1
|
Tapia-Arellano A, Cabrera P, Cortés-Adasme E, Riveros A, Hassan N, Kogan MJ. Tau- and α-synuclein-targeted gold nanoparticles: applications, opportunities, and future outlooks in the diagnosis and therapy of neurodegenerative diseases. J Nanobiotechnology 2024; 22:248. [PMID: 38741193 DOI: 10.1186/s12951-024-02526-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 05/02/2024] [Indexed: 05/16/2024] Open
Abstract
The use of nanomaterials in medicine offers multiple opportunities to address neurodegenerative disorders such as Alzheimer's and Parkinson's disease. These diseases are a significant burden for society and the health system, affecting millions of people worldwide without sensitive and selective diagnostic methodologies or effective treatments to stop their progression. In this sense, the use of gold nanoparticles is a promising tool due to their unique properties at the nanometric level. They can be functionalized with specific molecules to selectively target pathological proteins such as Tau and α-synuclein for Alzheimer's and Parkinson's disease, respectively. Additionally, these proteins are used as diagnostic biomarkers, wherein gold nanoparticles play a key role in enhancing their signal, even at the low concentrations present in biological samples such as blood or cerebrospinal fluid, thus enabling an early and accurate diagnosis. On the other hand, gold nanoparticles act as drug delivery platforms, bringing therapeutic agents directly into the brain, improving treatment efficiency and precision, and reducing side effects in healthy tissues. However, despite the exciting potential of gold nanoparticles, it is crucial to address the challenges and issues associated with their use in the medical field before they can be widely applied in clinical settings. It is critical to ensure the safety and biocompatibility of these nanomaterials in the context of the central nervous system. Therefore, rigorous preclinical and clinical studies are needed to assess the efficacy and feasibility of these strategies in patients. Since there is scarce and sometimes contradictory literature about their use in this context, the main aim of this review is to discuss and analyze the current state-of-the-art of gold nanoparticles in relation to delivery, diagnosis, and therapy for Alzheimer's and Parkinson's disease, as well as recent research about their use in preclinical, clinical, and emerging research areas.
Collapse
Affiliation(s)
- Andreas Tapia-Arellano
- Instituto Universitario de Investigación y Desarrollo Tecnológico (IDT), Universidad Tecnológica Metropolitana, Santiago, Chile.
- Facultad de Cs. Qcas. y Farmacéuticas, Universidad de Chile, Santiago, Chile.
- Advanced Center for Chronic Diseases (ACCDis), Santiago, Chile.
- Millenium Nucleus in NanoBioPhysics, Valparaíso, Chile.
| | - Pablo Cabrera
- Facultad de Cs. Qcas. y Farmacéuticas, Universidad de Chile, Santiago, Chile
- Advanced Center for Chronic Diseases (ACCDis), Santiago, Chile
| | - Elizabeth Cortés-Adasme
- Facultad de Cs. Qcas. y Farmacéuticas, Universidad de Chile, Santiago, Chile
- Advanced Center for Chronic Diseases (ACCDis), Santiago, Chile
| | - Ana Riveros
- Facultad de Cs. Qcas. y Farmacéuticas, Universidad de Chile, Santiago, Chile
- Advanced Center for Chronic Diseases (ACCDis), Santiago, Chile
| | - Natalia Hassan
- Instituto Universitario de Investigación y Desarrollo Tecnológico (IDT), Universidad Tecnológica Metropolitana, Santiago, Chile.
- Advanced Center for Chronic Diseases (ACCDis), Santiago, Chile.
- Millenium Nucleus in NanoBioPhysics, Valparaíso, Chile.
| | - Marcelo J Kogan
- Facultad de Cs. Qcas. y Farmacéuticas, Universidad de Chile, Santiago, Chile.
- Advanced Center for Chronic Diseases (ACCDis), Santiago, Chile.
| |
Collapse
|
2
|
Kantawala B, Shariff S, Ramadan N, Fawaz V, Hassan Y, Mugisha N, Yenkoyan K, Nazir A, Uwishema O. Revolutionizing neurotherapeutics: blood-brain barrier-on-a-chip technologies for precise drug delivery. Ann Med Surg (Lond) 2024; 86:2794-2804. [PMID: 38694300 PMCID: PMC11060226 DOI: 10.1097/ms9.0000000000001887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 02/23/2024] [Indexed: 05/04/2024] Open
Abstract
Introduction The blood-brain barrier (BBB) is a critical neurovascular unit regulating substances' passage from the bloodstream to the brain. Its selective permeability poses significant challenges in drug delivery for neurological disorders. Conventional methods often fail due to the BBB's complex structure. Aim The study aims to shed light on their pivotal role in revolutionizing neurotherapeutics and explores the transformative potential of BBB-on-a-Chip technologies in drug delivery research to comprehensively review BBB-on-a-chip technologies, focusing on their design, and substantiate advantages over traditional models. Methods A detailed analysis of existing literature and experimental data pertaining to BBB-on-a-Chip technologies was conducted. Various models, their physiological relevance, and innovative design considerations were examined through databases like Scopus, EbscoHost, PubMed Central, and Medline. Case studies demonstrating enhanced drug transport through BBB-on-a-Chip models were also reviewed, highlighting their potential impact on neurological disorders. Results BBB-on-a-Chip models offer a revolutionary approach, accurately replicating BBB properties. These microphysiological systems enable high-throughput screening, real-time monitoring of drug transport, and precise localization of drugs. Case studies demonstrate their efficacy in enhancing drug penetration, offering potential therapies for diseases like Parkinson's and Alzheimer's. Conclusion BBB-on-a-Chip models represent a transformative milestone in drug delivery research. Their ability to replicate BBB complexities, offer real-time monitoring, and enhance drug transport holds immense promise for neurological disorders. Continuous research and development are imperative to unlock BBB-on-a-Chip models' full potential, ushering in a new era of targeted, efficient, and safer drug therapies for challenging neurological conditions.
Collapse
Affiliation(s)
- Burhan Kantawala
- Oli Health Magazine Organization, Research and Education
- Neuroscience Laboratory, Cobrain Centre
| | - Sanobar Shariff
- Oli Health Magazine Organization, Research and Education
- Neuroscience Laboratory, Cobrain Centre
| | - Nagham Ramadan
- Oli Health Magazine Organization, Research and Education
- Faculty of Medicine
| | - Violette Fawaz
- Oli Health Magazine Organization, Research and Education
- Faculty of Pharmacy, Beirut Arab University, Beirut, Lebanon
| | - Youmna Hassan
- Oli Health Magazine Organization, Research and Education
- Faculty of Medicine and Surgery, Ahfad University for Women, Omdurman, Sudan
| | - Nadine Mugisha
- Oli Health Magazine Organization, Research and Education
- Faculty of Global Surgery, University of Global Health Equity, Kigali, Rwanda
| | - Konstantin Yenkoyan
- Neuroscience Laboratory, Cobrain Centre
- Department of Biochemistry, Yerevan State Medical University named after Mkhitar Heratsi, Yerevan, Armenia
| | - Abubakar Nazir
- Oli Health Magazine Organization, Research and Education
- Department of Medicine, King Edward Medical University, Lahore, Pakistan
| | | |
Collapse
|
3
|
Pereira I, Lopez-Martinez MJ, Samitier J. Advances in current in vitro models on neurodegenerative diseases. Front Bioeng Biotechnol 2023; 11:1260397. [PMID: 38026882 PMCID: PMC10658011 DOI: 10.3389/fbioe.2023.1260397] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023] Open
Abstract
Many neurodegenerative diseases are identified but their causes and cure are far from being well-known. The problem resides in the complexity of the neural tissue and its location which hinders its easy evaluation. Although necessary in the drug discovery process, in vivo animal models need to be reduced and show relevant differences with the human tissues that guide scientists to inquire about other possible options which lead to in vitro models being explored. From organoids to organ-on-a-chips, 3D models are considered the cutting-edge technology in cell culture. Cell choice is a big parameter to take into consideration when planning an in vitro model and cells capable of mimicking both healthy and diseased tissue, such as induced pluripotent stem cells (iPSC), are recognized as good candidates. Hence, we present a critical review of the latest models used to study neurodegenerative disease, how these models have evolved introducing microfluidics platforms, 3D cell cultures, and the use of induced pluripotent cells to better mimic the neural tissue environment in pathological conditions.
Collapse
Affiliation(s)
- Inês Pereira
- Nanobioengineering Group, Institute for Bioengineering of Catalonia, Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Maria J. Lopez-Martinez
- Nanobioengineering Group, Institute for Bioengineering of Catalonia, Barcelona Institute of Science and Technology, Barcelona, Spain
- Centro Investigación Biomédica en Red: Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Department of Electronics and Biomedical Engineering, University of Barcelona, Barcelona, Spain
| | - Josep Samitier
- Nanobioengineering Group, Institute for Bioengineering of Catalonia, Barcelona Institute of Science and Technology, Barcelona, Spain
- Centro Investigación Biomédica en Red: Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Department of Electronics and Biomedical Engineering, University of Barcelona, Barcelona, Spain
| |
Collapse
|
4
|
Buchmann S, Enrico A, Holzreuter MA, Reid M, Zeglio E, Niklaus F, Stemme G, Herland A. Probabilistic cell seeding and non-autofluorescent 3D-printed structures as scalable approach for multi-level co-culture modeling. Mater Today Bio 2023; 21:100706. [PMID: 37435551 PMCID: PMC10331311 DOI: 10.1016/j.mtbio.2023.100706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/13/2023] [Accepted: 06/15/2023] [Indexed: 07/13/2023] Open
Abstract
To model complex biological tissue in vitro, a specific layout for the position and numbers of each cell type is necessary. Establishing such a layout requires manual cell placement in three dimensions (3D) with micrometric precision, which is complicated and time-consuming. Moreover, 3D printed materials used in compartmentalized microfluidic models are opaque or autofluorescent, hindering parallel optical readout and forcing serial characterization methods, such as patch-clamp probing. To address these limitations, we introduce a multi-level co-culture model realized using a parallel cell seeding strategy of human neurons and astrocytes on 3D structures printed with a commercially available non-autofluorescent resin at micrometer resolution. Using a two-step strategy based on probabilistic cell seeding, we demonstrate a human neuronal monoculture that forms networks on the 3D printed structure and can establish cell-projection contacts with an astrocytic-neuronal co-culture seeded on the glass substrate. The transparent and non-autofluorescent printed platform allows fluorescence-based immunocytochemistry and calcium imaging. This approach provides facile multi-level compartmentalization of different cell types and routes for pre-designed cell projection contacts, instrumental in studying complex tissue, such as the human brain.
Collapse
Affiliation(s)
- Sebastian Buchmann
- Division of Nanobiotechnology, KTH Royal Institute of Technology, Tomtebodavägen 23a, 171 65, Solna, Sweden
- AIMES – Center for the Advancement of Integrated Medical and Engineering Sciences, Department of Neuroscience, Karolinska Institute, 17177, Stockholm, Sweden
| | - Alessandro Enrico
- Division of Micro and Nanosystems, KTH Royal Institute of Technology, Malvinas väg 10, 100 44, Stockholm, Sweden
- Synthetic Physiology lab, Department of Civil Engineering and Architecture, University of Pavia, Via Ferrata 3, 27100, Pavia, Italy
| | - Muriel Alexandra Holzreuter
- AIMES – Center for the Advancement of Integrated Medical and Engineering Sciences, Department of Neuroscience, Karolinska Institute, 17177, Stockholm, Sweden
- Division of Micro and Nanosystems, KTH Royal Institute of Technology, Malvinas väg 10, 100 44, Stockholm, Sweden
| | - Michael Reid
- Department of Fiber and Polymer Technology, Wallenberg Wood Science Centre, KTH Royal Institute of Technology, Teknikringen 56-58, 100 44, Stockholm, Sweden
| | - Erica Zeglio
- Division of Nanobiotechnology, KTH Royal Institute of Technology, Tomtebodavägen 23a, 171 65, Solna, Sweden
- AIMES – Center for the Advancement of Integrated Medical and Engineering Sciences, Department of Neuroscience, Karolinska Institute, 17177, Stockholm, Sweden
| | - Frank Niklaus
- Division of Micro and Nanosystems, KTH Royal Institute of Technology, Malvinas väg 10, 100 44, Stockholm, Sweden
| | - Göran Stemme
- Division of Micro and Nanosystems, KTH Royal Institute of Technology, Malvinas väg 10, 100 44, Stockholm, Sweden
| | - Anna Herland
- Division of Nanobiotechnology, KTH Royal Institute of Technology, Tomtebodavägen 23a, 171 65, Solna, Sweden
- AIMES – Center for the Advancement of Integrated Medical and Engineering Sciences, Department of Neuroscience, Karolinska Institute, 17177, Stockholm, Sweden
| |
Collapse
|
5
|
Mao S, Fonder C, Rubby MF, Phillips GJ, Sakaguchi DS, Que L. An integrated microfluidic chip for studying the effects of neurotransmitters on neurospheroids. LAB ON A CHIP 2023; 23:1649-1663. [PMID: 36751868 DOI: 10.1039/d2lc00755j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
To improve our understanding of how the central nervous system functions in health and disease, we report the development of an integrated chip for studying the effects of the neurotransmitters dopamine and serotonin on adult rat hippocampal progenitor cell (AHPC) neurospheroids. This chip allows dopamine or serotonin located in one chamber to diffuse to AHPC neurospheroids cultured in an adjacent chamber through a built-in diffusion barrier created by an array of intentionally misaligned micropillars. The gaps among the micropillars are filled with porous poly(ethylene glycol) (PEG) gel to tune the permeability of the diffusion barrier. An electrochemical sensor is also integrated within the chamber where the neurospheroids can be cultured, thereby allowing monitoring of the concentrations of dopamine or serotonin. Experiments show that concentrations of the neurotransmitters inside the neurospheroid chamber can be increased over a period of several hours to over 10 days by controlling the compositions of the PEG gel inside the diffusion barrier. The AHPC neurospheroids cultured in the chip remain highly viable following dopamine or serotonin treatment. Cell proliferation and neuronal differentiation have also been observed following treatment, revealing that the AHPC neurospheroids are a valuable in vitro brain model for neurogenesis research. Finally, we show that by tuning the permeability of diffusion barrier, we can block transfer of Escherichia coli cells across the diffusion barrier, while allowing dopamine or serotonin to pass through. These results suggest the feasibility of using the chip to better understand the interactions between microbiota and brain via the gut-brain axis.
Collapse
Affiliation(s)
- Subin Mao
- Department of Electrical and Computer Engineering, Iowa State University, Ames IA 50011, USA.
| | - Catherine Fonder
- Molecular, Cellular, and Developmental Biology Program, Iowa State University, Ames IA 50011, USA.
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames IA 50011, USA
- Nanovaccine Institute, Iowa State University, Ames IA 50011, USA
| | - Md Fazlay Rubby
- Department of Electrical and Computer Engineering, Iowa State University, Ames IA 50011, USA.
| | - Gregory J Phillips
- Department of Veterinary Microbiology, Iowa State University, Ames IA 50011, USA
- Nanovaccine Institute, Iowa State University, Ames IA 50011, USA
| | - Donald S Sakaguchi
- Molecular, Cellular, and Developmental Biology Program, Iowa State University, Ames IA 50011, USA.
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames IA 50011, USA
- Neuroscience Program, Iowa State University, Ames IA 50011, USA
- Nanovaccine Institute, Iowa State University, Ames IA 50011, USA
| | - Long Que
- Department of Electrical and Computer Engineering, Iowa State University, Ames IA 50011, USA.
| |
Collapse
|
6
|
Mohseni Garakani M, Cooke ME, Weber MH, Wertheimer MR, Ajji A, Rosenzweig DH. A 3D, Compartmental Tumor-Stromal Microenvironment Model of Patient-Derived Bone Metastasis. Int J Mol Sci 2022; 24:ijms24010160. [PMID: 36613604 PMCID: PMC9820116 DOI: 10.3390/ijms24010160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/09/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
Bone is a frequent site of tumor metastasis. The bone-tumor microenvironment is heterogeneous and complex in nature. Such complexity is compounded by relations between metastatic and bone cells influencing their sensitivity/resistance to chemotherapeutics. Standard chemotherapeutics may not show efficacy for every patient, and new therapeutics are slow to emerge, owing to the limitations of existing 2D/3D models. We previously developed a 3D interface model for personalized therapeutic screening, consisting of an electrospun poly lactic acid mesh activated with plasma species and seeded with stromal cells. Tumor cells embedded in an alginate-gelatin hydrogel are overlaid to create a physiologic 3D interface. Here, we applied our 3D model as a migration assay tool to verify the migratory behavior of different patient-derived bone metastasized cells. We assessed the impact of two different chemotherapeutics, Doxorubicin and Cisplatin, on migration of patient cells and their immortalized cell line counterparts. We observed different migratory behaviors and cellular metabolic activities blocked with both Doxorubicin and Cisplatin treatment; however, higher efficiency or lower IC50 was observed with Doxorubicin. Gene expression analysis of MDA-MB231 that migrated through our 3D hybrid model verified epithelial-mesenchymal transition through increased expression of mesenchymal markers involved in the metastasis process. Our findings indicate that we can model tumor migration in vivo, in line with different cell characteristics and it may be a suitable drug screening tool for personalized medicine approaches in metastatic cancer treatment.
Collapse
Affiliation(s)
- Mansoureh Mohseni Garakani
- Chemical Engineering Department, Polytechnique Montreal, Montreal, QC H3T1J4, Canada
- Institute of Biomedical Engineering, Polytechnique Montreal, Montreal, QC H3T1J4, Canada
| | - Megan E. Cooke
- Department of Surgery, Division of Orthopaedic Surgery, McGill University, Montreal, QC H3G 1A4, Canada
- Injury, Repair and Recovery Program, Research Institute of McGill University Health Center (RI-MUHC), Montreal, QC H3G 1A4, Canada
| | - Michael H. Weber
- Department of Surgery, Division of Orthopaedic Surgery, McGill University, Montreal, QC H3G 1A4, Canada
- Injury, Repair and Recovery Program, Research Institute of McGill University Health Center (RI-MUHC), Montreal, QC H3G 1A4, Canada
| | - Michael R. Wertheimer
- Institute of Biomedical Engineering, Polytechnique Montreal, Montreal, QC H3T1J4, Canada
- Department of Engineering Physics, Polytechnique Montreal, Montreal, QC H3T1J4, Canada
| | - Abdellah Ajji
- Chemical Engineering Department, Polytechnique Montreal, Montreal, QC H3T1J4, Canada
- Institute of Biomedical Engineering, Polytechnique Montreal, Montreal, QC H3T1J4, Canada
- Correspondence: (A.A.); (D.H.R.); Tel.: +1-514-934-1934 (ext. 43238) (D.H.R.)
| | - Derek H. Rosenzweig
- Department of Surgery, Division of Orthopaedic Surgery, McGill University, Montreal, QC H3G 1A4, Canada
- Injury, Repair and Recovery Program, Research Institute of McGill University Health Center (RI-MUHC), Montreal, QC H3G 1A4, Canada
- Correspondence: (A.A.); (D.H.R.); Tel.: +1-514-934-1934 (ext. 43238) (D.H.R.)
| |
Collapse
|
7
|
Tarricone G, Carmagnola I, Chiono V. Tissue-Engineered Models of the Human Brain: State-of-the-Art Analysis and Challenges. J Funct Biomater 2022; 13:146. [PMID: 36135581 PMCID: PMC9501967 DOI: 10.3390/jfb13030146] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/03/2022] [Accepted: 09/06/2022] [Indexed: 11/26/2022] Open
Abstract
Neurological disorders affect billions of people across the world, making the discovery of effective treatments an important challenge. The evaluation of drug efficacy is further complicated because of the lack of in vitro models able to reproduce the complexity of the human brain structure and functions. Some limitations of 2D preclinical models of the human brain have been overcome by the use of 3D cultures such as cell spheroids, organoids and organs-on-chip. However, one of the most promising approaches for mimicking not only cell structure, but also brain architecture, is currently represented by tissue-engineered brain models. Both conventional (particularly electrospinning and salt leaching) and unconventional (particularly bioprinting) techniques have been exploited, making use of natural polymers or combinations between natural and synthetic polymers. Moreover, the use of induced pluripotent stem cells (iPSCs) has allowed the co-culture of different human brain cells (neurons, astrocytes, oligodendrocytes, microglia), helping towards approaching the central nervous system complexity. In this review article, we explain the importance of in vitro brain modeling, and present the main in vitro brain models developed to date, with a special focus on the most recent advancements in tissue-engineered brain models making use of iPSCs. Finally, we critically discuss achievements, main challenges and future perspectives.
Collapse
Affiliation(s)
- Giulia Tarricone
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Corso Duca Degli Abruzzi 24, 10129 Turin, Italy
- PolitoBioMedLab, Politecnico di Torino, Corso Duca Degli Abruzzi 24, 10129 Turin, Italy
- Interuniversity Center for the Promotion of the 3Rs Principle in Teaching and Research, Centro 3R, 56122 Pisa, Italy
- Nanobiointeractions & Nanodiagnostics, Istituto Italiano di Tecnologia (IIT), Via Morego 30, 16163 Genova, Italy
- Department of Chemistry and Industrial Chemistry, University of Genova, Via Dodecaneso 31, 16146 Genova, Italy
| | - Irene Carmagnola
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Corso Duca Degli Abruzzi 24, 10129 Turin, Italy
- PolitoBioMedLab, Politecnico di Torino, Corso Duca Degli Abruzzi 24, 10129 Turin, Italy
- Interuniversity Center for the Promotion of the 3Rs Principle in Teaching and Research, Centro 3R, 56122 Pisa, Italy
| | - Valeria Chiono
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Corso Duca Degli Abruzzi 24, 10129 Turin, Italy
- PolitoBioMedLab, Politecnico di Torino, Corso Duca Degli Abruzzi 24, 10129 Turin, Italy
- Interuniversity Center for the Promotion of the 3Rs Principle in Teaching and Research, Centro 3R, 56122 Pisa, Italy
| |
Collapse
|
8
|
Ao Z, Song S, Tian C, Cai H, Li X, Miao Y, Wu Z, Krzesniak J, Ning B, Gu M, Lee LP, Guo F. Understanding Immune-Driven Brain Aging by Human Brain Organoid Microphysiological Analysis Platform. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2200475. [PMID: 35908805 PMCID: PMC9507385 DOI: 10.1002/advs.202200475] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 06/17/2022] [Indexed: 05/09/2023]
Abstract
The aging of the immune system drives systemic aging and the pathogenesis of age-related diseases. However, a significant knowledge gap remains in understanding immune-driven aging, especially in brain aging, due to the limited current in vitro models of neuroimmune interaction. Here, the authors report the development of a human brain organoid microphysiological analysis platform (MAP) to discover the dynamic process of immune-driven brain aging. The organoid MAP is created by 3D printing that confines organoid growth and facilitates cell and nutrition perfusion, promoting organoid maturation and their committment to forebrain identity. Dynamic rocking flow is incorporated into the platform that allows to perfuse primary monocytes from young (20 to 30-year-old) and aged (>60-year-old) donors and culture human cortical organoids to model neuroimmune interaction. The authors find that the aged monocytes increase infiltration and promote the expression of aging-related markers (e.g., higher expression of p16) within the human cortical organoids, indicating that aged monocytes may drive brain aging. The authors believe that the organoid MAP may provide promising solutions for basic research and translational applications in aging, neural immunological diseases, autoimmune disorders, and cancer.
Collapse
Affiliation(s)
- Zheng Ao
- Department of Intelligent Systems EngineeringIndiana UniversityBloomingtonIN47405USA
| | - Sunghwa Song
- Department of Intelligent Systems EngineeringIndiana UniversityBloomingtonIN47405USA
| | - Chunhui Tian
- Department of Intelligent Systems EngineeringIndiana UniversityBloomingtonIN47405USA
| | - Hongwei Cai
- Department of Intelligent Systems EngineeringIndiana UniversityBloomingtonIN47405USA
| | - Xiang Li
- Department of Intelligent Systems EngineeringIndiana UniversityBloomingtonIN47405USA
| | - Yifei Miao
- Center for Stem Cell and Organoid Medicine (CuSTOM)Division of Pulmonary BiologyDivision of Developmental BiologyCincinnati Children's Hospital Medical CenterCincinnatiOH45229USA
- University of Cincinnati School of MedicineCincinnatiOH45229USA
| | - Zhuhao Wu
- Department of Intelligent Systems EngineeringIndiana UniversityBloomingtonIN47405USA
| | - Jonathan Krzesniak
- Department of Intelligent Systems EngineeringIndiana UniversityBloomingtonIN47405USA
| | - Bo Ning
- Center for Cellular and Molecular DiagnosticsDepartment of Biochemistry and Molecular BiologyTulane University School of MedicineNew OrleansLA70112USA
| | - Mingxia Gu
- Center for Stem Cell and Organoid Medicine (CuSTOM)Division of Pulmonary BiologyDivision of Developmental BiologyCincinnati Children's Hospital Medical CenterCincinnatiOH45229USA
- University of Cincinnati School of MedicineCincinnatiOH45229USA
| | - Luke P. Lee
- Harvard Institute of MedicineHarvard Medical SchoolHarvard UniversityBrigham and Women's HospitalBostonMA02115USA
- Department of BioengineeringDepartment of Electrical Engineering and Computer ScienceUniversity of California at BerkeleyBerkeleyCA94720USA
- Department of BiophysicsInstitute of Quantum BiophysicsSungkyunkwan UniversitySuwonGyeonggi‐do16419South Korea
| | - Feng Guo
- Department of Intelligent Systems EngineeringIndiana UniversityBloomingtonIN47405USA
| |
Collapse
|
9
|
Pamies D, Wiersma D, Katt ME, Zhong L, Burtscher J, Harris G, Smirnova L, Searson PC, Hartung T, Hogberg HT. Human organotypic brain model as a tool to study chemical-induced dopaminergic neuronal toxicity. Neurobiol Dis 2022; 169:105719. [PMID: 35398340 PMCID: PMC9298686 DOI: 10.1016/j.nbd.2022.105719] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 04/01/2022] [Accepted: 04/04/2022] [Indexed: 12/15/2022] Open
Abstract
Oxidative stress is caused by an imbalance between the generation and detoxification of reactive oxygen and nitrogen species (ROS/RNS). This imbalance plays an important role in brain aging and age-related neurodegenerative diseases. In the context of Parkinson’s disease (PD), the sensitivity of dopaminergic neurons in the substantia nigra pars compacta to oxidative stress is considered a key factor of PD pathogenesis. Here we study the effect of different oxidative stress-inducing compounds (6-OHDA, MPTP or MPP+) on the population of dopaminergic neurons in an iPSC-derived human brain 3D model (aka BrainSpheres). Treatment with 6-OHDA, MPTP or MPP+ at 4 weeks of differentiation disrupted the dopaminergic neuronal phenotype in BrainSpheres at (50, 5000, 1000 μM respectively). 6-OHDA increased ROS production and decreased mitochondrial function most efficiently. It further induced the greatest changes in gene expression and metabolites related to oxidative stress and mitochondrial dysfunction. Co-culturing BrainSpheres with an endothelial barrier using a transwell system allowed the assessment of differential penetration capacities of the tested compounds and the damage they caused in the dopaminergic neurons within the BrainSpheres In conclusion, treatment with compounds known to induce PD-like phenotypes in vivo caused molecular deficits and loss of dopaminergic neurons in the BrainSphere model. This approach therefore recapitulates common animal models of neurodegenerative processes in PD at similarly high doses. The relevance as tool for drug discovery is discussed.
Collapse
|
10
|
Amirifar L, Shamloo A, Nasiri R, de Barros NR, Wang ZZ, Unluturk BD, Libanori A, Ievglevskyi O, Diltemiz SE, Sances S, Balasingham I, Seidlits SK, Ashammakhi N. Brain-on-a-chip: Recent advances in design and techniques for microfluidic models of the brain in health and disease. Biomaterials 2022; 285:121531. [DOI: 10.1016/j.biomaterials.2022.121531] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 04/10/2022] [Accepted: 04/15/2022] [Indexed: 12/12/2022]
|
11
|
Fusco F, Perottoni S, Giordano C, Riva A, Iannone LF, De Caro C, Russo E, Albani D, Striano P. The microbiota‐gut‐brain axis and epilepsy from a multidisciplinary perspective: clinical evidence and technological solutions for improvement of
in vitro
preclinical models. Bioeng Transl Med 2022; 7:e10296. [PMID: 35600638 PMCID: PMC9115712 DOI: 10.1002/btm2.10296] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 01/10/2022] [Accepted: 01/15/2022] [Indexed: 11/09/2022] Open
Affiliation(s)
- Federica Fusco
- Dipartimento di Chimica, materiali e ingegneria chimica "Giulio Natta" Politecnico di Milano Milan Italy
| | - Simone Perottoni
- Dipartimento di Chimica, materiali e ingegneria chimica "Giulio Natta" Politecnico di Milano Milan Italy
| | - Carmen Giordano
- Dipartimento di Chimica, materiali e ingegneria chimica "Giulio Natta" Politecnico di Milano Milan Italy
| | - Antonella Riva
- Paediatric Neurology and Muscular Disease Unit, IRCCS Istituto Giannina Gaslini Genova Italy
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health Università degli Studi di Genova Genova Italy
| | | | - Carmen De Caro
- Science of Health Department Magna Graecia University Catanzaro Italy
| | - Emilio Russo
- Science of Health Department Magna Graecia University Catanzaro Italy
| | - Diego Albani
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS Milan Italy
| | - Pasquale Striano
- Paediatric Neurology and Muscular Disease Unit, IRCCS Istituto Giannina Gaslini Genova Italy
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health Università degli Studi di Genova Genova Italy
| |
Collapse
|
12
|
De Simone U, Croce AC, Pignatti P, Buscaglia E, Caloni F, Coccini T. Three dimensional spheroid cell culture of human MSC‐derived neuron‐like cells: new in vitro model to assess magnetite nanoparticle‐induced neurotoxicity effects. J Appl Toxicol 2022; 42:1230-1252. [DOI: 10.1002/jat.4292] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 01/19/2022] [Accepted: 01/20/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Uliana De Simone
- Laboratory of Clinical and Experimental Toxicology, and Pavia Poison Centre ‐ National Toxicology Information Centre, Toxicology Unit, Istituti Clinici Scientifici Maugeri IRCCS Pavia Italy
| | - Anna Cleta Croce
- Institute of Molecular Genetics, Italian National Research Council (CNR) Pavia Italy
- Department of Biology & Biotechnology University of Pavia Pavia Italy
| | - Patrizia Pignatti
- Allergy and Immunology Unit, Istituti Clinici Scientifici Maugeri IRCCS Pavia Italy
| | - Eleonora Buscaglia
- Laboratory of Clinical and Experimental Toxicology, and Pavia Poison Centre ‐ National Toxicology Information Centre, Toxicology Unit, Istituti Clinici Scientifici Maugeri IRCCS Pavia Italy
| | - Francesca Caloni
- Department of Health, Animal Science and Food Safety Universitá degli Studi di Milano Milan Italy
| | - Teresa Coccini
- Laboratory of Clinical and Experimental Toxicology, and Pavia Poison Centre ‐ National Toxicology Information Centre, Toxicology Unit, Istituti Clinici Scientifici Maugeri IRCCS Pavia Italy
| |
Collapse
|
13
|
Abstract
Protection of the central nervous system (CNS) and cerebral homeostasis depend upon the blood-brain barrier (BBB) functions and permeability. BBB restrictive permeability hinders drug delivery for the treatment of several neurodegenerative diseases and brain tumors. Several in vivo animal models and in vitro systems have been developed to understand the BBB complex mechanisms and aid in the design of improved therapeutic strategies. However, there are still many limitations that should be addressed to achieve the structural and chemical environment of a human BBB. We developed a microfluidic-based model of the neurovascular unit. A monolayer of human cerebral endothelial cells (hCMEC-D3) was grown and cocultured with human brain microvascular pericytes (hBMVPC), and human induced pluripotent stem cells differentiated into astrocytes (hiPSC-AC) and neurons (hiPSC-N). To visualize the physiological morphology of each cell type, we used fluorescent cell-specific markers and confocal microscopy. Permeation of fluorescent solutes with different molecular weights was measured to demonstrate that the developed BBB was selectively permeable as a functional barrier.
Collapse
|
14
|
Sooriyaarachchi D, Maharubin S, Tan GZ. Fabrication of Microtube-Embedded Chip to Mimic Blood-Brain Barrier Capillary Vessels. Methods Mol Biol 2022; 2492:241-249. [PMID: 35733048 DOI: 10.1007/978-1-0716-2289-6_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Capillary vessels of the blood-brain barrier (BBB) regulate the transportation of solutes into the brain and provide defense against the disease-causing pathogens and neurotoxins present in the blood. Paradoxically, this regulation also prevents drug transportation into the brain. These unique characteristics of the BBB cause impediment in the treatment of neurological diseases. The development of preclinical models that mimic the BBB capillary vessel is crucial to investigate the complex transport mechanism. Microfluidics-based in vitro models are now extensively investigated for therapeutic applications due to the ability to create a tunable dynamic extracellular microenvironment. One of the main challenges of creating a BBB-on-a-chip is to recapitulate the tubular capillary structure. This chapter presents two novel fabrication methods for microfluidic devices embedded with tubular micro-channels that resemble the diameter and morphology of capillary vessels. These microfluidic devices can be seeded with cells for physiological and pathological studies to support future drug development.
Collapse
Affiliation(s)
| | - Shahrima Maharubin
- Industrial Manufacturing and Systems Engineering, Texas Tech University, Lubbock, TX, USA
| | - George Z Tan
- Industrial Manufacturing and Systems Engineering, Texas Tech University, Lubbock, TX, USA.
| |
Collapse
|
15
|
Yan L, Moriarty RA, Stroka KM. Recent progress and new challenges in modeling of human pluripotent stem cell-derived blood-brain barrier. Theranostics 2021; 11:10148-10170. [PMID: 34815809 PMCID: PMC8581424 DOI: 10.7150/thno.63195] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 10/05/2021] [Indexed: 12/13/2022] Open
Abstract
The blood-brain barrier (BBB) is a semipermeable unit that serves to vascularize the central nervous system (CNS) while tightly regulating the movement of molecules, ions, and cells between the blood and the brain. The BBB precisely controls brain homeostasis and protects the neural tissue from toxins and pathogens. The BBB is coordinated by a tight monolayer of brain microvascular endothelial cells, which is subsequently supported by mural cells, astrocytes, and surrounding neuronal cells that regulate the barrier function with a series of specialized properties. Dysfunction of barrier properties is an important pathological feature in the progression of various neurological diseases. In vitro BBB models recapitulating the physiological and diseased states are important tools to understand the pathological mechanism and to serve as a platform to screen potential drugs. Recent advances in this field have stemmed from the use of pluripotent stem cells (PSCs). Various cell types of the BBB such as brain microvascular endothelial cells (BMECs), pericytes, and astrocytes have been derived from PSCs and synergistically incorporated to model the complex BBB structure in vitro. In this review, we summarize the most recent protocols and techniques for the differentiation of major cell types of the BBB. We also discuss the progress of BBB modeling by using PSC-derived cells and perspectives on how to reproduce more natural BBBs in vitro.
Collapse
Affiliation(s)
- Li Yan
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA
| | - Rebecca A. Moriarty
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA
| | - Kimberly M. Stroka
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA
- Biophysics Program, University of Maryland, College Park, MD 20742, USA
- Center for Stem Cell Biology and Regenerative Medicine, University of Maryland, Baltimore, MD 21201, USA
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland, Baltimore, MD 21201, USA
| |
Collapse
|
16
|
Non-Animal Models in Experimental Subarachnoid Hemorrhage Research: Potentials and the Dilemma of the Translation from Bench to Bedside. Transl Stroke Res 2021; 13:218-221. [PMID: 34714498 PMCID: PMC8918456 DOI: 10.1007/s12975-021-00950-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 09/24/2021] [Accepted: 09/27/2021] [Indexed: 11/08/2022]
|
17
|
Lynch MJ, Gobbo OL. Advances in Non-Animal Testing Approaches towards Accelerated Clinical Translation of Novel Nanotheranostic Therapeutics for Central Nervous System Disorders. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:2632. [PMID: 34685073 PMCID: PMC8538557 DOI: 10.3390/nano11102632] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/21/2021] [Accepted: 10/01/2021] [Indexed: 12/11/2022]
Abstract
Nanotheranostics constitute a novel drug delivery system approach to improving systemic, brain-targeted delivery of diagnostic imaging agents and pharmacological moieties in one rational carrier platform. While there have been notable successes in this field, currently, the clinical translation of such delivery systems for the treatment of neurological disorders has been limited by the inadequacy of correlating in vitro and in vivo data on blood-brain barrier (BBB) permeation and biocompatibility of nanomaterials. This review aims to identify the most contemporary non-invasive approaches for BBB crossing using nanotheranostics as a novel drug delivery strategy and current non-animal-based models for assessing the safety and efficiency of such formulations. This review will also address current and future directions of select in vitro models for reducing the cumbersome and laborious mandate for testing exclusively in animals. It is hoped these non-animal-based modelling approaches will facilitate researchers in optimising promising multifunctional nanocarriers with a view to accelerating clinical testing and authorisation applications. By rational design and appropriate selection of characterised and validated models, ranging from monolayer cell cultures to organ-on-chip microfluidics, promising nanotheranostic particles with modular and rational design can be screened in high-throughput models with robust predictive power. Thus, this article serves to highlight abbreviated research and development possibilities with clinical translational relevance for developing novel nanomaterial-based neuropharmaceuticals for therapy in CNS disorders. By generating predictive data for prospective nanomedicines using validated in vitro models for supporting clinical applications in lieu of requiring extensive use of in vivo animal models that have notable limitations, it is hoped that there will be a burgeoning in the nanotherapy of CNS disorders by virtue of accelerated lead identification through screening, optimisation through rational design for brain-targeted delivery across the BBB and clinical testing and approval using fewer animals. Additionally, by using models with tissue of human origin, reproducible therapeutically relevant nanomedicine delivery and individualised therapy can be realised.
Collapse
Affiliation(s)
- Mark J. Lynch
- School of Pharmacy and Pharmaceutical Sciences, Panoz Building, Trinity College Dublin, D02 PN40 Dublin, Ireland
| | - Oliviero L. Gobbo
- School of Pharmacy and Pharmaceutical Sciences, Panoz Building, Trinity College Dublin, D02 PN40 Dublin, Ireland
| |
Collapse
|
18
|
Correa Leite PE, de Araujo Portes J, Pereira MR, Russo FB, Martins-Duarte ES, Almeida Dos Santos N, Attias M, Barrantes FJ, Baleeiro Beltrão-Braga PC, de Souza W. Morphological and biochemical repercussions of Toxoplasma gondii infection in a 3D human brain neurospheres model. Brain Behav Immun Health 2021; 11:100190. [PMID: 34589727 PMCID: PMC8474451 DOI: 10.1016/j.bbih.2020.100190] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 12/06/2020] [Indexed: 12/19/2022] Open
Abstract
Background Toxoplasmosis is caused by the parasite Toxoplasma gondii that can infect the central nervous system (CNS), promoting neuroinflammation, neuronal loss, neurotransmitter imbalance and behavioral alterations. T. gondii infection is also related to neuropsychiatric disorders such as schizophrenia. The pathogenicity and inflammatory response in rodents are different to the case of humans, compromising the correlation between the behavioral alterations and physiological modifications observed in the disease. In the present work we used BrainSpheres, a 3D CNS model derived from human pluripotent stem cells (iPSC), to investigate the morphological and biochemical repercussions of T. gondii infection in human neural cells. Methods We evaluated T. gondii ME49 strain proliferation and cyst formation in both 2D cultured human neural cells and BrainSpheres. Aspects of cell morphology, ultrastructure, viability, gene expression of neural phenotype markers, as well as secretion of inflammatory mediators were evaluated for 2 and 4 weeks post infection in BrainSpheres. Results T. gondii can infect BrainSpheres, proliferating and inducing cysts formation, neural cell death, alteration in neural gene expression and triggering the release of several inflammatory mediators. Conclusions BrainSpheres reproduce many aspects of T. gondii infection in human CNS, constituting a useful model to study the neurotoxicity and neuroinflammation mediated by the parasite. In addition, these data could be important for future studies aiming at better understanding possible correlations between psychiatric disorders and human CNS infection with T. gondii. T. gondii infects, proliferates and induce cysts formation in neurospheres. T. gondii infection induces neural cell death in neurospheres. T. gondii infection promotes alteration in neural gene expression in neurospheres. T. gondii infection promotes release of inflammatory mediators in neurospheres.
Collapse
Affiliation(s)
- Paulo Emilio Correa Leite
- Institute of Biophysics Carlos Chagas Filho and National Center for Structural Biology and Bioimaging (CENABIO), Federal University of Rio de Janeiro, RJ, Brazil.,Directory of Metrology Applied to Life Sciences (Dimav), National Institute of Metrology Quality and Technology (INMETRO), Duque de Caxias, RJ, Brazil
| | - Juliana de Araujo Portes
- Institute of Biophysics Carlos Chagas Filho and National Center for Structural Biology and Bioimaging (CENABIO), Federal University of Rio de Janeiro, RJ, Brazil
| | | | - Fabiele Baldino Russo
- Laboratory of Disease Modeling, Department of Microbiology, Institute of Biomedical Science, University of São Paulo, São Paulo, SP, Brazil
| | - Erica S Martins-Duarte
- Institute of Biophysics Carlos Chagas Filho and National Center for Structural Biology and Bioimaging (CENABIO), Federal University of Rio de Janeiro, RJ, Brazil.,Department of Parasitology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Nathalia Almeida Dos Santos
- Laboratory of Disease Modeling, Department of Microbiology, Institute of Biomedical Science, University of São Paulo, São Paulo, SP, Brazil.,Centre for Stem Cells and Regenerative Medicine, King's College London, Guy's Hospital, London, UK
| | - Marcia Attias
- Institute of Biophysics Carlos Chagas Filho and National Center for Structural Biology and Bioimaging (CENABIO), Federal University of Rio de Janeiro, RJ, Brazil
| | - Francisco J Barrantes
- Laboratory of Molecular Neurobiology, Institute for Biomedical Research (BIOMED), UCA-CONICET, Buenos Aires, Argentina
| | - Patricia Cristina Baleeiro Beltrão-Braga
- Laboratory of Disease Modeling, Department of Microbiology, Institute of Biomedical Science, University of São Paulo, São Paulo, SP, Brazil.,Scientific Platform Pasteur-USP, São Paulo, SP, Brazil
| | - Wanderley de Souza
- Institute of Biophysics Carlos Chagas Filho and National Center for Structural Biology and Bioimaging (CENABIO), Federal University of Rio de Janeiro, RJ, Brazil
| |
Collapse
|
19
|
A Quasi-Physiological Microfluidic Blood-Brain Barrier Model for Brain Permeability Studies. Pharmaceutics 2021; 13:pharmaceutics13091474. [PMID: 34575550 PMCID: PMC8468926 DOI: 10.3390/pharmaceutics13091474] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 09/11/2021] [Accepted: 09/13/2021] [Indexed: 01/25/2023] Open
Abstract
Microfluidics-based organ-on-a-chip technology allows for developing a new class of in-vitro blood-brain barrier (BBB) models that recapitulate many hemodynamic and architectural features of the brain microvasculature not attainable with conventional two-dimensional platforms. Herein, we describe and validate a novel microfluidic BBB model that closely mimics the one in situ. Induced pluripotent stem cell (iPSC)-derived brain microvascular endothelial cells (BMECs) were juxtaposed with primary human pericytes and astrocytes in a co-culture to enable BBB-specific characteristics, such as low paracellular permeability, efflux activity, and osmotic responses. The permeability coefficients of [13C12] sucrose and [13C6] mannitol were assessed using a highly sensitive LC-MS/MS procedure. The resulting BBB displayed continuous tight-junction patterns, low permeability to mannitol and sucrose, and quasi-physiological responses to hyperosmolar opening and p-glycoprotein inhibitor treatment, as demonstrated by decreased BBB integrity and increased permeability of rhodamine 123, respectively. Astrocytes and pericytes on the abluminal side of the vascular channel provided the environmental cues necessary to form a tight barrier and extend the model’s long-term viability for time-course studies. In conclusion, our novel multi-culture microfluidic platform showcased the ability to replicate a quasi-physiological brain microvascular, thus enabling the development of a highly predictive and translationally relevant BBB model.
Collapse
|
20
|
Lam D, Fischer NO, Enright HA. Probing function in 3D neuronal cultures: A survey of 3D multielectrode array advances. Curr Opin Pharmacol 2021; 60:255-260. [PMID: 34481335 DOI: 10.1016/j.coph.2021.08.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/26/2021] [Accepted: 08/02/2021] [Indexed: 12/14/2022]
Abstract
Recent advances in microphysiological systems have made significant strides to include design features that reconstruct key elements found in the brain, and in parallel advance technologies to detect the activity of electrogenic cells that form neural networks. In particular, three-dimensional multielectrode arrays (3D MEAs) are being developed with increasing levels of spatial and temporal precision, difficult to achieve with current 2D MEAs, insertable MEA probes, and/or optical imaging of calcium dynamics. Thus, providing a means to monitor the flow of neural network activity within all three dimensions (X, Y, and Z) of the engineered tissue. In the last 6 years, 3D MEAs, using either bottom-up or top-down designs, have been developed to overcome the current technical challenges in monitoring the functionality of the in vitro systems. Herein, we will report on the design and application of novel 3D MEA prototypes for probing neural activity throughout the 3D neural tissue.
Collapse
Affiliation(s)
- Doris Lam
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
| | - Nicholas O Fischer
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA.
| | - Heather A Enright
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA.
| |
Collapse
|
21
|
Maoz BM. Brain-on-a-Chip: Characterizing the next generation of advanced in vitro platforms for modeling the central nervous system. APL Bioeng 2021; 5:030902. [PMID: 34368601 PMCID: PMC8325567 DOI: 10.1063/5.0055812] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 07/19/2021] [Indexed: 02/07/2023] Open
Abstract
The complexity of the human brain creates significant, almost insurmountable challenges for neurological drug development. Advanced in vitro platforms are increasingly enabling researchers to overcome these challenges, by mimicking key features of the brain's composition and functionality. Many of these platforms are called "Brains-on-a-Chip"-a term that was originally used to refer to microfluidics-based systems containing miniature engineered tissues, but that has since expanded to describe a vast range of in vitro central nervous system (CNS) modeling approaches. This Perspective seeks to refine the definition of a Brain-on-a-Chip for the next generation of in vitro platforms, identifying criteria that determine which systems should qualify. These criteria reflect the extent to which a given platform overcomes the challenges unique to in vitro CNS modeling (e.g., recapitulation of the brain's microenvironment; inclusion of critical subunits, such as the blood-brain barrier) and thereby provides meaningful added value over conventional cell culture systems. The paper further outlines practical considerations for the development and implementation of Brain-on-a-Chip platforms and concludes with a vision for where these technologies may be heading.
Collapse
Affiliation(s)
- Ben M. Maoz
- Author to whom correspondence should be addressed:
| |
Collapse
|
22
|
Hao Z, Wang S, Zhang K, Zhou J, Li D, He J, Gao L, Wang L. Biofabrication of a Low Modulus Bioelectroprobe for Neurons to Grow Into. MATERIALS 2021; 14:ma14164718. [PMID: 34443240 PMCID: PMC8400188 DOI: 10.3390/ma14164718] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 07/29/2021] [Accepted: 08/17/2021] [Indexed: 02/07/2023]
Abstract
Implantable nerve electrodes, as a bridge between the brain and external devices, have been widely used in areas such as brain function exploration, neurological disease treatment and human–computer interaction. However, the mechanical properties mismatch between the electrode material and the brain tissue seriously affects the stability of electrode signal acquisition and the effectiveness of long-term service in vivo. In this study, a modified neuroelectrode was developed with conductive biomaterials. The electrode has good biocompatibility and a gradient microstructure suitable for cell growth. Compared with metal electrodes, bioelectrodes not only greatly reduced the elastic modulus (<10 kpa) but also increased the conductivity of the electrode by 200 times. Through acute electrophysiological analysis and a 12-week chronic in vivo experiment, the bioelectrode clearly recorded the rat’s brain electrical signals, effectively avoided the generation of glial scars and induced neurons to move closer to the electrode. The new conductive biomaterial electrodes developed in this research make long-term implantation of cortical nerve electrodes possible.
Collapse
Affiliation(s)
- Zhiyan Hao
- State Key Laboratory for Manufacturing System Engineering, Xi’an Jiaotong University, Xi’an 710054, China; (Z.H.); (S.W.); (J.Z.); (D.L.); (J.H.); (L.G.)
- School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an 710054, China
| | - Sen Wang
- State Key Laboratory for Manufacturing System Engineering, Xi’an Jiaotong University, Xi’an 710054, China; (Z.H.); (S.W.); (J.Z.); (D.L.); (J.H.); (L.G.)
- School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an 710054, China
| | - Kun Zhang
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi’an 710032, China;
| | - Jiajia Zhou
- State Key Laboratory for Manufacturing System Engineering, Xi’an Jiaotong University, Xi’an 710054, China; (Z.H.); (S.W.); (J.Z.); (D.L.); (J.H.); (L.G.)
- School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an 710054, China
| | - Dichen Li
- State Key Laboratory for Manufacturing System Engineering, Xi’an Jiaotong University, Xi’an 710054, China; (Z.H.); (S.W.); (J.Z.); (D.L.); (J.H.); (L.G.)
- School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an 710054, China
| | - Jiankang He
- State Key Laboratory for Manufacturing System Engineering, Xi’an Jiaotong University, Xi’an 710054, China; (Z.H.); (S.W.); (J.Z.); (D.L.); (J.H.); (L.G.)
- School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an 710054, China
| | - Lin Gao
- State Key Laboratory for Manufacturing System Engineering, Xi’an Jiaotong University, Xi’an 710054, China; (Z.H.); (S.W.); (J.Z.); (D.L.); (J.H.); (L.G.)
- School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an 710054, China
| | - Ling Wang
- State Key Laboratory for Manufacturing System Engineering, Xi’an Jiaotong University, Xi’an 710054, China; (Z.H.); (S.W.); (J.Z.); (D.L.); (J.H.); (L.G.)
- School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an 710054, China
- Correspondence: ; Tel.: +86-29-8339-5382
| |
Collapse
|
23
|
Singh AV, Chandrasekar V, Janapareddy P, Mathews DE, Laux P, Luch A, Yang Y, Garcia-Canibano B, Balakrishnan S, Abinahed J, Al Ansari A, Dakua SP. Emerging Application of Nanorobotics and Artificial Intelligence To Cross the BBB: Advances in Design, Controlled Maneuvering, and Targeting of the Barriers. ACS Chem Neurosci 2021; 12:1835-1853. [PMID: 34008957 DOI: 10.1021/acschemneuro.1c00087] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The blood-brain barrier (BBB) is a prime focus for clinicians to maintain the homeostatic function in health and deliver the theranostics in brain cancer and number of neurological diseases. The structural hierarchy and in situ biochemical signaling of BBB neurovascular unit have been primary targets to recapitulate into the in vitro modules. The microengineered perfusion systems and development in 3D cellular and organoid culture have given a major thrust to BBB research for neuropharmacology. In this review, we focus on revisiting the nanoparticles based bimolecular engineering to enable them to maneuver, control, target, and deliver the theranostic payloads across cellular BBB as nanorobots or nanobots. Subsequently we provide a brief outline of specific case studies addressing the payload delivery in brain tumor and neurological disorders (e.g., Alzheimer's disease, Parkinson's disease, multiple sclerosis, etc.). In addition, we also address the opportunities and challenges across the nanorobots' development and design. Finally, we address how computationally powered machine learning (ML) tools and artificial intelligence (AI) can be partnered with robotics to predict and design the next generation nanorobots to interact and deliver across the BBB without causing damage, toxicity, or malfunctions. The content of this review could be references to multidisciplinary science to clinicians, roboticists, chemists, and bioengineers involved in cutting-edge pharmaceutical design and BBB research.
Collapse
Affiliation(s)
- Ajay Vikram Singh
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Straße 8-10, 10589 Berlin, Germany
| | | | - Poonam Janapareddy
- Department of Surgery, Hamad Medical Corporation (HMC), 3050 Doha, Qatar
| | - Divya Elsa Mathews
- Department of Surgery, Hamad Medical Corporation (HMC), 3050 Doha, Qatar
| | - Peter Laux
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Straße 8-10, 10589 Berlin, Germany
| | - Andreas Luch
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Straße 8-10, 10589 Berlin, Germany
| | - Yin Yang
- College of Science and Engineering, Hamad Bin Khalifa University (HBKU), 24404 Doha, Qatar
| | | | | | - Julien Abinahed
- Department of Surgery, Hamad Medical Corporation (HMC), 3050 Doha, Qatar
| | - Abdulla Al Ansari
- Department of Surgery, Hamad Medical Corporation (HMC), 3050 Doha, Qatar
| | | |
Collapse
|
24
|
Raaijmakers EAL, Wanders N, Mestrom RMC, Luttge R. Analyzing Developing Brain-On-Chip Cultures with the CALIMA Calcium Imaging Tool. MICROMACHINES 2021; 12:mi12040412. [PMID: 33917720 PMCID: PMC8068150 DOI: 10.3390/mi12040412] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 03/30/2021] [Accepted: 04/03/2021] [Indexed: 01/04/2023]
Abstract
Brain-on-chip (BoC) models are tools for reproducing the native microenvironment of neurons, in order to study the (patho)physiology and drug-response of the brain. Recent developments in BoC techniques focus on steering neurons in their activity via microfabrication and via computer-steered feedback mechanisms. These cultures are often studied through calcium imaging (CI), a method for visualizing the cellular activity through infusing cells with a fluorescent dye. CAlciumImagingAnalyser 2.0 (CALIMA 2.0) is an updated version of a software tool that detects and analyzes fluorescent signals and correlates cellular activity to identify possible network formation in BoC cultures. Using three previous published data sets, it was demonstrated that CALIMA 2.0 can analyze large data sets of CI-data and interpret cell activity to help study the activity and maturity of BoC cultures. Last, an analysis of the processing speed shows that CALIMA 2.0 is sufficiently fast to process data sets with an acquisition rate up to 5 Hz in real-time on a medium-performance computer.
Collapse
Affiliation(s)
- Elles A. L. Raaijmakers
- Electromagnetics Group, Department of Electrical Engineering, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands; (E.A.L.R.); (R.M.C.M.)
| | - Nikki Wanders
- Neuro-Nanoscale Engineering Group, Department of Mechanical Engineering and Institute of Complex Molecular Systems (ICMS), Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands;
| | - Rob M. C. Mestrom
- Electromagnetics Group, Department of Electrical Engineering, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands; (E.A.L.R.); (R.M.C.M.)
| | - Regina Luttge
- Neuro-Nanoscale Engineering Group, Department of Mechanical Engineering and Institute of Complex Molecular Systems (ICMS), Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands;
- Correspondence:
| |
Collapse
|
25
|
Decarli MC, do Amaral RLF, Dos Santos DP, Tofani LB, Katayama E, Rezende RA, Silva JVLD, Swiech K, Suazo CAT, Mota C, Moroni L, Moraes ÂM. Cell spheroids as a versatile research platform: formation mechanisms, high throughput production, characterization and applications. Biofabrication 2021; 13. [PMID: 33592595 DOI: 10.1088/1758-5090/abe6f2] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 02/16/2021] [Indexed: 11/12/2022]
Abstract
Three-dimensional cell culture has tremendous advantages to closely mimic the in vivo architecture and microenvironment of healthy tissue and organs, as well as of solid tumors. Spheroids are currently the most attractive 3D model to produce uniform reproducible cell structures as well as a potential basis for engineering large tissues and complex organs. In this review we discuss, from an engineering perspective, processes to obtain uniform 3D cell spheroids, comparing dynamic and static cultures and considering aspects such as mass transfer and shear stress. In addition, computational and mathematical modelling of complex cell spheroid systems are discussed. The non-cell-adhesive hydrogel-based method and dynamic cell culture in bioreactors are focused in detail and the myriad of developed spheroid characterization techniques is presented. The main bottlenecks and weaknesses are discussed, especially regarding the analysis of morphological parameters, cell quantification and viability, gene expression profiles, metabolic behavior and high-content analysis. Finally, a vast set of applications of spheroids as tools for in vitro study model systems is examined, including drug screening, tissue formation, pathologies development, tissue engineering and biofabrication, 3D bioprinting and microfluidics, together with their use in high-throughput platforms.
Collapse
Affiliation(s)
- Monize Caiado Decarli
- School of Chemical Engineering/Department of Engineering of Materials and of Bioprocesses, University of Campinas, Av. Albert Einstein, 500 - Bloco A - Cidade Universitária Zeferino Vaz, Cidade Universitária Zeferino Vaz, Campinas, SP, 13083-852, BRAZIL
| | - Robson Luis Ferraz do Amaral
- School of Pharmaceutical Sciences of Ribeirão Preto/Department of Pharmaceutical Sciences, University of São Paulo, Avenida do Café, no number, Ribeirão Preto, SP, 14040-903, BRAZIL
| | - Diogo Peres Dos Santos
- Departament of Chemical Engineering, Federal University of São Carlos, Rod. Washington Luiz (SP-310), km 235, São Carlos, SP, 13565-905, BRAZIL
| | - Larissa Bueno Tofani
- School of Pharmaceutical Sciences of Ribeirão Preto/Department of Pharmaceutical Sciences, University of São Paulo, Avenida do Café, no number, Ribeirão Preto, SP, 14040-903, BRAZIL
| | - Eric Katayama
- Departament of Chemical Engineering, Federal University of São Carlos, Rod. Washington Luiz (SP-310), km 235, São Carlos, SP, 13565-905, BRAZIL
| | - Rodrigo Alvarenga Rezende
- Centro de Tecnologia da Informacao Renato Archer, Rod. Dom Pedro I (SP-65), km 143,6 - Amarais, Campinas, SP, 13069-901, BRAZIL
| | - Jorge Vicente Lopes da Silva
- Centro de Tecnologia da Informacao Renato Archer, Rod. Dom Pedro I (SP-65), km 143,6 - Amarais, Campinas, SP, 13069-901, BRAZIL
| | - Kamilla Swiech
- University of Sao Paulo, School of Pharmaceutical Sciences of Ribeirão Preto/Department of Pharmaceutical Sciences, Ribeirao Preto, SP, 14040-903, BRAZIL
| | - Cláudio Alberto Torres Suazo
- Department of Chemical Engineering, Federal University of São Carlos, Rod. Washington Luiz (SP-310), km 235, São Carlos, SP, 13565-905, BRAZIL
| | - Carlos Mota
- Department of Complex Tissue Regeneration (CTR), University of Maastricht , Universiteitssingel, 40, office 3.541A, Maastricht, 6229 ER, NETHERLANDS
| | - Lorenzo Moroni
- Complex Tissue Regeneration, Maastricht University, Universiteitsingel, 40, Maastricht, 6229ER, NETHERLANDS
| | - Ângela Maria Moraes
- School of Chemical Engineering/Department of Engineering of Materials and of Bioprocesses, University of Campinas, Av. Albert Einstein, 500 - Bloco A - Cidade Universitária Zeferino Vaz, Campinas, SP, 13083-852, BRAZIL
| |
Collapse
|
26
|
Campisi M, Lim SH, Chiono V, Kamm RD. 3D Self-Organized Human Blood-Brain Barrier in a Microfluidic Chip. Methods Mol Biol 2021; 2258:205-219. [PMID: 33340363 DOI: 10.1007/978-1-0716-1174-6_14] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A preclinical blood-brain barrier (BBB) model is important for the study of fundamental transport mechanisms and in accessing the delivery of small molecules and antibodies that target brain. Transwell assays for BBB models are easy to create and use but lack the true 3D anatomy of the brain microvasculature and also often the cell-cell and cell-matrix interactions that are important in ensuring a tight BBB. Here we describe the formation of a BBB that expresses neurovascular membrane transporters, tight junction, and extracellular matrix proteins using the coculture of human-induced pluripotent stem cell-derived endothelial cells (iPSC-EC), brain pericytes (PC), and astrocytes (AC) in a microfluidic device. The BBB model recapitulates human brain vascular permeability with values that are lower than conventional in vitro models and are comparable to in vivo measurements in rat brain. This in vitro BBB model can therefore be used to screen for brain-targeting drugs or to study neurovascular functions.
Collapse
Affiliation(s)
- Marco Campisi
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy.,Interuniversity Center for the Promotion of the 3Rs Principles in Teaching and Research, Pisa, Italy
| | | | - Valeria Chiono
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy.,Interuniversity Center for the Promotion of the 3Rs Principles in Teaching and Research, Pisa, Italy
| | - Roger Dale Kamm
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA. .,Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
27
|
Lee SW, Jung DJ, Jeong GS. Gaining New Biological and Therapeutic Applications into the Liver with 3D In Vitro Liver Models. Tissue Eng Regen Med 2020; 17:731-745. [PMID: 32207030 PMCID: PMC7710770 DOI: 10.1007/s13770-020-00245-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 02/17/2020] [Accepted: 02/18/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Three-dimensional (3D) cell cultures with architectural and biomechanical properties similar to those of natural tissue have been the focus for generating liver tissue. Microarchitectural organization is believed to be crucial to hepatic function, and 3D cell culture technologies have enabled the construction of tissue-like microenvironments, thereby leading to remarkable progress in vitro models of human tissue and organs. Recently, to recapitulate the 3D architecture of tissues, spheroids and organoids have become widely accepted as new practical tools for 3D organ modeling. Moreover, the combination of bioengineering approach offers the promise to more accurately model the tissue microenvironment of human organs. Indeed, the employment of sophisticated bioengineered liver models show long-term viability and functional enhancements in biochemical parameters and disease-orient outcome. RESULTS Various 3D in vitro liver models have been proposed as a new generation of liver medicine. Likewise, new biomedical engineering approaches and platforms are available to more accurately replicate the in vivo 3D microarchitectures and functions of living organs. This review aims to highlight the recent 3D in vitro liver model systems, including micropatterning, spheroids, and organoids that are either scaffold-based or scaffold-free systems. Finally, we discuss a number of challenges that will need to be addressed moving forward in the field of liver tissue engineering for biomedical applications. CONCLUSION The ongoing development of biomedical engineering holds great promise for generating a 3D biomimetic liver model that recapitulates the physiological and pathological properties of the liver and has biomedical applications.
Collapse
Affiliation(s)
- Sang Woo Lee
- Biomedical Engineering Research Center, Asan Institute for Life Sciences, Asan Medical Center, 88 Olympic-Ro 43 Gil, Songpa-Gu, Seoul, 05505, Republic of Korea
| | - Da Jung Jung
- Biomedical Engineering Research Center, Asan Institute for Life Sciences, Asan Medical Center, 88 Olympic-Ro 43 Gil, Songpa-Gu, Seoul, 05505, Republic of Korea
| | - Gi Seok Jeong
- Biomedical Engineering Research Center, Asan Institute for Life Sciences, Asan Medical Center, 88 Olympic-Ro 43 Gil, Songpa-Gu, Seoul, 05505, Republic of Korea.
- Department of Convergence Medicine, University of Ulsan College of Medicine, 88 Olympic-Ro 43 Gil, Songpa-Gu, Seoul, 05505, Republic of Korea.
| |
Collapse
|
28
|
Harberts J, Fendler C, Teuber J, Siegmund M, Silva A, Rieck N, Wolpert M, Zierold R, Blick RH. Toward Brain-on-a-Chip: Human Induced Pluripotent Stem Cell-Derived Guided Neuronal Networks in Tailor-Made 3D Nanoprinted Microscaffolds. ACS NANO 2020; 14:13091-13102. [PMID: 33058673 DOI: 10.1021/acsnano.0c04640] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Brain-on-a-chip (BoC) concepts should consider three-dimensional (3D) scaffolds to mimic the 3D nature of the human brain not accessible by conventional planar cell culturing. Furthermore, the essential key to adequately address drug development for human pathophysiological diseases of the nervous system, such as Parkinson's or Alzheimer's, is to employ human induced pluripotent stem cell (iPSC)-derived neurons instead of neurons from animal models. To address both issues, we present electrophysiologically mature human iPSC-derived neurons cultured in BoC applicable microscaffolds prepared by direct laser writing. 3D nanoprinted tailor-made elevated cavities interconnected by freestanding microchannels were used to create defined neuronal networks-as a proof of concept-with two-dimensional topology. The neuronal outgrowth in these nonplanar structures was investigated, among others, in terms of neurite length, size of continuous networks, and branching behavior using z-stacks prepared by confocal microscopy and cross-sectional scanning electron microscopy images prepared by focused ion beam milling. Functionality of the human iPSC-derived neurons was demonstrated with patch clamp measurements in both current- and voltage-clamp mode. Action potentials and spontaneous excitatory postsynaptic currents-fundamental prerequisites for proper network signaling-prove full integrity of these artificial neuronal networks. Considering the network formation occurring within only a few days and the versatile nature of direct laser writing to create even more complex scaffolds for 3D network topologies, we believe that our study offers additional approaches in human disease research to mimic the complex interconnectivity of the human brain in BoC studies.
Collapse
Affiliation(s)
- Jann Harberts
- Center for Hybrid Nanostructures, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Cornelius Fendler
- Center for Hybrid Nanostructures, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Jeremy Teuber
- Center for Hybrid Nanostructures, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Malte Siegmund
- Center for Hybrid Nanostructures, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Aaron Silva
- Center for Hybrid Nanostructures, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
- Roy J. Carver Department of Biomedical Engineering, College of Engineering, University of Iowa, Iowa City, Iowa 52242, United States
| | - Niklas Rieck
- Center for Hybrid Nanostructures, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
- School of Life Science Hamburg gGmbH, Schnackenburgallee 114, 22525 Hamburg, Germany
| | - Merle Wolpert
- Center for Hybrid Nanostructures, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
- School of Life Science Hamburg gGmbH, Schnackenburgallee 114, 22525 Hamburg, Germany
| | - Robert Zierold
- Center for Hybrid Nanostructures, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Robert H Blick
- Center for Hybrid Nanostructures, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
- Material Science and Engineering, College of Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| |
Collapse
|
29
|
|
30
|
3D In Vitro Human Organ Mimicry Devices for Drug Discovery, Development, and Assessment. ADVANCES IN POLYMER TECHNOLOGY 2020. [DOI: 10.1155/2020/6187048] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The past few decades have shown significant advancement as complex in vitro humanized systems have substituted animal trials and 2D in vitro studies. 3D humanized platforms mimic the organs of interest with their stimulations (physical, electrical, chemical, and mechanical). Organ-on-chip devices, including in vitro modelling of 3D organoids, 3D microfabrication, and 3D bioprinted platforms, play an essential role in drug discovery, testing, and assessment. In this article, a thorough review is provided of the latest advancements in the area of organ-on-chip devices targeting liver, kidney, lung, gut, heart, skin, and brain mimicry devices for drug discovery, development, and/or assessment. The current strategies, fabrication methods, and the specific application of each device, as well as the advantages and disadvantages, are presented for each reported platform. This comprehensive review also provides some insights on the challenges and future perspectives for the further advancement of each organ-on-chip device.
Collapse
|
31
|
Yadav A, Seth B, Chaturvedi RK. Brain Organoids: Tiny Mirrors of Human Neurodevelopment and Neurological Disorders. Neuroscientist 2020; 27:388-426. [PMID: 32723210 DOI: 10.1177/1073858420943192] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Unravelling the complexity of the human brain is a challenging task. Nowadays, modern neurobiologists have developed 3D model systems called "brain organoids" to overcome the technical challenges in understanding human brain development and the limitations of animal models to study neurological diseases. Certainly like most model systems in neuroscience, brain organoids too have limitations, as these minuscule brains lack the complex neuronal circuitry required to begin the operational tasks of human brain. However, researchers are hopeful that future endeavors with these 3D brain tissues could provide mechanistic insights into the generation of circuit complexity as well as reproducible creation of different regions of the human brain. Herein, we have presented the contemporary state of brain organoids with special emphasis on their mode of generation and their utility in modelling neurological disorders, drug discovery, and clinical trials.
Collapse
Affiliation(s)
- Anuradha Yadav
- Developmental Toxicology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research, Lucknow, Uttar Pradesh, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Brashket Seth
- Developmental Toxicology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research, Lucknow, Uttar Pradesh, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Rajnish Kumar Chaturvedi
- Developmental Toxicology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research, Lucknow, Uttar Pradesh, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
32
|
Lobov SA, Mikhaylov AN, Shamshin M, Makarov VA, Kazantsev VB. Spatial Properties of STDP in a Self-Learning Spiking Neural Network Enable Controlling a Mobile Robot. Front Neurosci 2020; 14:88. [PMID: 32174804 PMCID: PMC7054464 DOI: 10.3389/fnins.2020.00088] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 01/22/2020] [Indexed: 11/13/2022] Open
Abstract
Development of spiking neural networks (SNNs) controlling mobile robots is one of the modern challenges in computational neuroscience and artificial intelligence. Such networks, being replicas of biological ones, are expected to have a higher computational potential than traditional artificial neural networks (ANNs). The critical problem is in the design of robust learning algorithms aimed at building a “living computer” based on SNNs. Here, we propose a simple SNN equipped with a Hebbian rule in the form of spike-timing-dependent plasticity (STDP). The SNN implements associative learning by exploiting the spatial properties of STDP. We show that a LEGO robot controlled by the SNN can exhibit classical and operant conditioning. Competition of spike-conducting pathways in the SNN plays a fundamental role in establishing associations of neural connections. It replaces the irrelevant associations by new ones in response to a change in stimuli. Thus, the robot gets the ability to relearn when the environment changes. The proposed SNN and the stimulation protocol can be further enhanced and tested in developing neuronal cultures, and also admit the use of memristive devices for hardware implementation.
Collapse
Affiliation(s)
- Sergey A Lobov
- Neurotechnology Department, Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia.,Neuroscience and Cognitive Technology Laboratory, Center for Technologies in Robotics and Mechatronics Components, Innopolis University, Innopolis, Russia
| | - Alexey N Mikhaylov
- Neurotechnology Department, Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
| | - Maxim Shamshin
- Neurotechnology Department, Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
| | - Valeri A Makarov
- Neurotechnology Department, Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia.,Instituto de Matemática Interdisciplinar, Facultad de Ciencias Matemáticas, Universidad Complutense de Madrid, Madrid, Spain
| | - Victor B Kazantsev
- Neurotechnology Department, Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia.,Neuroscience and Cognitive Technology Laboratory, Center for Technologies in Robotics and Mechatronics Components, Innopolis University, Innopolis, Russia
| |
Collapse
|
33
|
Peterson NC, Mahalingaiah PK, Fullerton A, Di Piazza M. Application of microphysiological systems in biopharmaceutical research and development. LAB ON A CHIP 2020; 20:697-708. [PMID: 31967156 DOI: 10.1039/c9lc00962k] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Within the last 10 years, several tissue microphysiological systems (MPS) have been developed and characterized for retention of morphologic characteristics and specific gene/protein expression profiles from their natural in vivo state. Once developed, their utility is typically further tested by comparing responses to known toxic small-molecule pharmaceuticals in efforts to develop strategies for further toxicity testing of compounds under development. More recently, application of this technology in biopharmaceutical (large molecules) development is beginning to be more appreciated. In this review, we describe some of the advances made for tissue-specific MPS and outline the advantages and challenges of applying and further developing MPS technology in preclinical biopharmaceutical research.
Collapse
Affiliation(s)
- Norman C Peterson
- Clinical Pharmacology and Safety Sciences, AstraZeneca, One Medimmune Way, Gaithersburg, MD 20878, USA.
| | | | | | - Matteo Di Piazza
- Nonclinical Drug Safety, Boehringer Ingelheim Pharmaceuticals, Inc., 900 Ridgebury Rd, Ridgefield, CT 06877, USA
| |
Collapse
|
34
|
Optimizing cell encapsulation condition in ECM-Collagen I hydrogels to support 3D neuronal cultures. J Neurosci Methods 2020; 329:108460. [DOI: 10.1016/j.jneumeth.2019.108460] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 09/30/2019] [Accepted: 10/07/2019] [Indexed: 01/05/2023]
|
35
|
Mofazzal Jahromi MA, Abdoli A, Rahmanian M, Bardania H, Bayandori M, Moosavi Basri SM, Kalbasi A, Aref AR, Karimi M, Hamblin MR. Microfluidic Brain-on-a-Chip: Perspectives for Mimicking Neural System Disorders. Mol Neurobiol 2019; 56:8489-8512. [PMID: 31264092 PMCID: PMC6842047 DOI: 10.1007/s12035-019-01653-2] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 05/15/2019] [Indexed: 01/09/2023]
Abstract
Neurodegenerative diseases (NDDs) include more than 600 types of nervous system disorders in humans that impact tens of millions of people worldwide. Estimates by the World Health Organization (WHO) suggest NDDs will increase by nearly 50% by 2030. Hence, development of advanced models for research on NDDs is needed to explore new therapeutic strategies and explore the pathogenesis of these disorders. Different approaches have been deployed in order to investigate nervous system disorders, including two-and three-dimensional (2D and 3D) cell cultures and animal models. However, these models have limitations, such as lacking cellular tension, fluid shear stress, and compression analysis; thus, studying the biochemical effects of therapeutic molecules on the biophysiological interactions of cells, tissues, and organs is problematic. The microfluidic "organ-on-a-chip" is an inexpensive and rapid analytical technology to create an effective tool for manipulation, monitoring, and assessment of cells, and investigating drug discovery, which enables the culture of various cells in a small amount of fluid (10-9 to 10-18 L). Thus, these chips have the ability to overcome the mentioned restrictions of 2D and 3D cell cultures, as well as animal models. Stem cells (SCs), particularly neural stem cells (NSCs), induced pluripotent stem cells (iPSCs), and embryonic stem cells (ESCs) have the capability to give rise to various neural system cells. Hence, microfluidic organ-on-a-chip and SCs can be used as potential research tools to study the treatment of central nervous system (CNS) and peripheral nervous system (PNS) disorders. Accordingly, in the present review, we discuss the latest progress in microfluidic brain-on-a-chip as a powerful and advanced technology that can be used in basic studies to investigate normal and abnormal functions of the nervous system.
Collapse
Affiliation(s)
- Mirza Ali Mofazzal Jahromi
- Department of Advanced Medical Sciences & Technologies, School of Medicine, Jahrom University of Medical Sciences, Jahrom, Iran
- Research Center for Noncommunicable Diseases, School of Medicine, Jahrom University of Medical Sciences, Jahrom, Iran
| | - Amir Abdoli
- Research Center for Noncommunicable Diseases, School of Medicine, Jahrom University of Medical Sciences, Jahrom, Iran
- Department of Parasitology and Mycology, School of Medicine, Jahrom University of Medical Sciences, Jahrom, Iran
- Zoonoses Research Center, Jahrom University of Medical Sciences, Jahrom, Iran
| | - Mohammad Rahmanian
- Research Center for Noncommunicable Diseases, School of Medicine, Jahrom University of Medical Sciences, Jahrom, Iran
- Department of Anesthesiology, Critical Care, and Pain Medicine, Jahrom University of Medical Sciences, Jahrom, Iran
| | - Hassan Bardania
- Cellular and Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Mehrdad Bayandori
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | | | - Alireza Kalbasi
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Amir Reza Aref
- Department of Cancer Biology, Center for Cancer Systems Biology, Dana-Farber Cancer Institute, Department of Genetics, Harvard Medical School, Boston, MA, 02215, USA
| | - Mahdi Karimi
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran.
- Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran.
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran.
- Research Center for Science and Technology in Medicine, Tehran University of Medical Sciences, Tehran, Iran.
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| | - Michael R Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
- Department of Dermatology, Harvard Medical School, Boston, MA, USA.
- Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA, USA.
| |
Collapse
|
36
|
Wan H, Gu C, Gan Y, Wei X, Zhu K, Hu N, Wang P. Sensor-free and Sensor-based Heart-on-a-chip Platform: A Review of Design and Applications. Curr Pharm Des 2019; 24:5375-5385. [PMID: 30734671 DOI: 10.2174/1381612825666190207170004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 02/02/2019] [Indexed: 01/09/2023]
Abstract
Drug efficacy and toxicity are key factors of drug development. Conventional 2D cell models or animal models have their limitations for the efficacy or toxicity assessment in preclinical assays, which induce the failure of candidate drugs or withdrawal of approved drugs. Human organs-on-chips (OOCs) emerged to present human-specific properties based on their 3D bioinspired structures and functions in the recent decade. In this review, the basic definition and superiority of OOCs will be introduced. Moreover, a specific OOC, heart-on-achip (HOC) will be focused. We introduce HOC modeling in the sensor-free and sensor-based way and illustrate the advantages of sensor-based HOC in detail by taking examples of recent studies. We provide a new perspective on the integration of HOC technology and biosensing to develop a new sensor-based HOC platform.
Collapse
Affiliation(s)
- Hao Wan
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, China.,State Key Laboratory of Transducer Technology, Chinese Academy of Sciences, Shanghai 200050, China
| | - Chenlei Gu
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, China.,State Key Laboratory of Transducer Technology, Chinese Academy of Sciences, Shanghai 200050, China
| | - Ying Gan
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, China
| | - Xinwei Wei
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, China.,State Key Laboratory of Transducer Technology, Chinese Academy of Sciences, Shanghai 200050, China
| | - Kai Zhu
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China.,Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, China
| | - Ning Hu
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, China.,State Key Laboratory of Transducer Technology, Chinese Academy of Sciences, Shanghai 200050, China
| | - Ping Wang
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, China.,State Key Laboratory of Transducer Technology, Chinese Academy of Sciences, Shanghai 200050, China
| |
Collapse
|
37
|
Antill-O'Brien N, Bourke J, O'Connell CD. Layer-By-Layer: The Case for 3D Bioprinting Neurons to Create Patient-Specific Epilepsy Models. MATERIALS (BASEL, SWITZERLAND) 2019; 12:E3218. [PMID: 31581436 PMCID: PMC6804258 DOI: 10.3390/ma12193218] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 09/26/2019] [Accepted: 09/26/2019] [Indexed: 02/06/2023]
Abstract
The ability to create three-dimensional (3D) models of brain tissue from patient-derived cells, would open new possibilities in studying the neuropathology of disorders such as epilepsy and schizophrenia. While organoid culture has provided impressive examples of patient-specific models, the generation of organised 3D structures remains a challenge. 3D bioprinting is a rapidly developing technology where living cells, encapsulated in suitable bioink matrices, are printed to form 3D structures. 3D bioprinting may provide the capability to organise neuronal populations in 3D, through layer-by-layer deposition, and thereby recapitulate the complexity of neural tissue. However, printing neuron cells raises particular challenges since the biomaterial environment must be of appropriate softness to allow for the neurite extension, properties which are anathema to building self-supporting 3D structures. Here, we review the topic of 3D bioprinting of neurons, including critical discussions of hardware and bio-ink formulation requirements.
Collapse
Affiliation(s)
- Natasha Antill-O'Brien
- BioFab3D, Aikenhead Centre for Medical Discovery, St Vincent's Hospital Melbourne, Fitzroy, VIC 3065, Australia.
| | - Justin Bourke
- BioFab3D, Aikenhead Centre for Medical Discovery, St Vincent's Hospital Melbourne, Fitzroy, VIC 3065, Australia.
- ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, Innovation Campus, University of Wollongong, NSW 2522, Australia.
- Department of Medicine, St Vincent's Hospital Melbourne, University of Melbourne, Fitzroy, VIC 3065, Australia.
| | - Cathal D O'Connell
- BioFab3D, Aikenhead Centre for Medical Discovery, St Vincent's Hospital Melbourne, Fitzroy, VIC 3065, Australia.
- ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, Innovation Campus, University of Wollongong, NSW 2522, Australia.
| |
Collapse
|
38
|
Critical assessment and integration of separate lines of evidence for risk assessment of chemical mixtures. Arch Toxicol 2019; 93:2741-2757. [PMID: 31520250 DOI: 10.1007/s00204-019-02547-x] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 08/14/2019] [Indexed: 12/17/2022]
Abstract
Humans are exposed to multiple chemicals on a daily basis instead of to just a single chemical, yet the majority of existing toxicity data comes from single-chemical exposure. Multiple factors must be considered such as the route, concentration, duration, and the timing of exposure when determining toxicity to the organism. The need for adequate model systems (in vivo, in vitro, in silico and mathematical) is paramount for better understanding of chemical mixture toxicity. Currently, shortcomings plague each model system as investigators struggle to find the appropriate balance of rigor, reproducibility and appropriateness in mixture toxicity studies. Significant questions exist when comparing single-to mixture-chemical toxicity concerning additivity, synergism, potentiation, or antagonism. Dose/concentration relevance is a major consideration and should be subthreshold for better accuracy in toxicity assessment. Previous work was limited by the technology and methodology of the time, but recent advances have resulted in significant progress in the study of mixture toxicology. Novel technologies have added insight to data obtained from in vivo studies for predictive toxicity testing. These include new in vitro models: omics-related tools, organs-on-a-chip and 3D cell culture, and in silico methods. Taken together, all these modern methodologies improve the understanding of the multiple toxicity pathways associated with adverse outcomes (e.g., adverse outcome pathways), thus allowing investigators to better predict risks linked to exposure to chemical mixtures. As technology and knowledge advance, our ability to harness and integrate separate streams of evidence regarding outcomes associated with chemical mixture exposure improves. As many national and international organizations are currently stressing, studies on chemical mixture toxicity are of primary importance.
Collapse
|
39
|
Leite PEC, Pereira MR, Harris G, Pamies D, Dos Santos LMG, Granjeiro JM, Hogberg HT, Hartung T, Smirnova L. Suitability of 3D human brain spheroid models to distinguish toxic effects of gold and poly-lactic acid nanoparticles to assess biocompatibility for brain drug delivery. Part Fibre Toxicol 2019; 16:22. [PMID: 31159811 PMCID: PMC6545685 DOI: 10.1186/s12989-019-0307-3] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 05/21/2019] [Indexed: 12/14/2022] Open
Abstract
Background The blood brain barrier (BBB) is the bottleneck of brain-targeted drug development. Due to their physico-chemical properties, nanoparticles (NP) can cross the BBB and accumulate in different areas of the central nervous system (CNS), thus are potential tools to carry drugs and treat brain disorders. In vitro systems and animal models have demonstrated that some NP types promote neurotoxic effects such as neuroinflammation and neurodegeneration in the CNS. Thus, risk assessment of the NP is required, but current 2D cell cultures fail to mimic complex in vivo cellular interactions, while animal models do not necessarily reflect human effects due to physiological and species differences. Results We evaluated the suitability of in vitro models that mimic the human CNS physiology, studying the effects of metallic gold NP (AuNP) functionalized with sodium citrate (Au-SC), or polyethylene glycol (Au-PEG), and polymeric polylactic acid NP (PLA-NP). Two different 3D neural models were used (i) human dopaminergic neurons differentiated from the LUHMES cell line (3D LUHMES) and (ii) human iPSC-derived brain spheroids (BrainSpheres). We evaluated NP uptake, mitochondrial membrane potential, viability, morphology, secretion of cytokines, chemokines and growth factors, and expression of genes related to ROS regulation after 24 and 72 h exposures. NP were efficiently taken up by spheroids, especially when PEGylated and in presence of glia. AuNP, especially PEGylated AuNP, effected mitochondria and anti-oxidative defense. PLA-NP were slightly cytotoxic to 3D LUHMES with no effects to BrainSpheres. Conclusions 3D brain models, both monocellular and multicellular are useful in studying NP neurotoxicity and can help identify how specific cell types of CNS are affected by NP. Electronic supplementary material The online version of this article (10.1186/s12989-019-0307-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Paulo Emílio Corrêa Leite
- Directory of Metrology Applied to Life Sciences - Dimav, National Institute of Metrology Quality and Technology - INMETRO, Av. Nossa Senhora das Graças 50, LABET - Dimav, Predio 27, Duque de Caxias, Xerem, Rio de Janeiro, 25250-020, Brazil.
| | | | - Georgina Harris
- Center for Alternatives to Animal Testing (CAAT), Bloomberg School of Public Health, Johns Hopkins University, 615 N. Wolfe Street, Baltimore, MD, 21205, USA
| | - David Pamies
- Center for Alternatives to Animal Testing (CAAT), Bloomberg School of Public Health, Johns Hopkins University, 615 N. Wolfe Street, Baltimore, MD, 21205, USA.,Department of Physiology, University of Lausanne, Lausanne, CH-1015, USA
| | - Lisia Maria Gobbo Dos Santos
- Department of Chemistry, National Institute of Quality Control in Health - INCQS/Fiocruz, Manguinhos, Rio de Janeiro, 21040-900, Brazil
| | - José Mauro Granjeiro
- Directory of Metrology Applied to Life Sciences - Dimav, National Institute of Metrology Quality and Technology - INMETRO, Av. Nossa Senhora das Graças 50, LABET - Dimav, Predio 27, Duque de Caxias, Xerem, Rio de Janeiro, 25250-020, Brazil.,Dental School, Fluminense Federal University, Niteroi, Rio de Janeiro, USA
| | - Helena T Hogberg
- Center for Alternatives to Animal Testing (CAAT), Bloomberg School of Public Health, Johns Hopkins University, 615 N. Wolfe Street, Baltimore, MD, 21205, USA
| | - Thomas Hartung
- Center for Alternatives to Animal Testing (CAAT), Bloomberg School of Public Health, Johns Hopkins University, 615 N. Wolfe Street, Baltimore, MD, 21205, USA.,University of Konstanz, Biology, Konstanz, Germany
| | - Lena Smirnova
- Center for Alternatives to Animal Testing (CAAT), Bloomberg School of Public Health, Johns Hopkins University, 615 N. Wolfe Street, Baltimore, MD, 21205, USA.
| |
Collapse
|
40
|
Oddo A, Peng B, Tong Z, Wei Y, Tong WY, Thissen H, Voelcker NH. Advances in Microfluidic Blood-Brain Barrier (BBB) Models. Trends Biotechnol 2019; 37:1295-1314. [PMID: 31130308 DOI: 10.1016/j.tibtech.2019.04.006] [Citation(s) in RCA: 142] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 04/17/2019] [Accepted: 04/18/2019] [Indexed: 12/21/2022]
Abstract
Therapeutic options for neurological disorders currently remain limited. The intrinsic complexity of the brain architecture prevents potential therapeutics from reaching their cerebral target, thus limiting their efficacy. Recent advances in microfluidic technology and organ-on-chip systems have enabled the development of a new generation of in vitro platforms that can recapitulate complex in vivo microenvironments and physiological responses. In this context, microfluidic-based in vitro models of the blood-brain barrier (BBB) are of particular interest as they provide an innovative approach for conducting research related to the brain, including modeling of neurodegenerative diseases and high-throughput drug screening. Here, we present the most recent advances in BBB-on-chip devices and examine validation steps that will strengthen their future applications.
Collapse
Affiliation(s)
- Arianna Oddo
- Drug Delivery, Disposition, and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Bo Peng
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Clayton, Victoria 3168, Australia.
| | - Ziqiu Tong
- Drug Delivery, Disposition, and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Yingkai Wei
- Drug Delivery, Disposition, and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Wing Yin Tong
- Drug Delivery, Disposition, and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Helmut Thissen
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Clayton, Victoria 3168, Australia
| | - Nicolas Hans Voelcker
- Drug Delivery, Disposition, and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia; Commonwealth Scientific and Industrial Research Organisation (CSIRO), Clayton, Victoria 3168, Australia; Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, Clayton, Victoria 3168, Australia; Department of Materials Science and Engineering, Monash University, Clayton, Victoria 3168, Australia.
| |
Collapse
|
41
|
Xu W, Li J, Li J, Yang JJ, Wang Q, Liu B, Qiu W. An Investigation about Gene Modules Associated with hDPSC Differentiation for Adolescents. Stem Cells Int 2019; 2019:8913287. [PMID: 31089336 PMCID: PMC6476005 DOI: 10.1155/2019/8913287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 10/24/2018] [Indexed: 11/17/2022] Open
Abstract
Dental pulp stem cells (DPSCs) have the property of self-renewal and multidirectional differentiation so that they have the potential for future regenerative therapy of various diseases. The latest breakthrough in the biology of stem cells and the development of regenerative biology provides an effective strategy for regenerative therapy. However, in the medium promoting differentiation during long-term passage, DPSCs would lose their differentiation capability. Some efforts have been made to find genes influencing human DPSC (hDPSC) differentiation based on hDPSCs isolated from adults. However, hDPSC differentiation is a very complex process, which involves multiple genes and multielement interactions. The purpose of this study is to detect sets of correlated genes (i.e., gene modules) that are associated to hDPSC differentiation at the crown-completed stage of the third molars, by using weighted gene coexpression network analysis (WGCNA). Based on the gene expression dataset GSE10444 from Gene Expression Omnibus (GEO), we identified two significant gene modules: yellow module (742 genes) and salmon module (9 genes). The WEB-based Gene SeT AnaLysis Toolkit showed that the 742 genes in the yellow module were enriched in 59 KEGG pathways (including Wnt signaling pathway), while the 9 genes in the salmon module were enriched in one KEGG pathway (neurotrophin signaling pathway). There were 660 (7) genes upregulated at P10 and 82 (2) genes downregulated at P10 in the yellow (salmon) module. Our results provide new insights into the differentiation capability of hDPSCs.
Collapse
Affiliation(s)
- Wenjing Xu
- Faculty of Information Technology, Beijing University of Technology, Beijing, China
| | - Jianqiang Li
- Faculty of Information Technology, Beijing University of Technology, Beijing, China
- Beijing Engineering Research Center for IoT Software and Systems, Beijing University of Technology, Beijing, China
| | - Juan Li
- Faculty of Information Technology, Beijing University of Technology, Beijing, China
- Beijing Engineering Research Center for IoT Software and Systems, Beijing University of Technology, Beijing, China
| | - Ji-Jiang Yang
- Tsinghua National Laboratory for Information Science and Technology, Tsinghua University, Beijing, China
| | - Qing Wang
- Tsinghua National Laboratory for Information Science and Technology, Tsinghua University, Beijing, China
| | - Bo Liu
- Faculty of Information Technology, Beijing University of Technology, Beijing, China
- Beijing Engineering Research Center for IoT Software and Systems, Beijing University of Technology, Beijing, China
| | - Weiliang Qiu
- Channing Division of Network Medicine, Brigham and Women's Hospital/Harvard Medical School, Boston, USA
| |
Collapse
|
42
|
Liu F, Huang J, Zhang L, Chen J, Zeng Y, Tang Y, Liu Z. Advances in Cerebral Organoid Systems and their Application in Disease Modeling. Neuroscience 2018; 399:28-38. [PMID: 30578974 DOI: 10.1016/j.neuroscience.2018.12.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 12/08/2018] [Accepted: 12/12/2018] [Indexed: 01/09/2023]
Abstract
Processes associated with human brain development and function are exceedingly complex, limiting our capacity to investigate disease status and potential treatment strategies in vitro. Recent advancements in human cerebral organoid systems-which replicate early stage neural tube formation, neuroepithelium differentiation, and whole-brain regional differentiation-have allowed researchers to generate more accurate models of brain development and disease. The generation of region-specific cerebral organoids also allows for the direct investigation of the etiology and pathological processes associated with inherited and acquired brain diseases, drug discovery, and drug toxicity. In this review, we provide an overview of various neural differentiation technologies, as well as a critical analysis of their strengths and limitations. We primarily focus on the generation of three-dimensional brain organoid systems and their application in infectious disease modeling, high-throughput compound screening, and neurodevelopmental disease modeling.
Collapse
Affiliation(s)
- Fangkun Liu
- Department of Neurosurgery, Xiangya Hospital, Central South University (CSU), Changsha, China
| | - Jing Huang
- Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China; Mental Health Institute of the Second Xiangya Hospital, Central South University, Chinese National Clinical Research Center on Mental Disorders (xiangya), Chinese National Technology Institute on Mental Disorders, Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, Hunan 410011, China
| | - Liyang Zhang
- Department of Neurosurgery, Xiangya Hospital, Central South University (CSU), Changsha, China
| | - Jindong Chen
- Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China; Mental Health Institute of the Second Xiangya Hospital, Central South University, Chinese National Clinical Research Center on Mental Disorders (xiangya), Chinese National Technology Institute on Mental Disorders, Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, Hunan 410011, China
| | - Yu Zeng
- Department of Neurosurgery, Xiangya Hospital, Central South University (CSU), Changsha, China
| | - Yongjian Tang
- Department of Neurosurgery, Xiangya Hospital, Central South University (CSU), Changsha, China
| | - Zhixiong Liu
- Department of Neurosurgery, Xiangya Hospital, Central South University (CSU), Changsha, China.
| |
Collapse
|
43
|
Abstract
Quantitative in vitro to in vivo extrapolation (QIVIVE) is broadly considered a prerequisite bridge from in vitro findings to a dose paradigm. Quality and relevance of cell systems are the first prerequisite for QIVIVE. Information-rich and mechanistic endpoints (biomarkers) improve extrapolations, but a sophisticated endpoint does not make a bad cell model a good one. The next need is reverse toxicokinetics (TK), which estimates the dose necessary to reach a tissue concentration that is active in vitro. The Johns Hopkins Center for Alternatives to Animal Testing (CAAT) has created a roadmap for animal-free systemic toxicity testing, in which the needs and opportunities for TK are elaborated, in the context of different systemic toxicities. The report was discussed at two stakeholder forums in Brussels in 2012 and in Washington in 2013; the key recommendations are summarized herein. Contrary to common belief and the Paracelsus paradigm of everything is toxic, the majority of industrial chemicals do not exhibit toxicity. Strengthening the credibility of negative results of alternative approaches for hazard identification, therefore, avoids the need for QIVIVE. Here, especially the combination of methods in integrated testing strategies is most promising. Two further but very different approaches aim to overcome the problem of modeling in vivo complexity: The human-on-a-chip movement aims to reproduce large parts of living organism's complexity via microphysiological systems, that is, organ equivalents combined by microfluidics. At the same time, the Toxicity Testing in the 21st Century (Tox-21c) movement aims for mechanistic approaches (adverse outcome pathways as promoted by Organisation for Economic Co-operation and Development (OECD) or pathways of toxicity in the Human Toxome Project) for high-throughput screening, biological phenotyping, and ultimately a systems toxicology approach through integration with computer modeling. These 21st century approaches also require 21st century validation, for example, by evidence-based toxicology. Ultimately, QIVIVE is a prerequisite for extrapolating Tox-21c such approaches to human risk assessment.
Collapse
Affiliation(s)
- Thomas Hartung
- Center for Alternatives to Animal Testing (CAAT), Johns Hopkins Bloomberg School of Public Health, Baltimore, MD.,University of Konstanz, Konstanz, Germany
| |
Collapse
|
44
|
Campisi M, Shin Y, Osaki T, Hajal C, Chiono V, Kamm RD. 3D self-organized microvascular model of the human blood-brain barrier with endothelial cells, pericytes and astrocytes. Biomaterials 2018; 180:117-129. [PMID: 30032046 PMCID: PMC6201194 DOI: 10.1016/j.biomaterials.2018.07.014] [Citation(s) in RCA: 441] [Impact Index Per Article: 63.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 07/06/2018] [Accepted: 07/10/2018] [Indexed: 12/12/2022]
Abstract
The blood-brain barrier (BBB) regulates molecular trafficking, protects against pathogens, and prevents efficient drug delivery to the brain. Models to date failed to reproduce the human anatomical complexity of brain barriers, contributing to misleading results in clinical trials. To overcome these limitations, a novel 3-dimensional BBB microvascular network model was developed via vasculogenesis to accurately replicate the in vivo neurovascular organization. This microfluidic system includes human induced pluripotent stem cell-derived endothelial cells, brain pericytes, and astrocytes as self-assembled vascular networks in fibrin gel. Gene expression of membrane transporters, tight junction and extracellular matrix proteins, was consistent with computational analysis of geometrical structures and quantitative immunocytochemistry, indicating BBB maturation and microenvironment remodelling. Confocal microscopy validated microvessel-pericyte/astrocyte dynamic contact-interactions. The BBB model exhibited perfusable and selective microvasculature, with permeability lower than conventional in vitro models, and similar to in vivo measurements in rat brain. This robust and physiologically relevant BBB microvascular model offers an innovative and valuable platform for drug discovery to predict neuro-therapeutic transport efficacy in pre-clinical applications as well as recapitulate patient-specific and pathological neurovascular functions in neurodegenerative disease.
Collapse
Affiliation(s)
- Marco Campisi
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy; Department of Mechanical Engineering, Massachusetts Institute of Technology, 500 Technology Square, MIT Building, Room NE47-321, Cambridge, MA, 02139, USA
| | - Yoojin Shin
- Department of Mechanical Engineering, Massachusetts Institute of Technology, 500 Technology Square, MIT Building, Room NE47-321, Cambridge, MA, 02139, USA
| | - Tatsuya Osaki
- Department of Mechanical Engineering, Massachusetts Institute of Technology, 500 Technology Square, MIT Building, Room NE47-321, Cambridge, MA, 02139, USA
| | - Cynthia Hajal
- Department of Mechanical Engineering, Massachusetts Institute of Technology, 500 Technology Square, MIT Building, Room NE47-321, Cambridge, MA, 02139, USA
| | - Valeria Chiono
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy
| | - Roger D Kamm
- Department of Mechanical Engineering, Massachusetts Institute of Technology, 500 Technology Square, MIT Building, Room NE47-321, Cambridge, MA, 02139, USA; Department of Biological Engineering, Massachusetts Institute of Technology, 500 Technology Square, MIT Building, Room NE47-321, Cambridge, MA, 02139, USA; Singapore-MIT Alliance for Research&Technology (SMART), BioSytems and Micromechanics (BioSyM), Singapore, Singapore.
| |
Collapse
|
45
|
3D human brain cell models: New frontiers in disease understanding and drug discovery for neurodegenerative diseases. Neurochem Int 2018; 120:191-199. [PMID: 30176269 DOI: 10.1016/j.neuint.2018.08.012] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 08/01/2018] [Accepted: 08/31/2018] [Indexed: 12/23/2022]
Abstract
Neurodegenerative disorders have an enormous impact on society and healthcare budgets. There has been a high degree of failure in many recent clinical trials for disease-modifying therapeutics. A major factor in this failure is the difficulty of translating findings from animal-based cell models to human patients. The majority of non-animal neurodegenerative disease research has been conducted in 2 dimensional models of rodent neonatal neurons and glia. While these systems have provided valuable insights into neural cell function and dysfunction, they have largely reached the end of their useful life, as human stem cell technologies combined with major advances in microfluidic technologies have opened the door to development of patient-derived 3D brain cell models. These have major advantages in providing a micro-physiological system more closely reflecting the in vivo brain environment, and promote the interaction between different patient-derived brain cell-types. However, major challenges remain before these model systems will replace the 2D rodent models as the workhorse for neurodegenerative disease studies. Despite these challenges, we are likely to experience a rapid transition of research from old models to new patient derived 3D brain cell systems, which will likely improve translational outcomes for disease therapeutics.
Collapse
|
46
|
Abstract
The blood-brain barrier (BBB) plays a vital role in the maintenance of brain homeostasis. It strictly restricts the passage of molecules from the brain vasculature into the brain via its high transendothelial electrical resistance and low paracellular and transcellular permeability. Specialized brain endothelial cells, astrocytes, pericytes, neurons, and microglia contribute synergistically to the functional properties of the BBB. Because of its complexity and relative inaccessibility, BBB research is fraught with difficulties. Most studies rely on animal or cell culture models, which are not able to fully recapitulate the properties of the human BBB. The recent development of three-dimensional (3D) microfluidic models of the BBB could address this issue. This chapter aims to provide an overview of the recent advances in modeling the BBB on microdevices, and illustrate important considerations for the design of such models. In addition, protocols for the fabrication of a 3D BBB microfluidic chip and BBB assessment experiments, including immunocytochemistry for analyzing cell morphology and protein marker expression, permeability assay, and calcium imaging for studying neuronal function as a measure of BBB integrity, are presented here. It is envisioned that continued advancements in microtechnology can lead to the creation of realistic in vivo-like BBB-on-chip models.
Collapse
Affiliation(s)
- Eunice Chin
- Neuroscience Academic Clinical Programme, Duke-NUS Medical School, Singapore
| | - Eyleen Goh
- Neuroscience Academic Clinical Programme, Duke-NUS Medical School, Singapore; Department of Research, National Neuroscience Institute, Singapore.
| |
Collapse
|
47
|
Hajal C, Campisi M, Mattu C, Chiono V, Kamm RD. In vitro models of molecular and nano-particle transport across the blood-brain barrier. BIOMICROFLUIDICS 2018; 12:042213. [PMID: 29887937 PMCID: PMC5980570 DOI: 10.1063/1.5027118] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 05/09/2018] [Indexed: 05/11/2023]
Abstract
The blood-brain barrier (BBB) is the tightest endothelial barrier in humans. Characterized by the presence of tight endothelial junctions and adherens junctions, the primary function of the BBB is to maintain brain homeostasis through the control of solute transit across the barrier. The specific features of this barrier make for unique modes of transport of solutes, nanoparticles, and cells across the BBB. Understanding the different routes of traffic adopted by each of these is therefore critical in the development of targeted therapies. In an attempt to move towards controlled experimental assays, multiple groups are now opting for the use of microfluidic systems. A comprehensive understanding of bio-transport processes across the BBB in microfluidic devices is therefore necessary to develop targeted and efficient therapies for a host of diseases ranging from neurological disorders to the spread of metastases in the brain.
Collapse
Affiliation(s)
- Cynthia Hajal
- Department of Mechanical Engineering, Massachusetts Institute of Technology, 500 Technology Square, MIT Building, Room NE47-321, Cambridge, Massachusetts 02139, USA
| | | | - Clara Mattu
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy
| | - Valeria Chiono
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy
| | - Roger D. Kamm
- Author to whom correspondence should be addressed: and
| |
Collapse
|
48
|
Low LA, Tagle DA. ‘You-on-a-chip’ for precision medicine. EXPERT REVIEW OF PRECISION MEDICINE AND DRUG DEVELOPMENT 2018. [DOI: 10.1080/23808993.2018.1456333] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Lucie A. Low
- National Center for Advancing Translational Sciences, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, USA
| | - Danilo A. Tagle
- National Center for Advancing Translational Sciences, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
49
|
Hessel EVS, Staal YCM, Piersma AH. Design and validation of an ontology-driven animal-free testing strategy for developmental neurotoxicity testing. Toxicol Appl Pharmacol 2018; 354:136-152. [PMID: 29544899 DOI: 10.1016/j.taap.2018.03.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 02/26/2018] [Accepted: 03/11/2018] [Indexed: 12/26/2022]
Abstract
Developmental neurotoxicity entails one of the most complex areas in toxicology. Animal studies provide only limited information as to human relevance. A multitude of alternative models have been developed over the years, providing insights into mechanisms of action. We give an overview of fundamental processes in neural tube formation, brain development and neural specification, aiming at illustrating complexity rather than comprehensiveness. We also give a flavor of the wealth of alternative methods in this area. Given the impressive progress in mechanistic knowledge of human biology and toxicology, the time is right for a conceptual approach for designing testing strategies that cover the integral mechanistic landscape of developmental neurotoxicity. The ontology approach provides a framework for defining this landscape, upon which an integral in silico model for predicting toxicity can be built. It subsequently directs the selection of in vitro assays for rate-limiting events in the biological network, to feed parameter tuning in the model, leading to prediction of the toxicological outcome. Validation of such models requires primary attention to coverage of the biological domain, rather than classical predictive value of individual tests. Proofs of concept for such an approach are already available. The challenge is in mining modern biology, toxicology and chemical information to feed intelligent designs, which will define testing strategies for neurodevelopmental toxicity testing.
Collapse
Affiliation(s)
- Ellen V S Hessel
- Center for Health Protection, National Institute for Public Health and The Environment (RIVM), P.O. Box 1, 3720BA Bilthoven, The Netherlands.
| | - Yvonne C M Staal
- Center for Health Protection, National Institute for Public Health and The Environment (RIVM), P.O. Box 1, 3720BA Bilthoven, The Netherlands
| | - Aldert H Piersma
- Center for Health Protection, National Institute for Public Health and The Environment (RIVM), P.O. Box 1, 3720BA Bilthoven, The Netherlands; Institute for Risk Assessment Sciences (IRAS), Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
50
|
Aebersold MJ, Thompson-Steckel G, Joutang A, Schneider M, Burchert C, Forró C, Weydert S, Han H, Vörös J. Simple and Inexpensive Paper-Based Astrocyte Co-culture to Improve Survival of Low-Density Neuronal Networks. Front Neurosci 2018. [PMID: 29535595 PMCID: PMC5835045 DOI: 10.3389/fnins.2018.00094] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Bottom-up neuroscience aims to engineer well-defined networks of neurons to investigate the functions of the brain. By reducing the complexity of the brain to achievable target questions, such in vitro bioassays better control experimental variables and can serve as a versatile tool for fundamental and pharmacological research. Astrocytes are a cell type critical to neuronal function, and the addition of astrocytes to neuron cultures can improve the quality of in vitro assays. Here, we present cellulose as an astrocyte culture substrate. Astrocytes cultured on the cellulose fiber matrix thrived and formed a dense 3D network. We devised a novel co-culture platform by suspending the easy-to-handle astrocytic paper cultures above neuronal networks of low densities typically needed for bottom-up neuroscience. There was significant improvement in neuronal viability after 5 days in vitro at densities ranging from 50,000 cells/cm2 down to isolated cells at 1,000 cells/cm2. Cultures exhibited spontaneous spiking even at the very low densities, with a significantly greater spike frequency per cell compared to control mono-cultures. Applying the co-culture platform to an engineered network of neurons on a patterned substrate resulted in significantly improved viability and almost doubled the density of live cells. Lastly, the shape of the cellulose substrate can easily be customized to a wide range of culture vessels, making the platform versatile for different applications that will further enable research in bottom-up neuroscience and drug development.
Collapse
Affiliation(s)
- Mathias J Aebersold
- Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, ETH Zürich, Zurich, Switzerland
| | - Greta Thompson-Steckel
- Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, ETH Zürich, Zurich, Switzerland
| | - Adriane Joutang
- Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, ETH Zürich, Zurich, Switzerland
| | - Moritz Schneider
- Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, ETH Zürich, Zurich, Switzerland
| | - Conrad Burchert
- Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, ETH Zürich, Zurich, Switzerland
| | - Csaba Forró
- Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, ETH Zürich, Zurich, Switzerland
| | - Serge Weydert
- Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, ETH Zürich, Zurich, Switzerland
| | - Hana Han
- Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, ETH Zürich, Zurich, Switzerland
| | - János Vörös
- Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, ETH Zürich, Zurich, Switzerland
| |
Collapse
|