1
|
Malek N, Hutchinson J, Naz A, Cordivari C. Evaluation of small fibre neuropathies. Pract Neurol 2025; 25:102-108. [PMID: 39179381 DOI: 10.1136/pn-2023-004054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/12/2024] [Indexed: 08/26/2024]
Abstract
Small fibre neuropathies (SFNs) are common and can significantly affect patients' lives due to debilitating pain and autonomic symptoms. We explain the tests that neurologists can use to diagnose SFNs and how neurophysiologists perform and interpret them. This review focuses on neurophysiological tests that can be used to investigate SFNs, their sensitivity, specificity and limitations. Some of these tests are available only in specialist centres. However, newer technologies are emerging from scientific research that may make it easier to diagnose these conditions in the future.
Collapse
Affiliation(s)
- Naveed Malek
- Department of Neurophysiology, National Hospital for Neurology and Neurosurgery, London, UK
| | - Joseph Hutchinson
- Department of Neurophysiology, National Hospital for Neurology and Neurosurgery, London, UK
| | - Asma Naz
- Department of Neurophysiology, National Hospital for Neurology and Neurosurgery, London, UK
| | - Carla Cordivari
- Department of Neurophysiology, National Hospital for Neurology and Neurosurgery, London, UK
| |
Collapse
|
2
|
Devigili G, Lombardi R, Lauria G, Cazzato D. The Evolving Landscape of Small Fiber Neuropathy. Semin Neurol 2025; 45:132-144. [PMID: 39433284 DOI: 10.1055/s-0044-1791823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
Small fiber neuropathy (SFN) belongs to a heterogeneous group of disorders in which thinly myelinated Aδ and unmyelinated C-fibers are primarily affected, leading to neuropathic pain and autonomic symptoms. SFN can be associated with systemic conditions such as diabetes, autoimmune diseases, exposure to drugs and toxins, and infection, with the list of associated diseases continuing to expand. Variants in the SCN9A, SCN10A, and SCN11A genes encoding Nav 1.7, Nav 1.8, and Nav 1.9 sodium channel subunits, as well as in the TRPA1 gene, have been found in SFN patients, expanding the spectrum of underlying conditions and enhancing our understanding of pathophysiological mechanisms. There is also growing interest in immune-mediated forms that could help identify potentially treatable subgroups. According to international criteria, diagnosis is established through clinical examination, the assessment of intraepidermal nerve fiber density, and/or quantitative sensory testing. Autonomic functional tests allow for a better characterization of dysautonomia in SFN, which can be subclinical. Other tests can support the diagnosis. Currently, the management of SFN prioritizes treating the underlying condition, if identified, within a multidisciplinary approach that combines symptomatic pain therapy, lifestyle changes, and biopsychological interventions. Emerging insights from the molecular characterization of SFN channelopathies hold promise for improving diagnosis, potentially leading to the discovery of new drugs and refining trial designs in the future. This article reviews the clinical presentation, diagnostic workup, and advancing knowledge of associated conditions and interventional management of SFN.
Collapse
Affiliation(s)
- Grazia Devigili
- Movement Disorders Unit, Fondazione IRCCS Istituto Neurologico "Carlo Besta," Milan, Italy
| | - Raffaella Lombardi
- Neuroalgology Unit, Fondazione IRCCS Istituto Neurologico "Carlo Besta," Milan, Italy
| | - Giuseppe Lauria
- Neuroalgology Unit, Fondazione IRCCS Istituto Neurologico "Carlo Besta," Milan, Italy
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Daniele Cazzato
- Clinical Neurophysiology Unit, Fondazione IRCCS Istituto Neurologico "Carlo Besta," Milan, Italy
| |
Collapse
|
3
|
Zohar DN, Keren D, Qassim L, Eltity M, Shavit-Stein E, Chapman J, Dori A. Serum neurofilament light chain levels in patients with small-fiber neuropathy. J Neuromuscul Dis 2024:22143602241284130. [PMID: 39973399 DOI: 10.1177/22143602241284130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
BACKGROUND Serum neurofilament light chain (sNfL) levels are an increasingly employed tool for the assessment of active axonal injury in a variety of neurological disorders including polyneuropathy. Injury to the small nerve fibers can lead to small fiber neuropathy (SFN), a neurological condition which is clinically manifested by combination of burning pain, various sensory disturbances and symptoms of autonomic dysfunction. SFN is evident by identifying reduced epidermal nerve fiber density (ENFD) in skin biopsy. OBJECTIVE To assess the utility of sNfL measurement as a marker for active axonal injury in a population of patients who were referred for skin biopsy as part of the evaluation of chronic sensory symptoms. METHODS sNfL levels were measured in 94 patients at the time of skin biopsy. Clinical, electrodiagnostic, and imaging data were collected and neurological comorbidities including central nervous system disorders, large-fiber polyneuropathy, and radiculopathy which may increase sNfL levels were reviewed. RESULTS Eighty-six patients had pathological skin biopsy result supporting the diagnosis of SFN. sNfL was increased in 9 (10%) SFN patients. Seven of them had neurological comorbidities which may explain the elevated sNfL. The other two patients had history of hypothyroidism and endometriosis. CONCLUSIONS sNfL levels are typically normal in patients with SFN. Furthermore, when sNfL are elevated, evaluation for another neurological disorder should be considered.
Collapse
Affiliation(s)
- Daniela Noa Zohar
- Department of Neurology, The Chaim Sheba Medical Center, Ramat Gan, Israel
- Department of Neurology and Neurosurgery, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Daria Keren
- Department of Neurology, The Chaim Sheba Medical Center, Ramat Gan, Israel
| | - Lamis Qassim
- Department of Neurology, The Chaim Sheba Medical Center, Ramat Gan, Israel
- Department of Neurology and Neurosurgery, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Mailam Eltity
- Department of Neurology, The Chaim Sheba Medical Center, Ramat Gan, Israel
- Department of Neurology and Neurosurgery, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Efrat Shavit-Stein
- Department of Neurology, The Chaim Sheba Medical Center, Ramat Gan, Israel
- Department of Neurology and Neurosurgery, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- The TELEM Rubin Excellence in Biomedical Research Program, The Chaim Sheba Medical Center, Ramat Gan, Israel
| | - Joab Chapman
- Department of Neurology, The Chaim Sheba Medical Center, Ramat Gan, Israel
- Department of Neurology and Neurosurgery, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Robert and Martha Harden Chair in Mental and Neurological Diseases, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Amir Dori
- Department of Neurology, The Chaim Sheba Medical Center, Ramat Gan, Israel
- Department of Neurology and Neurosurgery, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
4
|
Beshyah SA, Jayyousi A, Al-Mamari AS, Shaaban A, Ozairi EA, Nafach J, Jallo MKI, Khader S, Evans M. Current Perspectives in Pre- and Diabetic Peripheral Neuropathy Diagnosis and Management: An Expert Statement for the Gulf Region. Diabetes Ther 2024; 15:2455-2474. [PMID: 39460909 PMCID: PMC11561195 DOI: 10.1007/s13300-024-01658-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 10/02/2024] [Indexed: 10/28/2024] Open
Abstract
Peripheral neuropathy (PN) significantly impacts the quality of life, causing substantial morbidity and increased mortality, as well as escalating healthcare costs. While PN can have various causes, the most common form, diabetic peripheral neuropathy, poses considerable risks for potential complications. Diabetic peripheral neuropathy (DPN) affects over 50% of people with prediabetes and diabetes. Despite its prevalence, a global gap in diagnosis and management exists, exacerbated by the COVID-19 pandemic. This expert consensus was formulated through a comprehensive evaluation by a panel of experts, informed by a focused literature review, aiming to establish a clinically robust approach to diagnosing and managing pre- and diabetic PN with the early utilization of neurotropic B vitamins. This document offers a consensus perspective on the existing challenges in diagnosing and managing PN, focusing on DPN. The expert panel proposes measures to address this underdiagnosed burden, highlighting the importance of early intervention through innovative screening methods, integrated care approaches, and therapeutic strategies. The document advocates for increased awareness, targeted campaigns, and proactive care strategies to bridge gaps in the patient care of individuals with diabetes, emphasizing the importance of early detection and timely management to improve overall health outcomes. Specific recommendations include incorporating simplified questionnaires and innovative screening methods into routine care, prioritizing neurotropic B vitamin supplementation, optimizing glucagon-like peptide 1 (GLP-1) receptor agonist treatments, and adopting a holistic approach to neuropathy management. The consensus underscores the urgent need to address the underdiagnosis and undertreatment of PN, offering practical measures to enhance early detection and improve health outcomes for individuals with DPN.
Collapse
Affiliation(s)
- Salem A Beshyah
- Department of Medicine, NMC Royal, MBZ, Abu Dhabi, United Arab Emirates.
- Department of Medicine, College of Medicine and Health Sciences, Khalifa University, Abu Dhabi, UAE.
- Department of Medicine, Dubai Medical College, Dubai, United Arab Emirates.
| | | | | | - Ashraf Shaaban
- Diabetes Control Centre, Ghassan Najib Pharaon Hospital, Jeddah, Kingdom of Saudi Arabia
| | - Ebaa Al Ozairi
- Clinical Care Research and Clinical Trials Unit, Dasman Diabetes Institute, Dasman, Kuwait
| | - Jalal Nafach
- Department of Diabetes, Dubai Diabetes Center, Dubai, United Arab Emirates
| | - Mahir Khalil Ibrahim Jallo
- Internal Medicine and Endocrinology, Centre of Endocrinology, Gulf Medical University and Thumbay University Hospital, Ajman, United Arab Emirates
| | - Said Khader
- Department of Diabetes and Endocrinology, Dr. Sulaiman Alhabib Medical Group, Riyadh, Saudi Arabia
| | - Marc Evans
- Diabetes Resource Center, University Hospital Llandough, Penarth, UK
| |
Collapse
|
5
|
Burgess J, Marshall A, Rapteas L, Riley D, Matsumoto K, Boon C, Alchawaf A, Ferdousi M, Malik RA, Marshall A, Kaye S, Gosal D, Frank B, Alam U. Idiopathic Distal Sensory Polyneuropathy and Fibromyalgia Syndrome: A Comparative Phenotyping Study. Pain Ther 2024; 13:1541-1558. [PMID: 39264538 PMCID: PMC11543958 DOI: 10.1007/s40122-024-00646-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 08/15/2024] [Indexed: 09/13/2024] Open
Abstract
INTRODUCTION Painful idiopathic distal sensory polyneuropathy (IDSP) and fibromyalgia syndrome (FMS) are cryptogenic chronic pain syndromes. The contribution of small fibre pathology (SFP) in FMS remains controversial. This study aims to quantify small nerve pathology in participants with IDSP and FMS and identify relationships of SFP with sensory phenotypes. METHODS In this study, 73 individuals (FMS: 25, IDSP: 23, healthy volunteers: 25) underwent comprehensive assessment, including neurological exams, questionnaires, sensory tests, and corneal confocal microscopy. RESULTS IDSP participants displayed lower wind-up ratio (WUR) relative to FMS (p < 0.001), loss of function to thermal and mechanical stimuli and elevated neuropathy disability scores compared to FMS and healthy volunteers (all p < 0.001). FMS participants demonstrated gain of function to heat and blunt pressure pain responses relative to IDSP, and healthy volunteers (heat: p = 0.002 and p = 0.003; pressure: both p < 0.001) and WUR (both p < 0.001). FMS participants exhibited reduced corneal nerve fibre density (p = 0.02), while IDSP participants had lower global corneal nerve measures (density, branch density, and length) relative to healthy volunteers (all p < 0.001). Utilising corneal nerve fibre length, SFP was demonstrated in 66.6% of participants (FMS: 13/25; IDSP: 22/23). CONCLUSION Participants with SFP, in both FMS and IDSP, reported symptoms indicative of small nerve fibre disease. Although distinctions in pain distributions are evident between individuals with FMS and IDSP, over 50% of participants between the two conditions displayed both a loss and gain of thermal and mechanical function suggestive of shared mechanisms. However, sensory phenotypes were associated with the presence of SFP in IDSP but not in FMS.
Collapse
Affiliation(s)
- Jamie Burgess
- Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK.
- Clinical Sciences Centre, Aintree University Hospital, Longmoor Lane, Liverpool, L9 7AL, UK.
| | - Anne Marshall
- Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK
| | - Leandros Rapteas
- Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK
| | - David Riley
- Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK
- Liverpool University Hospitals NHS Foundation Trust, Aintree Hospital, Liverpool, UK
| | - Kohei Matsumoto
- Liverpool University Hospitals NHS Foundation Trust, Aintree Hospital, Liverpool, UK
| | - Cheng Boon
- Department of Clinical Oncology, The Royal Wolverhampton NHS Trust, Wolverhampton, UK
| | | | - Maryam Ferdousi
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Rayaz A Malik
- Division of Medicine, Qatar Foundation, Weill Cornell Medicine-Qatar, Doha, Qatar
| | - Andrew Marshall
- Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK
- Department of Clinical Neurophysiology, The Walton Centre, Liverpool, UK
- Pain Research Institute, Faculty of Health and Life Science, University of Liverpool, Liverpool, UK
| | - Stephen Kaye
- Department of Eye and Vision Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK
| | - David Gosal
- Department of Neurology, Salford Royal NHS Foundation Trust, Salford, UK
| | - Bernhard Frank
- Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK
- Department of Pain Medicine, The Walton Centre, Liverpool, UK
- Pain Research Institute, Faculty of Health and Life Science, University of Liverpool, Liverpool, UK
| | - Uazman Alam
- Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK
- Pain Research Institute, Faculty of Health and Life Science, University of Liverpool, Liverpool, UK
- Department of Diabetes and Endocrinology, Liverpool University Hospital NHS Foundation Trust, Liverpool, UK
- Centre for Biomechanics and Rehabilitation Technologies, Staffordshire University, Stoke-on-Trent, UK
| |
Collapse
|
6
|
Feulner B, Gross F, Evdokimov D, Malik RA, Kampik D, Üçeyler N. Pain and small fiber pathology in men with fibromyalgia syndrome. Pain Rep 2024; 9:e1212. [PMID: 39512584 PMCID: PMC11543218 DOI: 10.1097/pr9.0000000000001212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 09/09/2024] [Accepted: 09/15/2024] [Indexed: 11/15/2024] Open
Abstract
Introduction Small fiber pathology may be involved in the pathophysiology of pain in women with fibromyalgia syndrome (FMS). Objectives This prospective single-center case-control study provides detailed pain phenotyping and small fiber pathology data in a cohort of men with FMS on a morphological and functional level. Methods Forty-two men with FMS underwent a comprehensive pain-related interview and neurological examination, a questionnaire and neurophysiological assessment, and specialized small fiber tests: skin punch biopsy, quantitative sensory testing including C-tactile afferents, and corneal confocal microscopy. Data were compared with those of healthy male controls. Results Men with FMS reported generalized and permanent pain with additional pain attacks and a mostly pressing pain character. Intraepidermal nerve fiber density was reduced at ≥1 biopsy site in 35 of 42 (83%) men with FMS (controls: 32/65, 49%). Compared with male controls, men with FMS had elevated cold (P < 0.05) and warm detection thresholds (P < 0.001) and an increased mechanical pain threshold (P < 0.05) as well as an impairment of C-tactile afferents (P < 0.05). Corneal nerve fiber density was lower in male patients with FMS vs healthy men (P < 0.01). Male FMS patients with pathological skin innervation at ≥1 biopsy site compared with those with normal skin innervation had a higher clinical Widespread Pain Index (P < 0.05) indicating an association between the severity of cutaneous denervation and symptom load. Conclusion We show a distinct pain phenotype and small nerve fiber dysfunction and pathology in male patients with FMS. These findings may have implications for the diagnosis and management of men with FMS.
Collapse
Affiliation(s)
- Betty Feulner
- Department of Neurology, University Hospital Würzburg, Würzburg, Germany
| | - Franziska Gross
- Department of Neurology, University Hospital Würzburg, Würzburg, Germany
| | - Dimitar Evdokimov
- Department of Neurology, University Hospital Würzburg, Würzburg, Germany
| | - Rayaz A. Malik
- Weill Cornell Medicine—Qatar, Education City, Qatar Foundation, Doha, Qatar
| | - Daniel Kampik
- Department of Ophthalmology, University Hospital Würzburg, Würzburg, Germany
| | - Nurcan Üçeyler
- Department of Neurology, University Hospital Würzburg, Würzburg, Germany
| |
Collapse
|
7
|
Kool D, Hoeijmakers JG, Waxman SG, Faber CG. Small fiber neuropathy. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2024; 179:181-231. [PMID: 39580213 DOI: 10.1016/bs.irn.2024.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2024]
Abstract
Small fiber neuropathy (SFN) is a condition involving the small nerve fibers of the peripheral nervous system, specifically the thinly myelinated Aδ and unmyelinated C fibers. It is an increasingly acknowledged condition within the spectrum of neuropathic pain disorders, leading to a rise in diagnosed patients. SFN is characterized by neuropathic pain, that is often described as burning, and typically presents in the hands and feet ascending proximally. Since small nerve fibers are involved in the autonomic nervous system, SFN can also lead to autonomic dysfunction. In the clinical setting, SFN diagnosis is frequently based on the Besta Criteria, which include skin biopsy and quantitative sensory testing. For clinical trials, the ACTTION criteria are also recommended. However, the diagnostic process is often complex, prompting research towards more accessible diagnostic methods. The pathophysiology of SFN remains unclear, thereby challenging therapeutic strategies. A large variety of underlying conditions has been associated with SFN, including metabolic, immune-mediated, infectious, toxic and hereditary conditions. The discovery of genetic sodium channelopathies in SFN provides insight into its underlying mechanisms. Newly discovered mutations within these genes reveal that SFN often shows overlapping clinical presentations with other sodium channelopathies. This chapter provides an in-depth look at SFN, including its clinical features, diagnostic methods, underlying conditions and possible therapeutic strategies.
Collapse
Affiliation(s)
- Dennis Kool
- Department of Neurology, Mental Health and Neuroscience Research Institute, Maastricht University Medical Center+, Maastricht, Netherlands.
| | - Janneke Gj Hoeijmakers
- Department of Neurology, Mental Health and Neuroscience Research Institute, Maastricht University Medical Center+, Maastricht, Netherlands
| | - Stephen G Waxman
- Department of Neurology, Yale University School of Medicine, New Haven, CT, United States; Center for Neuroscience & Regeneration Research, Yale University, West Haven, CT, United States; Neuro-Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, CT, United States
| | - Catharina G Faber
- Department of Neurology, Mental Health and Neuroscience Research Institute, Maastricht University Medical Center+, Maastricht, Netherlands
| |
Collapse
|
8
|
Taub DG, Woolf CJ. Age-dependent small fiber neuropathy: Mechanistic insights from animal models. Exp Neurol 2024; 377:114811. [PMID: 38723859 PMCID: PMC11131160 DOI: 10.1016/j.expneurol.2024.114811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/07/2024] [Accepted: 05/05/2024] [Indexed: 05/28/2024]
Abstract
Small fiber neuropathy (SFN) is a common and debilitating disease in which the terminals of small diameter sensory axons degenerate, producing sensory loss, and in many patients neuropathic pain. While a substantial number of cases are attributable to diabetes, almost 50% are idiopathic. An underappreciated aspect of the disease is its late onset in most patients. Animal models of human genetic mutations that produce SFN also display age-dependent phenotypes suggesting that aging is an important contributor to the risk of development of the disease. In this review we define how particular sensory neurons are affected in SFN and discuss how aging may drive the disease. We also evaluate how animal models of SFN can define disease mechanisms that will provide insight into early risk detection and suggest novel therapeutic interventions.
Collapse
Affiliation(s)
- Daniel G Taub
- F. M. Kirby Neurobiology Center and Department of Neurology, Boston Children's Hospital, Boston, MA, USA; Department of Neurobiology, Harvard Medical School, Boston, MA, USA.
| | - Clifford J Woolf
- F. M. Kirby Neurobiology Center and Department of Neurology, Boston Children's Hospital, Boston, MA, USA; Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
9
|
Meyer Zu Altenschildesche C, Egenolf N, Lischka A, Üçeyler N. [Sequence variants of unknown significance in small fiber neuropathy : Characterization of a heterogeneous patient population]. Schmerz 2024:10.1007/s00482-024-00811-3. [PMID: 38713210 DOI: 10.1007/s00482-024-00811-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/08/2024] [Indexed: 05/08/2024]
Abstract
BACKGROUND In almost half of patients suffering from small fiber neuropathies (SFN), the etiology remains elusive. For these patients with "idiopathic SFN", symptomatic analgesic therapy is the only option. Reports on a potential genetic background of neuropathic pain syndromes are increasing and particularly in SFN patients, several genetic variants were found mainly located in genes encoding voltage-gated sodium channels. Although up to 30% of SFN patients show genetic alterations, most of these remain of "unknown pathogenic significance" and little is known about "genetic SFN". OBJECTIVES The study aimed to determine clinical characteristics of SFN patients carrying a rare genetic variant of unknown significance in pain-associated genes. MATERIALS AND METHODS From 2015 to 2020, 66 patients with primarily idiopathic SFN were examined and rare gene variants of unknown significance detected in 13/66 (20%) of these. A detailed medical history with focus on pain was recorded and patients filled in standardized questionnaires to assess physical and emotional burden due to pain. RESULTS The authors found 13/66 (20%) patients with rare variants of unknown significance located in pain-associated genes who reported pain refractory to analgesic treatment, a higher number of external factors influencing clinical symptoms, and a higher level of physical impairment and emotional stress due to pain compared with patients without such genetic variants. CONCLUSIONS Early genetic assessment is recommended to optimize the management of patients with potentially hereditary SFN. Early access to rehabilitation and mental support as well as a consequent elimination of external triggering factors should be granted.
Collapse
Affiliation(s)
| | - Nadine Egenolf
- Neurologische Klinik des Universitätsklinikums Würzburg, Josef-Schneider-Str. 11, 97080, Würzburg, Deutschland
| | - Annette Lischka
- Institut für Humangenetik und Genommedizin, Universitätsklinikum RWTH Aachen, Aachen, Deutschland
| | - Nurcan Üçeyler
- Neurologische Klinik des Universitätsklinikums Würzburg, Josef-Schneider-Str. 11, 97080, Würzburg, Deutschland.
| |
Collapse
|
10
|
Sommer C, Baron R, Sachau J, Papagianni A, Özgül ÖS, Enax-Krumova E. [The EAN-NeuPSIG guideline on the diagnosis of neuropathic pain-a summary]. Schmerz 2024:10.1007/s00482-024-00806-0. [PMID: 38602515 DOI: 10.1007/s00482-024-00806-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/03/2024] [Indexed: 04/12/2024]
Abstract
In this joint guideline of the scientific societies and working groups mentioned in the title, evidence-based recommendations for the use of screening questionnaires and diagnostic tests in patients with neuropathic pain were developed. The systematic literature search and meta-analysis yielded the following results: Of the screening questionnaires, Douleur Neuropathique en 4 Questions (DN4), I‑DN4 (self-administered DN4), and Leeds Assessment of Neuropathic Symptoms and Signs (LANSS) received a strong recommendation, while S‑LANSS (self-administered LANSS) and PainDETECT received weak recommendations for their use in the diagnostic workup of patients with possible neuropathic pain. There was a strong recommendation for the use of skin biopsy and a weak recommendation for quantitative sensory testing and nociceptive evoked potentials. The role of confocal corneal microscopy is still unclear. Functional imaging and peripheral nerve blocks are helpful in elucidating the pathophysiology, but current literature does not support their use in diagnosing neuropathic pain. In selected cases, genetic testing in specialized centers may be considered.
Collapse
Affiliation(s)
- Claudia Sommer
- Neurologische Klinik, Universitätsklinikum Würzburg, 97080, Würzburg, Deutschland.
| | - Ralf Baron
- Sektion Neurologische Schmerzforschung und -therapie, Klinik für Neurologie, Universitätsklinikum Schleswig-Holstein, Campus Kiel, Kiel, Deutschland
| | - Juliane Sachau
- Sektion Neurologische Schmerzforschung und -therapie, Klinik für Neurologie, Universitätsklinikum Schleswig-Holstein, Campus Kiel, Kiel, Deutschland
| | | | - Özüm S Özgül
- Neurologische Klinik und Poliklinik, Berufsgenossenschaftliches Universitätsklinikum Bergmannsheil gGmbH, Ruhr-Universität Bochum, Bochum, Deutschland
| | - Elena Enax-Krumova
- Neurologische Klinik und Poliklinik, Berufsgenossenschaftliches Universitätsklinikum Bergmannsheil gGmbH, Ruhr-Universität Bochum, Bochum, Deutschland
| |
Collapse
|
11
|
Klein T, Grüner J, Breyer M, Schlegel J, Schottmann NM, Hofmann L, Gauss K, Mease R, Erbacher C, Finke L, Klein A, Klug K, Karl-Schöller F, Vignolo B, Reinhard S, Schneider T, Günther K, Fink J, Dudek J, Maack C, Klopocki E, Seibel J, Edenhofer F, Wischmeyer E, Sauer M, Üçeyler N. Small fibre neuropathy in Fabry disease: a human-derived neuronal in vitro disease model and pilot data. Brain Commun 2024; 6:fcae095. [PMID: 38638148 PMCID: PMC11024803 DOI: 10.1093/braincomms/fcae095] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 01/24/2024] [Accepted: 03/15/2024] [Indexed: 04/20/2024] Open
Abstract
Acral burning pain triggered by fever, thermal hyposensitivity and skin denervation are hallmarks of small fibre neuropathy in Fabry disease, a life-threatening X-linked lysosomal storage disorder. Variants in the gene encoding alpha-galactosidase A may lead to impaired enzyme activity with cellular accumulation of globotriaosylceramide. To study the underlying pathomechanism of Fabry-associated small fibre neuropathy, we generated a neuronal in vitro disease model using patient-derived induced pluripotent stem cells from three Fabry patients and one healthy control. We further generated an isogenic control line via gene editing. We subjected induced pluripotent stem cells to targeted peripheral neuronal differentiation and observed intra-lysosomal globotriaosylceramide accumulations in somas and neurites of Fabry sensory neurons using super-resolution microscopy. At functional level, patch-clamp analysis revealed a hyperpolarizing shift of voltage-gated sodium channel steady-state inactivation kinetics in isogenic control neurons compared with healthy control neurons (P < 0.001). Moreover, we demonstrate a drastic increase in Fabry sensory neuron calcium levels at 39°C mimicking clinical fever (P < 0.001). This pathophysiological phenotype was accompanied by thinning of neurite calibres in sensory neurons differentiated from induced pluripotent stem cells derived from Fabry patients compared with healthy control cells (P < 0.001). Linear-nonlinear cascade models fit to spiking responses revealed that Fabry cell lines exhibit altered single neuron encoding properties relative to control. We further observed mitochondrial aggregation at sphingolipid accumulations within Fabry sensory neurites utilizing a click chemistry approach together with mitochondrial dysmorphism compared with healthy control cells. We pioneer pilot insights into the cellular mechanisms contributing to pain, thermal hyposensitivity and denervation in Fabry small fibre neuropathy and pave the way for further mechanistic in vitro studies in Fabry disease and the development of novel treatment approaches.
Collapse
Affiliation(s)
- Thomas Klein
- Department of Neurology, University Hospital Würzburg, 97080 Würzburg, Germany
| | - Julia Grüner
- Department of Neurology, University Hospital Würzburg, 97080 Würzburg, Germany
| | - Maximilian Breyer
- Department of Neurology, University Hospital Würzburg, 97080 Würzburg, Germany
| | - Jan Schlegel
- Department of Biotechnology and Biophysics, University of Würzburg, 97074 Würzburg, Germany
| | | | - Lukas Hofmann
- Department of Neurology, University Hospital Würzburg, 97080 Würzburg, Germany
| | - Kevin Gauss
- Medical Biophysics, Institute for Physiology and Pathophysiology, Heidelberg University, 69120 Heidelberg, Germany
| | - Rebecca Mease
- Medical Biophysics, Institute for Physiology and Pathophysiology, Heidelberg University, 69120 Heidelberg, Germany
| | - Christoph Erbacher
- Department of Neurology, University Hospital Würzburg, 97080 Würzburg, Germany
| | - Laura Finke
- Department of Neurology, University Hospital Würzburg, 97080 Würzburg, Germany
| | - Alexandra Klein
- Department of Neurology, University Hospital Würzburg, 97080 Würzburg, Germany
| | - Katharina Klug
- Department of Neurology, University Hospital Würzburg, 97080 Würzburg, Germany
| | | | - Bettina Vignolo
- Department of Neurology, University Hospital Würzburg, 97080 Würzburg, Germany
| | - Sebastian Reinhard
- Department of Biotechnology and Biophysics, University of Würzburg, 97074 Würzburg, Germany
| | - Tamara Schneider
- Institute for Human Genetics, University of Würzburg, 97074 Würzburg, Germany
| | - Katharina Günther
- Institute of Anatomy and Cell Biology, University of Würzburg, 97070 Würzburg, Germany
| | - Julian Fink
- Institute of Organic Chemistry, University of Würzburg, 97074 Würzburg, Germany
| | - Jan Dudek
- Comprehensive Heart Failure Center CHFC, University Hospital Würzburg, 97080 Würzburg, Germany
| | - Christoph Maack
- Comprehensive Heart Failure Center CHFC, University Hospital Würzburg, 97080 Würzburg, Germany
| | - Eva Klopocki
- Institute for Human Genetics, University of Würzburg, 97074 Würzburg, Germany
| | - Jürgen Seibel
- Institute of Organic Chemistry, University of Würzburg, 97074 Würzburg, Germany
| | - Frank Edenhofer
- Institute of Anatomy and Cell Biology, University of Würzburg, 97070 Würzburg, Germany
| | - Erhard Wischmeyer
- Institute of Physiology, University of Würzburg, 97070 Würzburg, Germany
| | - Markus Sauer
- Department of Biotechnology and Biophysics, University of Würzburg, 97074 Würzburg, Germany
| | - Nurcan Üçeyler
- Department of Neurology, University Hospital Würzburg, 97080 Würzburg, Germany
- Würzburg Fabry Center for Interdisciplinary Therapy (FAZIT), University Hospital Würzburg, 97080 Würzburg, Germany
| |
Collapse
|
12
|
Baka P, Steenken L, Escolano‐Lozano F, Steffen F, Papagianni A, Sommer C, Pogatzki‐Zahn E, Hirsch S, Protopapa M, Bittner S, Birklein F. Studying serum neurofilament light chain levels as a potential new biomarker for small fiber neuropathy. Eur J Neurol 2024; 31:e16192. [PMID: 38189534 PMCID: PMC11235889 DOI: 10.1111/ene.16192] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/01/2023] [Accepted: 12/11/2023] [Indexed: 01/09/2024]
Abstract
BACKGROUND AND PURPOSE Diagnosing small fiber neuropathies can be challenging. To address this issue, whether serum neurofilament light chain (sNfL) could serve as a potential biomarker of damage to epidermal Aδ- and C-fibers was tested. METHODS Serum NfL levels were assessed in 30 patients diagnosed with small fiber neuropathy and were compared to a control group of 19 healthy individuals. Electrophysiological studies, quantitative sensory testing and quantification of intraepidermal nerve fiber density after skin biopsy were performed in both the proximal and distal leg. RESULTS Serum NfL levels were not increased in patients with small fiber neuropathy compared to healthy controls (9.1 ± 3.9 and 9.4 ± 3.8, p = 0.83) and did not correlate with intraepidermal nerve fiber density at the lateral calf or lateral thigh or with other parameters of small fiber impairment. CONCLUSION Serum NfL levels cannot serve as a biomarker for small fiber damage.
Collapse
Affiliation(s)
- Panoraia Baka
- Department of NeurologyUniversity Medical Center of the Johannes Gutenberg University MainzMainzGermany
| | - Livia Steenken
- Department of NeurologyUniversity Medical Center of the Johannes Gutenberg University MainzMainzGermany
| | - Fabiola Escolano‐Lozano
- Department of NeurologyUniversity Medical Center of the Johannes Gutenberg University MainzMainzGermany
| | - Falk Steffen
- Department of NeurologyUniversity Medical Center of the Johannes Gutenberg University MainzMainzGermany
| | | | - Claudia Sommer
- Department of NeurologyUniversity Hospital of WürzburgWürzburgGermany
| | - Esther Pogatzki‐Zahn
- Department of Anaesthesiology, Intensive Care and Pain MedicineUniversity Hospital MünsterMünsterGermany
| | - Silke Hirsch
- Department of NeurologyUniversity Medical Center of the Johannes Gutenberg University MainzMainzGermany
| | - Maria Protopapa
- Department of NeurologyUniversity Medical Center of the Johannes Gutenberg University MainzMainzGermany
| | - Stefan Bittner
- Department of NeurologyUniversity Medical Center of the Johannes Gutenberg University MainzMainzGermany
| | - Frank Birklein
- Department of NeurologyUniversity Medical Center of the Johannes Gutenberg University MainzMainzGermany
| |
Collapse
|
13
|
Gad H, Kalra S, Pinzon R, Garcia RAN, Yotsombut K, Coetzee A, Nafach J, Lim LL, Fletcher PE, Lim V, Malik RA. Earlier diagnosis of peripheral neuropathy in primary care: A call to action. J Peripher Nerv Syst 2024; 29:28-37. [PMID: 38268316 DOI: 10.1111/jns.12613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 01/10/2024] [Accepted: 01/12/2024] [Indexed: 01/26/2024]
Abstract
Peripheral neuropathy (PN) often remains undiagnosed (~80%). Earlier diagnosis of PN may reduce morbidity and enable earlier risk factor reduction to limit disease progression. Diabetic peripheral neuropathy (DPN) is the most common PN and the 10 g monofilament is endorsed as an inexpensive and easily performed test for DPN. However, it only detects patients with advanced neuropathy at high risk of foot ulceration. There are many validated questionnaires to diagnose PN, but they can be time-consuming and have complex scoring systems. Primary care physicians (PCPs) have busy clinics and lack access to a readily available screening method to diagnose PN. They would prefer a short, simple, and accurate tool to screen for PN. Involving the patient in the screening process would not only reduce the time a physician requires to make a diagnosis but would also empower the patient. Following an expert meeting of diabetologists and neurologists from the Middle East, South East Asia and Latin America, a consensus was formulated to help improve the diagnosis of PN in primary care using a simple tool for patients to screen themselves for PN followed by a consultation with the physician to confirm the diagnosis.
Collapse
Affiliation(s)
- Hoda Gad
- Research Department, Weill Cornell Medicine-Qatar, Doha, Qatar
| | - Sanjay Kalra
- Department of Endocrinology, Bharti Hospital, Karnal, India
| | - Rizaldy Pinzon
- Neurology Department of the Bethesda, General Hospital Yogyakarta, Yogyakarta, Indonesia
| | - Rey-An Nino Garcia
- College of Medicine, De LA Salle, Health Medical and Science Institute College of Medicine, Manila, Philippines
| | - Kitiyot Yotsombut
- Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Ankia Coetzee
- Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Jalal Nafach
- Dubai Diabetes Center, Dubai Academic Health Corporation, Dubai, UAE
| | - Lee-Ling Lim
- Department of Medicine, Diabetes Care Unit, University of Malaya, Kuala Lumpur, Malaysia
| | - Pablo E Fletcher
- Endocrinology Department, Medical School, University of Panama, Panama, Panama
| | - Vivien Lim
- Endocrinology Department, Gleneagles Hospital, Singapore, Singapore
| | - Rayaz A Malik
- Research Department, Weill Cornell Medicine-Qatar, Doha, Qatar
- Institute of Cardiovascular Medicine, University of Manchester, Manchester, UK
| |
Collapse
|
14
|
Breyer M, Grüner J, Klein A, Finke L, Klug K, Sauer M, Üçeyler N. In vitro characterization of cells derived from a patient with the GLA variant c.376A>G (p.S126G) highlights a non-pathogenic role in Fabry disease. Mol Genet Metab Rep 2024; 38:101029. [PMID: 38469097 PMCID: PMC10926200 DOI: 10.1016/j.ymgmr.2023.101029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 11/17/2023] [Accepted: 11/20/2023] [Indexed: 03/13/2024] Open
Abstract
Fabry disease (FD) is a life-limiting disorder characterized by intracellular globotriaosylceramide (Gb3) accumulations. The underlying α-galactosidase A (α-GAL A) deficiency is caused by variants in the gene GLA. Variants of unknown significance (VUS) are frequently found in GLA and challenge clinical management. Here, we investigated a 49-year old man with cryptogenic lacunar cerebral stroke and the chance finding of the VUS S126G, who was sent to our center for diagnosis and initiation of a costly and life-long FD-specific treatment. We combined clinical examination with in vitro investigations of dermal fibroblasts (HDF), induced pluripotent stem cells (iPSC), and iPSC-derived sensory neurons. We analyzed α-GAL A activity in iPSC, Gb3 accumulation in all three cell types, and action potential firing in sensory neurons. Neurological examination and small nerve fiber assessment was normal except for reduced distal skin innervation. S126G iPSC showed normal α-GAL A activity compared to controls and no Gb3 deposits were found in all three cell types. Baseline electrophysiological characteristics of S126G neurons showed no difference compared to healthy controls as investigated by patch-clamp recordings. We pioneer multi-level cellular characterization of the VUS S126G using three cell types derived from a patient and provide further evidence for the benign nature of S126G in GLA, which is of great importance in the management of such cases in clinical practice.
Collapse
Affiliation(s)
- Maximilian Breyer
- Department of Neurology, University of Würzburg, 97080 Würzburg, Germany
| | - Julia Grüner
- Department of Neurology, University of Würzburg, 97080 Würzburg, Germany
| | - Alexandra Klein
- Department of Neurology, University of Würzburg, 97080 Würzburg, Germany
| | - Laura Finke
- Department of Neurology, University of Würzburg, 97080 Würzburg, Germany
| | - Katharina Klug
- Department of Neurology, University of Würzburg, 97080 Würzburg, Germany
| | - Markus Sauer
- Department of Biophysics and Biotechnology, Biocenter, University of Würzburg, 97074 Würzburg, Germany
| | - Nurcan Üçeyler
- Department of Neurology, University of Würzburg, 97080 Würzburg, Germany
- Würzburg Fabry Center for Interdisciplinary Therapy (FAZIT), University of Würzburg, 97080 Würzburg, Germany
| |
Collapse
|
15
|
Erbacher C, Britz S, Dinkel P, Klein T, Sauer M, Stigloher C, Üçeyler N. Interaction of human keratinocytes and nerve fiber terminals at the neuro-cutaneous unit. eLife 2024; 13:e77761. [PMID: 38225894 PMCID: PMC10791129 DOI: 10.7554/elife.77761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 12/19/2023] [Indexed: 01/17/2024] Open
Abstract
Traditionally, peripheral sensory neurons are assumed as the exclusive transducers of external stimuli. Current research moves epidermal keratinocytes into focus as sensors and transmitters of nociceptive and non-nociceptive sensations, tightly interacting with intraepidermal nerve fibers at the neuro-cutaneous unit. In animal models, epidermal cells establish close contacts and ensheath sensory neurites. However, ultrastructural morphological and mechanistic data examining the human keratinocyte-nerve fiber interface are sparse. We investigated this exact interface in human skin applying super-resolution array tomography, expansion microscopy, and structured illumination microscopy. We show keratinocyte ensheathment of afferents and adjacent connexin 43 contacts in native skin and have applied a pipeline based on expansion microscopy to quantify these parameter in skin sections of healthy participants versus patients with small fiber neuropathy. We further derived a fully human co-culture system, visualizing ensheathment and connexin 43 plaques in vitro. Unraveling human intraepidermal nerve fiber ensheathment and potential interaction sites advances research at the neuro-cutaneous unit. These findings are crucial on the way to decipher the mechanisms of cutaneous nociception.
Collapse
Affiliation(s)
| | - Sebastian Britz
- Imaging Core Facility, Biocenter, University of WürzburgWürzburgGermany
| | - Philine Dinkel
- Department of Neurology, University Hospital of WürzburgWürzburgGermany
| | - Thomas Klein
- Department of Neurology, University Hospital of WürzburgWürzburgGermany
| | - Markus Sauer
- Department of Biotechnology and Biophysics, University of WürzburgWürzburgGermany
| | | | - Nurcan Üçeyler
- Department of Neurology, University Hospital of WürzburgWürzburgGermany
| |
Collapse
|
16
|
Jänsch S, Evdokimov D, Egenolf N, Meyer zu Altenschildesche C, Kreß L, Üçeyler N. Distinguishing fibromyalgia syndrome from small fiber neuropathy: a clinical guide. Pain Rep 2024; 9:e1136. [PMID: 38283649 PMCID: PMC10811691 DOI: 10.1097/pr9.0000000000001136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 11/04/2023] [Accepted: 12/09/2023] [Indexed: 01/30/2024] Open
Abstract
Introduction Fibromyalgia syndrome (FMS) and small fiber neuropathy (SFN) are distinct pain conditions that share commonalities and may be challenging as for differential diagnosis. Objective To comprehensively investigate clinical characteristics of women with FMS and SFN to determine clinically applicable parameters for differentiation. Methods We retrospectively analyzed medical records of 158 women with FMS and 53 with SFN focusing on pain-specific medical and family history, accompanying symptoms, additional diseases, and treatment. We investigated data obtained using standardized pain, depression, and anxiety questionnaires. We further analyzed test results and findings obtained in standardized small fiber tests. Results FMS patients were on average ten years younger at symptom onset, described higher pain intensities requiring frequent change of pharmaceutics, and reported generalized pain compared to SFN. Pain in FMS was accompanied by irritable bowel or sleep disturbances, and in SFN by paresthesias, numbness, and impaired glucose metabolism (P < 0.01 each). Family history was informative for chronic pain and affective disorders in FMS (P < 0.001) and for neurological disorders in SFN patients (P < 0.001). Small fiber pathology in terms of skin denervation and/or thermal sensory threshold elevation was present in 110/158 (69.7 %) FMS patients and 39/53 (73.6 %) SFN patients. FMS patients mainly showed proximally reduced skin innervation and higher corneal nerve branch densities (p<0.001) whereas SFN patients were characterized by reduced cold detection and prolonged electrical A-delta conduction latencies (P < 0.05). Conclusions Our data show that FMS and SFN differ substantially. Detailed pain, drug and family history, investigating blood glucose metabolism, and applying differential small fiber tests may help to improve diagnostic differentiation and targeted therapy.
Collapse
Affiliation(s)
- Sarah Jänsch
- Department of Neurology, University Hospital of Würzburg, Würzburg, Germany. Meyer zu Altenschildesche is now with the Department of Dermatology, University Hospital Leipzig, Leipzig, Germany
| | - Dimitar Evdokimov
- Department of Neurology, University Hospital of Würzburg, Würzburg, Germany. Meyer zu Altenschildesche is now with the Department of Dermatology, University Hospital Leipzig, Leipzig, Germany
| | - Nadine Egenolf
- Department of Neurology, University Hospital of Würzburg, Würzburg, Germany. Meyer zu Altenschildesche is now with the Department of Dermatology, University Hospital Leipzig, Leipzig, Germany
| | - Caren Meyer zu Altenschildesche
- Department of Neurology, University Hospital of Würzburg, Würzburg, Germany. Meyer zu Altenschildesche is now with the Department of Dermatology, University Hospital Leipzig, Leipzig, Germany
| | - Luisa Kreß
- Department of Neurology, University Hospital of Würzburg, Würzburg, Germany. Meyer zu Altenschildesche is now with the Department of Dermatology, University Hospital Leipzig, Leipzig, Germany
| | - Nurcan Üçeyler
- Department of Neurology, University Hospital of Würzburg, Würzburg, Germany. Meyer zu Altenschildesche is now with the Department of Dermatology, University Hospital Leipzig, Leipzig, Germany
| |
Collapse
|
17
|
Løseth S, Nebuchennykh M, Brokstad RT, Lindal S, Mellgren SI. Cutaneous nerve biopsy in patients with symptoms of small fiber neuropathy: a retrospective study. Scand J Pain 2024; 24:sjpain-2023-0071. [PMID: 38381703 DOI: 10.1515/sjpain-2023-0071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 11/20/2023] [Indexed: 02/23/2024]
Abstract
OBJECTIVES We aimed to investigate to what extent small fiber tests were abnormal in an unselected retrospective patient material with symptoms suggesting that small fiber neuropathy (SFN) could be present, and to evaluate possible gender differences. METHODS Nerve conduction studies (NCS), skin biopsy for determination of intraepidermal nerve fiber density (IENFD) and quantitative sensory testing (QST) were performed. Z-scores were calculated from reference materials to adjust for the effects of age and gender/height. RESULTS Two hundred and three patients, 148 females and 55 males had normal NCS and were considered to have possible SFN. 45.3 % had reduced IENFD, 43.2 % of the females and 50.9 % of the males. Mean IENFD was 7.3 ± 2.6 fibers/mm in females and 6.1 ± 2.3 in males (p<0.001), but the difference was not significant when adopting Z-scores. Comparison of gender differences between those with normal and abnormal IENFD were not significant when Z-scores were applied. QST was abnormal in 50 % of the patients (48.9 % in females and 52.9 % in males). In the low IENFD group 45 cases out of 90 (50 %) were recorded with abnormal QST. In those with normal IENFD 51 of 102 (50 %) showed abnormal QST. CONCLUSIONS Less than half of these patients had reduced IENFD, and 50 % had abnormal QST. There were no gender differences. A more strict selection of patients might have increased the sensitivity, but functional changes in unmyelinated nerve fibers are also known to occur with normal IENFD. Approval to collect data was given by the Norwegian data protection authority at University Hospital of North Norway (Project no. 02028).
Collapse
Affiliation(s)
- Sissel Løseth
- Department of Neurology and Clinical Neurophysiology, University Hospital of North Norway, Tromsø, Norway
- Department of Clinical Medicine, UiT the Artic University of Norway, Tromsø, Norway
| | - Maria Nebuchennykh
- Department of Neurology and Clinical Neurophysiology, University Hospital of North Norway, Tromsø, Norway
| | - Ruth Therese Brokstad
- Department of Neurology and Clinical Neurophysiology, University Hospital of North Norway, Tromsø, Norway
| | - Sigurd Lindal
- Department of Pathology, University Hospital of North Norway, Tromsø, Norway
- Department of Clinical Medicine, UiT the Artic University of Norway, Tromsø, Norway
| | - Svein Ivar Mellgren
- Department of Neurology and Clinical Neurophysiology, University Hospital of North Norway, Tromsø, Norway
- Department of Clinical Medicine, UiT the Artic University of Norway, Tromsø, Norway
| |
Collapse
|
18
|
Silsby M, Feldman EL, Dortch RD, Roth A, Haroutounian S, Rajabally YA, Vucic S, Shy ME, Oaklander AL, Simon NG. Advances in diagnosis and management of distal sensory polyneuropathies. J Neurol Neurosurg Psychiatry 2023; 94:1025-1039. [PMID: 36997315 PMCID: PMC10544692 DOI: 10.1136/jnnp-2021-328489] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 02/23/2023] [Indexed: 04/01/2023]
Abstract
Distal sensory polyneuropathy (DSP) is characterised by length-dependent, sensory-predominant symptoms and signs, including potentially disabling symmetric chronic pain, tingling and poor balance. Some patients also have or develop dysautonomia or motor involvement depending on whether large myelinated or small fibres are predominantly affected. Although highly prevalent, diagnosis and management can be challenging. While classic diabetes and toxic causes are well-recognised, there are increasingly diverse associations, including with dysimmune, rheumatological and neurodegenerative conditions. Approximately half of cases are initially considered idiopathic despite thorough evaluation, but often, the causes emerge later as new symptoms develop or testing advances, for instance with genetic approaches. Improving and standardising DSP metrics, as already accomplished for motor neuropathies, would permit in-clinic longitudinal tracking of natural history and treatment responses. Standardising phenotyping could advance research and facilitate trials of potential therapies, which lag so far. This review updates on recent advances and summarises current evidence for specific treatments.
Collapse
Affiliation(s)
- Matthew Silsby
- Neurology, Westmead Hospital, Westmead, New South Wales, Australia
- Brain and Nerve Research Centre, Sydney Medical School, The University of Sydney, New South Wales, Australia
| | - Eva L Feldman
- Department of Neurology, University of Michigan, Ann Arbor, Michigan, USA
| | - Richard D Dortch
- Division of Neuroimaging Research, Barrow Neurological Institute, Phoenix, Arizona, USA
- Department of Radiology and Radiological Sciences, Vanderbilt University Institute of Imaging Science, Nashville, Tennessee, USA
- Department of Biomedical Engineering, Vanderbilt University Institute of Imaging Science, Nashville, Tennessee, USA
| | - Alison Roth
- Division of Neuroimaging Research, Barrow Neurological Institute, Phoenix, Arizona, USA
| | - Simon Haroutounian
- Department of Anesthesiology, Washington University School of Medicine in Saint Louis, St Louis, Missouri, USA
| | - Yusuf A Rajabally
- Inflammatory Neuropathy Clinic, Department of Neurology, University Hospitals Birmingham, Aston Medical School, Aston University, Birmingham, UK
| | - Steve Vucic
- Brain and Nerve Research Centre, Sydney Medical School, The University of Sydney, New South Wales, Australia
| | - Michael E Shy
- Department of Neurology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Anne Louise Oaklander
- Nerve Unit, Departments of Neurology and Pathology (Neuropathology), Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Neil G Simon
- Northern Beaches Clinical School, Macquarie University, Frenchs Forest, New South Wales, Australia
| |
Collapse
|
19
|
Bjørnkaer A, Gaist LM, Holbech JV, Gaist D, Wirenfeldt M, Sindrup SH, Krøigård T. Corneal confocal microscopy in small and mixed fiber neuropathy-Comparison with skin biopsy and cold detection in a large prospective cohort. J Peripher Nerv Syst 2023; 28:664-676. [PMID: 37651181 DOI: 10.1111/jns.12595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/28/2023] [Accepted: 08/29/2023] [Indexed: 09/01/2023]
Abstract
BACKGROUND AND AIMS The diagnosis of small fiber neuropathy (SFN) is supported by reduced intraepidermal nerve fiber density (IENFD). The noninvasive method corneal confocal microscopy (CCM) has the potential to be a practical alternative. We aimed to estimate the diagnostic accuracy of CCM compared with IENFD and cold detection thresholds (CDT) in SFN and mixed fiber neuropathy (MFN). METHODS CCM was performed in an unselected prospective cohort of patients with a clinical suspicion of polyneuropathy. Predefined criteria were used to classify SFN and MFN. Neuropathy scores, including the Utah early neuropathy scale (UENS), were used to describe severity. Patients with established other diagnoses were used for diagnostic specificity calculations. RESULTS Data were taken from 680 patients, of which 244 had SFN or MFN. There was no significant difference in sensitivities [95%CI] of CCM (0.44 [0.38-0.51]), IEFND (0.43 [0.36-0.49]), and CDT (0.34 [0.29-0.41]). CCM specificity (0.75 [0.69-0.81]) was lower (p = .044) than for IENFD (0.99 [0.96-1.00]) but not than for CDT (0.81 [0.75-0.86]). The AUCs of the ROC curves of 0.63, 0.63 and 0.74 respectively, was lower for corneal nerve fiber density (p = .0012) and corneal nerve fiber length (p = .0015) compared with IENFD. While UENS correlated significantly with IENFD (p = .0016; R2 = .041) and CDT (p = .0002; R2 = .056), it did not correlate with CCM measures. INTERPRETATION The diagnostic utility of CCM in SNF and MFN is limited by the low specificity compared with skin biopsy. Further, CCM is less suitable than skin biopsy and CDT as a marker for neuropathy severity.
Collapse
Affiliation(s)
- Asger Bjørnkaer
- Neurology Research Unit, Odense University Hospital, Odense, Denmark
- University of Southern Denmark, Odense, Denmark
| | - Laura M Gaist
- Neurology Research Unit, Odense University Hospital, Odense, Denmark
- University of Southern Denmark, Odense, Denmark
| | - Jakob V Holbech
- Neurology Research Unit, Odense University Hospital, Odense, Denmark
- University of Southern Denmark, Odense, Denmark
| | - David Gaist
- Neurology Research Unit, Odense University Hospital, Odense, Denmark
- University of Southern Denmark, Odense, Denmark
| | - Martin Wirenfeldt
- University of Southern Denmark, Odense, Denmark
- Pathology Research Unit, Odense University Hospital, Odense, Denmark
| | - Søren H Sindrup
- Neurology Research Unit, Odense University Hospital, Odense, Denmark
- University of Southern Denmark, Odense, Denmark
- Odense Patient data Explorative Network (OPEN), Odense University Hospital, Odense, Denmark
| | - Thomas Krøigård
- Neurology Research Unit, Odense University Hospital, Odense, Denmark
- University of Southern Denmark, Odense, Denmark
| |
Collapse
|
20
|
Finsterer J. Small fiber neuropathy with normal intra-epidermal nerve fiber density but reduced sweat gland density after third BNT162b2 shot. Arch Clin Cases 2023; 10:153-156. [PMID: 38026108 PMCID: PMC10660248 DOI: 10.22551/2023.41.1004.10264] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2023] Open
Abstract
Small fiber neuropathy (SFN) has not been reported after the third dose of BNT162b2 in a previously healthy vaccinee. A 44-year-old previously healthy female developed pain and sensory disturbances in varying locations after the third BNT162b2 dose. Additionally, she developed recurrent tinnitus, headaches, arthralgia, neck stiffness, and motor dysfunction. A skin biopsy five months after symptom onset revealed normal intra-epidermal nerve fiber density (IENFD) but reduced sweat gland nerve fiber density. She is intended for a first series of intravenous immunoglobulins. SARS-CoV-2 vaccinations may be complicated by SFN; the diagnosis SARS-CoV-2 vaccination SFN may be delayed; IENFD may be normal, but sweat gland nerve fiber density may document SFN; and full recovery after SFN cannot always be achieved quickly.
Collapse
|
21
|
Pacifico P, Coy-Dibley JS, Miller RJ, Menichella DM. Peripheral mechanisms of peripheral neuropathic pain. Front Mol Neurosci 2023; 16:1252442. [PMID: 37781093 PMCID: PMC10537945 DOI: 10.3389/fnmol.2023.1252442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 08/14/2023] [Indexed: 10/03/2023] Open
Abstract
Peripheral neuropathic pain (PNP), neuropathic pain that arises from a damage or disease affecting the peripheral nervous system, is associated with an extremely large disease burden, and there is an increasing and urgent need for new therapies for treating this disorder. In this review we have highlighted therapeutic targets that may be translated into disease modifying therapies for PNP associated with peripheral neuropathy. We have also discussed how genetic studies and novel technologies, such as optogenetics, chemogenetics and single-cell RNA-sequencing, have been increasingly successful in revealing novel mechanisms underlying PNP. Additionally, consideration of the role of non-neuronal cells and communication between the skin and sensory afferents is presented to highlight the potential use of drug treatment that could be applied topically, bypassing drug side effects. We conclude by discussing the current difficulties to the development of effective new therapies and, most importantly, how we might improve the translation of targets for peripheral neuropathic pain identified from studies in animal models to the clinic.
Collapse
Affiliation(s)
- Paola Pacifico
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - James S. Coy-Dibley
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Richard J. Miller
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Daniela M. Menichella
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| |
Collapse
|
22
|
Raasing LR, Veltkamp M, Datema M, Grutters JC, Vogels OJ. Thermal threshold testing: call for a balance between the number of measurements and abnormalities in the diagnosis of sarcoidosis-associated small fiber neuropathy. Pain Rep 2023; 8:e1095. [PMID: 37674973 PMCID: PMC10479475 DOI: 10.1097/pr9.0000000000001095] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/19/2023] [Accepted: 07/27/2023] [Indexed: 09/08/2023] Open
Abstract
Introduction Several recent studies of diagnosing small fiber neuropathy (SFN) have shown a lack of uniformity in thermal threshold testing (TTT) or quantitative sensory testing (QST) which makes it a challenge to compare the data. It is known that the chance of finding an abnormality increases with increasing number of measurements. Objectives With this study, we first wanted to investigate whether TTT could benefit from a new approach focusing on the balance between the number of measurements, depending on the selection of parameters and measuring sites, and on number of abnormalities (NOAs). Second, we wanted to address the role of the method of levels (MLe) in possible desensitization during TTT measurements. Methods One hundred seventeen participants were included (48 patients with sarcoidosis with probable SFN, 49 without SFN, and 20 healthy controls). Thermal threshold testing measurements and Small Fiber Neuropathy Screening List (SFNSL) questionnaire were used to assess SFN. Results A combination of measuring all thermal threshold parameters at both feet except for MLe showed the best diagnostic performance. Increasing TTT NOAs correlates with the severity of SFN. Adding the SFNSL questionnaire further improves diagnostic performance. Discussion Looking at TTT NOAs in all TTT parameters except for MLe at both feet should be considered as a new approach to improve the consistency and balance between the selection of TTT parameters, measuring sites, and definition of "abnormal QST." Moreover, the SFNSL questionnaire is a valuable tool to quantify SFN symptoms and could improve SFN diagnosis.
Collapse
Affiliation(s)
- Lisette R.M. Raasing
- ILD Center of Excellence, Department of Pulmonology, St Antonius Hospital, Nieuwegein, the Netherlands
| | - Marcel Veltkamp
- ILD Center of Excellence, Department of Pulmonology, St Antonius Hospital, Nieuwegein, the Netherlands
- Division of Heart and Lungs, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Mirjam Datema
- Department of Clinical Neurophysiology, St Antonius Hospital, Nieuwegein, the Netherlands
| | - Jan C. Grutters
- ILD Center of Excellence, Department of Pulmonology, St Antonius Hospital, Nieuwegein, the Netherlands
- Division of Heart and Lungs, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Oscar J.M. Vogels
- ILD Center of Excellence, Department of Neurology, St Antonius Hospital, Nieuwegein, the Netherlands
| |
Collapse
|
23
|
Di Stefano G, Falco P, Galosi E, De Stefano G, Di Pietro G, Leone C, Litewczuk D, Tramontana L, Strano S, Truini A. Pain associated with COVID-19 vaccination is unrelated to skin biopsy abnormalities. Pain Rep 2023; 8:e1089. [PMID: 38225959 PMCID: PMC10789449 DOI: 10.1097/pr9.0000000000001089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 04/07/2023] [Accepted: 05/05/2023] [Indexed: 01/17/2024] Open
Abstract
Introduction Previous clinical observations raised the possibility that COVID-19 vaccination might trigger a small-fibre neuropathy. Objectives In this uncontrolled observational study, we aimed to identify small fibre damage in patients complaining of generalized sensory symptoms and pain after COVID-19 vaccination. Methods We collected clinical data, including a questionnaire for assessing autonomic symptoms (Composite Autonomic Symptom Score-31), and investigated quantitative sensory testing (QST) and skin biopsy in 15 prospectively enrolled patients with generalized sensory symptoms and pain after COVID-19 vaccination. Nine patients complaining of orthostatic intolerance also underwent cardiovascular autonomic tests. Results We found that all patients experienced widespread pain, and most of them (11 of 15) had a fibromyalgia syndrome. All patients had normal skin biopsy findings, and in the 9 patients with orthostatic intolerance, cardiovascular autonomic tests showed normal findings. Nevertheless, 5 patients had cold and warm detection abnormalities at the QST investigation. Conclusions In our study, most patients complaining of generalized sensory symptoms and pain after COVID-19 vaccination had clinical and diagnostic test findings compatible with a fibromyalgia syndrome. Although the abnormal QST findings we found in 5 patients might be compatible with a small-fibre neuropathy, they should be cautiously interpreted given the psychophysical characteristics of this diagnostic test. Further larger controlled studies are needed to define precisely the association between small fibre damage and COVID-19 vaccination.
Collapse
Affiliation(s)
| | - Pietro Falco
- Department of Human Neuroscience, Sapienza University, Rome, Italy
| | - Eleonora Galosi
- Department of Human Neuroscience, Sapienza University, Rome, Italy
| | | | | | - Caterina Leone
- Department of Human Neuroscience, Sapienza University, Rome, Italy
| | - Daniel Litewczuk
- Department of Human Neuroscience, Sapienza University, Rome, Italy
| | | | - Stefano Strano
- Dipartimento Cuore e Grossi Vasi, Sapienza University, Rome, Italy
| | - Andrea Truini
- Department of Human Neuroscience, Sapienza University, Rome, Italy
| |
Collapse
|
24
|
Truini A, Aleksovska K, Anderson CC, Attal N, Baron R, Bennett DL, Bouhassira D, Cruccu G, Eisenberg E, Enax-Krumova E, Davis KD, Di Stefano G, Finnerup NB, Garcia-Larrea L, Hanafi I, Haroutounian S, Karlsson P, Rakusa M, Rice ASC, Sachau J, Smith BH, Sommer C, Tölle T, Valls-Solé J, Veluchamy A. Joint European Academy of Neurology-European Pain Federation-Neuropathic Pain Special Interest Group of the International Association for the Study of Pain guidelines on neuropathic pain assessment. Eur J Neurol 2023; 30:2177-2196. [PMID: 37253688 DOI: 10.1111/ene.15831] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 04/03/2023] [Accepted: 04/12/2023] [Indexed: 06/01/2023]
Abstract
BACKGROUND AND PURPOSE In these guidelines, we aimed to develop evidence-based recommendations for the use of screening questionnaires and diagnostic tests in patients with neuropathic pain (NeP). METHODS We systematically reviewed studies providing information on the sensitivity and specificity of screening questionnaires, and quantitative sensory testing, neurophysiology, skin biopsy, and corneal confocal microscopy. We also analysed how functional neuroimaging, peripheral nerve blocks, and genetic testing might provide useful information in diagnosing NeP. RESULTS Of the screening questionnaires, Douleur Neuropathique en 4 Questions (DN4), I-DN4 (self-administered DN4), and Leeds Assessment of Neuropathic Symptoms and Signs (LANSS) received a strong recommendation, and S-LANSS (self-administered LANSS) and PainDETECT weak recommendations for their use in the diagnostic pathway for patients with possible NeP. We devised a strong recommendation for the use of skin biopsy and a weak recommendation for quantitative sensory testing and nociceptive evoked potentials in the NeP diagnosis. Trigeminal reflex testing received a strong recommendation in diagnosing secondary trigeminal neuralgia. Although many studies support the usefulness of corneal confocal microscopy in diagnosing peripheral neuropathy, no study specifically investigated the diagnostic accuracy of this technique in patients with NeP. Functional neuroimaging and peripheral nerve blocks are helpful in disclosing pathophysiology and/or predicting outcomes, but current literature does not support their use for diagnosing NeP. Genetic testing may be considered at specialist centres, in selected cases. CONCLUSIONS These recommendations provide evidence-based clinical practice guidelines for NeP diagnosis. Due to the poor-to-moderate quality of evidence identified by this review, future large-scale, well-designed, multicentre studies assessing the accuracy of diagnostic tests for NeP are needed.
Collapse
Affiliation(s)
- Andrea Truini
- Department of Human Neuroscience, University Sapienza, Rome, Italy
| | - Katina Aleksovska
- European Academy of Neurology, Vienna, Austria
- Department of Neurology, Ss. Cyril and Methodius University, Skopje, North Macedonia
| | - Christopher C Anderson
- Division of Clinical and Translational Research, Department of Anesthesiology, Pain Center, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Nadine Attal
- Université Versailles Saint Quentin en Yvelines, Versailles, France
- Inserm U987, Pathophysiology and Clinical Pharmacology of Pain, Centre d'évaluation et de Traitement de la Douleur, Hôpital Ambroise Paré, Boulogne-Billancourt, France
| | - Ralf Baron
- Division of Neurological Pain Research and Therapy, Department of Neurology, Universitätsklinikum Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - David L Bennett
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Didier Bouhassira
- Inserm U987, Pathophysiology and Clinical Pharmacology of Pain, Centre d'évaluation et de Traitement de la Douleur, Hôpital Ambroise Paré, Boulogne-Billancourt, France
| | - Giorgio Cruccu
- Department of Human Neuroscience, University Sapienza, Rome, Italy
| | - Elon Eisenberg
- Faculty of Medicine, Technion, Israel Institute of Technology, Haifa, Israel
| | - Elena Enax-Krumova
- Department of Neurology, BG University Hospital Bergmannsheil, Ruhr-University Bochum, Bochum, Germany
| | - Karen Deborah Davis
- Division of Brain, Imaging, and Behaviour, Krembil Brain Institute, Krembil Research Institute, Toronto Western Hospital, University Health Network, Toronto, Ontario, Canada
| | | | - Nanna B Finnerup
- Department of Clinical Medicine, Danish Pain Research Centre, Aarhus University, Aarhus, Denmark
| | - Luis Garcia-Larrea
- Central Integration of Pain (NeuroPain) Lab-Lyon Neuroscience Research Centre, INSERM U1028, CNRS, UMR5292, Université Claude Bernard, Bron, France
- Centre D'évaluation et de Traitement de la Douleur, Hôpital Neurologique, Lyon, France
| | - Ibrahem Hanafi
- Department of Neurology, University Hospital Würzburg, Würzburg, Germany
| | - Simon Haroutounian
- Division of Clinical and Translational Research, Department of Anesthesiology, Pain Center, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Pall Karlsson
- Department of Clinical Medicine, Danish Pain Research Centre, Aarhus University, Aarhus, Denmark
- Core Centre for Molecular Morphology, Section for Stereology and Microscopy, Aarhus University, Aarhus, Denmark
| | - Martin Rakusa
- Division of Neurology, University Medical Centre Maribor, Maribor, Slovenia
| | - Andrew S C Rice
- Pain Research, Department of Surgery and Cancer, Imperial College London, London, UK
| | - Juliane Sachau
- Division of Neurological Pain Research and Therapy, Department of Neurology, Universitätsklinikum Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Blair H Smith
- Division of Population Health and Genomics, Ninewells Hospital and Medical School, University of Dundee, Dundee, UK
| | - Claudia Sommer
- Department of Neurology, University Hospital Würzburg, Würzburg, Germany
| | - Thomas Tölle
- Department of Neurology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Josep Valls-Solé
- Institut d'Investigació Biomèdica August Pi i Sunyer, Barcelona, Spain
| | - Abirami Veluchamy
- Division of Population Health and Genomics, Ninewells Hospital and Medical School, University of Dundee, Dundee, UK
| |
Collapse
|
25
|
Guldiken YC, Malik A, Petropoulos IN, Gad H, Elgassim E, Salivon I, Ponirakis G, Alam U, Malik RA. Where Art Thou O treatment for diabetic neuropathy: the sequel. Expert Rev Neurother 2023; 23:845-851. [PMID: 37602687 DOI: 10.1080/14737175.2023.2247163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 08/08/2023] [Indexed: 08/22/2023]
Abstract
INTRODUCTION Having lived through a pandemic and witnessed how regulatory approval processes can evolve rapidly; it is lamentable how we continue to rely on symptoms/signs and nerve conduction as primary endpoints for clinical trials in DPN. AREAS COVERED Small (Aδ and C) fibers are key to the genesis of pain, regulate skin blood flow, and play an integral role in the development of diabetic foot ulceration but continue to be ignored. This article challenges the rationale for the FDA insisting on symptoms/signs and nerve conduction as primary endpoints for clinical trials in DPN. EXPERT OPINION Quantitative sensory testing, intraepidermal nerve fiber density, and especially corneal confocal microscopy remain an after-thought, demoted at best to exploratory secondary endpoints in clinical trials of diabetic neuropathy. If pharma are to be given a fighting chance to secure approval for a new therapy for diabetic neuropathy, the FDA needs to reassess the evidence rather than rely on 'opinion' for the most suitable endpoint(s) in clinical trials of diabetic neuropathy.
Collapse
Affiliation(s)
- Yigit Can Guldiken
- Department of Neurology, Kocaeli University Research and Application Hospital, İzmit/Kocaeli, Turkey
| | - Ayesha Malik
- Barts and The London School of Medicine and Dentistry - Medicine, London, UK
| | | | - Hoda Gad
- Weill Cornell Medicine-Qatar, Qatar Foundation, Doha, Qatar
| | - Einas Elgassim
- Weill Cornell Medicine-Qatar, Qatar Foundation, Doha, Qatar
| | - Iuliia Salivon
- Weill Cornell Medicine-Qatar, Qatar Foundation, Doha, Qatar
| | | | - Uazman Alam
- Department of Cardiovascular and Metabolic Medicine, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK
| | - Rayaz A Malik
- Weill Cornell Medicine-Qatar, Qatar Foundation, Doha, Qatar
| |
Collapse
|
26
|
Chan ACY, Kumar S, Tan G, Wong HY, Ong JJY, Chandra B, Huang H, Sharma VK, Lai PS. Expanding the genetic causes of small-fiber neuropathy: SCN genes and beyond. Muscle Nerve 2023; 67:259-271. [PMID: 36448457 DOI: 10.1002/mus.27752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 10/31/2022] [Accepted: 11/06/2022] [Indexed: 12/05/2022]
Abstract
Small-fiber neuropathy (SFN) is a disorder that exclusively affects the small nerve fibers, sparing the large nerve fibers. Thinly myelinated Aδ-fibers and unmyelinated C-fibers are damaged, leading to development of neuropathic pain, thermal dysfunction, sensory symptoms, and autonomic disturbances. Although many SFNs are secondary and due to immunological causes or metabolic disturbances, the etiology is unknown in up to half of the patients. Over the years, this proportion of "idiopathic SFN" has decreased, as familial and genetic causes have been discovered, thus shifting a proportion of once "idiopathic" cases to the genetic category. After the discovery of SCN9A-gene variants in 2012, SCN10A and SCN11A variants have been found to be pathogenic in SFN. With improved accessibility of SFN diagnostic tools and genetic tests, many non-SCN variants and genetically inherited systemic diseases involving the small nerve fibers have also been described, but only scattered throughout the literature. There are 80 SCN variants described as causing SFN, 8 genes causing hereditary sensory autonomic neuropathies (HSAN) described with pure SFN, and at least 7 genes involved in genetically inherited systemic diseases associated with SFN. This systematic review aims to consolidate and provide an updated overview on the genetic variants of SFN to date---SCN genes and beyond. Awareness of these genetic causes of SFN is imperative for providing treatment directions, prognostication, and management of expectations for patients and their health-care providers.
Collapse
Affiliation(s)
- Amanda C Y Chan
- Division of Neurology, Department of Medicine, National University Hospital, Singapore, Singapore
- Yong Loo Ling School of Medicine, National University of Singapore, Singapore, Singapore
| | - Shivaram Kumar
- Yong Loo Ling School of Medicine, National University of Singapore, Singapore, Singapore
| | - Grace Tan
- Yong Loo Ling School of Medicine, National University of Singapore, Singapore, Singapore
| | - Hiu Yi Wong
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Hong Kong, China
- Hong Kong Center for Neurodegenerative Diseases, Hong Kong Science Park, Hong Kong, China
| | - Jonathan J Y Ong
- Division of Neurology, Department of Medicine, National University Hospital, Singapore, Singapore
- Yong Loo Ling School of Medicine, National University of Singapore, Singapore, Singapore
| | - Bharatendu Chandra
- Division of Neurology, Department of Medicine, National University Hospital, Singapore, Singapore
- Yong Loo Ling School of Medicine, National University of Singapore, Singapore, Singapore
- Division of Medical Genetics, University of Iowa, Iowa City, Iowa, USA
| | - Hua Huang
- Yong Loo Ling School of Medicine, National University of Singapore, Singapore, Singapore
| | - Vijay Kumar Sharma
- Division of Neurology, Department of Medicine, National University Hospital, Singapore, Singapore
- Yong Loo Ling School of Medicine, National University of Singapore, Singapore, Singapore
| | - Poh San Lai
- Yong Loo Ling School of Medicine, National University of Singapore, Singapore, Singapore
- Adjunct Faculty, Genome Institute of Singapore, Singapore, Singapore
| |
Collapse
|
27
|
Rasmussen TK, Karlsson P, Finnerup NB, Jensen TS, Nyengaard JR, Terkelsen AJ. Functional and structural markers of peripheral microvascular autonomic neuropathy. Muscle Nerve 2023; 67:146-153. [PMID: 36504143 PMCID: PMC10108116 DOI: 10.1002/mus.27770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 12/05/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022]
Abstract
INTRODUCTION/AIMS Autonomic dysfunction is a common complication of small-fiber neuropathy (SFN). In this study we aimed to assess the applicability of autonomic microvascular indices as a potential marker for SFN assessment. METHODS Fifteen patients with confirmed SFN (idiopathic neuropathy [n = 10], chemotherapy-induced peripheral neuropathy [n = 2], impaired glucose tolerance [n = 1], hereditary transthyretin amyloidosis (hATTR) [n = 1], pulmonary sarcoidosis [n = 1]) and 15 matched control subjects underwent assessment of vascular skin responses assessed through laser Doppler flowmetry and evaluation of microvascular vessel and nerve density in skin biopsies. All participants underwent peripheral autonomic evaluation by quantitative sudomotor axon reflex testing (QSART). RESULTS We found no significant differences in vascular skin responses, or in any microvascular skin biopsy markers, when comparing SFN with control subjects. We found no correlation between vascular skin responses and skin biopsy indices. We saw no significant difference in any microvascular indices when comparing subjects with and without impaired sudomotor function. DISCUSSION Our findings suggest markers of peripheral microvascular innervation and function are not associated with the diagnosis of SFN. Furthermore, we saw no association between microvascular markers and sudomotor function, suggesting that these are independent and unrelated components of the autonomic nervous system.
Collapse
Affiliation(s)
- Thorsten K Rasmussen
- Danish Pain Research Center, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Páll Karlsson
- Danish Pain Research Center, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.,Core Center for Molecular Morphology, Section for Stereology and Microscopy, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Nanna B Finnerup
- Danish Pain Research Center, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.,Department of Neurology, Aarhus University Hospital, Aarhus, Denmark
| | - Troels S Jensen
- Danish Pain Research Center, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Jens R Nyengaard
- Core Center for Molecular Morphology, Section for Stereology and Microscopy, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.,Department of Pathology, Aarhus University Hospital, Aarhus, Denmark
| | - Astrid J Terkelsen
- Danish Pain Research Center, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.,Department of Neurology, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
28
|
Kreß L, Egenolf N, Sommer C, Üçeyler N. Cytokine expression profiles in white blood cells of patients with small fiber neuropathy. BMC Neurosci 2023; 24:1. [PMID: 36604634 PMCID: PMC9817338 DOI: 10.1186/s12868-022-00770-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 12/20/2022] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND The role of cytokines in the pathophysiology, diagnosis, and prognosis of small fiber neuropathy (SFN) is incompletely understood. We studied expression profiles of selected pro- and anti-inflammatory cytokines in RNA from white blood cells (WBC) of patients with a medical history and a clinical phenotype suggestive for SFN and compared data with healthy controls. METHODS We prospectively recruited 52 patients and 21 age- and sex-matched healthy controls. Study participants were characterized in detail and underwent complete neurological examination. Venous blood was drawn for routine and extended laboratory tests, and for WBC isolation. Systemic RNA expression profiles of the pro-inflammatory cytokines interleukin (IL)-1ß, IL-2, IL-8, tumor necrosis factor-alpha (TNF) and the anti-inflammatory cytokines IL-4, IL-10, transforming growth factor beta-1 (TGF) were analyzed. Protein levels of IL-2, IL-8, and TNF were measured in serum of patients and controls. Receiver operating characteristic (ROC)-curve analysis was used to determine the accuracy of IL-2, IL-8, and TNF in differentiating patients and controls. To compare the potential discriminatory efficacy of single versus combined cytokines, equality of different AUCs was tested. RESULTS WBC gene expression of IL-2, IL-8, and TNF was higher in patients compared to healthy controls (IL-2: p = 0.02; IL-8: p = 0.009; TNF: p = 0.03) and discriminated between the groups (area under the curve (AUC) ≥ 0.68 for each cytokine) with highest diagnostic accuracy reached by combining the three cytokines (AUC = 0.81, sensitivity = 70%, specificity = 86%). Subgroup analysis revealed the following differences: IL-8 and TNF gene expression levels were higher in female patients compared to female controls (IL-8: p = 0.01; TNF: p = 0.03). The combination of TNF with IL-2 and TNF with IL-2 and IL-8 discriminated best between the study groups. IL-2 was higher expressed in patients with moderate pain compared to those with severe pain (p = 0.02). Patients with acral pain showed higher IL-10 gene expression compared to patients with generalized pain (p = 0.004). We further found a negative correlation between the relative gene expression of IL-2 and current pain intensity (p = 0.02). Serum protein levels of IL-2, IL-8, and TNF did not differ between patients and controls. CONCLUSIONS We identified higher systemic gene expression of IL-2, IL-8, and TNF in SFN patients than in controls, which may be of potential relevance for diagnostics and patient stratification.
Collapse
Affiliation(s)
- Luisa Kreß
- grid.8379.50000 0001 1958 8658Department of Neurology, University of Würzburg, Josef-Schneider-Str. 11, 97080 Würzburg, Germany
| | - Nadine Egenolf
- grid.8379.50000 0001 1958 8658Department of Neurology, University of Würzburg, Josef-Schneider-Str. 11, 97080 Würzburg, Germany
| | - Claudia Sommer
- grid.8379.50000 0001 1958 8658Department of Neurology, University of Würzburg, Josef-Schneider-Str. 11, 97080 Würzburg, Germany
| | - Nurcan Üçeyler
- grid.8379.50000 0001 1958 8658Department of Neurology, University of Würzburg, Josef-Schneider-Str. 11, 97080 Würzburg, Germany
| |
Collapse
|
29
|
Finsterer J, Scorza FA. Small fiber neuropathy. Acta Neurol Scand 2022; 145:493-503. [PMID: 35130356 DOI: 10.1111/ane.13591] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 01/19/2022] [Accepted: 01/24/2022] [Indexed: 11/01/2022]
Abstract
Small fiber neuropathy (SFN) is a peripheral nervous system disease due to affection of A-delta or C-fibers in a proximal, distal, or diffuse distribution. Selective SFN (without large fiber affection) manifests with pain, sensory disturbances, or autonomic dysfunction. Though uniform diagnostic criteria are unavailable, most of them request typical clinical features and reduced intra-epidermal nerve fiber density on proximal or distal skin biopsy. Little consensus has been reached about the treatment of SFN, why this narrative review aims at summarizing and discussing treatment options for SFN. Treatment of SFN can be classified as symptomatic, pathophysiologic, or causal. Prerequisites for treating SFN are an established diagnosis, knowledge about the symptoms and signs, and the etiology. Pain usually responds to oral/intravenous pain killers, antidepressants, anti-seizure drugs, or topical, transdermal specifications. Some of the autonomic disturbances respond favorably to symptomatic treatment. SFN related to Fabry disease or hATTR are accessible to pathogenesis-related therapy. Immune-mediated SFN responds to immunosuppression or immune-modulation. Several of the secondary SFNs respond to causal treatment of the underlying disorder. In conclusion, treatment of SFN relies on a multimodal concept and includes causative, pathophysiologic, and symptomatic measures. It strongly depends on the clinical presentation, diagnosis, and etiology, why it is crucial before initiation of treatment to fix the diagnosis and etiology. Due to the heterogeneous clinical presentation and multi-causality, treatment of SFN should be individualized with the goal of controlling the underlying cause, alleviating pain, and optimizing functionality.
Collapse
Affiliation(s)
- Josef Finsterer
- Neurology & Neurophysiology Center Vienna Austria
- Disciplina de Neurociência Escola Paulista de Medicina/Universidade Federal de São Paulo/. (EPM/UNIFESP) São Paulo Brasil
| | - Fulvio A. Scorza
- Disciplina de Neurociência Escola Paulista de Medicina/Universidade Federal de São Paulo/. (EPM/UNIFESP) São Paulo Brasil
| |
Collapse
|
30
|
Enax-Krumova EK, Dahlhaus I, Görlach J, Claeys KG, Montagnese F, Schneider L, Sturm D, Fangerau T, Schlierbach H, Roth A, Wanschitz JV, Löscher WN, Güttsches AK, Vielhaber S, Hasseli R, Zunk L, Krämer HH, Hahn A, Schoser B, Rosenbohm A, Schänzer A. Small fiber involvement is independent from clinical pain in late-onset Pompe disease. Orphanet J Rare Dis 2022; 17:177. [PMID: 35477515 PMCID: PMC9044713 DOI: 10.1186/s13023-022-02327-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 04/09/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Pain occurs in the majority of patients with late onset Pompe disease (LOPD) and is associated with a reduced quality of life. The aim of this study was to analyse the pain characteristics and its relation to a small nerve fiber involvement in LOPD patients. METHODS In 35 patients with LOPD under enzyme replacement therapy without clinical signs of polyneuropathy (19 females; 51 ± 15 years), pain characteristics as well as depressive and anxiety symptoms were assessed using the PainDetect questionnaire (PDQ) and the hospital anxiety and depression scale (HADS), respectively. Distal skin biopsies were analysed for intraepidermal nerve fiber density (IENFD) and compared to age- and gender-matched reference data. Skin biopsies from 20 healthy subjects served as controls to assure validity of the morphometric analysis. RESULTS Pain was reported in 69% of the patients with an average intensity of 4.1 ± 1.1 on the numeric rating scale (NRS; anchors: 0-10). According to PDQ, neuropathic pain was likely in one patient, possible in 29%, and unlikely in 67%. Relevant depression and anxiety symptoms occurred in 31% and 23%, respectively, and correlated with pain intensity. Distal IENFD (3.98 ± 1.95 fibers/mm) was reduced in 57% of the patients. The degree of IENFD reduction did not correlate with the durations of symptoms to ERT or duration of ERT to biopsy. CONCLUSIONS Pain is a frequent symptom in treated LOPD on ERT, though a screening questionnaire seldom indicated neuropathic pain. The high frequency of small nerve fiber pathology in a treated LOPD cohort was found regardless of the presence of pain or comorbid risk factors for SFN and needs further exploration in terms of clinical context, exact mechanisms and when developing novel therapeutic options for LOPD.
Collapse
Affiliation(s)
- Elena K Enax-Krumova
- Department of Neurology, BG University Hospital Bergmannsheil, Ruhr-University, Bochum, Germany.,Heimer-Institute for Muscle Research, BG University Hospital Bergmannsheil, Ruhr-University, Bochum, Germany
| | - Iris Dahlhaus
- Institute of Medical Informatics, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Jonas Görlach
- Institute of Neuropathology, Justus Liebig University Giessen, Arndstr.16, 35392, Giessen, Germany
| | - Kristl G Claeys
- Department of Neurology, University Hospitals Leuven, Leuven, Belgium.,Laboratory for Muscle Diseases and Neuropathies, Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Federica Montagnese
- Friedrich-Baur-Institute, Department of Neurology, LMU University Munich, Munich, Germany
| | - Llka Schneider
- Department of Neurology, Martin Luther University Halle-Wittenberg, Halle, Germany.,Department of Neurology, St Georg Hospital, Leipzig, Germany
| | - Dietrich Sturm
- Department of Neurology, BG University Hospital Bergmannsheil, Ruhr-University, Bochum, Germany.,Heimer-Institute for Muscle Research, BG University Hospital Bergmannsheil, Ruhr-University, Bochum, Germany
| | - Tanja Fangerau
- Department of Neurology, University of Ulm, Ulm, Germany
| | - Hannah Schlierbach
- Institute of Neuropathology, Justus Liebig University Giessen, Arndstr.16, 35392, Giessen, Germany
| | - Angela Roth
- Institute of Neuropathology, Justus Liebig University Giessen, Arndstr.16, 35392, Giessen, Germany
| | - Julia V Wanschitz
- Department of Neurology, Medical University Innsbruck, Innsbruck, Austria
| | - Wolfgang N Löscher
- Department of Neurology, Medical University Innsbruck, Innsbruck, Austria
| | - Anne-Katrin Güttsches
- Department of Neurology, BG University Hospital Bergmannsheil, Ruhr-University, Bochum, Germany.,Heimer-Institute for Muscle Research, BG University Hospital Bergmannsheil, Ruhr-University, Bochum, Germany
| | - Stefan Vielhaber
- Department of Neurology, Otto-Von-Guericke University, Magdeburg, Germany
| | - Rebecca Hasseli
- Department of Rheumtaology and Clinical Immunology, Campus Kerkhoff, Justus-Liebig University, Giessen, Germany
| | - Lea Zunk
- Institute of Neuropathology, Justus Liebig University Giessen, Arndstr.16, 35392, Giessen, Germany
| | - Heidrun H Krämer
- Department of Neurology, Justus Liebig University, Giessen, Germany
| | - Andreas Hahn
- Department of Child Neurology, Justus Liebig University, Giessen, Germany
| | - Benedikt Schoser
- Friedrich-Baur-Institute, Department of Neurology, LMU University Munich, Munich, Germany
| | | | - Anne Schänzer
- Institute of Neuropathology, Justus Liebig University Giessen, Arndstr.16, 35392, Giessen, Germany.
| |
Collapse
|
31
|
Strand N, Wie C, Peck J, Maita M, Singh N, Dumbroff J, Tieppo Francio V, Murphy M, Chang K, Dickerson DM, Maloney J. Small Fiber Neuropathy. Curr Pain Headache Rep 2022; 26:429-438. [PMID: 35384587 DOI: 10.1007/s11916-022-01044-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/28/2022] [Indexed: 12/20/2022]
Abstract
PURPOSE OF REVIEW This narrative review aims to summarize advances in the field of small fiber neuropathy made over the last decade, with emphasis on novel research highlighting the distinctive features of SFN. RECENT FINDINGS While the management of SFNs is ideally aimed at treating the underlying cause, most patients will require pain control via multiple, concurrent therapies. Herein, we highlight the most up-to-date information for diagnosis, medication management, interventional management, and novel therapies on the horizon. Despite the prevalence of small fiber neuropathies, there is no clear consensus on guidelines specific for the treatment of SFN. Despite the lack of specific guidelines for SFN treatment, the most recent general neuropathic pain guidelines are based on Cochrane studies and randomized controlled trials (RCTs) which have individually examined therapies used for the more commonly studied SFNs, such as painful diabetic neuropathy and HIV neuropathy. The recommendations from current guidelines are based on variables such as number needed to treat (NNT), safety, ease of use, and effect on quality of life.
Collapse
Affiliation(s)
- N Strand
- Division of Pain Medicine, Mayo Clinic Hospital, Phoenix, AZ, USA.
| | - C Wie
- Division of Pain Medicine, Mayo Clinic Hospital, Phoenix, AZ, USA
| | - J Peck
- Performing Arts Medicine Department, Shenandoah University, Winchester, USA
| | - M Maita
- Division of Pain Medicine, Mayo Clinic Hospital, Phoenix, AZ, USA
| | - N Singh
- OrthoAlabama Spine and Sports, Birmingham, AL, USA
| | - J Dumbroff
- Mount Sinai Morningside and West Department of Anesthesiology, New York, NY, USA
| | - V Tieppo Francio
- Department of Rehabilitation on Medicine, The University of Kansas Medical Center, Kansas City, KS, USA
| | - M Murphy
- Department of Rehabilitation on Medicine, The University of Kansas Medical Center, Kansas City, KS, USA
| | - K Chang
- Department of Anesthesiology and Critical Care, Emory University, Atlanta, GA, USA
| | - D M Dickerson
- NorthShore University HealthSystem, Evanston, IL, USA
- University of Chicago Medicine, Chicago,, IL, USA
| | - J Maloney
- Division of Pain Medicine, Mayo Clinic Hospital, Phoenix, AZ, USA
| |
Collapse
|
32
|
Petropoulos IN, Bitirgen G, Ferdousi M, Kalteniece A, Azmi S, D'Onofrio L, Lim SH, Ponirakis G, Khan A, Gad H, Mohammed I, Mohammadi YE, Malik A, Gosal D, Kobylecki C, Silverdale M, Soran H, Alam U, Malik RA. Corneal Confocal Microscopy to Image Small Nerve Fiber Degeneration: Ophthalmology Meets Neurology. FRONTIERS IN PAIN RESEARCH 2022; 2:725363. [PMID: 35295436 PMCID: PMC8915697 DOI: 10.3389/fpain.2021.725363] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 07/26/2021] [Indexed: 12/13/2022] Open
Abstract
Neuropathic pain has multiple etiologies, but a major feature is small fiber dysfunction or damage. Corneal confocal microscopy (CCM) is a rapid non-invasive ophthalmic imaging technique that can image small nerve fibers in the cornea and has been utilized to show small nerve fiber loss in patients with diabetic and other neuropathies. CCM has comparable diagnostic utility to intraepidermal nerve fiber density for diabetic neuropathy, fibromyalgia and amyloid neuropathy and predicts the development of diabetic neuropathy. Moreover, in clinical intervention trials of patients with diabetic and sarcoid neuropathy, corneal nerve regeneration occurs early and precedes an improvement in symptoms and neurophysiology. Corneal nerve fiber loss also occurs and is associated with disease progression in multiple sclerosis, Parkinson's disease and dementia. We conclude that corneal confocal microscopy has good diagnostic and prognostic capability and fulfills the FDA criteria as a surrogate end point for clinical trials in peripheral and central neurodegenerative diseases.
Collapse
Affiliation(s)
| | - Gulfidan Bitirgen
- Department of Ophthalmology, Meram Faculty of Medicine, Necmettin Erbakan University, Konya, Turkey
| | - Maryam Ferdousi
- Faculty of Biology, Medicine and Health, University of Manchester, Cardiovascular Trials Unit, Manchester University NHS Foundation Trust, Manchester, United Kingdom
| | - Alise Kalteniece
- Faculty of Biology, Medicine and Health, University of Manchester, Cardiovascular Trials Unit, Manchester University NHS Foundation Trust, Manchester, United Kingdom
| | - Shazli Azmi
- Faculty of Biology, Medicine and Health, University of Manchester, Cardiovascular Trials Unit, Manchester University NHS Foundation Trust, Manchester, United Kingdom.,Centre for Diabetes, Endocrinology and Metabolism, Manchester University NHS Foundation Trust, Manchester, United Kingdom
| | - Luca D'Onofrio
- Department of Experimental Medicine, Sapienza University, Rome, Italy
| | - Sze Hway Lim
- Department of Neurology, Salford Royal National Health System (NHS) Foundation Trust, Manchester Academic Health Sciences Centre, University of Manchester, Manchester, United Kingdom
| | | | - Adnan Khan
- Department of Medicine, Weill Cornell Medicine-Qatar, Doha, Qatar
| | - Hoda Gad
- Department of Medicine, Weill Cornell Medicine-Qatar, Doha, Qatar
| | - Ibrahim Mohammed
- Department of Medicine, Weill Cornell Medicine-Qatar, Doha, Qatar
| | | | - Ayesha Malik
- Department of Medicine, Weill Cornell Medicine-Qatar, Doha, Qatar
| | - David Gosal
- Department of Neurology, Salford Royal National Health System (NHS) Foundation Trust, Manchester Academic Health Sciences Centre, University of Manchester, Manchester, United Kingdom
| | - Christopher Kobylecki
- Department of Neurology, Salford Royal National Health System (NHS) Foundation Trust, Manchester Academic Health Sciences Centre, University of Manchester, Manchester, United Kingdom
| | - Monty Silverdale
- Department of Neurology, Salford Royal National Health System (NHS) Foundation Trust, Manchester Academic Health Sciences Centre, University of Manchester, Manchester, United Kingdom
| | - Handrean Soran
- Faculty of Biology, Medicine and Health, University of Manchester, Cardiovascular Trials Unit, Manchester University NHS Foundation Trust, Manchester, United Kingdom
| | - Uazman Alam
- Department of Cardiovascular and Metabolic Medicine, Clinical Sciences Centre, Pain Research Institute, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool University Hospital National Health System (NHS) Foundation Trust, Liverpool, United Kingdom
| | - Rayaz A Malik
- Department of Medicine, Weill Cornell Medicine-Qatar, Doha, Qatar.,Faculty of Biology, Medicine and Health, University of Manchester, Cardiovascular Trials Unit, Manchester University NHS Foundation Trust, Manchester, United Kingdom
| |
Collapse
|
33
|
Malik RA, Efron N. Corneal Confocal Microscopy and the Nervous System: Introduction to the Special Issue. J Clin Med 2022; 11:jcm11061475. [PMID: 35329801 PMCID: PMC8953792 DOI: 10.3390/jcm11061475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 03/05/2022] [Indexed: 12/07/2022] Open
Affiliation(s)
- Rayaz A. Malik
- Weill Cornell Medicine-Qatar, Research Division, Qatar Foundation, Education City, Doha 24144, Qatar;
| | - Nathan Efron
- School of Optometry and Vision Science, Queensland University of Technology, Kelvin Grove, QLD 4059, Australia
- Correspondence:
| |
Collapse
|
34
|
Özdağ Acarli AN, Klein T, Egenolf N, Sommer C, Üçeyler N. Subepidermal Schwann cell counts correlate with skin innervation - an exploratory study. Muscle Nerve 2022; 65:471-479. [PMID: 35020203 DOI: 10.1002/mus.27496] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 01/05/2022] [Accepted: 01/05/2022] [Indexed: 11/10/2022]
Abstract
INTRODUCTION/AIMS Schwann cell clusters have been described at the murine dermis-epidermis border. We quantified dermal Schwann cells in the skin of patients with small fiber neuropathy (SFN) compared to healthy controls to correlate with the clinical phenotype. METHODS Skin punch biopsies from the lower legs of 28 patients with SFN (eleven men, 17 women, median age 54 years [19-73]) and 9 healthy controls (five men, four women, median age 34 years [25-69]) were immunoreacted for S100 calcium-binding protein B as a Schwann cell marker, protein-gene product 9.5 as a pan-neuronal marker, and CD207 as a Langerhans cell marker. Intraepidermal nerve fiber density (IENFD) and subepidermal Schwann cell counts were determined. RESULTS Skin samples of patients with SFN showed lower IENFD (p<0.05), fewer Schwann cells/mm (p<0.01), and fewer Schwann cell clusters/mm (p<0.05) than controls. When comparing SFN patients with reduced (n=13, median age 53 years, 19-73 years) and normal distal (n=15, median age 54 years, 43-68 years) IENFD, the number of solitary Schwann cells/mm (p<0.01) and subepidermal nerve fibers associated with Schwann cell branches (p<0.05) were lower in patients with reduced IENFD. All three parameters positively correlated with distal IENFD (p<0.05 to p<0.01), while no correlation was found between Schwann cell counts and clinical pain characteristics. DISCUSSION Our data raise questions about the mechanisms underlying the interdependence of dermal Schwann cells and skin innervation in SFN. The temporal course and functional impact of Schwann cell presence and kinetics need further investigation.
Collapse
Affiliation(s)
| | - Thomas Klein
- Department of Neurology, University of Würzburg, Germany
| | - Nadine Egenolf
- Department of Neurology, University of Würzburg, Germany
| | - Claudia Sommer
- Department of Neurology, University of Würzburg, Germany
| | - Nurcan Üçeyler
- Department of Neurology, University of Würzburg, Germany
| |
Collapse
|
35
|
Corneal Confocal Microscopy in the Diagnosis of Small Fiber Neuropathy: Faster, Easier, and More Efficient Than Skin Biopsy? PATHOPHYSIOLOGY 2021; 29:1-8. [PMID: 35366285 PMCID: PMC8954271 DOI: 10.3390/pathophysiology29010001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/13/2021] [Accepted: 12/14/2021] [Indexed: 02/06/2023] Open
Abstract
Chronic pain may affect 30–50% of the world’s population and an important cause is small fiber neuropathy (SFN). Recent research suggests that autoimmune diseases may be one of the most common causes of small nerve fiber damage. There is low awareness of SFN among patients and clinicians and it is difficult to diagnose as routine electrophysiological methods only detect large fiber abnormalities, and specialized small fiber tests, like skin biopsy and quantitative sensory testing, are not routinely available. Corneal confocal microscopy (CCM) is a rapid, non-invasive, reproducible method for quantifying small nerve fiber degeneration and regeneration, and could be an important tool for diagnosing SFN. This review considers the advantages and disadvantages of CCM and highlights the evolution of this technique from a research tool to a diagnostic test for small fiber damage, which can be a valuable contribution to the study and management of autoimmune disease.
Collapse
|
36
|
Bitirgen G, Kucuk A, Ergun MC, Baloglu R, Gharib MH, Al Emadi S, Ponirakis G, Malik RA. Subclinical Corneal Nerve Fiber Damage and Immune Cell Activation in Systemic Lupus Erythematosus: A Corneal Confocal Microscopy Study. Transl Vis Sci Technol 2021; 10:10. [PMID: 34905000 PMCID: PMC8684301 DOI: 10.1167/tvst.10.14.10] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Purpose The purpose of this study was to evaluate the utility of corneal confocal microscopy (CCM) in identifying small nerve fiber damage and immune cell activation in patients with systemic lupus erythematosus (SLE). Methods This cross-sectional comparative study included 39 consecutive patients with SLE and 30 healthy control participants. Central corneal sensitivity was assessed using a Cochet-Bonnet contact corneal esthesiometer and a laser scanning CCM (Heidelberg, Germany) was used to quantify corneal nerve fiber density (CNFD), nerve branch density (CNBD), nerve fiber length (CNFL), and Langerhans cell (LC) density. Results Age was comparable among patients with SLE (33.7 ± 12.7) and controls (35.0 ± 13.7 years, P = 0.670) and the median duration of disease was 3.0 years (2.0–10.0 years). CNBD (P = 0.003) and CNFL (P = 0.019) were lower and mature LC density (P = 0.002) was higher, but corneal sensitivity (P = 0.178) and CNFD (P = 0.198) were comparable in patients with SLE compared with controls. The SELENA-SLEDAI score correlated with CNFD (ρ = −0.319, P = 0.048) and CNFL (ρ = −0.373, P = 0.019), and the total and immature LC densities correlated with CNBD (ρ = −0.319. P = 0.048, and ρ = −0.328, P = 0.041, respectively). Immature LC density was higher (P = 0.025), but corneal sensitivity and nerve fiber parameters were comparable between patients with (33%) and without neuropsychiatric symptoms and SLE. Conclusions Corneal confocal microscopy identifies distal corneal nerve fiber loss and increased immune cell density in patients with SLE and corneal nerve loss was associated with disease activity. Translational Relevance Corneal confocal microscopy may enable the detection of subclinical corneal nerve loss and immune cell activation in SLE.
Collapse
Affiliation(s)
- Gulfidan Bitirgen
- Department of Ophthalmology, Necmettin Erbakan University Meram Faculty of Medicine, Konya, Turkey
| | - Adem Kucuk
- Division of Rheumatology, Department of Internal Medicine, Necmettin Erbakan University Meram Faculty of Medicine, Konya, Turkey
| | - Mustafa Cagri Ergun
- Division of Rheumatology, Department of Internal Medicine, Necmettin Erbakan University Meram Faculty of Medicine, Konya, Turkey
| | - Ruveyda Baloglu
- Department of Ophthalmology, Necmettin Erbakan University Meram Faculty of Medicine, Konya, Turkey
| | - Miral H Gharib
- Rheumatology Department, Hamad Medical Corporation, Doha, Qatar
| | - Samar Al Emadi
- Rheumatology Department, Hamad Medical Corporation, Doha, Qatar
| | - Georgios Ponirakis
- Weill Cornell Medicine-Qatar, Research Division, Qatar Foundation, Doha, Qatar
| | - Rayaz A Malik
- Weill Cornell Medicine-Qatar, Research Division, Qatar Foundation, Doha, Qatar.,Institute of Cardiovascular Sciences, Cardiac Centre, Faculty of Medical and Human Sciences, University of Manchester and NIHR Clinical Research Facility, Manchester, UK
| |
Collapse
|
37
|
Karl-Schöller F, Kunz M, Kreß L, Held M, Egenolf N, Wiesner A, Dandekar T, Sommer C, Üçeyler N. A translational study: Involvement of miR-21-5p in development and maintenance of neuropathic pain via immune-related targets CCL5 and YWHAE. Exp Neurol 2021; 347:113915. [PMID: 34758342 DOI: 10.1016/j.expneurol.2021.113915] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 10/26/2021] [Accepted: 11/01/2021] [Indexed: 02/08/2023]
Abstract
Neuropathic pain occurs in more than half of the patients suffering from peripheral neuropathies. We investigated the role of microRNA (miR)-21 in neuropathic pain using a murine-human translational approach. We applied the spared nerve injury (SNI) model at the sciatic nerve of mice and assessed the potential analgesic effect of perineurial miR-21-5p inhibitor application. Immune-related targets of miR-21-5p were determined by a qRT-PCR based cytokine and chemokine array. Bioinformatical analysis identified potential miR-21-5p targets interacting with CC-chemokine ligand (CCL)5. We validated CCL5 and tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein (YWHAE), an interaction partner of miR-21-5p and CCL5, by qRT-PCR in murine common peroneal and tibial nerves. Validated candidates were then investigated in white blood cell and sural nerve biopsy samples of patients with focal to generalized pain syndromes, i.e. small fiber neuropathy (SFN), polyneuropathy (PNP), and nerve lesion (NL). We showed that perineurial miR-21-5p inhibition reverses SNI-induced mechanical and heat hypersensitivity in mice and found a reduction of the SNI-induced increase of the pro-inflammatory mediators CCL5 (p < 0.01), CCL17 (p < 0.05), and IL-12ß (p < 0.05) in miR-21-5p inhibitor-treated mice. In silico analysis revealed several predicted and validated targets for miR-21-5p with CCL5 interaction. Among these, we found lower YWHAE gene expression in mice after SNI and perineurial injections of a scrambled oligonucleotide compared to naïve mice (p < 0.05), but this was not changed by miR-21-5p inhibition. Furthermore, miR-21-5p inhibition led to a further increase of the SNI-induced increase in TGFß (p < 0.01). Patient biomaterial revealed different systemic expression patterns of miR-21-5p, with higher expression in SFN and lower expression in NL. Further, we showed higher systemic expression of pro-inflammatory mediators in white blood cells of SFN patients compared to healthy controls. We have conducted a translational study comparing results from animal models to human patients with three different neuropathic pain syndromes. We identified CCL5 as a miR-21 dependent common player in the mouse SNI model and the human painful disease SFN.
Collapse
Affiliation(s)
- Franziska Karl-Schöller
- Department of Neurology, University of Würzburg, Josef-Schneider-Str. 11, 97080 Würzburg, Germany.
| | - Meik Kunz
- Department of Bioinformatics, Biocenter University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Luisa Kreß
- Department of Neurology, University of Würzburg, Josef-Schneider-Str. 11, 97080 Würzburg, Germany
| | - Melissa Held
- Department of Neurology, University of Würzburg, Josef-Schneider-Str. 11, 97080 Würzburg, Germany
| | - Nadine Egenolf
- Department of Neurology, University of Würzburg, Josef-Schneider-Str. 11, 97080 Würzburg, Germany
| | - Anna Wiesner
- Department of Neurology, University of Würzburg, Josef-Schneider-Str. 11, 97080 Würzburg, Germany
| | - Thomas Dandekar
- Department of Bioinformatics, Biocenter University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Claudia Sommer
- Department of Neurology, University of Würzburg, Josef-Schneider-Str. 11, 97080 Würzburg, Germany
| | - Nurcan Üçeyler
- Department of Neurology, University of Würzburg, Josef-Schneider-Str. 11, 97080 Würzburg, Germany
| |
Collapse
|