1
|
Kao YC, Yang PC, Lin YP, Chen GH, Liu SW, Ho CH, Huang SC, Lee PY, Chen L, Huang CC. Tailoring the therapeutic potential of stem cell spheroid-derived decellularized ECM through post-decellularization BDNF incorporation to enhance brain repair. Biomaterials 2025; 321:123332. [PMID: 40220567 DOI: 10.1016/j.biomaterials.2025.123332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Revised: 04/06/2025] [Accepted: 04/07/2025] [Indexed: 04/14/2025]
Abstract
Decellularized extracellular matrix (dECM) from tissues has significant therapeutic potential but is limited by its rigid molecular composition and reliance on post-decellularization modifications to tailor its functionality. Harsh decellularization processes often result in substantial glycosaminoglycan (GAG) loss, impairing natural growth factor incorporation and necessitating chemical modifications that complicate processing and limit clinical translation. To address these challenges, we developed mesenchymal stem cell (MSC) spheroid-derived three-dimensional (3D) dECM using gentle decellularization techniques. This study demonstrated a crucial advancement-the retention of endogenous GAGs-enabling direct growth factor incorporation without chemical agents. As a proof-of-concept, brain-derived neurotrophic factor (BDNF) was incorporated into the 3D dECM to enhance its therapeutic potential for brain repair. In vitro, BDNF-loaded 3D dECM enabled sustained growth factor release, significantly enhancing the proneuritogenic, neuroprotective, and proangiogenic effects. In a mouse model of traumatic brain injury, the implantation of BDNF-loaded 3D dECM significantly enhanced motor function and facilitated brain repair. These findings highlight the adaptability of MSC spheroid-derived 3D dECM for tissue-specific customization through straightforward and translatable growth factor incorporation, demonstrating its potential as a pro-regenerative biomaterial for advancing regenerative medicine applications.
Collapse
Affiliation(s)
- Ying-Chi Kao
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Pei-Ching Yang
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Yu-Ping Lin
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Grace H Chen
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Shao-Wen Liu
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Chia-Hsin Ho
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Shih-Chen Huang
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Peng-Ying Lee
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Linyi Chen
- Institute of Molecular Medicine, National Tsing Hua University, Hsinchu, 30013, Taiwan; Department of Medical Science, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Chieh-Cheng Huang
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan.
| |
Collapse
|
2
|
Yu H, Fan P, Deng X, Zeng M, Ge L, Xue E, Chen D, Zhang M. Nerve-Derived Extracellular Matrix Promotes Neural Differentiation of Bone Marrow Stromal Cells and Enhances Interleukin-4 Efficacy for Advanced Nerve Regeneration. Adv Healthc Mater 2025; 14:e2402713. [PMID: 39823140 DOI: 10.1002/adhm.202402713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 10/29/2024] [Indexed: 01/19/2025]
Abstract
Facilitating neuronal differentiation of stem cells and microenvironment remodeling are the key challenges in cell-based transplantation strategies for central nervous system regeneration. Herein, the study harnesses the intrinsic pro-neural differentiation potential of nerve-derived extracellular matrix (NDEM) and its specific affinity for cytokines to develop an NDEM-gelatin methacryloyl(gelMA)-based bifunctional hydrogel delivery system for stem cells and cytokines. This system promotes the neural differentiation of bone marrow stromal cells (BMSCs) and optimizes the therapeutic index of Interleukin-4 (IL-4) for spinal cord injury (SCI) treatment. It is observed that incorporating NDEM into the hydrogel system intrinsically promotes BMSC differentiation into neuron-like cells and effectively regulates IL-4 release kinetics to match the neural reconstructing timeframe. Further analysis reveals that trace amounts of endogenous basic fibroblast growth factor (bFGF) detected in NDEM exhibit a potent effect in promoting neural differentiation. The sustained release of IL-4 from the NDEM significantly encourages macrophage polarization toward the M2 phase, optimizing the transplant microenvironment throughout the reconstruction process. This study demonstrates an NDEM-based optimization strategy for hybrid hydrogel to achieve synchronized delivery of stem cells and cytokines in regenerative medicine applications.
Collapse
Affiliation(s)
- Huachen Yu
- Department of Orthopedic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Zhejiang, 325000, P. R. China
| | - Pei Fan
- Department of Orthopedic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Zhejiang, 325000, P. R. China
| | - Xinyue Deng
- Otolaryngology & Head and Neck Center, Cancer Center, Department of Head and Neck Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, 310000, P. R. China
| | - Miaolin Zeng
- School of Basic Medical Sciences, Wenzhou Medical University, Zhejiang, 325000, P. R. China
| | - Liyun Ge
- School of public health and management, Wenzhou Medical University, Zhejiang, 325000, P. R. China
| | - Enxing Xue
- Department of Orthopedic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Zhejiang, 325000, P. R. China
| | - Daqing Chen
- Department of Emergency, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou Medical University, Zhejiang, 325200, P. R China
| | - Man Zhang
- Department of Orthopedic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Zhejiang, 325000, P. R. China
| |
Collapse
|
3
|
Gomes KT, Prasad PR, Sandhu JS, Kumar A, Kumar NAN, Shridhar NB, Bisht B, Paul MK. Decellularization techniques: unveiling the blueprint for tracheal tissue engineering. Front Bioeng Biotechnol 2025; 13:1518905. [PMID: 40092377 PMCID: PMC11906413 DOI: 10.3389/fbioe.2025.1518905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 02/03/2025] [Indexed: 03/19/2025] Open
Abstract
Certain congenital or acquired diseases and defects such as tracheo-oesophageal fistula, tracheomalacia, tracheal stenosis, airway ischemia, infections, and tumours can cause damage to the trachea. Treatments available do not offer any permanent solutions. Moreover, long-segment defects in the trachea have no available surgical treatments. Tissue engineering has gained popularity in current regenerative medicine as a promising approach to bridge this gap. Among the various tissue engineering techniques, decellularization is a widely used approach that removes the cellular and nuclear contents from the tissue while preserving the native extracellular matrix components. The decellularized scaffolds exhibit significantly lower immunogenicity and retain the essential biomechanical and proangiogenic properties of native tissue, creating a foundation for trachea regeneration. The present review provides an overview of trachea decellularization advancements, exploring how recellularization approaches can be optimized by using various stem cells and tissue-specific cells to restore the scaffold's structure and function. We examine critical factors such as mechanical properties, revascularization, and immunogenicity involved in the transplantation of tissue-engineered grafts.
Collapse
Affiliation(s)
- Keisha T Gomes
- Department of Radiation Biology and Toxicology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Palla Ranga Prasad
- Department of Radiation Biology and Toxicology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Jagnoor Singh Sandhu
- Central Animal Research Facility, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, India
- Center for Animal Research, Ethics and Training (CARET), Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Ashwini Kumar
- Department of Forensic Medicine, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Naveena A N Kumar
- Department of Surgical Oncology, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - N B Shridhar
- Department of Pharmacology and Toxicology, Obscure Disease Research Center, Veterinary College Campus, Shivamogga, Karnataka, India
| | - Bharti Bisht
- Department of Microbiology, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Manash K Paul
- Department of Radiation Biology and Toxicology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, India
- Division of Pulmonary and Critical Care Medicine, David Geffen School of Medicine, University of California Los Angeles (UCLA), Los Angeles, CA, United States
| |
Collapse
|
4
|
Soltanmohammadi F, Mahmoudi Gharehbaba A, Alizadeh E, Javadzadeh Y. Innovative approaches to tissue engineering: Utilizing decellularized extracellular matrix hydrogels for mesenchymal stem cell transport. Int J Biol Macromol 2025; 290:138893. [PMID: 39706433 DOI: 10.1016/j.ijbiomac.2024.138893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 12/07/2024] [Accepted: 12/16/2024] [Indexed: 12/23/2024]
Abstract
In recent years, the realm of tissue regeneration experienced significant advancements, leading to the development of innovative therapeutic agents. The systemic delivery of mesenchymal stem cells (MSCs) emerged as a promising strategy for promoting tissue regeneration. However, this approach is hindered by hurdles such as poor cell survival, limited cell propagation, and inadequate cell integration. Decellularized extracellular matrix (dECM) hydrogel serves as an innovative carrier that protects MSCs from the detrimental effects of the hostile microenvironment, facilitates their localization and retention at the injection site, and preserves their viability. Regarding its low immunogenicity, low cytotoxicity, high biocompatibility, and its ability to mimic natural extracellular matrix (ECM), this natural hydrogel offers a new avenue for systemic delivery of MSCs. This review digs into the properties of dECM hydrogels (dECMHs), the methods employed for decellularization and the utilization of dECMH as carriers for various types of MSCs for tissue regeneration purposes. This review also sheds light on the benefits of hybrid hydrogels composed of dECMH and other components such as proteins and polysaccharides. By addressing the limitations of conventional hydrogels and enhancing efficacy of cell therapy, dECMH opens new pathways for the future of tissue regeneration.
Collapse
Affiliation(s)
- Fatemeh Soltanmohammadi
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Adel Mahmoudi Gharehbaba
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Effat Alizadeh
- Endocrin Research Center and Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Yousef Javadzadeh
- Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran; Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
5
|
Di Filippo F, Brevini TAL, Pennarossa G, Gandolfi F. Generation of bovine decellularized testicular bio-scaffolds as a 3D platform for testis bioengineering. Front Bioeng Biotechnol 2025; 12:1532107. [PMID: 39877269 PMCID: PMC11772495 DOI: 10.3389/fbioe.2024.1532107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Accepted: 12/27/2024] [Indexed: 01/31/2025] Open
Abstract
Accelerating the genetic selection to obtain animals more resilient to climate changes, and with a lower environmental impact, would greatly benefit by a substantial shortening of the generation interval. One way to achieve this goal is to generate male gametes directly from embryos. However, spermatogenesis is a complex biological process that, at present, can be partially reproduced in vitro only in the mouse. The development of reliable 3D in vitro models able to mimic the architecture and the physiological microenvironment of the testis, represents a possible strategy to facilitate ex vivo haploid male gamete generation in domestic species. Here we describe the creation of bovine testicular bio-scaffolds and their successful repopulation in vitro with bovine testicular cells. In particular, bovine testes are subjected to three different decellularization protocols. Cellular compartment removal and extracellular matrix preservation are evaluated. The generated bio-scaffolds are then repopulated with bovine testicular fibroblasts. The results obtained demonstrate that the decellularization protocol involving the use of 0.3% sodium dodecyl sulfate (SDS) for 12 h efficiently eliminates native cells, while preserving intact ECM composition and microstructure. Its subsequent repopulation with bovine fibroblasts demonstrates successful cell homing, colonization and growth, consistent with the scaffold ability to sustain cell adherence and proliferation. Overall, the generated 3D bio-scaffolds may constitute a suitable artificial niche for ex vivo culture of testicular cells and may represent a possible strategy to reproduce spermatogenesis in vitro.
Collapse
Affiliation(s)
- Francesca Di Filippo
- Department of Agricultural and Environmental Sciences - Production, Landscape, Agroenergy, Università degli Studi di Milano, Milan, Italy
| | - Tiziana A. L. Brevini
- Laboratory of Biomedical Embryology and Tissue Engineering, Department of Veterinary Medicine and Animal Sciences, Università degli Studi di Milano, Lodi, Italy
| | - Georgia Pennarossa
- Laboratory of Biomedical Embryology and Tissue Engineering, Department of Veterinary Medicine and Animal Sciences, Università degli Studi di Milano, Lodi, Italy
| | - Fulvio Gandolfi
- Department of Agricultural and Environmental Sciences - Production, Landscape, Agroenergy, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
6
|
Hu M, Liu T, Huang H, Ogi D, Tan Y, Ye K, Jin S. Extracellular matrix proteins refine microenvironments for pancreatic organogenesis from induced pluripotent stem cell differentiation. Theranostics 2025; 15:2229-2249. [PMID: 39990212 PMCID: PMC11840725 DOI: 10.7150/thno.104883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 12/30/2024] [Indexed: 02/25/2025] Open
Abstract
Rationale: The current understanding on manipulating signaling pathways to generate mature human islet organoids with all major hormone-secreting endocrine cell types (i.e., α, β, δ, and γ cells) from induced pluripotent stem cells (iPSCs) is insufficient. However, donor islet shortage necessitates that we produce functional islets in vitro. In this study, we aimed to find decellularized pancreatic extracellular matrix (dpECM) proteins that leverage signaling pathways and promote functional iPSC islet organogenesis. Methods: We performed proteomic analysis to identify key islet promoting factors from porcine and rat dpECM. With this, we identified collagen type II (COL2) as a potential biomaterial cue that endorses islet development from iPSCs. Using global transcriptome profiling, gene set enrichment analysis, immunofluorescence microscopy, flow cytometry, Western blot, and glucose-stimulated hormonal secretion analysis, we examined COL2's role in regulating iPSC pancreatic lineage specification and signaling pathways, critical to islet organogenesis and morphogenesis. Results: We discovered COL2 acts as a functional biomaterial that augments islet development from iPSCs, similar to collagen type V (COL5) as reported in our earlier study. COL2 substantially stimulates the formation of endocrine progenitors and subsequent islet organoids with significantly elevated expressions of pancreatic signature genes and proteins. Furthermore, it enhances islets' glucose sensitivity for hormonal secretion. A cluster of gene expressions associated with various signaling pathways, including but not limited to oxidative phosphorylation, insulin secretion, cell cycle, the canonical WNT, hypoxia, and interferon-γ response, were considerably affected by COL2 and COL5 cues. Conclusion: We demonstrated dpECM's crucial role in refining stem cell differentiation microenvironments for organoid development and maturation. Our findings on biomaterial-stimulated signaling for stem cell specification, organogenesis, and maturation open up a new way to increase the differentiation efficacy of endocrine tissues that can contribute to the production of biologically functional islets.
Collapse
Affiliation(s)
- Ming Hu
- Department of Biomedical Engineering, Thomas J. Watson College of Engineering and Applied Science, Binghamton University, State University of New York (SUNY), Binghamton, New York 13902, USA
| | - Tianzheng Liu
- Department of Biomedical Engineering, Thomas J. Watson College of Engineering and Applied Science, Binghamton University, State University of New York (SUNY), Binghamton, New York 13902, USA
| | - Hui Huang
- Department of Biomedical Engineering, Thomas J. Watson College of Engineering and Applied Science, Binghamton University, State University of New York (SUNY), Binghamton, New York 13902, USA
| | - Derek Ogi
- Department of Biomedical Engineering, Thomas J. Watson College of Engineering and Applied Science, Binghamton University, State University of New York (SUNY), Binghamton, New York 13902, USA
| | - Yinfei Tan
- Genomics Facility, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Kaiming Ye
- Department of Biomedical Engineering, Thomas J. Watson College of Engineering and Applied Science, Binghamton University, State University of New York (SUNY), Binghamton, New York 13902, USA
- Center of Biomanufacturing for Regenerative Medicine, Binghamton University, State University of New York (SUNY), Binghamton, New York 13902, USA
| | - Sha Jin
- Department of Biomedical Engineering, Thomas J. Watson College of Engineering and Applied Science, Binghamton University, State University of New York (SUNY), Binghamton, New York 13902, USA
- Center of Biomanufacturing for Regenerative Medicine, Binghamton University, State University of New York (SUNY), Binghamton, New York 13902, USA
| |
Collapse
|
7
|
dos Santos AC, de Andrade LMB, Candelária RAQ, de Carvalho JC, Valbão MCM, Barreto RDSN, de Faria MD, Buchaim RL, Buchaim DV, Miglino MA. From Cartilage to Matrix: Protocols for the Decellularization of Porcine Auricular Cartilage. Bioengineering (Basel) 2025; 12:52. [PMID: 39851326 PMCID: PMC11759173 DOI: 10.3390/bioengineering12010052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 12/16/2024] [Accepted: 12/27/2024] [Indexed: 01/26/2025] Open
Abstract
The shortage of tissues and damaged organs led to the development of tissue engineering. Biological scaffolds, created from the extracellular matrix (ECM) of organs and tissues, have emerged as a promising solution for transplants. The ECM of decellularized auricular cartilage is a potential tool for producing ideal scaffolds for the recellularization and implantation of new tissue in damaged areas. In order to be classified as an ideal scaffold, it must be acellular, preserving its proteins and physical characteristics necessary for cell adhesion. This study aimed to develop a decellularization protocol for pig ear cartilage and evaluate the integrity of the ECM. Four tests were performed using different methods and protocols, with four pig ears from which the skin and subcutaneous tissue were removed, leaving only the cartilage. The most efficient protocol was the combination of trypsin with a sodium hydroxide solution (0.2 N) and SDS (1%) without altering the ECM conformation or the collagen architecture. In conclusion, it was observed that auricular cartilage is difficult to decellularize, influenced by material size, exposure time, and the composition of the solution. Freezing and thawing did not affect the procedure. The sample thickness significantly impacted the decellularization time.
Collapse
Affiliation(s)
- Ana Caroline dos Santos
- Graduate Program in Anatomy of Domestic and Wild Animals, Faculty of Veterinary Medicine and Animal Science, University of São Paulo (FMVZ/USP), São Paulo 05508-270, Brazil; (A.C.d.S.); (L.M.B.d.A.); (R.A.Q.C.); (J.C.d.C.); (R.d.S.N.B.); (R.L.B.); (D.V.B.)
| | - Livia Maria Barbosa de Andrade
- Graduate Program in Anatomy of Domestic and Wild Animals, Faculty of Veterinary Medicine and Animal Science, University of São Paulo (FMVZ/USP), São Paulo 05508-270, Brazil; (A.C.d.S.); (L.M.B.d.A.); (R.A.Q.C.); (J.C.d.C.); (R.d.S.N.B.); (R.L.B.); (D.V.B.)
| | - Raí André Querino Candelária
- Graduate Program in Anatomy of Domestic and Wild Animals, Faculty of Veterinary Medicine and Animal Science, University of São Paulo (FMVZ/USP), São Paulo 05508-270, Brazil; (A.C.d.S.); (L.M.B.d.A.); (R.A.Q.C.); (J.C.d.C.); (R.d.S.N.B.); (R.L.B.); (D.V.B.)
| | - Juliana Casanovas de Carvalho
- Graduate Program in Anatomy of Domestic and Wild Animals, Faculty of Veterinary Medicine and Animal Science, University of São Paulo (FMVZ/USP), São Paulo 05508-270, Brazil; (A.C.d.S.); (L.M.B.d.A.); (R.A.Q.C.); (J.C.d.C.); (R.d.S.N.B.); (R.L.B.); (D.V.B.)
| | | | - Rodrigo da Silva Nunes Barreto
- Graduate Program in Anatomy of Domestic and Wild Animals, Faculty of Veterinary Medicine and Animal Science, University of São Paulo (FMVZ/USP), São Paulo 05508-270, Brazil; (A.C.d.S.); (L.M.B.d.A.); (R.A.Q.C.); (J.C.d.C.); (R.d.S.N.B.); (R.L.B.); (D.V.B.)
- Department of Animal Morphology and Physiology, Faculty of Agricultural and Veterinary Sciences, São Paulo State University, Jaboticabal 14884-900, Brazil
| | - Marcelo Domingues de Faria
- Department of Animal Anatomy, Agricultural Sciences—Federal University of Vale do São Francisco (UNIVASF), Petrolina 56300-000, Brazil;
| | - Rogerio Leone Buchaim
- Graduate Program in Anatomy of Domestic and Wild Animals, Faculty of Veterinary Medicine and Animal Science, University of São Paulo (FMVZ/USP), São Paulo 05508-270, Brazil; (A.C.d.S.); (L.M.B.d.A.); (R.A.Q.C.); (J.C.d.C.); (R.d.S.N.B.); (R.L.B.); (D.V.B.)
- Department of Biological Sciences, Bauru School of Dentistry (FOB/USP), University of São Paulo, Bauru 17012-901, Brazil
| | - Daniela Vieira Buchaim
- Graduate Program in Anatomy of Domestic and Wild Animals, Faculty of Veterinary Medicine and Animal Science, University of São Paulo (FMVZ/USP), São Paulo 05508-270, Brazil; (A.C.d.S.); (L.M.B.d.A.); (R.A.Q.C.); (J.C.d.C.); (R.d.S.N.B.); (R.L.B.); (D.V.B.)
- Medical School, University Center of Adamantina (FAI), Adamantina 17800-000, Brazil
| | - Maria Angelica Miglino
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, Postgraduate Department, University of Marilia (UNIMAR), Marilia 17525-902, Brazil
- Postgraduate Program in Animal Health, Production and Environment, University of Marilia (UNIMAR), Marilia 17525-902, Brazil
| |
Collapse
|
8
|
Brouki Milan P, Masoumi F, Biazar E, Zare Jalise S, Mehrabi A. Exploiting the Potential of Decellularized Extracellular Matrix (ECM) in Tissue Engineering: A Review Study. Macromol Biosci 2025; 25:e2400322. [PMID: 39412772 DOI: 10.1002/mabi.202400322] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/03/2024] [Indexed: 01/14/2025]
Abstract
While significant progress has been made in creating polymeric structures for tissue engineering, the therapeutic application of these scaffolds remains challenging owing to the intricate nature of replicating the conditions of native organs and tissues. The use of human-derived biomaterials for therapeutic purposes closely imitates the properties of natural tissue, thereby assisting in tissue regeneration. Decellularized extracellular matrix (dECM) scaffolds derived from natural tissues have become popular because of their unique biomimetic properties. These dECM scaffolds can enhance the body's ability to heal itself or be used to generate new tissues for restoration, expanding beyond traditional tissue transfers and transplants. Enhanced knowledge of how ECM scaffold materials affect the microenvironment at the injury site is expected to improve clinical outcomes. In this review, recent advancements in dECM scaffolds are explored and relevant perspectives are offered, highlighting the development and application of these scaffolds in tissue engineering for various organs, such as the skin, nerve, bone, heart, liver, lung, and kidney.
Collapse
Affiliation(s)
- Peiman Brouki Milan
- Department of Tissue Engineering & Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, 144-961-4535, Iran
| | - Farimah Masoumi
- School of Medicine, Tonekabon Branch, Islamic Azad University, Tonekabon, 468-416-1167, Iran
| | - Esmaeil Biazar
- Department of Biomedical Engineering, Tonekabon Branch, Islamic Azad University, Tonekabon, 468-416-1167, Iran
| | - Saeedeh Zare Jalise
- Department of Tissue Engineering and Applied Cell Sciences, School of Medicine, Qom University of Medical Sciences, Qom, 371-364-9373, Iran
| | - Arezou Mehrabi
- School of Medicine, Tonekabon Branch, Islamic Azad University, Tonekabon, 468-416-1167, Iran
| |
Collapse
|
9
|
Tabatabai TS, Salehi M, Rezakhani L, Arabpour Z, Djalilian AR, Alizadeh M. Decellularization of various tissues and organs through chemical methods. Tissue Cell 2024; 91:102573. [PMID: 39393204 PMCID: PMC11993266 DOI: 10.1016/j.tice.2024.102573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 09/20/2024] [Accepted: 09/23/2024] [Indexed: 10/13/2024]
Abstract
Due to the increase in demand for donor organs and tissues during the past 20 years, new approaches have been created. These methods include, for example, tissue engineering in vitro and the production of regenerative biomaterials for transplantation. Applying the natural extracellular matrix (ECM) as a bioactive biomaterial for clinical applications is a unique approach known as decellularization technology. Decellularization is the process of eliminating cells from an extracellular matrix while preserving its natural components including its structural and functional proteins and glycosaminoglycan. This can be achieved by physical, chemical, or biological processes. A naturally formed three-dimensional structure with a biocompatible and regenerative structure is the result of the decellularization process. Decreasing the biological factors and antigens at the transplant site reduces the risk of adverse effects including inflammatory responses and immunological rejection. Regenerative medicine and tissue engineering applications can benefit from the use of decellularization, a promising approach that provides a biomaterial that preserves its extracellular matrix.
Collapse
Affiliation(s)
- Tayebeh Sadat Tabatabai
- Student Research Committee, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Majid Salehi
- Tissue Engineering and Stem Cells Research Center, Shahroud University of Medical Sciences, Shahroud, Iran; Department of Tissue Engineering, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Leila Rezakhani
- Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran; Department of Tissue Engineering, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Zohreh Arabpour
- Department of Ophthalmology and Visual Sciences, University of Illinois, Chicago, IL 60612, USA
| | - Ali R Djalilian
- Department of Ophthalmology and Visual Sciences, University of Illinois, Chicago, IL 60612, USA
| | - Morteza Alizadeh
- Department of Tissue Engineering and Biomaterials, School of Advanced Medical Sciences and Technologies, Hamadan University of Medical Sciences, Hamadan, Iran.
| |
Collapse
|
10
|
Niro F, Fernandes S, Cassani M, Apostolico M, Oliver-De La Cruz J, Pereira-Sousa D, Pagliari S, Vinarsky V, Zdráhal Z, Potesil D, Pustka V, Pompilio G, Sommariva E, Rovina D, Maione AS, Bersanini L, Becker M, Rasponi M, Forte G. Fibrotic extracellular matrix impacts cardiomyocyte phenotype and function in an iPSC-derived isogenic model of cardiac fibrosis. Transl Res 2024; 273:58-77. [PMID: 39025226 PMCID: PMC11832458 DOI: 10.1016/j.trsl.2024.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 06/14/2024] [Accepted: 07/14/2024] [Indexed: 07/20/2024]
Abstract
Cardiac fibrosis occurs following insults to the myocardium and is characterized by the abnormal accumulation of non-compliant extracellular matrix (ECM), which compromises cardiomyocyte contractile activity and eventually leads to heart failure. This phenomenon is driven by the activation of cardiac fibroblasts (cFbs) to myofibroblasts and results in changes in ECM biochemical, structural and mechanical properties. The lack of predictive in vitro models of heart fibrosis has so far hampered the search for innovative treatments, as most of the cellular-based in vitro reductionist models do not take into account the leading role of ECM cues in driving the progression of the pathology. Here, we devised a single-step decellularization protocol to obtain and thoroughly characterize the biochemical and micro-mechanical properties of the ECM secreted by activated cFbs differentiated from human induced pluripotent stem cells (iPSCs). We activated iPSC-derived cFbs to the myofibroblast phenotype by tuning basic fibroblast growth factor (bFGF) and transforming growth factor beta 1 (TGF-β1) signalling and confirmed that activated cells acquired key features of myofibroblast phenotype, like SMAD2/3 nuclear shuttling, the formation of aligned alpha-smooth muscle actin (α-SMA)-rich stress fibres and increased focal adhesions (FAs) assembly. Next, we used Mass Spectrometry, nanoindentation, scanning electron and confocal microscopy to unveil the characteristic composition and the visco-elastic properties of the abundant, collagen-rich ECM deposited by cardiac myofibroblasts in vitro. Finally, we demonstrated that the fibrotic ECM activates mechanosensitive pathways in iPSC-derived cardiomyocytes, impacting on their shape, sarcomere assembly, phenotype, and calcium handling properties. We thus propose human bio-inspired decellularized matrices as animal-free, isogenic cardiomyocyte culture substrates recapitulating key pathophysiological changes occurring at the cellular level during cardiac fibrosis.
Collapse
Affiliation(s)
- Francesco Niro
- International Clinical Research Center (ICRC), St Anne's University Hospital Brno; Masaryk University, Faculty of Medicine, Department of Biomedical Sciences, Brno 62500, Czech Republic; School of Cardiovascular and Metabolic Medicine and Sciences, King's College London, UK
| | - Soraia Fernandes
- International Clinical Research Center (ICRC), St Anne's University Hospital Brno
| | - Marco Cassani
- International Clinical Research Center (ICRC), St Anne's University Hospital Brno
| | - Monica Apostolico
- International Clinical Research Center (ICRC), St Anne's University Hospital Brno
| | - Jorge Oliver-De La Cruz
- International Clinical Research Center (ICRC), St Anne's University Hospital Brno; Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute for Science and Technology (BIST), Barcelona, Spain
| | - Daniel Pereira-Sousa
- International Clinical Research Center (ICRC), St Anne's University Hospital Brno; Masaryk University, Faculty of Medicine, Department of Biomedical Sciences, Brno 62500, Czech Republic
| | - Stefania Pagliari
- International Clinical Research Center (ICRC), St Anne's University Hospital Brno; School of Cardiovascular and Metabolic Medicine and Sciences, King's College London, UK
| | - Vladimir Vinarsky
- International Clinical Research Center (ICRC), St Anne's University Hospital Brno
| | - Zbyněk Zdráhal
- Central European Institute of Technology (CEITEC), Masaryk University, Brno, Czech Republic
| | - David Potesil
- Central European Institute of Technology (CEITEC), Masaryk University, Brno, Czech Republic
| | - Vaclav Pustka
- Central European Institute of Technology (CEITEC), Masaryk University, Brno, Czech Republic
| | - Giulio Pompilio
- Unit of Vascular Biology and Regenerative Medicine, Centro Cardiologico Monzino-IRCCS, Milan, Italy; Dipartimento di Scienze Biomediche, Chirurgiche ed Odontoiatriche, Università degli Studi di Milano, Milan, Italy
| | - Elena Sommariva
- Unit of Vascular Biology and Regenerative Medicine, Centro Cardiologico Monzino-IRCCS, Milan, Italy
| | - Davide Rovina
- Unit of Vascular Biology and Regenerative Medicine, Centro Cardiologico Monzino-IRCCS, Milan, Italy
| | - Angela Serena Maione
- Unit of Vascular Biology and Regenerative Medicine, Centro Cardiologico Monzino-IRCCS, Milan, Italy
| | | | | | - Marco Rasponi
- Department of Electronics, Informatics and Bioengineering, Politecnico di Milano, Milan, Italy
| | - Giancarlo Forte
- International Clinical Research Center (ICRC), St Anne's University Hospital Brno; School of Cardiovascular and Metabolic Medicine and Sciences, King's College London, UK.
| |
Collapse
|
11
|
Yun J, Cho M, Culver M, Pearce DP, Kim C, Witzenburg CM, Murphy WL, Gopalan P. Characterization of Decellularized Plant Leaf as an Emerging Biomaterial Platform. ACS Biomater Sci Eng 2024; 10:6144-6154. [PMID: 39214606 DOI: 10.1021/acsbiomaterials.4c01254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Decellularized plants have emerged as promising biomaterials for cell culture and tissue engineering applications due to their distinct material characteristics. This study explores the biochemical, mechanical, and structural properties of decellularized leaves that make them useful as biomaterials for cell culture. Five monocot leaf species were decellularized via alkali treatment, resulting in the effective removal of DNA and proteins. The Van Soest method was used to quantitatively evaluate the changes in cellulose, hemicellulose, and lignin content during decellularization. Tensile tests revealed considerable variations in mechanical strength depending on the plant species, the decellularization state, and the direction of applied mechanical force. Decellularized monocot leaves exhibited a notable reduction in mechanical strength and anisotropic properties depending on the leaf orientation. Imaging revealed inherent microgrooves on the epidermis of the monocot leaves. Permeability studies, including water uptake and biomolecule transport through decellularized leaves, confirmed excellent water uptake capability but limited biomolecule transport. Lastly, the plants were enzymatically degradable using typical plant enzymes, which were minimally cytotoxic to mammalian cells. Taken together, the features of decellularized plant leaves characterized in this study suggest ways in which they can be useful in cell culture and tissue engineering applications.
Collapse
Affiliation(s)
- Junsu Yun
- Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| | - Mina Cho
- Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| | - Matthew Culver
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53075, United States
| | - Daniel P Pearce
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53075, United States
| | - Chanul Kim
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53075, United States
| | - Colleen M Witzenburg
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53075, United States
- Department of Mechanical Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53075, United States
| | - William L Murphy
- Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53075, United States
- Department of Orthopedics and Rehabilitation, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin 53705, United States
| | - Padma Gopalan
- Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53075, United States
| |
Collapse
|
12
|
Fazel Anvari Yazdi A, Tahermanesh K, Ejlali M, Babaei-Ghazvini A, Acharya B, Badea I, MacPhee DJ, Chen X. Comparative analysis of porcine-uterine decellularization for bioactive-molecule preservation and DNA removal. Front Bioeng Biotechnol 2024; 12:1418034. [PMID: 39416283 PMCID: PMC11480021 DOI: 10.3389/fbioe.2024.1418034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 08/27/2024] [Indexed: 10/19/2024] Open
Abstract
Introduction Decellularized uterine extracellular matrix has emerged as a pivotal focus in the realm of biomaterials, offering a promising source in uterine tissue regeneration, research on disease diagnosis and treatments, and ultimately uterine transplantation. In this study, we examined various protocols for decellularizing porcine uterine tissues, aimed to unravel the intricate dynamics of DNA removal, bioactive molecules preservation, and microstructural alterations. Methods Porcine uterine tissues were treated with 6 different, yet rigorously selected and designed, protocols with sodium dodecyl sulfate (SDS), Triton® X-100, peracetic acid + ethanol, and DNase I. After decellularization, we examined DNA quantification, histological staining (H&E and DAPI), glycosaminoglycans (GAG) assay, scanning electron microscopy (SEM), Fourier-transform infrared spectroscopy (FT-IR), X-ray photoelectron spectroscopy (XPS), and Thermogravimetric Analysis (TGA). Results A comparative analysis among all 6 protocols was conducted with the results demonstrating that all protocols achieved decellularization; while 0.1% SDS + 1% Triton® X-100, coupled with agitation, demonstrated the highest efficiency in DNA removal. Also, it was found that DNase I played a key role in enhancing the efficiency of the decellularization process by underscoring its significance in digesting cellular contents and eliminating cell debris by 99.79% (19.63 ± 3.92 ng/mg dry weight). Conclusions Our findings enhance the nuanced understanding of DNA removal, GAG preservation, microstructural alteration, and protein decomposition in decellularized uterine extracellular matrix, while highlighting the importance of decellularization protocols designed for intended applications. This study along with our findings represents meaningful progress for advancing the field of uterine transplantation and related tissue engineering/regenerative medicine.
Collapse
Affiliation(s)
| | - Kobra Tahermanesh
- Department of Obstetrics and Gynecology, School of Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Maryam Ejlali
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK, Canada
| | - Amin Babaei-Ghazvini
- Department of Chemical and Biological Engineering, University of Saskatchewan, Saskatoon, SK, Canada
| | - Bishnu Acharya
- Department of Chemical and Biological Engineering, University of Saskatchewan, Saskatoon, SK, Canada
| | - Ildiko Badea
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK, Canada
| | - Daniel J. MacPhee
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Xiongbiao Chen
- Division of Biomedical Engineering, University of Saskatchewan, Saskatoon, Canada
- Department of Mechanical Engineering, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
13
|
Snyder Y, Jana S. Innovative Substrate Design with Basement Membrane Components for Enhanced Endothelial Cell Function and Endothelization. Adv Healthc Mater 2024; 13:e2401150. [PMID: 39021293 DOI: 10.1002/adhm.202401150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 06/28/2024] [Indexed: 07/20/2024]
Abstract
Enhancing endothelial cell growth on small-diameter vascular grafts produced from decellularized tissues or synthetic substrates is pivotal for preventing thrombosis. While optimized decellularization protocols can preserve the structure and many components of the extracellular matrix (ECM), the process can still lead to the loss of crucial basement membrane proteins, such as laminin, collagen IV, and perlecan, which are pivotal for endothelial cell adherence and functional growth. This loss can result in poor endothelialization and endothelial cell activation causing thrombosis and intimal hyperplasia. To address this, the basement membrane's ECM is emulated on fiber substrates, providing a more physiological environment for endothelial cells. Thus, fibroblasts are cultured on fiber substrates to produce an ECM membrane substrate (EMMS) with basement membrane proteins. The EMMS then underwent antigen removal (AR) treatment to eliminate antigens from the membrane while preserving essential proteins and producing an AR-treated membrane substrate (AMS). Subsequently, human endothelial cells cultured on the AMS exhibited superior proliferation, nitric oxide production, and increased expression of endothelial markers of quiescence/homeostasis, along with autophagy and antithrombotic factors, compared to those on the decellularized aortic tissue. This strategy showed the potential of pre-endowing fiber substrates with a basement membrane to enable better endothelization.
Collapse
Affiliation(s)
- Yuriy Snyder
- Department of Chemical and Biomedical Engineering, University of Missouri, 1406 Rollins Street, Columbia, MO, 65211, USA
| | - Soumen Jana
- Department of Chemical and Biomedical Engineering, University of Missouri, 1406 Rollins Street, Columbia, MO, 65211, USA
| |
Collapse
|
14
|
Shang L, Wang S, Mao Y. Recent advances in plant-derived polysaccharide scaffolds in tissue engineering: A review. Int J Biol Macromol 2024; 277:133830. [PMID: 39002914 DOI: 10.1016/j.ijbiomac.2024.133830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 06/13/2024] [Accepted: 07/10/2024] [Indexed: 07/15/2024]
Abstract
As a natural three-dimensional biopolymer, decellularized plant-derived scaffolds usually comprise various polysaccharides, mostly cellulose, pectin, and hemicellulose. They are characterized by natural biocompatibility and porous structures. The emergence of decellularized purified polysaccharide scaffolds provides an attractive method to overcome the challenges associated with nutrient delivery and biocompatibility, as they serve as optimal non-immune environments for stem cell adhesion and proliferation. To date, limited corresponding literature is available to systemically summarize the development and potential of these scaffolds in tissue engineering. Therefore, the current review summarized the biomimetic properties of plant-derived polysaccharide scaffolds and the latest progress in tissue engineering applications. This review first discusses the advantages of decellularized plant-derived polysaccharide scaffolds by briefly introducing their features and current limitations in clinical applications. Subsequently, the latest progress in emerging applications of regenerative biomaterials is reviewed, followed by a discussion of the studies on the interactions of biomaterials with cells and tissues. Finally, challenges in obtaining reliable scaffolds and possible future directions are discussed.
Collapse
Affiliation(s)
- Lijun Shang
- School of Life Sciences, Bengbu Medical University, Bengbu, China
| | - Shan Wang
- School of Life Sciences, Bengbu Medical University, Bengbu, China
| | - Yingji Mao
- School of Life Sciences, Bengbu Medical University, Bengbu, China.
| |
Collapse
|
15
|
Ksouri R, Aksel H, Saghrouchni H, Saygideger Y. Biocompatible and Safe Decellularized Spinach With Antibacterial and Wound Healing Activity. J Biomed Mater Res B Appl Biomater 2024; 112:e35489. [PMID: 39377466 DOI: 10.1002/jbm.b.35489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 07/09/2024] [Accepted: 09/12/2024] [Indexed: 10/09/2024]
Abstract
Creating acellular vascularized constructs from animal and plant tissue is one of the well-known strategies for scaffold assembly. Decellularization takes an important position among these strategies. The most common method is chemical decellularization. This approach employs high concentrations of detergents, primarily Triton X-100, sodium dodecyl sulfate (SDS), and sodium hypochlorite (SH). In this work, novel techniques for decellularizing spinach were developed using detergents frequently utilized in laboratories. Spinach leaves were decellularized using Tween-20, SDS, and SH at low concentrations to generate an acellular plant matrix for tissue engineering. We measured the quantities of DNA and protein, as well as the decellularization using hematoxylin and eosin (H&E) staining. The biocompatibility and capacity of the biostructures to stimulate fibroblast wound healing were assessed using MTT and the Scratch assay. The antibacterial activity of the scaffolds was also tested against a gram-positive bacterium, Staphilococcus aureus, which is a common pathogen associated with wound healing. The best shape, evident vascularization, and good biocompatibility were seen in the Tween-20 decellularized samples at 1% concentration at 21°C and 37°C through the enhancement of cell proliferation and wound healing. In terms of antibacterial activity, all scaffold samples had a significant effect on Staphilococcus aureus, where the number of bacterial colonies in all six scaffold groups became zero after 4 h of treatment. The scaffolds also showed a 100% kill rate on Staphilococcus aureus, which could avoid wound infection during the repair process, and that can be suggested as a scaffold for tissue engineering applications and an important constituent for pharmacological activities.
Collapse
Affiliation(s)
- Rihab Ksouri
- Department of Biotechnology, Institute of Natural and Applied Sciences, Çukurova University, Balcalı, Adana, Türkiye
| | - Hamide Aksel
- Department of Biotechnology, Institute of Natural and Applied Sciences, Çukurova University, Balcalı, Adana, Türkiye
| | - Hamza Saghrouchni
- Department of Biotechnology, Institute of Natural and Applied Sciences, Çukurova University, Balcalı, Adana, Türkiye
| | - Yasemin Saygideger
- Department of Biotechnology, Institute of Natural and Applied Sciences, Çukurova University, Balcalı, Adana, Türkiye
- Department of Translational Medicine, Faculty of Medicine, Cukurova University, Balcali, Adana, Türkiye
| |
Collapse
|
16
|
Aron J, Bual R, Alimasag J, Arellano F, Baclayon L, Bantilan ZC, Lumancas G, Nisperos MJ, Labares M, Valle KDD, Bacosa H. Effects of Various Decellularization Methods for the Development of Decellularized Extracellular Matrix from Tilapia ( Oreochromis niloticus) Viscera. Int J Biomater 2024; 2024:6148496. [PMID: 39376509 PMCID: PMC11458291 DOI: 10.1155/2024/6148496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 07/30/2024] [Accepted: 08/23/2024] [Indexed: 10/09/2024] Open
Abstract
Tilapia, a widely farmed aquaculture fish, produces substantial waste, including viscera that contain extracellular matrix (ECM) utilized as a biomaterial for tissue regeneration applications. Extracting ECM from viscera requires a specific decellularization method, as no standardized protocol exists. This study performed three decellularization methods: sonication, orbital shaking at room temperature, and agitation at 4°C, using SDS and TX100 at concentrations of 0.1% and 0.3%. The effectiveness of each method was assessed through H&E staining, dsDNA quantification, and SEM imaging to verify cellular content removal and ECM structure preservation. Additional analyses, including ATR-FTIR, SDS-PAGE, protein quantification, HPLC, and detergent residue tests, were performed to examine functional groups, collagen composition, protein content, amino acid profiles, and detergent residues in the decellularized samples. The results of H&E staining showed a significant reduction in cellular components in all samples, which was confirmed through DNA quantification. Sonication with 0.3% SDS achieved the highest DNA removal rate (96.5 ± 1.1%), while SEM images revealed that agitation at 4°C with 0.3% TX100 better preserved ECM structure. Collagen was present in all samples, as confirmed by ATR-FTIR analysis, which revealed pronounced spectral peaks in the amide I, II, III, A, and B regions. Samples treated with agitation at 4°C using 0.1% SDS exhibited the highest protein content (875 ± 15 µg/mg), whereas those treated with TX100 had lower detergent residue. Overall, the decellularization methods effectively reduced DNA content while preserving ECM structure and components, highlighting the potential of tilapia viscera as bioscaffolds and offering insights into utilizing fish waste for high-value products.
Collapse
Affiliation(s)
- Jemwel Aron
- Environmental Science Graduate Program-Department of Biological Sciences, MSU-Iligan Institute of Technology, Iligan City 9200, Philippines
- Chemical Engineering Department, University of San Agustin, Iloilo City 5000, Philippines
| | - Ronald Bual
- Center for Sustainable Polymers, MSU-Iligan Institute of Technology, Iligan City 9200, Philippines
- Department of Chemical Engineering and Technology, College of Engineering, MSU-Iligan Institute of Technology, Iligan City 9200, Philippines
| | - Johnel Alimasag
- Center for Sustainable Polymers, MSU-Iligan Institute of Technology, Iligan City 9200, Philippines
| | - Fernan Arellano
- Environmental Science Graduate Program-Department of Biological Sciences, MSU-Iligan Institute of Technology, Iligan City 9200, Philippines
| | - Lean Baclayon
- Environmental Science Graduate Program-Department of Biological Sciences, MSU-Iligan Institute of Technology, Iligan City 9200, Philippines
| | - Zesreal Cain Bantilan
- Center for Sustainable Polymers, MSU-Iligan Institute of Technology, Iligan City 9200, Philippines
| | - Gladine Lumancas
- Environmental Science Graduate Program-Department of Biological Sciences, MSU-Iligan Institute of Technology, Iligan City 9200, Philippines
| | - Michael John Nisperos
- Environmental Science Graduate Program-Department of Biological Sciences, MSU-Iligan Institute of Technology, Iligan City 9200, Philippines
| | - Marionilo Labares
- Center for Sustainable Polymers, MSU-Iligan Institute of Technology, Iligan City 9200, Philippines
| | - Kit Dominick Don Valle
- Center for Sustainable Polymers, MSU-Iligan Institute of Technology, Iligan City 9200, Philippines
| | - Hernando Bacosa
- Environmental Science Graduate Program-Department of Biological Sciences, MSU-Iligan Institute of Technology, Iligan City 9200, Philippines
- Center for Sustainable Polymers, MSU-Iligan Institute of Technology, Iligan City 9200, Philippines
| |
Collapse
|
17
|
Wang X, Guo J, Yu Q, Zhao L, Gao X, Wang L, Wen M, Yan J, An M, Liu Y. Decellularized Matrices for the Treatment of Tissue Defects: from Matrix Origin to Immunological Mechanisms. Biomol Ther (Seoul) 2024; 32:509-522. [PMID: 39091238 PMCID: PMC11392660 DOI: 10.4062/biomolther.2024.050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 05/07/2024] [Accepted: 05/31/2024] [Indexed: 08/04/2024] Open
Abstract
Decellularized matrix transplantation has emerged as a promising therapeutic approach for repairing tissue defects, with numerous studies assessing its safety and efficacy in both animal models and clinical settings. The host immune response elicited by decellularized matrix grafts of natural biological origin plays a crucial role in determining the success of tissue repair, influenced by matrix heterogeneity and the inflammatory microenvironment of the wound. However, the specific immunologic mechanisms underlying the interaction between decellularized matrix grafts and the host immune system remain elusive. This article reviews the sources of decellularized matrices, available decellularization techniques, and residual immunogenic components. It focuses on the host immune response following decellularized matrix transplantation, with emphasis on the key mechanisms of Toll-like receptor, T-cell receptor, and TGF-β/SMAD signaling in the stages of post-transplantation immunorecognition, immunomodulation, and tissue repair, respectively. Furthermore, it highlights the innovative roles of TLR10 and miR-29a-3p in improving transplantation outcomes. An in-depth understanding of the molecular mechanisms underlying the host immune response after decellularized matrix transplantation provides new directions for the repair of tissue defects.
Collapse
Affiliation(s)
- Xinyue Wang
- Institute of Biomedical Engineering, College of Biomedical Engineering, Taiyuan University of Technology, Shanxi 030024, China
| | - Jiqiang Guo
- Institute of Biomedical Engineering, College of Biomedical Engineering, Taiyuan University of Technology, Shanxi 030024, China
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan 030032, China
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Qing Yu
- Institute of Biomedical Engineering, College of Biomedical Engineering, Taiyuan University of Technology, Shanxi 030024, China
| | - Luyao Zhao
- Institute of Biomedical Engineering, College of Biomedical Engineering, Taiyuan University of Technology, Shanxi 030024, China
| | - Xiang Gao
- Institute of Biomedical Engineering, College of Biomedical Engineering, Taiyuan University of Technology, Shanxi 030024, China
| | - Li Wang
- Institute of Biomedical Engineering, College of Biomedical Engineering, Taiyuan University of Technology, Shanxi 030024, China
| | - Meiling Wen
- Institute of Biomedical Engineering, College of Biomedical Engineering, Taiyuan University of Technology, Shanxi 030024, China
| | - Junrong Yan
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan 030032, China
| | - Meiwen An
- Institute of Biomedical Engineering, College of Biomedical Engineering, Taiyuan University of Technology, Shanxi 030024, China
| | - Yang Liu
- Institute of Biomedical Engineering, College of Biomedical Engineering, Taiyuan University of Technology, Shanxi 030024, China
- Department of Nuclear Medicine, First Hospital of Shanxi Medical University, Taiyuan 030001, China
| |
Collapse
|
18
|
Smith AJ, Hergenrother PJ. Raptinal: a powerful tool for rapid induction of apoptotic cell death. Cell Death Discov 2024; 10:371. [PMID: 39164225 PMCID: PMC11335860 DOI: 10.1038/s41420-024-02120-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/25/2024] [Accepted: 07/30/2024] [Indexed: 08/22/2024] Open
Abstract
Chemical inducers of apoptosis have been utilized for decades as tools to uncover steps of the apoptotic cascade and to treat various diseases, most notably cancer. While there are several useful compounds available, limitations in potency, universality, or speed of cell death of these pro-apoptotic agents have meant that no single compound is suitable for all (or most) purposes. Raptinal is a recently described small molecule that induces intrinsic pathway apoptosis rapidly and reliably, and consequently, has been utilized in cell culture and whole organisms for a wide range of biological studies. Its distinct mechanism of action complements the current arsenal of cytotoxic compounds, making it useful as a probe for the apoptosis pathway and other cellular processes. The rapid induction of cell death by Raptinal and its widespread commercial availability make it the pro-apoptotic agent of choice for many applications.
Collapse
Affiliation(s)
- Amanda J Smith
- Department of Chemistry, Carl R. Woese Institute for Genomic Biology, and Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Paul J Hergenrother
- Department of Chemistry, Carl R. Woese Institute for Genomic Biology, and Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
| |
Collapse
|
19
|
Arumugam P, Kaarthikeyan G, Eswaramoorthy R. Comparative Evaluation of Three Different Demineralisation Protocols on the Physicochemical Properties and Biocompatibility of Decellularised Extracellular Matrix for Bone Tissue Engineering Applications. Cureus 2024; 16:e64813. [PMID: 39156262 PMCID: PMC11330088 DOI: 10.7759/cureus.64813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 07/17/2024] [Indexed: 08/20/2024] Open
Abstract
Background With three-dimensional (3D) bioprinting emerging as the ultimate pinnacle of personalised treatment for achieving predictable regenerative outcomes, the search for tissue-specific bioinks is on. Decellularised extracellular matrix (DECM), which provides the inherent biomimetic cues, has gained considerable attention. The objective of the present study was to compare the efficacy of three different demineralisation protocols to obtain DECM for bone tissue engineering applications. Methodology Goat femurs were treated using three demineralisation protocols to obtain DECM. Group A was treated with demineralisation solution at 40 rpm for 14 days, Group B with freeze-thaw cycles and 0.05M hydrochloric acid (HCl) and 2.4 mM ethylenediamine tetra-acetic acid (EDTA) at 40 rpm for 60 days, and Group C with 0.1M HCl at 40 rpm for three days. After washing, neutralization, 0.05% trypsin-EDTA treatment for 24 hours, and lyophilisation, DECM was obtained. Assessments included scanning electron microscope (SEM) analysis, energy dispersive X-ray (EDX) analysis, hematoxylin and eosin (H&E) staining, and biocompatibility analysis. Results On comparative analysis, the protocol followed by Group C revealed good surface properties with patent and well interconnected pores with an average pore size of 218.87µm. Group C also revealed carbon and oxygen as predominant components with trace amounts of calcium, proving adequate demineralisation. Group C further revealed optimal demineralisation and decellularisation under histological analysis while maintaining biocompatibility. DECM obtained in Group C should be further processed for bioprinting applications. Conclusion The three protocols explored in this study hold potential, with Group C's protocol demonstrating the most promise for DECM-based bioink applications. Further research is needed to evaluate the suitability of the obtained DECM for preparing tissue-specific bioinks for 3D bioprinting.
Collapse
Affiliation(s)
- Parkavi Arumugam
- Periodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| | - G Kaarthikeyan
- Periodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| | - Rajalakshmanan Eswaramoorthy
- Biochemistry, Center of Molecular Medicine and Diagnostics (COMManD), Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| |
Collapse
|
20
|
Almeida GHDR, da Silva RS, Gibin MS, Gonzaga VHDS, dos Santos H, Igleisa RP, Fernandes LA, Fernandes IC, Nesiyama TNG, Sato F, Baesso ML, Hernandes L, Rinaldi JDC, Meirelles FV, Astolfi-Ferreira CS, Ferreira AJP, Carreira ACO. Region-Specific Decellularization of Porcine Uterine Tube Extracellular Matrix: A New Approach for Reproductive Tissue-Engineering Applications. Biomimetics (Basel) 2024; 9:382. [PMID: 39056823 PMCID: PMC11274565 DOI: 10.3390/biomimetics9070382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 06/14/2024] [Accepted: 06/19/2024] [Indexed: 07/28/2024] Open
Abstract
The uterine tube extracellular matrix is a key component that regulates tubal tissue physiology, and it has a region-specific structural distribution, which is directly associated to its functions. Considering this, the application of biological matrices in culture systems is an interesting strategy to develop biomimetic tubal microenvironments and enhance their complexity. However, there are no established protocols to produce tubal biological matrices that consider the organ morphophysiology for such applications. Therefore, this study aimed to establish region-specific protocols to obtain decellularized scaffolds derived from porcine infundibulum, ampulla, and isthmus to provide suitable sources of biomaterials for tissue-engineering approaches. Porcine uterine tubes were decellularized in solutions of 0.1% SDS and 0.5% Triton X-100. The decellularization efficiency was evaluated by DAPI staining and DNA quantification. We analyzed the ECM composition and structure by optical and scanning electronic microscopy, FTIR, and Raman spectroscopy. DNA and DAPI assays validated the decellularization, presenting a significative reduction in cellular content. Structural and spectroscopy analyses revealed that the produced scaffolds remained well structured and with the ECM composition preserved. YS and HEK293 cells were used to attest cytocompatibility, allowing high cell viability rates and successful interaction with the scaffolds. These results suggest that such matrices are applicable for future biotechnological approaches in the reproductive field.
Collapse
Affiliation(s)
- Gustavo Henrique Doná Rodrigues Almeida
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo 03828-000, Brazil; (R.S.d.S.); (L.A.F.); (I.C.F.); (A.C.O.C.)
| | - Raquel Souza da Silva
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo 03828-000, Brazil; (R.S.d.S.); (L.A.F.); (I.C.F.); (A.C.O.C.)
| | - Mariana Sversut Gibin
- Department of Physics, State University of Maringá, Maringá 87020-900, Brazil; (M.S.G.); (V.H.d.S.G.); (H.d.S.); (F.S.); (M.L.B.)
| | - Victória Hellen de Souza Gonzaga
- Department of Physics, State University of Maringá, Maringá 87020-900, Brazil; (M.S.G.); (V.H.d.S.G.); (H.d.S.); (F.S.); (M.L.B.)
| | - Henrique dos Santos
- Department of Physics, State University of Maringá, Maringá 87020-900, Brazil; (M.S.G.); (V.H.d.S.G.); (H.d.S.); (F.S.); (M.L.B.)
| | - Rebeca Piatniczka Igleisa
- The Ken & Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA;
| | - Leticia Alves Fernandes
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo 03828-000, Brazil; (R.S.d.S.); (L.A.F.); (I.C.F.); (A.C.O.C.)
| | - Iorrane Couto Fernandes
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo 03828-000, Brazil; (R.S.d.S.); (L.A.F.); (I.C.F.); (A.C.O.C.)
| | - Thais Naomi Gonçalves Nesiyama
- Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, University of São Paulo, São Paulo 05508-270, Brazil; (T.N.G.N.); (F.V.M.)
| | - Francielle Sato
- Department of Physics, State University of Maringá, Maringá 87020-900, Brazil; (M.S.G.); (V.H.d.S.G.); (H.d.S.); (F.S.); (M.L.B.)
| | - Mauro Luciano Baesso
- Department of Physics, State University of Maringá, Maringá 87020-900, Brazil; (M.S.G.); (V.H.d.S.G.); (H.d.S.); (F.S.); (M.L.B.)
| | - Luzmarina Hernandes
- Department of Morphological Sciences, State University of Maringá, Maringá 87020-900, Brazil; (L.H.); (J.d.C.R.)
| | | | - Flávio Vieira Meirelles
- Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, University of São Paulo, São Paulo 05508-270, Brazil; (T.N.G.N.); (F.V.M.)
| | - Claudete S. Astolfi-Ferreira
- Department of Pathology, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo 05508-270, Brazil; (C.S.A.-F.); (A.J.P.F.)
| | - Antonio José Piantino Ferreira
- Department of Pathology, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo 05508-270, Brazil; (C.S.A.-F.); (A.J.P.F.)
| | - Ana Claudia Oliveira Carreira
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo 03828-000, Brazil; (R.S.d.S.); (L.A.F.); (I.C.F.); (A.C.O.C.)
- Centre for Natural and Human Sciences, Federal University of ABC, Santo André 09040-902, Brazil
| |
Collapse
|
21
|
Wan H, Xiang J, Mao G, Pan S, Li B, Lu Y. Recent Advances in the Application of 3D-Printing Bioinks Based on Decellularized Extracellular Matrix in Tissue Engineering. ACS OMEGA 2024; 9:24219-24235. [PMID: 38882108 PMCID: PMC11170705 DOI: 10.1021/acsomega.4c02847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/10/2024] [Accepted: 05/17/2024] [Indexed: 06/18/2024]
Abstract
In recent years, 3D bioprinting with various types of bioinks has been widely used in tissue engineering to fabricate human tissues and organs with appropriate biological functions. Decellularized extracellular matrix (dECM) is an excellent bioink candidate because it is enriched with a variety of bioactive proteins and bioactive factors and can provide a suitable environment for tissue repair or tissue regeneration while reducing the likelihood of severe immune rejection. In this Review, we systematically review recent advances in 3D bioprinting and decellularization technologies and comprehensively detail the latest research and applications of dECM as a bioink for tissue engineering in various systems, with the aim of providing a reference for researchers in tissue engineering to better understand the properties of dECM bioinks.
Collapse
Affiliation(s)
- Haoxin Wan
- Department
of Thoracic Surgery, The First Affiliated
Hospital of Soochow University, Suzhou 215000, China
| | - Jian Xiang
- Affiliated
Hospital of Yangzhou University, Yangzhou 225000, China
| | - Guocai Mao
- Department
of Thoracic Surgery, The First Affiliated
Hospital of Soochow University, Suzhou 215000, China
| | - Shu Pan
- Department
of Thoracic Surgery, The First Affiliated
Hospital of Soochow University, Suzhou 215000, China
| | - Bing Li
- The
Second Affiliated Hospital of Soochow University, Suzhou 215000, China
| | - Yi Lu
- Clinical
Medical College, Yangzhou University, Yangzhou 225000, China
| |
Collapse
|
22
|
Ortega JA, Soares de Aguiar GP, Chandravanshi P, Levy N, Engel E, Álvarez Z. Exploring the properties and potential of the neural extracellular matrix for next-generation regenerative therapies. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2024; 16:e1962. [PMID: 38723788 DOI: 10.1002/wnan.1962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 04/05/2024] [Accepted: 04/09/2024] [Indexed: 05/24/2024]
Abstract
The extracellular matrix (ECM) is a dynamic and complex network of proteins and molecules that surrounds cells and tissues in the nervous system and orchestrates a myriad of biological functions. This review carefully examines the diverse interactions between cells and the ECM, as well as the transformative chemical and physical changes that the ECM undergoes during neural development, aging, and disease. These transformations play a pivotal role in shaping tissue morphogenesis and neural activity, thereby influencing the functionality of the central nervous system (CNS). In our comprehensive review, we describe the diverse behaviors of the CNS ECM in different physiological and pathological scenarios and explore the unique properties that make ECM-based strategies attractive for CNS repair and regeneration. Addressing the challenges of scalability, variability, and integration with host tissues, we review how advanced natural, synthetic, and combinatorial matrix approaches enhance biocompatibility, mechanical properties, and functional recovery. Overall, this review highlights the potential of decellularized ECM as a powerful tool for CNS modeling and regenerative purposes and sets the stage for future research in this exciting field. This article is categorized under: Implantable Materials and Surgical Technologies > Nanotechnology in Tissue Repair and Replacement Therapeutic Approaches and Drug Discovery > Nanomedicine for Neurological Disease Implantable Materials and Surgical Technologies > Nanomaterials and Implants.
Collapse
Affiliation(s)
- J Alberto Ortega
- Department of Pathology and Experimental Therapeutics, Institute of Neurosciences, University of Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain
- Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet del Llobregat, Spain
| | - Gisele P Soares de Aguiar
- Department of Pathology and Experimental Therapeutics, Institute of Neurosciences, University of Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain
- Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet del Llobregat, Spain
| | - Palash Chandravanshi
- Biomaterials for Neural Regeneration Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Natacha Levy
- Biomaterials for Neural Regeneration Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Elisabeth Engel
- IMEM-BRT Group, Department of Materials Science and Engineering, EEBE, Technical University of Catalonia (UPC), Barcelona, Spain
- Biomaterials for Regenerative Therapies Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- CIBER en Bioingeniería, Biomateriales y Nanomedicina, CIBER-BBN, Madrid, Spain
| | - Zaida Álvarez
- Biomaterials for Neural Regeneration Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- CIBER en Bioingeniería, Biomateriales y Nanomedicina, CIBER-BBN, Madrid, Spain
- Simpson Querrey Institute for BioNanotechnology, Northwestern University, Chicago, Illinois, USA
| |
Collapse
|
23
|
Saeid Nia M, Floder LM, Seiler JA, Puehler T, Pommert NS, Berndt R, Meier D, Sellers SL, Sathananthan J, Zhang X, Hasler M, Gorb SN, Warnecke G, Lutter G. Optimization of Enzymatic and Chemical Decellularization of Native Porcine Heart Valves for the Generation of Decellularized Xenografts. Int J Mol Sci 2024; 25:4026. [PMID: 38612836 PMCID: PMC11012489 DOI: 10.3390/ijms25074026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/27/2024] [Accepted: 04/01/2024] [Indexed: 04/14/2024] Open
Abstract
One of the most important medical interventions for individuals with heart valvular disease is heart valve replacement, which is not without substantial challenges, particularly for pediatric patients. Due to their biological properties and biocompatibility, natural tissue-originated scaffolds derived from human or animal sources are one type of scaffold that is widely used in tissue engineering. However, they are known for their high potential for immunogenicity. Being free of cells and genetic material, decellularized xenografts, consequently, have low immunogenicity and, thus, are expected to be tolerated by the recipient's immune system. The scaffold ultrastructure and ECM composition can be affected by cell removal agents. Therefore, applying an appropriate method that preserves intact the structure of the ECM plays a critical role in the final result. So far, there has not been an effective decellularization technique that preserves the integrity of the heart valve's ultrastructure while securing the least amount of genetic material left. This study demonstrates a new protocol with untraceable cells and residual DNA, thereby maximally reducing any chance of immunogenicity. The mechanical and biochemical properties of the ECM resemble those of native heart valves. Results from this study strongly indicate that different critical factors, such as ionic detergent omission, the substitution of Triton X-100 with Tergitol, and using a lower concentration of trypsin and a higher concentration of DNase and RNase, play a significant role in maintaining intact the ultrastructure and function of the ECM.
Collapse
Affiliation(s)
- Monireh Saeid Nia
- Department of Cardiac Surgery, University Hospital Schleswig-Holstein (UKSH), 24105 Kiel, Germany; (M.S.N.); (L.M.F.); (J.A.S.); (N.S.P.); (X.Z.); (G.W.)
- DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, 69120 Hamburg, Germany;
| | - Lena Maria Floder
- Department of Cardiac Surgery, University Hospital Schleswig-Holstein (UKSH), 24105 Kiel, Germany; (M.S.N.); (L.M.F.); (J.A.S.); (N.S.P.); (X.Z.); (G.W.)
| | - Jette Anika Seiler
- Department of Cardiac Surgery, University Hospital Schleswig-Holstein (UKSH), 24105 Kiel, Germany; (M.S.N.); (L.M.F.); (J.A.S.); (N.S.P.); (X.Z.); (G.W.)
- DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, 69120 Hamburg, Germany;
| | - Thomas Puehler
- DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, 69120 Hamburg, Germany;
- Department of Cardiac Surgery, University Hospital Schleswig-Holstein (UKSH), 23562 Lübeck, Germany
| | - Nina Sophie Pommert
- Department of Cardiac Surgery, University Hospital Schleswig-Holstein (UKSH), 24105 Kiel, Germany; (M.S.N.); (L.M.F.); (J.A.S.); (N.S.P.); (X.Z.); (G.W.)
- DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, 69120 Hamburg, Germany;
| | - Rouven Berndt
- Clinic of Vascular and Endovascular Surgery, University Hospital Schleswig-Holstein (UKSH), 24105 Kiel, Germany;
| | - David Meier
- Department of Cardiology, Lausanne University Hospital and University of Lausanne, 1015 Lausanne, Switzerland;
| | - Stephanie L. Sellers
- Centre for Cardiovascular Innovation, University of British Columbia, Vancouver, BC V5Z 1M9, Canada; (S.L.S.); (J.S.)
- Cardiovascular Translational Laboratory, Providence Research & Centre for Heart Lung Innovation, Vancouver, BC V6Z 1Y6, Canada
- Centre for Heart Valve Innovation, St. Paul’s Hospital, Vancouver, BC V6Z 1Y6, Canada
| | - Janarthanan Sathananthan
- Centre for Cardiovascular Innovation, University of British Columbia, Vancouver, BC V5Z 1M9, Canada; (S.L.S.); (J.S.)
- Cardiovascular Translational Laboratory, Providence Research & Centre for Heart Lung Innovation, Vancouver, BC V6Z 1Y6, Canada
- Centre for Heart Valve Innovation, St. Paul’s Hospital, Vancouver, BC V6Z 1Y6, Canada
| | - Xiling Zhang
- Department of Cardiac Surgery, University Hospital Schleswig-Holstein (UKSH), 24105 Kiel, Germany; (M.S.N.); (L.M.F.); (J.A.S.); (N.S.P.); (X.Z.); (G.W.)
- DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, 69120 Hamburg, Germany;
| | - Mario Hasler
- Lehrfach Variationsstatistik, Christian-Albrechts-University of Kiel, 24118 Kiel, Germany;
| | - Stanislav N. Gorb
- Department of Functional Morphology and Biomechanics, Zoological Institute, Christian-Albrechts-University of Kiel, 24118 Kiel, Germany;
| | - Gregor Warnecke
- Department of Cardiac Surgery, University Hospital Schleswig-Holstein (UKSH), 24105 Kiel, Germany; (M.S.N.); (L.M.F.); (J.A.S.); (N.S.P.); (X.Z.); (G.W.)
- DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, 69120 Hamburg, Germany;
| | - Georg Lutter
- Department of Cardiac Surgery, University Hospital Schleswig-Holstein (UKSH), 24105 Kiel, Germany; (M.S.N.); (L.M.F.); (J.A.S.); (N.S.P.); (X.Z.); (G.W.)
- DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, 69120 Hamburg, Germany;
| |
Collapse
|
24
|
Pal P, Sambhakar S, Paliwal S, Kumar S, Kalsi V. Biofabrication paradigms in corneal regeneration: bridging bioprinting techniques, natural bioinks, and stem cell therapeutics. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2024; 35:717-755. [PMID: 38214998 DOI: 10.1080/09205063.2024.2301817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 12/29/2023] [Indexed: 01/14/2024]
Abstract
Corneal diseases are a major cause of vision loss worldwide. Traditional methods like corneal transplants from donors are effective but face challenges like limited donor availability and the risk of graft rejection. Therefore, new treatment methods are essential. This review examines the growing field of bioprinting and biofabrication in corneal tissue engineering. We begin by discussing various bioprinting methods such as stereolithography, inkjet, and extrusion printing, highlighting their strengths and weaknesses for eye-related uses. We also explore how biological tissues are made suitable for bioprinting through a process called decellularization, which can be achieved using chemical, physical, or biological methods. The review then looks at natural materials, known as bioinks, used in bioprinting. We focus on materials like gelatin, collagen, fibrin, chitin, chitosan, silk fibroin, and alginate, examining their mechanical and biological properties. The importance of hydrogel scaffolds, particularly those based on collagen and other materials, is also discussed in the context of repairing corneal tissue. Another key area we cover is the use of stem cells in corneal regeneration. We pay special attention to limbal epithelial stem cells and mesenchymal stromal cells, highlighting their roles in this process. The review concludes with an overview of the latest advancements in corneal tissue bioprinting, from early techniques to advanced methods of delivering stem cells using bioengineered materials. In summary, this review presents the current state and future potential of bioprinting and biofabrication in creating functional corneal tissues, highlighting new developments and ongoing challenges with a view towards restoring vision.
Collapse
Affiliation(s)
- Pankaj Pal
- Department of Pharmacy, Banasthali Vidyapith, Radha Kishnpura, Rajasthan, India
| | - Sharda Sambhakar
- Department of Pharmacy, Banasthali Vidyapith, Radha Kishnpura, Rajasthan, India
| | - Shailendra Paliwal
- Department of Pharmacy, L.L.R.M Medical College, Meerut, Uttar Pradesh, India
| | - Shobhit Kumar
- Department of Pharmaceutical Technology, Meerut Institute of Engineering and Technology, Meerut, Uttar Pradesh, India
| | - Vandna Kalsi
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| |
Collapse
|
25
|
Rashidi F, Mohammadzadeh M, Abdolmaleki A, Asadi A, Sheikhlou M. Acellular carotid scaffold and evaluation the biological and biomechanical properties for tissue engineering. J Cardiovasc Thorac Res 2024; 16:28-37. [PMID: 38584661 PMCID: PMC10997974 DOI: 10.34172/jcvtr.32899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 02/10/2024] [Indexed: 04/09/2024] Open
Abstract
Introduction The issues associated with the limitation of appropriate autologous vessels for vascular reconstruction via bypass surgery highlight the need for new alternative strategies based on tissue engineering. The present study aimed to prepare decellularized scaffolds from ovine carotid using chemical decellularization method. Methods Ovine carotid were decellularized with Triton X-100 and tri-n-butyl phosphate (TnBP) at 37 °C. Histological analysis, biochemical tests, biomechanical assay and biocompatibility assay were used to investigate the efficacy of decellularization. Results Decellularization method could successfully decellularize ovine carotid without leaving any cell remnants. Scaffolds showed minimal destruction of the three-dimensional structure and extracellular matrix, as well as adequate mechanical resistance and biocompatibility for cell growth and proliferation. Conclusion Prepared acellular scaffold exhibited the necessary characteristics for clinical applications.
Collapse
Affiliation(s)
- Farina Rashidi
- Department of Biology, Faculty of Science, University of Urmia, Urmia, Iran
| | | | - Arash Abdolmaleki
- Department of Biophysics, Faculty of Advanced Technologies, University of Mohaghegh Ardabili, Namin, Iran
| | - Asadollah Asadi
- Department of Biology, Faculty of Science, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Mehrdad Sheikhlou
- Department of Engineering Sciences, Faculty of Advanced Technologies, University of Mohaghegh Ardabili, Namin, Iran
| |
Collapse
|
26
|
Gheytasvand A, Bagheri H, Pourbeyranvand S, Salehnia M. Enhancement of Wound Healing and Angiogenesis Using Mouse Embryo Fibroblasts Loaded in Decellularized Skin Scaffold. IRANIAN BIOMEDICAL JOURNAL 2024; 28:90-101. [PMID: 38770915 PMCID: PMC11186609 DOI: 10.61186/ibj.3971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 04/03/2024] [Indexed: 05/22/2024]
Abstract
Background Synthetic and natural polymer scaffolds can be used to design wound dressing for repairing the damaged skin tissue. This study investigated acute wound healing process using a decellularized skin scaffold and mouse embryo fibroblast (MEF). Methods Mouse skin fragments were decellularized and evaluated by DNA content, toxicity, H&E staining, Raman confocal microscopy, Masson’s trichrome staining, SEM, and biodegradation assays. The fragments were recellularized by the MEFs, and cell attachment and penetration were studied. De- and decellularized scaffolds were used wound dressings in mouse acute wound models as two experimental groups. Using morphological and immunohistochemical assessments, wound healing was evaluated and compared among the experimental and control groups. Results DNA content of the decellularized tissue significantly reduced compared to the native control group (7% vs. 100%; p < 0.05). extracellular matrix components, e.g. collagen types I, III, and IV, elastin, and glycosaminoglycan, were well preserved in the decellularized group. The porosity and fiber arrangement in the stroma had a structure similar to normal skin tissue. A significant reduction in healing time was observed in the group treated with a decellularized scaffold. A thicker epidermis layer was observed in the recovered tissue in both experimental groups compared to the control group. Immunostaining showed a positive reaction for CD31 as an endothelial marker in both experimental groups, confirming new vascularization in these groups. Conclusion Using MEFs with decellularized skin as a wound dressing increases the rate of wound healing and also the formation of new capillaries. This system could be beneficial for clinical applications in the field of tissue engineering.
Collapse
Affiliation(s)
- Armaghan Gheytasvand
- Department of Biomaterials, Faculty of Interdisciplinary Science and Technology, Tarbiat Modares University, Tehran, Iran
| | - Hamed Bagheri
- Department of Biomaterials, Faculty of Interdisciplinary Science and Technology, Tarbiat Modares University, Tehran, Iran
| | - Shahram Pourbeyranvand
- Department of Anatomical Sciences, School of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mojdeh Salehnia
- Department of Biomaterials, Faculty of Interdisciplinary Science and Technology, Tarbiat Modares University, Tehran, Iran
- Department of Anatomical Sciences, School of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
27
|
Thomas VJ, Buchweitz NF, Baek JJ, Wu Y, Mercuri JJ. The development of a nucleus pulposus-derived cartilage analog scaffold for chondral repair and regeneration. J Biomed Mater Res A 2024; 112:421-435. [PMID: 37964720 PMCID: PMC10842041 DOI: 10.1002/jbm.a.37639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 08/16/2023] [Accepted: 10/20/2023] [Indexed: 11/16/2023]
Abstract
Focal chondral defects (FCDs) significantly impede quality of life for patients and impose severe economic costs on society. One of the most promising treatment options-autologous matrix-induced chondrogenesis (AMIC)-could benefit from a scaffold that contains both of the primary cartilage matrix components-sulfated glycosaminoglycans (sGAGs) and collagen type II. Here, 17 different protocols were evaluated to determine the most optimum strategy for decellularizing (decelling) the bovine nucleus pulposus (bNP) to yield a natural biomaterial with a cartilaginous constituency. The resulting scaffold was then characterized with respect to its biochemistry, biomechanics and cytocompatibility. Results indicated that the optimal decell protocol involved pre-crosslinking the tissue prior to undergoing decell with trypsin and Triton X-100. The residual DNA content of the scaffold was found to be 32.64 ± 9.26 ng/mg dry wt. of tissue with sGAG and hydroxyproline (HYP) contents of 72.53 ± 16.43. and 78.38 ± 8.46 μg/mg dry wt. respectively. The dynamic viscoelastic properties were found to be preserved (complex modulus: 17.92-16.62 kPa across a range of frequencies) while the equilibrium properties were found to have significantly decreased (aggregate modulus: 11.51 ± 9.19 kPa) compared to the non-decelled fresh bNP tissue. Furthermore, the construct was also found to be cytocompatible with bone marrow stem cells (BMSCs). While it was not permissive of cellular infiltration, the BMSCs were still found to have lined the laser drilled channels in the scaffold. Taken together, the biomaterial developed herein could be a valuable addition to the AMIC family of scaffolds or serve as an off-the-shelf standalone option for cartilage repair.
Collapse
Affiliation(s)
- Vishal Joseph Thomas
- The Laboratory of Orthopaedic Tissue Regeneration & Orthobiologics, Department of Bioengineering, Clemson University, Clemson, South Carolina, USA
| | - Nathan Foster Buchweitz
- The Orthopaedic Bioengineering Laboratory, Department of Bioengineering, Clemson University, Charleston, South Carolina, USA
| | - Jay John Baek
- The Orthopaedic Bioengineering Laboratory, Department of Bioengineering, Clemson University, Charleston, South Carolina, USA
| | - Yongren Wu
- The Orthopaedic Bioengineering Laboratory, Department of Bioengineering, Clemson University, Charleston, South Carolina, USA
| | - Jeremy John Mercuri
- The Laboratory of Orthopaedic Tissue Regeneration & Orthobiologics, Department of Bioengineering, Clemson University, Clemson, South Carolina, USA
- The Frank H. Stelling and C. Dayton Riddle Orthopaedic Research and Education Laboratory, Clemson University Biomedical Engineering Innovation Campus, Greenville, South Carolina, USA
| |
Collapse
|
28
|
Bhar B, Ranta P, Samudrala PK, Mandal BB. Omentum Extracellular Matrix-Silk Fibroin Hydroscaffold Promotes Wound Healing through Vascularization and Tissue Remodeling in the Diabetic Rat Model. ACS Biomater Sci Eng 2024; 10:1090-1105. [PMID: 38275123 DOI: 10.1021/acsbiomaterials.3c01877] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
Nonhealing diabetic wounds are often associated with significant mortality and cause economic and clinical burdens to the healthcare system. Herein, a biomimetic hydroscaffold is developed using omentum tissue-derived decellularized-extracellular matrix (dECM) and silk fibroin (SF) proteins that associate the behavior of a collagenous fibrous scaffold and a hydrogel to reproduce all aspects of the provisional skin tissue matrix. The chemical cross-linker-free in situ gelation property of the two types of SF proteins from Bombyx mori and Antheraea assamensis ensures the adherence of dECM with surrounding tissue on the wound bed, circumventing further suturing. The physicochemical and mechanical properties of the composite hydroscaffold (SF-dECM) were thoroughly evaluated. The hydroscaffolds were found to support the growth and proliferation of human dermal fibroblasts and influence the angiogenic potential of endothelial cells under in vitro conditions. Furthermore, the healing efficacy of the composites was evaluated by generating full-thickness wounds on a streptozotocin-induced diabetic rat model. The presence of dECM components in the composite facilitated the rate of wound closure, granulation tissue formation, and re-epithelialization by providing intrinsic cues to advance the inflammatory stage and stimulating angiogenesis. Collectively, as an off-the-shelf wound dressing requiring only a single topical administration, the SF-dECM hydroscaffold is a promising, cost-effective dressing for the management of chronic diabetic wounds.
Collapse
Affiliation(s)
- Bibrita Bhar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Priyanka Ranta
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical and Educational Research Guwahati, Guwahati, Assam 781101, India
| | - Pavan Kumar Samudrala
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical and Educational Research Guwahati, Guwahati, Assam 781101, India
| | - Biman B Mandal
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
- Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
- Jyoti and Bhupat Mehta School of Health Sciences and Technology, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| |
Collapse
|
29
|
Say S, Suzuki M, Hashimoto Y, Kimura T, Kishida A. Effect of multi arm-PEG-NHS (polyethylene glycol n-hydroxysuccinimide) branching on cell adhesion to modified decellularized bovine and porcine pericardium. J Mater Chem B 2024; 12:1244-1256. [PMID: 38168715 DOI: 10.1039/d3tb01661g] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Implanting physical barrier materials to separate wounds from their surroundings is a promising strategy for preventing postoperative adhesions. Herein, we develop a material that switches from an anti-adhesive surface to an adhesive surface, preventing adhesion in the early stage of transplantation and then promoting recellularization. In this study, 2-arm, 4-arm, and 8-arm poly(ethylene glycol) succinimidyl glutarate (2-, 4-, 8-arm PEG-NHS) were used to modify the surface of decellularized porcine and bovine pericardium. The number of free amines on the surface of each material significantly decreased following modification regardless of the reaction molar ratio of NH2 and NHS, the number of PEG molecule branches, and the animal species of the decellularized tissue. The structure and mechanical properties of the pericardium were maintained after modification with PEG molecules. The time taken for the PEG molecules to detach through hydrolysis of the ester bonds differed between the samples, which resulted in different cell repulsion periods. By adjusting the reaction molar ratio, the number of PEG molecule branches, and the animal species of the decellularized pericardium, the duration of cell repulsion can be controlled and is expected to provide an anti-adhesion material for a variety of surgical procedures.
Collapse
Affiliation(s)
- Sreypich Say
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kanda-Surugadai, Chiyoda-Ku, Tokyo 101-0062, Japan.
| | - Mika Suzuki
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kanda-Surugadai, Chiyoda-Ku, Tokyo 101-0062, Japan.
| | - Yoshihide Hashimoto
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kanda-Surugadai, Chiyoda-Ku, Tokyo 101-0062, Japan.
| | - Tsuyoshi Kimura
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kanda-Surugadai, Chiyoda-Ku, Tokyo 101-0062, Japan.
| | - Akio Kishida
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kanda-Surugadai, Chiyoda-Ku, Tokyo 101-0062, Japan.
| |
Collapse
|
30
|
Di Francesco D, Di Varsavia C, Casarella S, Donetti E, Manfredi M, Mantovani D, Boccafoschi F. Characterisation of Matrix-Bound Nanovesicles (MBVs) Isolated from Decellularised Bovine Pericardium: New Frontiers in Regenerative Medicine. Int J Mol Sci 2024; 25:740. [PMID: 38255814 PMCID: PMC10815362 DOI: 10.3390/ijms25020740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 12/31/2023] [Accepted: 01/04/2024] [Indexed: 01/24/2024] Open
Abstract
Matrix-bound nanovesicles (MBVs) are a recently discovered type of extracellular vesicles (EVs), and they are characterised by a strong adhesion to extracellular matrix structural proteins (ECM) and ECM-derived biomaterials. MBVs contain a highly bioactive and tissue-specific cargo that recapitulates the biological activity of the source ECM. The rich content of MBVs has shown to be capable of potent cell signalling and of modulating the immune system, thus the raising interest for their application in regenerative medicine. Given the tissue-specificity and the youthfulness of research on MBVs, until now they have only been isolated from a few ECM sources. Therefore, the objective of this research was to isolate and identify the presence of MBVs in decellularised bovine pericardium ECM and to characterise their protein content, which is expected to play a major role in their biological potential. The results showed that nanovesicles, corresponding to the definition of recently described MBVs, could be isolated from decellularised bovine pericardium ECM. Moreover, these MBVs were composed of numerous proteins and cytokines, thus preserving a highly potential biological effect. Overall, this research shows that bovine pericardium MBVs show a rich and tissue-specific biological potential.
Collapse
Affiliation(s)
- Dalila Di Francesco
- Department of Health Sciences, University of Piemonte Orientale “A. Avogadro”, 28100 Novara, Italy; (D.D.F.); (C.D.V.); (S.C.)
- Laboratory for Biomaterials and Bioengineering, CRC-I, Department of Min-Met-Materials Engineering, University Hospital Research Center, Regenerative Medicine, Laval University, Quebec City, QC G1V 0A6, Canada;
| | - Carolina Di Varsavia
- Department of Health Sciences, University of Piemonte Orientale “A. Avogadro”, 28100 Novara, Italy; (D.D.F.); (C.D.V.); (S.C.)
| | - Simona Casarella
- Department of Health Sciences, University of Piemonte Orientale “A. Avogadro”, 28100 Novara, Italy; (D.D.F.); (C.D.V.); (S.C.)
| | - Elena Donetti
- Department of Biomedical Sciences for Health, University of Milan, 20133 Milan, Italy;
| | - Marcello Manfredi
- Department of Translational Medicine, Centre of Excellence in Aging Sciences, University of Piemonte Orientale “A. Avogadro”, 28100 Novara, Italy;
- Center for Translational Research on Autoimmune and Allergic Diseases, Department of Translational Medicine, University of Piemonte Orientale “A. Avogadro”, 28100 Novara, Italy
| | - Diego Mantovani
- Laboratory for Biomaterials and Bioengineering, CRC-I, Department of Min-Met-Materials Engineering, University Hospital Research Center, Regenerative Medicine, Laval University, Quebec City, QC G1V 0A6, Canada;
| | - Francesca Boccafoschi
- Department of Health Sciences, University of Piemonte Orientale “A. Avogadro”, 28100 Novara, Italy; (D.D.F.); (C.D.V.); (S.C.)
| |
Collapse
|
31
|
Guo X, Liu B, Zhang Y, Cheong S, Xu T, Lu F, He Y. Decellularized extracellular matrix for organoid and engineered organ culture. J Tissue Eng 2024; 15:20417314241300386. [PMID: 39611117 PMCID: PMC11603474 DOI: 10.1177/20417314241300386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 11/01/2024] [Indexed: 11/30/2024] Open
Abstract
The repair and regeneration of tissues and organs using engineered biomaterials has attracted great interest in tissue engineering and regenerative medicine. Recent advances in organoids and engineered organs technologies have enabled scientists to generate 3D tissue that recapitulate the structural and functional characteristics of native organs, opening up new avenues in regenerative medicine. The matrix is one of the most important aspects for improving organoids and engineered organs construction. However, the clinical application of these techniques remained a big challenge because current commercial matrix does not represent the complexity of native microenvironment, thereby limiting the optimal regenerative capacity. Decellularized extracellular matrix (dECM) is expected to maintain key native matrix biomolecules and is believed to hold enormous potential for regenerative medicine applications. Thus, it is worth investigating whether the dECM can be used as matrix for improving organoid and engineered organs construction. In this review, the characteristics of dECM and its preparation method were summarized. In addition, the present review highlights the applications of dECM in the fabrication of organoids and engineered organs.
Collapse
Affiliation(s)
- Xiaoxu Guo
- The Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Boxun Liu
- Research and Development Department, Huamei Biotech Co. Ltd., Shenzhen, China
| | - Yi Zhang
- Research and Development Department, Huamei Biotech Co. Ltd., Shenzhen, China
| | - Sousan Cheong
- The Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Tao Xu
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, People’s Republic of China
- Bio-intelligent Manufacturing and Living Matter Bioprinting Center, Research Institute of Tsinghua University in Shenzhen, Tsinghua University, Shenzhen, People’s Republic of China
| | - Feng Lu
- The Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Yunfan He
- The Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
32
|
Joo H, Min S, Cho SW. Advanced lung organoids for respiratory system and pulmonary disease modeling. J Tissue Eng 2024; 15:20417314241232502. [PMID: 38406820 PMCID: PMC10894554 DOI: 10.1177/20417314241232502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 01/30/2024] [Indexed: 02/27/2024] Open
Abstract
Amidst the recent coronavirus disease 2019 (COVID-19) pandemic, respiratory system research has made remarkable progress, particularly focusing on infectious diseases. Lung organoid, a miniaturized structure recapitulating lung tissue, has gained global attention because of its advantages over other conventional models such as two-dimensional (2D) cell models and animal models. Nevertheless, lung organoids still face limitations concerning heterogeneity, complexity, and maturity compared to the native lung tissue. To address these limitations, researchers have employed co-culture methods with various cell types including endothelial cells, mesenchymal cells, and immune cells, and incorporated bioengineering platforms such as air-liquid interfaces, microfluidic chips, and functional hydrogels. These advancements have facilitated applications of lung organoids to studies of pulmonary diseases, providing insights into disease mechanisms and potential treatments. This review introduces recent progress in the production methods of lung organoids, strategies for improving maturity, functionality, and complexity of organoids, and their application in disease modeling, including respiratory infection and pulmonary fibrosis.
Collapse
Affiliation(s)
- Hyebin Joo
- Department of Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Sungjin Min
- Department of Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Seung-Woo Cho
- Department of Biotechnology, Yonsei University, Seoul, Republic of Korea
- Center for Nanomedicine, Institute for Basic Science (IBS), Seoul, Republic of Korea
| |
Collapse
|
33
|
Ghosh S, Pati F. Decellularized extracellular matrix and silk fibroin-based hybrid biomaterials: A comprehensive review on fabrication techniques and tissue-specific applications. Int J Biol Macromol 2023; 253:127410. [PMID: 37844823 DOI: 10.1016/j.ijbiomac.2023.127410] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 10/01/2023] [Accepted: 10/10/2023] [Indexed: 10/18/2023]
Abstract
Biomaterials play a fundamental role in tissue engineering by providing biochemical and physical cues that influence cellular fate and matrix development. Decellularized extracellular matrix (dECM) as a biomaterial is distinguished by its abundant composition of matrix proteins, such as collagen, elastin, fibronectin, and laminin, as well as glycosaminoglycans and proteoglycans. However, the mechanical properties of only dECM-based constructs may not always meet tissue-specific requirements. Recent advancements address this challenge by utilizing hybrid biomaterials that harness the strengths of silk fibroin (SF), which contributes the necessary mechanical properties, while dECM provides essential cellular cues for in vitro studies and tissue regeneration. This review discusses emerging trends in developing such biopolymer blends, aiming to synergistically combine the advantages of SF and dECM through optimal concentrations and desired cross-linking density. We focus on different fabrication techniques and cross-linking methods that have been utilized to fabricate various tissue-engineered hybrid constructs. Furthermore, we survey recent applications of such biomaterials for the regeneration of various tissues, including bone, cartilage, trachea, bladder, vascular graft, heart, skin, liver, and other soft tissues. Finally, the trajectory and prospects of the constructs derived from this blend in the tissue engineering field have been summarized, highlighting their potential for clinical translation.
Collapse
Affiliation(s)
- Soham Ghosh
- BioFab Lab, Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Sangareddy 502285, Telangana, India
| | - Falguni Pati
- BioFab Lab, Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Sangareddy 502285, Telangana, India.
| |
Collapse
|
34
|
Nahumi A, Peymani M, Asadi A, Abdolmaleki A, Panahi Y. Decellularized tracheal scaffold as a promising 3D scaffold for tissue engineering applications. Tissue Cell 2023; 85:102258. [PMID: 37918216 DOI: 10.1016/j.tice.2023.102258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 10/22/2023] [Accepted: 10/23/2023] [Indexed: 11/04/2023]
Abstract
Tissue engineering is a science that uses the combination of scaffolds, cells, and active biomolecules to make tissue in order to restore or maintain its function and improve the damaged tissue or even an organ in the laboratory. The purpose of this research was to study the characteristics and biocompatibility of decellularized sheep tracheal scaffolds and also to investigate the differentiation of Adipose-derived stem cells (AD-MSCs) into tracheal cells. After the decellularization of sheep tracheas through the detergent-enzyme method, histological evaluations, measurement of biochemical factors, measurement of DNA amount, and photographing the ultrastructure of the samples by scanning electron microscopy (SEM), they were also evaluated mechanically. Further, In order to check the viability and adhesion of stem cells to the decellularized scaffolds, adipose mesenchymal stem cells were cultured on the scaffolds, and the 3-(4,5-dimethylthiazol-2-yl)- 2,5-diphenyltetrazolium bromide (MTT) assay was performed. The expression analysis of the intended genes for the differentiation of mesenchymal stem cells into tracheal cells was evaluated by the real-time PCR method. These results show that the prepared scaffolds are an ideal model for engineering applications, have high biocompatibility, and that the tracheal scaffold provides a suitable environment for the differentiation of ADMSCs. This review provides a basis for future research on tracheal decellularization scaffolds, serves as a suitable model for organ regeneration, and paves the way for their use in clinical medicine.
Collapse
Affiliation(s)
- Aida Nahumi
- Department of Biology, Faculty of Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Maryam Peymani
- Department of Biology, Faculty of Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran.
| | - Asadollah Asadi
- Department of Biology, Faculty of Sciences, University of Mohaghegh Ardabili, Ardabil, Iran.
| | - Arash Abdolmaleki
- Department of Biophysics, Faculty of Advanced Technologies, University of Mohaghegh Ardabili, Namin, Iran
| | - Yassin Panahi
- Department of Basic Medical Sciences, khoy University of Medical Sciences, Khoy, Iran
| |
Collapse
|
35
|
Yoon J, Han H, Jang J. Nanomaterials-incorporated hydrogels for 3D bioprinting technology. NANO CONVERGENCE 2023; 10:52. [PMID: 37968379 PMCID: PMC10651626 DOI: 10.1186/s40580-023-00402-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 10/24/2023] [Indexed: 11/17/2023]
Abstract
In the field of tissue engineering and regenerative medicine, various hydrogels derived from the extracellular matrix have been utilized for creating engineered tissues and implantable scaffolds. While these hydrogels hold immense promise in the healthcare landscape, conventional bioinks based on ECM hydrogels face several challenges, particularly in terms of lacking the necessary mechanical properties required for 3D bioprinting process. To address these limitations, researchers are actively exploring novel nanomaterial-reinforced ECM hydrogels for both mechanical and functional aspects. In this review, we focused on discussing recent advancements in the fabrication of engineered tissues and monitoring systems using nanobioinks and nanomaterials via 3D bioprinting technology. We highlighted the synergistic benefits of combining numerous nanomaterials into ECM hydrogels and imposing geometrical effects by 3D bioprinting technology. Furthermore, we also elaborated on critical issues remaining at the moment, such as the inhomogeneous dispersion of nanomaterials and consequent technical and practical issues, in the fabrication of complex 3D structures with nanobioinks and nanomaterials. Finally, we elaborated on plausible outlooks for facilitating the use of nanomaterials in biofabrication and advancing the function of engineered tissues.
Collapse
Affiliation(s)
- Jungbin Yoon
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, South Korea
| | - Hohyeon Han
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), Pohang, South Korea
| | - Jinah Jang
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, South Korea.
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), Pohang, South Korea.
- Department of Convergence IT Engineering, Pohang University of Science and Technology (POSTECH), Pohang, South Korea.
- Institute of Convergence Science, Yonsei University, Seoul, South Korea.
| |
Collapse
|
36
|
Ingraldi AL, Audet RG, Tabor AJ. The Preparation and Clinical Efficacy of Amnion-Derived Membranes: A Review. J Funct Biomater 2023; 14:531. [PMID: 37888195 PMCID: PMC10607219 DOI: 10.3390/jfb14100531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/13/2023] [Accepted: 10/18/2023] [Indexed: 10/28/2023] Open
Abstract
Biological tissues from various anatomical sources have been utilized for tissue transplantation and have developed into an important source of extracellular scaffolding material for regenerative medicine applications. Tissue scaffolds ideally integrate with host tissue and provide a homeostatic environment for cellular infiltration, growth, differentiation, and tissue resolution. The human amniotic membrane is considered an important source of scaffolding material due to its 3D structural architecture and function and as a source of growth factors and cytokines. This tissue source has been widely studied and used in various areas of tissue repair including intraoral reconstruction, corneal repair, tendon repair, microvascular reconstruction, nerve procedures, burns, and chronic wound treatment. The production of amniotic membrane allografts has not been standardized, resulting in a wide array of amniotic membrane products, including single, dual, and tri-layered products, such as amnion, chorion, amnion-chorion, amnion-amnion, and amnion-chorion-amnion allografts. Since these allografts are not processed using the same methods, they do not necessarily produce the same clinical responses. The aim of this review is to highlight the properties of different human allograft membranes, present the different processing and preservation methods, and discuss their use in tissue engineering and regenerative applications.
Collapse
Affiliation(s)
- Alison L. Ingraldi
- Carmell Corporation, Pittsburg, PA 15203, USA;
- Department of Research and Development, Axolotl Biologix, Flagstaff, AZ 86001, USA
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ 86011, USA
| | - Robert G. Audet
- Carmell Corporation, Pittsburg, PA 15203, USA;
- Department of Research and Development, Axolotl Biologix, Flagstaff, AZ 86001, USA
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ 86011, USA
| | - Aaron J. Tabor
- Carmell Corporation, Pittsburg, PA 15203, USA;
- Department of Research and Development, Axolotl Biologix, Flagstaff, AZ 86001, USA
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ 86011, USA
- Department of Clinical Operations, Axolotl Biologix, Flagstaff, AZ 86001, USA
| |
Collapse
|
37
|
Allu I, Sahi AK, Koppadi M, Gundu S, Sionkowska A. Decellularization Techniques for Tissue Engineering: Towards Replicating Native Extracellular Matrix Architecture in Liver Regeneration. J Funct Biomater 2023; 14:518. [PMID: 37888183 PMCID: PMC10607724 DOI: 10.3390/jfb14100518] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/09/2023] [Accepted: 10/10/2023] [Indexed: 10/28/2023] Open
Abstract
The process of tissue regeneration requires the utilization of a scaffold, which serves as a structural framework facilitating cellular adhesion, proliferation, and migration within a physical environment. The primary aim of scaffolds in tissue engineering is to mimic the structural and functional properties of the extracellular matrix (ECM) in the target tissue. The construction of scaffolds that accurately mimic the architecture of the extracellular matrix (ECM) is a challenging task, primarily due to the intricate structural nature and complex composition of the ECM. The technique of decellularization has gained significant attention in the field of tissue regeneration because of its ability to produce natural scaffolds by removing cellular and genetic components from the extracellular matrix (ECM) while preserving its structural integrity. The present study aims to investigate the various decellularization techniques employed for the purpose of isolating the extracellular matrix (ECM) from its native tissue. Additionally, a comprehensive comparison of these methods will be presented, highlighting their respective advantages and disadvantages. The primary objective of this study is to gain a comprehensive understanding of the anatomical and functional features of the native liver, as well as the prevalence and impact of liver diseases. Additionally, this study aims to identify the limitations and difficulties associated with existing therapeutic methods for liver diseases. Furthermore, the study explores the potential of tissue engineering techniques in addressing these challenges and enhancing liver performance. By investigating these aspects, this research field aims to contribute to the advancement of liver disease treatment and management.
Collapse
Affiliation(s)
- Ishita Allu
- Department of Biomedical Engineering, University College of Engineering (UCE), Osmania University, Hyderabad 500007, India; (I.A.); (M.K.)
| | - Ajay Kumar Sahi
- School of Medicine, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA;
| | - Meghana Koppadi
- Department of Biomedical Engineering, University College of Engineering (UCE), Osmania University, Hyderabad 500007, India; (I.A.); (M.K.)
| | - Shravanya Gundu
- Department of Biomedical Engineering, University College of Engineering (UCE), Osmania University, Hyderabad 500007, India; (I.A.); (M.K.)
| | - Alina Sionkowska
- Faculty of Chemistry, Nicolaus Copernicus University in Torun, Jurija Gagarina 11, 87-100 Torun, Poland
- Faculty of Health Sciences, Calisia University, Nowy Świat 4, 62-800 Kalisz, Poland
| |
Collapse
|
38
|
Jiang W, Zhang X, Yu S, Yan F, Chen J, Liu J, Dong C. Decellularized extracellular matrix in the treatment of spinal cord injury. Exp Neurol 2023; 368:114506. [PMID: 37597763 DOI: 10.1016/j.expneurol.2023.114506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/04/2023] [Accepted: 08/15/2023] [Indexed: 08/21/2023]
Abstract
Functional limitation caused by spinal cord injury (SCI) has the problem of significant clinical and economic burden. Damaged spinal axonal connections and an inhibitory environment severely hamper neuronal function. Regenerative biomaterials can fill the cavity and produce an optimal microenvironment at the site of SCI, inhibiting apoptosis, inflammation, and glial scar formation while promoting neurogenesis, axonal development, and angiogenesis. Decellularization aims to eliminate cells from the ultrastructure of tissues while keeping tissue-specific components that are similar to the structure of real tissues, making decellularized extracellular matrix (dECM) a suitable scaffold for tissue engineering. dECM has good biocompatibility, it can be widely obtained from natural organs of different species, and can be co-cultured with cells for 3D printing to obtain the target scaffold. In this paper, we reviewed the pathophysiology of SCI, the characteristics of dECM and its preparation method, and the application of dECM in the treatment of SCI. Although dECM has shown its therapeutic effect at present, there are still many indicators that need to be taken into account, such as the difficulty in obtaining materials and standardized production mode for large-scale use, the effect of decellularization on the physical and chemical properties of dECM, and the study on the synergistic effect of dECM and cells.
Collapse
Affiliation(s)
- Wenwei Jiang
- Department of Anatomy, Medical College of Nantong University, Nantong, China
| | - Xuanxuan Zhang
- Department of Anatomy, Medical College of Nantong University, Nantong, China
| | - Shumin Yu
- Department of Anatomy, Medical College of Nantong University, Nantong, China
| | - Fangsu Yan
- Department of Anatomy, Medical College of Nantong University, Nantong, China
| | - Jiaxi Chen
- Department of Anatomy, Medical College of Nantong University, Nantong, China
| | - Jinyi Liu
- Department of Anatomy, Medical College of Nantong University, Nantong, China
| | - Chuanming Dong
- Department of Anatomy, Medical College of Nantong University, Nantong, China; Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226001, Jiangsu Province, China.
| |
Collapse
|
39
|
Singh G, Satpathi S, Gopala Reddy BV, Singh MK, Sarangi S, Behera PK, Nayak B. Impact of various detergent-based immersion and perfusion decellularization strategies on the novel caprine pancreas derived extracellular matrix scaffold. Front Bioeng Biotechnol 2023; 11:1253804. [PMID: 37790257 PMCID: PMC10544968 DOI: 10.3389/fbioe.2023.1253804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 09/05/2023] [Indexed: 10/05/2023] Open
Abstract
Limited availability of the organs donors has facilitated the establishment of xenogeneic organ sources for transplantation. Numerous studies have decellularized several organs and assessed their implantability in order to provide such organs. Among all the decellularized organs studies for xenotransplantation, the pancreas has garnered very limited amount of research. The presently offered alternatives for pancreas transplantation are unable to liberate patients from donor dependence. The rat and mice pancreas are not of an accurate size for transplantation but can only be used for in-vitro studies mimicking in-vivo immune response in humans, while the porcine pancreas can cause zoonotic diseases as it carries porcine endogenous retrovirus (PERV- A/B/C). Therefore, we propose caprine pancreas as a substitute for these organs, which not only reduces donor dependence but also poses no risk of zoonosis. Upon decellularization the extracellular matrix (ECM) of different tissues responds differently to the detergents used for decellularization at physical and physiological level; this necessitates a comprehensive analysis of each tissue independently. This study investigates the impact of decellularization by ionic (SDS and SDC), non-ionic (Triton X-100 and Tween-20), and zwitterionic detergents (CHAPS). All these five detergents have been used to decellularize caprine pancreas via immersion (ID) and perfusion (PD) set-up. In this study, an extensive comparison of these two configurations (ID and PD) with regard to each detergent has been conducted. The final obtained scaffold with each set-up has been evaluated for the left-over cytosolic content, ECM components like sGAG, collagen, and fibronectin were estimated via Prussian blue and Immunohistochemical staining respectively, and finally for the tensile strength and antimicrobial activity. All the detergents performed consistently superior in PD than in ID. Conclusively, PD with SDS, SDC, and TX-100 successfully decellularizes caprine pancreatic tissue while retaining ECM architecture and mechanical properties. This research demonstrates the viability of caprine pancreatic tissue as a substitute scaffold for porcine organs and provides optimal decellularization protocol for this xenogeneic tissue. This research aims to establish a foundation for further investigations into potential regenerative strategies using this ECM in combination with other factors.
Collapse
Affiliation(s)
- Garima Singh
- Immunology and Molecular Medicine Laboratory, Department of Life Science, National Institute of Technology, Rourkela, India
| | | | - Bora Venu Gopala Reddy
- Immunology and Molecular Medicine Laboratory, Department of Life Science, National Institute of Technology, Rourkela, India
| | - Manish Kumar Singh
- Immunology and Molecular Medicine Laboratory, Department of Life Science, National Institute of Technology, Rourkela, India
| | - Samchita Sarangi
- Immunology and Molecular Medicine Laboratory, Department of Life Science, National Institute of Technology, Rourkela, India
| | | | - Bismita Nayak
- Immunology and Molecular Medicine Laboratory, Department of Life Science, National Institute of Technology, Rourkela, India
| |
Collapse
|
40
|
Kakabadze Z, Paresishvili T. Intravital tumor decellularization as a new approach to cancer treatment. Am J Cancer Res 2023; 13:4192-4207. [PMID: 37818079 PMCID: PMC10560955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 08/08/2023] [Indexed: 10/12/2023] Open
Abstract
This study demonstrates the possibility of tumor decellularization in living animals. Subcutaneous Ehrlich tumor induced by isolated Ehrlich ascitic carcinoma cells in mice was used as a model. The study also presents methods for ex vivo decellularization of human gastric adenocarcinoma (HGA) and hepatocellular carcinoma (HCC) induced by diethylnitrosamine (DEN) in rat. Sodium dodecyl sulfate (SDS) and Triton X-100 were used as detergents for tumor decellularization. The detergents for HGA and HCC were administered through organ vessels. For intravital decellularization of Ehrlich's subcutaneous tumor, detergents were injected directly into the tumor parenchyma. The results of the study showed that the effectiveness of tumor decellularization using SDS and Triton X-100 depended on the size, structure, stiffness and density of the tumor, as well as on the concentration, route and speed of detergent administration. The study also showed that an hour after the initiation of decellularization, the central part of Ehrlich's tumor changed the color, and after three hours, it completely acquired a translucent white color. Chemical contamination of tissues surrounding the tumor with the detergents was not observed. Histological studies showed the complete absence of all cellular components of Ehrlich's tumor and a slightly deformed extracellular matrix (ECM). There were no loco-regional recurrences or metastases of Ehrlich's tumor within 150 days after decellularization. The developed intravital decellularization method allows the effective removal of the cellular components and the DNA content of Ehrlich's subcutaneous tumor without compromising animal health. Additionally, this method can destroy tumor ECM, which will significantly improve the delivery of anticancer drugs to the tumor cells. However, more detailed and extensive studies are needed to develop an in vivo technique for isolated decellularization of the tumor or a part of the organ with the tumor. It is also necessary to identify less toxic decellularization agents and to develop the most efficient route for their delivery to the tumor cells.
Collapse
Affiliation(s)
- Zurab Kakabadze
- Department of Clinical Anatomy, Tbilisi State Medical University 0186 Tbilisi, Georgia
| | - Teona Paresishvili
- Department of Clinical Anatomy, Tbilisi State Medical University 0186 Tbilisi, Georgia
| |
Collapse
|
41
|
Esmaeili A, Biazar E, Ebrahimi M, Heidari Keshel S, Kheilnezhad B, Saeedi Landi F. Acellular fish skin for wound healing. Int Wound J 2023; 20:2924-2941. [PMID: 36924081 PMCID: PMC10410342 DOI: 10.1111/iwj.14158] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 03/06/2023] [Indexed: 03/18/2023] Open
Abstract
Fish skin grafting as a new skin substitute is currently being used in clinical applications. Acceleration of the wound healing, lack of disease transmission, and low cost of the production process can introduce fish skin as a potential alternative to other grafts. An appropriate decellularization process allows the design of 3D acellular scaffolds for skin regeneration without damaging the morphology and extracellular matrix content. Therefore, the role of decellularization processes is very important to maintain the properties of fish skin. In this review article, recent studies on various decellularization processes as well as biological, physical, and mechanical properties of fish skin and its applications with therapeutic effects in wound healing were investigated.
Collapse
Affiliation(s)
- Ali Esmaeili
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in MedicineShahid Beheshti University of Medical SciencesTehranIran
| | - Esmaeil Biazar
- Tissue Engineering Group, Department of Biomedical EngineeringTonekabon Branch, Islamic Azad UniversityTonekabonIran
| | - Maryam Ebrahimi
- Department of Tissue Engineering, School of Advanced Technologies in MedicineTehran University of Medical SciencesTehranIran
| | - Saeed Heidari Keshel
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in MedicineShahid Beheshti University of Medical SciencesTehranIran
| | - Bahareh Kheilnezhad
- Department of Biomedical EngineeringAmirkabir University of TechnologyTehranIran
| | - Farzaneh Saeedi Landi
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in MedicineShahid Beheshti University of Medical SciencesTehranIran
| |
Collapse
|
42
|
Cui Y, Wang J, Tian Y, Fan Y, Li S, Wang G, Peng C, Liu H, Wu D. Functionalized Decellularized Bone Matrix Promotes Bone Regeneration by Releasing Osteogenic Peptides. ACS Biomater Sci Eng 2023; 9:4953-4968. [PMID: 37478342 DOI: 10.1021/acsbiomaterials.3c00413] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/23/2023]
Abstract
The decellularized bone matrix (DCB) provides a promising bone substitute for the treatment of bone defects because of its similar biochemical, biophysical, and mechanical properties to normal bone tissue. However, the decellularized procedure also greatly reduced its osteogenic induction activity. In this study, peptides derived from the knuckle epitope of bone morphogenetic protein-2 were incorporated into the thermo-sensitive hydrogel poloxamer 407, and the peptide-loaded hydrogel was then filled into the pores of DCB to construct a functionalized scaffold with enhanced osteogenesis. In vitro studies have shown that the functionalized DCB scaffold possessed appropriate mechanical properties and biocompatibility and exhibited a sustained release profile of osteogenic peptide. These performances critically facilitated cell proliferation and cell spreading of bone marrow mesenchymal stem cells and upregulated the expression of osteogenic-related genes by activating the Smad/Runx2 signaling pathway, thereby promoting osteogenic differentiation and extracellular matrix mineralization. Further in vivo studies demonstrated that the functionalized DCB scaffold accelerated the repair of critical radial defects in rabbits without inducing excessive graft-related inflammatory responses. These results suggest a clinically meaningful strategy for the treatment of large segmental bone defects, and the prepared osteogenic peptide modified composite DCB scaffold has great application potential for bone regeneration.
Collapse
Affiliation(s)
- Yutao Cui
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun 130041, P. R. China
| | - Jingwei Wang
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun 130041, P. R. China
| | - Yuhang Tian
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun 130041, P. R. China
| | - Yi Fan
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun 130041, P. R. China
| | - Shaorong Li
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun 130041, P. R. China
| | - Gan Wang
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun 130041, P. R. China
| | - Chuangang Peng
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun 130041, P. R. China
| | - He Liu
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun 130041, P. R. China
| | - Dankai Wu
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun 130041, P. R. China
| |
Collapse
|
43
|
Farzamfar S, Elia E, Richer M, Chabaud S, Naji M, Bolduc S. Extracellular Matrix-Based and Electrospun Scaffolding Systems for Vaginal Reconstruction. Bioengineering (Basel) 2023; 10:790. [PMID: 37508817 PMCID: PMC10376078 DOI: 10.3390/bioengineering10070790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 06/14/2023] [Accepted: 06/22/2023] [Indexed: 07/30/2023] Open
Abstract
Congenital vaginal anomalies and pelvic organ prolapse affect different age groups of women and both have significant negative impacts on patients' psychological well-being and quality of life. While surgical and non-surgical treatments are available for vaginal defects, their efficacy is limited, and they often result in long-term complications. Therefore, alternative treatment options are urgently needed. Fortunately, tissue-engineered scaffolds are promising new treatment modalities that provide an extracellular matrix (ECM)-like environment for vaginal cells to adhere, secrete ECM, and be remodeled by host cells. To this end, ECM-based scaffolds or the constructs that resemble ECM, generated by self-assembly, decellularization, or electrospinning techniques, have gained attention from both clinicians and researchers. These biomimetic scaffolds are highly similar to the native vaginal ECM and have great potential for clinical translation. This review article aims to discuss recent applications, challenges, and future perspectives of these scaffolds in vaginal reconstruction or repair strategies.
Collapse
Affiliation(s)
- Saeed Farzamfar
- Centre de Recherche en Organogénèse Expérimentale/LOEX, Regenerative Medicine Division, CHU de Québec-Université Laval Research Center, Québec, QC G1J 1Z4, Canada
| | - Elissa Elia
- Centre de Recherche en Organogénèse Expérimentale/LOEX, Regenerative Medicine Division, CHU de Québec-Université Laval Research Center, Québec, QC G1J 1Z4, Canada
| | - Megan Richer
- Centre de Recherche en Organogénèse Expérimentale/LOEX, Regenerative Medicine Division, CHU de Québec-Université Laval Research Center, Québec, QC G1J 1Z4, Canada
| | - Stéphane Chabaud
- Centre de Recherche en Organogénèse Expérimentale/LOEX, Regenerative Medicine Division, CHU de Québec-Université Laval Research Center, Québec, QC G1J 1Z4, Canada
| | - Mohammad Naji
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran 1666677951, Iran
| | - Stéphane Bolduc
- Centre de Recherche en Organogénèse Expérimentale/LOEX, Regenerative Medicine Division, CHU de Québec-Université Laval Research Center, Québec, QC G1J 1Z4, Canada
- Department of Surgery, Faculty of Medicine, Laval University, Québec, QC G1V 0A6, Canada
| |
Collapse
|
44
|
Meșină M, Mîndrilă I, Meșină-Botoran MI, Mîndrilă LA, Pirici I. Partial Decellularization as a Method to Improve the Biocompatibility of Heart Tissue Implants. CURRENT HEALTH SCIENCES JOURNAL 2023; 49:351-361. [PMID: 38314222 PMCID: PMC10832876 DOI: 10.12865/chsj.49.03.07] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 07/20/2023] [Indexed: 02/06/2024]
Abstract
Increasing the biocompatibility of some biological implants through tissue engineering is important for regenerative medicine, which recently has a rapid development dynamic. In this study we used tree different washing protocols, respectively with Sodium Lauryl Sulfate (SLS), with Sodium Deoxycholate (SD), and with saline (Sa) to achieve partial decellularization of 2-3mm thick cross-sections through Wistar rat hearts. Pieces of the heart tissue were either histologically analyzed to evaluate the decellularization processes or implanted for 5 days on 9-day-old chick embryo chorioallantoic membrane (CAM) and then histologically analyzed to evaluate CAM-implant interactions. Histological analysis of SLS or SD washed tissues showed different microscopic features of the decellularization processes, SLS-washing leading to the formation of a completely decellularized ECM layer at the periphery of the heart tissue. Both detergents induced changes in the spatial arrangement of collagen fibers of the heart tissue. Histological analysis of the CAM implants shoved that the peripheral zone with complete decellularization induced by SLS increased the biocompatibility of heart tissue implants by favoring neovascularization and cell migration. These results suggested that the biocompatibility of the heart tissue implant can be modulated by the appropriate use of a SLS-based decellularization protocol.
Collapse
Affiliation(s)
- Mihai Meșină
- 1Doctoral School, University of Medicine and Pharmacy of Craiova
| | - Ion Mîndrilă
- 2Department of Anatomy, Faculty of Medicine, University of Medicine and Pharmacy of Craiova
| | | | | | - Ionica Pirici
- 2Department of Anatomy, Faculty of Medicine, University of Medicine and Pharmacy of Craiova
| |
Collapse
|
45
|
Chen W, Zhang W, Zhang N, Chen S, Huang T, You H. Pipeline for precise insoluble matrisome coverage in tissue extracellular matrices. Front Bioeng Biotechnol 2023; 11:1135936. [PMID: 37284237 PMCID: PMC10239929 DOI: 10.3389/fbioe.2023.1135936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 05/08/2023] [Indexed: 06/08/2023] Open
Abstract
The extracellular matrix (ECM) is assembled by hundreds of proteins orchestrating tissue patterning and surrounding cell fates via the mechanical-biochemical feedback loop. Aberrant ECM protein production or assembly usually creates pathological niches eliciting lesions that mainly involve fibrogenesis and carcinogenesis. Yet, our current knowledge about the pathophysiological ECM compositions and alterations in healthy or diseased tissues is limited since the methodology for precise insoluble matrisome coverage in the ECM is a "bottleneck." Our current study proposes an enhanced sodium dodecyl sulfonate (E-SDS) workflow for thorough tissue decellularization and an intact pipeline for the accurate identification and quantification of highly insoluble ECM matrisome proteins. We tested this pipeline in nine mouse organs and highlighted the full landscape of insoluble matrisome proteins in the decellularized ECM (dECM) scaffolds. Typical experimental validations and mass spectrometry (MS) analysis confirmed very little contamination of cellular debris remaining in the dECM scaffolds. Our current study will provide a low-cost, simple, reliable, and effective pipeline for tissue insoluble matrisome analysis in the quest to comprehend ECM discovery proteomic studies.
Collapse
Affiliation(s)
- Wei Chen
- Beijing Clinical Research Institute, Beijing, China
- Experimental and Translational Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Wen Zhang
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Translational Medicine in Liver Cirrhosis, National Clinical Research Center of Digestive Diseases, Beijing, China
| | - Ning Zhang
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Translational Medicine in Liver Cirrhosis, National Clinical Research Center of Digestive Diseases, Beijing, China
| | - Shuyan Chen
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Translational Medicine in Liver Cirrhosis, National Clinical Research Center of Digestive Diseases, Beijing, China
| | - Tao Huang
- Beijing Clinical Research Institute, Beijing, China
- Experimental and Translational Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Hong You
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Translational Medicine in Liver Cirrhosis, National Clinical Research Center of Digestive Diseases, Beijing, China
| |
Collapse
|
46
|
Wang X, Shakeel A, Salih AE, Vurivi H, Daoud S, Desidery L, Khan RL, Shibru MG, Ali ZM, Butt H, Chan V, Corridon PR. A scalable corneal xenograft platform: simultaneous opportunities for tissue engineering and circular economic sustainability by repurposing slaughterhouse waste. Front Bioeng Biotechnol 2023; 11:1133122. [PMID: 37180037 PMCID: PMC10168539 DOI: 10.3389/fbioe.2023.1133122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 04/17/2023] [Indexed: 05/15/2023] Open
Abstract
Introduction: Corneal disease is a leading cause of blindness globally that stems from various etiologies. High-throughput platforms that can generate substantial quantities of corneal grafts will be invaluable in addressing the existing global demand for keratoplasty. Slaughterhouses generate substantial quantities of underutilized biological waste that can be repurposed to reduce current environmentally unfriendly practices. Such efforts to support sustainability can simultaneously drive the development of bioartificial keratoprostheses. Methods: Scores of discarded eyes from the prominent Arabian sheep breeds in our surrounding region of the United Arab Emirates (UAE) were repurposed to generate native and acellular corneal keratoprostheses. Acellular corneal scaffolds were created using a whole-eye immersion/agitation-based decellularization technique with a widely available, eco-friendly, and inexpensive 4% zwitterionic biosurfactant solution (Ecover, Malle, Belgium). Conventional approaches like DNA quantification, ECM fibril organization, scaffold dimensions, ocular transparency and transmittance, surface tension measurements, and Fourier-transform infrared (FTIR) spectroscopy were used to examine corneal scaffold composition. Results: Using this high-throughput system, we effectively removed over 95% of the native DNA from native corneas while retaining the innate microarchitecture that supported substantial light transmission (over 70%) after reversing opacity, a well-established hallmark of decellularization and long-term native corneal storage, with glycerol. FTIR data revealed the absence of spectral peaks in the frequency range 2849 cm-1 to 3075 cm-1, indicating the effective removal of the residual biosurfactant post-decellularization. Surface tension studies confirmed the FTIR data by capturing the surfactant's progressive and effectual removal through tension measurements ranging from approximately 35 mN/m for the 4% decellularizing agent to 70 mN/m for elutes highlighting the effective removal of the detergent. Discussion: To our knowledge, this is the first dataset to be generated outlining a platform that can produce dozens of ovine acellular corneal scaffolds that effectively preserve ocular transparency, transmittance, and ECM components using an eco-friendly surfactant. Analogously, decellularization technologies can support corneal regeneration with attributes comparable to native xenografts. Thus, this study presents a simplified, inexpensive, and scalable high-throughput corneal xenograft platform to support tissue engineering, regenerative medicine, and circular economic sustainability.
Collapse
Affiliation(s)
- Xinyu Wang
- Biomedical Engineering and Healthcare Engineering Innovation Center, Khalifa University, Abu Dhabi, United Arab Emirates
- Department of Immunology and Physiology, College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Adeeba Shakeel
- Department of Immunology and Physiology, College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Ahmed E. Salih
- Department of Mechanical Engineering, College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Hema Vurivi
- Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Sayel Daoud
- Anatomical Pathology Laboratory, Cleveland Clinic Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Luca Desidery
- Department of Civil Infrastructure and Environmental Engineering, College of Engineering, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Raheema L. Khan
- Department of Immunology and Physiology, College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Meklit G. Shibru
- Department of Immunology and Physiology, College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Zehara M. Ali
- Department of Immunology and Physiology, College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Haider Butt
- Department of Mechanical Engineering, College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Vincent Chan
- Biomedical Engineering and Healthcare Engineering Innovation Center, Khalifa University, Abu Dhabi, United Arab Emirates
| | - Peter R. Corridon
- Biomedical Engineering and Healthcare Engineering Innovation Center, Khalifa University, Abu Dhabi, United Arab Emirates
- Department of Immunology and Physiology, College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
- Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| |
Collapse
|
47
|
Zhe M, Wu X, Yu P, Xu J, Liu M, Yang G, Xiang Z, Xing F, Ritz U. Recent Advances in Decellularized Extracellular Matrix-Based Bioinks for 3D Bioprinting in Tissue Engineering. MATERIALS (BASEL, SWITZERLAND) 2023; 16:3197. [PMID: 37110034 PMCID: PMC10143913 DOI: 10.3390/ma16083197] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/30/2023] [Accepted: 04/15/2023] [Indexed: 06/19/2023]
Abstract
In recent years, three-dimensional (3D) bioprinting has been widely utilized as a novel manufacturing technique by more and more researchers to construct various tissue substitutes with complex architectures and geometries. Different biomaterials, including natural and synthetic materials, have been manufactured into bioinks for tissue regeneration using 3D bioprinting. Among the natural biomaterials derived from various natural tissues or organs, the decellularized extracellular matrix (dECM) has a complex internal structure and a variety of bioactive factors that provide mechanistic, biophysical, and biochemical signals for tissue regeneration and remodeling. In recent years, more and more researchers have been developing the dECM as a novel bioink for the construction of tissue substitutes. Compared with other bioinks, the various ECM components in dECM-based bioink can regulate cellular functions, modulate the tissue regeneration process, and adjust tissue remodeling. Therefore, we conducted this review to discuss the current status of and perspectives on dECM-based bioinks for bioprinting in tissue engineering. In addition, the various bioprinting techniques and decellularization methods were also discussed in this study.
Collapse
Affiliation(s)
- Man Zhe
- Animal Experiment Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xinyu Wu
- West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Peiyun Yu
- LIMES Institute, Department of Molecular Brain Physiology and Behavior, University of Bonn, Carl-Troll-Str. 31, 53115 Bonn, Germany
| | - Jiawei Xu
- Orthopedic Research Institute, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Ming Liu
- Orthopedic Research Institute, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Guang Yang
- Animal Experiment Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Zhou Xiang
- Orthopedic Research Institute, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Fei Xing
- Department of Orthopaedics and Traumatology, Biomatics Group, University Medical Center of the Johannes Gutenberg University, Langenbeckstr. 1, 55131 Mainz, Germany
| | - Ulrike Ritz
- Department of Orthopaedics and Traumatology, Biomatics Group, University Medical Center of the Johannes Gutenberg University, Langenbeckstr. 1, 55131 Mainz, Germany
| |
Collapse
|
48
|
Liang C, Liao L, Tian W. Advances Focusing on the Application of Decellularized Extracellular Matrix in Periodontal Regeneration. Biomolecules 2023; 13:673. [PMID: 37189420 PMCID: PMC10136219 DOI: 10.3390/biom13040673] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 04/01/2023] [Accepted: 04/07/2023] [Indexed: 05/17/2023] Open
Abstract
The decellularized extracellular matrix (dECM) is capable of promoting stem cell proliferation, migration, adhesion, and differentiation. It is a promising biomaterial for application and clinical translation in the field of periodontal tissue engineering as it most effectively preserves the complex array of ECM components as they are in native tissue, providing ideal cues for regeneration and repair of damaged periodontal tissue. dECMs of different origins have different advantages and characteristics in promoting the regeneration of periodontal tissue. dECM can be used directly or dissolved in liquid for better flowability. Multiple ways were developed to improve the mechanical strength of dECM, such as functionalized scaffolds with cells that harvest scaffold-supported dECM through decellularization or crosslinked soluble dECM that can form injectable hydrogels for periodontal tissue repair. dECM has found recent success in many periodontal regeneration and repair therapies. This review focuses on the repairing effect of dECM in periodontal tissue engineering, with variations in cell/tissue sources, and specifically discusses the future trend of periodontal regeneration and the future role of soluble dECM in entire periodontal tissue regeneration.
Collapse
Affiliation(s)
| | - Li Liao
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases and Engineering Research Center of Oral Translational Medicine, Ministry of Education and National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Sichuan 610041, China
| | - Weidong Tian
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases and Engineering Research Center of Oral Translational Medicine, Ministry of Education and National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Sichuan 610041, China
| |
Collapse
|
49
|
Meșină M, Mîndrilă I, Meșină-Botoran MI, Mîndrilă LA, Farhangee A, Pirici I. Optimization Techniques of Single-Detergent Based Protocols for Heart Tissue Decellularization. CURRENT HEALTH SCIENCES JOURNAL 2023; 49:156-162. [PMID: 37779828 PMCID: PMC10541079 DOI: 10.12865/chsj.49.02.156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 04/21/2023] [Indexed: 10/03/2023]
Abstract
The extracellular matrix (ECM) scaffolds are considered a gold standard for the engineering of appropriate grafts used in regenerative medicine for tissue repair, and decellularization of myocardial tissue is one of the most studied processes for obtaining natural ECM to date. Decellularization methods, agents used, or treatment durations can be varied to optimize cardiac tissue decellularization parameters. In this work we performed a morphological and morphometric analysis of cardiac tissue subjected to decellularization protocols based on Sodium Deoxycholate (SD) or Sodium Lauryl Sulfate (SLS) to identify factors that allow optimization of single-detergent based protocols for cardiac ECM manufacturing. For this, Wistar rat hearts (n=10) were subjected to 5 different decellularization protocols (n=2) and then histologically processed to achieve H&E or Azan trichrome stained sections for the morphological and morphometric analysis of the obtained ECM. The results of this study showed that SLS alters the spatial distribution of cardiac ECM collagen fibers, and SD can be successfully used in tailoring single-based detergent decellularization protocols by appropriately adjusting the application times of hypo/hyperosmotic shocks, which increases the lytic action of the detergent, and the washing times for the efficient elimination of cellular residues.
Collapse
Affiliation(s)
- Mihai Meșină
- Doctoral school, University of Medicine and Pharmacy of Craiova, Romania
| | - Ion Mîndrilă
- Department of Anatomy, Faculty of Medicine, University of Medicine and Pharmacy of Craiova, Romania
| | | | | | - Arsalan Farhangee
- Doctoral school, University of Medicine and Pharmacy of Craiova, Romania
| | - Ionica Pirici
- Department of Anatomy, Faculty of Medicine, University of Medicine and Pharmacy of Craiova, Romania
| |
Collapse
|
50
|
Corridon PR. Capturing effects of blood flow on the transplanted decellularized nephron with intravital microscopy. Sci Rep 2023; 13:5289. [PMID: 37002341 PMCID: PMC10066218 DOI: 10.1038/s41598-023-31747-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 03/16/2023] [Indexed: 04/04/2023] Open
Abstract
Organ decellularization creates cell-free, collagen-based extracellular matrices that can be used as scaffolds for tissue engineering applications. This technique has recently gained much attention, yet adequate scaffold repopulation and implantation remain a challenge. Specifically, there still needs to be a greater understanding of scaffold responses post-transplantation and ways we can improve scaffold durability to withstand the in vivo environment. Recent studies have outlined vascular events that limit organ decellularization/recellularization scaffold viability for long-term transplantation. However, these insights have relied on in vitro/in vivo approaches that need enhanced spatial and temporal resolutions to investigate such issues at the microvascular level. This study uses intravital microscopy to gain instant feedback on their structure, function, and deformation dynamics. Thus, the objective of this study was to capture the effects of in vivo blood flow on the decellularized glomerulus, peritubular capillaries, and tubules after autologous and allogeneic orthotopic transplantation into rats. Large molecular weight dextran molecules labeled the vasculature. They revealed substantial degrees of translocation from glomerular and peritubular capillary tracks to the decellularized tubular epithelium and lumen as early as 12 h after transplantation, providing real-time evidence of the increases in microvascular permeability. Macromolecular extravasation persisted for a week, during which the decellularized microarchitecture was significantly and comparably compromised and thrombosed in both autologous and allogeneic approaches. These results indicate that in vivo multiphoton microscopy is a powerful approach for studying scaffold viability and identifying ways to promote scaffold longevity and vasculogenesis in bioartificial organs.
Collapse
Affiliation(s)
- Peter R Corridon
- Department of Immunology and Physiology, College of Medicine and Health Sciences, Khalifa University of Science and Technology, PO Box 127788, Abu Dhabi, UAE.
- Healthcare Engineering Innovation Center, Biomedical Engineering, Khalifa University of Science and Technology, PO Box 127788, Abu Dhabi, UAE.
- Center for Biotechnology, Khalifa University of Science and Technology, PO Box 127788, Abu Dhabi, UAE.
- Wake Forest Institute for Regenerative Medicine, Medical Center Boulevard, Winston-Salem, NC, 27157-1083, USA.
| |
Collapse
|