID: 27136519 PMCID: PMC6274361 DOI: 10.3390/molecules21050553] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2016] [Revised: 04/21/2016] [Accepted: 04/22/2016] [Indexed: 01/13/2023] Open
Abstract
Chemotherapy is the main approach for treating advanced and recurrent carcinoma, but the clinical performance of chemotherapy is limited by relatively low response rates, drug resistance, and adverse effects that severely affect the quality of life of patients. An association between epithelial-mesenchymal transition (EMT) and chemotherapy resistance has been investigated in recent studies. Our recent studies have found that the aqueous extract of Solanum nigrum (AESN) is a crucial ingredient in some traditional Chinese medicine formulas for treating various types of cancer patients and exhibits antitumor effects. We evaluated the suppression of EMT in MCF-7 breast cancer cells treated with AESN. The mitochondrial morphology was investigated using Mitotracker Deep-Red FM stain. Our results indicated that AESN markedly inhibited cell viability of MCF-7 breast cancer cells through apoptosis induction and cell cycle arrest mediated by activation of caspase-3 and production of reactive oxygen species. Furthermore, mitochondrial fission was observed in MCF-7 breast cancer cells treated with AESN. In addition to elevation of E-cadherin, downregulations of ZEB1, N-cadherin, and vimentin were found in AESN-treated MCF-7 breast cancer cells. These results suggested that AESN could inhibit EMT of MCF-7 breast cancer cells mediated by attenuation of mitochondrial function. AESN could be potentially beneficial in treating breast cancer cells, and may be of interest for future studies in developing integrative cancer therapy against proliferation, metastasis, and migration of breast cancer cells.
Collapse
|
22
|
Tai CJ, Choong CY, Shi YC, Lin YC, Wang CW, Lee BH, Tai CJ. Solanum nigrum Protects against Hepatic Fibrosis via Suppression of Hyperglycemia in High-Fat/Ethanol Diet-Induced Rats. Molecules 2016; 21:269. [PMID: 26927042 PMCID: PMC6274119 DOI: 10.3390/molecules21030269] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2015] [Revised: 02/17/2016] [Accepted: 02/19/2016] [Indexed: 02/02/2023] Open
Abstract
Background: Advanced glycation end products (AGEs) signal through the receptor for AGE (RAGE), which can lead to hepatic fibrosis in hyperglycemia and hyperlipidemia. We investigated the inhibitory effect of aqueous extracts from Solanum nigrum (AESN) on AGEs-induced RAGE signaling and activation of hepatic stellate cells (HSCs) and hyperglycemia induced by high-fat diet with ethanol. Methods: An animal model was used to evaluate the anti-hepatic fibrosis activity of AESN in rats fed a high-fat diet (HFD; 30%) with ethanol (10%). Male Wistar rats (4 weeks of age) were randomly divided into four groups (n = 6): (1) control (basal diet); (2) HFD (30%) + ethanol (10%) (HFD/ethanol); (3) HFD/ethanol + AESN (100 mg/kg, oral administration); and (4) HFD/ethanol + pioglitazone (10 mg/kg, oral administration) and treated with HFD for 6 months in the presence or absence of 10% ethanol in dietary water. Results: We found that AESN improved insulin resistance and hyperinsulinemia, and downregulated lipogenesis via regulation of the peroxisome proliferator-activated receptor α (PPARα), PPARγ co-activator (PGC-1α), carbohydrate response element-binding protein (ChREBP), acetyl-CoA carboxylase (ACC), and fatty acid synthase (FAS) mRNA levels in the liver of HFD/ethanol-treated rats. In turn, AESN may delay and inhibit the progression of hepatic fibrosis, including α-smooth muscle actin (α-SMA) inhibition and MMP-2 production. Conclusions: These results suggest that AESN may be further explored as a novel anti-fibrotic strategy for the prevention of liver disease.
Collapse
Affiliation(s)
- Cheng-Jeng Tai
- Division of Hematology and Oncology, Department of Internal Medicine, Taipei Medicine University Hospital, Taipei 11031, Taiwan.
- Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan.
| | - Chen-Yen Choong
- Department of Obstetrics and Gynecology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan.
| | - Yeu-Ching Shi
- Taiwan Indigena Botanica Co., Ltd., Taipei 11458, Taiwan.
| | - Yu-Chun Lin
- Graduate Institute of Medical Sciences, Taipei Medical University, Taipei 11031, Taiwan.
| | - Chia-Woei Wang
- Department of Obstetrics and Gynecology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan.
- Department of Obstetrics and Gynecology, Taipei Medical University Hospital, Taipei 11031, Taiwan.
| | - Bao-Hong Lee
- Division of Hematology and Oncology, Department of Internal Medicine, Taipei Medicine University Hospital, Taipei 11031, Taiwan.
- Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan.
| | - Chen-Jei Tai
- Department of Obstetrics and Gynecology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan.
- Department of Chinese Medicine, Taipei Medical University Hospital, Taipei 11031, Taiwan.
- Traditional Herbal Medicine Research Center, Taipei Medical University Hospital, Taipei 11031, Taiwan.
| |
Collapse
|