1
|
Ulucan-Karnak F, Kuru Cİ, Akgöl S. Poly (hydroxyethylmethacrylate-co-methacryloyl glutamic acid) nanocarrier system for controlled release of levothyroxine. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2024; 35:2275-2293. [PMID: 39008611 DOI: 10.1080/09205063.2024.2378610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 07/05/2024] [Indexed: 07/17/2024]
Abstract
The deterioration in the structure of thyroid hormones causes many thyroid-related disorders, which leads to a negative effect on the quality of life, as well as the change in metabolic rate. For the treatment of thyroid disorders, daily use of levothyroxine-based medication is essential. In the study, it is aimed to develop a polymeric nanocarrier that can provide controlled drug release of levothyroxine. In this respect, the p(HEMA-MAGA) nanopolymer was synthesized and then characterized by Scanning Electron Microscopy (SEM), Fourier Transform Infrared Spectroscopy (FTIR), and Zeta size analysis. The specific surface area of the nanopolymer was calculated as 587.68 m2/g. The pH, temperature, concentration, and time parameters were determined for levothyroxine binding to p(HEMA-MAGA) and optimum binding was determined as pH 7.4, 25 °C, 25 µg/mL concentration, and 30 min adsorption time. As a result of the release performed at pH 7.4, a release profile was observed which increased for the first 3 days and continued for 14 days. According to the results of MTT cell viability analysis, it was determined that the p(HEMA-MAGA) nanopolymeric carrier system had no cytotoxic effect. This developed polymer-based nanocarrier system is suitable for long-term and controlled release of levothyroxine. This is a unique and novel study in terms of developing poly hydroxyethylmethacrylate-co-methacryloyl glutamic acid-based polymeric nanoparticles for levothyroxine release.
Collapse
Affiliation(s)
- Fulden Ulucan-Karnak
- Department of Biochemistry, Ege University, İzmir, Turkey
- Graduate School of Natural and Applied Sciences, Department of Biomedical Technologies, Ege University, İzmir, Turkey
| | - Cansu İlke Kuru
- Department of Biochemistry, Ege University, İzmir, Turkey
- Graduate School of Natural and Applied Sciences, Department of Biotechnology, Ege University, İzmir, Turkey
| | - Sinan Akgöl
- Department of Biochemistry, Ege University, İzmir, Turkey
| |
Collapse
|
2
|
Abstract
Levothyroxine (LT4) is effective for most patients with hypothyroidism. However, a minority of the patients remain symptomatic despite the normalization of serum thyrotropin levels. Randomized clinical trials including all types of patients with hypothyroidism revealed that combination levothyroxine and liothyronine (LT4+LT3) therapy is safe and is the preferred choice of patients versus LT4 alone. Many patients who do not fully benefit from LT4 experience improved quality of life and cognition after switching to LT4+LT3. For these patients, new slow-release LT3 formulations that provide stable serum T3 levels are being tested. In addition, progress in regenerative technology has led to the development of human thyroid organoids that restore euthyroidism after being transplanted into hypothyroid mice. Finally, there is a new understanding that, under certain conditions, T3 signaling may be compromised in a tissue-specific fashion while systemic thyroid function is preserved. This is seen, for example, in patients with metabolic (dysfunction)-associated fatty liver disease, for whom liver-selective T3-like molecules have been utilized successfully in clinical trials.
Collapse
Affiliation(s)
- Antonio C Bianco
- Section of Adult and Pediatric Endocrinology, Diabetes, and Metabolism, University of Chicago School of Medicine, Chicago, Illinois, USA;
| |
Collapse
|
3
|
Jeon S, Lee YS, Oh SR, Jeong J, Lee DH, So KH, Hwang NS. Recent advances in endocrine organoids for therapeutic application. Adv Drug Deliv Rev 2023; 199:114959. [PMID: 37301512 DOI: 10.1016/j.addr.2023.114959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/21/2023] [Accepted: 06/05/2023] [Indexed: 06/12/2023]
Abstract
The endocrine system, consisting of the hypothalamus, pituitary, endocrine glands, and hormones, plays a critical role in hormone metabolic interactions. The complexity of the endocrine system is a significant obstacle to understanding and treating endocrine disorders. Notably, advances in endocrine organoid generation allow a deeper understanding of the endocrine system by providing better comprehension of molecular mechanisms of pathogenesis. Here, we highlight recent advances in endocrine organoids for a wide range of therapeutic applications, from cell transplantation therapy to drug toxicity screening, combined with development in stem cell differentiation and gene editing technologies. In particular, we provide insights into the transplantation of endocrine organoids to reverse endocrine dysfunctions and progress in developing strategies for better engraftments. We also discuss the gap between preclinical and clinical research. Finally, we provide future perspectives for research on endocrine organoids for the development of more effective treatments for endocrine disorders.
Collapse
Affiliation(s)
- Suwan Jeon
- Interdisciplinary Program for Biochemical Engineering and Biotechnology, Seoul National University, Seoul 08826, Republic of Korea
| | - Young-Sun Lee
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Seh Ri Oh
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Jinseong Jeong
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Dong-Hyun Lee
- Interdisciplinary Program for Biochemical Engineering and Biotechnology, Seoul National University, Seoul 08826, Republic of Korea
| | - Kyoung-Ha So
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea; Bio-MAX/N-Bio Institute, Institute of Bio-Engineering, Seoul National University, Seoul 08826, Republic of Korea.
| | - Nathaniel S Hwang
- Interdisciplinary Program for Biochemical Engineering and Biotechnology, Seoul National University, Seoul 08826, Republic of Korea; School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea; Bio-MAX/N-Bio Institute, Institute of Bio-Engineering, Seoul National University, Seoul 08826, Republic of Korea; Institute of Engineering Research, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
4
|
Carvalho DJ, Kip AM, Romitti M, Nazzari M, Tegel A, Stich M, Krause C, Caiment F, Costagliola S, Moroni L, Giselbrecht S. Thyroid-on-a-Chip: An Organoid Platform for In Vitro Assessment of Endocrine Disruption. Adv Healthc Mater 2023; 12:e2201555. [PMID: 36546709 PMCID: PMC11468662 DOI: 10.1002/adhm.202201555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 11/18/2022] [Indexed: 12/24/2022]
Abstract
Thyroid is a glandular tissue in the human body in which the function can be severely affected by endocrine disrupting chemicals (EDCs). Current in vitro assays to test endocrine disruption by chemical compounds are largely based on 2D thyroid cell cultures, which often fail to precisely evaluate the safety of these compounds. New and more advanced 3D cell culture systems are urgently needed to better recapitulate the thyroid follicular architecture and functions and help to improve the predictive power of such assays. Herein, the development of a thyroid organoid-on-a-chip (OoC) device using polymeric membranous carriers is described. Mouse embryonic stem cell derived thyroid follicles are incorporated in a microfluidic chip for a 4 day experiment at a flow rate of 12 µL min-1 . A reversible seal provides a leak-tight sealing while enabling quick and easy loading/unloading of thyroid follicles. The OoC model shows a high degree of functionality, where organoids retain expression of key thyroid genes and a typical follicular structure. Finally, transcriptional changes following benzo[k]fluoranthene exposure in the OoC device demonstrate activation of the xenobiotic aryl hydrocarbon receptor pathway. Altogether, this OoC system is a physiologically relevant thyroid model, which will represent a valuable tool to test potential EDCs.
Collapse
Affiliation(s)
- Daniel J. Carvalho
- Department of Instructive Biomaterials EngineeringMERLN Institute for Technology‐Inspired Regenerative MedicineMaastricht UniversityMaastricht6229 ERThe Netherlands
| | - Anna M. Kip
- Department of Complex Tissue RegenerationMERLN Institute for Technology‐InspiredRegenerative MedicineMaastricht UniversityMaastricht6229 ERThe Netherlands
| | - Mírian Romitti
- Institute of Interdisciplinary Research in Molecular Human Biology (IRIBHM)Université Libre de Bruxelles808 route de LennikBrussels1070Belgium
| | - Marta Nazzari
- Department of ToxicogenomicsGROW School for Oncology and Developmental BiologyMaastricht UniversityMaastricht6229 ERThe Netherlands
| | - Andreas Tegel
- PreSens Precision Sensing GmbHAm Biopark 1193053RegensburgGermany
| | - Matthias Stich
- PreSens Precision Sensing GmbHAm Biopark 1193053RegensburgGermany
| | - Christian Krause
- PreSens Precision Sensing GmbHAm Biopark 1193053RegensburgGermany
| | - Florian Caiment
- Department of ToxicogenomicsGROW School for Oncology and Developmental BiologyMaastricht UniversityMaastricht6229 ERThe Netherlands
| | - Sabine Costagliola
- Institute of Interdisciplinary Research in Molecular Human Biology (IRIBHM)Université Libre de Bruxelles808 route de LennikBrussels1070Belgium
| | - Lorenzo Moroni
- Department of Complex Tissue RegenerationMERLN Institute for Technology‐InspiredRegenerative MedicineMaastricht UniversityMaastricht6229 ERThe Netherlands
| | - Stefan Giselbrecht
- Department of Instructive Biomaterials EngineeringMERLN Institute for Technology‐Inspired Regenerative MedicineMaastricht UniversityMaastricht6229 ERThe Netherlands
| |
Collapse
|
5
|
Li L, Sheng Q, Zeng H, Li W, Wang Q, Ma G, Qiu M, Zhang W, Shan C. Engineering a functional thyroid as a potential therapeutic substitute for hypothyroidism treatment: A systematic review. Front Endocrinol (Lausanne) 2022; 13:1065410. [PMID: 36531472 PMCID: PMC9755335 DOI: 10.3389/fendo.2022.1065410] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 11/17/2022] [Indexed: 12/04/2022] Open
Abstract
Background Hypothyroidism is a common hormone deficiency disorder. Although hormone supplemental therapy can be easily performed by daily levothyroxine administration, a proportion of patients suffer from persisting complaints due to unbalanced hormone levels, leaving room for new therapeutic strategies, such as tissue engineering and regenerative medicine. Methods Electronic searches of databases for studies of thyroid regeneration or thyroid organoids were performed. A systematic review including both in vitro and in vivo models of thyroid regenerative medicine was conducted. Results Sixty-six independent studies published between 1959 and May 1st, 2022 were included in the current systematic review. Among these 66 studies, the most commonly involved species was human (19 studies), followed by mouse (18 studies), swine (14 studies), rat (13 studies), calf/bovine (4 studies), sheep/lamb (4 studies) and chick (1 study). In addition, in these experiments, the most frequently utilized tissue source was adult thyroid tissue (46 studies), followed by embryonic stem cells (ESCs)/pluripotent stem cells (iPSCs) (10 studies), rat thyroid cell lines (7 studies), embryonic thyroid tissue (2 studies) and newborn or fetal thyroid tissue (2 studies). Sixty-three studies reported relevant thyroid follicular regeneration experiments in vitro, while 21 studies showed an in vivo experiment section that included transplanting engineered thyroid tissue into recipients. Together, 12 studies were carried out using 2D structures, while 50 studies constructed 3D structures. Conclusions Each aspect of thyroid regenerative medicine was comprehensively described in this review. The recovery of optimal hormonal equilibrium by the transplantation of an engineered functional thyroid holds great therapeutic promise.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Wei Zhang
- Department of Thyroid and Breast Surgery of Changzheng Hospital Affiliated with Naval Military Medical University, Shanghai, China
| | - Chengxiang Shan
- Department of Thyroid and Breast Surgery of Changzheng Hospital Affiliated with Naval Military Medical University, Shanghai, China
| |
Collapse
|
6
|
Heim M, Nixon IJ, Emmerson E, Callanan A. From hormone replacement therapy to regenerative scaffolds: A review of current and novel primary hypothyroidism therapeutics. Front Endocrinol (Lausanne) 2022; 13:997288. [PMID: 36277721 PMCID: PMC9581390 DOI: 10.3389/fendo.2022.997288] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 09/09/2022] [Indexed: 11/16/2022] Open
Abstract
Primary hypothyroidism severely impacts the quality of life of patients through a decrease in the production of the thyroid hormones T3 and T4, leading to symptoms affecting cardiovascular, neurological, cognitive, and metabolic function. The incidence rate of primary hypothyroidism is expected to increase in the near future, partially due to increasing survival of patients that have undergone radiotherapy for head and neck cancer, which induces this disease in over half of those treated. The current standard of care encompasses thyroid hormone replacement therapy, traditionally in the form of synthetic T4. However, there is mounting evidence that this is unable to restore thyroid hormone signaling in all tissues due to often persistent symptoms. Additional complications are also present in the form of dosage difficulties, extensive drug interactions and poor patience compliance. The alternative therapeutic approach employed in the past is combination therapy, which consists of administration of both T3 and T4, either synthetic or in the form of desiccated thyroid extract. Here, issues are present regarding the lack of regulation concerning formulation and lack of data regarding safety and efficacy of these treatment methods. Tissue engineering and regenerative medicine have been applied in conjunction with each other to restore function of various tissues. Recently, these techniques have been adapted for thyroid tissue, primarily through the fabrication of regenerative scaffolds. Those currently under investigation are composed of either biopolymers or native decellularized extracellular matrix (dECM) in conjunction with either primary thyrocytes or stem cells which have undergone directed thyroid differentiation. Multiple of these scaffolds have successfully restored an athyroid phenotype in vivo. However, further work is needed until clinical translation can be achieved. This is proposed in the form of exploration and combination of materials used to fabricate these scaffolds, the addition of peptides which can aid restoration of tissue homeostasis and additional in vivo experimentation providing data on safety and efficacy of these implants.
Collapse
Affiliation(s)
- Maria Heim
- Institute for Bioengineering, School of Engineering, The University of Edinburgh, Edinburgh, United Kingdom
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh, United Kingdom
| | - Ian J. Nixon
- Department of ENT, Head and Neck Surgery, NHS Lothian, Edinburgh, United Kingdom
| | - Elaine Emmerson
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh, United Kingdom
| | - Anthony Callanan
- Institute for Bioengineering, School of Engineering, The University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
7
|
Kupikowska-Stobba B, Grzeczkowicz M, Lewińska D. A one-step in vitro continuous flow assessment of protein release from core-shell polymer microcapsules designed for therapeutic protein delivery. Biocybern Biomed Eng 2021. [DOI: 10.1016/j.bbe.2021.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
8
|
Sağraç D, Şişli HB, Şenkal S, Hayal TB, Şahin F, Doğan A. Organoids in Tissue Transplantation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1347:45-64. [PMID: 34164796 DOI: 10.1007/5584_2021_647] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Improvements in stem cell-based research and genetic modification tools enable stem cell-based tissue regeneration applications in clinical therapies. Although inadequate cell numbers in culture, invasive isolation procedures, and poor survival rates after transplantation remain as major challenges, cell-based therapies are useful tools for tissue regeneration.Organoids hold a great promise for tissue regeneration, organ and disease modeling, drug testing, development, and genetic profiling studies. Establishment of 3D cell culture systems eliminates the disadvantages of 2D models in terms of cell adaptation and tissue structure and function. Organoids possess the capacity to mimic the specific features of tissue architecture, cell-type composition, and the functionality of real organs while preserving the advantages of simplified and easily accessible cell culture models. Thus, organoid technology might emerge as an alternative to cell and tissue transplantation. Although transplantation of various organoids in animal models has been demonstrated, liöitations related to vascularized structure formation, cell viability and functionality remain as obstacles in organoid-based transplantation therapies. Clinical applications of organoid-based transplantations might be possible in the near future, when limitations related to cell viability and tissue integration are solved. In this review, the literature was analyzed and discussed to explore the current status of organoid-based transplantation studies.
Collapse
Affiliation(s)
- Derya Sağraç
- Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, Istanbul, Turkey
| | - Hatice Burcu Şişli
- Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, Istanbul, Turkey
| | - Selinay Şenkal
- Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, Istanbul, Turkey
| | - Taha Bartu Hayal
- Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, Istanbul, Turkey
| | - Fikrettin Şahin
- Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, Istanbul, Turkey
| | - Ayşegül Doğan
- Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, Istanbul, Turkey.
| |
Collapse
|
9
|
Khodabakhshaghdam S, Khoshfetrat AB, Rahbarghazi R. Alginate-chitosan core-shell microcapsule cultures of hepatic cells in a small scale stirred bioreactor: impact of shear forces and microcapsule core composition. J Biol Eng 2021; 15:14. [PMID: 33865460 PMCID: PMC8052835 DOI: 10.1186/s13036-021-00265-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Accepted: 04/03/2021] [Indexed: 01/20/2023] Open
Abstract
A small scale stirred bioreactor was designed and the effect of different agitation rates (30, 60 and 100 rpm) was investigated on HepG2 cells cultured in alginate-chitosan (AC) core-shell microcapsule in terms of the cell proliferation and liver-specific function. The microencapsulated hepatic cells could proliferate well when they were cultured for 10 days at 30 rpm while the cell-laden microcapsules showed no cell proliferation at 100 rpm in the bioreactor system. Albumin production rate, as an important liver function, increased also 1.8- and 1.5- fold under stirring rate of 30 rpm compared to the static culture and 60 rpm of agitation, respectively. Moreover, In comparison with the static culture, about 1.5-fold increment in urea production was observed at 30 rpm. Similarly, the highest expressions of albumin and P450 genes were found at 30 rpm stirring rate, which were 4.9- and 19.2-fold of the static culture. Addition of collagen to the microcapsule core composition (ACol/C) could improve the cell proliferation and functionality at 60 rpm in comparison with the cell-laden microcapsules without collagen. The study demonstrated the hepatic cell-laden ACol/C microcapsule hydrogel cultured in the small scale stirred bioreactor at low mixing rate has a great potential for mass production of the hepatic cells while maintaining liver-specific functions.
Collapse
Affiliation(s)
- Shahla Khodabakhshaghdam
- Chemical Engineering Faculty, Sahand University of Technology, Tabriz, 51335-1996, Iran
- Stem Cell and Tissue Engineering Research Laboratory, Sahand University of Technology, Tabriz, 51335-1996, Iran
| | - Ali Baradar Khoshfetrat
- Chemical Engineering Faculty, Sahand University of Technology, Tabriz, 51335-1996, Iran.
- Stem Cell and Tissue Engineering Research Laboratory, Sahand University of Technology, Tabriz, 51335-1996, Iran.
| | - Reza Rahbarghazi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
10
|
Samimi H, Atlasi R, Parichehreh-Dizaji S, Khazaei S, Akhavan Rahnama M, Seifirad S, Haghpanah V. A systematic review on thyroid organoid models: time-trend and its achievements. Am J Physiol Endocrinol Metab 2021; 320:E581-E590. [PMID: 33427048 DOI: 10.1152/ajpendo.00479.2020] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Current in vitro models have played important roles in improving knowledge and understanding of cellular and molecular biology, but cannot exactly recapitulate the physiology of human tissues such as thyroid. In this article, we conducted a systematic review to present scientific and methodological time-trends of the reconstruction and generation of 3 D functional thyroid follicles and organoids for thyroid research in health and disease. "Web of Science (ISI)", "Scopus", "Embase", "Cochrane Library", and "PubMed" were systematically searched for papers published since 1950 to May 2020 in English language, using the predefined keywords. 212 articles were reviewed and finally 28 papers that met the inclusion and exclusion criteria were selected. Among the evidence for the examination of 3 D cell culture methods in thyroid research, there were only a few studies related to the organoid technology and its potential applications in understanding morphological, histological, and physiological characteristics of the thyroid gland and reconstructing this tissue. Besides, there was no study using organoids to investigate the tumorigenesis process of thyroid. Based on the results of this study, despite all the limitations and controversies, the exciting and promising organoid technology offers researchers a wide range of potential applications for more accurate modeling of thyroid in health and diseases and provides an excellent preclinical in vitro platform. In future, organoid technology can provide a better understanding of the molecular mechanisms of pathogenesis and tumorigenesis of thyroid tissue and more effective treatment for related disorders due to more accurate simulation of the thyroid physiology.
Collapse
Affiliation(s)
- Hilda Samimi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Rasha Atlasi
- Evidence Based Practice Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Somayeh Parichehreh-Dizaji
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Samaneh Khazaei
- Department of Cell and Molecular Biology, Faculty of Biological Science and Technology, Isfahan University, Isfahan, Iran
- Department of Hematology and Cell Therapy, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mahshid Akhavan Rahnama
- Department of Hematology and Cell Therapy, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Soroush Seifirad
- Department of Internal Medicine, Hackensack Meridian Health Mountainside Medical Center, Montclair, New Jersey
| | - Vahid Haghpanah
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
- Personalized Medicine Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
11
|
Pereira MS, Cardoso LMDF, da Silva TB, Teixeira AJ, Mizrahi SE, Ferreira GSM, Dantas FML, Cotta-de-Almeida V, Alves LA. A Low-Cost Open Source Device for Cell Microencapsulation. MATERIALS 2020; 13:ma13225090. [PMID: 33187294 PMCID: PMC7696579 DOI: 10.3390/ma13225090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 08/27/2020] [Accepted: 09/01/2020] [Indexed: 11/16/2022]
Abstract
Microencapsulation is a widely studied cell therapy and tissue bioengineering technique, since it is capable of creating an immune-privileged site, protecting encapsulated cells from the host immune system. Several polymers have been tested, but sodium alginate is in widespread use for cell encapsulation applications, due to its low toxicity and easy manipulation. Different cell encapsulation methods have been described in the literature using pressure differences or electrostatic changes with high cost commercial devices (about 30,000 US dollars). Herein, a low-cost device (about 100 US dollars) that can be created by commercial syringes or 3D printer devices has been developed. The capsules, whose diameter is around 500 µm and can decrease or increase according to the pressure applied to the system, is able to maintain cells viable and functional. The hydrogel porosity of the capsule indicates that the immune system is not capable of destroying host cells, demonstrating that new studies can be developed for cell therapy at low cost with microencapsulation production. This device may aid pre-clinical and clinical projects in low- and middle-income countries and is lined up with open source equipment devices.
Collapse
Affiliation(s)
- Miriam Salles Pereira
- Laboratory of Cellular Communication, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, 4365 Manguinhos, Rio de Janeiro 21045-900, Brazil; (M.S.P.); (L.M.d.F.C.); (T.B.d.S.); (A.J.T.)
- Volta Redonda University Center—UniFOA, Av. Paulo Erlei Alves Abrantes, 1325-Três Poços, Volta Redonda 27240-560, Brazil
| | - Liana Monteiro da Fonseca Cardoso
- Laboratory of Cellular Communication, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, 4365 Manguinhos, Rio de Janeiro 21045-900, Brazil; (M.S.P.); (L.M.d.F.C.); (T.B.d.S.); (A.J.T.)
| | - Tatiane Barreto da Silva
- Laboratory of Cellular Communication, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, 4365 Manguinhos, Rio de Janeiro 21045-900, Brazil; (M.S.P.); (L.M.d.F.C.); (T.B.d.S.); (A.J.T.)
| | - Ayla Josma Teixeira
- Laboratory of Cellular Communication, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, 4365 Manguinhos, Rio de Janeiro 21045-900, Brazil; (M.S.P.); (L.M.d.F.C.); (T.B.d.S.); (A.J.T.)
| | - Saul Eliahú Mizrahi
- National Institute of Technology—INT, Rio de Janeiro Av. Venezuela, 82-Saúde, Rio de Janeiro 20081-312, Brazil; (S.E.M.); (G.S.M.F.); (F.M.L.D.)
| | - Gabriel Schonwandt Mendes Ferreira
- National Institute of Technology—INT, Rio de Janeiro Av. Venezuela, 82-Saúde, Rio de Janeiro 20081-312, Brazil; (S.E.M.); (G.S.M.F.); (F.M.L.D.)
| | - Fabio Moyses Lins Dantas
- National Institute of Technology—INT, Rio de Janeiro Av. Venezuela, 82-Saúde, Rio de Janeiro 20081-312, Brazil; (S.E.M.); (G.S.M.F.); (F.M.L.D.)
| | - Vinicius Cotta-de-Almeida
- Laboratory on Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, 4365 Manguinhos, Rio de Janeiro 21045-900, Brazil;
- National Institute of Science and Technology on Neuroimmunomodulation (INCT-NIM), Oswaldo Cruz Institute, Oswaldo Cruz Foundation, 4365 Manguinhos, Rio de Janeiro 21045-900, Brazil
| | - Luiz Anastacio Alves
- Laboratory of Cellular Communication, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, 4365 Manguinhos, Rio de Janeiro 21045-900, Brazil; (M.S.P.); (L.M.d.F.C.); (T.B.d.S.); (A.J.T.)
- Correspondence: ; Tel.: +55-21-2562-1841; Fax: +55-21-2562-1816
| |
Collapse
|
12
|
Kupikowska-Stobba B, Lewińska D. Polymer microcapsules and microbeads as cell carriers for in vivo biomedical applications. Biomater Sci 2020; 8:1536-1574. [PMID: 32110789 DOI: 10.1039/c9bm01337g] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Polymer microcarriers are being extensively explored as cell delivery vehicles in cell-based therapies and hybrid tissue and organ engineering. Spherical microcarriers are of particular interest due to easy fabrication and injectability. They include microbeads, composed of a porous matrix, and microcapsules, where matrix core is additionally covered with a semipermeable membrane. Microcarriers provide cell containment at implantation site and protect the cells from host immunoresponse, degradation and shear stress. Immobilized cells may be genetically altered to release a specific therapeutic product directly at the target site, eliminating side effects of systemic therapies. Cell microcarriers need to fulfil a number of extremely high standards regarding their biocompatibility, cytocompatibility, immunoisolating capacity, transport, mechanical and chemical properties. To obtain cell microcarriers of specified parameters, a wide variety of polymers, both natural and synthetic, and immobilization methods can be applied. Yet so far, only a few approaches based on cell-laden microcarriers have reached clinical trials. The main issue that still impedes progress of these systems towards clinical application is limited cell survival in vivo. Herein, we review polymer biomaterials and methods used for fabrication of cell microcarriers for in vivo biomedical applications. We describe their key limitations and modifications aiming at improvement of microcarrier in vivo performance. We also present the main applications of polymer cell microcarriers in regenerative medicine, pancreatic islet and hepatocyte transplantation and in the treatment of cancer. Lastly, we outline the main challenges in cell microimmobilization for biomedical purposes, the strategies to overcome these issues and potential future improvements in this area.
Collapse
Affiliation(s)
- Barbara Kupikowska-Stobba
- Laboratory of Electrostatic Methods of Bioencapsulation, Department of Biomaterials and Biotechnological Systems, Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, Trojdena 4, 02-109 Warsaw, Poland.
| | - Dorota Lewińska
- Laboratory of Electrostatic Methods of Bioencapsulation, Department of Biomaterials and Biotechnological Systems, Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, Trojdena 4, 02-109 Warsaw, Poland.
| |
Collapse
|
13
|
Kang SM, Lee JH, Huh YS, Takayama S. Alginate Microencapsulation for Three-Dimensional In Vitro Cell Culture. ACS Biomater Sci Eng 2020; 7:2864-2879. [PMID: 34275299 DOI: 10.1021/acsbiomaterials.0c00457] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Advances in microscale 3D cell culture systems have helped to elucidate cellular physiology, understand mechanisms of stem cell differentiation, produce pathophysiological models, and reveal important cell-cell and cell-matrix interactions. An important consideration for such studies is the choice of material for encapsulating cells and associated extracellular matrix (ECM). This Review focuses on the use of alginate hydrogels, which are versatile owing to their simple gelation process following an ionic cross-linking mechanism in situ, with no need for procedures that can be potentially toxic to cells, such as heating, the use of solvents, and UV exposure. This Review aims to give some perspectives, particularly to researchers who typically work more with poly(dimethylsiloxane) (PDMS), on the use of alginate as an alternative material to construct microphysiological cell culture systems. More specifically, this Review describes how physicochemical characteristics of alginate hydrogels can be tuned with regards to their biocompatibility, porosity, mechanical strength, ligand presentation, and biodegradability. A number of cell culture applications are also described, and these are subcategorized according to whether the alginate material is used to homogeneously embed cells, to micropattern multiple cellular microenvironments, or to provide an outer shell that creates a space in the core for cells and other ECM components. The Review ends with perspectives on future challenges and opportunities for 3D cell culture applications.
Collapse
Affiliation(s)
- Sung-Min Kang
- Wallace H Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory School of Medicine, Atlanta, 30332, United States of America.,The Parker H Petit Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, 30332, United States of America.,NanoBio High-Tech Materials Research Center, Department of Biological Engineering, Inha University, 100 Inha-ro, Incheon, 22212, Republic of Korea
| | - Ji-Hoon Lee
- Wallace H Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory School of Medicine, Atlanta, 30332, United States of America.,The Parker H Petit Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, 30332, United States of America
| | - Yun Suk Huh
- NanoBio High-Tech Materials Research Center, Department of Biological Engineering, Inha University, 100 Inha-ro, Incheon, 22212, Republic of Korea
| | - Shuichi Takayama
- Wallace H Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory School of Medicine, Atlanta, 30332, United States of America.,The Parker H Petit Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, 30332, United States of America
| |
Collapse
|
14
|
Wang X, Guo S, Zhou Y, Shen H, Wang L, Wang G. Easy Fabrication of Bovine Serum Albumin/Astragalus Membranaceus Oil Microcapsules through a Sonochemical Method. ChemistrySelect 2020. [DOI: 10.1002/slct.202000451] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Xin Wang
- School of Materials Science & EngineeringNorth Minzu University Yinchuan 750021 P. R. China
- Key Lab. of Powder Material & Advanced CeramicsNorth Minzu University Yinchuan 750021 P. R. China
- International Scientific & Technological Cooperation Base of Industrial Waste Recycling and Advanced MaterialsNorth Minzu University Yinchuan 750021 P. R. China
| | - Sheng‐Wei Guo
- School of Materials Science & EngineeringNorth Minzu University Yinchuan 750021 P. R. China
- Key Lab. of Powder Material & Advanced CeramicsNorth Minzu University Yinchuan 750021 P. R. China
- International Scientific & Technological Cooperation Base of Industrial Waste Recycling and Advanced MaterialsNorth Minzu University Yinchuan 750021 P. R. China
| | - Yi Zhou
- Center for Joint SurgerySouthwest Hospital Third Military Medical University (Army Medical University) Chongqing 400038 P. R. China
| | - Hong‐Fang Shen
- School of Materials Science & EngineeringNorth Minzu University Yinchuan 750021 P. R. China
- Key Lab. of Powder Material & Advanced CeramicsNorth Minzu University Yinchuan 750021 P. R. China
- International Scientific & Technological Cooperation Base of Industrial Waste Recycling and Advanced MaterialsNorth Minzu University Yinchuan 750021 P. R. China
| | - Liang Wang
- School of Materials Science & EngineeringNorth Minzu University Yinchuan 750021 P. R. China
- Key Lab. of Powder Material & Advanced CeramicsNorth Minzu University Yinchuan 750021 P. R. China
- International Scientific & Technological Cooperation Base of Industrial Waste Recycling and Advanced MaterialsNorth Minzu University Yinchuan 750021 P. R. China
| | - Gu‐Xia Wang
- School of Chemistry & Chemical EngineeringNorth Minzu University Yinchuan 750021 P. R. China
| |
Collapse
|
15
|
Enck K, Rajan SP, Aleman J, Castagno S, Long E, Khalil F, Hall AR, Opara EC. Design of an Adhesive Film-Based Microfluidic Device for Alginate Hydrogel-Based Cell Encapsulation. Ann Biomed Eng 2020; 48:1103-1111. [PMID: 31933001 PMCID: PMC11071058 DOI: 10.1007/s10439-020-02453-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 01/07/2020] [Indexed: 01/02/2023]
Abstract
To support the increasing translational use of transplanted cells, there is a need for high-throughput cell encapsulation technologies. Microfluidics is a particularly promising candidate technology to address this need, but conventional polydimethylsiloxane devices have encountered challenges that have limited their utility, including clogging, leaking, material swelling, high cost, and limited scalability. Here, we use a rapid prototyping approach incorporating patterned adhesive thin films to develop a reusable microfluidic device that can produce alginate hydrogel microbeads with high-throughput potential for microencapsulation applications. We show that beads formed in our device have high sphericity and monodispersity. We use the system to demonstrate effective cell encapsulation of mesenchymal stem cells and show that they can be maintained in culture for at least 28 days with no measurable reduction in viability. Our approach is highly scalable and will support diverse translational applications of microencapsulated cells.
Collapse
Affiliation(s)
- Kevin Enck
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC, 27157, USA
- Virginia Tech-Wake Forest School of Biomedical Engineering and Sciences, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC, 27157, USA
| | - Shiny Priya Rajan
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC, 27157, USA
- Virginia Tech-Wake Forest School of Biomedical Engineering and Sciences, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC, 27157, USA
| | - Julio Aleman
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC, 27157, USA
| | | | - Emily Long
- Wake Forest Institute for Regenerative Medicine Summer Undergraduate Research Program, Wake Forest School of Medicine, Medical Center, Winston-Salem, NC, 27157, USA
| | - Fatma Khalil
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC, 27157, USA
| | - Adam R Hall
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC, 27157, USA
- Virginia Tech-Wake Forest School of Biomedical Engineering and Sciences, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC, 27157, USA
| | - Emmanuel C Opara
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC, 27157, USA.
- Virginia Tech-Wake Forest School of Biomedical Engineering and Sciences, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC, 27157, USA.
| |
Collapse
|
16
|
Ran Q, Zhou Q, Oda K, Yasue A, Abe M, Ye X, Li Y, Sasaoka T, Sakimura K, Ajioka Y, Saijo Y. Generation of Thyroid Tissues From Embryonic Stem Cells via Blastocyst Complementation In Vivo. Front Endocrinol (Lausanne) 2020; 11:609697. [PMID: 33381086 PMCID: PMC7767966 DOI: 10.3389/fendo.2020.609697] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 11/10/2020] [Indexed: 01/29/2023] Open
Abstract
The generation of mature, functional, thyroid follicular cells from pluripotent stem cells would potentially provide a therapeutic benefit for patients with hypothyroidism, but in vitro differentiation remains difficult. We earlier reported the in vivo generation of lung organs via blastocyst complementation in fibroblast growth factor 10 (Fgf10), compound, heterozygous mutant (Fgf10 Ex1mut/Ex3mut) mice. Fgf10 also plays an essential role in thyroid development and branching morphogenesis, but any role thereof in thyroid organogenesis remains unclear. Here, we report that the thyroids of Fgf10 Ex1mut/Ex3mut mice exhibit severe hypoplasia, and we generate thyroid tissues from mouse embryonic stem cells (ESCs) in Fgf10 Ex1mut/Ex3mut mice via blastocyst complementation. The tissues were morphologically normal and physiologically functional. The thyroid follicular cells of Fgf10 Ex1mut/Ex3mut chimeric mice were derived largely from GFP-positive mouse ESCs although the recipient cells were mixed. Thyroid generation in vivo via blastocyst complementation will aid functional thyroid regeneration.
Collapse
Affiliation(s)
- Qingsong Ran
- Department of Medical Oncology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Qiliang Zhou
- Department of Medical Oncology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
- *Correspondence: Qiliang Zhou,
| | - Kanako Oda
- Department of Comparative and Experimental Medicine, Brain Research Institute, Niigata University, Niigata, Japan
| | - Akihiro Yasue
- Department of Orthodontics and Dentofacial Orthopedics, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Manabu Abe
- Department of Animal Model Development, Brain Research Institute, Niigata University, Niigata, Japan
| | - Xulu Ye
- Department of Medical Oncology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Yingchun Li
- Department of Medical Oncology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Toshikuni Sasaoka
- Department of Comparative and Experimental Medicine, Brain Research Institute, Niigata University, Niigata, Japan
| | - Kenji Sakimura
- Department of Animal Model Development, Brain Research Institute, Niigata University, Niigata, Japan
| | - Yoichi Ajioka
- Division of Molecular and Diagnostic Pathology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Yasuo Saijo
- Department of Medical Oncology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| |
Collapse
|
17
|
|
18
|
Pan J, Li H, Fang Y, Shen YB, Zhou XY, Zhu F, Zhu LX, Du YH, Yu XF, Wang Y, Zhou XH, Wang YY, Wu YJ. Regeneration of a Bioengineered Thyroid Using Decellularized Thyroid Matrix. Thyroid 2019; 29:142-152. [PMID: 30375266 DOI: 10.1089/thy.2018.0068] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
BACKGROUND Hypothyroidism is a common hormone deficiency condition. Regenerative medicine approaches, such as a bioengineered thyroid, have been proposed as potential therapeutic alternatives for patients with hypothyroidism. This study demonstrates a novel approach to generate thyroid grafts using decellularized rat thyroid matrix. METHODS Isolated rat thyroid glands were perfused with 1% sodium dodecyl sulfate to generate a decellularized thyroid scaffold. The rat thyroid scaffold was then recellularized with rat thyroid cell line to reconstruct the thyroid by perfusion seeding technique. As a pilot study, the decellularized rat thyroid scaffold was perfused with human-derived thyrocytes and parathyroid cells. RESULTS The decellularization process retained the intricate three-dimensional microarchitecture with a perfusable vascular network and native extracellular matrix components, allowing efficient reseeding of the thyroid matrix with the FRTL-5 rat thyroid cell line generating three-dimensional follicular structures in vitro. In addition, the recellularized thyroid showed successful cellular engraftment and thyroid-specific function, including synthesis of thyroglobulin and thyroid peroxidase. Moreover, the decellularized rat thyroid scaffold could further be recellularized with human-derived thyroid cells and parathyroid cells to reconstruct a humanized bioartificial endocrine organ, which maintained expression of critical genes such as thyroglobulin, thyroid peroxidase, and parathyroid hormone. CONCLUSION These findings demonstrate the utility of a decellularized thyroid extracellular matrix scaffold system for the development of functional, bioengineered thyroid tissue, which could potentially be used to treat hypothyroidism.
Collapse
Affiliation(s)
- Jun Pan
- 1 Thyroid Disease Diagnosis and Treatment Center; School of Medicine, Zhejiang University, Hangzhou, P.R. China
| | - Hui Li
- 2 Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Division of Hepatobiliary and Pancreatic Surgery; School of Medicine, Zhejiang University, Hangzhou, P.R. China
| | - Yun Fang
- 1 Thyroid Disease Diagnosis and Treatment Center; School of Medicine, Zhejiang University, Hangzhou, P.R. China
| | - Yi-Bin Shen
- 1 Thyroid Disease Diagnosis and Treatment Center; School of Medicine, Zhejiang University, Hangzhou, P.R. China
| | - Xue-Yu Zhou
- 1 Thyroid Disease Diagnosis and Treatment Center; School of Medicine, Zhejiang University, Hangzhou, P.R. China
| | - Feng Zhu
- 1 Thyroid Disease Diagnosis and Treatment Center; School of Medicine, Zhejiang University, Hangzhou, P.R. China
| | - Li-Xian Zhu
- 1 Thyroid Disease Diagnosis and Treatment Center; School of Medicine, Zhejiang University, Hangzhou, P.R. China
| | - Ye-Hui Du
- 1 Thyroid Disease Diagnosis and Treatment Center; School of Medicine, Zhejiang University, Hangzhou, P.R. China
| | - Xiong-Fei Yu
- 3 Cancer Center; School of Medicine, Zhejiang University, Hangzhou, P.R. China
| | - Yan Wang
- 2 Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Division of Hepatobiliary and Pancreatic Surgery; School of Medicine, Zhejiang University, Hangzhou, P.R. China
| | - Xin-Hui Zhou
- 4 Department of Gynecology; and School of Medicine, Zhejiang University, Hangzhou, P.R. China
| | - Ying-Ying Wang
- 5 Kidney Disease Center; The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, P.R. China
| | - Yi-Jun Wu
- 1 Thyroid Disease Diagnosis and Treatment Center; School of Medicine, Zhejiang University, Hangzhou, P.R. China
| |
Collapse
|
19
|
Holzmeister I, Schamel M, Groll J, Gbureck U, Vorndran E. Artificial inorganic biohybrids: The functional combination of microorganisms and cells with inorganic materials. Acta Biomater 2018; 74:17-35. [PMID: 29698705 DOI: 10.1016/j.actbio.2018.04.042] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 03/12/2018] [Accepted: 04/22/2018] [Indexed: 02/07/2023]
Abstract
Biohybrids can be defined as the functional combination of proteins, viable cells or microorganisms with non-biological materials. This article reviews recent findings on the encapsulation of microorganisms and eukaryotic cells in inorganic matrices such as silica gels or cements. The entrapment of biological entities into a support material is of great benefit for processing since the encapsulation matrix protects sensitive cells from shear forces, unfavourable pH changes, or cytotoxic solvents, avoids culture-washout, and simplifies the separation of formed products. After reflecting general aspects of such an immobilization as well as the chemistry of the inorganic matrices, we focused on manufacturing aspects and the application of such biohybrids in biotechnology, medicine as well as in environmental science and for civil engineering purpose. STATEMENT OF SIGNIFICANCE The encapsulation of living cells and microorganisms became an intensively studied and rapidly expanding research field with manifold applications in medicine, bio- and environmental technology, or civil engineering. Here, the use of silica or cements as encapsulation matrices have the advantage of a higher chemical and mechanical resistance towards harsh environmental conditions during processing compared to their polymeric counterparts. In this perspective, the article gives an overview about the inorganic material systems used for cell encapsulation, followed by reviewing the most important applications. The future may lay in a combination of the currently achieved biohybrid systems with additive manufacturing techniques. In a longer perspective, this would enable the direct printing of cell loaded bioreactor components.
Collapse
|
20
|
Olayanju A, Jones L, Greco K, Goldring CE, Ansari T. Application of porcine gastrointestinal organoid units as a potential in vitro tool for drug discovery and development. J Appl Toxicol 2018; 39:4-15. [DOI: 10.1002/jat.3641] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 04/06/2018] [Accepted: 04/07/2018] [Indexed: 12/14/2022]
Affiliation(s)
- Adedamola Olayanju
- Tissue Engineering and Regenerative Medicine; Northwick Park Institute for Medical Research (NPIMR); Harrow, London HA1 3UJ UK
| | - Lauren Jones
- Tissue Engineering and Regenerative Medicine; Northwick Park Institute for Medical Research (NPIMR); Harrow, London HA1 3UJ UK
| | - Karin Greco
- Tissue Engineering and Regenerative Medicine; Northwick Park Institute for Medical Research (NPIMR); Harrow, London HA1 3UJ UK
| | - Christopher E. Goldring
- MRC Centre for Drug Safety Science, Department of Molecular and Clinical Pharmacology, Institute of Translational Medicine; University of Liverpool; Liverpool, Merseyside L69 3GE UK
| | - Tahera Ansari
- Tissue Engineering and Regenerative Medicine; Northwick Park Institute for Medical Research (NPIMR); Harrow, London HA1 3UJ UK
| |
Collapse
|
21
|
Lee J, Lee JH, Yeom B, Char K. Layer-by-Layer Assembly of κ-Casein Amyloid Fibrils for the Preparation of Hollow Microcapsules. MACROMOL CHEM PHYS 2017. [DOI: 10.1002/macp.201700382] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Jubong Lee
- The National Creative Research Initiative Center for Intelligent Hybrids; The WCU Program of Chemical Convergence for Energy & Environment; School of Chemical & Biological Engineering; Seoul National University; Seoul 08826 Korea
| | - Ji-Hye Lee
- The National Creative Research Initiative Center for Intelligent Hybrids; The WCU Program of Chemical Convergence for Energy & Environment; School of Chemical & Biological Engineering; Seoul National University; Seoul 08826 Korea
| | - Bongjun Yeom
- Department of Chemical Engineering; Myongji University; Yongin 17058 Korea
| | - Kookheon Char
- The National Creative Research Initiative Center for Intelligent Hybrids; The WCU Program of Chemical Convergence for Energy & Environment; School of Chemical & Biological Engineering; Seoul National University; Seoul 08826 Korea
| |
Collapse
|
22
|
Abstract
A three-dimensional (3D) tissue model has significant advantages over the conventional two-dimensional (2D) model. A 3D model mimics the relevant in-vivo physiological conditions, allowing a cell culture to serve as an effective tool for drug discovery, tissue engineering, and the investigation of disease pathology. The present reviews highlight the recent advances and the development of microfluidics based methods for the generation of cell spheroids. The paper emphasizes on the application of microfluidic technology for tissue engineering including the formation of multicellular spheroids (MCS). Further, the paper discusses the recent technical advances in the integration of microfluidic devices for MCS-based high-throughput drug screening. The review compares the various microfluidic techniques and finally provides a perspective for the future opportunities in this research area.
Collapse
|