1
|
Yu H, Chen D, Lu W, Zhang C, Wang H, Peng Z, Jiang H, Xiao C. Characterization of polyvinyl alcohol/chitosan nanofibers loaded with royal jelly by blending electrospinning for potential wound dressings. Int J Biol Macromol 2025; 307:141977. [PMID: 40086322 DOI: 10.1016/j.ijbiomac.2025.141977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 03/03/2025] [Accepted: 03/10/2025] [Indexed: 03/16/2025]
Abstract
This study aimed to fabricate a polyvinyl alcohol/chitosan (PVA/CS) nanofiber loaded with royal jelly (RJ) using blending electrospinning for potential wound dressings. The different PVA/CS ratios in electrospun nanofibers resulted in continuous nanofibers with an average diameter ranging from 219 to 299 nm. The FTIR spectra indicated that RJ was successfully incorporated into the nanofibers through hydrogen bonding with PVA/CS, which was further confirmed by the subsequent TGA experiments. Meanwhile, the RJ/PVA/CS nanofibers exhibited excellent water vapor permeability and hydrophilic properties. The encapsulation efficiency of RJ reached the maximum value of 89.00 %, while the cumulative release rate was up to 84.87 %. Furthermore, the RJ/PVA/CS nanofibers could inhibit the growth of Gram-positive (Staphylococcus aureus) and Gram-negative bacteria (Escherichia coli). The optimal PVA/CS ratio was determined to be 7:3, achieving inhibition rates of 97.83 % for S. aureus and 72.08 % for E. coli, demonstrating an excellent antibacterial performance. Therefore, this study successfully fabricated a wound dressing nanofiber with potential antibacterial efficacy.
Collapse
Affiliation(s)
- Hongying Yu
- College of Life Sciences, China Jiliang University, Hangzhou 310018, China; Zhejiang Key Laboratory of Intelligent Food Logistic and Processing, Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Di Chen
- Zhejiang Key Laboratory of Intelligent Food Logistic and Processing, Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Wenjing Lu
- Zhejiang Key Laboratory of Intelligent Food Logistic and Processing, Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Cen Zhang
- Zhejiang Key Laboratory of Intelligent Food Logistic and Processing, Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Haiyan Wang
- Zhejiang Key Laboratory of Intelligent Food Logistic and Processing, Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Zhengju Peng
- College of Life Sciences, China Jiliang University, Hangzhou 310018, China; Zhejiang Key Laboratory of Intelligent Food Logistic and Processing, Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Han Jiang
- College of Life Sciences, China Jiliang University, Hangzhou 310018, China.
| | - Chaogeng Xiao
- College of Life Sciences, China Jiliang University, Hangzhou 310018, China; Zhejiang Key Laboratory of Intelligent Food Logistic and Processing, Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| |
Collapse
|
2
|
Tang M, Wang X, Wang S, Xing C, Xu Q, Mu Y, Wu X, Zhao ZA, Li F. 10-Hydroxy-2-decenoic acid attenuates nonalcoholic fatty liver disease by activating AMPK-α signaling pathway. Biochem Pharmacol 2025; 231:116648. [PMID: 39581533 DOI: 10.1016/j.bcp.2024.116648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 11/01/2024] [Accepted: 11/21/2024] [Indexed: 11/26/2024]
Abstract
Nonalcoholic fatty liver disease (NAFLD) originates from metabolic dysfunctions, is one of the most commonly encountered liver disorders worldwide, characterized by ectopic lipid deposition within hepatocytes, accompanied by hepatocellular injury and necroinflammation. Currently, NAFLD has very few treatment options. Purified from royal jelly, 10-hydroxy-2-decenoic acid (10-HDA) is the primary bioactive ingredient with a series of beneficial effects against various metabolic diseases. Herein, we investigated the effects of 10-HDA in methionine and choline deficiency (MCD) diet induced NAFLD model and free fatty acids (FFAs) induced lipid-laden hepatocyte model and explored the underlying mechanisms. In the mice fed with MCD diet, 10-HDA treatment significantly reduced hepatic steatosis, hepatocellular injury, apoptosis, inflammatory response and fibrosis. In vitro, 10-HDA treatment reduced lipid accumulation and apoptosis in hepatocytes induced by FFAs. Mechanistically, 10-HDA therapy restored AMPK-α phosphorylation, leading to the phosphorylation and inactivation acetyl-CoA carboxylase (ACC). Consequently, this increased the expression of carnitine palmitoyl transferase 1α(CPT1α), and peroxisome proliferators-activated receptors α (PPARα), and lowered the expression of cleavage forms of sterol regulatory element binding protein-1 (SREBP-1) and fatty acid synthetase (FASN). Furthermore, pretreating the cells with the AMPK-α inhibitor, compound C, greatly eliminated these beneficial effects of 10-HDA. Additionally, molecular docking analysis indicated that 10-HDA bound the domain of AMPK-α1 subunit. Based on these findings, 10-HDA suppresses hepatic lipogenesis via AMPK-α-dependent suppression of the ACC pathway, thus inhibiting hepatocellular injury, apoptosis, inflammatory response and fibrosis. 10-HDA may represent a promising candidate drug for the treatment of NAFLD.
Collapse
Affiliation(s)
- Minyi Tang
- The School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Xinzi Wang
- The School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Shuai Wang
- The School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Chaofeng Xing
- Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), Southern Medical University, Foshan 528308, China
| | - Qihua Xu
- Bioscience and Biomedical Engineering Thrust, The Hong Kong University of Science and Technology (Guangzhou), Guangzhou 511400, China
| | - Yunping Mu
- The School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Xiaoli Wu
- The School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China.
| | - Zijian Allan Zhao
- Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), Southern Medical University, Foshan 528308, China.
| | - Fanghong Li
- The School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China.
| |
Collapse
|
3
|
Koc C, Aydemir CI, Salman B, Cakir A, Akbulut NH, Karabarut PL, Topal G, Cinar AY, Taner G, Eyigor O, Cansev M. Comparative neuroprotective effects of royal jelly and its unique compound 10-hydroxy-2-decenoic acid on ischemia-induced inflammatory, apoptotic, epigenetic and genotoxic changes in a rat model of ischemic stroke. Nutr Neurosci 2025; 28:37-49. [PMID: 38657030 DOI: 10.1080/1028415x.2024.2344141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
OBJECTIVES This study aimed to compare the efficacy of royal jelly (RJ) and its major fatty acid 10-hydroxy-2-decenoic acid (10-HDA) on ischemic stroke-related pathologies using histological and molecular approaches. METHODS Male rats were subjected to middle cerebral artery occlusion (MCAo) to induce ischemic stroke and were supplemented daily with either vehicle (control group), RJ or 10-HDA for 7 days starting on the day of surgery. On the eighth day, rats were sacrificed and brain tissue and blood samples were obtained to analyze brain infarct volume, DNA damage as well as apoptotic, inflammatory and epigenetic parameters. RESULTS Both RJ and 10-HDA supplementation significantly reduced brain infarction and decreased weight loss when compared to control animals. These effects were associated with reduced levels of active caspase-3 and PARP-1 and increased levels of acetyl-histone H3 and H4. Although both RJ and 10-HDA treatments significantly increased acetyl-histone H3 levels, the effect of RJ was more potent than that of 10-HDA. RJ and 10-HDA supplementation also alleviated DNA damage by significantly reducing tail length, tail intensity and tail moment in brain tissue and peripheral lymphocytes, except for the RJ treatment which tended to reduce tail moment in lymphocytes without statistical significance. CONCLUSIONS Our findings suggest that neuroprotective effects of RJ in experimental stroke can mostly be attributed to 10-HDA.
Collapse
Affiliation(s)
- Cansu Koc
- Department of Pharmacology, Faculty of Medicine, Bursa Uludag University, Bursa, Türkiye
| | - Cigdem Inci Aydemir
- Department of Biotechnology, Graduate Education Institute, Bursa Technical University, Bursa, Türkiye
| | - Berna Salman
- Department of Pharmacology, Faculty of Medicine, Bursa Uludag University, Bursa, Türkiye
| | - Aysen Cakir
- Department of Physiology, Faculty of Medicine, Bursa Uludag University, Bursa, Türkiye
| | - Nursel Hasanoglu Akbulut
- Department of Histology and Embryology, Faculty of Medicine, Bursa Uludag University, Bursa, Türkiye
| | - Pinar Levent Karabarut
- Department of Pharmacology, Faculty of Medicine, Bursa Uludag University, Bursa, Türkiye
| | - Gonca Topal
- Department of Histology and Embryology, Faculty of Medicine, Bursa Uludag University, Bursa, Türkiye
| | - Aycan Yigit Cinar
- Department of Food Engineering, Faculty of Engineering and Natural Sciences, Bursa Technical University, Bursa, Türkiye
| | - Gokce Taner
- Department of Bioengineering, Faculty of Engineering and Natural Sciences, Bursa Technical University, Bursa, Türkiye
| | - Ozhan Eyigor
- Department of Histology and Embryology, Faculty of Medicine, Bursa Uludag University, Bursa, Türkiye
| | - Mehmet Cansev
- Department of Pharmacology, Faculty of Medicine, Bursa Uludag University, Bursa, Türkiye
| |
Collapse
|
4
|
Alu'datt MH, Al-U'datt D, Rababah T, Gammoh S, Alrosan M, Bani-Melhem K, Al-Widyan Y, Kubow S, AbuJalban D, Al Khateeb W, Abubaker M. Recent research directions on functional royal jelly: highlights prospects in food, nutraceutical, and pharmacological industries. Crit Rev Food Sci Nutr 2024:1-14. [PMID: 39440352 DOI: 10.1080/10408398.2024.2418892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
The food and pharmaceutical industries have utilized royal jelly, an alternative medicinal food, as a natural pharmaceutical product since ancient times. Royal jelly has a unique remarkable composition containing lipids, proteins, carbohydrates, vitamins, minerals, hormones, and phenolic compounds. The rapidly expanding functional food market has coincided with the increasing consumer demand for royal jelly. Over the past two decades, royal jelly, a rich source of certain bioactive components, has been used by humans as a functional and nutritious food due to recent studies of the effect of royal jelly in underlying pathogenic processes in a variety of animal models. Scientific evidence has accumulated supporting a wide variety of health-promoting effects from the intake of royal jelly that supports cardiovascular health, immune and antioxidant function, wound healing, blood lipid, and glucose control in addition to antibacterial and antihypertensive effects. The main bioactive ingredients are Major Royal Jelly Proteins (MRJPs), essential oils, fatty acids, peptides, and phenolics, which are thought to have a significant role in the development of honeybee queens. The health-endorsing qualities of royal jelly make it a significant functional ingredient in the food, and cosmetic industry. Apisin is one of the main proteins in royal jelly that has antibacterial properties. Other bioactive ingredients of royal jelly that have multifunctional health-promoting properties include defensin-1, royalisin, apisimin, apidaecin, jelleins, royalactin and 10-hydroxy-2-decenoic acid (10HDA) in epigenetic diseases. This review highlights the important role that royal jelly plays as an agent in various fields of medicine, paying special attention to its biological features. Additionally, we discuss royal jelly's composition as a possible therapeutic for vital natural sources of bioactive substances.
Collapse
Affiliation(s)
- Muhammad H Alu'datt
- Department of Nutrition and Food Technology, Faculty of Agriculture, Jordan University of Science and Technology, Irbid, Jordan
- Department of Food Science and Nutrition, College of Life Sciences, Kuwait University, Safat, Kuwait
| | - Doa'a Al-U'datt
- Department of Physiology and Biochemistry, Faculty of Medicine, Jordan University of Science and Technology, Irbid, Jordan
| | - Taha Rababah
- Department of Nutrition and Food Technology, Faculty of Agriculture, Jordan University of Science and Technology, Irbid, Jordan
| | - Sana Gammoh
- Department of Nutrition and Food Technology, Faculty of Agriculture, Jordan University of Science and Technology, Irbid, Jordan
| | - Mohammad Alrosan
- Department of Food Science and Nutrition, Faculty of Agriculture, Jerash University, Jerash, Jordan
- QU Health, College of Health Sciences, Qatar University, Doha, Qatar
- Applied Science Research Center, Applied Science Private University, Amman, Jordan
| | - Khalid Bani-Melhem
- Water Technology Unit (WTU), Center for Advanced Materials (CAM), Qatar University, Doha, Qatar
| | - Yasmeen Al-Widyan
- Department of Nutrition and Food Technology, Faculty of Agriculture, Jordan University of Science and Technology, Irbid, Jordan
| | - Stan Kubow
- School of Dietetics and Human Nutrition, McGill University, Montreal, Quebec, Canada
| | - Dana AbuJalban
- Department of Nutrition and Food Technology, Faculty of Agriculture, Jordan University of Science and Technology, Irbid, Jordan
| | - Wesam Al Khateeb
- Department of Biological Sciences, Yarmouk University, Irbid, Jordan
| | - Mais Abubaker
- Department of Nutrition and Food Technology, Faculty of Agriculture, Jordan University of Science and Technology, Irbid, Jordan
| |
Collapse
|
5
|
Maher AM, Elsanosy GA, Ghareeb DA, Elblehi SS, Saleh SR. 10-Hydroxy Decanoic Acid and Zinc Oxide Nanoparticles Retrieve Nrf2/HO-1 and Caspase-3/Bax/Bcl-2 Signaling in Lead-Induced Testicular Toxicity. Biol Trace Elem Res 2024:10.1007/s12011-024-04374-3. [PMID: 39349706 DOI: 10.1007/s12011-024-04374-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Accepted: 09/10/2024] [Indexed: 12/14/2024]
Abstract
There has been a significant increase in human exposure to heavy metals (HMs) over the course of the previous century, primarily due to the extensive industrial processes. Male infertility is a prominent complication associated with lead exposure, wherein lead has the potential to accumulate within the testes, resulting in oxidative stress and inflammation. In addition, 10-hydroxydecanoic acid (10-HDA) is a component found in the secretions of worker bees and possesses the capacity to mitigate oxidative stress and prevent inflammation. Due to their advantageous properties, zinc oxide nanoparticles (ZnO-NPs) possess a wide range of applications in the field of biomedicine. This study aimed to assess the therapeutic effect of 10-HDA and ZnO-NPs on testicular toxicity in rats induced by lead acetate (PbAc). PbAc was administered orally for a period of 3 months. Following that, 10-HDA and/or ZnO-NPs were administrated for 1 month. PbAc deformed seminal analysis, decreased seminal fructose and sex hormonal levels, and resulted in the development of histopathological complications. Additionally, PbAc increased MDA and decreased Nrf2 and HO-1 expression, confirmed by the declined antioxidant defense system. Furthermore, an increase in testicular inflammatory markers and the Bax/Bcl-2 ratio was observed subsequent to the administration of PbAc. The administration of 10-HDA and ZnO-NPs demonstrated significant efficacy in the restoration of semen quality, pituitary/gonadal hormones, antioxidants, and testicular histoarchitecture. Moreover, 10-HDA and ZnO-NPs decreased testicular inflammatory markers and apoptotic proteins (caspase-3 and Bax expression levels). In conclusion, combining 10-HDA and ZnO-NPs demonstrated synergistic potential in treating PbAc-induced testicular toxicity, thereby presenting a promising approach in nanomedicine and natural drugs.
Collapse
Affiliation(s)
- Adham M Maher
- Bio-Screening and Preclinical Trial Lab, Department of Biochemistry, Faculty of Science, Alexandria University, Alexandria, 21511, Egypt.
| | - Ghidaa A Elsanosy
- Bio-Screening and Preclinical Trial Lab, Department of Biochemistry, Faculty of Science, Alexandria University, Alexandria, 21511, Egypt
| | - Doaa A Ghareeb
- Bio-Screening and Preclinical Trial Lab, Department of Biochemistry, Faculty of Science, Alexandria University, Alexandria, 21511, Egypt
- Pharmaceutical and Fermentation Industries Development Centre (PFIDC), The City of Scientific Research and Technological Applications (SRTA-City), Borg Al‑Arab, Alexandria, Egypt
- Research Projects Unit, Pharos University, Alexandria, Egypt
| | - Samar S Elblehi
- Department of Pathology, Faculty of Veterinary Medicine, Alexandria University, Alexandria, 21944, Egypt
| | - Samar R Saleh
- Bio-Screening and Preclinical Trial Lab, Department of Biochemistry, Faculty of Science, Alexandria University, Alexandria, 21511, Egypt.
| |
Collapse
|
6
|
Bava R, Castagna F, Lupia C, Poerio G, Liguori G, Lombardi R, Naturale MD, Bulotta RM, Biondi V, Passantino A, Britti D, Statti G, Palma E. Hive Products: Composition, Pharmacological Properties, and Therapeutic Applications. Pharmaceuticals (Basel) 2024; 17:646. [PMID: 38794216 PMCID: PMC11124102 DOI: 10.3390/ph17050646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/03/2024] [Accepted: 05/10/2024] [Indexed: 05/26/2024] Open
Abstract
Beekeeping provides products with nutraceutical and pharmaceutical characteristics. These products are characterized by abundance of bioactive compounds. For different reasons, honey, royal jelly, propolis, venom, and pollen are beneficial to humans and animals and could be used as therapeutics. The pharmacological action of these products is related to many of their constituents. The main bioactive components of honey include oligosaccharides, methylglyoxal, royal jelly proteins (MRJPs), and phenolics compounds. Royal jelly contains jelleins, royalisin peptides, MRJPs, and derivatives of hydroxy-decenoic acid, particularly 10-hydroxy-2-decenoic acid (10-HDA), which possess antibacterial, anti-inflammatory, immunomodulatory, neuromodulatory, metabolic syndrome-preventing, and anti-aging properties. Propolis has a plethora of activities that are referable to compounds such as caffeic acid phenethyl ester. Peptides found in bee venom include phospholipase A2, apamin, and melittin. In addition to being vitamin-rich, bee pollen also includes unsaturated fatty acids, sterols, and phenolics compounds that express antiatherosclerotic, antidiabetic, and anti-inflammatory properties. Therefore, the constituents of hive products are particular and different. All of these constituents have been investigated for their properties in numerous research studies. This review aims to provide a thorough screening of the bioactive chemicals found in honeybee products and their beneficial biological effects. The manuscript may provide impetus to the branch of unconventional medicine that goes by the name of apitherapy.
Collapse
Affiliation(s)
- Roberto Bava
- Department of Health Sciences, University of Catanzaro Magna Græcia, 88100 Catanzaro, Italy; (R.B.); (C.L.); (R.M.B.); (D.B.); (E.P.)
| | - Fabio Castagna
- Department of Health Sciences, University of Catanzaro Magna Græcia, 88100 Catanzaro, Italy; (R.B.); (C.L.); (R.M.B.); (D.B.); (E.P.)
- Mediterranean Ethnobotanical Conservatory, Sersale (CZ), 88054 Catanzaro, Italy
| | - Carmine Lupia
- Department of Health Sciences, University of Catanzaro Magna Græcia, 88100 Catanzaro, Italy; (R.B.); (C.L.); (R.M.B.); (D.B.); (E.P.)
- Mediterranean Ethnobotanical Conservatory, Sersale (CZ), 88054 Catanzaro, Italy
| | - Giusi Poerio
- ATS Val Padana, Via dei Toscani, 46100 Mantova, Italy;
| | | | - Renato Lombardi
- IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo (FG), 71013 Foggia, Italy;
| | - Maria Diana Naturale
- Ministry of Health, Directorate General for Health Programming, 00144 Rome, Italy;
| | - Rosa Maria Bulotta
- Department of Health Sciences, University of Catanzaro Magna Græcia, 88100 Catanzaro, Italy; (R.B.); (C.L.); (R.M.B.); (D.B.); (E.P.)
| | - Vito Biondi
- Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy; (V.B.); (A.P.)
| | - Annamaria Passantino
- Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy; (V.B.); (A.P.)
| | - Domenico Britti
- Department of Health Sciences, University of Catanzaro Magna Græcia, 88100 Catanzaro, Italy; (R.B.); (C.L.); (R.M.B.); (D.B.); (E.P.)
| | - Giancarlo Statti
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, 87036 Cosenza, Italy;
| | - Ernesto Palma
- Department of Health Sciences, University of Catanzaro Magna Græcia, 88100 Catanzaro, Italy; (R.B.); (C.L.); (R.M.B.); (D.B.); (E.P.)
- Center for Pharmacological Research, Food Safety, High Tech and Health (IRC-FSH), University of Catanzaro Magna Græcia, 88100 Catanzaro, Italy
| |
Collapse
|
7
|
Wang Y, Ma L, Wang H, Liu Z, Chi X, Xu B. Effects of Sucrose Feeding on the Quality of Royal Jelly Produced by Honeybee Apis mellifera L. INSECTS 2023; 14:742. [PMID: 37754710 PMCID: PMC10532100 DOI: 10.3390/insects14090742] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/20/2023] [Accepted: 08/24/2023] [Indexed: 09/28/2023]
Abstract
Royal jelly (RJ) is a highly nutritious secretion of the honeybees' hypopharyngeal glands (HPGs). During RJ production, colonies are occasionally subjected to manual interventions, such as sucrose feeding for energy supplementation. This study aimed to assess the impact of sucrose feeding on the composition of RJ. The results indicated that RJ obtained from sucrose-fed colonies exhibited significantly higher levels of fructose, alanine, glycine, tyrosine, valine, and isoleucine compared to the honey-fed group. However, no significant differences were observed in terms of moisture content, crude protein, 10-HDA, glucose, sucrose, minerals, or other amino acids within the RJ samples. Moreover, sucrose feeding did not have a significant effect on midgut sucrase activity, HPGs development, or the expression levels of MRJP1 and MRJP3 in nurse bees. Unsealed stored food samples from sucrose-fed bee colonies demonstrated significantly higher sucrose levels compared to sealed combs and natural honey. Additionally, natural honey exhibited higher moisture and Ca levels, as well as lower levels of Zn and Cu, in comparison to honey collected from bee colonies fed sucrose solutions. Based on these findings, we conclude that sucrose feeding has only a minor impact on the major components of RJ.
Collapse
Affiliation(s)
| | | | | | | | | | - Baohua Xu
- College of Animal Science and Technology, Shandong Agricultural University, Tai’an 271018, China; (Y.W.); (L.M.); (H.W.); (Z.L.); (X.C.)
| |
Collapse
|
8
|
Baptista BG, Lima LS, Ribeiro M, Britto IK, Alvarenga L, Kemp JA, Cardozo LFMF, Berretta AA, Mafra D. Royal jelly: a predictive, preventive and personalised strategy for novel treatment options in non-communicable diseases. EPMA J 2023; 14:381-404. [PMID: 37605655 PMCID: PMC10439876 DOI: 10.1007/s13167-023-00330-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 06/26/2023] [Indexed: 08/23/2023]
Abstract
Royal jelly (RJ) is a bee product produced by young adult worker bees, composed of water, proteins, carbohydrates and lipids, rich in bioactive components with therapeutic properties, such as free fatty acids, mainly 10-hydroxy-trans-2-decenoic acid (10-H2DA) and 10-hydroxydecanoic acid (10-HDA), and major royal jelly proteins (MRJPs), as well as flavonoids, most flavones and flavonols, hormones, vitamins and minerals. In vitro, non-clinical and clinical studies have confirmed its vital role as an antioxidant and anti-inflammatory. This narrative review discusses the possible effects of royal jelly on preventing common complications of non-communicable diseases (NCDs), such as inflammation, oxidative stress and intestinal dysbiosis, from the viewpoint of predictive, preventive and personalised medicine (PPPM/3PM). It is concluded that RJ, predictively, can be used as a non-pharmacological therapy to prevent and mitigate complications related to NCDs, and the treatment must be personalised.
Collapse
Affiliation(s)
- Beatriz G. Baptista
- Graduate Program in Medical Sciences, Fluminense Federal University (UFF), Niterói, RJ Brazil
| | - Ligia S. Lima
- Graduate Program in Biological Sciences – Physiology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ Brazil
| | - Marcia Ribeiro
- Graduate Program in Biological Sciences – Physiology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ Brazil
| | - Isadora K. Britto
- Graduate Program in Biological Sciences – Physiology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ Brazil
| | - Livia Alvarenga
- Graduate Program in Biological Sciences – Physiology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ Brazil
- Graduate Program in Nutrition Sciences, Fluminense Federal University (UFF), Niterói, RJ Brazil
| | - Julie A. Kemp
- Graduate Program in Nutrition Sciences, Fluminense Federal University (UFF), Niterói, RJ Brazil
| | - Ludmila FMF Cardozo
- Graduate Program in Nutrition Sciences, Fluminense Federal University (UFF), Niterói, RJ Brazil
| | - Andresa A. Berretta
- Research, Development, and Innovation Department, Apis Flora Indl. Coml. Ltda, Ribeirão Preto, SP Brazil
| | - Denise Mafra
- Graduate Program in Medical Sciences, Fluminense Federal University (UFF), Niterói, RJ Brazil
- Graduate Program in Biological Sciences – Physiology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ Brazil
- Graduate Program in Nutrition Sciences, Fluminense Federal University (UFF), Niterói, RJ Brazil
- Unidade de Pesquisa Clínica, UPC, Rua Marquês de Paraná, 303/4 Andar, Niterói, RJ 24033-900 Brazil
| |
Collapse
|
9
|
Beykaya M, Inkaya NN, Yorulmaz Onder E, Arici YK, Sahin H. Comprehensive Study of the Physicochemical Properties of Royal Jelly from Various Regions of Türkiye. Chem Biodivers 2023; 20:e202300881. [PMID: 37531600 DOI: 10.1002/cbdv.202300881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/28/2023] [Accepted: 08/02/2023] [Indexed: 08/04/2023]
Abstract
This study analysed some physicochemical and quality parameters of 176 royal jelly (RJ) samples from different regions of Türkiye, collected over different years and seasons. According to the obtained results, the moisture percentage varied between 47.36 % and 69.58 %, with no statistically significant differences seen across various seasons and areas (p>0.05). The average value of 10-hydroxy-2-decenoic acid (10-HDA), which varies according to factors such as season, region, and year, was determined to be 2.32 %. It was also seen that this value was close to the international standard. The values of total acidity ranged from 28-58 mL 1 N NaOH/100 g. Furthermore, statistical significance (p<0.001) was observed for the year-region interaction in relation to 10-HDA and total acidity. The pH measurement results for all samples confirmed the acidic nature of the samples and resulted in a range between 3.45 and 3.80. And the pH variability was also found to be statistically significant for years (p=0.002) and regions (p=0.011). Finally, the correlation analysis between moisture (%), 10-HDA (%), total acidity, and pH revealed no statistically significant or strong differences. This comprehensive study, supported by statistical analyses, is thought to be a useful reference for future research on RJ.
Collapse
Affiliation(s)
- Mehmet Beykaya
- Republic of Türkiye Ministry of Agriculture and Forestry, General Directorate of Agricultural Research and Policies, Ankara, Türkiye
| | - Nida Nur Inkaya
- Hacettepe University, Faculty of Engineering, Department of Food Engineering, Beytepe Campus, 06800, Ankara, Türkiye
| | - Elif Yorulmaz Onder
- SBS Bilimsel Bio Çözümler Inc. Bee&You Propolis R&D Center, 34775, İstanbul, Türkiye
| | - Yeliz Kasko Arici
- Ordu University, Faculty of Medicine, Department of Biostatistics and Medical Informatics, Ordu, Türkiye
| | - Huseyin Sahin
- Giresun University, Espiye Vocational School, Espiye, 28600, Giresun, Türkiye
| |
Collapse
|
10
|
Choudhary P, Tushir S, Bala M, Sharma S, Sangha MK, Rani H, Yewle NR, Kumar P, Singla D, Chandran D, Kumar M, Mekhemar M. Exploring the Potential of Bee-Derived Antioxidants for Maintaining Oral Hygiene and Dental Health: A Comprehensive Review. Antioxidants (Basel) 2023; 12:1452. [PMID: 37507990 PMCID: PMC10375990 DOI: 10.3390/antiox12071452] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 07/12/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023] Open
Abstract
Honey bee products comprise various compounds, including honey, propolis, royal jelly, bee pollen, bee wax and bee venom, which have long been recognized for their pharmacological and health-promoting benefits. Scientists have discovered that periodontal disorders stem from dental biofilm, an inflammatory response to bacterial overgrowth produced by dysbiosis in the oral microbiome. The bee products have been investigated for their role in prevention of oral diseases, which are attributed to a myriad of biologically active compounds including flavonoids (pinocembrin, catechin, caffeic acid phenethyl ester (CAPE) and galangin), phenolic acids (hydroxybenzoic acid, hydroxycinnamic acid, p-coumaric, ellagic, caffeic and ferulic acids) and terpenoids. This review aims to update the current understanding of role of selected bee products, namely, honey, propolis and royal jelly, in preventing oral diseases as well as their potential biological activities and mechanism of action in relation to oral health have been discussed. Furthermore, the safety of incorporation of bee products is also critically discussed. To summarize, bee products could potentially serve as a therapy option for people suffering from a variety of oral disorders.
Collapse
Affiliation(s)
- Poonam Choudhary
- Department of Agricultural Structures and Environment Control, ICAR-Central Institute of Post-Harvest Engineering and Technology, Ludhiana 141004, India
| | - Surya Tushir
- Department of Agricultural Structures and Environment Control, ICAR-Central Institute of Post-Harvest Engineering and Technology, Ludhiana 141004, India
| | - Manju Bala
- Department of Food Grain and Oilseed Processing, ICAR-Central Institute of Post-Harvest Engineering and Technology, Ludhiana 141004, India
| | - Sanjula Sharma
- Oilseeds Section, Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana 141004, India
| | - Manjeet Kaur Sangha
- Department of Biochemistry, College of Basic Sciences and Humanities, Punjab Agricultural University, Ludhiana 141004, India
| | - Heena Rani
- Department of Biochemistry, Punjab Agricultural University, Ludhiana 141004, India
| | | | - Parminder Kumar
- Department of Soil Science, Punjab Agricultural University, Ludhiana 141004, India
| | - Diksha Singla
- Department of Biochemistry, Punjab Agricultural University, Ludhiana 141004, India
| | - Deepak Chandran
- Department of Animal Husbandry, Government of Kerala, Palakkad 679335, India
| | - Manoj Kumar
- Chemical and Biochemical Processing Division, ICAR-Central Institute for Research on Cotton Technology, Mumbai 400019, India
| | - Mohamed Mekhemar
- Clinic for Conservative Dentistry and Periodontology, School of Dental Medicine, Christian-Albrecht's University, 24105 Kiel, Germany
| |
Collapse
|
11
|
Bagameri L, Botezan S, Bobis O, Bonta V, Dezmirean DS. Molecular Insights into Royal Jelly Anti-Inflammatory Properties and Related Diseases. Life (Basel) 2023; 13:1573. [PMID: 37511948 PMCID: PMC10381546 DOI: 10.3390/life13071573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/03/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023] Open
Abstract
Royal jelly (RJ), a highly nutritious natural product, has gained recognition for its remarkable health-promoting properties, leading to its widespread use in the pharmaceutical, food, and cosmetic industries. Extensive investigations have revealed that RJ possesses a broad spectrum of therapeutic effects, including anti-inflammatory, antioxidant, antitumor, anti-aging, and antibacterial activities. Distinctive among bee products, RJ exhibits a significantly higher water and relatively lower sugar content. It is characterized by its substantial protein content, making it a valuable source of this essential macronutrient. Moreover, RJ contains a diverse array of bioactive substances, such as lipids, phenolic compounds, flavonoids, organic acids, minerals, vitamins, enzymes, and hormones. This review aims to provide an overview of current research on the bioactive components present in RJ and their associated health-promoting qualities. According to existing literature, these bioactive substances hold great potential as alternative approaches to enhancing human health. Notably, this review emphasizes the anti-inflammatory properties of RJ, particularly in relation to inflammatory diseases, such as multiple sclerosis (MS), rheumatoid arthritis (RA), and inflammatory bowel diseases (IBD). Furthermore, we delve into the antitumor and antioxidant activities of RJ, aiming to deepen our understanding of its biological functions. By shedding light on the multifaceted benefits of RJ, this review seeks to encourage its utilization and inspire further investigation in this field.
Collapse
Affiliation(s)
- Lilla Bagameri
- Department of Apiculture and Sericulture, Faculty of Animal Sciences and Biotechnologies, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania
| | - Sara Botezan
- Department of Apiculture and Sericulture, Faculty of Animal Sciences and Biotechnologies, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania
| | - Otilia Bobis
- Department of Apiculture and Sericulture, Faculty of Animal Sciences and Biotechnologies, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania
| | - Victorita Bonta
- Department of Apiculture and Sericulture, Faculty of Animal Sciences and Biotechnologies, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania
| | - Daniel Severus Dezmirean
- Department of Apiculture and Sericulture, Faculty of Animal Sciences and Biotechnologies, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania
| |
Collapse
|
12
|
An evaluation of the chemical composition and biological properties of Anatolian Royal Jelly, drone brood and queen bee larvae. Eur Food Res Technol 2023. [DOI: 10.1007/s00217-023-04221-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2023]
|
13
|
Inhibition of Skin Pathogenic Bacteria, Antioxidant and Anti-Inflammatory Activity of Royal Jelly from Northern Thailand. Molecules 2023; 28:molecules28030996. [PMID: 36770665 PMCID: PMC9920569 DOI: 10.3390/molecules28030996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/15/2023] [Accepted: 01/16/2023] [Indexed: 01/21/2023] Open
Abstract
Royal jelly is a nutritious substance produced by the hypopharyngeal and mandibular glands of honeybees. Royal jelly possesses many attractive and beneficial properties which make it an ideal component in medical and pharmaceutical products. The antibacterial, antioxidant, and anti-inflammatory activities of royal jelly from honeybees (Apis mellifera) were determined in this study. Moreover, the total phenolic and flavonoid contents of the royal jelly were also evaluated. The effects of royal jelly on growth inhibition against skin pathogenic bacteria, including Cutibacterium acnes, methicillin-resistant Staphylococcus aureus (MRSA), Pseudomonas aeruginosa, Staphylococcus aureus, Staphylococcus epidermidis, and Corynebacterium spp., were investigated by the agar well diffusion method. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) were further determined by the broth dilution method. The results indicated that royal jelly showed antibacterial activity by inhibiting the growth of Gram-positive pathogenic bacteria, while the effectiveness decreased against Gram-negative bacteria. Interestingly, royal jelly from Lamphun (RJ-LP1), and Chiang Mai (RJ-CM1), presented high inhibitory efficacy against C. acnes, MRSA, and S. aureus within 4 h by a time killing assay. Furthermore, the anti-inflammatory properties of royal jelly were tested using RAW264.7 macrophage cells, and results revealed that RJ-LP1 and RJ-CM1 could reduce nitric oxide (NO) production and suppress iNOS gene expression. After testing the antioxidant activity, RJ-CM1 and RJ-CM2 of royal jelly from Chiang Mai had the highest level. Additionally, RJ-CM1 also showed the highest total phenolic and flavonoid content. These findings have brought forward new knowledge of the antibacterial, antioxidant, and anti-inflammatory properties of royal jelly, which will improve clinical and pharmaceutical uses of royal jelly as an alternative therapy for bacterial infections, and also as a dietary supplement product.
Collapse
|
14
|
Dundar AN, Cinar A, Altuntas S, Ulubayram N, Taner G, Dagdelen AF, Demircan H, Oral RA. The role of microencapsulation in maintaining biological activity of royal jelly: comparison with biological activity and bioaccessibility of microencapsulated, fresh and lyophilized forms during storage. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:5502-5511. [PMID: 35355271 DOI: 10.1002/jsfa.11905] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 03/31/2022] [Accepted: 03/31/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Royal jelly (RJ) is a unique beehive product and has been recommended for human health since ancient times because of its antioxidant, antimicrobial, antiproliferative, neuroprotective, anti-lipidemic and anti-aging features. However, the biggest obstacle in the use of RJ is the need for cold storage and the instability of bioactive components over time. In the present study, 10-hydroxy-2-decenoic acid (10-HDA) content, as well as antioxidant [using 1,1-diphenyl-2-picrylhydrazy and 2,2'-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) methods] and antimicrobial activity (five Gram-positive, five Gram-negative and three yeasts), were comparatively evaluated for three RJ forms, two of which can be stored at 24 ± 1 °C during storage. RESULTS Microencapsulated royal jelly (MRJ) stored at room temperature succeeded in preserving its 10-HDA content, a major bioactive compound, during the 6 months, with respect to lyophilized royal jelly (LRJ) and fresh RJ stored at 4 °C. The initial 10-HDA contents of RJ, LRJ and MRJ were determined as 1.90%, 5.26% and 2.75%, respectively. Moreover, the total phenolic content, antioxidant capacity and antimicrobial activity mostly remained constant throughout the storage period (P ≥ 0.05). Gram-positive strains were generally more sensitive than Gram-negative strains. In the present study, the in vitro simulated digestion analysis showed that MRJ can tolerate the digestion process. CONCLUSION Overall, the encapsulation process was considered as one preservative technique for RJ. The microencapsulation of RJ as shown in the results of the present study are encouraging in terms of enabling the local beekeeping sector to achieve ease of production and increased product diversity. MRJ shows promise as a commercial product with a high export value for producers. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Ayse Neslihan Dundar
- Faculty of Engineering and Natural Sciences, Department of Food Engineering, Bursa Technical University, Bursa, Turkey
| | - Aycan Cinar
- Faculty of Engineering and Natural Sciences, Department of Food Engineering, Bursa Technical University, Bursa, Turkey
| | - Seda Altuntas
- Faculty of Engineering and Natural Sciences, Department of Food Engineering, Bursa Technical University, Bursa, Turkey
| | - Neslihan Ulubayram
- Vocational School of Altıntaş, Department of Food Processing, Kütahya Dumlupınar University, Kütahya, Turkey
| | - Gokce Taner
- Faculty of Engineering and Natural Sciences, Department of Bioengineering, Bursa Technical University, Bursa, Turkey
| | - Adnan Fatih Dagdelen
- Faculty of Engineering and Natural Sciences, Department of Food Engineering, Bursa Technical University, Bursa, Turkey
| | - Huseyin Demircan
- Faculty of Engineering and Natural Sciences, Department of Food Engineering, Bursa Technical University, Bursa, Turkey
| | - Rasim Alper Oral
- Faculty of Engineering and Natural Sciences, Department of Food Engineering, Bursa Technical University, Bursa, Turkey
| |
Collapse
|
15
|
Bagameri L, Baci GM, Dezmirean DS. Royal Jelly as a Nutraceutical Natural Product with a Focus on Its Antibacterial Activity. Pharmaceutics 2022; 14:1142. [PMID: 35745715 PMCID: PMC9227439 DOI: 10.3390/pharmaceutics14061142] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 05/20/2022] [Accepted: 05/25/2022] [Indexed: 02/06/2023] Open
Abstract
Royal jelly (RJ) is one of the most valued natural products and is known for its health-promoting properties. Due to its therapeutic effects, it has been used in medicine since antiquity. Nowadays, several studies indicate that RJ acts as a powerful antimicrobial agent. Indeed, researchers shed light on its antioxidant and anticancer activity. RJ's biological properties are related to its bioactive compounds, such as proteins, peptides, phenolic, and fatty acids. The aim of this review is to highlight recent findings on RJ's main bioactive compounds correlated with its health-promoting properties. The available literature suggests that these bioactive compounds can be used as an alternative approach in order to enhance human health. Moreover, throughout this paper, we underline the prominent antibacterial effect of RJ against several target bacterial strains. In addition, we briefly discuss other therapeutic activities, such as antioxidative and anticancer effects, of this outstanding natural product.
Collapse
Affiliation(s)
- Lilla Bagameri
- Faculty of Animal Science and Biotechnology, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania;
| | - Gabriela-Maria Baci
- Faculty of Animal Science and Biotechnology, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania;
| | | |
Collapse
|
16
|
Protective potential of royal jelly against hydroxyurea -induced hepatic injury in rats via antioxidant, anti-inflammatory, and anti-apoptosis properties. PLoS One 2022; 17:e0265261. [PMID: 35303036 PMCID: PMC8932593 DOI: 10.1371/journal.pone.0265261] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 02/26/2022] [Indexed: 11/21/2022] Open
Abstract
Hydroxyurea (HDU) is a widely used medication for various malignancies, thalassemia, and sickle cell anemia with reported side effects. The current study investigated HDU- induced hepatic injury and the protective potential of the royal jelly (RJ) against this hepatotoxic effect in the light of hepatic oxidative/ antioxidative status, pro-inflammatory cytokine, apoptosis signaling pathway, and histopathology. Sixty albino rats were used (n = 10/group) for 60 days: control, RJ (100 mg/kg body weight, orally), HDU (225 mg/kg body weight, orally), 2HDU (450 mg/kg body weight, orally), and HDU + RJ groups. HDU-treated rats showed significant elevation of liver function tests as aspartate aminotransferase, alanine aminotransferase, and alkaline phosphatase, as well as malondialdehyde and nitric oxide (oxidative biomarkers) and significant decreased hepatic antioxidant molecules (reduced glutathione, superoxide dismutase, and glutathione peroxidase), compared to a control group, that more pronounced in the high dose of HDU. In addition, HDU induced significant upregulation of TNF-α and the Caspase-3 apoptotic pathway. Moreover, the liver of HDU treated groups showed various hepatic lesions from mild to severe necrotic changes related to the HDU dose. However, administration of RJ with HDU improved liver function tests, liver histology, and hepatic oxidative/antioxidative status concerning HDU groups. Furthermore, oral RJ administration with HDU significantly lessens the immune-expression area % of TNF-α and Caspase-3. Thus, the royal jelly has antioxidant, anti-inflammatory, and anti-apoptotic properties against HDU- induced hepatic injury and could be, therefore, used as adjuvant therapy in patients with long-term HDU medication.
Collapse
|
17
|
Insecticidal, Antimalarial, and Antileishmanial Effects of Royal Jelly and Its Three Main Fatty Acids, trans-10-Hydroxy-2-decenoic Acid, 10-Hydroxydecanoic Acid, and Sebacic Acid. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:7425322. [PMID: 35096117 PMCID: PMC8794668 DOI: 10.1155/2022/7425322] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 12/31/2021] [Accepted: 01/04/2022] [Indexed: 12/24/2022]
Abstract
Natural products and their derivatives as an inexpensive, accessible, and useful alternative medicine are broadly applied for the treatment of a wide range of diseases and infectious ones. The present study was designed to evaluate the insecticidal, antimalarial, antileishmanial, and cytotoxic effects of royal jelly and its three main fatty acids (trans-10-hydroxy-2-decenoic acid (10-H2DA), 10-hydroxydecanoic acid (10-HDAA), sebacic acid (1,10-decanedioic acid)). Insecticidal activity of RJ and 10-H2DA, 10-HDAA, and sebacic acid was performed against healthy 4th instar larvae at 25 ± 2°C. Antiplasmodial and antileishmanial effects of RJ and 10-H2DA, 10-HDAA, and sebacic acid were also performed against chloroquine-resistant Plasmodium falciparum K1-strain and Leishmania major amastigotes according to the Malstat method and macrophage model, respectively. In addition, the level of nitric oxide (NO) production in J774-A1 macrophages cells, plasma membrane permeability, and caspase-3-like activity and cytotoxicity effects of RJ and 10-H2DA, 10-HDAA, and sebacic acid against human embryonic kidney 293 (HEK239T cells) were evaluated. Considering the insecticidal activity, the results showed that the lethal concentration 50% value for RJ, 10-H2DA, 10-HDAA, and sebacic acid was 24.6, 31.4, 37.8, and 44.7 μg/mL μg/mL, respectively. RJ, 10-H2DA, 10-HDAA, and sebacic acid showed potent (P < 0.0001) antileishmanial effects with IC50 values ranging from 2.4 to 8.4 μg/mL. Various concentrations of RJ, 10-H2DA, 10-HDAA, and sebacic acid significantly (P < 0.05) increased the production of NO, plasma membrane permeability, and caspase-3-like activity level as a dose-dependent response. Considering the cytotoxicity, SIs > 10 of these compounds exhibited their specificity to parasites and safety against human HEK239T normal cells. The results of the present investigation revealed the promising insecticidal, antimalarial, and antileishmanial effects of RJ and its three main fatty acids (10-H2DA, 10-HDAA, and sebacic acid). However, more studies are required to confirm the mechanisms of action mode of these compounds as well as their efficacy in animal models and clinical settings.
Collapse
|
18
|
Sidor E, Miłek M, Zaguła G, Bocian A, Dżugan M. Searching for Differences in Chemical Composition and Biological Activity of Crude Drone Brood and Royal Jelly Useful for Their Authentication. Foods 2021; 10:foods10092233. [PMID: 34574343 PMCID: PMC8466182 DOI: 10.3390/foods10092233] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/15/2021] [Accepted: 09/18/2021] [Indexed: 11/21/2022] Open
Abstract
Drone brood is a little-known bee product which is frequently considered as a male equivalent of royal jelly and is sometimes used as its adulterant. The aim of the study was to compare the chemical composition and biological activity of both bee products originated from the same apiaries (n = 3) limiting the influence of genetic and environmental factors. Moreover, for drone brood study covered testing three stages of larval development (days 7, 11, and 14). The comparison included mineral composition (ICP-OES method), protein content and protein profile (SDS-PAGE), testosterone and estradiol content (ELISA tests). HPTLC method was used to analyze of sugar, amino acids, and polyphenolic profile of drone brood and royal jelly. Moreover, their antioxidant and enzymatic properties were compared. A lot of similarities between drone brood and royal jelly were found in terms of chemical components. However, drone brood was more abundant in iron and manganese, reducing sugars and some amino acids, especially proline, tyrosine, and leucine. It contained more testosterone (especially on the 14th day) and estradiol (on the 7th day). The greatest differences in the enzymatic activities and polyphenolic profile were found. Diastase and α-glucosidase activity were found as specific enzymes of the drone brood. Similarly, ferulic and ellagic acids were characteristic for brood and were not present in royal jelly. The study showed a lot of similar features for both tested bee products, however, some specific markers which can serve to differentiate drone brood and royal jelly were found.
Collapse
Affiliation(s)
- Ewelina Sidor
- Department of Chemistry and Food Toxicology, Institute of Food Technology and Nutrition, University of Rzeszów, Ćwiklińskiej 1a St., 35-601 Rzeszów, Poland; (E.S.); (M.M.)
| | - Michał Miłek
- Department of Chemistry and Food Toxicology, Institute of Food Technology and Nutrition, University of Rzeszów, Ćwiklińskiej 1a St., 35-601 Rzeszów, Poland; (E.S.); (M.M.)
| | - Grzegorz Zaguła
- Department of Bioenergetics, Food Analysis and Microbiology, Institute of Food Technology and Nutrition, College of Natural Science, Rzeszów University, Ćwiklińskiej 2D St., 35-601 Rzeszów, Poland;
| | - Aleksandra Bocian
- Department of Biotechnology and Bioinformatics, Rzeszów University of Technology, Powstańców Warszawy 6 St., 35-959 Rzeszów, Poland;
| | - Małgorzata Dżugan
- Department of Chemistry and Food Toxicology, Institute of Food Technology and Nutrition, University of Rzeszów, Ćwiklińskiej 1a St., 35-601 Rzeszów, Poland; (E.S.); (M.M.)
- Correspondence:
| |
Collapse
|
19
|
Nainu F, Masyita A, Bahar MA, Raihan M, Prova SR, Mitra S, Emran TB, Simal-Gandara J. Pharmaceutical Prospects of Bee Products: Special Focus on Anticancer, Antibacterial, Antiviral, and Antiparasitic Properties. Antibiotics (Basel) 2021; 10:antibiotics10070822. [PMID: 34356743 PMCID: PMC8300842 DOI: 10.3390/antibiotics10070822] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/01/2021] [Accepted: 07/02/2021] [Indexed: 12/12/2022] Open
Abstract
Bee products have long been used in traditional healing practices to treat many types of disorders, including cancer and microbial-related diseases. Indeed, several chemical compounds found in bee products have been demonstrated to display anticancer, antibacterial, antiviral, and antiparasitic properties. With the improvement of research tools and in view of recent advances related to bee products, this review aims to provide broad yet detailed insight into the pharmaceutical prospects of bee products such as honey, propolis, bee pollen, royal jelly, bee bread, beeswax, and bee venom, in the domain of cancer and infectious disease management. Available literature confirms the efficacy of these bee products in the alleviation of cancer progression, inhibition of bacterial and viral proliferation, and mitigation of parasitic-related symptoms. With such potentials, bioactive components isolated from the bee products can be used as an alternative approach in the long-run effort to improve humans’ health at a personal and community level.
Collapse
Affiliation(s)
- Firzan Nainu
- Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Sulawesi Selatan, Indonesia; (A.M.); (M.A.B.); (M.R.)
- Correspondence: (F.N.); (T.B.E.); (J.S.-G.); Tel.: +62-821-9131-0384 (F.N.); +88-01819-942214 (T.B.E.); +34-988-387-001 (J.S.-G.)
| | - Ayu Masyita
- Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Sulawesi Selatan, Indonesia; (A.M.); (M.A.B.); (M.R.)
| | - Muh. Akbar Bahar
- Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Sulawesi Selatan, Indonesia; (A.M.); (M.A.B.); (M.R.)
| | - Muhammad Raihan
- Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Sulawesi Selatan, Indonesia; (A.M.); (M.A.B.); (M.R.)
| | - Shajuthi Rahman Prova
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka 1000, Bangladesh; (S.R.P.); (S.M.)
| | - Saikat Mitra
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka 1000, Bangladesh; (S.R.P.); (S.M.)
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong 4381, Bangladesh
- Correspondence: (F.N.); (T.B.E.); (J.S.-G.); Tel.: +62-821-9131-0384 (F.N.); +88-01819-942214 (T.B.E.); +34-988-387-001 (J.S.-G.)
| | - Jesus Simal-Gandara
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Food Science and Technology, University of Vigo, Ourense Campus, E32004 Ourense, Spain
- Correspondence: (F.N.); (T.B.E.); (J.S.-G.); Tel.: +62-821-9131-0384 (F.N.); +88-01819-942214 (T.B.E.); +34-988-387-001 (J.S.-G.)
| |
Collapse
|
20
|
Guo J, Wang Z, Chen Y, Cao J, Tian W, Ma B, Dong Y. Active components and biological functions of royal jelly. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104514] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
21
|
Gevorgyan S, Schubert R, Yeranosyan M, Gabrielyan L, Trchounian A, Lorenzen K, Trchounian K. Antibacterial activity of royal jelly-mediated green synthesized silver nanoparticles. AMB Express 2021; 11:51. [PMID: 33796941 PMCID: PMC8017077 DOI: 10.1186/s13568-021-01213-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 03/24/2021] [Indexed: 12/17/2022] Open
Abstract
The application of green synthesis in nanotechnology is growing day by day. It's a safe and eco-friendly alternative to conventional methods. The current research aimed to study raw royal jelly's potential in the green synthesis of silver nanoparticles and their antibacterial activity. Royal jelly served as a reducing and oxidizing agent in the green synthesis technology of colloidal silver nanoparticles. The UV-Vis maximum absorption at ~ 430 nm and fluorescence emission peaks at ~ 487 nm confirmed the presence of Ag NPs. Morphology and structural properties of Ag NPs and the effect of ultrasound studies revealed: (i) the formation of polydispersed and spherical particles with different sizes; (ii) size reduction and homogeneity increase by ultrasound treatment. Antibacterial activity of different concentrations of green synthesized Ag NPs has been assessed on Gram-negative S. typhimurium and Gram-positive S. aureus, revealing higher sensitivity on Gram-negative bacteria.
Collapse
Affiliation(s)
- Susanna Gevorgyan
- Department of Biochemistry, Microbiology and Biotechnology, Yerevan State University, Alex Manoogian 1, 0025, Yerevan, Armenia
| | - Robin Schubert
- European X-ray Free Electron Laser GmbH, Holzkoppel 4, 22869, Schenefeld, Germany
| | - Mkrtich Yeranosyan
- Institute of Chemical Physics, NAS RA, Paruir Sevak 5/2, 0014, Yerevan, Armenia
- Military Aviation University Named After Marshal A. Khamperyants, Arshakunyats 89, 0007, Yerevan, Armenia
| | - Lilit Gabrielyan
- Department of Biochemistry, Microbiology and Biotechnology, Yerevan State University, Alex Manoogian 1, 0025, Yerevan, Armenia
| | - Armen Trchounian
- Department of Biochemistry, Microbiology and Biotechnology, Yerevan State University, Alex Manoogian 1, 0025, Yerevan, Armenia
| | - Kristina Lorenzen
- European X-ray Free Electron Laser GmbH, Holzkoppel 4, 22869, Schenefeld, Germany
| | - Karen Trchounian
- Department of Biochemistry, Microbiology and Biotechnology, Yerevan State University, Alex Manoogian 1, 0025, Yerevan, Armenia.
| |
Collapse
|
22
|
Mahdivand N, Shalizar-Jalali A, Nejati V, Najafi G, Rahmani F. Adaptogenic potential of royal jelly in reproductive system of heat stress-exposed male rats. J Therm Biol 2021; 96:102827. [PMID: 33627267 DOI: 10.1016/j.jtherbio.2020.102827] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 11/23/2020] [Accepted: 12/31/2020] [Indexed: 11/16/2022]
Abstract
Testicular heat stress (HS) can lead to testicular tissue destruction and spermatogenesis disturbances. Royal Jelly (RJ) has been introduced as a potent antioxidant. We investigated the effects of RJ on testicular tissue, oxidative stress and sperm apoptosis in HS-exposed rats. Compared to HS-exposed groups, RJ co-treatment could improve testosterone reduction and histopathological damages. The RJ co-administration decreased MDA level in testicular tissue, while TAC and CAT levels were remarkably increased compared to HS-exposed groups. Moreover, significant higher expression level of Bcl-2 and lower expression levels of P53 and Caspase-3 were seen following RJ co-administration compared to HS-exposed groups. Our data suggest that RJ can effectively ameliorate experimental HS-induced testiculopathies in rats through testicular antioxidant defense system restoration and germ cells apoptosis regulation.
Collapse
Affiliation(s)
- Noushin Mahdivand
- Department of Biology, Faculty of Science, Urmia University, Urmia, Iran
| | - Ali Shalizar-Jalali
- Department of Basic Sciences, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran.
| | - Vahid Nejati
- Department of Biology, Faculty of Science, Urmia University, Urmia, Iran
| | - Gholamreza Najafi
- Department of Basic Sciences, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| | - Fatemeh Rahmani
- Department of Biology, Faculty of Science, Urmia University, Urmia, Iran
| |
Collapse
|
23
|
Al-Hatamleh MAI, Hatmal MM, Sattar K, Ahmad S, Mustafa MZ, Bittencourt MDC, Mohamud R. Antiviral and Immunomodulatory Effects of Phytochemicals from Honey against COVID-19: Potential Mechanisms of Action and Future Directions. Molecules 2020; 25:E5017. [PMID: 33138197 PMCID: PMC7672575 DOI: 10.3390/molecules25215017] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 10/23/2020] [Accepted: 10/27/2020] [Indexed: 12/15/2022] Open
Abstract
The new coronavirus disease (COVID-19), caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), has recently put the world under stress, resulting in a global pandemic. Currently, there are no approved treatments or vaccines, and this severe respiratory illness has cost many lives. Despite the established antimicrobial and immune-boosting potency described for honey, to date there is still a lack of evidence about its potential role amid COVID-19 outbreak. Based on the previously explored antiviral effects and phytochemical components of honey, we review here evidence for its role as a potentially effective natural product against COVID-19. Although some bioactive compounds in honey have shown potential antiviral effects (i.e., methylglyoxal, chrysin, caffeic acid, galangin and hesperidinin) or enhancing antiviral immune responses (i.e., levan and ascorbic acid), the mechanisms of action for these compounds are still ambiguous. To the best of our knowledge, this is the first work exclusively summarizing all these bioactive compounds with their probable mechanisms of action as antiviral agents, specifically against SARS-CoV-2.
Collapse
Affiliation(s)
- Mohammad A. I. Al-Hatamleh
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia; (M.A.I.A.-H.); (S.A.)
| | - Ma’mon M. Hatmal
- Department of Medical Laboratory Sciences, Faculty of Applied Health Sciences, The Hashemite University, Zarqa 13133, Jordan;
| | - Kamran Sattar
- Department of Medical Education, College of Medicine, King Saud University, Riyadh 11472, Saudi Arabia;
| | - Suhana Ahmad
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia; (M.A.I.A.-H.); (S.A.)
| | - Mohd Zulkifli Mustafa
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia;
- Hospital Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
| | - Marcelo De Carvalho Bittencourt
- Université de Lorraine, CNRS, UMR 7365, IMoPA, F-54000 Nancy, France;
- Université de Lorraine, CHRU-Nancy, Laboratoire d’Immunologie, F-54000 Nancy, France
| | - Rohimah Mohamud
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia; (M.A.I.A.-H.); (S.A.)
- Hospital Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
| |
Collapse
|
24
|
Mokaya HO, Njeru LK, Lattorff HMG. African honeybee royal jelly: Phytochemical contents, free radical scavenging activity, and physicochemical properties. FOOD BIOSCI 2020. [DOI: 10.1016/j.fbio.2020.100733] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
25
|
You MM, Liu YC, Chen YF, Pan YM, Miao ZN, Shi YZ, Si JJ, Chen ML, Hu FL. Royal jelly attenuates nonalcoholic fatty liver disease by inhibiting oxidative stress and regulating the expression of circadian genes in ovariectomized rats. J Food Biochem 2020; 44:e13138. [PMID: 31894585 DOI: 10.1111/jfbc.13138] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 12/12/2019] [Accepted: 12/15/2019] [Indexed: 02/07/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) has a high incidence in postmenopausal women and is accompanied by insulin resistance, obesity, and dyslipidemia. Royal jelly (RJ), a natural substance derived from hive, possesses numerous health-beneficial properties. Here, we evaluated the effects of RJ (150, 300, and 450 mg kg-1 day-1 , 8 weeks) on NAFLD in ovariectomized (OVX) rats. Based on the results, RJ ameliorated the degree of anxiety, improved serum lipid profile, and attenuated the hepatic steatosis and liver injury in OVX rats. Furthermore, the protective effects of RJ could be attributed to its antioxidant properties, which enhance the levels of hepatic antioxidant enzymes. The qRT-PCR results also suggest that RJ improves the disturbances of circadian genes by downregulating their expression, including that of Per1 and Per 2, in the liver of OVX rats. Altogether, our findings suggest that RJ may be a promising agent for the treatment of NAFLD. PRACTICAL APPLICATIONS: Postmenopausal women are at an increased risk of NAFLD. Currently, there are no licensed therapies for NAFLD. Although hormone replacement therapy (HRT) is reported to inhibit the development of NAFLD, it causes unexpected adverse effects. As HRT is controversial, the use of natural supplements to counteract the detrimental effects of menopause has recently attracted more attention. RJ is a natural product secreted from the hypopharyngeal and mandibular glands of worker bees. The present study illustrates the protective effect of the natural product, RJ, and its underlying mechanisms on NAFLD. This is the first study to assess the effect of RJ on NAFLD under estrogen deficiency. Such findings contribute to the further utilization of RJ, which might serve as a promising therapeutic option and natural food for the treatment of NAFLD.
Collapse
Affiliation(s)
- Meng-Meng You
- College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Yi-Chen Liu
- College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Yi-Fan Chen
- College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Yong-Ming Pan
- Experimental Animal Research Center, Zhejiang Chinese Medical University, Hangzhou, China
| | - Zhuo-Ning Miao
- College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Yi-Zhen Shi
- College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Juan-Juan Si
- College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Min-Li Chen
- Experimental Animal Research Center, Zhejiang Chinese Medical University, Hangzhou, China
| | - Fu-Liang Hu
- College of Animal Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
26
|
Trans-10-hydroxy-2-decenoic acid protects against LPS-induced neuroinflammation through FOXO1-mediated activation of autophagy. Eur J Nutr 2019; 59:2875-2892. [PMID: 31820078 DOI: 10.1007/s00394-019-02128-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 10/22/2019] [Indexed: 12/14/2022]
Abstract
PURPOSE Neuroinflammation is thought to be associated with the pathogenesis of a series of neurodegenerative diseases. We have previously reported that royal jelly (RJ) has an anti-inflammatory effect on microglial BV-2 cells. However, components contributing to the effect of RJ were largely unexplored. The aim of this study was to assess whether trans-10-hydroxy-2-decenoic acid (10-HDA), the exclusive fatty acid in RJ, can alleviate neuroinflammation and to further explore the underlying mechanisms. METHODS Immunohistochemistry staining, ELISA, qRT-PCR and Western blot were used to assess the effect of 10-HDA on LPS-induced neuroinflammation both in vivo and in vitro. To determine the extent of inflammatory changes after 10-HDA treatment, RNAseq transcriptomic analysis was conducted. RESULTS 10-HDA pretreatment significantly reduced the production of pro-inflammatory mediators in LPS-treated C57BL/6J mice and microglial BV-2 cells. 10-HDA inhibited the activation of the TNF-α/NF-κB axis and NLRP3 inflammasome-IL-1β pathway, which may be the anti-neuroinflammatory mechanism of 10-HDA. We also demonstrated that 10-HDA triggered cell autophagy, as evidenced by elevated levels of microtubule-associated protein 1 light chain 3-II (LC3-II) and decreased expression of SQSTM1. More importantly, 10-HDA increased the transcriptional activity of FOXO1 by increasing FOXO1 nuclear localization. Inhibition of FOXO1 and autophagy using chemical inhibitors markedly blunted the effect of 10-HDA on the TNF-α pathway and NLRP3 inflammasome-IL-1β pathway, indicating that 10-HDA alleviates neuroinflammation in BV-2 cells by modulating FOXO1-mediated autophagy. CONCLUSIONS 10-HDA may be a promising agent for various neuroinflammation-associated diseases.
Collapse
|
27
|
Tohamy HG, Gad El-Karim DR, El-Sayed YS. Attenuation potentials of royal jelly against hydroxyurea-induced infertility through inhibiting oxidation and release of pro-inflammatory cytokines in male rats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:21524-21534. [PMID: 31127524 DOI: 10.1007/s11356-019-05521-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 05/17/2019] [Indexed: 05/26/2023]
Abstract
Hydroxyurea (HDU), a class of antineoplastic drugs, has a powerful efficacy in the treatment of several types of malignancies. However, it has multiple adverse effects including reduced fertility, especially in males. Thus, 60 male albino rats were used to investigate the chemoprotective potentials of royal jelly on HDU-induced testicular damage. Animals were gastro-gavaged with HDU (225 or 450 mg kg-1 bw day-1) before royal jelly (100 mg kg-1 bw day-1) for 60 days. Blood samples and testicles were collected, and spermatozoon was obtained. In a dose-dependent manner, the sperm count, motility and liveability, and testosterone, GSH, and catalase concentrations were decreased in HDU groups, whereas MDA, FSH, LH, IL-6, and IFN-γ expression levels were increased. Germinal epithelium degeneration, germ cell sloughing, reduction in the number of luminal spermatozoa, interstitial congestion, and severe leukocyte infiltration besides no glandular secretion in most of the acini were identified. However, royal jelly intake in HDU-treated rats successfully improved sperm quality, hormonal and antioxidant status, and reproductive organ histoarchitecture. Thus, it could be concluded that royal jelly is endowed with antioxidative and anti-inflammatory activities and could be, therefore, used as an adjuvant remedy to improve HDU-induced male subfertility.
Collapse
Affiliation(s)
- Hossam G Tohamy
- Department of Pathology, Faculty of Veterinary Medicine, Alexandria University, Alexandria, Egypt
| | - Dina R Gad El-Karim
- Department of Clinical Pathology, Faculty of Veterinary Medicine, Alexandria University, Alexandria, Egypt
| | - Yasser S El-Sayed
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Damanhour University, Damanhour, 22511, Egypt.
| |
Collapse
|
28
|
Effects of Royal Jelly Administration on Lipid Profile, Satiety, Inflammation, and Antioxidant Capacity in Asymptomatic Overweight Adults. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 2019:4969720. [PMID: 31312222 PMCID: PMC6595335 DOI: 10.1155/2019/4969720] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 05/15/2019] [Accepted: 05/26/2019] [Indexed: 02/07/2023]
Abstract
Objectives Obesity and overweight are chronic disorders of multifactorial origin that are characterized by high oxidative status and by chronic activation of macrophages in peripheral tissues. Effective therapeutic approaches to lower inflammation and oxidative stress are currently of general interest. Royal jelly (RJ) is a functional food with a broad range of pharmacological activities, mainly used by healthy individuals or borderline patients to protect themselves against disease onset. The objective of this randomized, double-blind, placebo-controlled trial was to investigate the effects of RJ supplementation on metabolic profile and oxidative and inflammatory parameters in asymptomatic overweight adults, considered at an early stage of developing metabolic syndrome. Material and Methods The experimental group (n=30) was given RJ and the control group (n=30) was provided with a placebo for eight weeks. Anthropometric, biochemical parameters, biomarkers of oxidative stress, and inflammation were assessed at baseline, after 4 and 8 weeks of the intervention, and after additional 2 weeks of follow up. Results and Conclusion Compared with the placebo, RJ supplementation demonstrated a statistically significant decrease in total cholesterol (6.7%; p=0.041) and inflammatory marker C-reactive protein (19%; p=0.027), whereas significant increases were observed in anti-inflammatory marker adiponectin (34%; p=0.011), endogenous antioxidants bilirubin (35%; p=0.002) and uric acid (5%; p=0.018), total antioxidant capacity in serum (54%; p=0.005), and leptin (17%; p=0.025). The present study demonstrated positive effects of RJ administration on lipid profile, satiety, inflammation, and antioxidant capacity in overweight adults. Therefore, our study supports the benefits of RJ supplementation for the improvement of human health.
Collapse
|
29
|
Pandeya PR, Lamichhane R, Lee KH, Kim SG, Lee DH, Lee HK, Jung HJ. Bioassay-guided isolation of active anti-adipogenic compound from royal jelly and the study of possible mechanisms. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 19:33. [PMID: 30696450 PMCID: PMC6352437 DOI: 10.1186/s12906-018-2423-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 12/21/2018] [Indexed: 12/20/2022]
Abstract
Background Royal jelly (RJ) has been used traditionally for dietary, cosmetic and health purposes for a long time in different parts of the world. Scientific studies have also shown its numerous health-promoting properties including hypoglycemic and anti-hypercholesterolemic action. In this study, we investigated the anti-adipogenic activity of RJ in 3 T3-L1 cells and isolated the major responsible root component for the activity. Methods An active anti-adipogenic compound was isolated through bioassay-guided isolation process by successive treatment of RJ and its active fractions on 3 T3-L1 cell line. (E)-10-Hydroxy-2-decenoic Acid (10-HDA) was identified using NMR spectroscopy and ultra-performance liquid chromatography (UPLC). As 10-HDA showed significant anti-adipogenic activity with Oil Red O staining and TG content assay on 3 T3-L1 adipocytes, further study was carried out in molecular level for the expression of adipogenic transcription factors such as PPARγ, FABP4, C/EBPα, SREBP-1c, and Leptin. The effect of 10-HDA on preliminary molecules such as pAkt, pERK, C/EBPβ, and pCREB were studied in the early stage of adipogenesis. The effect of 10-HDA on reactive oxygen species (ROS) production in fully differentiating adipocytes was measured by nitro blue tetrazolium (NBT) assay. Result Results showed that triacylglycerol accumulation and ROS production was markedly suppressed by 10-HDA. Preliminary molecules such as pAkt, pERK, pCERB, and C/EBPβ were found to be down-regulated by 10-HDA, which led to down-regulation of key adipogenic transcription factors such as PPARγ, FABP4, CEBPα, SREBP-1c, and Leptin on 3 T3-L1 adipocytes. Conclusion Our results suggest that anti-adipogenesis of 10-HDA on 3 T3-L1 adipocyte takes place via two mechanisms: inhibition of cAMP/PKA pathway and inhibition of p-Akt and MAPK dependent insulin signaling pathway. So it is considered that 10-HDA, a major component of RJ, can be a potential therapeutic medicine for obesity. Electronic supplementary material The online version of this article (10.1186/s12906-018-2423-2) contains supplementary material, which is available to authorized users.
Collapse
|
30
|
Araki K, Miyata Y, Ohba K, Nakamura Y, Matsuo T, Mochizuki Y, Sakai H. Oral Intake of Royal Jelly Has Protective Effects Against Tyrosine Kinase Inhibitor-Induced Toxicity in Patients with Renal Cell Carcinoma: A Randomized, Double-Blinded, Placebo-Controlled Trial. MEDICINES 2018; 6:medicines6010002. [PMID: 30577515 PMCID: PMC6473390 DOI: 10.3390/medicines6010002] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 12/17/2018] [Accepted: 12/18/2018] [Indexed: 12/13/2022]
Abstract
Background: Although tyrosine kinase inhibitors (TKIs) are still recommended as the standard therapy in renal cell carcinoma (RCC), the high frequency of adverse events is a weakness of this therapy. Because royal jelly (RJ) possesses anti-inflammatory and antioxidant properties, we assessed its protective effects on TKI-induced toxicities in RCC patients. Methods: We enrolled 33 patients with advanced RCC who were assigned to start TKI therapy in combination with a randomized, double-blinded, placebo-controlled RJ trial consisting of a placebo group with 17 subjects and an RJ group with 16 subjects. Results: Fatigue and anorexia frequencies in the RJ group were significantly lower than in the placebo group (p = 0.003 and 0.015, respectively). A statistically significant correlation between RJ and fatigue or anorexia was detected in sunitinib-treated patients. The dose reduction- or discontinuation-free periods were significantly longer (p = 0.013) in the RJ group than in the placebo group. Furthermore, similar observations were made in sunitinib-treated patients (p = 0.016). Conclusions: Our clinical trial showed that RJ exerted protective effects against TKI-induced fatigue and anorexia and lowered TKI dose reduction or discontinuation. Hence, RJ is beneficial for maintaining the quality of life and medication compliance in TKI-treated RCC patients.
Collapse
Affiliation(s)
- Kyohei Araki
- Department of Urology, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, Nagasaki 852-8501, Japan.
| | - Yasuyoshi Miyata
- Department of Urology, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, Nagasaki 852-8501, Japan.
| | - Kojiro Ohba
- Department of Urology, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, Nagasaki 852-8501, Japan.
| | - Yuichiro Nakamura
- Department of Urology, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, Nagasaki 852-8501, Japan.
| | - Tomohiro Matsuo
- Department of Urology, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, Nagasaki 852-8501, Japan.
| | - Yasushi Mochizuki
- Department of Urology, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, Nagasaki 852-8501, Japan.
| | - Hideki Sakai
- Department of Urology, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, Nagasaki 852-8501, Japan.
| |
Collapse
|
31
|
Anti-Cancer and Protective Effects of Royal Jelly for Therapy-Induced Toxicities in Malignancies. Int J Mol Sci 2018; 19:ijms19103270. [PMID: 30347885 PMCID: PMC6214034 DOI: 10.3390/ijms19103270] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Revised: 10/15/2018] [Accepted: 10/17/2018] [Indexed: 02/07/2023] Open
Abstract
Royal jelly (RJ) is a glandular secretion produced by worker honeybees and is a special food for the queen honeybee. It results in a significant prolongation of the lifespan of the queen honeybee compared with the worker honeybees through anti-inflammatory, anti-oxidant and anti-microbial activities. Consequently, RJ is used as cosmetic and dietary supplement throughout the world. In addition, in vitro studies and animal experiments have demonstrated that RJ inhibits cell proliferation and stimulates apoptosis in various types of malignant cells and affects the production of various chemokines, anti-oxidants and growth factors and the expression of cancer-related molecules in patients with malignancies, especially in patients treated with anti-cancer agents. Therefore, RJ is thought to exert anti-cancer effects on tumor growth and exhibit protective functions against drug-induced toxicities. RJ has also been demonstrated to be useful for suppression of adverse events, the maintenance of the quality of life during treatment and the improvement of prognosis in animal models and patients with malignancies. To understand the mechanisms of the beneficial effects of RJ, knowledge of the changes induced at the molecular level by RJ with respect to cell survival, inflammation, oxidative stress and other cancer-related factors is essential. In addition, the effects of combination therapies of RJ and other anti-cancer agents or natural compounds are important to determine the future direction of RJ-based treatment strategies. Therefore, in this review, we have covered the following five issues: (1) the anti-cancer effects of RJ and its main component, 10-hydroxy-2-decenoic acid; (2) the protective effects of RJ against anti-cancer agent-induced toxicities; (3) the molecular mechanisms of such beneficial effects of RJ; (4) the safety and toxicity of RJ; and (5) the future directions of RJ-based treatment strategies, with a discussion on the limitations of the study of the biological activities of RJ.
Collapse
|
32
|
Chen YF, You MM, Liu YC, Shi YZ, Wang K, Lu YY, Hu FL. Potential protective effect of Trans-10-hydroxy-2-decenoic acid on the inflammation induced by Lipoteichoic acid. J Funct Foods 2018. [DOI: 10.1016/j.jff.2018.03.029] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
|
33
|
Kocot J, Kiełczykowska M, Luchowska-Kocot D, Kurzepa J, Musik I. Antioxidant Potential of Propolis, Bee Pollen, and Royal Jelly: Possible Medical Application. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:7074209. [PMID: 29854089 PMCID: PMC5954854 DOI: 10.1155/2018/7074209] [Citation(s) in RCA: 233] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 03/25/2018] [Accepted: 04/02/2018] [Indexed: 02/08/2023]
Abstract
Honeybees products comprise of numerous substances, including propolis, bee pollen, and royal jelly, which have long been known for their medicinal and health-promoting properties. Their wide biological effects have been known and used since antiquity. Bee products are considered to be a potential source of natural antioxidants such as flavonoids, phenolic acids, or terpenoids. Nowadays, the still growing concern in natural substances capable of counteracting the effects of oxidative stress underlying the pathogenesis of numerous diseases, such as neurodegenerative disorders, cancer, diabetes, and atherosclerosis, as well as negative effects of different harmful factors and drugs, is being observed. Having regarded the importance of acquiring drugs from natural sources, this review is aimed at updating the current state of knowledge of antioxidant capacity of selected bee products, namely, propolis, bee pollen, and royal jelly, and of their potential antioxidant-related therapeutic applications. Moreover, the particular attention has been attributed to the understanding of the mechanisms underlying antioxidant properties of bee products. The influence of bee species, plant origin, geographic location, and seasonality as well as type of extraction solutions on the composition of bee products extracts were also discussed.
Collapse
Affiliation(s)
- Joanna Kocot
- Department of Medical Chemistry, Medical University of Lublin, 4A Chodźki Street, 20-093 Lublin, Poland
| | - Małgorzata Kiełczykowska
- Department of Medical Chemistry, Medical University of Lublin, 4A Chodźki Street, 20-093 Lublin, Poland
| | - Dorota Luchowska-Kocot
- Department of Medical Chemistry, Medical University of Lublin, 4A Chodźki Street, 20-093 Lublin, Poland
| | - Jacek Kurzepa
- Department of Medical Chemistry, Medical University of Lublin, 4A Chodźki Street, 20-093 Lublin, Poland
| | - Irena Musik
- Department of Medical Chemistry, Medical University of Lublin, 4A Chodźki Street, 20-093 Lublin, Poland
| |
Collapse
|
34
|
Caixeta DC, Teixeira RR, Peixoto LG, Machado HL, Baptista NB, de Souza AV, Vilela DD, Franci CR, Salmen Espindola F. Adaptogenic potential of royal jelly in liver of rats exposed to chronic stress. PLoS One 2018; 13:e0191889. [PMID: 29377921 PMCID: PMC5788357 DOI: 10.1371/journal.pone.0191889] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 01/12/2018] [Indexed: 12/21/2022] Open
Abstract
Restraint and cold stress increase both corticosterone and glycemia, which lead to oxidative damages in hepatic tissue. This study assessed the effect of royal jelly (RJ) supplementation on the corticosterone level, glycemia, plasma enzymes and hepatic antioxidant system in restraint and cold stressed rats. Wistar rats were allocated into no-stress, stress, no-stress supplemented with RJ and stress supplemented with RJ groups. Initially, RJ (200mg/Kg) was administered for fourteen days and stressed groups were submitted to chronic stress from the seventh day. The results showed that RJ supplementation decreases corticosterone levels and improves glycemia control after stress induction. RJ supplementation also decreased the body weight, AST, ALP and GGT. Moreover, RJ improved total antioxidant capacity, SOD activity and reduced GSH, GR and lipoperoxidation in the liver. Thus, RJ supplementation reestablished the corticosterone levels and the hepatic antioxidant system in stressed rats, indicating an adaptogenic and hepatoprotective potential of RJ.
Collapse
Affiliation(s)
| | - Renata Roland Teixeira
- Institute of Biotechnology, Federal University of Uberlândia, Uberlândia, Minas Gerais, Brazil
| | - Leonardo Gomes Peixoto
- Institute of Biotechnology, Federal University of Uberlândia, Uberlândia, Minas Gerais, Brazil
| | - Helen Lara Machado
- Institute of Biotechnology, Federal University of Uberlândia, Uberlândia, Minas Gerais, Brazil
| | | | - Adriele Vieira de Souza
- Institute of Biotechnology, Federal University of Uberlândia, Uberlândia, Minas Gerais, Brazil
| | - Danielle Diniz Vilela
- Institute of Biotechnology, Federal University of Uberlândia, Uberlândia, Minas Gerais, Brazil
| | | | - Foued Salmen Espindola
- Institute of Biotechnology, Federal University of Uberlândia, Uberlândia, Minas Gerais, Brazil
- * E-mail:
| |
Collapse
|
35
|
Elmastaş M, Demir A, Genç N, Dölek Ü, Güneş M. Changes in flavonoid and phenolic acid contents in some Rosa species during ripening. Food Chem 2017; 235:154-159. [PMID: 28554620 DOI: 10.1016/j.foodchem.2017.05.004] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 04/29/2017] [Accepted: 05/01/2017] [Indexed: 10/19/2022]
Abstract
In this study, fruits of Rosa dumalis, R. canina, and R. villosa were cultivated and harvested at six different time points based on colour changes during the ripening period. Phenolic acid and flavonoid contents in fresh hypanthium were determined by HPLC-DAD. Derivatives of organic acid (gallic, caffeic, p-coumaric, and ferulic acids) and flavonoid (catechin, eriocitrin, rutin, apigenin, quercetin, apigenin-7-O-glucoside and kaempferol) were quantified using calibration curves. Phenolic acid contents of the Rosa species increased nonlinearly depending on the harvesting time. The highest amount of catechin was found at the fifth harvest time point (H-5) ranged from 323 to 472mgkg-1. The highest level of caffeic acid content was found in the R. dumalis ranged from 24 to 77mgkg-1. The total amount of flavonoid increased up to the fifth harvest time point (H-5), whereas the amount of total phenolic acid tended to decrease until the same harvest period.
Collapse
Affiliation(s)
- Mahfuz Elmastaş
- Department of Chemistry, Faculty of Science and Arts, Gaziosmanpaşa University, Tokat, Turkey.
| | - Ayşe Demir
- Department of Chemistry, Faculty of Science and Arts, Gaziosmanpaşa University, Tokat, Turkey.
| | - Nusret Genç
- Department of Chemistry, Faculty of Science and Arts, Gaziosmanpaşa University, Tokat, Turkey.
| | - Ümit Dölek
- Gökhöyük Vocational and Technical Anatolian High School, Amasya, Turkey.
| | - Mehmet Güneş
- Gaziosmanpaşa University Agricultural Faculty Department of Horticulture, Tokat, Turkey.
| |
Collapse
|