1
|
Hoseini SM, Montazeri F. Cell origin and microenvironment: The players of differentiation capacity in human mesenchymal stem cells. Tissue Cell 2025; 93:102709. [PMID: 39765135 DOI: 10.1016/j.tice.2024.102709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 12/12/2024] [Accepted: 12/26/2024] [Indexed: 03/05/2025]
Abstract
Mesenchymal stem cells (MSCs) have several important properties that make them desirable for regenerative medicine. These properties include immunomodulatory ability, growth factor production, and differentiation into various cell types. Despite extensive research and promising results in clinical trials, our understanding of MSC biology, their mechanism of action, and their targeted and routine use in clinics is limited. Differentiation of human MSCs (hMSCs) is a complex process influenced by various elements such as growth factors, pharmaceutical compounds, microRNAs, 3D scaffolds, and mechanical and electrical stimulation. Research has shown that different culture conditions can affect the differentiation potential of hMSCs obtained from multiple fetal and adult sources. Additionally, it seems that what affects the differentiation capacities of these cells is their secretory characteristics, which are influenced by the origin of the cells and the local microenvironment where the cells are located. The review can provide insights into the microenvironment-based mechanisms involved in MSC differentiation, which can be valuable for future therapeutic applications.
Collapse
Affiliation(s)
- Seyed Mehdi Hoseini
- Biotechnology Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences and Health Services, Yazd, Iran; Hematology and Oncology Research Center, Non-communicable Diseases Research Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Fateme Montazeri
- Abortion Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences and Health Services, Yazd, Iran.
| |
Collapse
|
2
|
Liu C, Sun M, Lin L, Luo Y, Peng L, Zhang J, Qiu T, Liu Z, Yin J, Yu M. Potentially commercializable nerve guidance conduits for peripheral nerve injury: Past, present, and future. Mater Today Bio 2025; 31:101503. [PMID: 40018056 PMCID: PMC11867546 DOI: 10.1016/j.mtbio.2025.101503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 01/06/2025] [Accepted: 01/18/2025] [Indexed: 03/01/2025] Open
Abstract
Peripheral nerve injuries are a prevalent global issue that has garnered great concern. Although autografts remain the preferred clinical approach to repair, their efficacy is hampered by factors like donor scarcity. The emergence of nerve guidance conduits as novel tissue engineering tools offers a promising alternative strategy. This review aims to interpret nerve guidance conduits and their commercialization from both clinical and laboratory perspectives. To enhance comprehension of clinical situations, this article provides a comprehensive analysis of the clinical efficacy of nerve conduits approved by the United States Food and Drug Administration. It proposes that the initial six months post-transplantation is a critical window period for evaluating their efficacy. Additionally, this study conducts a systematic discussion on the research progress of laboratory conduits, focusing on biomaterials and add-on strategies as pivotal factors for nerve regeneration, as supported by the literature analysis. The clinical conduit materials and prospective optimal materials are thoroughly discussed. The add-on strategies, together with their distinct obstacles and potentials are deeply analyzed. Based on the above evaluations, the development path and manufacturing strategy for the commercialization of nerve guidance conduits are envisioned. The critical conclusion promoting commercialization is summarized as follows: 1) The optimization of biomaterials is the fundamental means; 2) The phased application of additional strategies is the emphasized direction; 3) The additive manufacturing techniques are the necessary tools. As a result, the findings of this research provide academic and clinical practitioners with valuable insights that may facilitate future commercialization endeavors of nerve guidance conduits.
Collapse
Affiliation(s)
- Chundi Liu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, 310000, China
| | - Mouyuan Sun
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, 310000, China
| | - Lining Lin
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, 310000, China
| | - Yaxian Luo
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, 310000, China
| | - Lianjie Peng
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, 310000, China
| | - Jingyu Zhang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, 310000, China
| | - Tao Qiu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, 310000, China
| | - Zhichao Liu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, 310000, China
| | - Jun Yin
- The State Key Laboratory of Fluid Power and Mechatronic Systems, Key Laboratory of 3D Printing Process and Equipment of Zhejiang Province, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Mengfei Yu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, 310000, China
| |
Collapse
|
3
|
Xu T, Peng Y, Xu Y, Zhu J, Yang Q, Liu Y, Yang H. Exploring the therapeutic potential of small extracellular vesicles derived from induced pluripotent stem cell in periodontal regeneration. J Oral Biosci 2025; 67:100621. [PMID: 39892783 DOI: 10.1016/j.job.2025.100621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 01/27/2025] [Accepted: 01/28/2025] [Indexed: 02/04/2025]
Abstract
OBJECTIVES To investigate the role of small extracellular vesicles derived from induced pluripotent stem cells (iPSC-sEVs) in periodontal tissue regeneration, elucidate their potential molecular mechanisms, and provide theoretical guidance for the clinical application of iPSC-sEVs as a cell-free therapeutic strategy for periodontal tissue regeneration. METHODS We investigated the effects of iPSC-sEVs on the proliferation, migration, and osteogenic differentiation of periodontal ligament stem cells (PDLSCs) in vitro. The regenerative potential of iPSC-sEVs was evaluated in vivo, using a periodontal defect model. Bulk RNA sequencing was performed to elucidate the underlying molecular mechanisms. RESULTS iPSC-sEVs were isolated, characterized, and systemically evaluated for regenerative potential. The results revealed that treatment with iPSC-sEVs significantly enhanced the proliferation, migration, and osteogenic differentiation of PDLSCs. In situ treatment with iPSC-sEVs loaded onto collagen sponges was performed in a rat model of periodontal defects. Micro-CT and histological analyses indicated that iPSC-sEV treatment markedly promoted alveolar bone repair and periodontal ligament regeneration. Mechanistically, the analysis of bulk RNA sequencing data coupled with experimental validation revealed that iPSC-sEV treatment significantly activated the mitogen-activated protein kinase (MAPK) signaling pathway in PDLSCs. Further investigation showed that the inhibition of this pathway completely abolished the proliferative effects of iPSC-sEVs on PDLSCs. CONCLUSIONS iPSC-sEVs promote PDLSC proliferation through MAPK signaling pathway activation, while also enhancing PDLSC migratory and osteogenic differentiation capacities, facilitates the repair and regeneration of damaged periodontal tissue and presents a potential novel therapeutic strategy for clinical periodontal tissue regeneration.
Collapse
Affiliation(s)
- Tingting Xu
- Yunnan Key Laboratory of Stomatology, Kunming, 650106, China; Department of Periodontics, Kunming Medical University School and Hospital of Stomatology, Kunming, 650106, China.
| | - Yi Peng
- Yunnan Key Laboratory of Stomatology, Kunming, 650106, China; Department of Periodontics, Kunming Medical University School and Hospital of Stomatology, Kunming, 650106, China.
| | - Yanan Xu
- Yunnan Key Laboratory of Stomatology, Kunming, 650106, China; Department of Periodontics, Kunming Medical University School and Hospital of Stomatology, Kunming, 650106, China.
| | - Jing Zhu
- Yunnan Key Laboratory of Stomatology, Kunming, 650106, China; Department of Periodontics, Kunming Medical University School and Hospital of Stomatology, Kunming, 650106, China.
| | - Qiao Yang
- Yunnan Key Laboratory of Stomatology, Kunming, 650106, China; Department of Periodontics, Kunming Medical University School and Hospital of Stomatology, Kunming, 650106, China.
| | - Yali Liu
- Yunnan Key Laboratory of Stomatology, Kunming, 650106, China; Department of Orthodontics, Kunming Medical University School and Hospital of Stomatology, Kunming, 650106, China.
| | - Hefeng Yang
- Yunnan Key Laboratory of Stomatology, Kunming, 650106, China; Department of Prosthodontics, Kunming Medical University School and Hospital of Stomatology, Kunming, 650106, China.
| |
Collapse
|
4
|
Wang Q, Sun J, Jiang H, Yu M. Emerging roles of extracellular vesicles in oral and maxillofacial areas. Int J Oral Sci 2025; 17:11. [PMID: 39900916 PMCID: PMC11791077 DOI: 10.1038/s41368-024-00341-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 12/02/2024] [Accepted: 12/03/2024] [Indexed: 02/05/2025] Open
Abstract
The oral and maxillofacial region is a highly complex area composed of multiple tissue types and bears various critical functions of the human body. Diseases in this region pose significant diagnostic and management challenges; therefore, exploring new strategies for early diagnosis, targeted treatment, and tissue reconstruction is key to improving patient prognosis and quality of life. Extracellular vesicles are a group of heterogeneous lipid-bilayer membrane structures secreted by most cell types, including exosomes, microvesicles, and apoptotic bodies. Present in various body fluids and tissues, they act as messengers via the transfer of nucleic acids, proteins, and metabolites to recipient cells. To date, studies have revealed the different roles of extracellular vesicles in physiological or pathological processes, as well as applications in disease diagnosis, prognosis, and treatment. The importance and tissue specificity of the dental and maxillofacial tissues indicate that extracellular vesicles derived from this region are promising for further research. This paper reviews the published data on extracellular vesicles derived from cells, body fluids, and tissues in oral and maxillofacial regions, summarizes the latest advances in extracellular vesicles from extensive sources, and concludes with a focus on the current research progress and application prospects of engineered exosomes in oral science.
Collapse
Affiliation(s)
- Qianting Wang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of the Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, China
| | - Jiayu Sun
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of the Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, China
| | - Haci Jiang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of the Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, China
| | - Mengfei Yu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of the Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, China.
| |
Collapse
|
5
|
Zhang L, Li X, Zhang B, Li R. Extracellular Vesicles in Periodontitis: Pathogenic Mechanisms and Therapeutic Potential. J Inflamm Res 2025; 18:1317-1331. [PMID: 39897520 PMCID: PMC11786598 DOI: 10.2147/jir.s504612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 01/18/2025] [Indexed: 02/04/2025] Open
Abstract
Periodontitis is a prevalent yet frequently overlooked oral disease that is linked to a range of systemic conditions. Although basic treatment and periodontal surgery can alleviate the symptoms of periodontitis to a certain extent, the treatment of severe tissue defects or refractory cases is not effective. Extracellular vesicles (EVs) are subcellular lipid bilayer particles that come from a variety of sources and are prevalent in the biological fluids of vertebrates. They play a key role in intercellular communication by transporting multiple signaling molecules. Recent research has indicated that EVs derived from periodontal pathogens can trigger periodontitis, exacerbate the periodontal damage, and potentially disseminate to other parts of the body, leading to systemic conditions. Conversely, extracellular vesicles derived from dental stem cells (DSCs) have demonstrated the ability to regulate the local periodontal immune environment and foster the regeneration and repair of periodontal tissues, positioning them as a promising candidate for cell-free therapeutic approaches to periodontitis. This review aims to summarize the latest research on the involvement of EVs from different sources in the pathogenesis and treatment of periodontitis, especially to systematically elucidate the mechanism of EVs secreted by periodontal pathogens in periodontitis-related systemic diseases for the first time. By uncovering these complex regulatory processes, new and more effective therapeutic approaches can be explored in the battle against periodontitis and its associated systemic diseases.
Collapse
Affiliation(s)
- Ling Zhang
- School of Nursing, Jining Medical University, Jining, Shandong, 272067, People’s Republic of China
| | - Xiaotong Li
- Department of Stomatology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, People’s Republic of China
| | - Bin Zhang
- Department of Laboratory Medicine, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong, 272001, People’s Republic of China
| | - Ruiji Li
- School of Pharmacy, Jining Medical University, Rizhao, Shandong, 276826, People’s Republic of China
| |
Collapse
|
6
|
Li P, Jin Q, Zeng K, Niu C, Xie Q, Dong T, Huang Z, Dou X, Feng C. Amino acid-based supramolecular chiral hydrogels promote osteogenesis of human dental pulp stem cells via the MAPK pathway. Mater Today Bio 2024; 25:100971. [PMID: 38347936 PMCID: PMC10859303 DOI: 10.1016/j.mtbio.2024.100971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 01/18/2024] [Accepted: 01/19/2024] [Indexed: 02/15/2024] Open
Abstract
Critical-size defects (CSDs) of the craniofacial bones cause aesthetic and functional complications that seriously impact the quality of life. The transplantation of human dental pulp stem cells (hDPSCs) is a promising strategy for bone tissue engineering. Chirality is commonly observed in natural biomolecules, yet its effect on stem cell differentiation is seldom studied, and little is known about the underlying mechanism. In this study, supramolecular chiral hydrogels were constructed using L/d-phenylalanine (L/D-Phe) derivatives. The results of alkaline phosphatase expression analysis, alizarin red S assay, as well as quantitative real-time polymerase chain reaction and western blot analyses suggest that right-handed D-Phe hydrogel fibers significantly promoted osteogenic differentiation of hDPSCs. A rat model of calvarial defects was created to investigate the regulation of chiral nanofibers on the osteogenic differentiation of hDPSCs in vivo. The results of the animal experiment demonstrated that the D-Phe group exhibited greater and faster bone formation on hDPSCs. The results of RNA sequencing, vinculin immunofluorescence staining, a calcium fluorescence probe assay, and western blot analysis indicated that L-Phe significantly promoted adhesion of hDPSCs, while D-Phe nanofibers enhanced osteogenic differentiation of hDPSCs by facilitating calcium entry into cells and activate the MAPK pathway. These results of chirality-dependent osteogenic differentiation offer a novel therapeutic strategy for the treatment of CSDs by optimising the differentiation of hDPSCs into chiral nanofibers.
Collapse
Affiliation(s)
- Peilun Li
- Department of Endodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Qiaoqiao Jin
- Department of Endodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Kangrui Zeng
- Department of Endodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Chenguang Niu
- Department of Endodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Qianyang Xie
- Department of Oral Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Ting Dong
- Department of Endodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Zhengwei Huang
- Department of Endodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Xiaoqiu Dou
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Chuanliang Feng
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
7
|
Huang X, Lou Y, Duan Y, Liu H, Tian J, Shen Y, Wei X. Biomaterial scaffolds in maxillofacial bone tissue engineering: A review of recent advances. Bioact Mater 2024; 33:129-156. [PMID: 38024227 PMCID: PMC10665588 DOI: 10.1016/j.bioactmat.2023.10.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/30/2023] [Accepted: 10/30/2023] [Indexed: 12/01/2023] Open
Abstract
Maxillofacial bone defects caused by congenital malformations, trauma, tumors, and inflammation can severely affect functions and aesthetics of maxillofacial region. Despite certain successful clinical applications of biomaterial scaffolds, ideal bone regeneration remains a challenge in maxillofacial region due to its irregular shape, complex structure, and unique biological functions. Scaffolds that address multiple needs of maxillofacial bone regeneration are under development to optimize bone regeneration capacity, costs, operational convenience. etc. In this review, we first highlight the special considerations of bone regeneration in maxillofacial region and provide an overview of the biomaterial scaffolds for maxillofacial bone regeneration under clinical examination and their efficacy, which provide basis and directions for future scaffold design. Latest advances of these scaffolds are then discussed, as well as future perspectives and challenges. Deepening our understanding of these scaffolds will help foster better innovations to improve the outcome of maxillofacial bone tissue engineering.
Collapse
Affiliation(s)
- Xiangya Huang
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Yaxin Lou
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Yihong Duan
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - He Liu
- Division of Endodontics, Department of Oral Biological and Medical Sciences, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Jun Tian
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Ya Shen
- Division of Endodontics, Department of Oral Biological and Medical Sciences, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Xi Wei
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| |
Collapse
|
8
|
Han S, Yang H, Ni X, Deng Y, Li Z, Xing X, Du M. Programmed release of vascular endothelial growth factor and exosome from injectable chitosan nanofibrous microsphere-based PLGA-PEG-PLGA hydrogel for enhanced bone regeneration. Int J Biol Macromol 2023; 253:126721. [PMID: 37673168 DOI: 10.1016/j.ijbiomac.2023.126721] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 08/31/2023] [Accepted: 09/03/2023] [Indexed: 09/08/2023]
Abstract
The healing of large bone defects remains a significant challenge in clinical practice. Accelerating both angiogenesis and osteogenesis can promote effective bone healing. In the natural healing process, angiogenesis precedes osteogenesis, providing a blood supply that supports the subsequent progression of osteogenesis. Developing a biomimetic scaffold that mimics the in vivo environment and promotes the proper sequence of vascularization followed by ossification is crucial for successful bone regeneration. In this study, a novel injectable dual-drug programmed releasing chitosan nanofibrous microsphere-based poly(D, l-lactide-co-glycolide)-b-poly(ethylene glycol)-b-poly(D,l-lactide-co-glycolide) (PLGA-PEG-PLGA) hydrogel is fabricated by incorporating vascular endothelial growth factor (VEGF) and microspheres loaded with dental pulp stem cells-derived exosomes (DPSCs-Exo). Rapid release of VEGF promotes the swift initiation of angiogenesis, while DPSCs-Exo release ensures persistent osteogenesis. Our results demonstrate that chitosan microsphere-based PLGA-PEG-PLGA hydrogel significantly promotes angiogenesis in human umbilical vascular endothelial cells and enhances the osteogenic differentiation of pre-osteoblasts. Furthermore, in vivo transplantation of this injectable chitosan microsphere-based PLGA-PEG-PLGA hydrogel into calvarial bone defects markedly promotes bone formation. Overall, our study provides a promising approach for improving bone regeneration by temporally replicating the behavior of angiogenesis and osteogenesis.
Collapse
Affiliation(s)
- Shuang Han
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Hongye Yang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Xiaoqi Ni
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Yunfan Deng
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Zubing Li
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Xin Xing
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China.
| | - Minquan Du
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China.
| |
Collapse
|
9
|
Lee CS, Lee M, Na K, Hwang HS. Stem Cell-Derived Extracellular Vesicles for Cancer Therapy and Tissue Engineering Applications. Mol Pharm 2023; 20:5278-5311. [PMID: 37867343 DOI: 10.1021/acs.molpharmaceut.3c00376] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2023]
Abstract
Recently, stem cells and their secretomes have attracted great attention in biomedical applications, particularly extracellular vesicles (EVs). EVs are secretomes of cells for cell-to-cell communication. They play a role as intercellular messengers as they carry proteins, nucleic acids, lipids, and therapeutic agents. They have also been utilized as drug-delivery vehicles due to their biocompatibility, low immunogenicity, stability, targetability, and engineerable properties. The therapeutic potential of EVs can be further enhanced by surface engineering and modification using functional molecules such as aptamers, peptides, and antibodies. As a consequence, EVs hold great promise as effective delivery vehicles for enhancing treatment efficacy while avoiding side effects. Among various cell types that secrete EVs, stem cells are ideal sources of EVs because stem cells have unique properties such as self-renewal and regenerative potential for transplantation into damaged tissues that can facilitate their regeneration. However, challenges such as immune rejection and ethical considerations remain significant hurdles. Stem cell-derived EVs have been extensively explored as a cell-free approach that bypasses many challenges associated with cell-based therapy in cancer therapy and tissue regeneration. In this review, we summarize and discuss the current knowledge of various types of stem cells as a source of EVs, their engineering, and applications of EVs, focusing on cancer therapy and tissue engineering.
Collapse
Affiliation(s)
- Chung-Sung Lee
- Department of Pharmaceutical Engineering, Soonchunhyang University, Asan 31538, Republic of Korea
| | - Min Lee
- Division of Advanced Prosthodontics, University of California, Los Angeles, California 90095, United States
- Department of Bioengineering, University of California, Los Angeles, California 90095, United States
| | - Kun Na
- Department of BioMedical-Chemical Engineering, The Catholic University of Korea, Bucheon 14662, Republic of Korea
- Department of Biotechnology, The Catholic University of Korea, Bucheon 14662, Republic of Korea
| | - Hee Sook Hwang
- Department of Pharmaceutical Engineering, Dankook University, Cheonan 31116, Republic of Korea
| |
Collapse
|
10
|
Wang K, Frey N, Garcia A, Man K, Yang Y, Gualerzi A, Clemens ZJ, Bedoni M, LeDuc PR, Ambrosio F. Nanotopographical Cues Tune the Therapeutic Potential of Extracellular Vesicles for the Treatment of Aged Skeletal Muscle Injuries. ACS NANO 2023; 17:19640-19651. [PMID: 37797946 PMCID: PMC10603813 DOI: 10.1021/acsnano.3c02269] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 09/22/2023] [Indexed: 10/07/2023]
Abstract
Skeletal muscle regeneration relies on the tightly temporally regulated lineage progression of muscle stem/progenitor cells (MPCs) from activation to proliferation and, finally, differentiation. However, with aging, MPC lineage progression is disrupted and delayed, ultimately causing impaired muscle regeneration. Extracellular vesicles (EVs) have attracted broad attention as next-generation therapeutics for promoting tissue regeneration. As a next step toward clinical translation, strategies to manipulate EV effects on downstream cellular targets are needed. Here, we developed an engineering strategy to tune the therapeutic potential of EVs using nanotopographical cues. We found that EVs released by young MPCs cultured on flat substrates (fEVs) promoted the proliferation of aged MPCs while EVs released by MPCs cultured on nanogratings (nEVs) promoted myogenic differentiation. We then employed a bioengineered 3D muscle aging model to optimize the administration protocol and test the therapeutic potential of fEVs and nEVs in a high-throughput manner. We found that the sequential administration first of fEVs during the phase of MPC proliferative expansion (i.e., 1 day after injury) followed by nEV administration at the stage of MPC differentiation (i.e., 3 days after injury) enhanced aged muscle regeneration to a significantly greater extent than fEVs and nEVs delivered either in isolation or mixed. The beneficial effects of the sequential EV treatment strategy were further validated in vivo, as evidenced by increased myofiber size and improved functional recovery. Collectively, our study demonstrates the ability of topographical cues to tune EV therapeutic potential and highlights the importance of optimizing the EV administration strategy to accelerate aged skeletal muscle regeneration.
Collapse
Affiliation(s)
- Kai Wang
- Discovery
Center for Musculoskeletal Recovery, Schoen
Adams Research Institute at Spaulding, Charlestown, Massachusetts 02129, United States
- Department
of Physical Medicine & Rehabilitation, Harvard Medical School, Boston, Massachusetts 02115, United States
- Department
of Physical Medicine & Rehabilitation, Spaulding Rehabilitation Hospital, Charlestown, Massachusetts 02129, United States
- Department
of Physical Medicine & Rehabilitation, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, United States
| | - Nolan Frey
- Department
of Biological Sciences, Carnegie Mellon
University, Pittsburgh, Pennsylvania 15213, United States
| | - Andres Garcia
- Department
of Mechanical Engineering, Carnegie Mellon
University, Pittsburgh, Pennsylvania 15213, United States
| | - Kun Man
- Department
of Biomedical Engineering, University of
North Texas, Denton, Texas 76207, United States
| | - Yong Yang
- Department
of Biomedical Engineering, University of
North Texas, Denton, Texas 76207, United States
| | - Alice Gualerzi
- IRCCS
Fondazione Don Carlo Gnocchi ONLUS, Milan 20148, Italy
| | - Zachary J. Clemens
- Department
of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, United States
| | - Marzia Bedoni
- IRCCS
Fondazione Don Carlo Gnocchi ONLUS, Milan 20148, Italy
| | - Philip R. LeDuc
- Department
of Biological Sciences, Carnegie Mellon
University, Pittsburgh, Pennsylvania 15213, United States
- Department
of Mechanical Engineering, Carnegie Mellon
University, Pittsburgh, Pennsylvania 15213, United States
- Department
of Computational Biology, Carnegie Mellon
University, Pittsburgh, Pennsylvania 15213, United States
- Department
of Biomedical Engineering, Carnegie Mellon
University, Pittsburgh, Pennsylvania 15213, United States
- Department
of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Fabrisia Ambrosio
- Discovery
Center for Musculoskeletal Recovery, Schoen
Adams Research Institute at Spaulding, Charlestown, Massachusetts 02129, United States
- Department
of Physical Medicine & Rehabilitation, Harvard Medical School, Boston, Massachusetts 02115, United States
- Department
of Physical Medicine & Rehabilitation, Spaulding Rehabilitation Hospital, Charlestown, Massachusetts 02129, United States
- Department
of Physical Medicine & Rehabilitation, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
11
|
Li Y, Liu C, Han G. Research progress of odontogenic extracellular vesicles in regeneration of dental pulp. Oral Dis 2023; 29:2565-2577. [PMID: 36415913 DOI: 10.1111/odi.14451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 10/26/2022] [Accepted: 11/15/2022] [Indexed: 11/24/2022]
Abstract
It is well understood that maintaining viable pulp is critical for tooth retention. This review focused on cell-free therapy based on extracellular vesicles (EVs), a novel minimally invasive treatment strategy for endodontic restoration. This study was conducted by searching mainstream electronic databases such as Web of Science and PubMed for relevant studies on the therapeutic role of odontogenic EVs in pulp healing published in the last five years. We selected 89 relevant articles and discovered that dental stem cells (DSCs) derived EVs (DSC-EVs) have become a research hotspot in oral regenerative medicine, with significant advantages over cell transplantation in terms of low immunogenicity, ease of isolation, preservation, and management. Here, we introduce in detail the therapeutic effects of DSC-EVs for pulp restoration from three perspectives: excellent odontogenic properties, clinical applications, and possible molecular mechanisms. This article contributes a new viewpoint to the field of regenerative endodontics.
Collapse
Affiliation(s)
- Yanan Li
- Department of Oral Geriatrics, Hospital of Stomatology, Jilin University, Changchun, China
| | - Chaoran Liu
- Department of Oral Geriatrics, Hospital of Stomatology, Jilin University, Changchun, China
| | - Guanghong Han
- Department of Oral Geriatrics, Hospital of Stomatology, Jilin University, Changchun, China
| |
Collapse
|
12
|
Zhou Y, Xu T, Wang C, Han P, Ivanovski S. Clinical usage of dental stem cells and their derived extracellular vesicles. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2023; 199:297-326. [PMID: 37678975 DOI: 10.1016/bs.pmbts.2023.03.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/09/2023]
Abstract
Stem cell-based therapies remain at the forefront of tissue engineering and regenerative medicine because stem cells are a unique cell source with enormous potential to treat incurable diseases and even extend lifespans. The search for the best stem cell candidates continues to evolve and in recent years, dental stem cells have received significant attention due to their easy accessibility, high plasticity, and multipotential properties. Dental stem cells have been the subject of extensive research in both animal models and human clinical trials over the past two decades, and have demonstrated significant potential in ocular therapy, bone tissue engineering, and, of course, therapeutic applications in dentistry such as regenerative endodontics and periodontal tissue regeneration. These new sources of cells may be advantageous for cellular therapy and the advancement of regenerative medicine strategies, such as allogeneic transplantation or therapy with extracellular vesicles (EVs), which are functional nanoscale membrane vesicles produced by cells. This chapter discusses the accumulating research findings on cell-based regenerative therapy utilizing dental stem cells and their derived EVs, which could be a viable tool for the treatment of a variety of diseases and hence extremely valuable to mankind in the long run.
Collapse
Affiliation(s)
- Yinghong Zhou
- The University of Queensland, School of Dentistry, Brisbane, QLD, Australia.
| | - Tian Xu
- The University of Queensland, School of Dentistry, Brisbane, QLD, Australia.
| | - Cong Wang
- The University of Queensland, School of Dentistry, Brisbane, QLD, Australia.
| | - Pingping Han
- The University of Queensland, School of Dentistry, Brisbane, QLD, Australia.
| | - Sašo Ivanovski
- The University of Queensland, School of Dentistry, Brisbane, QLD, Australia.
| |
Collapse
|
13
|
Shahin H, Abdallah S, Das J, He W, El-Serafi I, Steinvall I, Sjöberg F, Elmasry M, El-Serafi AT. miRNome and Proteome Profiling of Human Keratinocytes and Adipose Derived Stem Cells Proposed miRNA-Mediated Regulations of Epidermal Growth Factor and Interleukin 1-Alpha. Int J Mol Sci 2023; 24:4956. [PMID: 36902387 PMCID: PMC10002856 DOI: 10.3390/ijms24054956] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/13/2023] [Accepted: 02/18/2023] [Indexed: 03/08/2023] Open
Abstract
Wound healing is regulated by complex crosstalk between keratinocytes and other cell types, including stem cells. In this study, a 7-day direct co-culture model of human keratinocytes and adipose-derived stem cells (ADSCs) was proposed to study the interaction between the two cell types, in order to identify regulators of ADSCs differentiation toward the epidermal lineage. As major mediators of cell communication, miRNome and proteome profiles in cell lysates of cultured human keratinocytes and ADSCs were explored through experimental and computational analyses. GeneChip® miRNA microarray, identified 378 differentially expressed miRNAs; of these, 114 miRNAs were upregulated and 264 miRNAs were downregulated in keratinocytes. According to miRNA target prediction databases and the Expression Atlas database, 109 skin-related genes were obtained. Pathway enrichment analysis revealed 14 pathways including vesicle-mediated transport, signaling by interleukin, and others. Proteome profiling showed a significant upregulation of the epidermal growth factor (EGF) and Interleukin 1-alpha (IL-1α) compared to ADSCs. Integrated analysis through cross-matching the differentially expressed miRNA and proteins suggested two potential pathways for regulations of epidermal differentiation; the first is EGF-based through the downregulation of miR-485-5p and miR-6765-5p and/or the upregulation of miR-4459. The second is mediated by IL-1α overexpression through four isomers of miR-30-5p and miR-181a-5p.
Collapse
Affiliation(s)
- Hady Shahin
- Department of Hand Surgery, Plastic Surgery and Burns, Linköping University, 58185 Linköping, Sweden
- The Department of Biomedical and Clinical Sciences, Linköping University, 58183 Linköping, Sweden
- Faculty of Biotechnology, Modern Sciences and Arts University, Cario 12585, Egypt
| | - Sallam Abdallah
- The Department of Biomedical and Clinical Sciences, Linköping University, 58183 Linköping, Sweden
| | - Jyotirmoy Das
- Bioinformatics, Core Facility, Division of Cell Biology, Department of Biomedical and Clinical Sciences, Faculty of Medicine and Health Sciences, Linköping University, 58183 Linköping, Sweden
- Clinical Genomics Linköping, SciLife Laboratory, Department of Biomedical and Clinical Sciences, Faculty of Medicine and Health Sciences, Linköping University, 58183 Linköping, Sweden
| | - Weihai He
- The Department of Biomedical and Clinical Sciences, Linköping University, 58183 Linköping, Sweden
| | - Ibrahim El-Serafi
- Department of Hand Surgery, Plastic Surgery and Burns, Linköping University, 58185 Linköping, Sweden
- Basic Medical Sciences Department, College of Medicine, Ajman University, Ajman P.O. Box 346, United Arab Emirates
- Department of Biochemistry, Faculty of Medicine, Port-Said University, Port Fouad City 42526, Egypt
| | - Ingrid Steinvall
- Department of Hand Surgery, Plastic Surgery and Burns, Linköping University, 58185 Linköping, Sweden
- The Department of Biomedical and Clinical Sciences, Linköping University, 58183 Linköping, Sweden
| | - Folke Sjöberg
- Department of Hand Surgery, Plastic Surgery and Burns, Linköping University, 58185 Linköping, Sweden
- The Department of Biomedical and Clinical Sciences, Linköping University, 58183 Linköping, Sweden
| | - Moustafa Elmasry
- Department of Hand Surgery, Plastic Surgery and Burns, Linköping University, 58185 Linköping, Sweden
- The Department of Biomedical and Clinical Sciences, Linköping University, 58183 Linköping, Sweden
| | - Ahmed T. El-Serafi
- Department of Hand Surgery, Plastic Surgery and Burns, Linköping University, 58185 Linköping, Sweden
- The Department of Biomedical and Clinical Sciences, Linköping University, 58183 Linköping, Sweden
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Suez Canal University, Ismailia 41522, Egypt
| |
Collapse
|
14
|
Song X, Xu L, Zhang W. Biomimetic synthesis and optimization of extracellular vesicles for bone regeneration. J Control Release 2023; 355:18-41. [PMID: 36706840 DOI: 10.1016/j.jconrel.2023.01.057] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/18/2023] [Accepted: 01/20/2023] [Indexed: 01/29/2023]
Abstract
Critical-size bone defect repair is in high demand but is difficult to treat. Modern therapies, such as autograft and cell-based treatments, face limitations, including potential immunological rejection and tumorigenesis. Therefore, extracellular vesicle (EV)-based strategies have been proposed as a novel approach for tissue regeneration owing to EVs' complex composition of lipids, proteins, and nucleic acids, as well as their low immunogenicity and congenital cell-targeting features. Despite these remarkable features of EVs, biomimetic synthesis and optimization of natural EVs can lead to enhanced bioactivity, increased cellular uptake, and specific cell targeting, aiming to achieve optimal therapeutic efficacy. To maximize their function, these nanoparticles can be integrated into bone graft biomaterials for superior bone regeneration. Herein, we summarize the role of naturally occurring EVs from distinct cell types in bone regeneration, the current strategies for optimizing biomimetic synthetic EVs in bone regeneration, and discuss the recent advances in applying bone graft biomaterials for the delivery of EVs to bone defect repair. We focused on distinct strategies for optimizing EVs with different functions and the most recent research on achieving time-controlled release of nanoparticles from EV-loaded biomaterials. Furthermore, we thoroughly discuss several current challenges and proposed solutions, aiming to provide insight into current progress, inspiration for future development directions, and incentives for clinical application in this field.
Collapse
Affiliation(s)
- Xinyu Song
- Department of Prosthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China; College of Stomatology, Shanghai Jiao Tong University, Shanghai, China; National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai Engineering Research Center of Advanced Dental Technology and Materials, Shanghai, China
| | - Ling Xu
- Department of Prosthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China; College of Stomatology, Shanghai Jiao Tong University, Shanghai, China; National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai Engineering Research Center of Advanced Dental Technology and Materials, Shanghai, China.
| | - Wenjie Zhang
- Department of Prosthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China; College of Stomatology, Shanghai Jiao Tong University, Shanghai, China; National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai Engineering Research Center of Advanced Dental Technology and Materials, Shanghai, China.
| |
Collapse
|
15
|
Lee AE, Choi JG, Shi SH, He P, Zhang QZ, Le AD. DPSC-Derived Extracellular Vesicles Promote Rat Jawbone Regeneration. J Dent Res 2023; 102:313-321. [PMID: 36348514 DOI: 10.1177/00220345221133716] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Repair and functional reconstruction of large jawbone defects remain one of the challenges in the field of head and neck surgery. The recent progress in tissue engineering technologies and stem cell biology has significantly promoted the development of regenerative reconstruction of jawbone defects. The multiple trophic activities of extracellular vesicles (EVs) produced by mesenchymal stem cells (MSCs) may play a critical role in their therapeutic effects. Accumulating evidence has shown the promise of dental pulp stem cells (DPSCs) in bone regeneration, but less is known about the regenerative effects of DPSC-EVs on jawbone defects. The purpose of this study is to explore the osteogenic effects of DPSC-EVs on jawbone marrow-derived MSCs (JB-MSCs) in vitro and their osteoinductive effects in a mandibular bone defect model in rats. Our results showed that JB-MSCs could efficiently uptake DPSC-EVs, which in turn significantly promoted the expression of osteogenic genes, such as runt-related transcription factor 2 (RUNX2), alkaline phosphatase (ALP), and osteocalcin (OCN), as well as the osteogenic differentiation capability of JB-MSCs. Meanwhile, we found that the pro-osteogenic effect in vitro induced by DPSC-EVs was comparable to that induced by BMP-2 (bone morphogenetic protein 2), currently the only Food and Drug Administration-approved osteoinductive growth factor. In vivo, animals that were locally treated with DPSC-EVs laden with a commercially available collagen membrane exhibited a relatively fast wound closure and increased new bone density at the mandible defects. Our results provide evidence for the osteogenic and osteoinductive effects of DPSC-EVs on jawbone regeneration. Due to the accessibility, rapid proliferation, and osteogenic propensity of DPSCs, DPSC-EVs may represent a safe cell-free therapeutic approach for craniofacial bone regeneration.
Collapse
Affiliation(s)
- A E Lee
- Department of Oral and Maxillofacial Surgery and Pharmacology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - J G Choi
- Department of Oral and Maxillofacial Surgery and Pharmacology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Oral and Maxillofacial Surgery, NYU Langone Hospitals, New York, NY, USA
| | - S H Shi
- Department of Oral and Maxillofacial Surgery and Pharmacology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - P He
- Department of Oral and Maxillofacial Surgery and Pharmacology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Department of Oral and Maxillofacial Surgery, Perelman Center for Advanced Medicine, Penn Medicine, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Q Z Zhang
- Department of Oral and Maxillofacial Surgery and Pharmacology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - A D Le
- Department of Oral and Maxillofacial Surgery and Pharmacology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Department of Oral and Maxillofacial Surgery, Perelman Center for Advanced Medicine, Penn Medicine, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
16
|
Ren S, Lin Y, Liu W, Yang L, Zhao M. MSC-Exos: Important active factor of bone regeneration. Front Bioeng Biotechnol 2023; 11:1136453. [PMID: 36814713 PMCID: PMC9939647 DOI: 10.3389/fbioe.2023.1136453] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 01/24/2023] [Indexed: 02/08/2023] Open
Abstract
Bone defect and repair is a common but difficult problem in restorative and reconstructive surgery. Bone tissue defects of different sizes caused by different reasons bring functional limitations and cosmetic deformities to patients. Mesenchymal stem cells (MSC), a major hotspot in the field of regeneration in recent years, have been widely used in various studies on bone tissue regeneration. Numerous studies have shown that the bone regenerative effects of MSC can be achieved through exosome-delivered messages. Although its osteogenic mechanism is still unclear, it is clear that MSC-Exos can directly or indirectly support the action of bone regeneration. It can act directly on various cells associated with osteogenesis, or by carrying substances that affect cellular activators or the local internal environment in target cells, or it can achieve activation of the osteogenic framework by binding to materials. Therefore, this review aims to summarize the types and content of effective contents of MSC-Exos in bone regeneration, as well as recent advances in the currently commonly used methods to enable the binding of MSC-Exos to the framework and to conclude that MSC-Exos is effective in promoting osteogenesis.
Collapse
Affiliation(s)
- Sihang Ren
- Department of Plastic Surgery, The Second Hospital of Dalian Medical University, Dalian, China,Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang, China,NHC Key Laboratory of Reproductive Health and Medical Genetics (China Medical University), Liaoning Research Institute of Family Planning (The Affiliated Reproductive Hospital of China Medical University), Shenyang, China
| | - Yuyang Lin
- Department of Plastic Surgery, The Second Hospital of Dalian Medical University, Dalian, China
| | - Wenyue Liu
- Department of Plastic Surgery, The Second Hospital of Dalian Medical University, Dalian, China
| | - Liqun Yang
- NHC Key Laboratory of Reproductive Health and Medical Genetics (China Medical University), Liaoning Research Institute of Family Planning (The Affiliated Reproductive Hospital of China Medical University), Shenyang, China,Department of Biomaterials, Shengjing Hospital of China Medical University, Shenyang, China,*Correspondence: Liqun Yang, ; Muxin Zhao,
| | - Muxin Zhao
- Department of Plastic Surgery, The Second Hospital of Dalian Medical University, Dalian, China,*Correspondence: Liqun Yang, ; Muxin Zhao,
| |
Collapse
|
17
|
Cai R, Wang L, Zhang W, Liu B, Wu Y, Pang J, Ma C. The role of extracellular vesicles in periodontitis: pathogenesis, diagnosis, and therapy. Front Immunol 2023; 14:1151322. [PMID: 37114060 PMCID: PMC10126335 DOI: 10.3389/fimmu.2023.1151322] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 03/28/2023] [Indexed: 04/29/2023] Open
Abstract
Periodontitis is a prevalent disease and one of the leading causes of tooth loss. Biofilms are initiating factor of periodontitis, which can destroy periodontal tissue by producing virulence factors. The overactivated host immune response is the primary cause of periodontitis. The clinical examination of periodontal tissues and the patient's medical history are the mainstays of periodontitis diagnosis. However, there is a lack of molecular biomarkers that can be used to identify and predict periodontitis activity precisely. Non-surgical and surgical treatments are currently available for periodontitis, although both have drawbacks. In clinical practice, achieving the ideal therapeutic effect remains a challenge. Studies have revealed that bacteria produce extracellular vesicles (EVs) to export virulence proteins to host cells. Meanwhile, periodontal tissue cells and immune cells produce EVs that have pro- or anti-inflammatory effects. Accordingly, EVs play a critical role in the pathogenesis of periodontitis. Recent studies have also presented that the content and composition of EVs in saliva and gingival crevicular fluid (GCF) can serve as possible periodontitis diagnostic indicators. In addition, studies have indicated that stem cell EVs may encourage periodontal regeneration. In this article, we mainly review the role of EVs in the pathogenesis of periodontitis and discuss their diagnostic and therapeutic potential.
Collapse
Affiliation(s)
- Rong Cai
- Department of Stomatology, Air Force Medical Center, The Fourth Military Medical University, Beijing, China
| | - Lu Wang
- Department of Critical Care Medicine, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Wei Zhang
- Department of Stomatology, Air Force Medical Center, The Fourth Military Medical University, Beijing, China
| | - Bing Liu
- Department of Stomatology, Air Force Medical Center, The Fourth Military Medical University, Beijing, China
| | - Yiqi Wu
- Department of Critical Care Medicine, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Jianliang Pang
- Department of Stomatology, Air Force Medical Center, The Fourth Military Medical University, Beijing, China
- *Correspondence: Chufan Ma, ; Jianliang Pang,
| | - Chufan Ma
- Department of Stomatology, Air Force Medical Center, The Fourth Military Medical University, Beijing, China
- *Correspondence: Chufan Ma, ; Jianliang Pang,
| |
Collapse
|
18
|
Dong T, Lin WZ, Zhu XH, Yuan KY, Hou LL, Huang ZW. Osteomodulin protects dental pulp stem cells from cisplatin-induced apoptosis in vitro. Stem Cell Rev Rep 2023; 19:188-200. [PMID: 35781607 DOI: 10.1007/s12015-022-10399-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/17/2022] [Indexed: 01/29/2023]
Abstract
Human dental pulp stem cells (hDPSCs) are considered promising multipotent cell sources for tissue regeneration. Regulation of apoptosis and maintaining the cell homeostasis is a critical point for the application of hDPSCs. Osteomodulin (OMD), a member of the small leucine-rich proteoglycan family, was proved an important regulatory protein of hDPSCs in our previous research. Thus, the role of OMD in the apoptosis of hDPSCs was explored in this study. The expression of OMD following apoptotic induction was investigated and then the hDPSCs stably overexpressing or knocking down OMD were established by lentiviral transfection. The proportion of apoptotic cells and apoptosis-relative genes and proteins were examined with flow cytometry, Hoechst staining, Caspase 3 activity assay, qRT-PCR and western blotting. RNA-Seq analysis was used to explore possible biological function and mechanism. Results showed that the expression of OMD decreased following the apoptotic induction. Overexpression of OMD enhanced the viability of hDPSCs, decreased the activity of Caspase-3 and protected hDPSCs from apoptosis. Knockdown of OMD showed the opposite results. Mechanistically, OMD may act as a negative modulator of apoptosis via activation of the Akt/Glycogen synthase kinase 3β (GSK-3β)/β-Catenin signaling pathway and more functional and mechanistic possibilities were revealed with RNA-Seq analysis. The present study provided evidence of OMD as a negative regulator of apoptosis in hDPSCs. Akt/GSK-3β/β-Catenin signaling pathway was involved in this process and more possible mechanism detected needed further exploration. This anti-apoptotic function of OMD provided a promising application prospect for hDPSCs in tissue regeneration.
Collapse
Affiliation(s)
- Ting Dong
- Department of Endodontics, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, China
- National Clinical Research Center for Oral Diseases, Shanghai, China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
| | - Wen-Zhen Lin
- Department of Endodontics, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, China
- National Clinical Research Center for Oral Diseases, Shanghai, China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
| | - Xiao-Han Zhu
- Department of Endodontics, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, China
- National Clinical Research Center for Oral Diseases, Shanghai, China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
| | - Ke-Yong Yuan
- Department of Endodontics, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, China
- National Clinical Research Center for Oral Diseases, Shanghai, China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
| | - Li-Li Hou
- Department of Nursing, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiaotong University, 639 Zhizaoju Road, Shanghai, 200011, China.
| | - Zheng-Wei Huang
- Department of Endodontics, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, China.
- National Clinical Research Center for Oral Diseases, Shanghai, China.
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China.
| |
Collapse
|
19
|
Liu M, Liu X, Su Y, Li S, Chen Y, Liu A, Guo J, Xuan K, Qiu X. Emerging role of mesenchymal stem cell-derived extracellular vesicles in oral and craniomaxillofacial tissue regenerative medicine. Front Bioeng Biotechnol 2022; 10:1054370. [PMID: 36524049 PMCID: PMC9744765 DOI: 10.3389/fbioe.2022.1054370] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 11/03/2022] [Indexed: 06/11/2024] Open
Abstract
Mesenchymal stem cells (MSCs) are multipotent stem cells with differentiation potential and paracrine properties, drawing significant attention in the field of regenerative medicine. Extracellular vesicles (EVs), mainly including exosomes, microvesicles and apoptotic bodies (ABs), are predominantly endosomal in origin and contain bioactive molecules, such as miRNAs, mRNAs, and proteins, which are transferred from their original cells to target cells. Recently it has emerged that MSC-derived EVs (MSC-EVs) combine the advantages of MSCs and EVs, which may be used as a promising MSC-based therapy in tissue repair and regeneration. Oral and craniomaxillofacial diseases are clinically complications containing the soft and hard tissues in craniofacial and dental arches. These diseases are often induced by various factors, such as chemical, microbiological, physical factors, and systemic disorders. For decades, tissue repair and regeneration in oral and craniomaxillofacial regions provide substantial improvements in the prevention and treatment of some severe diseases. In this review we discuss MSC-EVs and their therapeutic potential in oral and craniomaxillofacial tissue regenerative medicine.
Collapse
Affiliation(s)
- Meng Liu
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi International Joint Research Center for Oral Diseases, Department of Preventive Dentistry, School of Stomatology, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Xin Liu
- Department of Orthodontics, School of Stomatology, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Yuting Su
- Center of Clinical Aerospace Medicine, School of Aerospace Medicine, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Shijie Li
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi International Joint Research Center for Oral Diseases, Department of Preventive Dentistry, School of Stomatology, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Yuan Chen
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi International Joint Research Center for Oral Diseases, Department of Preventive Dentistry, School of Stomatology, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Anqi Liu
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi International Joint Research Center for Oral Diseases, Department of Preventive Dentistry, School of Stomatology, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Jing Guo
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi International Joint Research Center for Oral Diseases, Department of Preventive Dentistry, School of Stomatology, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Kun Xuan
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi International Joint Research Center for Oral Diseases, Department of Preventive Dentistry, School of Stomatology, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Xinyu Qiu
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi International Joint Research Center for Oral Diseases, Department of Preventive Dentistry, School of Stomatology, Fourth Military Medical University, Xi’an, Shaanxi, China
| |
Collapse
|
20
|
Vu HT, Yoon JY, Park JH, Lee HH, Dashnyam K, Kim HW, Lee JH, Shin JS, Kim JB. The Potential Application of Human Gingival Fibroblast-Conditioned Media in Pulp Regeneration: An In Vitro Study. Cells 2022; 11:3398. [PMID: 36359794 PMCID: PMC9657428 DOI: 10.3390/cells11213398] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/21/2022] [Accepted: 10/25/2022] [Indexed: 08/27/2023] Open
Abstract
Regenerative endodontic treatment based on tissue engineering has recently gained interest in contemporary restorative dentistry. However, low survival rates and poor potential differentiation of stem cells could undermine the success rate of pulp regenerative therapy. Human gingival fibroblast-conditioned medium (hGF-CM) has been considered a potential therapy for tissue regeneration due to its stability in maintaining multiple factors essential for tissue regeneration compared to live cell transplantation. This study aimed to investigate the potency of hGF-CM on stem cells from human dental pulp (DPSC) in pulp regeneration. A series of experiments confirmed that hGF-CM contributes to a significant increase in proliferation, migration capability, and cell viability of DPSC after H2O2 exposure. Moreover, it has been proved to facilitate the odontogenic differentiation of DPSC via qRT-PCR, ALP (alkaline phosphatase), and ARS (Alizarin Red S) staining. It has been discovered that such highly upregulated odontogenesis is related to certain types of ECM proteins (collagen and laminin) from hGF-CM via proteomics. In addition, it is found that the ERK pathway is a key mechanism via inhibition assay based on RNA-seq result. These findings demonstrate that hGF-CM could be beneficial biomolecules for pulp regeneration.
Collapse
Affiliation(s)
- Huong Thu Vu
- Department of Pediatric Dentistry, College of Dentistry, Dankook University, 119 Dandae-ro, Cheonan 31116, Chungcheongnam-do, Korea
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, 119 Dandae-ro, Cheonan 31116, Chungcheongnam-do, Korea
| | - Ji-Young Yoon
- Cell & Matter Institute, Dankook University, 119 Dandae-ro, Cheonan 31116, Chungcheongnam-do, Korea
| | - Jae-Hee Park
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, 119 Dandae-ro, Cheonan 31116, Chungcheongnam-do, Korea
- Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, 119 Dandae-ro, Cheonan 31116, Chungcheongnam-do, Korea
| | - Hae-Hyoung Lee
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, 119 Dandae-ro, Cheonan 31116, Chungcheongnam-do, Korea
- Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, 119 Dandae-ro, Cheonan 31116, Chungcheongnam-do, Korea
- Department of Biomaterials science, College of Dentistry, Dankook University, 119 Dandae-ro, Cheonan 31116, Chungcheongnam-do, Korea
- UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, 119 Dandae-ro, Cheonan 31116, Chungcheongnam-do, Korea
| | - Khandmaa Dashnyam
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, 119 Dandae-ro, Cheonan 31116, Chungcheongnam-do, Korea
- Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, 119 Dandae-ro, Cheonan 31116, Chungcheongnam-do, Korea
- Drug Research Institute, Mongolian University of Pharmaceutical Science, Ulaanbaatar 976, Mongolia
| | - Hae-Won Kim
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, 119 Dandae-ro, Cheonan 31116, Chungcheongnam-do, Korea
- Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, 119 Dandae-ro, Cheonan 31116, Chungcheongnam-do, Korea
- UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, 119 Dandae-ro, Cheonan 31116, Chungcheongnam-do, Korea
- Mechanobiology Dental Medicine Research Centre, Dankook University, 119 Dandae-ro, Cheonan 31116, Chungcheongnam-do, Korea
| | - Jung-Hwan Lee
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, 119 Dandae-ro, Cheonan 31116, Chungcheongnam-do, Korea
- Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, 119 Dandae-ro, Cheonan 31116, Chungcheongnam-do, Korea
- UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, 119 Dandae-ro, Cheonan 31116, Chungcheongnam-do, Korea
- Mechanobiology Dental Medicine Research Centre, Dankook University, 119 Dandae-ro, Cheonan 31116, Chungcheongnam-do, Korea
| | - Ji-Sun Shin
- Department of Pediatric Dentistry, College of Dentistry, Dankook University, 119 Dandae-ro, Cheonan 31116, Chungcheongnam-do, Korea
| | - Jong-Bin Kim
- Department of Pediatric Dentistry, College of Dentistry, Dankook University, 119 Dandae-ro, Cheonan 31116, Chungcheongnam-do, Korea
| |
Collapse
|
21
|
Tian J, Chen W, Xiong Y, Li Q, Kong S, Li M, Pang C, Qiu Y, Xu Z, Gong Q, Wei X. Small extracellular vesicles derived from hypoxic preconditioned dental pulp stem cells ameliorate inflammatory osteolysis by modulating macrophage polarization and osteoclastogenesis. Bioact Mater 2022; 22:326-342. [PMID: 36311048 PMCID: PMC9587346 DOI: 10.1016/j.bioactmat.2022.10.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/23/2022] [Accepted: 10/01/2022] [Indexed: 11/05/2022] Open
Abstract
Extensive macrophage inflammatory responses and osteoclast formation are predominant during inflammatory or infective osteolysis. Mesenchymal stem cell (MSC)-derived small extracellular vesicles (MSC-sEV) have been shown to exert therapeutic effects on bone defects. However, cultured MSCs are typically exposed to normoxia (21% O2) in vitro, which differs largely from the oxygen concentration in vivo under hypoxic conditions. It is largely unknown whether sEV derived from dental pulp stem cells (DPSCs) cultured under hypoxic conditions (Hypo-sEV) exert better therapeutic effects on lipopolysaccharide (LPS)-induced inflammatory osteolysis than those cultured under normoxic conditions (Nor-sEV) by simultaneously inhibiting the macrophage inflammatory response and osteoclastogenesis. In this study, we show that hypoxia significantly induces the release of sEV from DPSCs. Moreover, Hypo-sEV exhibit significantly improved efficacy in promoting M2 macrophage polarization and suppressing osteoclast formation to alleviate LPS-induced inflammatory calvarial bone loss compared with Nor-sEV. Mechanistically, hypoxia preconditioning markedly alters the miRNA profiles of DPSC-sEV. MiR-210-3p is enriched in Hypo-sEV, and can simultaneously induce M2 macrophage generation and inhibit osteoclastogenesis by targeting NF-κB1 p105, which attenuates osteolysis. Our study suggests a promising potential for hypoxia-induced DPSC-sEV to treat inflammatory or infective osteolysis and identifies a novel role of miR-210-3p in concurrently hindering osteoclastogenesis and macrophage inflammatory response by inhibiting NF-kB1 expression. Hypoxia promotes the release of sEV from DPSCs. Hypoxia-induced DPSC-sEV (Hypo-sEV) show increased potential to inhibit inflammatory osteolysis. The miR-210-3p enriched in Hypo-sEV contributes to therapeutic effects of Hypo-sEV. MiR-210-3p concurrently induces M2 macrophage generation and inhibits osteoclastogenesis by targeting NF-κB1. Hypoxia-induced DPSC-sEV represent a promising therapy for inflammatory osteolysis.
Collapse
Affiliation(s)
- Jun Tian
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong, 510055, PR China,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, Guangdong, 510055, PR China
| | - Weiyang Chen
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong, 510055, PR China,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, Guangdong, 510055, PR China
| | - Yuhua Xiong
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong, 510055, PR China,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, Guangdong, 510055, PR China
| | - Qianer Li
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong, 510055, PR China,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, Guangdong, 510055, PR China
| | - Siyi Kong
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong, 510055, PR China,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, Guangdong, 510055, PR China
| | - Mengjie Li
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong, 510055, PR China,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, Guangdong, 510055, PR China
| | - Chunfeng Pang
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong, 510055, PR China,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, Guangdong, 510055, PR China
| | - Yu Qiu
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong, 510055, PR China,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, Guangdong, 510055, PR China
| | - Zhezhen Xu
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong, 510055, PR China,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, Guangdong, 510055, PR China
| | - Qimei Gong
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong, 510055, PR China,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, Guangdong, 510055, PR China,Corresponding author. Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, 56 Ling Yuan Xi Road, Guangzhou, 510055, China.
| | - Xi Wei
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong, 510055, PR China,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, Guangdong, 510055, PR China,Corresponding author. Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, 56 Ling Yuan Xi Road, Guangzhou, 510055, China.
| |
Collapse
|
22
|
Chen Z, Lu M, Zhang Y, Wang H, Zhou J, Zhou M, Zhang T, Song J. Oxidative stress state inhibits exosome secretion of hPDLCs through a specific mechanism mediated by PRMT1. J Periodontal Res 2022; 57:1101-1115. [PMID: 36063421 DOI: 10.1111/jre.13040] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 06/14/2022] [Accepted: 07/13/2022] [Indexed: 10/14/2022]
Abstract
BACKGROUND AND OBJECTIVES Periodontitis, the most common chronic inflammation characterized by persistent alveolar bone resorption in the periodontitis, affects almost half of the adult population worldwide. Oxidative stress is one of the pathophysiological mechanisms underlying periodontitis, which affects the occurrence and development of periodontitis. Exosomes are increasingly recognized as vehicles of intercellular communication and are closely related to periodontitis. However, the effects of oxidative stress on exosome secretion and the specific mechanisms remain elusive in human periodontal ligament cells (hPDLCs). The relationship between exosome secretion and the osteogenic differentiation of hPDLCs also needs to be investigated. METHODS Isolated PDLSCs were identified using flow cytometry. Osteogenesis was measured using alizarin red staining and ALP staining. Expression of exosomal markers and PRMT1 was analyzed using western blot. Immunofluorescence was used to measure exosome uptake and the expression of EEA1. RESULTS The secretion capacity of exosomes was markedly suppressed under oxidative stress. Protein arginine methyltransferase 1 (PRMT1) has been strongly associated with both oxidative stress and inflammation, and PRMT1 was significantly upregulated under oxidative stress conditions. Lentivirus-mediated overexpression of PRMT1 caused a significant reduction in the secretion of exosomes, but multivesicular bodies (MVBs) containing a large number of intraluminal vesicles (ILVs) were increased. Rab11a and Rab27a expression, which mediate MVBs fusion with cell membranes, decreased, although this phenomenon was restored after knocking down PRMT1 expression under oxidative stress. CONCLUSIONS These results indicated that PRMT1 mediated a decrease in exosome secretion of hPDLCs. The decrease in Rab11a and Rab27a leads to a large accumulation of MVBs in cells and is one of the main reasons for impaired exosome secretion. The decrease in osteogenic differentiation of hPDLCs caused by H2 O2 may originate in part from the inhibition of exosome secretion.
Collapse
Affiliation(s)
- Ziqi Chen
- College of Stomatology, Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China.,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Miao Lu
- College of Stomatology, Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China.,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Yanan Zhang
- College of Stomatology, Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China.,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - He Wang
- College of Stomatology, Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China.,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Jie Zhou
- College of Stomatology, Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China.,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Mengjiao Zhou
- College of Stomatology, Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China.,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Tingwei Zhang
- College of Stomatology, Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China.,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Jinlin Song
- College of Stomatology, Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China.,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| |
Collapse
|
23
|
Ghandforoushan P, Hanaee J, Aghazadeh Z, Samiei M, Navali AM, Khatibi A, Davaran S. Enhancing the function of PLGA-collagen scaffold by incorporating TGF-β1-loaded PLGA-PEG-PLGA nanoparticles for cartilage tissue engineering using human dental pulp stem cells. Drug Deliv Transl Res 2022; 12:2960-2978. [PMID: 35650332 DOI: 10.1007/s13346-022-01161-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/03/2022] [Indexed: 02/07/2023]
Abstract
Since cartilage has a limited capacity for self-regeneration, treating cartilage degenerative disorders is a long-standing difficulty in orthopedic medicine. Researchers have scrutinized cartilage tissue regeneration to handle the deficiency of cartilage restoration capacity. This investigation proposed to compose an innovative nanocomposite biomaterial that enhances growth factor delivery to the injured cartilage site. Here, we describe the design and development of the biocompatible poly(lactide-co-glycolide) acid-collagen/poly(lactide-co-glycolide)-poly(ethylene glycol)-poly(lactide-co-glycolide) (PLGA-collagen/PLGA-PEG-PLGA) nanocomposite hydrogel containing transforming growth factor-β1 (TGF-β1). PLGA-PEG-PLGA nanoparticles were employed as a delivery system embedding TGF-β1 as an articular cartilage repair therapeutic agent. This study evaluates various physicochemical aspects of fabricated scaffolds by 1HNMR, FT-IR, SEM, BET, and DLS methods. The physicochemical features of the developed scaffolds, including porosity, density, degradation, swelling ratio, mechanical properties, morphologies, BET, ELISA, and cytotoxicity were assessed. The cell viability was investigated with the MTT test. Chondrogenic differentiation was assessed via Alcian blue staining and RT-PCR. In real-time PCR testing, the expression of Sox-9, collagen type II, and aggrecan genes was monitored. According to the results, human dental pulp stem cells (hDPSCs) exhibited high adhesion, proliferation, and differentiation on PLGA-collagen/PLGA-PEG-PLGA-TGFβ1 nanocomposite scaffolds compared to the control groups. SEM images displayed suitable cell adhesion and distribution of hDPSCs throughout the scaffolds. RT-PCR assay data displayed that TGF-β1 loaded PLGA-PEG-PLGA nanoparticles puts forward chondroblast differentiation in hDPSCs through the expression of chondrogenic genes. The findings revealed that PLGA-collagen/PLGA-PEG-PLGA-TGF-β1 nanocomposite hydrogel can be utilized as a supportive platform to support hDPSCs differentiation by implementing specific physio-chemical features.
Collapse
Affiliation(s)
- Parisa Ghandforoushan
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Medicinal Chemistry, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Jalal Hanaee
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran.,Pharmaceutical Analysis Research Center, Tabriz University of Medicinal Science, Tabriz, Iran
| | - Zahra Aghazadeh
- Stem Cell Research Center, Oral Medicine Department, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Samiei
- Department of Endodontics, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Ali Khatibi
- Department of Biotechnology, Alzahra University, Tehran, Iran
| | - Soodabeh Davaran
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran. .,Department of Medicinal Chemistry, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran. .,Applied Drug Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
24
|
Vu HT, Han MR, Lee JH, Kim JS, Shin JS, Yoon JY, Park JH, Dashnyam K, Knowles JC, Lee HH, Kim JB, Lee JH. Investigating the Effects of Conditioned Media from Stem Cells of Human Exfoliated Deciduous Teeth on Dental Pulp Stem Cells. Biomedicines 2022; 10:biomedicines10040906. [PMID: 35453661 PMCID: PMC9027398 DOI: 10.3390/biomedicines10040906] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/07/2022] [Accepted: 04/08/2022] [Indexed: 12/24/2022] Open
Abstract
Pulp regeneration has recently attracted interest in modern dentistry. However, the success ratio of pulp regeneration is low due to the compromising potential of stem cells, such as their survival, migration, and odontoblastic differentiation. Stem cells from human exfoliated deciduous teeth (SHED) have been considered a promising tool for regenerative therapy due to their ability to secrete multiple factors that are essential for tissue regeneration, which is achieved by minimally invasive procedures with fewer ethical or legal concerns than those of other procedures. The aim of this study is to investigate the potency of SHED-derived conditioned media (SHED CM) on dental pulp stem cells (DPSCs), a major type of mesenchymal stem cells for dental pulp regeneration. Our results show the promotive efficiency of SHED CM on the proliferation, survival rate, and migration of DPSCs in a dose-dependent manner. Upregulation of odontoblast/osteogenic-related marker genes, such as ALP, DSPP, DMP1, OCN, and RUNX2, and enhanced mineral deposition of impaired DPSCs are also observed in the presence of SHED CM. The analysis of SHED CM found that a variety of cytokines and growth factors have positive effects on cell proliferation, migration, anti-apoptosis, and odontoblast/osteogenic differentiation. These findings suggest that SHED CM could provide some benefits to DPSCs in pulp regeneration.
Collapse
Affiliation(s)
- Huong Thu Vu
- Department of Pediatric Dentistry, College of Dentistry, Dankook University, 119 Dandae-ro, Cheonan 31116, Korea; (H.T.V.); (M.-R.H.); (J.-H.L.); (J.-S.K.); (J.-S.S.)
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, 119 Dandae-ro, Cheonan 31116, Korea; (J.-Y.Y.); (J.-H.P.); (K.D.); (J.C.K.); (H.-H.L.)
| | - Mi-Ran Han
- Department of Pediatric Dentistry, College of Dentistry, Dankook University, 119 Dandae-ro, Cheonan 31116, Korea; (H.T.V.); (M.-R.H.); (J.-H.L.); (J.-S.K.); (J.-S.S.)
| | - Jun-Haeng Lee
- Department of Pediatric Dentistry, College of Dentistry, Dankook University, 119 Dandae-ro, Cheonan 31116, Korea; (H.T.V.); (M.-R.H.); (J.-H.L.); (J.-S.K.); (J.-S.S.)
| | - Jong-Soo Kim
- Department of Pediatric Dentistry, College of Dentistry, Dankook University, 119 Dandae-ro, Cheonan 31116, Korea; (H.T.V.); (M.-R.H.); (J.-H.L.); (J.-S.K.); (J.-S.S.)
| | - Ji-Sun Shin
- Department of Pediatric Dentistry, College of Dentistry, Dankook University, 119 Dandae-ro, Cheonan 31116, Korea; (H.T.V.); (M.-R.H.); (J.-H.L.); (J.-S.K.); (J.-S.S.)
| | - Ji-Young Yoon
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, 119 Dandae-ro, Cheonan 31116, Korea; (J.-Y.Y.); (J.-H.P.); (K.D.); (J.C.K.); (H.-H.L.)
- Department of Biomaterials science, College of Dentistry, Dankook University, 119 Dandae-ro, Cheonan 31116, Korea
| | - Jeong-Hui Park
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, 119 Dandae-ro, Cheonan 31116, Korea; (J.-Y.Y.); (J.-H.P.); (K.D.); (J.C.K.); (H.-H.L.)
- Department of Biomaterials science, College of Dentistry, Dankook University, 119 Dandae-ro, Cheonan 31116, Korea
| | - Khandmaa Dashnyam
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, 119 Dandae-ro, Cheonan 31116, Korea; (J.-Y.Y.); (J.-H.P.); (K.D.); (J.C.K.); (H.-H.L.)
- Department of Biomaterials science, College of Dentistry, Dankook University, 119 Dandae-ro, Cheonan 31116, Korea
- Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, 119 Dandae-ro, Cheonan 31116, Korea
| | - Jonathan Campbell Knowles
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, 119 Dandae-ro, Cheonan 31116, Korea; (J.-Y.Y.); (J.-H.P.); (K.D.); (J.C.K.); (H.-H.L.)
- Department of Biomaterials science, College of Dentistry, Dankook University, 119 Dandae-ro, Cheonan 31116, Korea
- UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, 119 Dandae-ro, Cheonan 31116, Korea
- Mechanobiology Dental Medicine Research Centre, Cheonan 31116, Korea
- Cell & Matter Institue, Dankook University, Cheonan 31116, Korea
- Division of Biomaterials and Tissue Engineering, Eastman Dental Institute, Royal Free Hospital, Rowland Hill Street, London NW3 2PF, UK
| | - Hae-Hyoung Lee
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, 119 Dandae-ro, Cheonan 31116, Korea; (J.-Y.Y.); (J.-H.P.); (K.D.); (J.C.K.); (H.-H.L.)
- UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, 119 Dandae-ro, Cheonan 31116, Korea
- The Discoveries Centre for Regenerative and Precision Medicine, Eastman Dental Institute, University College, London WC1E 6BT, UK
| | - Jong-Bin Kim
- Department of Pediatric Dentistry, College of Dentistry, Dankook University, 119 Dandae-ro, Cheonan 31116, Korea; (H.T.V.); (M.-R.H.); (J.-H.L.); (J.-S.K.); (J.-S.S.)
- Correspondence: (J.-B.K.); (J.-H.L.); Tel.: +82-41-550-3081 (J.-B.K. & J.-H.L.); Fax: +82-41-559-7839 (J.-B.K. & J.-H.L.)
| | - Jung-Hwan Lee
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, 119 Dandae-ro, Cheonan 31116, Korea; (J.-Y.Y.); (J.-H.P.); (K.D.); (J.C.K.); (H.-H.L.)
- Department of Biomaterials science, College of Dentistry, Dankook University, 119 Dandae-ro, Cheonan 31116, Korea
- UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, 119 Dandae-ro, Cheonan 31116, Korea
- Mechanobiology Dental Medicine Research Centre, Cheonan 31116, Korea
- The Discoveries Centre for Regenerative and Precision Medicine, Eastman Dental Institute, University College, London WC1E 6BT, UK
- Drug Research Institute, Mongolian Pharmaceutical University & Monos Group, Ulaanbaatar 14250, Mongolia
- Correspondence: (J.-B.K.); (J.-H.L.); Tel.: +82-41-550-3081 (J.-B.K. & J.-H.L.); Fax: +82-41-559-7839 (J.-B.K. & J.-H.L.)
| |
Collapse
|
25
|
Hao Z, Li H, Wang Y, Hu Y, Chen T, Zhang S, Guo X, Cai L, Li J. Supramolecular Peptide Nanofiber Hydrogels for Bone Tissue Engineering: From Multihierarchical Fabrications to Comprehensive Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2103820. [PMID: 35128831 PMCID: PMC9008438 DOI: 10.1002/advs.202103820] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 01/02/2022] [Indexed: 05/03/2023]
Abstract
Bone tissue engineering is becoming an ideal strategy to replace autologous bone grafts for surgical bone repair, but the multihierarchical complexity of natural bone is still difficult to emulate due to the lack of suitable biomaterials. Supramolecular peptide nanofiber hydrogels (SPNHs) are emerging biomaterials because of their inherent biocompatibility, satisfied biodegradability, high purity, facile functionalization, and tunable mechanical properties. This review initially focuses on the multihierarchical fabrications by SPNHs to emulate natural bony extracellular matrix. Structurally, supramolecular peptides based on distinctive building blocks can assemble into nanofiber hydrogels, which can be used as nanomorphology-mimetic scaffolds for tissue engineering. Biochemically, bioactive motifs and bioactive factors can be covalently tethered or physically absorbed to SPNHs to endow various functions depending on physiological and pharmacological requirements. Mechanically, four strategies are summarized to optimize the biophysical microenvironment of SPNHs for bone regeneration. Furthermore, comprehensive applications about SPNHs for bone tissue engineering are reviewed. The biomaterials can be directly used in the form of injectable hydrogels or composite nanoscaffolds, or they can be used to construct engineered bone grafts by bioprinting or bioreactors. Finally, continuing challenges and outlook are discussed.
Collapse
Affiliation(s)
- Zhuowen Hao
- Department of OrthopedicsZhongnan Hospital of Wuhan UniversityDonghu Road 169Wuhan430071China
| | - Hanke Li
- Department of OrthopedicsZhongnan Hospital of Wuhan UniversityDonghu Road 169Wuhan430071China
| | - Yi Wang
- Department of OrthopedicsZhongnan Hospital of Wuhan UniversityDonghu Road 169Wuhan430071China
| | - Yingkun Hu
- Department of OrthopedicsZhongnan Hospital of Wuhan UniversityDonghu Road 169Wuhan430071China
| | - Tianhong Chen
- Department of OrthopedicsZhongnan Hospital of Wuhan UniversityDonghu Road 169Wuhan430071China
| | - Shuwei Zhang
- Department of OrthopedicsZhongnan Hospital of Wuhan UniversityDonghu Road 169Wuhan430071China
| | - Xiaodong Guo
- Department of OrthopedicsUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyJiefang Road 1277Wuhan430022China
| | - Lin Cai
- Department of OrthopedicsZhongnan Hospital of Wuhan UniversityDonghu Road 169Wuhan430071China
| | - Jingfeng Li
- Department of OrthopedicsZhongnan Hospital of Wuhan UniversityDonghu Road 169Wuhan430071China
| |
Collapse
|
26
|
Wei C, Chu M, Zheng K, He P, Xiao J. miR-153-3p inhibited osteogenic differentiation of human DPSCs through CBFβ signaling. In Vitro Cell Dev Biol Anim 2022; 58:316-324. [PMID: 35426067 DOI: 10.1007/s11626-022-00665-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 03/11/2022] [Indexed: 11/29/2022]
Abstract
Dental pulp stem cells (DPSCs) have multilineage differentiation potential and especially show a great foreground in bone regeneration engineering. The mechanism of osteogenic differentiation of DPSCs needs to be explored exactly. As a kind of endogenous and non-coding small RNAs, microRNAs (miRNAs) play an important role in many biological processes including osteogenic differentiation. However, the mechanism of miR-153-3p in osteogenic differentiation of DPSCs is still unknown. Core-binding factors-beta (CBFβ) is a non-DNA-binding factor that combines with the runt-related transcription factor family transcription factors to mediate their DNA-binding affinities, and plays a critical role in regulating osteogenic differentiation. In this study, we explored the mechanisms of miR-153-3p and CBFβ in DPSC osteogenesis. The expression of miR-153-3p and CBFβ was tested under the osteogenic condition, and the influence led by changing the expression of miR-153-3p or CBFβ had also been detected. A luciferase reporter assay confirmed that miR-153-3p directly targeted to CBFβ. The osteogenic markers, alkaline phosphatase (ALP), runt-related transcription factor 2 (Runx2), and bone morphogenetic protein 2 (BMP2), were tested in protein level or mRNA level. ALP and Alizarin red staining were used to detect the osteoblast activity and mineral deposition. In osteogenic condition, the expressions of CBFβ and osteogenic markers were upregulated, whereas that of miR-153-3p was downregulated. miR-153-3p negatively regulated the osteogenic differentiation, and overexpression of CBFβ could offset the negative effect of miR-153-3p. Our findings provided a novel strategy for DPSC application in treatment of bone deficiencies and facilitated bone regeneration.
Collapse
Affiliation(s)
- Changbo Wei
- The Affiliated Stomatological Hospital of Soochow University, Suzhou Stomatological Hospital, Suzhou, 215000, China
| | - Manru Chu
- The Affiliated Stomatological Hospital of Soochow University, Suzhou Stomatological Hospital, Suzhou, 215000, China
| | - Ke Zheng
- Department of Stomatology, Wuxi No 2 People's Hospital, Wuxi, 214000, China
| | - Ping He
- Department of Stomatology, Wuxi No 2 People's Hospital, Wuxi, 214000, China
| | - Jingwen Xiao
- Department of Stomatology, Haimen People's Hospital Affiliated To Nantong University, Nantong, 226199, China. .,Department of Stomatology, Affiliated Hospital of Nantong University, Nantong, 226001, China.
| |
Collapse
|
27
|
Li F, Zhang J, Yi K, Wang H, Wei H, Chan HF, Tao Y, Li M. Delivery of Stem Cell Secretome for Therapeutic Applications. ACS APPLIED BIO MATERIALS 2022; 5:2009-2030. [PMID: 35285638 DOI: 10.1021/acsabm.1c01312] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Intensive studies on stem cell therapy reveal that benefits of stem cells attribute to the paracrine effects. Hence, direct delivery of stem cell secretome to the injured site shows the comparative therapeutic efficacy of living cells while avoiding the potential limitations. However, conventional systemic administration of stem cell secretome often leads to rapid clearance in vivo. Therefore, a variety of different biomaterials are developed for sustained and controllable delivery of stem cell secretome to improve therapeutic efficiency. In this review, we first introduce current approaches for the preparation and characterization of stem cell secretome as well as strategies to improve their therapeutic efficacy and production. The up-to-date delivery platforms are also summarized, including nanoparticles, injectable hydrogels, microneedles, and scaffold patches. Meanwhile, we discuss the underlying therapeutic mechanism of stem cell secretome for the treatment of various diseases. In the end, future opportunities and challenges are proposed.
Collapse
Affiliation(s)
- Fenfang Li
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| | - Jiabin Zhang
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| | - Ke Yi
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| | - Haixia Wang
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| | - Hongyan Wei
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| | - Hon Fai Chan
- Institute for Tissue Engineering and Regenerative Medicine, School of Biomedical Science, The Chinese University of Hong Kong, Hong Kong 999077, China
| | - Yu Tao
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| | - Mingqiang Li
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China.,Guangdong Provincial Key Laboratory of Liver Disease, Guangzhou 510630, China
| |
Collapse
|
28
|
Williams KB, Ehrhart NP. Regenerative medicine 2.0: extracellular vesicle-based therapeutics for musculoskeletal tissue regeneration. J Am Vet Med Assoc 2022; 260:683-689. [PMID: 35263279 DOI: 10.2460/javma.22.02.0060] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In recent years, extracellular vesicles (EVs) have emerged as prominent mediators of the homeostasis, repair, and regeneration of musculoskeletal tissues including bone, skeletal muscle, and cartilage. Accordingly, the therapeutic potential of EVs for regenerative medicine applications has not gone unnoticed. The use of EVs for the treatment of musculoskeletal injury and disease in veterinary species is a nascent but rapidly expanding area of research. Recent studies in this area have demonstrated the safety and feasibility of EV products in dogs and horses. While early clinical responses to EV-based therapeutics in companion animals have been favorable, more rigorously designed, sufficiently powered, and placebo-controlled clinical trials are required to fully elucidate the clinical benefits and best-use scenarios for EV therapeutics in veterinary medicine. Additionally, clinical translation of EV-based therapeutics will require Good Manufacturing Practice-compliant methods to scale up and purify EV products. Despite these challenges, EVs hold great promise in the regenerative medicine landscape, particularly in the treatment of musculoskeletal injury and disease in companion animals.
Collapse
|
29
|
Arora S, Cooper PR, Ratnayake JT, Friedlander LT, Rizwan SB, Seo B, Hussaini HM. A critical review of in vitro research methodologies used to study mineralization in human dental pulp cell cultures. Int Endod J 2022; 55 Suppl 1:3-13. [PMID: 35030284 PMCID: PMC9303903 DOI: 10.1111/iej.13684] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 01/11/2022] [Indexed: 11/27/2022]
Abstract
Background The pulp contains a resident population of stem cells which can be stimulated to differentiate in order to repair the tooth by generating a mineralized extracellular matrix. Over recent decades there has been considerable interest in utilizing in vitro cell culture models to study dentinogenesis, with the aim of developing regenerative endodontic procedures, particularly where some vital pulp tissue remains. Objectives The purpose of this review is to provide a structured oversight of in vitro research methodologies which have been used to study human pulp mineralization processes. Method The literature was screened in the PubMed database up to March 2021 to identify manuscripts reporting the use of human dental pulp cells to study mineralization. The dataset identified 343 publications initially which were further screened and consequently 166 studies were identified and it was methodologically mined for information on: i) study purpose, ii) source and characterization of cells, iii) mineralizing supplements and concentrations, and iv) assays and markers used to characterize mineralization and differentiation, and the data was used to write this narrative review. Results Most published studies aimed at characterizing new biological stimulants for mineralization as well as determining the effect of scaffolds and dental (bio)materials. In general, pulp cells were isolated by enzymatic digestion, although the pulp explant technique was also common. For enzymatic digestion, a range of enzymes and concentrations were utilized, although collagenase type I and dispase were the most frequent. Isolated cells were not routinely characterized using either fluorescence‐activated cell sorting (FACS) and magnetic‐activated cell sorting (MACS) approaches and there was little consistency in terming cultures as dental pulp cells or dental pulp stem cells. A combination of media supplements, at a range of concentrations, of dexamethasone, ascorbic acid and beta‐glycerophosphate, were frequently applied as the basis for the experimental conditions. Alizarin Red S (ARS) staining was the method of choice for assessment of mineralization at 21‐days. Alkaline phosphatase assay was relatively frequently applied, solely or in combination with ARS staining. Further assessment of differentiation status was performed using transcript or protein markers, with dentine sialophosphoprotein (DSPP), osteocalcin and dentine matrix protein‐1 (DMP ‐1), the most frequent. Discussion While this review highlights variability among experimental approaches, it does however identify a consensus experimental approach. Conclusion Standardization of experimental conditions and sustained research will significantly benefit endodontic patient outcomes in the future.
Collapse
Affiliation(s)
- Shelly Arora
- Faculty of Dentistry, Sir John Walsh Research Institute, University of Otago, Dunedin
| | - Paul R Cooper
- Faculty of Dentistry, Sir John Walsh Research Institute, University of Otago, Dunedin
| | - Jithendra T Ratnayake
- Faculty of Dentistry, Sir John Walsh Research Institute, University of Otago, Dunedin
| | - Lara T Friedlander
- Faculty of Dentistry, Sir John Walsh Research Institute, University of Otago, Dunedin
| | | | - Benedict Seo
- Faculty of Dentistry, Sir John Walsh Research Institute, University of Otago, Dunedin
| | - Haizal M Hussaini
- Faculty of Dentistry, Sir John Walsh Research Institute, University of Otago, Dunedin
| |
Collapse
|
30
|
Dental stem cell-derived extracellular vesicles as promising therapeutic agents in the treatment of diseases. Int J Oral Sci 2022; 14:2. [PMID: 34980877 PMCID: PMC8724288 DOI: 10.1038/s41368-021-00152-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 11/22/2021] [Accepted: 11/28/2021] [Indexed: 02/07/2023] Open
Abstract
Dental stem cells (DSCs), an important source of mesenchymal stem cells (MSCs), can be easily obtained by minimally invasive procedures and have been used for the treatment of various diseases. Classic paradigm attributed the mechanism of their therapeutic action to direct cell differentiation after targeted migration, while contemporary insights into indirect paracrine effect opened new avenues for the mystery of their actual low engraftment and differentiation ability in vivo. As critical paracrine effectors, DSC-derived extracellular vesicles (DSC-EVs) are being increasingly linked to the positive effects of DSCs by an evolving body of in vivo studies. Carrying bioactive contents and presenting therapeutic potential in certain diseases, DSC-EVs have been introduced as promising treatments. Here, we systematically review the latest in vivo evidence that supports the therapeutic effects of DSC-EVs with mechanistic studies. In addition, current challenges and future directions for the clinical translation of DSC-EVs are also highlighted to call for more attentions to the (I) distinguishing features of DSC-EVs compared with other types of MSC-EVs, (II) heterogeneity among different subtypes of DSC-derived EVs, (III) action modes of DSC-EVs, (IV) standardization for eligible DSC-EVs and (V) safety guarantee for the clinical application of DSC-EVs. The present review would provide valuable insights into the emerging opportunities of DSC-EVs in future clinical applications.
Collapse
|
31
|
Yang S, Liu Q, Chen S, Zhang F, Li Y, Fan W, Mai L, He H, Huang F. Extracellular vesicles delivering nuclear factor I/C for hard tissue engineering: Treatment of apical periodontitis and dentin regeneration. J Tissue Eng 2022; 13:20417314221084095. [PMID: 35321254 PMCID: PMC8935403 DOI: 10.1177/20417314221084095] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 02/13/2022] [Indexed: 12/19/2022] Open
Abstract
Apical periodontitis (AP) causes arrest of tooth root development, which is associated with impaired odontoblastic differentiation of stem cells from apical papilla (SCAPs), but the underlying mechanism remains unclear. Here, we investigated roles of extracellular vesicle (EV) in AP and odontoblastic differentiation of SCAPs, moreover, a novel nuclear factor I/C (NFIC)-encapsulated EV was developed to promote dentin regeneration. We detected a higher expression of EV marker CD63 in inflamed apical papilla, and found that EVs from LPS-stimulated dental pulp cells suppressed odontoblastic differentiation of SCAPs through downregulating NFIC. Furthermore, we successfully constructed the NFIC-encapsulated EV by overexpressing NFIC in HEK293FT cells, which could upregulate cellular NFIC level in SCAPs, promoting the proliferation and migration of SCAPs, as well as dentinogenesis both in vitro and in vivo. Collectively, based on pathological roles of EV in AP, our study provides a novel strategy for dentin regeneration by exploiting EV to deliver NFIC.
Collapse
Affiliation(s)
- Shengyan Yang
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
- Department of Oral Anatomy and Physiology, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Qing Liu
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
- Department of Oral Anatomy and Physiology, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Shijing Chen
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
- Department of Oral Anatomy and Physiology, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Fuping Zhang
- Department of Oral Anatomy and Physiology, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Yaoyin Li
- Department of Oral Anatomy and Physiology, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
- Department of Pediatric Dentistry, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Wenguo Fan
- Department of Oral Anatomy and Physiology, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Lijia Mai
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
- Department of Oral Anatomy and Physiology, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Hongwen He
- Department of Oral Anatomy and Physiology, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Fang Huang
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
- Department of Oral Anatomy and Physiology, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
32
|
Lu CH, Chen YA, Ke CC, Liu RS. Mesenchymal Stem Cell-Derived Extracellular Vesicle: A Promising Alternative Therapy for Osteoporosis. Int J Mol Sci 2021; 22:12750. [PMID: 34884554 PMCID: PMC8657894 DOI: 10.3390/ijms222312750] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/15/2021] [Accepted: 11/22/2021] [Indexed: 02/07/2023] Open
Abstract
Osteoporosis is the chronic metabolic bone disease caused by the disturbance of bone remodeling due to the imbalance of osteogenesis and osteoclastogenesis. A large population suffers from osteoporosis, and most of them are postmenopausal women or older people. To date, bisphosphonates are the main therapeutic agents in the treatment of osteoporosis. However, limited therapeutic effects with diverse side effects caused by bisphosphonates hindered the therapeutic applications and decreased the quality of life. Therefore, an alternative therapy for osteoporosis is still needed. Stem cells, especially mesenchymal stem cells, have been shown as a promising medication for numerous human diseases including many refractory diseases. Recently, researchers found that the extracellular vesicles derived from these stem cells possessed the similar therapeutic potential to that of parental cells. To date, a number of studies demonstrated the therapeutic applications of exogenous MSC-EVs for the treatment of osteoporosis. In this article, we reviewed the basic back ground of EVs, the cargo and therapeutic potential of MSC-EVs, and strategies of engineering of MSC-EVs for osteoporosis treatment.
Collapse
Affiliation(s)
- Cheng-Hsiu Lu
- Core Laboratory for Phenomics and Diagnostics, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan;
- Department of Medical Research, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
| | - Yi-An Chen
- Molecular and Genetic Imaging Core/Taiwan Mouse Clinic, National Comprehensive Mouse Phenotyping and Drug Testing Center, Taipei 112, Taiwan;
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Chien-Chih Ke
- Department of Medical Imaging and Radiological Sciences, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Ren-Shyan Liu
- Molecular and Genetic Imaging Core/Taiwan Mouse Clinic, National Comprehensive Mouse Phenotyping and Drug Testing Center, Taipei 112, Taiwan;
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
- Department of Nuclear Medicine, Cheng Hsin General Hospital, Taipei 112, Taiwan
- Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
- PET Center, Department of Nuclear Medicine, Taipei Veterans General Hospital, Taipei 112, Taiwan
| |
Collapse
|
33
|
Bar JK, Lis-Nawara A, Grelewski PG. Dental Pulp Stem Cell-Derived Secretome and Its Regenerative Potential. Int J Mol Sci 2021; 22:ijms222112018. [PMID: 34769446 PMCID: PMC8584775 DOI: 10.3390/ijms222112018] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/02/2021] [Accepted: 11/04/2021] [Indexed: 12/11/2022] Open
Abstract
The therapeutic potential of the dental pulp stem (DSC) cell-derived secretome, consisting of various biomolecules, is undergoing intense research. Despite promising in vitro and in vivo studies, most DSC secretome-based therapies have not been implemented in human medicine because the paracrine effect of the bioactive factors secreted by human dental pulp stem cells (hDPSCs) and human exfoliated deciduous teeth (SHEDs) is not completely understood. In this review, we outline the current data on the hDPSC- and SHED-derived secretome as a potential candidate in the regeneration of bone, cartilage, and nerve tissue. Published reports demonstrate that the dental MSC-derived secretome/conditional medium may be effective in treating neurodegenerative diseases, neural injuries, cartilage defects, and repairing bone by regulating neuroprotective, anti-inflammatory, antiapoptotic, and angiogenic processes through secretome paracrine mechanisms. Dental MSC-secretomes, similarly to the bone marrow MSC-secretome activate molecular and cellular mechanisms, which determine the effectiveness of cell-free therapy. Many reports emphasize that dental MSC-derived secretomes have potential application in tissue-regenerating therapy due to their multidirectional paracrine effect observed in the therapy of many different injured tissues.
Collapse
|
34
|
Yoshida S, Sugii H, Itoyama T, Kadowaki M, Hasegawa D, Tomokiyo A, Hamano S, Ipposhi K, Yamashita K, Maeda H. Development of a novel direct dental pulp-capping material using 4-META/MMA-TBB resin with nano hydroxyapatite. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 130:112426. [PMID: 34702511 DOI: 10.1016/j.msec.2021.112426] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 08/30/2021] [Accepted: 09/06/2021] [Indexed: 01/09/2023]
Abstract
In the case of dental pulp exposure, direct pulp capping is often performed to preserve vital dental pulp tissue. Numerous studies regarding the development of direct pulp-capping materials have been conducted, but materials with an appropriate sealing ability, which induce dense reparative dentin formation, have not been developed. Although nano hydroxyapatite (naHAp) is a bone-filling material with bioactivity and biocompatibility, the inductive effects of naHAp on reparative dentin formation remain unclear. In the present study, the effects of dental adhesive material 4-methacryloxyethyl trimellitate anhydride/methyl methacrylate tri-n-butylborane [4-META/MMA-TBB or Super-bond (SB)], which included 10%, 30%, and 50% naHAp (naHAp/SB) on odontoblastic differentiation of dental pulp stem cells (DPSCs) and reparative dentin formation were investigated. Scanning electron microscopy (SEM) and energy dispersive X-ray spectrometer analysis were performed to verify the existence of naHAp particles on the surface of naHAp/SB discs. The tensile adhesive strength of naHAp/SB was measured using a universal testing machine. As a result, 10% naHAp/SB and 30% naHAp/SB showed almost the same tensile adhesive strength as SB but 50% naHAp/SB showed significantly lower than the other experimental group. WST-1 proliferation assay and SEM analysis revealed that naHAp/SB did not affect the proliferation of DPSCs. Calcium release assay, quantitative RT-PCR, and western blotting analysis demonstrated that naHAp/SB did not release calcium ion but 30% naHAp/SB increased the expression of calcium-sensing receptor (CaSR) in DPSCs. Additionally, quantitative RT-PCR, western blotting analysis, Alizarin Red S- and von Kossa staining revealed that 30% naHAp/SB induced odontoblastic differentiation of DPSCs, which was inhibited by a MEK/ERK inhibitor and CaSR antagonist. Furthermore, 30% naHAp/SB promoted dense reparative dentin formation in an experimentally-formed rat dental pulp exposure model. These findings suggest that 30% naHAp/SB can be used as an ideal direct pulp capping material.
Collapse
Affiliation(s)
- Shinichiro Yoshida
- Division of Endodontology, Kyushu University Hospital, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan.
| | - Hideki Sugii
- Department of Endodontology and Operative Dentistry, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Tomohiro Itoyama
- Division of Endodontology, Kyushu University Hospital, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Masataka Kadowaki
- Department of Endodontology and Operative Dentistry, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Daigaku Hasegawa
- Department of Endodontology and Operative Dentistry, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Atsushi Tomokiyo
- Division of Endodontology, Kyushu University Hospital, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Sayuri Hamano
- Department of Endodontology and Operative Dentistry, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; OBT Research Center, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Keita Ipposhi
- Department of Endodontology and Operative Dentistry, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Kozue Yamashita
- Department of Endodontology and Operative Dentistry, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Hidefumi Maeda
- Division of Endodontology, Kyushu University Hospital, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; Department of Endodontology and Operative Dentistry, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| |
Collapse
|
35
|
Cui S, Zhang L. microRNA-129-5p shuttled by mesenchymal stem cell-derived extracellular vesicles alleviates intervertebral disc degeneration via blockade of LRG1-mediated p38 MAPK activation. J Tissue Eng 2021; 12:20417314211021679. [PMID: 34377430 PMCID: PMC8330460 DOI: 10.1177/20417314211021679] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Accepted: 05/14/2021] [Indexed: 12/29/2022] Open
Abstract
Mesenchymal stem cell (MSC)-derived extracellular vesicles (EVs) have been reported to deliver exogenous microRNAs (miRNAs or miRs) to reduce the progression of intervertebral disc degeneration (IDD). The purpose of the current study was to investigate the therapeutic potential of MSC-derived EVs delivering miR-129-5p in IDD. First, miR-129-5p expression levels were quantified in nucleus pulposus (NP) tissues of IDD patients. An IL-1β-induced NP cell model with IDD was then established, and co-cultured with EVs derived from MSCs that had been transfected with miR-129-5p mimic or inhibitor to elucidate the effects of miR-129-5p on cell viability, apoptosis, and ECM degradation. In addition, RAW264.7 cells were treated with the conditioned medium (CM) of NP cells. Next, the expression patterns of polarization markers and those of inflammatory factors in macrophages were detected using flow cytometry and ELISA, respectively. Lastly, rat models of IDD were established to validate the in vitro findings. It was found that miR-129-5p was poorly-expressed in NP tissues following IDD. Delivery of miR-129-5p to NP cells by MSC-derived EVs brought about a decrease in NP cell apoptosis, ECM degradation and M1 polarization of macrophages. Moreover, miR-129-5p directly-targeted LRG1, which subsequently promoted the activation of p38 MAPK signaling pathway, thus polarizing macrophages toward the M1 phenotype. Furthermore, MSC-derived EVs transferring miR-129-5p relieved IDD via inhibition of the LRG1/p38 MAPK signaling in vivo. Altogether, our findings indicated that MSC-derived EVs carrying miR-129-5p confer protection against IDD by targeting LRG1 and suppressing the p38 MAPK signaling pathway, offering a novel theranostic marker in IDD.
Collapse
Affiliation(s)
- Shaoqian Cui
- Department of Spine Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning, P.R. China
| | - Lei Zhang
- Department of Spine Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning, P.R. China
| |
Collapse
|
36
|
Bone Regeneration Improves with Mesenchymal Stem Cell Derived Extracellular Vesicles (EVs) Combined with Scaffolds: A Systematic Review. BIOLOGY 2021; 10:biology10070579. [PMID: 34202598 PMCID: PMC8301056 DOI: 10.3390/biology10070579] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 06/16/2021] [Accepted: 06/21/2021] [Indexed: 02/07/2023]
Abstract
Scaffolds associated with mesenchymal stem cell (MSC) derivatives, such as extracellular vesicles (EVs), represent interesting carriers for bone regeneration. This systematic review aims to analyze in vitro and in vivo studies that report the effects of EVs combined with scaffolds in bone regeneration. A methodical review of the literature was performed from PubMed and Embase from 2012 to 2020. Sixteen papers were analyzed; of these, one study was in vitro, eleven were in vivo, and four were both in vitro and in vivo studies. This analysis shows a growing interest in this upcoming field, with overall positive results. In vitro results were demonstrated as both an effect on bone mineralization and proangiogenic ability. The interesting in vitro outcomes were confirmed in vivo. Particularly, these studies showed positive effects on bone regeneration and mineralization, activation of the pathway for bone regeneration, induction of vascularization, and modulation of inflammation. However, several aspects remain to be elucidated, such as the concentration of EVs to use in clinic for bone-related applications and the definition of the real advantages.
Collapse
|
37
|
Kim JY, Rhim WK, Seo HJ, Lee JY, Park CG, Han DK. Comparative Analysis of MSC-Derived Exosomes Depending on Cell Culture Media for Regenerative Bioactivity. Tissue Eng Regen Med 2021; 18:355-367. [PMID: 34047999 DOI: 10.1007/s13770-021-00352-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 05/04/2021] [Accepted: 05/10/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND In order to produce and isolate the exosome derived from the cell of interests, a serum free environment (starvation) has been essential for excluding the unknown effect from serum-derived exosomes. Recently, serum-free culture media have been developed as a substitute for serum supplemented media so that MSC proliferates with maintaining the original characteristics of the cells in a serum free condition. Due to the different properties of the exosomes representing the states and characteristics of the origin cells, a study is needed to compare the properties of the cell-derived exosomes according to the cell culture media. METHODS To compare the cell culture condition on exosomes, human umbilical cord mesenchymal stem cells (UCMSCs) were cultured with two different media, serum containing media, 10% FBS supplemented DMEM (NM) and serum-free chemically defined media, CellCor™ CD MSC (CDM). To remove FBS-derived exosomes from UCMSC cultured with NM, the medium was replaced with FBS-free DMEM for starvation during exosome isolation. The production yield and expression levels of angiogenic and pro-inflammatory factors were compared. And, the subpopulations of exosome were classified depending on the surface properties and loaded cytokines. Finally, the wound healing and angiogenic effects have been evaluated using in vitro assays. RESULTS The UCMSC-derived exosomes under two different cell culture media could be classified into subpopulations according to the surface composition and loaded cytokines. Especially, exosome derived from UCMSC cultured with CDM showed higher expression levels of cytokines related to regenerative bioactivities which resulted in enhanced wound healing and angiogenesis. CONCLUSION CDM has the advantages to maintain cell proliferation even during the period of exosome isolations and eliminate unknown side effects caused by serum-derived exosomes. Additionally, exosomes derived from UCMSC cultured with CDM show better wound healing and angiogenic effects due to a lot of regeneration-related cytokines and less pro-inflammatory cytokines compared to with NM.
Collapse
Affiliation(s)
- Jun Yong Kim
- Department of Biomedical Science, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam-si, Gyeonggi-do, 13488, Republic of Korea.,Department of Biomedical Engineering, SKKU Institute for Convergence, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do, 16419, Republic of Korea.,ntelligent Precision of Healthcare Convergence, SKKU Institute for Convergence, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do, 16419, Republic of Korea
| | - Won-Kyu Rhim
- Department of Biomedical Science, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam-si, Gyeonggi-do, 13488, Republic of Korea
| | - Hyo Jeong Seo
- Department of Biomedical Science, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam-si, Gyeonggi-do, 13488, Republic of Korea
| | - Joo Youn Lee
- Xcell Therapeutics, Hanhwa Biz metro Building, 242 Digital-ro, Guro-gu, Seoul, 08394, Republic of Korea
| | - Chun Gwon Park
- Department of Biomedical Engineering, SKKU Institute for Convergence, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do, 16419, Republic of Korea.,ntelligent Precision of Healthcare Convergence, SKKU Institute for Convergence, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do, 16419, Republic of Korea
| | - Dong Keun Han
- Department of Biomedical Science, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam-si, Gyeonggi-do, 13488, Republic of Korea.
| |
Collapse
|
38
|
Kim JY, Rhim WK, Yoo YI, Kim DS, Ko KW, Heo Y, Park CG, Han DK. Defined MSC exosome with high yield and purity to improve regenerative activity. J Tissue Eng 2021; 12:20417314211008626. [PMID: 33959246 PMCID: PMC8060739 DOI: 10.1177/20417314211008626] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 03/21/2021] [Indexed: 12/14/2022] Open
Abstract
Exosomes derived from mesenchymal stem cells (MSCs) have been studied as vital
components of regenerative medicine. Typically, various isolation methods of
exosomes from cell culture medium have been developed to increase the isolation
yield of exosomes. Moreover, the exosome-depletion process of serum has been
considered to result in clinically active and highly purified exosomes from the
cell culture medium. Our aim was to compare isolation methods, ultracentrifuge
(UC)-based conventional method, and tangential flow filtration (TFF)
system-based method for separation with high yield, and the bioactivity of the
exosome according to the purity of MSC-derived exosome was determined by the
ratio of Fetal bovine serum (FBS)-derived exosome to MSC-derived exosome
depending on exosome depletion processes of FBS. The TFF-based isolation yield
of exosome derived from human umbilical cord MSC (UCMSC) increased two orders
(92.5 times) compared to UC-based isolation method. Moreover, by optimizing the
process of depleting FBS-derived exosome, the purity of UCMSC-derived exosome,
evaluated using the expression level of MSC exosome surface marker (CD73), was
about 15.6 times enhanced and the concentration of low-density
lipoprotein-cholesterol (LDL-c), known as impurities resulting from FBS, proved
to be negligibly detected. The wound healing and angiogenic effects of highly
purified UCMSC-derived exosomes were improved about 23.1% and 71.4%,
respectively, with human coronary artery endothelial cells (HCAEC). It suggests
that the defined MSC exosome with high yield and purity could increase
regenerative activity.
Collapse
Affiliation(s)
- Jun Yong Kim
- Department of Biomedical Science, CHA University, Seongnam, Gyeonggi, Republic of Korea.,Department of Biomedical Engineering, SKKU Institute for Convergence, Sungkyunkwan University (SKKU), Suwon, Gyeonggi, Republic of Korea.,Department of Intelligent Precision of Healthcare Convergence, SKKU Institute for Convergence, Sungkyunkwan University (SKKU), Suwon, Gyeonggi, Republic of Korea
| | - Won-Kyu Rhim
- Department of Biomedical Science, CHA University, Seongnam, Gyeonggi, Republic of Korea
| | - Yong-In Yoo
- Department of Biomedical Science, CHA University, Seongnam, Gyeonggi, Republic of Korea
| | - Da-Seul Kim
- Department of Biomedical Science, CHA University, Seongnam, Gyeonggi, Republic of Korea.,School of Integrative Engineering, Chung-Ang University, Seoul, Republic of Korea
| | - Kyoung-Won Ko
- Department of Biomedical Science, CHA University, Seongnam, Gyeonggi, Republic of Korea
| | - Yun Heo
- Department of Biomedical Science, CHA University, Seongnam, Gyeonggi, Republic of Korea
| | - Chun Gwon Park
- Department of Biomedical Engineering, SKKU Institute for Convergence, Sungkyunkwan University (SKKU), Suwon, Gyeonggi, Republic of Korea.,Department of Intelligent Precision of Healthcare Convergence, SKKU Institute for Convergence, Sungkyunkwan University (SKKU), Suwon, Gyeonggi, Republic of Korea
| | - Dong Keun Han
- Department of Biomedical Science, CHA University, Seongnam, Gyeonggi, Republic of Korea
| |
Collapse
|
39
|
Zhou H, Li X, Wu RX, He XT, An Y, Xu XY, Sun HH, Wu LA, Chen FM. Periodontitis-compromised dental pulp stem cells secrete extracellular vesicles carrying miRNA-378a promote local angiogenesis by targeting Sufu to activate the Hedgehog/Gli1 signalling. Cell Prolif 2021; 54:e13026. [PMID: 33759282 PMCID: PMC8088471 DOI: 10.1111/cpr.13026] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/02/2021] [Accepted: 03/03/2021] [Indexed: 12/13/2022] Open
Abstract
Objectives Previously, our investigations demonstrated robust pro‐angiogenic potentials of extracellular vesicles secreted by periodontitis‐compromised dental pulp stem cells (P‐EVs) when compared to those from healthy DPSCs (H‐EVs), but the underlying mechanism remains unknown. Materials and methods Here, circulating microRNAs (miRNAs) specifically found in P‐EVs (compared with H‐EVs) were identified by Agilent miRNA microarray analysis, and the roles of the candidate miRNA in P‐EV‐enhanced cell angiogenesis were confirmed by cell transfection and RNA interference methods. Next, the direct binding affinity between the candidate miRNA and its target gene was evaluated by luciferase reporter assay. CCK‐8, transwell/scratch wound healing and tube formation assays were established to investigate the proliferation, migration, and tube formation abilities of endothelial cells (ECs). Western blot was employed to measure the protein levels of Hedgehog/Gli1 signalling pathway components and angiogenesis‐related factors. Results The angiogenesis‐related miRNA miR‐378a was found to be enriched in P‐EVs, and its role in P‐EV‐enhanced cell angiogenesis was confirmed, wherein Sufu was identified as a downstream target gene of miR‐378a. Functionally, silencing of Sufu stimulated EC proliferation, migration and tube formation by activating Hedgehog/Gli1 signalling. Further, we found that incubation with P‐EVs enabled the transmission of P‐EV‐contained miR‐378a to ECs. Subsequently, the expressions of Sufu, Gli1 and vascular endothelial growth factor in ECs were significantly influenced by P‐EV‐mediated miR‐378a transmission. Conclusions These data suggest that P‐EVs carrying miR‐378a promote EC angiogenesis by downregulating Sufu to activate the Hedgehog/Gli1 signalling pathway. Our findings reveal a crucial role for EV‐derived miR‐378a in cell angiogenesis and hence offer a new target for modifying stem cells and their secreted EVs to enhance vessel regenerative potential.
Collapse
Affiliation(s)
- Huan Zhou
- Department of Periodontology, School of Stomatology, State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases and Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Fourth Military Medical University, Xi'an, China.,Shaanxi Key Laboratory of Free Radical Biology and Medicine, The Ministry of Education Key Laboratory of Hazard Assessment and Control in Special Operational Environments, Fourth Military Medical University, Xi'an, China
| | - Xuan Li
- Department of Periodontology, School of Stomatology, State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases and Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Fourth Military Medical University, Xi'an, China
| | - Rui-Xin Wu
- Department of Periodontology, School of Stomatology, State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases and Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Fourth Military Medical University, Xi'an, China
| | - Xiao-Tao He
- Department of Periodontology, School of Stomatology, State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases and Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Fourth Military Medical University, Xi'an, China
| | - Ying An
- Department of Periodontology, School of Stomatology, State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases and Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Fourth Military Medical University, Xi'an, China
| | - Xin-Yue Xu
- Department of Periodontology, School of Stomatology, State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases and Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Fourth Military Medical University, Xi'an, China.,Shaanxi Key Laboratory of Free Radical Biology and Medicine, The Ministry of Education Key Laboratory of Hazard Assessment and Control in Special Operational Environments, Fourth Military Medical University, Xi'an, China
| | - Hai-Hua Sun
- Department of Periodontology, School of Stomatology, State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases and Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Fourth Military Medical University, Xi'an, China
| | - Li-An Wu
- Department of Periodontology, School of Stomatology, State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases and Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Fourth Military Medical University, Xi'an, China
| | - Fa-Ming Chen
- Department of Periodontology, School of Stomatology, State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases and Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
40
|
Lee JH, Yoon JY, Lee JH, Lee HH, Knowles JC, Kim HW. Emerging biogenesis technologies of extracellular vesicles for tissue regenerative therapeutics. J Tissue Eng 2021; 12:20417314211019015. [PMID: 34104388 PMCID: PMC8155774 DOI: 10.1177/20417314211019015] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 05/02/2021] [Indexed: 12/14/2022] Open
Abstract
Extracellular vesicles (EVs), including exosomes, carry the genetic packages of RNA, DNA, and proteins and are heavily involved in cell-cell communications and intracellular signalings. Therefore, EVs are spotlighted as therapeutic mediators for the treatment of injured and dysfunctional tissues as well as biomarkers for the detection of disease status and progress. Several key issues in EVs, including payload content and bioactivity, targeting and bio-imaging ability, and mass-production, need to be improved to enable effective therapeutics and clinical translation. For this, significant efforts have been made recently, including genetic modification, biomolecular and chemical treatment, application of physical/mechanical cues, and 3D cultures. Here we communicate those recent technological advances made mainly in the biogenesis process of EVs or at post-collection stages, which ultimately aimed to improve the therapeutic efficacy in tissue healing and disease curing and the possibility of clinical translation. This communication will help tissue engineers and biomaterial scientists design and produce EVs optimally for tissue regenerative therapeutics.
Collapse
Affiliation(s)
- Jung-Hwan Lee
- Institute of Tissue Regeneration
Engineering (ITREN), Dankook University, Chungcheongnam-do, Cheonan, Republic of
Korea
- Department of Nanobiomedical Science
& BK21 FOUR NBM Global Research Center for Regenerative Medicine, Dankook
University, Chungcheongnam-do, Cheonan, Republic of Korea
- Department of Biomaterials Science,
College of Dentistry, Dankook University, Chungcheongnam-do, Cheonan, Republic of
Korea
- Department of Regenerative Dental
Medicine, College of Dentistry, Dankook University, Chungcheongnam-do, Cheonan,
Republic of Korea
- Cell & Matter Institute, Dankook
University, Chungcheongnam-do, Cheonan, South Korea
- UCL Eastman-Korea Dental Medicine
Innovation Centre, Dankook University, Chungcheongnam-do, Cheonan, Republic of
Korea
| | - Ji-Young Yoon
- Institute of Tissue Regeneration
Engineering (ITREN), Dankook University, Chungcheongnam-do, Cheonan, Republic of
Korea
- Department of Nanobiomedical Science
& BK21 FOUR NBM Global Research Center for Regenerative Medicine, Dankook
University, Chungcheongnam-do, Cheonan, Republic of Korea
| | - Jun Hee Lee
- Institute of Tissue Regeneration
Engineering (ITREN), Dankook University, Chungcheongnam-do, Cheonan, Republic of
Korea
- Department of Nanobiomedical Science
& BK21 FOUR NBM Global Research Center for Regenerative Medicine, Dankook
University, Chungcheongnam-do, Cheonan, Republic of Korea
- Department of Regenerative Dental
Medicine, College of Dentistry, Dankook University, Chungcheongnam-do, Cheonan,
Republic of Korea
- Cell & Matter Institute, Dankook
University, Chungcheongnam-do, Cheonan, South Korea
- UCL Eastman-Korea Dental Medicine
Innovation Centre, Dankook University, Chungcheongnam-do, Cheonan, Republic of
Korea
| | - Hae-Hyoung Lee
- Institute of Tissue Regeneration
Engineering (ITREN), Dankook University, Chungcheongnam-do, Cheonan, Republic of
Korea
- Department of Biomaterials Science,
College of Dentistry, Dankook University, Chungcheongnam-do, Cheonan, Republic of
Korea
- UCL Eastman-Korea Dental Medicine
Innovation Centre, Dankook University, Chungcheongnam-do, Cheonan, Republic of
Korea
| | - Jonathan C Knowles
- UCL Eastman-Korea Dental Medicine
Innovation Centre, Dankook University, Chungcheongnam-do, Cheonan, Republic of
Korea
- Division of Biomaterials and Tissue
Engineering, Eastman Dental Institute, University College London, Royal Free
Hospital, London, UK
- The Discoveries Centre for Regenerative
and Precision Medicine, Eastman Dental Institute, University College London, London,
UK
| | - Hae-Won Kim
- Institute of Tissue Regeneration
Engineering (ITREN), Dankook University, Chungcheongnam-do, Cheonan, Republic of
Korea
- Department of Nanobiomedical Science
& BK21 FOUR NBM Global Research Center for Regenerative Medicine, Dankook
University, Chungcheongnam-do, Cheonan, Republic of Korea
- Department of Biomaterials Science,
College of Dentistry, Dankook University, Chungcheongnam-do, Cheonan, Republic of
Korea
- Department of Regenerative Dental
Medicine, College of Dentistry, Dankook University, Chungcheongnam-do, Cheonan,
Republic of Korea
- Cell & Matter Institute, Dankook
University, Chungcheongnam-do, Cheonan, South Korea
- UCL Eastman-Korea Dental Medicine
Innovation Centre, Dankook University, Chungcheongnam-do, Cheonan, Republic of
Korea
| |
Collapse
|