1
|
Tallini LR, Machado das Neves G, Vendruscolo MH, Rezende-Teixeira P, Borges W, Bastida J, Costa-Lotufo LV, Eifler-Lima VL, Zuanazzi JAS. Antitumoral activity of different Amaryllidaceae alkaloids: In vitro and in silico assays. JOURNAL OF ETHNOPHARMACOLOGY 2024; 329:118154. [PMID: 38614259 DOI: 10.1016/j.jep.2024.118154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 03/26/2024] [Accepted: 04/03/2024] [Indexed: 04/15/2024]
Abstract
ETHNOPHARMACOLOGY RELEVANCE The plants of Amaryllidaceae family, such as Amaryllis belladonna L., have been used as herbal remedies for thousands of years to address various disorders, including diseases that might today be identified as cancer. AIM OF THE STUDY The objective of this work was to evaluate the potential of three Amaryllidaceae alkaloids against four cancer cell lines. MATERIAL AND METHODS The alkaloids lycorine, 1-O-acetylcaranine, and montanine were evaluated in vitro against colon adenocarcinoma cell line (HCT-116) and breast carcinoma cell lines (MCF-7, MDAMB231, and Hs578T). Computational experiments (target prediction and molecular docking) were conducted to gain a deeper comprehension of possible interactions between these alkaloids and potential targets associated with these tumor cells. RESULTS Montanine presented the best results against HCT-116, MDAMB231, and Hs578T cell lines, while lycorine was the most active against MCF-7. In alignment with the target prediction outcomes and existing literature, four potential targets were chosen for the molecular docking analysis: CDK8, EGFR, ER-alpha, and dCK. The docking scores revealed two potential targets for the alkaloids with scores similar to co-crystallized inhibitors and substrates: CDK8 and dCK. A visual analysis of the optimal docked configurations indicates that the alkaloids may interact with some key residues in contrast to the other docked compounds. This observation implies their potential to bind effectively to both targets. CONCLUSIONS In vitro and in silico results corroborate with data literature suggesting the Amaryllidaceae alkaloids as interesting molecules with antitumoral properties, especially montanine, which showed the best in vitro results against colorectal and breast carcinoma. More studies are necessary to confirm the targets and pharmaceutical potential of montanine against these cancer cell lines.
Collapse
Affiliation(s)
- Luciana R Tallini
- Department of Biology, Healthcare and Environment, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028, Barcelona, LRTJB, Spain; Graduate Program in Pharmaceutical Sciences, Federal University of Rio Grande do Sul, 90610-000, Porto Alegre, RS, GMNMHVVLEL, Brazil.
| | - Gustavo Machado das Neves
- Graduate Program in Pharmaceutical Sciences, Federal University of Rio Grande do Sul, 90610-000, Porto Alegre, RS, GMNMHVVLEL, Brazil.
| | - Maria Helena Vendruscolo
- Graduate Program in Pharmaceutical Sciences, Federal University of Rio Grande do Sul, 90610-000, Porto Alegre, RS, GMNMHVVLEL, Brazil.
| | | | - Warley Borges
- Department of Chemistry, Federal University of Espírito Santo, 29075-910, Vitória, ES, Brazil.
| | - Jaume Bastida
- Department of Biology, Healthcare and Environment, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028, Barcelona, LRTJB, Spain.
| | | | - Vera Lucia Eifler-Lima
- Graduate Program in Pharmaceutical Sciences, Federal University of Rio Grande do Sul, 90610-000, Porto Alegre, RS, GMNMHVVLEL, Brazil.
| | - José Angelo S Zuanazzi
- Graduate Program in Pharmaceutical Sciences, Federal University of Rio Grande do Sul, 90610-000, Porto Alegre, RS, GMNMHVVLEL, Brazil.
| |
Collapse
|
2
|
Jurkiewicz M, Szczepaniak A, Zielińska M. Long non-coding RNAs - SNHG6 emerge as potential marker in colorectal cancer. Biochim Biophys Acta Rev Cancer 2024; 1879:189056. [PMID: 38104909 DOI: 10.1016/j.bbcan.2023.189056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 11/24/2023] [Accepted: 12/11/2023] [Indexed: 12/19/2023]
Abstract
Colorectal cancer (CRC) ranks among the leading cancers in terms of incidence and mortality in the Western world. Currently, there are no sufficient diagnostic markers that would enable an early diagnosis and efficient therapy. Unfortunately, a significant number of new CRC cases is detected in late stages, with distant metastases, therefore, new therapeutic approaches, which would alleviate the prognosis for advanced stages of CRC, are highly in demand. SNHG6 belongs to the group of long non-coding RNAs, which are a larger entity of RNAs consisting of >200 nucleotides. SNHG6 is expressed mainly in the cell cytoplasm, where it acts as a regulator of numerous processes: modulation of crucial protein hubs; sponging miRNAs and upregulating the expression of their target mRNAs; and interacting with various cellular pathways including TGF-β/Smad and Wnt/β-catenin. SNHG6 is an oncogene, substantially overexpressed in CRC tissues and cancerous cell lines as compared to healthy samples. Its overexpression is associated with higher grade, lymphovascular invasion and tumor size. Taking into consideration the role of SNHG6 in the colorectal tumorigenesis, invasion and metastasis, we summarized its role in CRC and conclude that it could serve as a potential biomarker in CRC diagnosis and prognosis assessment.
Collapse
Affiliation(s)
- Michalina Jurkiewicz
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| | - Adrian Szczepaniak
- Department of NeuroOncology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| | - Marta Zielińska
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Lodz, Poland.
| |
Collapse
|
3
|
Liu ZB, Zhang T, Ye X, Liu ZQ, Sun X, Zhang LL, Wu CJ. Natural substances derived from herbs or plants are promising sources of anticancer agents against colorectal cancer via triggering apoptosis. J Pharm Pharmacol 2021; 74:162-178. [PMID: 34559879 DOI: 10.1093/jpp/rgab130] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 08/18/2021] [Indexed: 12/21/2022]
Abstract
OBJECTIVES Nowadays, one of the most common gastrointestinal cancers is colorectal cancer (CRC). Chemotherapy is still one of the main methods to treat cancer. However, the currently available synthetic chemotherapy drugs often cause serious adverse reactions. Apoptosis is generally considered as an ideal way for induction the death of tumour cells without the body's inflammatory response, and it is reported that lots of natural agents could trigger various cancer cells to apoptosis. The overarching aim of this project was to elucidate the specific mechanisms by which natural substances induce apoptosis in CRC cells and to be used as an alternative therapeutic option in the future. KEY FINDINGS The mechanisms for the pro-apoptotic effects of natural substances derived from herbs or plants include death receptor pathway, mitochondrial pathway, endoplasmic reticulum stress pathway, related signal transduction pathways (PI3K/Akt, MAPK, p53 signalling), and so on. SUMMARY This paper updated this information regarding the anti-tumour effects of natural agents via induction of apoptosis against CRC, which would be beneficial for future new drug research regarding natural products from herbs or plants.
Collapse
Affiliation(s)
- Zi-Bo Liu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, P.R. China
| | - Ting Zhang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, P.R. China
| | - Xun Ye
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, P.R. China
| | - Zi-Qi Liu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, P.R. China
| | - Xue Sun
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, P.R. China
| | - Li-Lin Zhang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, P.R. China
| | | |
Collapse
|
4
|
Bahr HI, Ibrahiem AT, Gabr AM, Elbahaie AM, Elmahdi HS, Soliman N, Youssef AM, El-Sherbiny M, Zaitone SA. Chemopreventive effect of α-hederin/carboplatin combination against experimental colon hyperplasia and impact on JNK signaling. Toxicol Mech Methods 2020; 31:138-149. [PMID: 33190582 DOI: 10.1080/15376516.2020.1849483] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Colon cancer is the commonest cancer worldwide. α-Hederin is a monodesmosidic triterpenoid saponin possessing diverse pharmacological activities. The running experiment was designed to test the chemopreventive activity of α-hederin when used as an adjuvant to carboplatin in an experimental model of mouse colon hyperplasia induced by 1,2-dimethylhydrazine (DMH). Fifty male Swiss albino mice were classified into five groups: group (I): saline group, group (II): DMH-induced colon hyperplasia control group, group (III): DMH + carboplatin (5 mg/kg) group, group (IV): DMH + α-hederin (80 mg/kg) group, and group (V): DMH + carboplatin (5 mg/kg)+α-hederin (80 mg/kg) group. Analyzing of colonic tissue indicated that the disease control group showed higher colon levels of phospho-PI3K to total-PI3K, phospho-AKT to total-AKT and cyclin D1 concurrent with lower phospho-JNK/total JNK ratio and caspase 3. However, treatment with α-hederin, in combination with carboplatin, favorably ameliorated phosphorylation of PI3K/AKT/JNK proteins, increased colon caspase 3 and downregulated cyclin D1. Microscopically, α-hederin, in combination with carboplatin, produced the most reduction in the histologic hyperplasia score, enhanced the goblet cell survival in periodic acid Schiff staining and reduced proliferation (Ki-67 immunostaining) in the current colon hyperplasia model. Collectively, the current study highlighted for the first time that using α-hederin as an adjuvant to carboplatin enhanced its chemopreventive activity, improved JNK signaling and increased apoptosis. Hence, further studies are warranted to test α-hederin as a promising candidate with chemotherapeutic agents in treating colon cancer.
Collapse
Affiliation(s)
- Hoda I Bahr
- Department of Biochemistry, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
| | - Afaf T Ibrahiem
- Department of Pathology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Attia M Gabr
- Department of Clinical Pharmacology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt.,Pharmacology and Therapeutics Department, College of Medicine, Qassim University, Buraydah, Saudi Arabia
| | - Alaaeldeen M Elbahaie
- Department of Clinical Oncology and Nuclear Medicine, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Hoda S Elmahdi
- Department of Pathology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Nema Soliman
- Department of Histology & Cell Biology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Amal M Youssef
- Department of Physiology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Mohamed El-Sherbiny
- Department of Basic Medical Sciences, College of Medicine, Almaarefa University, Ad Diriyah, Saudi Arabia.,Anatomy Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Sawsan A Zaitone
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt.,Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Tabuk, Tabuk, Saudi Arabia
| |
Collapse
|
5
|
Yang H, Zhu J, Wang G, Liu H, Zhou Y, Qian J. STK35 Is Ubiquitinated by NEDD4L and Promotes Glycolysis and Inhibits Apoptosis Through Regulating the AKT Signaling Pathway, Influencing Chemoresistance of Colorectal Cancer. Front Cell Dev Biol 2020; 8:582695. [PMID: 33117809 PMCID: PMC7578231 DOI: 10.3389/fcell.2020.582695] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 09/14/2020] [Indexed: 12/14/2022] Open
Abstract
The development of colorectal cancer (CRC) is often sporadic, but its etiology is multifactorial. Chemoresistance of CRC leads to tumor recurrence and poor prognosis in patients. The phosphorylation of protein kinase B (AKT) can activate metabolic reprogramming toward cellular glycolysis. Serine/threonine kinase 35 (STK35) regulates the cell cycle and is frequently associated with cancer progression, whereas little is known about its specific roles in CRC. In the current study, bioinformatics analyses were performed to investigate the relationship between STK35 and CRC prognosis. STK35 knockdown and overexpressing CRC cells were established to examine its functions in CRC. Fluorouracil (5-FU) was utilized to evaluate the effect of STK35 on CRC chemoresistance. Moreover, co-immunoprecipitation was performed to explore the ubiquitination of STK35. STK35 was highly expressed in CRC, and its protein expression was negatively correlated with the survival of CRC patients. Furthermore, STK35 overexpression could promote glycolysis, suppress apoptosis, upregulate p-AKT, and counteract the antitumor functions of 5-FU and neural precursor cell expressed developmentally downregulated gene 4-like (NEDD4L) in CRC cells. NEDD4L was associated with and could ubiquitinate STK35. STK35 could be a prognostic biomarker for CRC prognosis and has promotive effects on CRC cellular activities, partially through the AKT pathway. Moreover, STK35 also interferes with the chemosensitivity of CRC.
Collapse
Affiliation(s)
- Haojun Yang
- Department of Gastrointestinal Center, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, China
| | - Jie Zhu
- Department of Gastrointestinal Center, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, China
| | - Guangyao Wang
- Department of Gastrointestinal Center, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, China
| | - Hanyang Liu
- Department of Gastrointestinal Center, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, China
| | - Yan Zhou
- Department of Gastrointestinal Center, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, China
| | - Jun Qian
- Department of Gastrointestinal Center, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, China
| |
Collapse
|
6
|
The anti-apoptotic proteins Bcl-2 and Bcl-xL suppress Beclin 1/Atg6-mediated lethal autophagy in polyploid cells. Exp Cell Res 2020; 394:112112. [PMID: 32473226 DOI: 10.1016/j.yexcr.2020.112112] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 05/17/2020] [Accepted: 05/22/2020] [Indexed: 01/01/2023]
Abstract
Inhibition of Aurora-B kinase is a synthetic lethal therapy for tumors that overexpress the MYC oncoprotein. It is currently unclear whether co-occurring oncogenic alterations might influence this synthetic lethality by conferring more or less potency in the killing of tumor cells. To identify such modifiers, isogenic cell lines were utilized to test a variety of cancer genes that have been previously demonstrated to promote survival under conditions of cellular stress, contribute to chemoresistance and/or suppress MYC-primed apoptosis. It was found that Bcl-2 and Bcl-xL, two antiapoptotic members of the Bcl-2 family, can partially suppress the synthetic lethality, but not multinucleation, elicited by a pan-aurora kinase inhibitor, VX-680. Suppression was show to stem from the inhibition of autophagy, specifically in multinucleated cells, rather than a general inhibition of apoptosis. The anti-autophagic activity of Bcl-2 also impacted polyploid cell recovery in colony-forming assays, suggesting a route of escape from MYC-VX-680 synthetic lethality that may have clinical consequences. These findings expand on previous conclusions that autophagic death of VX-680-induced polyploid cells is mediated by Atg6. Bcl-2 and Bcl-xL negatively modulate MYC-VX-680 synthetic lethality and it is the anti-autophagic activity of these two Bcl-2 family proteins, specifically in multinucleate cells, that contributes to resistance to Aurora kinase-targeting drugs.
Collapse
|
7
|
Klochkov SG, Neganova ME, Yarla NS, Parvathaneni M, Sharma B, Tarasov VV, Barreto G, Bachurin SO, Ashraf GM, Aliev G. Implications of farnesyltransferase and its inhibitors as a promising strategy for cancer therapy. Semin Cancer Biol 2019; 56:128-134. [DOI: 10.1016/j.semcancer.2017.10.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 10/14/2017] [Accepted: 10/30/2017] [Indexed: 12/20/2022]
|
8
|
Song J, Lee C, An H, Yoo S, Kang HC, Lee JY, Kim KD, Kim DJ, Lee HS, Cho Y. Magnolin targeting of ERK1/2 inhibits cell proliferation and colony growth by induction of cellular senescence in ovarian cancer cells. Mol Carcinog 2019; 58:88-101. [PMID: 30230030 PMCID: PMC6585859 DOI: 10.1002/mc.22909] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 08/30/2018] [Accepted: 09/11/2018] [Indexed: 12/31/2022]
Abstract
Ras/Raf/MEKs/ERKs and PI3 K/Akt/mTOR signaling pathways have key roles in cancer development and growth processes, as well as in cancer malignance and chemoresistance. In this study, we screened the therapeutic potential of magnolin using 15 human cancer cell lines and combined magnolin sensitivity with the CCLE mutaome analysis for relevant mutation information. The results showed that magnolin efficacy on cell proliferation inhibition were lower in TOV-112D ovarian cancer cells than that in SKOV3 cells by G1 and G2/M cell cycle phase accumulation. Notably, magnolin suppressed colony growth of TOV-112D cells in soft agar, whereas colony growth of SKOV3 cells in soft agar was not affected by magnolin treatment. Interestingly, phospho-protein profiles in the MAPK and PI3 K signaling pathways indicated that SKOV3 cells showed marked increase of Akt phosphorylation at Thr308 and Ser473 and very weak ERK1/2 phosphorylation levels by EGF stimulation. The phospho-protein profiles in TOV-112D cells were the opposite of those of SKOV3 cells. Importantly, magnolin treatment suppressed phosphorylation of RSKs in TOV-112D, but not in SKOV3 cells. Moreover, magnolin increased SA-β-galactosidase-positive cells in a dose-dependent manner in TOV-112D cells, but not in SKOV3 cells. Notably, oral administration of Shin-Yi fraction 1, which contained magnolin approximately 53%, suppressed TOV-112D cell growth in athymic nude mice by induction of p16Ink4a and p27Kip1 . Taken together, targeting of ERK1 and ERK2 is suitable for the treatment of ovarian cancer cells that do not harbor the constitutive active P13 K mutation and the loss-of-function mutations of the p16 and/or p53 tumor suppressor proteins.
Collapse
Affiliation(s)
- Ji‐Hong Song
- Integrated Research Institute of Pharmaceutical SciencesBK21 PLUS Team & BRLCollege of PharmacyThe Catholic University of KoreaWonmi‐gu, Bucheon‐siGyeonggi‐doKorea
| | - Cheol‐Jung Lee
- Integrated Research Institute of Pharmaceutical SciencesBK21 PLUS Team & BRLCollege of PharmacyThe Catholic University of KoreaWonmi‐gu, Bucheon‐siGyeonggi‐doKorea
| | - Hyun‐Jung An
- Integrated Research Institute of Pharmaceutical SciencesBK21 PLUS Team & BRLCollege of PharmacyThe Catholic University of KoreaWonmi‐gu, Bucheon‐siGyeonggi‐doKorea
| | - Sun‐Mi Yoo
- Integrated Research Institute of Pharmaceutical SciencesBK21 PLUS Team & BRLCollege of PharmacyThe Catholic University of KoreaWonmi‐gu, Bucheon‐siGyeonggi‐doKorea
| | - Han C. Kang
- Integrated Research Institute of Pharmaceutical SciencesBK21 PLUS Team & BRLCollege of PharmacyThe Catholic University of KoreaWonmi‐gu, Bucheon‐siGyeonggi‐doKorea
| | - Joo Y. Lee
- Integrated Research Institute of Pharmaceutical SciencesBK21 PLUS Team & BRLCollege of PharmacyThe Catholic University of KoreaWonmi‐gu, Bucheon‐siGyeonggi‐doKorea
| | - Kwang D. Kim
- Division of Applied Life Science (BK21 Plus)PMBBRCGyeongsang National UniversityJinju‐daero, Jinju‐siGyeongsangnam‐doKorea
| | - Dae J. Kim
- Department of Biomedical Sciences, School of MedicineUniversity of Texas Rio Grande ValleyTexas
| | - Hye S. Lee
- Integrated Research Institute of Pharmaceutical SciencesBK21 PLUS Team & BRLCollege of PharmacyThe Catholic University of KoreaWonmi‐gu, Bucheon‐siGyeonggi‐doKorea
| | - Yong‐Yeon Cho
- Integrated Research Institute of Pharmaceutical SciencesBK21 PLUS Team & BRLCollege of PharmacyThe Catholic University of KoreaWonmi‐gu, Bucheon‐siGyeonggi‐doKorea
| |
Collapse
|
9
|
Shawky E, Takla SS, Hammoda HM, Darwish FA. Evaluation of the influence of green extraction solvents on the cytotoxic activities of Crinum (Amaryllidaeae) alkaloid extracts using in-vitro-in-silico approach. JOURNAL OF ETHNOPHARMACOLOGY 2018; 227:139-149. [PMID: 30179713 DOI: 10.1016/j.jep.2018.08.040] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 08/27/2018] [Accepted: 08/31/2018] [Indexed: 06/08/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The traditional use of Amaryllidaceae plants to treat many disease have been known for a very long period of time. The chemical analysis of these plants has yielded a diversity of alkaloids with analgesic, anticholinergic, antitumor and antiviral activities. Crinum bulbispermum (Burm.f.) Milne-Redh. & Schweick in particular has been used by Zulu, Sotho and Tswana people to treat tumors as a form of chemotherapy, while in Madagascar, Crinum powellii Baker Handb. was used in the treatment of abscesses and tumors. Many of the alkaloids spawned by genus Crinum will surely take part in the production of anticancer drugs but their further clinical development is restricted by their limited commercial availability. An emerging area of research is the establishment of green extraction techniques of different targeted compounds. AIM OF THE STUDY Our comparative study has investigated the possibility of getting improved biological responses by changing extraction solvent to a better and greener one. This study aimed to assess the cytotoxic activity of Crinum powellii and Crinum bulbispermum bulbs, when extracted by different green solvents. MATERIALS AND METHODS The green solvents Genapol X-80 (a surfactant-aided extraction), DES-3 (Choline chloride: fructose 5:2) mixture (a natural deep eutectic solvent) and purified distilled water were used for extraction of the bulbs. Extracts were tested against two cell lines HEPG-2 and HCT 116, with doxorubicin as a positive reference. Molecular docking studies were carried out to illustrate binding orientations of the alkaloids in the active site of several molecular targets for treatment of hepatic and colorectal cancer. RESULTS DES aided extraction showed highest cytotoxicity against the two cell lines, followed by surfactant aided extracts and finally aqueous extracts. There is an obvious relationship between alkaloidal content and antiproliferative potency of extracts. Multivariate statistical analyses were performed to aid the prediction of the alkaloids responsible for the activity. The alkaloid crinine showed high correlation coefficient value against HCT colon cancer cell line in the orthogonal projection to latent structures (OPLS) model, suggesting that it could operate with a selective mode of action on this cell line. In addition, the alkaloid lycorine had almost no correlation to anti-proliferative activity against HCT colon cancer cells. Molecular docking studies confirmed the same conclusions. CONCLUSION Herein, it was demonstrated that natural deep eutectic solvents (NADES) components and surfactant solutions could be chosen to enhance biological activity of extracts prepared.
Collapse
Affiliation(s)
- Eman Shawky
- Pharmacognosy Department, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt.
| | - Sarah S Takla
- Pharmacognosy Department, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Hala M Hammoda
- Pharmacognosy Department, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Fikria A Darwish
- Pharmacognosy Department, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| |
Collapse
|
10
|
Abstract
Purpose of Review Metabolic reprogramming is essential for the rapid proliferation of cancer cells and is thus recognized as a hallmark of cancer. In this review, we will discuss the etiologies and effects of metabolic reprogramming in colorectal cancer. Recent Findings Changes in cellular metabolism may precede the acquisition of driver mutations ultimately leading to colonocyte transformation. Oncogenic mutations and loss of tumor suppressor genes further reprogram CRC cells to upregulate glycolysis, glutaminolysis, one-carbon metabolism, and fatty acid synthesis. These metabolic changes are not uniform throughout tumors, as subpopulations of tumor cells may rely on different pathways to adapt to nutrient availability in the local tumor microenvironment. Finally, metabolic cross-communication between stromal cells, immune cells, and the gut microbiota enable CRC growth, invasion, and metastasis. Summary Altered cellular metabolism occurs in CRC at multiple levels, including in the cells that make up the bulk of CRC tumors, cancer stem cells, the tumor microenvironment, and host-microbiome interactions. This knowledge may inform the development of improved screening and therapeutics for CRC.
Collapse
Affiliation(s)
- Rachel E Brown
- Program in Cancer Biology, Vanderbilt University, Nashville, TN, USA.,Vanderbilt University School of Medicine, Vanderbilt University, Nashville, TN, USA
| | - Sarah P Short
- Program in Cancer Biology, Vanderbilt University, Nashville, TN, USA.,Department of Medicine, Division of Gastroenterology, Hepatology, and Nutrition, Vanderbilt University Medical Center, B2215 Garland Ave., 1065D MRB-IV, Nashville, TN 37232-0252, USA
| | - Christopher S Williams
- Program in Cancer Biology, Vanderbilt University, Nashville, TN, USA.,Vanderbilt University School of Medicine, Vanderbilt University, Nashville, TN, USA.,Department of Medicine, Division of Gastroenterology, Hepatology, and Nutrition, Vanderbilt University Medical Center, B2215 Garland Ave., 1065D MRB-IV, Nashville, TN 37232-0252, USA.,Vanderbilt Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA.,Veterans Affairs Tennessee Valley HealthCare System, Nashville, TN, USA
| |
Collapse
|
11
|
Roshan MHK, Tambo A, Pace NP. The role of testosterone in colorectal carcinoma: pathomechanisms and open questions. EPMA J 2016; 7:22. [PMID: 27833666 PMCID: PMC5103431 DOI: 10.1186/s13167-016-0071-5] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 10/06/2016] [Indexed: 02/08/2023]
Abstract
Colorectal cancer (CRC) is the fourth commonest type of malignancy after breast, lung and prostate in the USA and accounts for approximately 49,190 deaths annually in USA alone. The 5-year survival rate of CRC has increased over the past decades, in part, due to greater awareness and the widespread implementation of national screening programmes. Recently, a number of studies reported that males have a higher risk of developing CRC due to the action of testosterone. Testosterone is an androgen that is responsible for the development of male secondary sex characteristics and for spermatogenesis. Studies on rats with mutated Apc tumour-suppressor gene subjected to either ovariectomy or orchidectomy exhibit different risks of CRC. Female rats subjected to ovariectomy are at higher risk of CRC, whereas orchidectomised male rats exhibit a lower risk of developing CRC. Sex hormones, in particular estrogen and testosterone, play a significant role in the development of CRC since the anti-neoplastic effect of estrogen lost during ovariectomy increases the risk of females developing CRC. Male mice exposed to testosterone after orchidectomy were also at greater risk than those who were orchidectomised but administered placebo only. Moreover, the recently established role of membrane androgen receptors in regression of CRC via non-genomic androgen-dependent action sets these receptors apart from intracellular androgen receptors (iARs) which themselves promote CRC development. In addition, testosterone-albumin conjugates are selective to membrane androgen receptors (mARs) and lead to apoptosis via caspase-3 activation. Akt kinases promote invasion of colon cancer cells when phosphorylated. These kinases are dephosphorylated upon activation of mARs, thereby reducing colon cancer cell motility and invasiveness. Testosterone similarly plays important roles in human CRC. Long cytosine-adenine-guanine (CAG) repeats in the gene for the androgen receptors have been associated with a poor 5-year survival compared to shorter CAG repeats. Very recently, the measurement of serum unbound testosterone has been suggested as a novel biomarker along with carcinoembryonic antigen in CRC. In conclusion, testosterone may promote the development of CRC via a number of pathways, which may place males at greater risk. Testosterone holds promise as a potential biomarker in CRC risk prediction; however, further studies are required to better define its role in colorectal neoplasia.
Collapse
Affiliation(s)
- Mohsin H K Roshan
- Department of Anatomy, Biomedical Sciences Building, University of Malta, Msida, MSD2080 Malta
| | - Amos Tambo
- Department of Anatomy, Biomedical Sciences Building, University of Malta, Msida, MSD2080 Malta
| | - Nikolai P Pace
- Department of Anatomy, Biomedical Sciences Building, University of Malta, Msida, MSD2080 Malta
| |
Collapse
|
12
|
Saglam ASY, Alp E, Elmazoglu Z, Menevse ES. Effect of API-1 and FR180204 on cell proliferation and apoptosis in human DLD-1 and LoVo colorectal cancer cells. Oncol Lett 2016; 12:2463-2474. [PMID: 27698814 PMCID: PMC5038487 DOI: 10.3892/ol.2016.4995] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Accepted: 07/15/2016] [Indexed: 12/11/2022] Open
Abstract
The activation of the phosphatidylinositol-3 kinase/v-akt murine thymoma viral oncogene homolog (Akt) and mitogen activated protein kinase kinase/extracellular signal-regulated kinase (ERK) pathways are implicated in the majority of cancers. Selective inhibition of Akt and ERK represents a potential approach for cancer therapy. Therefore, the present study aimed to investigate the apoptotic and anti-proliferative effects of the novel and selective Akt inhibitor 4-amino-5,8-dihydro-5-oxo-8-β-D-ribofuranosyl-pyrido[2,3-d]pyrimidine-6-carboxamide (API-1) and selective ERK1/2 inhibitor FR180204 (FR) alone and in combination on colorectal cancer (CRC) cells (DLD-1 and LoVo). In addition, the effects of API-1 and FR on Akt and ERK signaling pathways were also investigated. The effects of the agents on DLD-1 and LoVo cells were evaluated in terms of cell viability, cytotoxicity, DNA synthesis rate, DNA fragmentation and caspase-3 activity levels. In addition, quantitative reverse transcription-polymerase chain reaction and western blot analysis were performed to examine relevant mRNA and protein levels. The present study observed that the combination of FR with API-1 resulted in significant apoptosis and cytotoxicity compared with any single agent alone in a time-dependent manner in these cells. Also, treatment with FR and API-1 in combination decreased the expression levels of B-cell lymphoma-2 (BCL2), Bcl-2-like1, cyclin D1 and cMYC, and increased the expression levels of BCL2-associated X protein and BCL2 antagonist/killer via phosphorylated Akt and phosphorylated ERK1/2 downregulation. The combination of Akt and ERK1/2 inhibitors resulted in enhanced apoptotic and anti-proliferative effects against CRC cells. The present study hypothesizes that the combination of FR and API-1 in CRC cells may contribute toward potential anti-carcinogenic effects. Additional analyses using other cancer cell lines and animal models are required to confirm these findings in vitro and in vivo.
Collapse
Affiliation(s)
- Atiye Seda Yar Saglam
- Department of Medical Biology and Genetics, Faculty of Medicine, Gazi University, Besevler, Ankara 06500, Turkey
| | - Ebru Alp
- Department of Medical Biology, Faculty of Medicine, Giresun University, Giresun 28200, Turkey
| | - Zubeyir Elmazoglu
- Department of Medical Biology and Genetics, Faculty of Medicine, Gazi University, Besevler, Ankara 06500, Turkey
| | - Emine Sevda Menevse
- Department of Medical Biology and Genetics, Faculty of Medicine, Gazi University, Besevler, Ankara 06500, Turkey
| |
Collapse
|
13
|
Zhang J, Jiang H, Xie L, Hu J, Li L, Yang M, Cheng L, Liu B, Qian X. Antitumor effect of manumycin on colorectal cancer cells by increasing the reactive oxygen species production and blocking PI3K-AKT pathway. Onco Targets Ther 2016; 9:2885-95. [PMID: 27307747 PMCID: PMC4888730 DOI: 10.2147/ott.s102408] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Manumycin is a natural, well-tolerated microbial metabolite and is regarded as a farnesyltransferase inhibitor. Some data suggest that manumycin inhibits proliferation of diverse cancer cells through various pathways. However, the antitumor effect of manumycin on colorectal cancer (CRC) remains unknown. In the present study, we investigated the antitumor effect of manumycin on CRC in vitro and in vivo. The results of cell viability assay revealed that the proliferation of the CRC cells was significantly inhibited by manumycin. Moreover, cell apoptosis induced by manumycin was also found in a time- and dose-dependent manner. Interestingly, treatment of the CRC cells with manumycin resulted in increased generation of reactive oxygen species. Subsequently, manumycin also decreased the phosphorylation of phosphatidylinositol 3-kinase (PI3K) and AKT, as well as the expression of caspase-9 and poly(ADP-ribose) polymerase (PARP) in a time-dependent manner. In addition, we found that N-acetyl-l-cysteine (NAC) attenuated the effect of manumycin on the PI3K-AKT pathway, and wortmannin reduced the effect of manumycin on caspase-9 and PARP expression. More importantly, the anticancer effect of manumycin was also observed in established tumor xenografts. Taken together, these findings supported the potential application of manumycin against colorectal carcinoma.
Collapse
Affiliation(s)
- Jingyu Zhang
- Department of the Comprehensive Cancer Center, Affiliated Nanjing Drum Tower Hospital, Nanjing Medical University, Nanjing, People's Republic of China
| | - Hua Jiang
- Department of Oncology, Affiliated Changzhou No 2 People's Hospital, Nanjing Medical University, Nanjing, People's Republic of China
| | - Li Xie
- Department of the Comprehensive Cancer Center, Affiliated Nanjing Drum Tower Hospital, Nanjing Medical University, Nanjing, People's Republic of China
| | - Jing Hu
- Department of the Comprehensive Cancer Center, Affiliated Nanjing Drum Tower Hospital, Nanjing Medical University, Nanjing, People's Republic of China
| | - Li Li
- Department of the Comprehensive Cancer Center, Affiliated Nanjing Drum Tower Hospital, Nanjing Medical University, Nanjing, People's Republic of China
| | - Mi Yang
- Department of the Comprehensive Cancer Center, Affiliated Nanjing Drum Tower Hospital, Nanjing Medical University, Nanjing, People's Republic of China
| | - Lei Cheng
- Department of the Comprehensive Cancer Center, Affiliated Nanjing Drum Tower Hospital, Nanjing Medical University, Nanjing, People's Republic of China
| | - Baorui Liu
- Department of the Comprehensive Cancer Center, Affiliated Nanjing Drum Tower Hospital, Nanjing Medical University, Nanjing, People's Republic of China
| | - Xiaoping Qian
- Department of the Comprehensive Cancer Center, Affiliated Nanjing Drum Tower Hospital, Nanjing Medical University, Nanjing, People's Republic of China
| |
Collapse
|
14
|
Danielsen SA, Eide PW, Nesbakken A, Guren T, Leithe E, Lothe RA. Portrait of the PI3K/AKT pathway in colorectal cancer. Biochim Biophys Acta Rev Cancer 2014; 1855:104-21. [PMID: 25450577 DOI: 10.1016/j.bbcan.2014.09.008] [Citation(s) in RCA: 173] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Accepted: 09/07/2014] [Indexed: 12/16/2022]
Abstract
PI3K/AKT signaling leads to reduced apoptosis, stimulates cell growth and increases proliferation. Under normal conditions, PI3K/AKT activation is tightly controlled and dependent on both extracellular growth signals and the availability of amino acids and glucose. Genetic aberrations leading to PI3K/AKT hyper-activation are observed at considerable frequency in all major nodes in most tumors. In colorectal cancer the most commonly observed pathway changes are IGF2 overexpression, PIK3CA mutations and PTEN mutations and deletions. Combined, these alterations are found in about 40% of large bowel tumors. In addition, but not mutually exclusive to these, KRAS mutations are observed at a similar frequency. There are however additional, less frequent and more poorly understood events that may also push the PI3K/AKT pathway into overdrive and thus promote malignant growth. Here we discuss aberrations of components at the genetic, epigenetic, transcriptional, post-transcriptional, translational and post-translational level where perturbations may drive excessive PI3K/AKT signaling. Integrating multiple molecular levels will advance our understanding of this cancer critical circuit and more importantly, improve our ability to pharmacologically target the pathway in view of clonal development, tumor heterogeneity and drug resistance mechanisms. In this review, we revisit the PI3K/AKT pathway cancer susceptibility syndromes, summarize the known aberrations at the different regulatory levels and the prognostic and predictive values of these alterations in colorectal cancer.
Collapse
Affiliation(s)
- Stine Aske Danielsen
- Department of Cancer Prevention, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway; K.G. Jebsen Colorectal Cancer Research Centre, Oslo University Hospital, Oslo, Norway
| | - Peter Wold Eide
- Department of Cancer Prevention, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway; K.G. Jebsen Colorectal Cancer Research Centre, Oslo University Hospital, Oslo, Norway
| | - Arild Nesbakken
- K.G. Jebsen Colorectal Cancer Research Centre, Oslo University Hospital, Oslo, Norway; Department of Gastrointestinal Surgery, Oslo University Hospital, Oslo, Norway
| | - Tormod Guren
- K.G. Jebsen Colorectal Cancer Research Centre, Oslo University Hospital, Oslo, Norway; Department of Oncology, Oslo University Hospital, Oslo, Norway
| | - Edward Leithe
- Department of Cancer Prevention, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway; K.G. Jebsen Colorectal Cancer Research Centre, Oslo University Hospital, Oslo, Norway
| | - Ragnhild A Lothe
- Department of Cancer Prevention, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway; K.G. Jebsen Colorectal Cancer Research Centre, Oslo University Hospital, Oslo, Norway.
| |
Collapse
|
15
|
Pitts TM, Newton TP, Bradshaw-Pierce EL, Addison R, Arcaroli JJ, Klauck PJ, Bagby SM, Hyatt SL, Purkey A, Tentler JJ, Tan AC, Messersmith WA, Eckhardt SG, Leong S. Dual pharmacological targeting of the MAP kinase and PI3K/mTOR pathway in preclinical models of colorectal cancer. PLoS One 2014; 9:e113037. [PMID: 25401499 PMCID: PMC4234626 DOI: 10.1371/journal.pone.0113037] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Accepted: 10/17/2014] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND The activation of the MAPK and PI3K/AKT/mTOR pathways is implicated in the majority of cancers. Activating mutations in both of these pathways has been described in colorectal cancer (CRC), thus indicating their potential as therapeutic targets. This study evaluated the combination of a PI3K/mTOR inhibitor (PF-04691502/PF-502) in combination with a MEK inhibitor (PD-0325901/PD-901) in CRC cell lines and patient-derived CRC tumor xenograft models (PDTX). MATERIALS AND METHODS The anti-proliferative effects of PF-502 and PD-901 were assessed as single agents and in combination against a panel of CRC cell lines with various molecular backgrounds. Synergy was evaluated using the Bliss Additivity method. In selected cell lines, we investigated the combination effects on downstream effectors by immunoblotting. The combination was then evaluated in several fully genetically annotated CRC PDTX models. RESULTS The in vitro experiments demonstrated a wide range of IC50 values for both agents against a cell line panel. The combination of PF-502 and PD-901 demonstrated synergistic anti-proliferative activity with Bliss values in the additive range. As expected, p-AKT and p-ERK were downregulated by PF-502 and PD-901, respectively. In PDTX models, following a 30-day exposure to PF-502, PD-901 or the combination, the combination demonstrated enhanced reduction in tumor growth as compared to either single agent regardless of KRAS or PI3K mutational status. CONCLUSIONS The combination of a PI3K/mTOR and a MEK inhibitor demonstrated enhanced anti-proliferative effects against CRC cell lines and PDTX models.
Collapse
Affiliation(s)
- Todd M. Pitts
- Division of Medical Oncology, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, United States of America
- University of Colorado Cancer Center, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
- * E-mail:
| | - Timothy P. Newton
- Division of Medical Oncology, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Erica L. Bradshaw-Pierce
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, United States of America
- University of Colorado Cancer Center, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Rebecca Addison
- Division of Medical Oncology, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - John J. Arcaroli
- Division of Medical Oncology, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, United States of America
- University of Colorado Cancer Center, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Peter J. Klauck
- Division of Medical Oncology, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Stacey M. Bagby
- Division of Medical Oncology, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Stephanie L. Hyatt
- Division of Medical Oncology, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Alicia Purkey
- Division of Medical Oncology, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - John J. Tentler
- Division of Medical Oncology, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, United States of America
- University of Colorado Cancer Center, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Aik Choon Tan
- Division of Medical Oncology, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, United States of America
- University of Colorado Cancer Center, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Wells A. Messersmith
- Division of Medical Oncology, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, United States of America
- University of Colorado Cancer Center, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - S. Gail Eckhardt
- Division of Medical Oncology, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, United States of America
- University of Colorado Cancer Center, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Stephen Leong
- Division of Medical Oncology, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, United States of America
- University of Colorado Cancer Center, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
| |
Collapse
|
16
|
The study of a novel sorafenib derivative HLC-080 as an antitumor agent. PLoS One 2014; 9:e101889. [PMID: 25004130 PMCID: PMC4086976 DOI: 10.1371/journal.pone.0101889] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Accepted: 06/12/2014] [Indexed: 01/07/2023] Open
Abstract
In this study, our objective is to evaluate the potential of a novel Sorafenib derivative, named HLC-080, as a new anticancer agent for colon cancer. We firstly carried out MTT assay, colony formation assay, flow cytometry analysis and transwell invasion assay to determine effect of our compound HLC-080 on cell viability, anti-proliferation activity, cell cycle arrest and the intervention on cell invasion, respectively. On the other hand, in vivo antitumor activity of HLC-080 was also tested using H22 xenograft model and the angiogenesis effect of HLC-080 was measured by EA.hy926 tube formation assay. The expression levels of various proteins in HLC-080 treated with HT-29 cell lines were examined using Western blot and ELISA experiments. The results showed that HLC-080 could dramatically inhibit the growth and colony formation of various tumor cells, therefore exhibited remarkable antitumor activity. HLC-080 can induce cell cycle arrest at G1 phase in HT-29 cells and subsequently inhibit the invasive potential of colon cancer cells. HLC-080 also exhibits anti-angiogenesis effect in EA.hy926 model. Additionally, the in vivo study showed that HLC-080 was able to reduced the tumor weight with the rate of 35.81%. And at the concentration of 0.352±0.034 µM, HLC-080 is able to reduce half of the regular protein level of p-c-Raf (Ser259), consequently block Raf/MEK/ERK signaling in HT-29 cell lines. In conclusion, our study suggests that Sorafenib derivative HLC-080 has the potential to inhibit cell proliferation and angiogenesis, Since, HLC-080 is particularly active against human colon cancer cells, our study highlights that HLC-080 and its related analogues may serve as a new anti-cancer drug, particularly against colon cancer.
Collapse
|
17
|
Liu J, Ke F, Xu Z, Liu Z, Zhang L, Yan S, Wang Z, Wang H, Wang H. CCR6 is a prognostic marker for overall survival in patients with colorectal cancer, and its overexpression enhances metastasis in vivo. PLoS One 2014; 9:e101137. [PMID: 24979261 PMCID: PMC4076197 DOI: 10.1371/journal.pone.0101137] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2014] [Accepted: 06/03/2014] [Indexed: 02/07/2023] Open
Abstract
The chemokine receptor CCR6 has been recently shown to be associated with colorectal cancer (CRC) progression. However, the direct evidence for whether CCR6 in tumors is a prognostic marker for the survival of patients with CRC and whether it plays a critical role in CRC metastasis in vivo is lacking. Here we show that the levels of CCR6 were upregulated in CRC cell lines and primary CRC clinical samples. CCR6 upregulation was closely correlated with disease stages and the survival time of CRC patients. Knockdown of CCR6 inhibited the migration of CRC cells in vitro. Overexpression of CCR6 in CRC cells increased their proliferation, migration, and colony formation in vitro and promoted their metastatic potential in vivo. CCR6 activated Akt signaling, upregulated metastasis genes and downregulated metastasis suppressor genes. Selective targeting of CCR6 in tumors dramatically inhibited the growth of CRC in mice. Thus, the tumor expression of CCR6 plays a critical role in CRC metastasis, upregulated CCR6 predicts poor survival in CRC patients, and targeting CCR6 expression in tumors may be a potential therapeutic strategy for CRC.
Collapse
Affiliation(s)
- Jinlin Liu
- Shanghai Institute of Immunology, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fang Ke
- Shanghai Institute of Immunology, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhenyao Xu
- Shanghai Institute of Immunology, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhaoyuan Liu
- Shanghai Institute of Immunology, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lingyun Zhang
- Shanghai Institute of Immunology, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Sha Yan
- Shanghai Institute of Immunology, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhe Wang
- Shanghai Institute of Immunology, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hong Wang
- Shanghai Institute of Immunology, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Honglin Wang
- Shanghai Institute of Immunology, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- * E-mail:
| |
Collapse
|
18
|
Davies EJ, Marsh Durban V, Meniel V, Williams GT, Clarke AR. PTEN loss and KRAS activation leads to the formation of serrated adenomas and metastatic carcinoma in the mouse intestine. J Pathol 2014; 233:27-38. [PMID: 24293351 DOI: 10.1002/path.4312] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Revised: 11/22/2013] [Accepted: 11/26/2013] [Indexed: 12/15/2022]
Abstract
Mutation or loss of the genes PTEN and KRAS have been implicated in human colorectal cancer (CRC), and have been shown to co-occur despite both playing a role in the PI3' kinase (PI3'K) pathway. We investigated the role of these genes in intestinal tumour progression in vivo, using genetically engineered mouse models, with the aim of generating more representative models of human CRC. Intestinal-specific deletion of Pten and activation of an oncogenic allele of Kras was induced in wild-type (WT) mice and mice with a predisposition to adenoma development (Apc(fl/+) ). The animals were euthanized when they became symptomatic of a high tumour burden. Histopathological examination of the tissues was carried out, and immunohistochemistry used to characterize signalling pathway activation. Mutation of Pten and Kras resulted in a significant life-span reduction of mice predisposed to adenomas. Invasive adenocarcinoma was observed in these animals, with evidence of activation of the PI3'K pathway but no metastasis. However, mutation of Pten and Kras in WT animals not predisposed to adenomas led to perturbed homeostasis of the intestinal epithelium and the development of hyperplastic polyps, dysplastic sessile serrated adenomas and metastasizing adenocarcinomas with serrated features. These studies demonstrate synergism between Pten and Kras mutations in intestinal tumour progression, in an autochthonous and immunocompetent murine model, with potential application to preclinical drug testing. In particular, they show that Pten and Kras mutations alone predispose mice to the spectrum of serrated lesions that reflect the serrated pathway of CRC progression in humans.
Collapse
Affiliation(s)
- Emma J Davies
- Cardiff School of Biosciences, Cardiff University, UK
| | | | | | | | | |
Collapse
|
19
|
Abstract
The promise of precision medicine is now a clinical reality. Advances in our understanding of the molecular genetics of colorectal cancer (CRC) are leading to the development of a variety of biomarkers that are being used as early detection markers, prognostic markers, and markers for predicting treatment responses. This is no more evident than in the recent advances in testing CRCs for specific molecular alterations in order to guide treatment with the monoclonal antibody therapies cetuximab and panitumumab, which target the epidermal growth factor receptor. In this review, we update a prior review published in 2010 and describe our current understanding of the molecular pathogenesis of CRC and how these alterations relate to emerging biomarkers for early detection and risk stratification (diagnostic markers), prognosis (prognostic markers), and the prediction of treatment responses (predictive markers).
Collapse
Affiliation(s)
- William M Grady
- 1Clinical Research Division, Fred Hutchison Cancer Research Center, Seattle, Washington, USA
| | | |
Collapse
|
20
|
Moorcraft SY, Smyth EC, Cunningham D. The role of personalized medicine in metastatic colorectal cancer: an evolving landscape. Therap Adv Gastroenterol 2013; 6:381-95. [PMID: 24003339 PMCID: PMC3756633 DOI: 10.1177/1756283x13491797] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Advances in the treatment of metastatic colorectal cancer have led to an improvement in survival from 12 months with fluorouracil monotherapy to approximately 2 years. This is partly as a result of the addition of irinotecan and oxaliplatin, but is also due to the use of monoclonal antibodies against the epidermal growth factor receptor (EGFR) and antiangiogenic drugs such as bevacizumab. However, there are significant molecular differences between tumours which can affect both prognosis and response to treatment. Personalized medicine aims to tailor treatment according to the characteristics of the individual patient and is now a clinical reality as testing for KRAS mutations to guide treatment with the anti-EGFR monoclonal antibodies cetuximab and panitumumab is now part of routine clinical practice. However, not all patients who are KRAS wild type respond to anti-EGFR therapy and a validated biomarker for antiangiogenic therapy is still lacking. Therefore, other biomarkers are needed to assist with predicting response to both existing drugs as well as to drugs currently under investigation. This review summarizes the molecular biology of colorectal cancer, focusing on the genetic features that are currently most clinically relevant. Current and emerging biomarkers are reviewed along with their roles in selecting patients for targeted treatment with currently licensed therapies and drugs being evaluated in clinical trials. The value of predictive biomarkers of chemosensitivity and potential future treatment strategies are also discussed.
Collapse
|
21
|
Stintzing S, Lenz HJ. Protein kinase inhibitors in metastatic colorectal cancer. Let's pick patients, tumors, and kinase inhibitors to piece the puzzle together! Expert Opin Pharmacother 2013; 14:2203-20. [PMID: 23941461 DOI: 10.1517/14656566.2013.828694] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Increased understanding in intracellular signaling pathways leading to carcinogenesis, proliferation, migration, invasion, angiogenesis, and anti-apoptosis of colorectal cancer cells has been critical for target identification and drug development. Specific protein kinase inhibitors (KIs) have been developed to block activated pathways associated with tumor growth and progression. Although showing promising activity in preclinical models, until now, the majority of KIs were not able to demonstrate clinically meaningful efficacy in Phase II/III trials. AREAS COVERED The major pathways altered in colorectal cancer will be highlighted, and molecularly defined targets will be discussed. The mechanisms of action and the proof of principle demonstrated in preclinical models of KIs and the disappointing efficacy in clinical trials will be reviewed. EXPERT OPINION Despite recent negative study results, KIs have the potential to be the next class of therapeutics in the treatment of metastatic colorectal cancer. Molecular classification of the individual tumors and identification of molecular escape mechanisms for primary (intrinsic) and secondary resistances to KI treatment is critical to select the patients' most likely to benefit. Appropriate drug combinations based on those mechanisms of resistance have to be tested in selected patient populations to ensure progress and efficacy with the goal to lead to a clinically meaningful prolongation of patients' lives.
Collapse
Affiliation(s)
- Sebastian Stintzing
- Keck School of Medicine, USC/Norris Comprehensive Cancer Center, Sharon Carpenter Laboratory , 1441 Eastlake Avenue, Room 3456, Los Angeles, CA 90033 , USA
| | | |
Collapse
|