1
|
Yakubova II, Dosenko V, Ostrianko V, Tsypan S, Bielova L, Viun G. Influence of maternal cholesterol-enriched diet on chemical composition of teeth enamel in offspring of mice. WIADOMOSCI LEKARSKIE (WARSAW, POLAND : 1960) 2024; 77:299-304. [PMID: 38592993 DOI: 10.36740/wlek202402117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
OBJECTIVE Aim: To determine the chemical composition of the tooth enamel of two-day-old mice from hypercholesterolemic mothers by energy dispersive X-ray spectroscopy. PATIENTS AND METHODS Materials and Methods: Forty mature female mice were randomly assigned (n = 20/group) to either a standard chow vivarium diet (control group) or a cholesterol-enriched chow diet (experimental group). After fertilization, pregnancy and birth, on postnatal day 2, the incisor segments of 6 pups form each group were used for energy dispersive X-ray spectroscopy. RESULTS Results: Influence of maternal hypercholesterolemic diet on tooth development and mineralization was examined, which revealed changes in enamel chemical composition. First, the results indicate the presence of seven elements (Na, Cl, Ca, P, Mg, S, Fe) in the enamel of both the hypercholesterolemic and normal offspring, but the content of element Ca2+ decreased, the content of elements P5+, Na+, Cl- tended to increase in pups from hypercholesterolemic mice. Second, the initial level of mineralization according to the atomic (%) Ca / P in hypercholesterolemic pups ratio was 1.26, comparing with normal pups where level of mineralization was 1.34. Taking into account that irreversible changes in the structure of the enamel were observed when the Ca / P ratio was below 1.33, we can suggest that the eruption of teeth with an imperfect structure could be because of maternal hypercholesterolemic diet. CONCLUSION Conclusions: Results of this study suggest that hypercholesterolemic diet during gestation and lactation leads to altered enamel mineralization in mice because of changes in chemical composition and may link to the early childhood caries.
Collapse
Affiliation(s)
- Inessa I Yakubova
- PRIVATE HIGHER EDUCATIONAL ESTABLISHMENT ≪KYIV MEDICAL UNIVERSITY≫, KYIV, UKRAINE
| | - Victor Dosenko
- THE BOGOMOLETS INSTITUTE OF PHYSIOLOGY NAS OF UKRAINE, KYIV, UKRAINE
| | | | - Serhii Tsypan
- PRIVATE HIGHER EDUCATIONAL ESTABLISHMENT ≪KYIV MEDICAL UNIVERSITY≫, KYIV, UKRAINE
| | - Liliia Bielova
- PRIVATE HIGHER EDUCATIONAL ESTABLISHMENT ≪KYIV MEDICAL UNIVERSITY≫, KYIV, UKRAINE
| | - Ganna Viun
- PRIVATE HIGHER EDUCATIONAL ESTABLISHMENT ≪KYIV MEDICAL UNIVERSITY≫, KYIV, UKRAINE
| |
Collapse
|
2
|
Anada R, Hara ES, Nagaoka N, Okada M, Kamioka H, Matsumoto T. Important roles of odontoblast membrane phospholipids in early dentin mineralization. J Mater Chem B 2023; 11:657-666. [PMID: 36541228 DOI: 10.1039/d2tb02351b] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The objective of this study was to first identify the timing and location of early mineralization of mouse first molar, and subsequently, to characterize the nucleation site for mineral formation in dentin from a materials science viewpoint and evaluate the effect of environmental cues (pH) affecting early dentin formation. Early dentin mineralization in mouse first molars began in the buccal central cusp on post-natal day 0 (P0), and was first hypothesized to involve collagen fibers. However, elemental mapping indicated the co-localization of phospholipids with collagen fibers in the early mineralization area. Co-localization of phosphatidylserine and annexin V, a functional protein that binds to plasma membrane phospholipids, indicated that phospholipids in the pre-dentin matrix were derived from the plasma membrane. A 3-dimensional in vitro biomimetic mineralization assay confirmed that phospholipids from the plasma membrane are critical factors initiating mineralization. Additionally, the direct measurement of the tooth germ pH, indicated it to be alkaline. The alkaline environment markedly enhanced the mineralization of cell membrane phospholipids. These results indicate that cell membrane phospholipids are nucleation sites for mineral formation, and could be important materials for bottom-up approaches aiming for rapid and more complex fabrication of dentin-like structures.
Collapse
Affiliation(s)
- Risa Anada
- Department of Biomaterials, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan. .,Department of Orthodontics, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Emilio Satoshi Hara
- Department of Biomaterials, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan.
| | - Noriyuki Nagaoka
- Advanced Research Center for Oral and Craniofacial Sciences, Dental School, Okayama University, Okayama, Japan
| | - Masahiro Okada
- Department of Biomaterials, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan.
| | - Hiroshi Kamioka
- Department of Orthodontics, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Takuya Matsumoto
- Department of Biomaterials, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan.
| |
Collapse
|
3
|
Sasano Y, Konno A, Nakamura M, Henmi A, Mayanagi M, Yang MC, Yao I. Visualization of the localization of phospholipids in developing rat teeth by matrix-assisted laser desorption/ionization imaging mass spectrometry. Biomed Res 2023; 44:173-179. [PMID: 37544738 DOI: 10.2220/biomedres.44.173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Matrix-assisted laser desorption/ionization imaging mass spectrometry (IMS) is used to comprehensively visualize the spatial distribution of numerous biomolecules. The present study was designed to investigate the distribution of phospholipids in developing rat teeth by IMS to identify the characteristic phospholipid molecules for tooth development, and to evaluate the suitability of tissue preparation methods. Rats at postnatal day 3 were euthanized, and the resected head specimens were either fixed or not fixed with 4% paraformaldehyde (PFA), and decalcified or not decalcified in 10% ethylenediaminetetraacetic acid (EDTA) before being frozen. Subsequently, sections were prepared and mounted on glass slides coated with indium tin oxide, and analyzed by IMS. The mass spectra showed the highest peaks around m/z 706, 732, and 734 in the region of interest. Characteristic localization of signals in the tooth buds was seen around m/z 706 and 732, and a database search indicated that the corresponding molecules were phosphatidylcholines. The signals were localized to the dental papillae and enamel epithelia in the tooth buds. The PFA-fixed specimens with or without EDTA decalcification showed preserved IMS signals, while the non-fixed specimens showed fewer signals. Thus, PFA fixation with EDTA decalcification appears to be suitable for IMS analysis of calcified tissues.
Collapse
Affiliation(s)
- Yasuyuki Sasano
- Craniofacial Development and Tissue Biology, Tohoku University Graduate School of Dentistry
| | - Alu Konno
- Department of Optical Imaging, Institute for Medical Photonics Research, Preeminent Medical Photonics Education & Research Center, Hamamatsu University School of Medicine
- Department of Virology and Parasitology, Hamamatsu University School of Medicine
| | - Megumi Nakamura
- Craniofacial Development and Tissue Biology, Tohoku University Graduate School of Dentistry
| | - Akiko Henmi
- Craniofacial Development and Tissue Biology, Tohoku University Graduate School of Dentistry
| | - Miyuki Mayanagi
- Craniofacial Development and Tissue Biology, Tohoku University Graduate School of Dentistry
| | - Mu-Chen Yang
- Craniofacial Development and Tissue Biology, Tohoku University Graduate School of Dentistry
| | - Ikuko Yao
- Department of Optical Imaging, Institute for Medical Photonics Research, Preeminent Medical Photonics Education & Research Center, Hamamatsu University School of Medicine
- International Mass Imaging Center, Hamamatsu University School of Medicine
- Biomedical Engineering Major, Department of Biomedical Sciences, School of Biological and Environmental Sciences, Kwansei Gakuin University
| |
Collapse
|
4
|
Jani P, Nguyen QC, Almpani K, Keyvanfar C, Mishra R, Liberton D, Orzechowski P, Frischmeyer-Guerrerio PA, Duverger O, Lee JS. Severity of oro-dental anomalies in Loeys-Dietz syndrome segregates by gene mutation. J Med Genet 2020; 57:699-707. [PMID: 32152251 PMCID: PMC7525783 DOI: 10.1136/jmedgenet-2019-106678] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 01/17/2020] [Accepted: 01/28/2020] [Indexed: 12/11/2022]
Abstract
Background Loeys-Dietz syndrome (LDS), an autosomal dominant rare connective tissue disorder, has multisystemic manifestations, characterised by vascular tortuosity, aneurysms and craniofacial manifestations. Based on the associated gene mutations along the transforming growth factor-beta (TGF-β) pathway, LDS is presently classified into six subtypes. Methods We present the oro-dental features of a cohort of 40 patients with LDS from five subtypes. Results The most common oro-dental manifestations were the presence of a high-arched and narrow palate, and enamel defects. Other common characteristics included bifid uvula, submucous cleft palate, malocclusion, dental crowding and delayed eruption of permanent teeth. Both deciduous and permanent teeth had enamel defects in some individuals. We established a grading system to measure the severity of enamel defects, and we determined that the severity of the enamel anomalies in LDS is subtype-dependent. In specific, patients with TGF-β receptor II mutations (LDS2) presented with the most severe enamel defects, followed by patients with TGF-β receptor I mutations (LDS1). LDS2 patients had higher frequency of oro-dental deformities in general. Across all five subtypes, as well as within each subtype, enamel defects exhibited incomplete penetrance and variable expression, which is not associated with the location of the gene mutations. Conclusion This study describes, in detail, the oro-dental manifestations in a cohort of LDS, and we conclude that LDS2 has the most severely affected phenotype. This extensive characterisation, as well as some identified distinguishing features can significantly aid dental and medical care providers in the diagnosis and clinical management of patients with this rare connective tissue disorder.
Collapse
Affiliation(s)
- Priyam Jani
- Craniofacial Anomalies and Regeneration Section, National Institute of Dental and Craniofacial Research, Bethesda, Maryland, USA
| | - Quynh C Nguyen
- Craniofacial Anomalies and Regeneration Section, National Institute of Dental and Craniofacial Research, Bethesda, Maryland, USA
| | - Konstantinia Almpani
- Craniofacial Anomalies and Regeneration Section, National Institute of Dental and Craniofacial Research, Bethesda, Maryland, USA
| | - Cyrus Keyvanfar
- Craniofacial Anomalies and Regeneration Section, National Institute of Dental and Craniofacial Research, Bethesda, Maryland, USA
| | - Rashmi Mishra
- Craniofacial Anomalies and Regeneration Section, National Institute of Dental and Craniofacial Research, Bethesda, Maryland, USA
| | - Denise Liberton
- Craniofacial Anomalies and Regeneration Section, National Institute of Dental and Craniofacial Research, Bethesda, Maryland, USA
| | - Pamela Orzechowski
- Craniofacial Anomalies and Regeneration Section, National Institute of Dental and Craniofacial Research, Bethesda, Maryland, USA
| | | | - Olivier Duverger
- Craniofacial Anomalies and Regeneration Section, National Institute of Dental and Craniofacial Research, Bethesda, Maryland, USA
| | - Janice S Lee
- Craniofacial Anomalies and Regeneration Section, National Institute of Dental and Craniofacial Research, Bethesda, Maryland, USA
| |
Collapse
|
5
|
Malmberg P, Norén JG, Bernin D. Molecular insights into hypomineralized enamel. Eur J Oral Sci 2019; 127:340-346. [DOI: 10.1111/eos.12619] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/19/2019] [Indexed: 11/28/2022]
Affiliation(s)
- Per Malmberg
- Department of Chemistry and Chemical Engineering Chalmers University of Technology Gothenburg Sweden
| | - Jörgen G. Norén
- Department of Pediatric Dentistry Institute of Odontology Sahlgrenska Academy University of Gothenburg Gothenburg Sweden
| | - Diana Bernin
- Department of Chemistry and Chemical Engineering Chalmers University of Technology Gothenburg Sweden
- Swedish NMR Centre University of Gothenburg Gothenburg Sweden
| |
Collapse
|
6
|
do Carmo Públio J, Zeczkowski M, Burga-Sánchez J, Ambrosano GMB, Groppo FC, Aguiar FHB, Lima DANL. Influence of different thickeners in at-home tooth bleaching: a randomized clinical trial study. Clin Oral Investig 2018; 23:2187-2198. [DOI: 10.1007/s00784-018-2613-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 09/04/2018] [Indexed: 02/07/2023]
|
7
|
Lacruz RS, Habelitz S, Wright JT, Paine ML. DENTAL ENAMEL FORMATION AND IMPLICATIONS FOR ORAL HEALTH AND DISEASE. Physiol Rev 2017; 97:939-993. [PMID: 28468833 DOI: 10.1152/physrev.00030.2016] [Citation(s) in RCA: 275] [Impact Index Per Article: 34.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 01/10/2017] [Accepted: 01/10/2017] [Indexed: 12/16/2022] Open
Abstract
Dental enamel is the hardest and most mineralized tissue in extinct and extant vertebrate species and provides maximum durability that allows teeth to function as weapons and/or tools as well as for food processing. Enamel development and mineralization is an intricate process tightly regulated by cells of the enamel organ called ameloblasts. These heavily polarized cells form a monolayer around the developing enamel tissue and move as a single forming front in specified directions as they lay down a proteinaceous matrix that serves as a template for crystal growth. Ameloblasts maintain intercellular connections creating a semi-permeable barrier that at one end (basal/proximal) receives nutrients and ions from blood vessels, and at the opposite end (secretory/apical/distal) forms extracellular crystals within specified pH conditions. In this unique environment, ameloblasts orchestrate crystal growth via multiple cellular activities including modulating the transport of minerals and ions, pH regulation, proteolysis, and endocytosis. In many vertebrates, the bulk of the enamel tissue volume is first formed and subsequently mineralized by these same cells as they retransform their morphology and function. Cell death by apoptosis and regression are the fates of many ameloblasts following enamel maturation, and what cells remain of the enamel organ are shed during tooth eruption, or are incorporated into the tooth's epithelial attachment to the oral gingiva. In this review, we examine key aspects of dental enamel formation, from its developmental genesis to the ever-increasing wealth of data on the mechanisms mediating ionic transport, as well as the clinical outcomes resulting from abnormal ameloblast function.
Collapse
Affiliation(s)
- Rodrigo S Lacruz
- Department of Basic Science and Craniofacial Biology, College of Dentistry, New York University, New York, New York; Department of Preventive and Restorative Dental Sciences, University of California, San Francisco, San Francisco, California; Department of Pediatric Dentistry, School of Dentistry, University of North Carolina, Chapel Hill, North Carolina; Herman Ostrow School of Dentistry, Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, California
| | - Stefan Habelitz
- Department of Basic Science and Craniofacial Biology, College of Dentistry, New York University, New York, New York; Department of Preventive and Restorative Dental Sciences, University of California, San Francisco, San Francisco, California; Department of Pediatric Dentistry, School of Dentistry, University of North Carolina, Chapel Hill, North Carolina; Herman Ostrow School of Dentistry, Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, California
| | - J Timothy Wright
- Department of Basic Science and Craniofacial Biology, College of Dentistry, New York University, New York, New York; Department of Preventive and Restorative Dental Sciences, University of California, San Francisco, San Francisco, California; Department of Pediatric Dentistry, School of Dentistry, University of North Carolina, Chapel Hill, North Carolina; Herman Ostrow School of Dentistry, Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, California
| | - Michael L Paine
- Department of Basic Science and Craniofacial Biology, College of Dentistry, New York University, New York, New York; Department of Preventive and Restorative Dental Sciences, University of California, San Francisco, San Francisco, California; Department of Pediatric Dentistry, School of Dentistry, University of North Carolina, Chapel Hill, North Carolina; Herman Ostrow School of Dentistry, Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, California
| |
Collapse
|
8
|
During A. Lipid determination in bone marrow and mineralized bone tissue: From sample preparation to improved high-performance thin-layer and liquid chromatographic approaches. J Chromatogr A 2017; 1515:232-244. [PMID: 28803650 DOI: 10.1016/j.chroma.2017.08.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2017] [Revised: 07/31/2017] [Accepted: 08/01/2017] [Indexed: 10/19/2022]
Abstract
In view of their key roles in the bone physiology (e.g., in the biomineralization process) and their potential implication in bone pathologies, an approach to study lipids in situ is needed. The aim of the present paper is to propose an original procedure to characterize lipids in both bone marrow (BM) and mineralized tissue (MT) compartments, taking into consideration sample preparation, lipid extraction and analytical issues, when using small sample size (≤ 0.5g of rat femurs). The potential contamination of the MT by marrow lipids and the poor accessibility of certain lipids from the MT - two major issues in bone handling - were taking care, respectively by performing two cleaning steps after BM removal and by adding a demineralization step to the overall lipid extraction protocol. For lipid analyses, a multi-one-dimensional HP-TLC method was developed to analyze the major neutral and polar lipids at once and showed an excellent resolution (for 15 standards) and a good precision (inter-day RSD<13%). When subjected to the entire "lipid extraction-HP-TLC" protocol, spike recoveries of the standards ranged between 76 and 122%. This HP-TLC method was suitable for lipid determination in both BM and MT [e.g., the MT had 5-times lesser lipids and a lower TG/phospholipid ratio than the BM (P <0.05)], and was quite reliable in term of lipid quantification. The demineralization step allowed to extract additional phosphatidylserine and esterified cholesterol from the MT, suggesting that these two species were associated to the mineralized matrix possibly in relation to their physiological role in the bone. Moreover, a reverse phase HPLC method for fatty acid determination as naphthacyl esters was set up to study fatty acids in bone samples and was used to validate the HP-TLC data. The fatty acid profile of the MT exhibited lower linoleic acid (18:2 n-6) and linolenic acid (18:3 n-3+n-6) levels and higher arachidonic acid (20:4 n-6) and docosahexaenoic acid (22:6 n-3) levels (P<0.05, compared to BM), suggesting that the MT is more metabolically active than the BM in term of long chain fatty acid production. In sum, the present work should contribute to facilitate future studies in the bone lipid field in view to understand better their implication in the marrow fat expansion-associated bone pathologies, such as osteoporosis.
Collapse
Affiliation(s)
- Alexandrine During
- Univ. Lille, EA449 - PMOI - Physiopathologie des maladies osseuses inflammatoires, F-59000 Lille, France.
| |
Collapse
|
9
|
Mastrangelo F, Piccirilli M, Dolci M, Teté S, Speranza L, Patruno A, Gizzi F, Felaco M, Artese L, De Lutiis MA. Vascular Endothelial Growth Factor (VEGF) in Human Tooth Germ Center. Int J Immunopathol Pharmacol 2016; 18:587-94. [PMID: 16164840 DOI: 10.1177/039463200501800319] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Many oncogenis and tumour suppressor genes found inside normal and pathological cells are fundamental for the processes of development, proliferation and tissue differentiation. The purpose of our study is to show the presence and a possible relationship of the VEGF protein during different phases of the development of human dental germ centers. After cephalometric investigation in 8 orthodontic patients with a mean age of 13 years, (4 females and 4 males), hyperdivergence of the third molars were extracted. The 40 surgical samples were tested with monoclonal human anti-VEGFs antibodies carrying out a semi-quantitative analysis to look for a positive reaction. Reaction for anti-VEGF antibodies was detected in normal embryological tissues and in microvessels near odontogenic cells. During different phases of embryologic development of the dental bud our search showed intracytoplasmatic positive immunoreactions both in the ameloblastic and odontoblastic cells. Additionally, a positive reaction was observed for the VEGF protein in the cells of the stellate reticulum and in those endothelial tissue surrounding the microvessels in all the samples examined.
Collapse
Affiliation(s)
- F Mastrangelo
- Oral Surgery of Oral Science Department, University G. d'Annunzio, Chieti, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Ma L, Wang SC, Tong J, Hu Y, Zhang YQ, Yu Q. Activation and dynamic expression of Notch signalling in dental pulp cells after injury in vitro and in vivo. Int Endod J 2015; 49:1165-1174. [PMID: 26572232 DOI: 10.1111/iej.12580] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 11/06/2015] [Indexed: 01/03/2023]
Abstract
AIM To investigate the expression pattern of Notch signalling in odontoblast-like cells stimulated by lipopolysaccharide (LPS) in vitro, and in injured rat dental pulp in vivo. METHODOLOGY Mouse odontoblast-like cells (MDPC-23) were exposed to LPS. Expression of Notch-related genes was detected by real-time PCR. A rat pulpitis model was established by mechanical injury and LPS plus mechanical injury was followed by the analysis of expression of Notch2 by immunohistochemical staining. One-way analysis of variance (anova) was performed to examine the effect of differing concentrations of LPS on cell proliferation, and least significant difference test was used for paired comparisons. For independent sample, t-test was performed to compare the expression of Notch signalling genes between LPS group and control group in vitro. RESULTS The in vitro study revealed the proliferation of MDPC-23 cells on exposure to 10 ng mL-1 to 1 μg mL-1 LPS. Expression of Notch1 and Notch2 was significantly higher in the LPS group than that in the control group on day 1 and day 3 (P ˂ 0.05). The levels of both Delta1 and Jagged1 were higher in the study group than in the control group on day 3 (P = 0.019 and P = 0.034) and day 5 (P ˂ 0.001 and P = 0.046), respectively. In addition, Hes1 levels were significantly higher in the study group than in the control group on day 5 (P = 0.005). The in vivo study demonstrated positive staining for Notch2, both in the mechanical injury (MI) group and in the LPS plus mechanical injury (LMI) group from day 3 to day 7, which showed very weak or absent staining on day 14, thereby demonstrating the dynamic nature of the change. CONCLUSIONS Both in vitro and in vivo activation and dynamic expression of Notch signalling in dental pulp cells after injury were found. Notch signalling activation by LPS stimulation or mechanical injury showed a similar pattern in vivo.
Collapse
Affiliation(s)
- L Ma
- State Key Laboratory of Military Stomatology, Department of Operative Dentistry & Endodontics, The Fourth Military Medical University, Xi'an, China
| | - S C Wang
- Department of Preventive Dentistry, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - J Tong
- Department of Preventive Dentistry, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - Y Hu
- Department of Preventive Dentistry, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - Y Q Zhang
- State Key Laboratory of Military Stomatology, Department of Operative Dentistry & Endodontics, The Fourth Military Medical University, Xi'an, China
| | - Q Yu
- State Key Laboratory of Military Stomatology, Department of Operative Dentistry & Endodontics, The Fourth Military Medical University, Xi'an, China
| |
Collapse
|
11
|
Lokappa SB, Chandrababu KB, Moradian-Oldak J. Tooth enamel protein amelogenin binds to ameloblast cell membrane-mimicking vesicles via its N-terminus. Biochem Biophys Res Commun 2015; 464:956-61. [PMID: 26188506 PMCID: PMC4532586 DOI: 10.1016/j.bbrc.2015.07.082] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 07/16/2015] [Indexed: 11/18/2022]
Abstract
We have recently reported that the extracellular enamel protein amelogenin has affinity to interact with phospholipids and proposed that such interactions may play key roles in enamel biomineralization as well as reported amelogenin signaling activities. Here, in order to identify the liposome-interacting domains of amelogenin we designed four different amelogenin mutants containing only a single tryptophan at positions 25, 45, 112 and 161. Circular dichroism studies of the mutants confirmed that they are structurally similar to the wild-type amelogenin. Utilizing the intrinsic fluorescence of single tryptophan residue and fluorescence resonance energy transfer [FRET], we analyzed the accessibility and strength of their binding with an ameloblast cell membrane-mimicking model membrane (ACML) and a negatively charged liposome used as a membrane model. We found that amelogenin has membrane-binding ability mainly via its N-terminal, close to residues W25 and W45. Significant blue shift was also observed in the fluorescence of a N-terminal peptide following addition of liposomes. We suggest that, among other mechanisms, enamel malformation in cases of Amelogenesis Imperfecta (AI) with mutations at the N-terminal may be the result of defective amelogenin-cell interactions.
Collapse
Affiliation(s)
- Sowmya Bekshe Lokappa
- Center for Craniofacial Molecular Biology, Division of Biomedical Sciences, Herman Ostrow School of Dentistry, University of Southern California, 2250 Alcazar Street, Los Angeles, CA 90033, USA
| | - Karthik Balakrishna Chandrababu
- Center for Craniofacial Molecular Biology, Division of Biomedical Sciences, Herman Ostrow School of Dentistry, University of Southern California, 2250 Alcazar Street, Los Angeles, CA 90033, USA
| | - Janet Moradian-Oldak
- Center for Craniofacial Molecular Biology, Division of Biomedical Sciences, Herman Ostrow School of Dentistry, University of Southern California, 2250 Alcazar Street, Los Angeles, CA 90033, USA.
| |
Collapse
|
12
|
Lokappa SB, Chandrababu KB, Dutta K, Perovic I, Evans JS, Moradian-Oldak J. Interactions of amelogenin with phospholipids. Biopolymers 2015; 103:96-108. [PMID: 25298002 PMCID: PMC4415992 DOI: 10.1002/bip.22573] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Revised: 08/29/2014] [Accepted: 10/02/2014] [Indexed: 11/08/2022]
Abstract
Amelogenin protein has the potential to interact with other enamel matrix proteins, mineral, and cell surfaces. We investigated the interactions of recombinant amelogenin rP172 with small unilamellar vesicles as model membranes, toward the goal of understanding the mechanisms of amelogenin-cell interactions during amelogenesis. Dynamic light scattering (DLS), fluorescence spectroscopy, circular dichroism (CD), and nuclear magnetic resonance (NMR) were used. In the presence of phospholipid vesicles, a blue shift in the Trp fluorescence emission maxima of rP172 was observed (∼334 nm) and the Trp residues of rP172 were inaccessible to the aqueous quencher acrylamide. DLS studies indicated complexation of rP172 and phospholipids, although the possibility of fusion of phospholipids following amelogenin addition cannot be ruled out. NMR and CD studies revealed a disorder-order transition of rP172 in a model membrane environment. Strong fluorescence resonance energy transfer from Trp in rP172 to DNS-bound-phospholipid was observed, and fluorescence polarization studies indicated that rP172 interacted with the hydrophobic core region of model membranes. Our data suggest that amelogenin has ability to interact with phospholipids and that such interactions may play key roles in enamel biomineralization as well as reported amelogenin signaling activities.
Collapse
Affiliation(s)
- Sowmya Bekshe Lokappa
- Center for Craniofacial Molecular Biology, University of Southern California, School of Dentistry, Los Angeles, California 90033
| | - Karthik Balakrishna Chandrababu
- Center for Craniofacial Molecular Biology, University of Southern California, School of Dentistry, Los Angeles, California 90033
| | - Kaushik Dutta
- Laboratory for Chemical Physics, Division of Basic Sciences and Craniofacial Biology, New York University, New York, New York 10010
| | - Iva Perovic
- Laboratory for Chemical Physics, Division of Basic Sciences and Craniofacial Biology, New York University, New York, New York 10010
| | - John Spencer Evans
- Laboratory for Chemical Physics, Division of Basic Sciences and Craniofacial Biology, New York University, New York, New York 10010
| | - Janet Moradian-Oldak
- Center for Craniofacial Molecular Biology, University of Southern California, School of Dentistry, Los Angeles, California 90033
| |
Collapse
|
13
|
Phosphate mineral formation on the supported dipalmitoylphosphatidylcholine (DPPC) layers. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2014; 40:373-81. [DOI: 10.1016/j.msec.2014.04.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Revised: 03/11/2014] [Accepted: 04/07/2014] [Indexed: 11/22/2022]
|
14
|
|
15
|
Jacobsen PE, Henriksen TB, Haubek D, Ostergaard JR. Developmental enamel defects in children prenatally exposed to anti-epileptic drugs. PLoS One 2013; 8:e58213. [PMID: 23520494 PMCID: PMC3592922 DOI: 10.1371/journal.pone.0058213] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2012] [Accepted: 01/31/2013] [Indexed: 11/17/2022] Open
Abstract
Objective Some anti-epileptic drugs (AED) have well-known teratogenic effects. The aim of the present study was to elucidate the effect of prenatal exposure to AED and the risk of enamel defects in the primary and permanent dentition. Methods A total of 38 exposed and 129 non-exposed children, 6–10 years of age, were recruited from the Aarhus Birth Cohort and the Department of Neurology, Viborg Regional Hospital, Denmark. Medication during pregnancy was confirmed by the Danish Prescription Database. All children had their teeth examined and outcomes in terms of enamel opacities and enamel hypoplasia were recorded. Results Children prenatally exposed to AED have an increased prevalence of enamel hypoplasia (11% vs. 4%, odds ratio (OR) = 3.6 [95% confidence interval (CI): 0.9 to 15.4]), diffuse opacities (18% vs. 7%, OR = 3.0; [95% CI: 1.0 to 8.7, p<0.05]), and numerous (>3) white opacities (18% vs. 10%, OR = 2.2; [95% CI: 0.8 to 6.1]) in the primary dentition. In the permanent dentition, an increased risk of numerous (>3) white opacities (34% vs. 12%, OR = 3.3; [95% CI: 1.3 to 8.4]) was found. Conclusions The present study shows that children prenatally exposed to AED have an increased risk of developing numerous teeth with white opacities in their primary and permanent dentition. In addition, they also have an increased risk of developing diffuse opacities and enamel hypoplasia in their primary teeth.
Collapse
Affiliation(s)
- Pernille E Jacobsen
- Section of Pediatric Dentistry, Department of Dentistry, Health, Aarhus University, Aarhus, Denmark.
| | | | | | | |
Collapse
|
16
|
Tjäderhane L, Haapasalo M. The dentin-pulp border: a dynamic interface between hard and soft tissues. ACTA ACUST UNITED AC 2012. [DOI: 10.1111/j.1601-1546.2012.00266.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
17
|
Stock SR, Veis A, Telser A, Cai Z. Near tubule and intertubular bovine dentin mapped at the 250 nm level. J Struct Biol 2011; 176:203-11. [PMID: 21821132 DOI: 10.1016/j.jsb.2011.07.014] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2011] [Revised: 07/21/2011] [Accepted: 07/23/2011] [Indexed: 11/29/2022]
Abstract
In this study, simultaneous diffraction and fluorescence mapping with a (250nm)(2), 10.1keV synchrotron X-ray beam investigated the spatial distribution of carbonated apatite (cAp) mineral and elemental Ca (and other cations including Zn) around dentin tubules. In 1μm thick sections of near-pulp root dentin, where peritubular dentin (PTD) is newly forming, high concentrations of Zn, relative to those in intertubular dentin (ITD), were observed adjacent to and surrounding the tubule lumens. Some but not all tubules exhibited hypercalcified collars (high Ca signal relative to the surrounding ITD), and, when present, the zone of high Ca did not extend around the tubule. Diffraction rings from cAp 00.2 and 11.2+21.1+30.0 reflections were observed, and cAp was the only crystal phase detected. Profiles of Ca, Zn and cAp diffracted intensities showed the same transitions from solid to tubule lumen, indicating the same cAp content and organization in ITD far from the tubules and adjacent to them. Further, the matching Ca and diffraction profiles demonstrated that all of the Ca is in cAp or that any noncrystalline Ca was uniformly distributed throughout the dentin. Variation of 00.2 and 11.2+21.1+30.0 diffracted intensity was consistent with the expected biaxial crystallographic texture. Extension of X-ray mapping from near 1μm resolution to the 250nm level, performed here for dentin and its tubules, will provide new understanding of other mineralized tissues.
Collapse
Affiliation(s)
- S R Stock
- Department of Molecular Pharmacology and Biological Chemistry, Feinberg School of Medicine, Northwestern University, Mail Code S215, 303 E. Chicago Ave., Chicago, IL 60611-3008, USA.
| | | | | | | |
Collapse
|
18
|
Goldberg M, Kulkarni AB, Young M, Boskey A. Dentin: structure, composition and mineralization. Front Biosci (Elite Ed) 2011; 3:711-35. [PMID: 21196346 DOI: 10.2741/e281] [Citation(s) in RCA: 432] [Impact Index Per Article: 30.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
We review firstly the specificities of the different types of dentin present in mammalian teeth. The outer layers include the mantle dentin, the Tomes' granular and the hyaline Hopewell-Smith's layers. Circumpulpal dentin forming the bulk of the tooth, comprises intertubular and peritubular dentin. In addition to physiological primary and secondary dentin formation, reactionary dentin is produced in response to pathological events. Secondly, we evaluate the role of odontoblasts in dentin formation, their implication in the synthesis and secretion of type I collagen fibrils and non-collagenous molecules. Thirdly, we study the composition and functions of dentin extracellular matrix (ECM) molecules implicated in dentinogenesis. As structural proteins they are mineralization promoters or inhibitors. They are also signaling molecules. Three different forms of dentinogenesis are identified: i) matrix vesicles are implicated in early dentin formation, ii) collagen and some proteoglycans are involved in the formation of predentin, further transformed into intertubular dentin, iii) the distal secretion of some non-collagenous ECM molecules and some serum proteins contribute to the formation of peritubular dentin.
Collapse
Affiliation(s)
- Michel Goldberg
- UMR-S 747, INSERM, Universite Paris Descartes, Paris, France.
| | | | | | | |
Collapse
|
19
|
Davaadorj P, Tokuyama R, Ide S, Tadokoro S, Kudoh K, Satomura K. Possible involvement of maspin in tooth development. Histochem Cell Biol 2010; 134:603-14. [PMID: 21069375 DOI: 10.1007/s00418-010-0756-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/20/2010] [Indexed: 10/18/2022]
Abstract
Maspin is a 42 kDa serine protease inhibitor that possesses tumor suppressive and anti-angiogenic activities. Despite of a huge amount of data concerning the expression pattern of maspin in various tissues and its relevance to the biological properties of a variety of human cancer cells, little is known on the maspin expression in skeletal and tooth tissues. Recently, we reported that maspin may play an important role in extracellular matrix formation in bone by enhancing the accumulation of latent TGF-β in the extracellular matrix. This study was performed to elucidate the possible role of maspin in tooth development. First, an immunohistochemical analysis for human tooth germs at the late bell stage showed the expression of maspin by active ameloblasts and odontoblasts that were forming enamel and dentin, respectively. During rat tooth development, maspin expression was observed for the first time in inner and outer enamel epithelial cells and dental papilla cells at early bell stage. The neutralizing anti-maspin antibody inhibited the proper dental tissue formation in organ cultures of mandibular first molars obtained from 21-day-old rat embryos. In addition, the proliferation of HAT-7 cells, a rat odontogenic epithelial cell line, and human dental papilla cells were suppressed in a dose-dependent manner with anti-maspin antibody. Moreover, RT-PCR analysis showed that the expression of mRNA for tooth-related genes including dentin matrix protein 1, dentin sialophosphoprotein and osteopontin in human dental papilla cells was inhibited when treated with anti-maspin antibody. These findings suggest that maspin expressed in ameloblasts and odontoblasts plays an important physiological role in tooth development through the regulation of matrix formation in dental tissues.
Collapse
Affiliation(s)
- Purevsuren Davaadorj
- Department of Oral and Maxillofacial Surgery, Institute of Health Biosciences, The University of Tokushima Graduate School, Tokushima, Japan
| | | | | | | | | | | |
Collapse
|
20
|
Ahmad M, Iseki H, Abduweli D, Baba O, Tabata MJ, Takano Y. Ultrastructural and histochemical evaluation of appositional mineralization of circumpulpal dentin at the crown- and root-analog portions of rat incisors. JOURNAL OF ELECTRON MICROSCOPY 2010; 60:79-87. [PMID: 21030417 DOI: 10.1093/jmicro/dfq075] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Mineralization of circumpulpal dentin has been interpreted in such a way that predentin matrix is abruptly converted to almost fully mineralized dentin at the mineralization front. A group of investigators pointed out the existence of intermediary layer along the mineralization front of rat incisor dentin and claimed that dentin mineralization is a rather transient process. Owing to a paucity of information, however, the entity of transient mineralization of dentin has remained elusive. Here we confirmed the existence of a lightly mineralized layer (LL) along the mineralization front of rat incisor dentin, recognizable by both light and electron microscopy, in routinely processed specimens. LL less than 3 µm thick was shown to be located along the mineralization front of crown-analog dentin and tapered out toward the root analog of the incisor. Electron microscopy revealed that mineral deposition first occurred in the non-collagenous matrix of LL and that mineralization of collagen fibers took place sometime later at the conventional mineralization front. Microscopic appearance of the mineral phase of LL varied considerably depending on the histological processing of ultrathin sections, thus explaining the inconsistent interpretation of dentin mineralization in previous studies. These data suggest that mineralization of circumpulpal dentin in rat incisors proceeds in a stepwise or a transient manner, initiated by crystal deposition in the non-collagenous matrix followed by massive mineral deposition in collagen fibers at the mineralization front. The thickness of LL where only the non-collagenous matrix is mineralized may vary in relation to differences in the local non-collagenous matrix and also the rate of collagen mineralization in the respective portions of circumpulpal dentin.
Collapse
Affiliation(s)
- Masud Ahmad
- Section of Biostructural Science, Department of Hard Tissue Engineering, Graduate School of Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8549, Japan
| | | | | | | | | | | |
Collapse
|
21
|
Lacruz RS, Nanci A, Kurtz I, Wright JT, Paine ML. Regulation of pH During Amelogenesis. Calcif Tissue Int 2010; 86:91-103. [PMID: 20016979 PMCID: PMC2809306 DOI: 10.1007/s00223-009-9326-7] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2009] [Accepted: 11/24/2009] [Indexed: 12/31/2022]
Abstract
During amelogenesis, extracellular matrix proteins interact with growing hydroxyapatite crystals to create one of the most architecturally complex biological tissues. The process of enamel formation is a unique biomineralizing system characterized first by an increase in crystallite length during the secretory phase of amelogenesis, followed by a vast increase in crystallite width and thickness in the later maturation phase when organic complexes are enzymatically removed. Crystal growth is modulated by changes in the pH of the enamel microenvironment that is critical for proper enamel biomineralization. Whereas the genetic bases for most abnormal enamel phenotypes (amelogenesis imperfecta) are generally associated with mutations to enamel matrix specific genes, mutations to genes involved in pH regulation may result in severely affected enamel structure, highlighting the importance of pH regulation for normal enamel development. This review summarizes the intra- and extracellular mechanisms employed by the enamel-forming cells, ameloblasts, to maintain pH homeostasis and, also, discusses the enamel phenotypes associated with disruptions to genes involved in pH regulation.
Collapse
Affiliation(s)
- Rodrigo S. Lacruz
- School of Dentistry, Center for Craniofacial Molecular Biology, University of Southern California, 2250 Alcazar Street, CSA Room 103, Los Angeles, CA 90033 USA
| | - Antonio Nanci
- Faculty of Dentistry, Université de Montréal, P.O. Box 6128, Station Centre-Ville, Montreal, QC H3C 3J7 Canada
| | - Ira Kurtz
- David Geffen School Medicine at the University of California at Los Angeles, Los Angeles, 10833 Le Conte Ave., Los Angeles, CA 90095 USA
| | - J. Timothy Wright
- Department of Pediatric Dentistry, School of Dentistry, University of North Carolina at Chapel Hill, CB No. 7450 Brauer Hall, Chapel Hill, NC 27599 USA
| | - Michael L. Paine
- School of Dentistry, Center for Craniofacial Molecular Biology, University of Southern California, 2250 Alcazar Street, CSA Room 103, Los Angeles, CA 90033 USA
| |
Collapse
|
22
|
Ehrlich H, Koutsoukos PG, Demadis KD, Pokrovsky OS. Principles of demineralization: Modern strategies for the isolation of organic frameworks. Micron 2008; 39:1062-91. [DOI: 10.1016/j.micron.2008.02.004] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2007] [Revised: 02/08/2008] [Accepted: 02/10/2008] [Indexed: 11/16/2022]
|
23
|
Goldberg M, Opsahl S, Aubin I, Septier D, Chaussain-Miller C, Boskey A, Guenet JL. Sphingomyelin degradation is a key factor in dentin and bone mineralization: lessons from the fro/fro mouse. The chemistry and histochemistry of dentin lipids. J Dent Res 2008; 87:9-13. [PMID: 18096888 PMCID: PMC2810525 DOI: 10.1177/154405910808700103] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Affiliation(s)
- M Goldberg
- Laboratoire Réparation et Remodelage des Tissus Orofaciaux, EA 2496, Faculté de Chirurgie Dentaire, Université Paris 5, 1, rue Maurice Arnoux, Montrouge 92120, France.
| | | | | | | | | | | | | |
Collapse
|
24
|
Bloch-Zupan A. Genetische Störungen der Zahnentwicklung und Dentition. MED GENET-BERLIN 2007. [DOI: 10.1007/s11825-007-0050-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Zusammenfassung
Die Zähne sind Organe, die aus ektodermalen epithelialen Aussackungen im Bereich des 1. Kiemenbogens entstehen, gesteuert von epitheliomesenchymalen Interaktionen. Dabei spielen zahlreiche Signalmoleküle speziell der 4 großen Familien TGF-β, FGF, Hedgehog und WNT sowie diverse Transkriptionsfaktoren eine Rolle. Eine Beteiligung der Retinoide an der Odontogenese ist durch umfangreiche Befunde belegt, auch wenn die Inaktivierung relevanter Gene in Mausmodellen meist keine Zahnanomalien verursacht. Die Zahnentwicklung wird klassischerweise in verschiedene Stadien eingeteilt: Entstehung der Zahnleiste, der Zahnknospe, der Schmelzkappe, der Schmelzglocke, die Wurzelbildung und der Zahndurchbruch. Anomalien der Zahnentwicklung können isoliert oder gemeinsam mit anderen Symptomen im Zusammenhang mit Syndromen auftreten. Sie können genetisch bedingt sein oder unter Einwirkung teratogener Stoffe während der Bildung und Mineralisierung der Zahnkeime zustande kommen. Dentibukkale Entwicklungsanomalien treten im Kontext seltener Erkrankungen auf und finden zunehmend Beachtung, da sie bei bestimmten Erkrankungen in der Diagnostik und als prädikative Faktoren wichtige Anhaltspunkte geben können. Allerdings ist hierfür eine interdisziplinäre und internationale Kooperation notwendig, die bislang erst in Ansätzen verwirklicht wurde.
Collapse
Affiliation(s)
- A. Bloch-Zupan
- Aff1_50 Faculté de Chirurgie Dentaire, Université Louis Pasteur, Centre de référence des manifestations odontologiques des maladies rares, Service de Soins Bucco-Dentaires Centre Hospitalier Universitaire, Hopital Civil 1 Place de l’Hopital 67000 Strasbourg Cedex France
- Aff2_50 grid.420255.4 0000000406382716 Département Génétique et Physiologie IGBMC (Institut de Génétique et de Biologie Moléculaire et Cellulaire), Inserm, U596 CNRS, UMR7104 67400 Illkirch France
- Aff3_50 grid.83440.3b 0000000121901201 Eastman Dental Institute Institute of Child Health, University College London UK
| |
Collapse
|
25
|
Lee DH, Lim BS, Lee YK, Yang HC. Effects of hydrogen peroxide (H2O2) on alkaline phosphatase activity and matrix mineralization of odontoblast and osteoblast cell lines. Cell Biol Toxicol 2007; 22:39-46. [PMID: 16463018 DOI: 10.1007/s10565-006-0018-z] [Citation(s) in RCA: 165] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2005] [Accepted: 10/10/2005] [Indexed: 01/13/2023]
Abstract
Hydrogen peroxide (H(2)O(2)), an oxidizing agent, has been widely used as a disinfectant. Recently, because of its reactive properties, H(2)O(2) has also been used as a tooth bleaching agent in dental care. This is a cause for concern because of adverse biological effects on the soft and hard tissues of the oral environment. To investigate the influence of H(2)O(2) on odontoblasts, the cells producing dentin in the pulp, we assessed cellular viability, generation of reactive oxygen species (ROS), alkaline phosphatase (ALP) activity, and nodule formation of an odontoblastic cell line (MDPC-23) after treatment with H(2)O(2), and compared those with the effects on preosteoblastic MC3T3-E1 cells. Cytotoxic effects of H(2)O(2) began to appear at 0.3 mmol/L in both MDPC-23 and MC3T3-E1 cells. At that concentration, the accumulation of intracellular ROS was confirmed by a fluorescent probe, DCFH-DA. Although more ROS were detected in MDPC-23, the increasing pattern and rate are similar between the two cells. When the cells were treated with H(2)O(2) at concentrations below 0.3 mmol/L, MDPC-23 displayed a significant increase in ALP activity and mineralized bone matrix, while MC3T3-E1 cells showed adverse effects of H(2)O(2). It is known that ROS are generally harmful by-products of aerobic life and represent the primary cause of aging and numerous diseases. These data, however, suggest that ROS can induce in vitro cell differentiation, and that they play a more complex role in cell physiology than simply causing oxidative damage.
Collapse
Affiliation(s)
- D H Lee
- Department of Dental Biomaterials Science and Dental Research Institute, College of Dentistry, Seoul National University, Chongro-Ku, Seoul, Korea
| | | | | | | |
Collapse
|
26
|
Milan AM, Sugars RV, Embery G, Waddington RJ. Adsorption and interactions of dentine phosphoprotein with hydroxyapatite and collagen. Eur J Oral Sci 2006; 114:223-31. [PMID: 16776772 DOI: 10.1111/j.1600-0722.2006.00347.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Dentine phosphoprotein (DPP) has been proposed to both promote and inhibit mineral deposition during dentinogenesis. The present study aimed to investigate the molecular interactions of DPP and dephosphorylated DPP (DPP-p) with hydroxyapatite (HAP). Bovine DPP was purified and dephosphorylated by alkaline phosphatase to obtain DPP-p. DPP and DPP-p adsorption to HAP was determined along with their ability, when free in solution or bound to collagen, to influence HAP-induced crystal growth. Absorption isotherms suggested that lower DPP concentrations (1.5-6.25 microg ml(-1)) demonstrated a reduced affinity for HAP compared with higher protein concentrations (12.5-50.0 microg ml(-1)). Dephosphorylated DPP had a much reduced affinity for HAP compared with DPP. Dentine phosphoprotein inhibited seeded HAP crystal growth, in a dose-dependent manner, whilst removal of the phosphate groups reduced this inhibition. When bound to collagen fibrils, DPP significantly promoted the rate of HAP crystal growth over 0-8 min. Conversely, DPP-p and collagen significantly decreased the rate of crystal growth over 0-18 min. These results indicate a major role for the phosphate groups present on DPP in HAP crystal growth. In addition, concentration-dependent conformational changes to DPP, and the interaction with other matrix components, such as collagen, are important in predicting its dual role in the mineralization of dentine.
Collapse
Affiliation(s)
- Anna M Milan
- Department of Clinical Dental Sciences, The University of Liverpool, Liverpool, UK
| | | | | | | |
Collapse
|
27
|
Kaladhar K, Sharma CP. Cell mimetic lateral stabilization of outer cell mimetic bilayer on polymer surfaces by peptide bonding and their blood compatibility. J Biomed Mater Res A 2006; 79:23-35. [PMID: 16758449 DOI: 10.1002/jbm.a.30681] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The biological lipid bilayer membranes are stabilized laterally with the help of integral proteins. We have simulated this with an optimized ternary phospholipid/glycolipid/cholesterol system, and stabilized laterally on functionalized poly methyl methacrylate (PMMA) surfaces, using albumin, heparin, and polyethylene glycol as anchors. We have earlier demonstrated the differences due to orientation and packing of the ternary phospholipid monolayers in relation to blood compatibility (Kaladhar and Sharma, Langmuir 2004;20:11115-11122). The structure of albumin is changed here to expose its interior hydrophobic core by treating with organic solvent. The interaction between the hydrophobic core of the albumin molecule and the hydrophobic core of the lipid molecules is confirmed by incorporating the molecule into bilayer membranes. The secondary structure of the membrane incorporated albumin is studied by CD spectral analysis. The structure of the altered albumin molecule contains more beta-sheet as compared to the native albumin. This conformation is also retained in membranes. The partitioning of the different anchors based on its polarity and ionic interactions in the monolayer is studied from the pressure-area (pi-A) isotherm of the lipid monolayers at the air/water interface using Langmuir-Blodgett (LB) trough facility. Such two monolayers are deposited onto the functionalized PMMA surface using LB trough and crosslinked by carbodiimide chemistry. The structure of the deposited bilayer is studied by depth analysis using contact mode AFM in dry conditions. The stabilized bilayer shows stability up to 1 month by contact angle studies. Preliminary blood compatibility studies reveal that the calcification, protein adsorption, as well as blood-cell adhesion is significantly reduced after the surface modification. The reduced adsorption of ions, proteins, and cells to the modified surfaces may be due to the fluidity of the microenvironment along with the contribution of the mobile PEG groups at the surface and the phosphorylcholine groups of the phospholipids. The stability of the anchored bilayer under low shear stress conditions promises that the laterally stabilized supported bilayer system can be used for low shear applications like small diameter vascular graft and modification of biosensors, and so forth.
Collapse
Affiliation(s)
- K Kaladhar
- Biosurface Technology Division, BMT Wing, Sree Chithira Tirunal Institute for Medical Science and Technology, Thiruvananthapuram, Kerala, India
| | | |
Collapse
|
28
|
Milan AM, Sugars RV, Embery G, Waddington RJ. Modulation of collagen fibrillogenesis by dentinal proteoglycans. Calcif Tissue Int 2005; 76:127-35. [PMID: 15549638 DOI: 10.1007/s00223-004-0033-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2004] [Accepted: 08/25/2004] [Indexed: 11/30/2022]
Abstract
Studies have identified different pools of proteoglycan (PG) species present within the unmineralized matrix of the predentine, the transitional phase at the predentine-dentine interface and the mineralized dentine. These PGs alter with respect to the chemical nature of their glycosaminoglycan (GAG) chains and as a result of extracellular processing of the macromolecule in the matrix. The present study has examined the influence of the PGs isolated from these phases and the influence of the attached GAG chains, upon their ability to control collagen fibrillogenesis. PGs isolated from the three phases were characterized and determined to contain a mixture of decorin and biglycan. Results have indicated that predentine PGs, which are substituted with a higher proportion of dermatan sulfate, significantly delayed fibril formation while ultimately promoting the formation of thicker fibrils. Removal of the GAG chains further delayed fibrillogenesis, leading to the formation of thinner fibrils, compared with the collagen-only control. PGs isolated from predentine-dentine, which contained a higher proportion of chondroitin sulfate, also significantly delayed fibrillogenesis, resulting in thicker collagen fibrils. GAG chains attached to the predentine-dentine interface PGs played a role in the timing of fibrillogenesis with fibril formation initiated at the same time as the collagen control, but yielding thicker fibrils. Dentine PGs significantly inhibited fibrillogenesis and fibril thickness over concentrations of 50-25 microg/mL protein. In conclusion, the PGs isolated from the distinct phases have indicated differing roles in the orchestrated organization of the extracellular matrix during dentinogenesis, with roles for both the core protein and attached GAG chains indicated.
Collapse
Affiliation(s)
- Anna M Milan
- Dept. Clinical Dental Sciences, The University of Liverpool, Liverpool L69 3GN, UK.
| | | | | | | |
Collapse
|
29
|
Kaladhar K, Sharma CP. Supported cell mimetic monolayers and their interaction with blood. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2004; 20:11115-11122. [PMID: 15568865 DOI: 10.1021/la048644y] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Surface modification using supported monolayers of phosphorylcholine containing phospholipids has been an accepted strategy for developing blood-contacting materials. We present a detailed study of the blood compatibility of the supported monolayers of phospholipid, glycolipid, and cholesterol (Chol) binary and ternary lipid combinations using in vitro techniques. The packing and orientation of these monolayers have been correlated with the blood compatibility. We have used phosphatidylcholine (PTC) for phospholipid, galactocerebroside (Gal) for glycolipid, and Chol based on the headgroup structure to represent the major lipid components of the endothelial luminal cell membrane. The interfacial behavior of various combinations of PTC, Gal, and Chol monolayers have been studied at the air/water interface and deposited on hydrophobic polycarbonate (PC) polymer substrates with the help of the Langmuir-Blodgett trough. The packing and orientation of the supported monolayers have been varied by means of changing the lipid composition rather than the deposition parameters. This approach seems to be more similar to the in vivo conditions. The different supported monolayer surfaces prepared accordingly are (1) a closely packed ordered hydrophobic surface, PC modified with the combination PTC/Chol/Gal (1:0.35:0.125), (2) a loosely packed ordered hydrophobic surface, PC modified with the combination PTC/Chol (1:0.35), and (3) a closely packed ordered hydrophilic surface, PC modified with the combination PTC/Chol (1:0.7). An optimized modified surface (PTC/Chol/Gal, 1:0.35:0.125) has been identified on the basis of the maximum transfer ratio from the air/water interface and characterized by using atomic force microscopy. The concentration of Chol has been found to be an important parameter, which influences the transfer ratio. The Gal improves the monolayer integrity under a reduced Chol concentration. The blood compatibility of these supported monolayers was studied by protein adsorption, blood cell adhesion, and calcification. The tightly packed ordered hydrophobic surface (PTC/Chol/Gal, 1:0.35:0.125), has been found to be more blood compatible because of reduced blood cell adhesion and calcification. This surface also promotes albumin adsorption and may be the reason for the reduced platelet activation, while in the case of the loosely packed ordered hydrophobic surface (PTC/Chol, 1:0.35) the protein adsorption also has been reduced along with the blood cell adhesion and calcification. When the ordered hydrophilic surface (PTC/Chol, 1: 0.7) of the monolayer has been exposed, the blood cell adhesions as well as the overall protein adsorption were significantly reduced. However, the packing of the phosphorylcholine moieties of the polar headgroup has been affecting the calcification on the surface. We have observed an increase in calcification to the surface modified with the loosely packed polar headgroup, from a relative study on chitosan and chitosan modified with the monolayer of PTC. These findings are helpful for the surface modifications for blood-contacting materials using this strategy.
Collapse
Affiliation(s)
- K Kaladhar
- Biosurface Technology Division, BMT Wing, Sree Chithra Tirunal Institute for Medical Science and Technology, Poojappura 695012, Thiruvananthapuram, Kerala, India
| | | |
Collapse
|
30
|
Goldberg M, Smith AJ. CELLS AND EXTRACELLULAR MATRICES OF DENTIN AND PULP: A BIOLOGICAL BASIS FOR REPAIR AND TISSUE ENGINEERING. ACTA ACUST UNITED AC 2004; 15:13-27. [PMID: 14761897 DOI: 10.1177/154411130401500103] [Citation(s) in RCA: 368] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Odontoblasts produce most of the extracellular matrix (ECM) components found in dentin and implicated in dentin mineralization. Major differences in the pulp ECM explain why pulp is normally a non-mineralized tissue. In vitro or in vivo, some dentin ECM molecules act as crystal nucleators and contribute to crystal growth, whereas others are mineralization inhibitors. After treatment of caries lesions of moderate progression, odontoblasts and cells from the sub-odontoblastic Höhl's layer are implicated in the formation of reactionary dentin. Healing of deeper lesions in contact with the pulp results in the formation of reparative dentin by pulp cells. The response to direct pulp-capping with materials such as calcium hydroxide is the formation of a dentinal bridge, resulting from the recruitment and proliferation of undifferentiated cells, which may be either stem cells or dedifferentiated and transdifferentiated mature cells. Once differentiated, the cells synthesize a matrix that undergoes mineralization. Animal models have been used to test the capacity of potentially bioactive molecules to promote pulp repair following their implantation into the pulp. ECM molecules induce either the formation of dentinal bridges or large areas of mineralization in the coronal pulp. They may also stimulate the total closure of the pulp in the root canal. In conclusion, some molecules found in dentin extracellular matrix may have potential in dental therapy as bioactive agents for pulp repair or tissue engineering.
Collapse
Affiliation(s)
- Michel Goldberg
- Faculté de Chirurgie Dentaire, Université Paris V-René Descartes, Groupe Matrices Extracellulaires et biominéralisations (EA 2496), 1, rue Maurice Arnoux, 92120 Montrouge, France
| | | |
Collapse
|