1
|
Huang X, Huang L, Tao H, Ren M, Yan L. Nonlinear association between hemoglobin glycation index and mortality in ischemic stroke Patients: Insights from the MIMIC-IV database. Diabetes Res Clin Pract 2025; 224:112105. [PMID: 40096948 DOI: 10.1016/j.diabres.2025.112105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 03/02/2025] [Accepted: 03/13/2025] [Indexed: 03/19/2025]
Abstract
AIMS Hemoglobin glycation index (HGI) is closely associated with adverse outcomes in several diseases. However, few studies have investigated the correlation between HGI and prognosis in patients with critical ischemic stroke. METHODS A cohort of patients was established from the Medical Information Mart for Intensive Care IV (MIMIC-IV) database. Kaplan-Meier analysis, multivariate regression models, and restricted cubic splines (RCS) were used to investigate the associations between HGI and different outcomes. Mediation models were constructed to determine the mediating role of white blood cell (WBC) counts. RESULTS This study included 2,332 participants. In-hospital mortality differs significantly across HGI groups (24.43 %, 11.82 %, and 10.14 %, P < 0.001). Multivariate regression analyses found that lower HGI was significantly associated with greater mortality risk. Nonlinear analyses revealed an L-shaped association between HGI and short-term mortality (30-day and in-hospital), while a reverse J-shaped relationship emerged for long-term (365-day) mortality. Mediation analysis revealed that WBC counts mediated the association with proportions (%) of 33.73, 19.65, and 30.00, respectively. CONCLUSION Lower HGI is consistently related to poorer outcomes in patients with critical ischemic stroke. Higher HGI could be a protective factor in the short term but might increase mortality risk in the long term. WBC counts significantly mediate the association.
Collapse
Affiliation(s)
- Xuhang Huang
- Department of Endocrinology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 107 Yanjiang West Road, Guangzhou 510120, China; Guangdong Clinical Research Center for Metabolic Diseases, Guangzhou Key Laboratory for Metabolic Diseases, Guangzhou 510120, China
| | - Lejun Huang
- Department of Endocrinology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 107 Yanjiang West Road, Guangzhou 510120, China; Guangdong Clinical Research Center for Metabolic Diseases, Guangzhou Key Laboratory for Metabolic Diseases, Guangzhou 510120, China
| | - Haoran Tao
- Department of Endocrinology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 107 Yanjiang West Road, Guangzhou 510120, China; Guangdong Clinical Research Center for Metabolic Diseases, Guangzhou Key Laboratory for Metabolic Diseases, Guangzhou 510120, China
| | - Meng Ren
- Department of Endocrinology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 107 Yanjiang West Road, Guangzhou 510120, China; Guangdong Clinical Research Center for Metabolic Diseases, Guangzhou Key Laboratory for Metabolic Diseases, Guangzhou 510120, China.
| | - Li Yan
- Department of Endocrinology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 107 Yanjiang West Road, Guangzhou 510120, China; Guangdong Clinical Research Center for Metabolic Diseases, Guangzhou Key Laboratory for Metabolic Diseases, Guangzhou 510120, China.
| |
Collapse
|
2
|
Ma C, Zhou X, Pan S, Liu L. AIM2 mediated neuron PANoptosis plays an important role in diabetes cognitive dysfunction. Behav Brain Res 2025; 491:115651. [PMID: 40404017 DOI: 10.1016/j.bbr.2025.115651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2025] [Revised: 04/19/2025] [Accepted: 05/20/2025] [Indexed: 05/24/2025]
Abstract
The increasing global aging population has led to a rise in diabetic cognitive dysfunction (DCD), a common complication of diabetes that significantly impacts the health of elderly individuals. Neuronal death is a key factor in cognitive impairment, with studies showing interactions between cellular pyroptosis, apoptosis, and necroptosis in the development of neurodegenerative disorders. This has led to the concept of PANoptosis, where these pathways work together to cause cell death. High glucose levels can induce neuronal damage and cognitive dysfunction in rats, leading to various forms of programmed cell death. It is hypothesized that high glucose can trigger neuronal PANoptosis, resulting in cognitive dysfunction. AIM2, an upstream regulator of PANoptosis, is closely associated with the pathogenesis of DCD. In DCD, dysregulated glucose metabolism induces the release of mitochondrial DNA (mtDNA), which acts as a ligand to activate the cell membrane-bound DNA sensor AIM2. Upon activation, AIM2 oligomerizes and recruits a caspase recruit domain (ASC), forming a complex that activates caspase-1. Caspase-1 activation subsequently triggers the production of pro-inflammatory cytokines, induces pyroptosis, and mediates apoptosis, necroptosis, and PANoptosis in neurons through signaling crosstalk. Understanding the pathophysiological mechanism of AIM2-mediated neuronal PANoptosis in DCD development can aid in early diagnosis and identify new therapeutic targets.
Collapse
Affiliation(s)
- Chengning Ma
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Hunan 4120208, China
| | - Xiang Zhou
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Hunan 4120208, China
| | - Siyang Pan
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Hunan 4120208, China
| | - Lumei Liu
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Hunan 4120208, China.
| |
Collapse
|
3
|
Zhang X, Li Y, Yang Q, Wu S, Song Y, Luo Z, Xu J. Prognostic value of glycemic gap in ST-segment elevation myocardial infarction-associated acute kidney injury. BMC Nephrol 2025; 26:243. [PMID: 40375168 PMCID: PMC12080177 DOI: 10.1186/s12882-025-04167-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2025] [Accepted: 05/08/2025] [Indexed: 05/18/2025] Open
Abstract
BACKGROUND Stress-induced hyperglycemia (SIH) is a common phenomenon in acute myocardial infarction and is associated with poor prognosis. The relationship between glycemic gap (GG), a marker of SIH, and ST-segment elevation myocardial infarction (STEMI)-associated acute kidney injury (STAAKI) remains unclear. This study aims to explore the predictive value of GG for the risk of STAAKI after percutaneous coronary intervention (PCI) in STEMI patients. METHODS This study retrospectively selected patients diagnosed with STEMI who underwent primary PCI. Logistic regression analysis was used to identify the risk factors associated with STAAKI. To examine the dose-response relationship between GG and STAAKI, restricted cubic splines (RCS) were employed. The predictive accuracy of the models was assessed using Delong test, net reclassification index (NRI) and integrated discrimination improvement (IDI). RESULTS This study included 595 patients, the incidence of STAAKI was 9.2%. Multivariate logistic regression showed LVEF (OR per 1% increase = 0.931, 95% CI: 0.895 ~ 0.969), NT-proBNP (OR per 1 pg/mL increase = 1.579, 95% CI: 1.212 ~ 2.057), and GG (OR per 1 mmol/L increase = 1.379, 95% CI: 1.223 ~ 1.554) as independent predictors of STAAKI. RCS analysis indicated a linear dose-response relationship between GG and STAAKI. After integrating GG, the new model could significantly improve the risk model for STAAKI (Z = 2.77, NRI = 0.780, and IDI = 0.095; All P < 0.05). CONCLUSION GG is an independent risk factor for the occurrence of STAAKI after PCI in STEMI patients, and integrating GG can significantly improve risk modeling regarding STAAKI. CLINICAL TRIAL NUMBER Not applicable.
Collapse
Affiliation(s)
- Xiaofu Zhang
- Department of Cardiology, The First People's Hospital of Yuhang District, Hangzhou, Zhejiang, 311100, China
| | - Yong Li
- Department of Cardiology, The First People's Hospital of Yuhang District, Hangzhou, Zhejiang, 311100, China
| | - Qinghuan Yang
- Department of Cardiology, The First People's Hospital of Yuhang District, Hangzhou, Zhejiang, 311100, China
| | - Siwen Wu
- Department of Cardiology, The First People's Hospital of Yuhang District, Hangzhou, Zhejiang, 311100, China
| | - Yang Song
- Department of Cardiology, The First People's Hospital of Yuhang District, Hangzhou, Zhejiang, 311100, China
| | - Ziyun Luo
- Department of Nephrology, Yichun People's Hospital, Yichun, Jiangxi, 336000, China.
| | - Jianping Xu
- Department of Cardiology, The First People's Hospital of Yuhang District, Hangzhou, Zhejiang, 311100, China.
| |
Collapse
|
4
|
Sharma S, Dube SK, Esmail T, Hoefnagel AL, Jangra K, Mejia-Mantilla J, Shiferaw AA, De Sloovere V, Wright D, Lele AV, Blacker SN. Assessing Practice Variation of Anesthetic Management for Endovascular Thrombectomy in Acute Ischemic Stroke: A Comprehensive Multicenter Survey. J Neurosurg Anesthesiol 2025; 37:196-205. [PMID: 38973631 DOI: 10.1097/ana.0000000000000976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 04/27/2024] [Indexed: 07/09/2024]
Abstract
OBJECTIVE This study explored the current global landscape of periprocedural care of acute ischemic stroke patients undergoing endovascular thrombectomy (EVT). METHODS An anonymous, 54-question electronic survey was sent to 354 recipients in hospitals worldwide. The responses were stratified by World Bank country income level into high-income (HICs) and low/middle-income (LMICs) countries. RESULTS A total of 354 survey invitations were issued. Two hundred twenty-three respondents started the survey, and 87 fully completed surveys were obtained from centers in which anesthesiologists were routinely involved in EVT care (38 in HICs; 49 in LMICs). Respondents from 35 (92.1%) HICs and 14 (28.6%) LMICs reported that their centers performed >50 EVTs annually. Respondents from both HICs and LMICs reported low rates of anesthesiologist involvement in pre-EVT care, though a communication system was in place in 100% of HIC centers and 85.7% of LMIC centers to inform anesthesiologists about potential EVTs. Respondents from 71.1% of HIC centers and 51% of LMIC centers reported following a published guideline during EVT management, though the use of cognitive aids was low in both (28.9% and 24.5% in HICs and LMICs, respectively). Variability in multiple areas of practice, including choice of anesthetic techniques, monitoring and management of physiological variables during EVT, and monitoring during intrahospital transport, were reported. Quality metrics were rarely tracked or reported to the anesthesiology teams. CONCLUSIONS This study demonstrated variability in anesthesiology involvement and in clinical care during and after EVT. Centers may consider routinely involving anesthesiologists in pre-EVT care, using evidence-based recommendations for EVT management, and tracking adherence to published guidelines and other quality metrics.
Collapse
Affiliation(s)
- Sonal Sharma
- Department of Anesthesiology and Perioperative Medicine, Penn State Health Milton S. Hershey Medical Center, Hershey, PA
| | - Surya Kumar Dube
- Department of Neuroanaesthesiology and Critical Care, All India Institute of Medical Sciences, New Delhi, India
| | - Tariq Esmail
- Department of Anesthesiology and Pain Medicine, Toronto Western Hospital, University Health Network, University of Toronto, ON, Canada
| | - Amie L Hoefnagel
- Department of Anesthesiology, University of Florida College of Medicine, Jacksonville, FL
| | - Kiran Jangra
- Department of Anaesthesia and Intensive Care, Postgraduate Institute, Chandigarh, India
| | - Jorge Mejia-Mantilla
- Department of Critical Care Medicine, Fundación Valle del Lili, University Hospital, Cali, Colombia
| | | | - Veerle De Sloovere
- Department of Anaesthesiology, University Hospitals Leuven, Leuven, Belgium
| | - David Wright
- Department of Anesthesiology and Pain Medicine, Harborview Medical Center, University of Washington, Seattle, WA
| | - Abhijit Vijay Lele
- Department of Anesthesiology and Pain Medicine, Harborview Medical Center, University of Washington, Seattle, WA
| | | |
Collapse
|
5
|
Wang H, Wang Y. Construction of predictive model for the risk of acute lactic acidosis in patients with ischemic stroke during the ICU stay: A study based on the medical information Mart for intensive care database. J Clin Neurosci 2025; 133:111004. [PMID: 39787901 DOI: 10.1016/j.jocn.2024.111004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 11/14/2024] [Accepted: 12/19/2024] [Indexed: 01/12/2025]
Abstract
BACKGROUND This study aims to identify the factors influencing the risk of lactic acidosis (LA) in patients with ischemic stroke (IS) and to develop a predictive model for assessing the risk of LA in IS patients during their stay in the intensive care unit (ICU). METHODS A retrospective cohort design was employed, with data collected from the Medical Information Mart for Intensive Care (MIMIC)-III and MIMIC-IV databases spanning from 2001 to 2019. LA was defined as pH < 7.35 and lactate ≥ 2 mmol/L. The total sample was randomly divided into a training set and a testing set at a 7:3 ratio. Predictive variables were selected using bidirectional stepwise regression to build the final model. Model performance was evaluated using receiver operating characteristic (ROC) curves, calibration curves, and decision curves. RESULTS The study included 531 patients, of whom 50 (13.47 %) developed LA. The predictive factors included in the model were hypertension, weight, heart rate, Charlson comorbidity index (CCI), Sequential Organ Failure Assessment (SOFA) score, white blood cell (WBC) count, insulin use, sodium bicarbonate administration, and renal replacement therapy (RRT).. The model demonstrated an area under the ROC curve (AUC) of 0.785 [95 % confidence interval (CI): 0.717-0.854] for the training dataset, and 0.721 (95 % CI: 0.615-0.826) for the testing dataset. CONCLUSION The predictive model developed for assessing the risk of LA in IS patients demonstrates encouraging predictive performance. It can play a crucial role in managing acid-base balance during ICU stays and assist in the prevention and management of LA in these patients.
Collapse
Affiliation(s)
- Hui Wang
- Department of Neurology, Beijing Shunyi Hospital, Beijing 101300, PR China
| | - Yucai Wang
- Department of Neurology, Beijing Shunyi Hospital, Beijing 101300, PR China.
| |
Collapse
|
6
|
Yang HH, Chien WC, Liaw JJ, Yang CC, Chung CH, Huang SH, Huang YC, Wang BL, Chung RJ, Chen PC, Lin TT, Yu PC, Chen YJ. Impact of glycemic treatment and blood glucose monitoring on outcomes in patients with acute ischemic stroke without prior diabetes: a longitudinal cohort study. Diabetol Metab Syndr 2024; 16:302. [PMID: 39696458 DOI: 10.1186/s13098-024-01542-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Accepted: 11/27/2024] [Indexed: 12/20/2024] Open
Abstract
OBJECTIVES To explore the short- and long-term effects of glycemic management-through glycemic treatment and blood glucose monitoring (BGM)-on stroke recurrence and mortality specifically in patients experiencing a first-ever ischemic stroke (FIS) with hyperglycemia (FISHG) who have not previously been diagnosed with diabetes mellitus (DM). METHODS We gathered data on patients who were registered on Taiwan's National Health Insurance Research Database from 2000 to 2015. We one-fold propensity-score-matched (by sex, age, and index date) 207,054 patients into 3 cohorts: those with FIS (1) without hyperglycemia, (2) hyperglycemia without glycemic treatment, and (3) hyperglycemia with glycemic treatment. We used Cox proportional hazard regression to evaluate the short- (within 1 year after FIS) and long-term (9.3 ± 8.6 years after FIS) prognostic effects of glycemic management on stroke recurrence and mortality of FISHG. RESULTS Stroke recurrence and mortality were significantly more likely in the patients with FISHG than their counterparts without hyperglycemia (p < 0.05). Under glycemic treatment, patients with FISHG demonstrated lower risk of mortality at every follow-up than those without (p < 0.001) but were not less likely to have stroke recurrence (p > 0.05). Integrating BGM with glycemic treatment in the FISHG cohort significantly reduced the risk of stroke recurrence compared to patients receiving only glycemic treatment at 1-month, 3-month, 6-month, and 1-year post-stroke follow-ups (adjusted hazard ratios = 0.84, 0.90, 0.88, and 0.92, respectively); additionally, this approach significantly decreased mortality risk at each post-stroke follow-up period (p < 0.05). CONCLUSIONS BGM combined with glycemic treatment significantly improves prognosis in patients with FISHG who have not been previously diagnosed with DM, reducing the risks of stroke recurrence and mortality.
Collapse
Affiliation(s)
- Hsi-Hsing Yang
- Department of Intensive Care Medicine, Chi-Mei Medical Center, Tainan, 71004, Taiwan
- Department of Biotechnology and Food Technology, Southern Taiwan University of Science and Technology, Tainan, 71005, Taiwan
| | - Wu-Chien Chien
- Department of Medical Research, Tri-Service General Hospital, Taipei, 11490, Taiwan.
- School of Public Health, National Defense Medical Center, Taipei, 11490, Taiwan.
| | - Jen-Jiuan Liaw
- School of Nursing, National Defense Medical Center, Taipei, 11490, Taiwan
| | - Chia-Chen Yang
- School of Nursing, National Defense Medical Center, Taipei, 11490, Taiwan
| | - Chi-Hsiang Chung
- Department of Medical Research, Tri-Service General Hospital, Taipei, 11490, Taiwan
- School of Public Health, National Defense Medical Center, Taipei, 11490, Taiwan
| | - Shi-Hao Huang
- Department of Medical Research, Tri-Service General Hospital, Taipei, 11490, Taiwan
- School of Public Health, National Defense Medical Center, Taipei, 11490, Taiwan
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology (Taipei Tech), Taipei, 10608, Taiwan
| | - Yao-Ching Huang
- Department of Medical Research, Tri-Service General Hospital, Taipei, 11490, Taiwan
- School of Public Health, National Defense Medical Center, Taipei, 11490, Taiwan
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology (Taipei Tech), Taipei, 10608, Taiwan
| | - Bing-Long Wang
- School of Public Health, National Defense Medical Center, Taipei, 11490, Taiwan
| | - Ren-Jei Chung
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology (Taipei Tech), Taipei, 10608, Taiwan
| | - Peng-Ciao Chen
- School of Nursing, National Defense Medical Center, Taipei, 11490, Taiwan
| | - Ting-Ti Lin
- School of Nursing, National Defense Medical Center, Taipei, 11490, Taiwan
| | - Pi-Ching Yu
- Graduate Institute of Medicine, National Defense Medical Center, Taipei, 11490, Taiwan
- Cardiovascular Intensive Care Unit, Department of Critical Care Medicine, Far-Eastern Memorial Hospital, New Taipei City, 10602, Taiwan
| | - Yu-Ju Chen
- School of Nursing, National Defense Medical Center, Taipei, 11490, Taiwan.
| |
Collapse
|
7
|
Jiang S, Ding Y, Wang H, Kim E, Geng X. Neuroprotective Potential of Nitroglycerin in Ischemic Stroke: Insights into Neural Glucose Metabolism and Endoplasmic Reticulum Stress Inhibition. J Am Heart Assoc 2024; 13:e035382. [PMID: 39575751 PMCID: PMC11935545 DOI: 10.1161/jaha.124.035382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 10/14/2024] [Indexed: 12/18/2024]
Abstract
BACKGROUND Glyceryl trinitrate (GTN), also known as nitroglycerin, is predominantly recognized as a vasodilator for ischemic heart disease, and its potential neuroprotective properties in acute ischemic stroke remain under exploration. We sought to discover the therapeutic advantages and mechanisms of post-recanalization GTN administration in acute ischemic stroke. METHODS AND RESULTS A total of 118 male Sprague-Dawley rats were divided into groups: sham, transient/permanent middle cerebral artery occlusion (MCAO) with or without GTN treatment, and transient/permanent MCAO treated with both GTN and KT5823, an inhibitor of PKG. Acute ischemic stroke was induced by transient MCAO for 2 hours followed by 6 or 24 hours of reperfusion and permanent MCAO (28-hour MCAO without reperfusion). The study assessed infarct volumes, neurological deficits, glucose metabolism metrics, NO, and cGMP levels via ELISA. mRNA and protein expression of key molecules of hyperglycolysis, gluconeogenesis, endoplasmic reticulum stress as well as signaling molecules (PKG, AMPK) were conducted via reverse transcription polymerase chain reaction and Western blotting, and cell death was assessed with TUNEL and ELISA. GTN significantly reduced cerebral infarct volumes, neurological deficits, and cell death only after transient MCAO. GTN led to a significant reduction in the expression of NO and cGMP levels, key glucose metabolism, endoplasmic reticulum stress-related genes and proteins, and phosphorylated AMPK while boosting PKG expression, in transient MCAO but not permanent MCAO. The GTN-induced reduction in glucose metabolites, lactate, and reactive oxygen species was exclusive to transient MCAO groups. Coadministration of GTN and PKG inhibitors reversed the observed GTN benefits. CONCLUSIONS GTN induced neuroprotection in transient MCAO by improving glucose metabolism and potentially controlling endoplasmic reticulum stress through the NO-cGMP-PKG signaling cascade to inhibit AMPK phosphorylation.
Collapse
Affiliation(s)
- Shangqian Jiang
- Neuroscience Institute, Beijing Luhe HospitalCapital Medical UniversityBeijingChina
- Department of Neurology, Beijing Luhe HospitalCapital Medical UniversityBeijingChina
| | - Yuchuan Ding
- Department of NeurosurgeryWayne State University School of MedicineDetroitMI
| | - Hongrui Wang
- Neuroscience Institute, Beijing Luhe HospitalCapital Medical UniversityBeijingChina
| | - Enoch Kim
- Department of NeurosurgeryWayne State University School of MedicineDetroitMI
| | - Xiaokun Geng
- Neuroscience Institute, Beijing Luhe HospitalCapital Medical UniversityBeijingChina
- Department of Neurology, Beijing Luhe HospitalCapital Medical UniversityBeijingChina
- Department of NeurosurgeryWayne State University School of MedicineDetroitMI
| |
Collapse
|
8
|
Villagra Moran VM, Nila IS, Madhuvilakku R, Sumsuzzman DM, Khan ZA, Hong Y. Elucidating the role of physical exercises in alleviating stroke-associated homeostatic dysregulation: a systematic review and meta-analysis. BMJ Open Sport Exerc Med 2024; 10:e001906. [PMID: 39650569 PMCID: PMC11624745 DOI: 10.1136/bmjsem-2024-001906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 10/10/2024] [Indexed: 12/11/2024] Open
Abstract
Background This study aimed to investigate the role of physical exercises as a non-pharmacological intervention for ameliorating post-stroke dysregulated homeostatic parameters. Methods Embase, PubMed, PEDro, ISI Web of Science and CENTRAL were searched until April 2024. Parallel randomised controlled trials (RCTs) analysing the effect of post-stroke physical exercises (PSPE) on homeostatic parameters such as blood glucose, oxygen consumption (VO2), high-density lipoprotein (HDL), low-density lipoprotein (LDL), systolic (SBP) and diastolic blood pressure (DBP) in individuals with stroke were selected. Results Sixteen RCTs (n=698) were included. PSPE reduced fasting glucose levels (MD=-0.22; 95% CI -0.22 to -0.02; p=0.00) and increased the VO2 (MD=2.51; 95% CI 1.65 to 3.37; p=0.00) and blood HDL levels (MD=0.07; 95% CI 0.00 to 0.13; p=0.00). However, we did not observe beneficial effects on LDL, SBP and DBP parameters. Further analyses demonstrated that both low and moderate exercises are more suitable for improving blood glucose and VO2 in this population. Discussion PSPE have the potential to improve dysregulated post-stroke parameters by reducing blood glucose levels and increasing VO2 and HDL levels. However, the small size and limited number of included studies limited the precision of our results. Further research is needed to comprehensively analyse the effects of PSPE, particularly on LDL levels and blood pressure. PROSPERO registration number CRD42023395715.
Collapse
Affiliation(s)
- Vanina Myuriel Villagra Moran
- Department of Physical Therapy, Graduate School of Inje University, Gimhae, Gyeongsangnam-do, Republic of Korea
- Biohealth Products Research Center (BPRC), Inje University, Gimhae, Gyeongsangnam-do, Republic of Korea
| | - Irin Sultana Nila
- Biohealth Products Research Center (BPRC), Inje University, Gimhae, Gyeongsangnam-do, Republic of Korea
- Department of Digital Anti-aging Healthcare, Graduate School of Inje University, Gimhae, Gyeongsangnam-do, Republic of Korea
| | - Rajesh Madhuvilakku
- Biohealth Products Research Center (BPRC), Inje University, Gimhae, Gyeongsangnam-do, Republic of Korea
- Department of Physical Therapy, College of Healthcare Medical Science & Engineering, Gimhae, Gyeongsangnam-do, Republic of Korea
| | - Dewan Md Sumsuzzman
- Biohealth Products Research Center (BPRC), Inje University, Gimhae, Gyeongsangnam-do, Republic of Korea
- Department of Physical Therapy, College of Healthcare Medical Science & Engineering, Gimhae, Gyeongsangnam-do, Republic of Korea
| | - Zeeshan Ahmad Khan
- Biohealth Products Research Center (BPRC), Inje University, Gimhae, Gyeongsangnam-do, Republic of Korea
- Department of Physical Therapy, College of Healthcare Medical Science & Engineering, Gimhae, Gyeongsangnam-do, Republic of Korea
| | - Yonggeun Hong
- Department of Physical Therapy, Graduate School of Inje University, Gimhae, Gyeongsangnam-do, Republic of Korea
- Biohealth Products Research Center (BPRC), Inje University, Gimhae, Gyeongsangnam-do, Republic of Korea
- Department of Digital Anti-aging Healthcare, Graduate School of Inje University, Gimhae, Gyeongsangnam-do, Republic of Korea
- Department of Physical Therapy, College of Healthcare Medical Science & Engineering, Gimhae, Gyeongsangnam-do, Republic of Korea
- Department of Rehabilitation Science, Graduate School of Inje University, Gimhae, Gyeongsangnam-do, Republic of Korea
| |
Collapse
|
9
|
Leng C, Lin K, Zhou M, Tao X, Sun B, Shu X, Liu W. Apolipoprotein E deficiency exacerbates blood-brain barrier disruption and hyperglycemia-associated hemorrhagic transformation after ischemic stroke. J Stroke Cerebrovasc Dis 2024; 33:107987. [PMID: 39218418 DOI: 10.1016/j.jstrokecerebrovasdis.2024.107987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 08/07/2024] [Accepted: 08/29/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND The polymorphism of the apolipoprotein E (ApoE) gene has been implicated in both the susceptibility to neurodegenerative disease and the prognosis of traumatic brain injury (TBI). However, the influence of ApoE on the risk of hemorrhagic transformation (HT) after acute ischemic stroke remains inconclusive. The present study aimed to investigate the potential impact of ApoE deficiency on the risk of hyperglycemia-associated HT and to elucidate the underlying mechanisms. METHODS Wild-type (WT) and ApoE knockout (ApoE-/-) mice were injected with 50 % glucose to induce hyperglycemia and subsequently subjected to 90 min of intraluminal middle cerebral artery occlusion (MCAO). The mortality, neurological function, HT incidence and HT grading-score were evaluated at 24 hours after reperfusion. To evaluate the integrity of blood-brain barrier (BBB), the immunoglobulin G (IgG) leakage and the protein expressions of tight junctions (TJs) were detected using immunofluorescent staining and western blotting. Finally, the levels of matrix metalloproteinases (MMP)-2/9, microglial activation and proinflammatory mediators were investigated using immunofluorescent staining and western blotting. RESULTS ApoE-/- mice exhibited increased mortality and exacerbated neurological impairment, concomitant with more severe hyperglycemia-associated HT 24 hours post-reperfusion. Meanwhile, ApoE deficiency exacerbated the disruption of BBB, characterized by increased leakage of IgG, aggravated degradation of TJs and microvascular basement membranes. Furthermore, ApoE deficiency further aggravated the upregulation of MMP-2/9 and microglia-triggered neuroinflammation. CONCLUSIONS Our findings demonstrate that the absence of ApoE exacerbates neurological impairment and hyperglycemia-associated HT in ischemic stroke mice, which is closely associated with MMP-2/9 signaling and neuroinflammation-mediated disruption of BBB.
Collapse
Affiliation(s)
- Changlong Leng
- Hubei Key Laboratory of Cognitive and Affective Disorder, Jianghan University, Wuhan, China; Institute of Cerebrovascular Disease, School of Medicine, Jianghan University, Wuhan, China.
| | - Kuan Lin
- Hubei Key Laboratory of Cognitive and Affective Disorder, Jianghan University, Wuhan, China; Institute of Cerebrovascular Disease, School of Medicine, Jianghan University, Wuhan, China.
| | - Mei Zhou
- Hubei Key Laboratory of Cognitive and Affective Disorder, Jianghan University, Wuhan, China; Institute of Cerebrovascular Disease, School of Medicine, Jianghan University, Wuhan, China.
| | - Xiaoqin Tao
- Hubei Key Laboratory of Cognitive and Affective Disorder, Jianghan University, Wuhan, China.
| | - Binlian Sun
- Hubei Key Laboratory of Cognitive and Affective Disorder, Jianghan University, Wuhan, China.
| | - Xiji Shu
- Hubei Key Laboratory of Cognitive and Affective Disorder, Jianghan University, Wuhan, China; Department of Pathology and Pathophysiology, School of Medicine, Jianghan University, Wuhan, China.
| | - Wei Liu
- Hubei Key Laboratory of Cognitive and Affective Disorder, Jianghan University, Wuhan, China; Institute of Cerebrovascular Disease, School of Medicine, Jianghan University, Wuhan, China; Department of Pathology and Pathophysiology, School of Medicine, Jianghan University, Wuhan, China.
| |
Collapse
|
10
|
Fountouki A, Tegos T, Psoma E, Makedou K, Kakaletsis N, Kaiafa G, Didangelos T, Theofanidis D, Savopoulos C. Glucose Fluctuations in Acute Ischemic Stroke. Cureus 2024; 16:e61939. [PMID: 38978906 PMCID: PMC11229048 DOI: 10.7759/cureus.61939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/09/2024] [Indexed: 07/10/2024] Open
Abstract
INTRODUCTION The Oxfordshire Community Stroke Project denotes four subtypes of ischemic stroke (total and partial anterior infarct, posterior, and lacunar). Hyperglycemia has been associated with a larger infarct size and poor prognosis. AIM The purpose of the study was to investigate the correlation of glucose fluctuations with the Oxford sub-categories and patient outcomes using a blinded continuous glucose monitoring system. METHODS This is a non-interventional prospective observational study. Stroke patients with symptoms onset in the last 24h, participated in the study. A glucose sensor was placed for 72 hours. Disability was assessed using the modified Rankin Scale. Stroke subtypes were compared with total mean glucose and time in range using ANOVA analysis. Multiple ordinal logistic regression was employed to analyze outcomes and survival. RESULTS The sample consisted of 105 diabetic and non-diabetic patients. The overall mean glucose was 127.06 mg/dL and the time in range (70-140 mg/dL) was 70.98%. There was no significant difference between the stroke sub-categories and the total mean glucose. For every one-point increase in the time in range, we expect a 1.5% reduction in the odds of having a worse outcome. Patients with total anterior infarct are 2.31 times more likely to have a worse outcome than lacunar patients. CONCLUSION The utilization of the Oxford classification may not be necessary for managing acute ischemic stroke glucose levels. Achieving glucose regulation and an increase in time in range can be attained through meticulous control, potentially extending life expectancy. Continuous glucose monitors may aid in achieving this objective.
Collapse
Affiliation(s)
- Antigoni Fountouki
- Department of Nursing, International Hellenic University, Thessaloniki, GRC
| | - Thomas Tegos
- 1st Department of Neurology, AHEPA University General Hospital, School of Medicine, Aristotle University, Thessaloniki, GRC
| | - Elizabeth Psoma
- Department of Radiology, AHEPA University General Hospital, Aristotle University, Thessaloniki, GRC
| | - Keli Makedou
- Laboratory of Biochemistry, AHEPA University General Hospital, School of Medicine, Aristotle University, Thessaloniki, GRC
| | - Nikolaos Kakaletsis
- 1st Propaedeutic Department of Internal Medicine, AHEPA University General Hospital, Aristotle University, Thessaloniki, GRC
| | - Georgia Kaiafa
- 1st Propaedeutic Department of Internal Medicine, AHEPA University General Hospital, School of Medicine, Aristotle University, Thessaloniki, GRC
| | - Triantafyllos Didangelos
- 1st Propaedeutic Department of Internal Medicine/Diabetic Care Unit, AHEPA University General Hospital, School of Medicine, Aristotle University, Thessaloniki, GRC
| | | | - Christos Savopoulos
- 1st Propaedeutic Department of Internal Medicine, AHEPA University General Hospital, School of Medicine, Aristotle University, Thessaloniki, GRC
| |
Collapse
|
11
|
Huang YW, Li ZP, Yin XS. Stress hyperglycemia and risk of adverse outcomes in patients with acute ischemic stroke: a systematic review and dose-response meta-analysis of cohort studies. Front Neurol 2023; 14:1219863. [PMID: 38073650 PMCID: PMC10701542 DOI: 10.3389/fneur.2023.1219863] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 11/06/2023] [Indexed: 10/16/2024] Open
Abstract
Background Stroke represents a prominent global health issue, exhibiting the third highest incidence of disability and a significant burden on both healthcare and the economy. Stress hyperglycemia, an acute reaction of the hypothalamic-pituitary-adrenal axis and the sympathetic nervous system, leading to adverse outcomes and mortality. Several previous studies have indicated that stress hyperglycemia, as evaluated by the stress hyperglycemia ratio (SHR), significantly increases the risk of adverse outcomes and mortality in stroke patients. However, there is a lack of further investigation into the influence of dynamic changes in stress hyperglycemia on the clinical outcomes of acute ischemic stroke (AIS) patients. Consequently, we performed a meticulous analysis, considering dose-response relationships from existing studies, to ascertain the correlation between dynamic changes in stress hyperglycemia and the susceptibility to adverse outcomes in patients with AIS. Methods This investigation was prospectively registered in PROSPERO and adhered to the PRISMA guidelines. A comprehensive search was performed across English and Chinese databases. A two-sided random-effects model was employed to consolidate the odds ratios (ORs) of the highest vs. lowest categories of SHR. Restricted cubic spline (RCS) models were employed to estimate potential non-linear trends between SHR and the risk of adverse outcomes in AIS patients. Egger's test was utilized to assess publication bias. Heterogeneity was evaluated using Cochran's Q-test. The Newcastle-Ottawa Scale (NOS) tool was employed to evaluate the risk of bias of the included studies. Results The final analysis incorporated a total of thirteen studies, which were published between 2019 and 2023, encompassing a participant cohort of 184,179 individuals. The SHR exhibited a significant association with the risk of various adverse outcomes. Specifically, a higher SHR was correlated with a 2.64-fold increased risk of 3-month poor functional outcomes (OR: 2.64, 95% CI 2.05-3.41, I2 = 52.3%, P < 0.001), a 3.11-fold increased risk of 3-month mortality (OR: 3.11, 95% CI 2.10-4.59, I2 = 38.6%, P < 0.001), a 2.80-fold increased risk of 1-year mortality (OR: 2.80, 95% CI 1.81-4.31, I2 = 88%, P < 0.001), a 3.90-fold increased risk of intracerebral hemorrhage (ICH) and 4.57-fold increased risk of symptomatic ICH (sICH) (ICH-OR: 3.90, 95% CI 1.52-10.02, I2 = 84.3%, P = 0.005; sICH-OR: 4.57, 95% CI 2.05-10.10, I2 = 47.3%, P < 0.001), a 1.73-fold increased risk of neurological deficits (OR: 1.73, 95 CI 1.44-2.08, I2 = 0%, P < 0.001), and a 2.84-fold increased risk of stroke recurrence (OR: 2.84, 95 CI 1.48-5.45, I2 = 50.3%, P = 0.002). It is noteworthy that, except for hemorrhagic transformation (HT) and stroke recurrence, the remaining adverse outcomes exhibited a "J-shaped" non-linear dose-response relationship. Conclusion In summary, our findings collectively suggest that increased exposure to elevated SHR is robustly linked to a heightened risk of adverse outcomes and mortality in individuals with AIS, exhibiting a non-linear dose-response relationship. These results underscore the significance of SHR as a predictive factor for stroke prognosis. Therefore, further investigations are warranted to explore the role of SHR in relation to adverse outcomes in stroke patients from diverse ethnic populations. Furthermore, there is a need to explore the potential benefits of stress hyperglycemia control in alleviating the physical health burdens associated with AIS. Maintaining a lower SHR level may potentially reduce the risk of adverse stroke outcomes. Systematic review registration https://www.crd.york.ac.uk/prospero/, identifier: CRD42023424852.
Collapse
Affiliation(s)
- Yong-Wei Huang
- Department of Neurosurgery, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, Sichuan, China
| | - Zong-Ping Li
- Department of Neurosurgery, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, Sichuan, China
| | - Xiao-Shuang Yin
- Department of Immunology, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, Sichuan, China
| |
Collapse
|
12
|
Bulut F, Adam M, Özgen A, Hekim MG, Ozcan S, Canpolat S, Ozcan M. Protective effects of chronic humanin treatment in mice with diabetic encephalopathy: A focus on oxidative stress, inflammation, and apoptosis. Behav Brain Res 2023; 452:114584. [PMID: 37467966 DOI: 10.1016/j.bbr.2023.114584] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 07/13/2023] [Accepted: 07/14/2023] [Indexed: 07/21/2023]
Abstract
Diabetes is known to cause cognitive impairments through various mechanisms, including oxidative stress, inflammation, and apoptosis. Humanin (HN) has been shown to have protective effects on cognitive impairments induced by factors such as Aβ, muscarinic receptor antagonists, and aging in rodents. However, the mechanisms underlying the protective effects of HN in the prefrontal cortex and hippocampus in the context of diabetes are not well understood. In this study, we aimed to investigate the potential protective role of HN on oxidative stress, inflammation, and apoptosis in mice with diabetes. We divided the mice into four groups, including a control group (treated with saline), a humanin group (treated with 4 mg/kg of HN), a streptozotocin (STZ) group (diabetic control), and an STZ+Humanin group. The mice were administered HN daily for 15 days. Our results showed that in the prefrontal cortex and hippocampus of the diabetes group, oxidative stress parameters, pro-inflammatory cytokines, apoptosis and, blood glucose levels were increased, while antioxidant and anti-inflammatory cytokines were diminished compared to the control group. However, HN treatment was able to modulate these markers, including blood glucose and the markers of oxidative stress, inflammation, and apoptosis. In conclusion, our findings suggest that hyperglycemia, oxidative stress, inflammation, and apoptosis may contribute to the development of diabetes-induced cognitive impairments. By regulating these changes with HN treatment, we may be able to positively contribute to the treatment of cognitive impairments induced by diabetes.
Collapse
Affiliation(s)
- Ferah Bulut
- University of Firat, Department of Biophysics, Elazig, Turkey.
| | - Muhammed Adam
- University of Firat, Department of Biophysics, Elazig, Turkey.
| | - Aslışah Özgen
- University of Firat, Department of Physiology, Elazig, Turkey.
| | | | - Sibel Ozcan
- University of Firat, Department of Anaesthesiology and Reanimation, Elazig, Turkey.
| | - Sinan Canpolat
- University of Firat, Department of Physiology, Elazig, Turkey.
| | - Mete Ozcan
- University of Firat, Department of Physiology, Elazig, Turkey.
| |
Collapse
|
13
|
Guo S, Wehbe A, Syed S, Wills M, Guan L, Lv S, Li F, Geng X, Ding Y. Cerebral Glucose Metabolism and Potential Effects on Endoplasmic Reticulum Stress in Stroke. Aging Dis 2023; 14:450-467. [PMID: 37008060 PMCID: PMC10017147 DOI: 10.14336/ad.2022.0905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 09/05/2022] [Indexed: 11/18/2022] Open
Abstract
Ischemic stroke is an extremely common pathology with strikingly high morbidity and mortality rates. The endoplasmic reticulum (ER) is the primary organelle responsible for conducting protein synthesis and trafficking as well as preserving intracellular Ca2+ homeostasis. Mounting evidence shows that ER stress contributes to stroke pathophysiology. Moreover, insufficient circulation to the brain after stroke causes suppression of ATP production. Glucose metabolism disorder is an important pathological process after stroke. Here, we discuss the relationship between ER stress and stroke and treatment and intervention of ER stress after stroke. We also discuss the role of glucose metabolism, particularly glycolysis and gluconeogenesis, post-stroke. Based on recent studies, we speculate about the potential relationship and crosstalk between glucose metabolism and ER stress. In conclusion, we describe ER stress, glycolysis, and gluconeogenesis in the context of stroke and explore how the interplay between ER stress and glucose metabolism contributes to the pathophysiology of stroke.
Collapse
Affiliation(s)
- Sichao Guo
- China-America Institute of Neuroscience, Beijing Luhe Hospital, Capital Medical University, China
- Department of Neurosurgery, Wayne State University School of Medicine, USA
| | - Alexandra Wehbe
- Department of Neurosurgery, Wayne State University School of Medicine, USA
- Harvard T.H. Chan School of Public Health, USA
| | - Shabber Syed
- Department of Neurosurgery, Wayne State University School of Medicine, USA
| | - Melissa Wills
- Department of Neurosurgery, Wayne State University School of Medicine, USA
| | - Longfei Guan
- China-America Institute of Neuroscience, Beijing Luhe Hospital, Capital Medical University, China
- Department of Neurosurgery, Wayne State University School of Medicine, USA
| | - Shuyu Lv
- Department of Neurology, Beijing Luhe Hospital, Capital Medical University, China
| | - Fengwu Li
- China-America Institute of Neuroscience, Beijing Luhe Hospital, Capital Medical University, China
| | - Xiaokun Geng
- China-America Institute of Neuroscience, Beijing Luhe Hospital, Capital Medical University, China
- Department of Neurosurgery, Wayne State University School of Medicine, USA
- Department of Neurology, Beijing Luhe Hospital, Capital Medical University, China
| | - Yuchuan Ding
- Department of Neurosurgery, Wayne State University School of Medicine, USA
| |
Collapse
|
14
|
Duan H, Geng X, Ding Y. Hepatic responses following acute ischemic stroke: A clinical research update. Brain Circ 2023; 9:57-60. [PMID: 37576577 PMCID: PMC10419733 DOI: 10.4103/bc.bc_31_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 04/26/2023] [Accepted: 04/27/2023] [Indexed: 08/15/2023] Open
Abstract
Acute ischemic stroke (AIS) not only affects the brain but also has significant implications for peripheral organs through neuroendocrine regulation. This reciprocal relationship influences overall brain function and stroke prognosis. Recent research has highlighted the importance of poststroke liver changes in determining patient outcomes. In our previous study, we investigated the relationship between stroke and liver function. Our findings revealed that the prognostic impact of stress-induced hyperglycemia in patients undergoing acute endovascular treatment for acute large vessel occlusion is closely related to their preexisting diabetes status. We found that the liver contributes to stress hyperglycemia after AIS by increasing hepatic gluconeogenesis and decreasing hepatic insulin sensitivity. These changes are detrimental to the brain, particularly in patients without diabetes. Furthermore, we examined the role of bilirubin, a byproduct of hepatic hemoglobin metabolism, in stroke pathophysiology. Our results demonstrated that blood bilirubin levels can serve as predictors of stroke severity and may hold therapeutic potential for reducing oxidative stress-induced stroke injury in patients with mild stroke. These results underscore the potential role of the liver in the oxidative stress response following AIS, paving the way for further investigation into liver-targeted therapeutic strategies to improve stroke prognosis and patient outcomes.
Collapse
Affiliation(s)
- Honglian Duan
- Department of Neurology, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Xiaokun Geng
- Department of Neurology, Beijing Luhe Hospital, Capital Medical University, Beijing, China
- Department of Neurology, Luhe Institute of Neuroscience, Capital Medical University, Beijing, China
- Department of Neurosurgery, School of Medicine, Wayne State University, Detroit, MI, USA
| | - Yuchuan Ding
- Department of Neurosurgery, School of Medicine, Wayne State University, Detroit, MI, USA
| |
Collapse
|
15
|
Zhang H, Yue K, Jiang Z, Wu X, Li X, Luo P, Jiang X. Incidence of Stress-Induced Hyperglycemia in Acute Ischemic Stroke: A Systematic Review and Meta-Analysis. Brain Sci 2023; 13:brainsci13040556. [PMID: 37190521 DOI: 10.3390/brainsci13040556] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/19/2023] [Accepted: 03/24/2023] [Indexed: 03/29/2023] Open
Abstract
The aim of this study was to systematically evaluate the incidence of stress-induced hyperglycemia (SIH) in acute ischemic stroke (AIS). Studies that reported SIH incidence in AIS and examined risk factors for SIH and non-SIH patients were systematically searched in PubMed, Embase, Cochrane Library, and Web of Science from the inception of each database to December 2021. Article screening and data extraction were performed by two independent reviewers according to the inclusion and exclusion criteria. The quality of the included studies was assessed using the Newcastle–Ottawa Scale (NOS), and meta-analysis was performed using Stata. A total of 13 studies involving 4552 patients (977 in the SIH group and 3575 in the non-SIH group) were included. Meta-analysis showed that the incidence of SIH was 24% (95% CI: 21–27%) in the total population, 33% (14–52%) in North America, 25% (20–29%) in Europe, and 21% (12–29%) in Asia. Subgroup analysis by year of publication revealed that the pooled incidence of SIH was 27% (22–32%) in studies published before 2010 and 19% (14–24%) in those published after 2010. SIH is relatively common in AIS and poses a serious public health problem. Therefore, more emphasis should be placed on the prevention and control of SIH in AIS.
Collapse
|
16
|
Duan H, Yun HJ, Rajah GB, Che F, Wang Y, Liu J, Tong Y, Cheng Z, Cai L, Geng X, Ding Y. Large vessel occlusion stroke outcomes in diabetic vs. non-diabetic patients with acute stress hyperglycemia. Front Neurosci 2023; 17:1073924. [PMID: 36777640 PMCID: PMC9911880 DOI: 10.3389/fnins.2023.1073924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 01/06/2023] [Indexed: 01/28/2023] Open
Abstract
OBJECTIVE This study assesses whether stress-induced hyperglycemia is a predictor of poor outcome at 3 months for patients with acute ischemic stroke (AIS) treated by endovascular treatment (EVT) and impacted by their previous blood glucose status. METHODS This retrospective study collected data from 576 patients with AIS due to large vessel occlusion (LVO) treated by EVT from March 2019 to June 2022. The sample was composed of 230 and 346 patients with and without diabetes mellitus (DM), respectively, based on their premorbid diabetic status. Prognosis was assessed with modified Rankin Scale (mRS) at 3-month after AIS. Poor prognosis was defined as mRS>2. Stress-induced hyperglycemia was assessed by fasting glucose-to-glycated hemoglobin ratio (GAR). Each group was stratified into four groups by quartiles of GAR (Q1-Q4). Binary logistic regression analysis was used to identify relationship between different GAR quartiles and clinical outcome after EVT. RESULTS In DM group, a poor prognosis was seen in 122 (53%) patients and GAR level was 1.27 ± 0.44. These variables were higher than non-DM group and the differences were statistically significant (p < 0.05, respectively). Patients with severe stress-induced hyperglycemia demonstrated greater incidence of 3-month poor prognosis (DM: Q1, 39.7%; Q2, 45.6%; Q3, 58.6%; Q4, 68.4%; p = 0.009. Non-DM: Q1, 31%; Q2, 32.6%; Q3, 42.5%; Q4, 64%; p < 0.001). However, the highest quartile of GAR was independently associated with poor prognosis at 3 months (OR 3.39, 95% CI 1.66-6.96, p = 0.001), compared to the lowest quartile in non-DM patients after logistic regression. This association was not observed from DM patients. CONCLUSION The outcome of patients with acute LVO stroke treated with EVT appears to be influenced by premorbid diabetes status. However, the poor prognosis at 3-month in patients with DM is not independently correlated with stress-induced hyperglycemia. This could be due to the long-term damage of persistent hyperglycemia and diabetic patients' adaptive response to stress following acute ischemic damage to the brain.
Collapse
Affiliation(s)
- Honglian Duan
- Department of Neurology, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Ho Jun Yun
- Department of Neurosurgery, School of Medicine, Wayne State University, Detroit, MI, United States
| | - Gary Benjamin Rajah
- Department of Neurosurgery, Munson Healthcare, Munson Medical Center, Traverse City, MI, United States
| | - Fengli Che
- Department of Neurology, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Yanling Wang
- Department of Neurology, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Jing Liu
- Department of Neurology, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Yanna Tong
- Department of Neurology, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Zhe Cheng
- Department of Neurology, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Lipeng Cai
- Department of Neurology, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Xiaokun Geng
- Department of Neurology, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Yuchuan Ding
- Department of Neurosurgery, School of Medicine, Wayne State University, Detroit, MI, United States
| |
Collapse
|
17
|
Wu Q, Wei C, Guo S, Liu J, Xiao H, Wu S, Wu B, Liu M. Acute iron overload aggravates blood-brain barrier disruption and hemorrhagic transformation after transient focal ischemia in rats with hyperglycemia. IBRO Neurosci Rep 2022; 13:87-95. [PMID: 35847179 PMCID: PMC9284446 DOI: 10.1016/j.ibneur.2022.06.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 06/29/2022] [Accepted: 06/30/2022] [Indexed: 11/16/2022] Open
Affiliation(s)
- Qian Wu
- Center of Cerebrovascular Diseases, Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Chenchen Wei
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Siqi Guo
- West China School of Clinical Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Junfeng Liu
- Center of Cerebrovascular Diseases, Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Hengyi Xiao
- Lab for Aging Research, Center for Medical Stem Cell Biology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Simiao Wu
- Center of Cerebrovascular Diseases, Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Bo Wu
- Center of Cerebrovascular Diseases, Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Ming Liu
- Center of Cerebrovascular Diseases, Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
- Correspondence to: Center of Cerebrovascular Diseases, Department of Neurology, West China Hospital, Sichuan University, No. 37, Guo Xue Xiang, Chengdu 610041, Sichuan Province, China.
| |
Collapse
|
18
|
Wu S, Yang YM, Zhu J, Xu W, Wang LL, Lyu SQ, Wang J, Shao XH, Zhang H. Impact of glycemic gap on 30-day adverse outcomes in patients with acute ST-segment elevation myocardial infarction. Atherosclerosis 2022; 360:34-41. [DOI: 10.1016/j.atherosclerosis.2022.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 09/12/2022] [Accepted: 10/05/2022] [Indexed: 11/27/2022]
|
19
|
Muscari A, Falcone R, Recinella G, Faccioli L, Forti P, Pastore Trossello M, Puddu GM, Spinardi L, Zoli M. Prognostic significance of diabetes and stress hyperglycemia in acute stroke patients. Diabetol Metab Syndr 2022; 14:126. [PMID: 36038896 PMCID: PMC9422130 DOI: 10.1186/s13098-022-00896-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 08/17/2022] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Hyperglycemic non-diabetic stroke patients have a worse prognosis than both normoglycemic and diabetic patients. Aim of this study was to assess whether hyperglycemia is an aggravating factor or just an epiphenomenon of most severe strokes. METHODS In this retrospective study, 1219 ischemic or hemorrhagic stroke patients (73.7 ± 13.1 years) were divided into 4 groups: 0 = non-hyperglycemic non-diabetic, 1 = hyperglycemic non-diabetic, 2 = non-hyperglycemic diabetic and 3 = hyperglycemic diabetic. Hyperglycemia was defined as fasting blood glucose ≥ 126 mg/dl (≥ 7 mmol/l) measured the morning after admission, while the diagnosis of diabetes was based on a history of diabetes mellitus or on a glycated hemoglobin ≥ 6.5% (≥ 48 mmol/mol), independently of blood glucose levels. All diabetic patients, except 3, had Type 2 diabetes. The 4 groups were compared according to clinical history, stroke severity indicators, acute phase markers and main short term stroke outcomes (modified Rankin scale ≥ 3, death, cerebral edema, hemorrhagic transformation of ischemic lesions, fever, oxygen administration, pneumonia, sepsis, urinary infection and heart failure). RESULTS Group 1 patients had more severe strokes, with larger cerebral lesions and higher inflammatory markers, compared to the other groups. They also had a high prevalence of atrial fibrillation, prediabetes, previous stroke and previous arterial revascularizations. In this group, the highest frequencies of cerebral edema, hemorrhagic transformation, pneumonia and oxygen administration were obtained. The prevalence of dependency at discharge and in-hospital mortality were equally high in Group 1 and Group 3. However, in multivariate analyses including stroke severity, cerebral lesion diameter, leukocytes and C-reactive protein, Group 1 was only independently associated with hemorrhagic transformation (OR 2.01, 95% CI 0.99-4.07), while Group 3 was independently associated with mortality (OR 2.19, 95% CI 1.32-3.64) and disability (OR 1.70, 95% CI 1.01-2.88). CONCLUSIONS Hyperglycemic non-diabetic stroke patients had a worse prognosis than non-hyperglycemic or diabetic patients, but this group was not independently associated with mortality or disability when size, severity and inflammatory component of the stroke were accounted for.
Collapse
Affiliation(s)
- Antonio Muscari
- Stroke Unit, Medical Department of Continuity of Care and Disability, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy.
- Department of Medical and Surgical Sciences, University of Bologna, Via Massarenti, 9, 40138, Bologna, Italy.
| | - Roberta Falcone
- Department of Medical and Surgical Sciences, University of Bologna, Via Massarenti, 9, 40138, Bologna, Italy
| | - Guerino Recinella
- Department of Medical and Surgical Sciences, University of Bologna, Via Massarenti, 9, 40138, Bologna, Italy
| | - Luca Faccioli
- Diagnostic and Interventional Neuroradiology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Paola Forti
- Department of Medical and Surgical Sciences, University of Bologna, Via Massarenti, 9, 40138, Bologna, Italy
| | - Marco Pastore Trossello
- Diagnostic and Interventional Neuroradiology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Giovanni M Puddu
- Stroke Unit, Medical Department of Continuity of Care and Disability, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Luca Spinardi
- Diagnostic and Interventional Neuroradiology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Marco Zoli
- Stroke Unit, Medical Department of Continuity of Care and Disability, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
- Department of Medical and Surgical Sciences, University of Bologna, Via Massarenti, 9, 40138, Bologna, Italy
| |
Collapse
|
20
|
Simats A, Liesz A. Systemic inflammation after stroke: implications for post-stroke comorbidities. EMBO Mol Med 2022; 14:e16269. [PMID: 35971650 PMCID: PMC9449596 DOI: 10.15252/emmm.202216269] [Citation(s) in RCA: 115] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/27/2022] [Accepted: 07/01/2022] [Indexed: 12/21/2022] Open
Abstract
Immunological mechanisms have come into the focus of current translational stroke research, and the modulation of neuroinflammatory pathways has been identified as a promising therapeutic approach to protect the ischemic brain. However, stroke not only induces a local neuroinflammatory response but also has a profound impact on systemic immunity. In this review, we will summarize the consequences of ischemic stroke on systemic immunity at all stages of the disease, from onset to long‐term outcome, and discuss underlying mechanisms of systemic brain‐immune communication. Furthermore, since stroke commonly occurs in patients with multiple comorbidities, we will also overview the current understanding of the potential role of systemic immunity in common stroke‐related comorbidities, such as cardiac dysfunction, atherosclerosis, diabetes, and infections. Finally, we will highlight how targeting systemic immunity after stroke could improve long‐term outcomes and alleviate comorbidities of stroke patients.
Collapse
Affiliation(s)
- Alba Simats
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Munich, Germany
| | - Arthur Liesz
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Munich, Germany.,Munich Cluster of Systems Neurology (SyNergy), Munich, Germany
| |
Collapse
|
21
|
Karamchandani RR, Yang H, Prasad T, Strong D, Rhoten JB, Defilipp G, Clemente J, Stetler WR, Bernard J, Asimos AW. Endovascular Thrombectomy Reduces Risk of Poor Functional Outcomes in Patients Presenting within 0-6 Hours with Large Ischemic Core Volumes on Computed Tomography Perfusion. J Stroke Cerebrovasc Dis 2022; 31:106548. [PMID: 35567936 DOI: 10.1016/j.jstrokecerebrovasdis.2022.106548] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 04/02/2022] [Accepted: 05/01/2022] [Indexed: 12/30/2022] Open
Abstract
INTRODUCTION Patients presenting with large ischemic core volumes (LICVs) on computed tomography perfusion (CTP) are at high risk for poor functional outcomes. We sought to identify predictors of outcome in patients with an internal carotid artery (ICA) or middle cerebral artery (MCA) occlusion and LICV. METHODS A large healthcare system's prospectively collected code stroke registry was utilized for this retrospective analysis of patients presenting within 6 hours with at least 50 ml of CTP reduced relative cerebral blood flow (CBF) < 30%. A multivariable logistic regression model was constructed to identify independent predictors (p < 0.05) of poor discharge outcome (modified Rankin scale score 4-6). RESULTS Over a 38-month period, we identified 104 patients meeting inclusion criteria, with a mean age of 65.4 ± 16.2 years, median presenting National Institutes of Health Stroke Scale score 20 (IQR 16-24), median ischemic core volume (CBF < 30%) 82 ml (IQR 61-118), and median mismatch volume 80 ml (IQR 56-134). Seventy-five patients (72.1%) had a discharge modified Rankin scale score of 4-6. Sixty-six of 104 (63.5%) patients were treated with endovascular thrombectomy (EVT). In the multivariable regression model, EVT (OR 0.303; 95% CI 0.080-0.985; p = 0.049) and lower blood glucose (per 1-point increase, OR 1.014; 95% CI 1.003-1.030; p = 0.030) were independently protective against poor discharge outcome. CONCLUSIONS EVT is independently associated with a reduced risk of poor functional outcome in patients presenting within 6 hours with ICA or MCA occlusions and LICV.
Collapse
Affiliation(s)
- Rahul R Karamchandani
- Department of Neurology, Neurosciences Institute, Atrium Health, 1000 Blythe Blvd, Charlotte, NC 28203, United States, 734.883.7844.
| | - Hongmei Yang
- Information and Analytics Services, Atrium Health, Charlotte, NC, USA, 301.910.5966.
| | - Tanushree Prasad
- Information and Analytics Services, Atrium Health, Charlotte, NC, USA, 603.320.7556.
| | - Dale Strong
- Information and Analytics Services, Atrium Health, Charlotte, NC, USA, 410.940.9178.
| | - Jeremy B Rhoten
- Neurosciences Institute, Atrium Health, Charlotte, NC, USA, 304.654.8820.
| | - Gary Defilipp
- Charlotte Radiology, Neurosciences Institute, Atrium Health, Charlotte, NC, USA, 704.458.9612.
| | - Jonathan Clemente
- Charlotte Radiology, Neurosciences Institute, Atrium Health, Charlotte, NC, USA, 704.604.4283.
| | - William R Stetler
- Carolina Neurosurgery and Spine Associates, Neurosciences Institute, Atrium Health, Charlotte, NC, USA, 205.542.1402.
| | - Joe Bernard
- Carolina Neurosurgery and Spine Associates, Neurosciences Institute, Atrium Health, Charlotte, NC, USA, 704.618.4236.
| | - Andrew W Asimos
- Department of Emergency Medicine, Neurosciences Institute, Atrium Health, Charlotte, NC, USA, 704.804.9861.
| |
Collapse
|
22
|
Efficacy of Biologically Active Food Supplements for People with Atherosclerotic Vascular Changes. Molecules 2022; 27:molecules27154812. [PMID: 35956763 PMCID: PMC9370034 DOI: 10.3390/molecules27154812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/22/2022] [Accepted: 07/25/2022] [Indexed: 11/16/2022] Open
Abstract
The current paper deals with the development of a new biologically active food supplement (BAFS) aimed at treating atherosclerosis. Since atherosclerosis is considered to be a disease of aging, the composition of the supplement includes such essential minerals as magnesium and potassium, which are commonly used to prevent atherosclerosis, as well as vitamins C, E and the B-group vitamins in order to address the needs of the elderly. The authors outline the supplement-manufacturing technology and discuss the clinical trial undertaken by patients, aged about 60 years, with peripheral atherosclerosis. The research methodology focuses on studying the effectiveness of the developed supplement by assessing the influence of the active ingredients on treating metabolic disorders. To establish the efficacy of the supplement, blood tests, ultrasound and physical examinations were applied. The combination therapy resulted in improved metabolism and an overall better performance of the cardiovascular system; therefore, the BASF can be recommended as part of combination therapy to prevent and treat atherosclerotic and age-related changes in blood vessels.
Collapse
|
23
|
Neuroprotective Effects of Pharmacological Hypothermia on Hyperglycolysis and Gluconeogenesis in Rats after Ischemic Stroke. Biomolecules 2022; 12:biom12060851. [PMID: 35740974 PMCID: PMC9220898 DOI: 10.3390/biom12060851] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 06/13/2022] [Accepted: 06/15/2022] [Indexed: 12/26/2022] Open
Abstract
Stroke is a leading threat to human life. Metabolic dysfunction of glucose may play a key role in stroke pathophysiology. Pharmacological hypothermia (PH) is a potential neuroprotective strategy for stroke, in which the temperature is decreased safely. The present study determined whether neuroprotective PH with chlorpromazine and promethazine (C + P), plus dihydrocapsaicin (DHC) improved glucose metabolism in acute ischemic stroke. A total of 208 adult male Sprague Dawley rats were randomly divided into the following groups: sham, stroke, and stroke with various treatments including C + P, DHC, C + P + DHC, phloretin (glucose transporter (GLUT)-1 inhibitor), cytochalasin B (GLUT-3 inhibitor), TZD (thiazolidinedione, phosphoenolpyruvate carboxykinase (PCK) inhibitor), and apocynin (nicotinamide adenine dinucleotide phosphate oxidase (NOX) inhibitor). Stroke was induced by middle cerebral artery occlusion (MCAO) for 2 h followed by 6 or 24 h of reperfusion. Rectal temperature was monitored before, during, and after PH. Infarct volume and neurological deficits were measured to assess the neuroprotective effects. Reactive oxygen species (ROS), NOX activity, lactate, apoptotic cell death, glucose, and ATP levels were measured. Protein expression of GLUT-1, GLUT-3, phosphofructokinase (PFK), lactate dehydrogenase (LDH), PCK1, PCK2, and NOX subunit gp91 was measured with Western blotting. PH with a combination of C + P and DHC induced faster, longer, and deeper hypothermia, as compared to each alone. PH significantly improved every measured outcome as compared to stroke and monotherapy. PH reduced brain infarction, neurological deficits, protein levels of glycolytic enzymes (GLUT-1, GLUT-3, PFK and LDH), gluconeogenic enzymes (PCK1 and PCK2), NOX activity and its subunit gp91, ROS, apoptotic cell death, glucose, and lactate, while raising ATP levels. In conclusion, stroke impaired glucose metabolism by enhancing hyperglycolysis and gluconeogenesis, which led to ischemic injury, all of which were reversed by PH induced by a combination of C + P and DHC.
Collapse
|
24
|
Han Q, Yang J, Gao X, Li J, Wu Y, Xu Y, Shang Q, Parsons MW, Lin L. Early Edema Within the Ischemic Core Is Time-Dependent and Associated With Functional Outcomes of Acute Ischemic Stroke Patients. Front Neurol 2022; 13:861289. [PMID: 35463133 PMCID: PMC9021998 DOI: 10.3389/fneur.2022.861289] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 03/08/2022] [Indexed: 11/13/2022] Open
Abstract
ObjectiveTo investigate the difference in early edema, quantified by net water uptake (NWU) based on computed tomography (CT) between ischemic core and penumbra and to explore predictors of NWU and test its predictive power for clinical outcome.MethodsRetrospective analysis was conducted on patients admitted to Ningbo First Hospital with anterior circulation stroke and multi-modal CT. In 154 included patients, NWU of the ischemic core and penumbra were calculated and compared by Mann–Whitney U test. Correlations between NWU and variables including age, infarct time (time from symptom onset to imaging), volume of ischemic core, collateral status, and National Institutes of Health Stroke Scale (NIHSS) scores were investigated by Spearman's correlation analyses. Clinical outcome was defined using the modified Rankin Scale (mRS) at 90 days. Logistic regression and receiver operating characteristic analyses were performed to test the predictive value of NWU. Summary statistics are presented as median (interquartile range), mean (standard deviation) or estimates (95% confidence interval).ResultsThe NWU within the ischemic core [6.1% (2.9–9.2%)] was significantly higher than that of the penumbra [1.8% (−0.8–4.0%)]. The only significant predictor of NWU within the ischemic core was infarct time (p = 0.004). The NWU within the ischemic core [odds ratio = 1.23 (1.10–1.39)], the volume of ischemic core [1.04, (1.02–1.06)], age [1.09 (1.01–1.17)], and admission NHISS score [1.05 (1.01–1.09)] were associated with the outcome of patients adjusted for sex and treatment. The predictive power for the outcome of the model was significantly higher when NWU was included (area under the curve 0.875 vs. 0.813, p < 0.05 by Delong test).ConclusionsEarly edema quantified by NWU is relatively limited in the ischemic core and develops in a time-dependent manner. NWU estimates within the ischemic core may help to predict clinical outcomes of patients with acute ischemic stroke.
Collapse
Affiliation(s)
- Qing Han
- Department of Neurology, Ningbo First Hospital, Ningbo, China
| | - Jianhong Yang
- Department of Neurology, Ningbo First Hospital, Ningbo, China
| | - Xiang Gao
- Department of Neurosurgery, Ningbo First Hospital, Ningbo, China
| | - Jichuan Li
- Department of Neurology, Ningbo First Hospital, Ningbo, China
| | - Yuefei Wu
- Department of Neurology, Ningbo First Hospital, Ningbo, China
| | - Yao Xu
- Department of Neurology, Ningbo First Hospital, Ningbo, China
| | - Qing Shang
- Department of Neurology, Ningbo First Hospital, Ningbo, China
| | - Mark W. Parsons
- Sydney Brain Center, University of New South Wales, Sydney, NSW, Australia
- Mark W. Parsons
| | - Longting Lin
- Department of Neurology, Ningbo First Hospital, Ningbo, China
- Sydney Brain Center, University of New South Wales, Sydney, NSW, Australia
- *Correspondence: Longting Lin
| |
Collapse
|
25
|
Yang X, Qiang Q, Li N, Feng P, Wei W, Hölscher C. Neuroprotective Mechanisms of Glucagon-Like Peptide-1-Based Therapies in Ischemic Stroke: An Update Based on Preclinical Research. Front Neurol 2022; 13:844697. [PMID: 35370875 PMCID: PMC8964641 DOI: 10.3389/fneur.2022.844697] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 02/16/2022] [Indexed: 12/16/2022] Open
Abstract
The public and social health burdens of ischemic stroke have been increasing worldwide. Hyperglycemia leads to a greater risk of stroke. This increased risk is commonly seen among patients with diabetes and is in connection with worsened clinical conditions and higher mortality in patients with acute ischemic stroke (AIS). Therapy for stroke focuses mainly on restoring cerebral blood flow (CBF) and ameliorating neurological impairment caused by stroke. Although choices of stroke treatment remain limited, much advance have been achieved in assisting patients in recovering from ischemic stroke, along with progress of recanalization therapy through pharmacological and mechanical thrombolysis. However, it is still necessary to develop neuroprotective therapies for AIS to protect the brain against injury before and during reperfusion, prolong the time window for intervention, and consequently improve neurological prognosis. Glucagon-like peptide-1 receptor agonists (GLP-1 RAs) are broadly regarded as effective drugs in the treatment of type 2 diabetes mellitus (T2DM). Preclinical data on GLP-1 and GLP-1 RAs have displayed an impressive neuroprotective efficacy in stroke, Parkinson's disease (PD), Alzheimer's disease (AD), Amyotrophic lateral sclerosis (ALS), and other neurodegenerative diseases. Based on the preclinical studies in the past decade, we review recent progress in the biological roles of GLP-1 and GLP-1 RAs in ischemic stroke. Emphasis will be placed on their neuroprotective effects in experimental models of cerebral ischemia stroke at cellular and molecular levels.
Collapse
Affiliation(s)
- Xiaoyan Yang
- Department of Neurology, Huadong Hospital Affiliated to Fudan University, Shanghai, China
| | - Qiang Qiang
- Department of Neurology, Huadong Hospital Affiliated to Fudan University, Shanghai, China
| | - Nan Li
- Department of Neurology, Huadong Hospital Affiliated to Fudan University, Shanghai, China
| | - Peng Feng
- Department of Neurology, The Second Affiliated Hospital of Shanxi Medical University, Taiyuan, China
| | - Wenshi Wei
- Department of Neurology, Huadong Hospital Affiliated to Fudan University, Shanghai, China
| | - Christian Hölscher
- Department of Neurology, The Second Affiliated Hospital of Shanxi Medical University, Taiyuan, China.,Henan University of Chinese Medicine, Academy of Chinese Medical Science, Zhengzhou, China
| |
Collapse
|
26
|
Guo S, Mangal R, Dandu C, Geng X, Ding Y. Role of Forkhead Box Protein O1 (FoxO1) in Stroke: A Literature Review. Aging Dis 2022; 13:521-533. [PMID: 35371601 PMCID: PMC8947839 DOI: 10.14336/ad.2021.0826] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 08/26/2021] [Indexed: 12/11/2022] Open
Abstract
Stroke is one of the most prevalent causes of death around the world. When a stroke occurs, many cellular signaling cascades and regulators are activated, which results in severe cellular dysfunction and debilitating long-term disability. One crucial regulator of cell fate and function is mammalian Forkhead box protein O1 (FoxO1). Many studies have found FoxO1 to be implicated in many cellular processes, including regulating gluconeogenesis and glycogenolysis. During a stroke, modifications of FoxO1 have been linked to a variety of functions, such as inducing cell death and inflammation, inhibiting oxidative injury, affecting the blood brain barrier (BBB), and regulating hepatic gluconeogenesis. For these functions of FoxO1, different measures and treatments were applied to FoxO1 after ischemia. However, the subtle mechanisms of post-transcriptional modification and the role of FoxO1 are still elusive and even contradictory in the development of stroke. The determination of these mechanisms will lead to further enlightenment for FoxO1 signal transduction and the identification of targeted drugs. The regulation and function of FoxO1 may provide an important way for the prevention and treatment of diseases. Overall, the functions of FoxO1 are multifactorial, and this paper will summarize all of the significant pathways in which FoxO1 plays an important role during stroke damage and recovery.
Collapse
Affiliation(s)
- Sichao Guo
- 1Luhe Institute of Neuroscience, Beijing Luhe Hospital, Capital Medical University, Beijing, China.,3Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Ruchi Mangal
- 3Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Chaitu Dandu
- 3Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Xiaokun Geng
- 1Luhe Institute of Neuroscience, Beijing Luhe Hospital, Capital Medical University, Beijing, China.,2Department of Neurology, Beijing Luhe Hospital, Capital Medical University, Beijing, China.,3Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Yuchuan Ding
- 3Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI 48201, USA
| |
Collapse
|
27
|
Li F, Gao J, Kohls W, Geng X, Ding Y. Perspectives on benefit of early and prereperfusion hypothermia by pharmacological approach in stroke. Brain Circ 2022; 8:69-75. [PMID: 35909706 PMCID: PMC9336590 DOI: 10.4103/bc.bc_27_22] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/01/2022] [Accepted: 06/01/2022] [Indexed: 11/18/2022] Open
Abstract
Stroke kills or disables approximately 15 million people worldwide each year. It is the leading cause of brain injury, resulting in persistent neurological deficits and profound physical handicaps. In spite of over 100 clinical trials, stroke treatment modalities are limited in applicability and efficacy, and therefore, identification of new therapeutic modalities is required to combat this growing problem. Poststroke oxidative damage and lactic acidosis are widely-recognized forms of brain ischemia/reperfusion injury. However, treatments directed at these injury mechanisms have not been effective. In this review, we offer a novel approach combining these well-established damage mechanisms with new insights into brain glucose handling. Specifically, emerging evidence of brain gluconeogenesis provides a missing link for understanding oxidative injury and lactate toxicity after ischemia. Therefore, dysfunctional gluconeogenesis may substantially contribute to oxidative and lactate damage. We further review that hypothermia initiated early in ischemia and before reperfusion may ameliorate gluconeogenic dysfunction and subsequently provide an important mechanism of hypothermic protection. We will focus on the efficacy of pharmacologically assisted hypothermia and suggest a combination that minimizes side effects. Together, this study will advance our knowledge of basic mechanisms of ischemic damage and apply this knowledge to develop new therapeutic strategies that are desperately needed in the clinical treatment of stroke.
Collapse
Affiliation(s)
- Fengwu Li
- Department of Neurology, Luhe Hospital, Capital Medical University, Beijing, China
| | - Jie Gao
- Department of Neurology, Luhe Hospital, Capital Medical University, Beijing, China
| | - Wesley Kohls
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI, USA
| | - Xiaokun Geng
- Department of Neurology, Luhe Hospital, Capital Medical University, Beijing, China.,Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI, USA.,Department of Neurology, China-America Institute of Neuroscience, Luhe Hospital, Capital Medical University, Beijing, China
| | - Yuchuan Ding
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI, USA
| |
Collapse
|
28
|
Ivanov SV, Ostrovskaya RU. Neuroprotective substances: are they able to protect the pancreatic beta-cells too? Endocr Metab Immune Disord Drug Targets 2022; 22:834-841. [PMID: 35240968 DOI: 10.2174/1871530322666220303162844] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 10/01/2021] [Accepted: 12/30/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Growing evidences demonstrate a close relationship between type 2 diabetes (T2D) and neurodegenerative disorders such as Alzheimer's disease. The similarity of physiological and pathological processes, occurring in pancreatic β-cells and neurons over the course of these pathologies, allows to raise the question of the practicability of studying neuroprotective substances for their potential antidiabetic activity. OBJECTIVE This review analyzes studies of antidiabetic and cytoprotective action on pancreatic β-cells of the neuroprotective compounds that can attenuate the oxidative stress and enhance the expression of neurotrophins: low-molecular-weight NGF mimetic compound GK-2, selective anxiolytic afobazole, antidepressants lithium chloride and lithium carbonate on the rat streptozotocin model of T2D. RESULTS It was found that all above-listed neuroprotective substances have a pronounced antidiabetic activity. The decrease in the β-cells number, the average area of the pancreatic islets, as well as the violation of their morphological structure caused by the streptozotocin was significantly weakened by the therapy with the investigated neuroprotective substances. The extent of these morphological changes clearly correlates with the antihyperglycemic effect of these compounds. CONCLUSION The presented data indicate that the neuroprotective substances attenuating the damaging effect of oxidative stress and neurotrophins deficit cannot only protect neurons but also exert their cytoprotective effect towards pancreatic β-cells. These data may provide a theoretical basis for the further study of neuroprotective drugs as potential therapeutic options for T2D prevention and treatment.
Collapse
Affiliation(s)
- Sergei V Ivanov
- Institute of Pharmacology Russian Academy of Medical Sciences Laboratory of Psychopharmacology Russian Federation
| | - Rita U Ostrovskaya
- Laboratory of PsychopharmacologyInstitute of Pharmacology Russian Academy of Medical SciencesRussian
| |
Collapse
|
29
|
Mouhammad ZA, Vohra R, Horwitz A, Thein AS, Rovelt J, Cvenkel B, Williams PA, Azuara-Blanco A, Kolko M. Glucagon-Like Peptide 1 Receptor Agonists – Potential Game Changers in the Treatment of Glaucoma? Front Neurosci 2022; 16:824054. [PMID: 35264926 PMCID: PMC8899005 DOI: 10.3389/fnins.2022.824054] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 01/10/2022] [Indexed: 12/22/2022] Open
Abstract
Glaucoma is a common ocular neurodegenerative disease characterized by the progressive loss of retinal ganglion cells and their axons. It is the most common cause of irreversible blindness. With an increasing number of glaucoma patients and disease progression despite treatment, it is paramount to develop new and effective therapeutics. Emerging new candidates are the receptor agonists of the incretin hormone glucagon-like-peptide-1 (GLP-1), originally used for the treatment of diabetes. GLP-1 receptor (GLP-1R) agonists have shown neuroprotective effects in preclinical and clinical studies on neurodegenerative diseases in both the brain (e.g., Alzheimer’s disease, Parkinson’s disease, stroke and diabetic neuropathy) and the eye (e.g., diabetic retinopathy and AMD). However, there are currently very few studies investigating the protective effects of GLP-1R agonists in the treatment of specifically glaucoma. Based on a literature search on PubMed, the Cochrane Library, and ClinicalTrials.gov, this review aims to summarize current clinical literature on GLP-1 receptor agonists in the treatment of neurodegenerative diseases to elucidate their potential in future anti-glaucomatous treatment strategies.
Collapse
Affiliation(s)
- Zaynab Ahmad Mouhammad
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Rupali Vohra
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
- Department of Veterinary and Animal Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Anna Horwitz
- Department of Ophthalmology, Copenhagen University Hospital, Rigshospitalet, Glostrup, Denmark
| | - Anna-Sophie Thein
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Jens Rovelt
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Barbara Cvenkel
- Department of Ophthalmology, University Medical Centre Ljubljana, Ljubljana, Slovenia
- Medical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Pete A. Williams
- Division of Eye and Vision, Department of Clinical Neuroscience, St. Erik Eye Hospital, Karolinska Institutet, Stockholm, Sweden
| | | | - Miriam Kolko
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
- Department of Ophthalmology, Copenhagen University Hospital, Rigshospitalet, Glostrup, Denmark
- *Correspondence: Miriam Kolko,
| |
Collapse
|
30
|
Ferrari F, Moretti A, Villa RF. Hyperglycemia in acute ischemic stroke: physiopathological and therapeutic complexity. Neural Regen Res 2022; 17:292-299. [PMID: 34269190 PMCID: PMC8463990 DOI: 10.4103/1673-5374.317959] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 12/31/2020] [Accepted: 02/26/2021] [Indexed: 11/17/2022] Open
Abstract
Diabetes mellitus and associated chronic hyperglycemia enhance the risk of acute ischemic stroke and lead to worsened clinical outcome and increased mortality. However, post-stroke hyperglycemia is also present in a number of non-diabetic patients after acute ischemic stroke, presumably as a stress response. The aim of this review is to summarize the main effects of hyperglycemia when associated to ischemic injury in acute stroke patients, highlighting the clinical and neurological outcomes in these conditions and after the administration of the currently approved pharmacological treatment, i.e. insulin. The disappointing results of the clinical trials on insulin (including the hypoglycemic events) demand a change of strategy based on more focused therapies. Starting from the comprehensive evaluation of the physiopathological alterations occurring in the ischemic brain during hyperglycemic conditions, the effects of various classes of glucose-lowering drugs are reviewed, such as glucose-like peptide-1 receptor agonists, DPP-4 inhibitors and sodium glucose cotransporter 2 inhibitors, in the perspective of overcoming the up-to-date limitations and of evaluating the effectiveness of new potential therapeutic strategies.
Collapse
Affiliation(s)
- Federica Ferrari
- Department of Biology and Biotechnology, Laboratory of Pharmacology and Molecular Medicine of Central Nervous System, University of Pavia, Via Ferrata, Pavia, Italy
| | - Antonio Moretti
- Department of Biology and Biotechnology, Laboratory of Pharmacology and Molecular Medicine of Central Nervous System, University of Pavia, Via Ferrata, Pavia, Italy
| | - Roberto Federic Villa
- Department of Biology and Biotechnology, Laboratory of Pharmacology and Molecular Medicine of Central Nervous System, University of Pavia, Via Ferrata, Pavia, Italy
| |
Collapse
|
31
|
Geng X, Duan H, Kohls W, Ilagan R, Ding Y. Mini review: Hyperglycemia in ischemic stroke. ENVIRONMENTAL DISEASE 2022. [DOI: 10.4103/ed.ed_26_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
|
32
|
Alleviation of Neuronal Cell Death and Memory Deficit with Chungkookjang Made with Bacillus amyloliquefaciens and Bacillus subtilis Potentially through Promoting Gut-Brain Axis in Artery-Occluded Gerbils. Foods 2021; 10:foods10112697. [PMID: 34828975 PMCID: PMC8619225 DOI: 10.3390/foods10112697] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 10/26/2021] [Accepted: 11/03/2021] [Indexed: 12/21/2022] Open
Abstract
Short-term fermented soybeans (chungkookjang) with specific Bacillus (B.) spp. have anti-obesity, antidiabetic, and anti-stroke functions. We examined the hypothesis that the long-term consumption of B. amyloliquefaciens SCGB 1 fermented (CKJ1) and B. subtilis SCDB 291 (CKJ291) chungkookjang can alleviate clinical symptoms and hyperglycemia after ischemic stroke by promoting the gut microbiota-brain axis. We examined this hypothesis in Mongolian male gerbils with stroke symptoms induced by carotid artery occlusion. The artery-occluded gerbils were divided into five groups: no supplementation (Control, Normal-control), 4% cooked soybeans (CSB), CKJ1, or CKJ291 in a high-fat diet for 3 weeks. The carotid arteries of gerbils in the Control, CSB, CKJ1, and CKJ291 groups were occluded for 8 min and they then continued on their assigned diets for an additional 3 weeks. Normal-control gerbils had no artery occlusion. The diets in all groups contained an identical macronutrient composition using starch, casein, soybean oil, and dietary fiber. The CSB, CKJ1, and CKJ291 groups exhibited less neuronal cell death than the Control group, while the CKJ1 group produced the most significant reduction among all groups, as much as 85% of the Normal-control group. CKJ1 and CKJ291 increased the blood flow and removal of blood clots, as determined by Doppler, more than the Control. They also showed more improvement in neurological disorders from ischemic stroke. Their improvement showed a similar tendency as neuronal cell death. CKJ1 treatment improved memory impairment, measured with Y maze and passive avoidance tests, similar to the Normal-control. The gerbils in the Control group had post-stroke hyperglycemia due to decreased insulin sensitivity and β-cell function and mass; the CKJ291, CSB, and CKJ1 treatments protected against glucose disturbance after artery occlusion and were similar to the Normal-control. CKJ1 and CKJ291 also reduced serum tumor necrosis factor-α concentrations and hippocampal interleukin-1β expression levels, compared to the Control. CKJ1 and CKJ291 increased the contents of Lactobacillus, Bacillus, and Akkermansia in the cecum feces, similar to the Normal-control. Picrust2 analysis showed that CKJ1 and CKJ291 increased the propionate and butyrate metabolism and the starch and glucose metabolism but reduced the lipopolysaccharide biosynthesis and fatty acid metabolism compared to the Control. In conclusion, daily CKJ1 and CKJ291 intake prevented neuronal cell death and memory dysfunction from the artery occlusion by increasing blood flow and β-cell survival and reducing post-stroke-hyperglycemia through modulating the gut microbiome composition and metabolites to influence the host metabolism, especially inflammation and insulin resistance, protecting against neuronal cell death and brain dysfunction. CKJ1 had better effects than CKJ291.
Collapse
|
33
|
Yu S, Meng S, Xiang M, Ma H. Phosphoenolpyruvate carboxykinase in cell metabolism: Roles and mechanisms beyond gluconeogenesis. Mol Metab 2021; 53:101257. [PMID: 34020084 PMCID: PMC8190478 DOI: 10.1016/j.molmet.2021.101257] [Citation(s) in RCA: 125] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 05/12/2021] [Accepted: 05/13/2021] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND Phosphoenolpyruvate carboxykinase (PCK) has been almost exclusively recognized as a critical enzyme in gluconeogenesis, especially in the liver and kidney. Accumulating evidence has shown that the enhanced activity of PCK leads to increased glucose output and exacerbation of diabetes, whereas the defects of PCK result in lethal hypoglycemia. Genetic mutations or polymorphisms are reported to be related to the onset and progression of diabetes in humans. SCOPE OF REVIEW Recent studies revealed that the PCK pathway is more complex than just gluconeogenesis, depending on the health or disease condition. Dysregulation of PCK may contribute to the development of obesity, cardiac hypertrophy, stroke, and cancer. Moreover, a regulatory network with multiple layers, from epigenetic regulation, transcription regulation, to posttranscription regulation, precisely tunes the expression of PCK. Deciphering the molecular basis that regulates PCK may pave the way for developing practical strategies to treat metabolic dysfunction. MAJOR CONCLUSIONS In this review, we summarize the metabolic and non-metabolic roles of the PCK enzyme in cells, especially beyond gluconeogenesis. We highlight the distinct functions of PCK isoforms (PCK1 and PCK2), depict a detailed network regulating PCK's expression, and discuss its clinical relevance. We also discuss the therapeutic potential targeting PCK and the future direction that is highly in need to better understand PCK-mediated signaling under diverse conditions.
Collapse
Affiliation(s)
- Shuo Yu
- Anesthesiology Department, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310009, China
| | - Simin Meng
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310009, China
| | - Meixiang Xiang
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310009, China.
| | - Hong Ma
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310009, China.
| |
Collapse
|
34
|
Kadir RRA, Alwjwaj M, McCarthy Z, Bayraktutan U. Therapeutic hypothermia augments the restorative effects of PKC-β and Nox2 inhibition on an in vitro model of human blood-brain barrier. Metab Brain Dis 2021; 36:1817-1832. [PMID: 34398388 PMCID: PMC8437893 DOI: 10.1007/s11011-021-00810-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 07/26/2021] [Indexed: 12/24/2022]
Abstract
To investigate whether therapeutic hypothermia augments the restorative impact of protein kinase C-β (PKC-β) and Nox2 inhibition on an in vitro model of human blood-brain barrier (BBB). Cells cultured in normoglycaemic (5.5 mM) or hyperglycaemic (25 mM, 6 to 120 h) conditions were treated with therapeutic hypothermia (35 °C) in the absence or presence of a PKC-β inhibitor (LY333531, 0.05 μM) or a Nox2 inhibitor (gp91ds-tat, 50 μM). BBB was established by co-culture of human brain microvascular endothelial cells (HBMECs) with astrocytes (HAs) and pericytes. BBB integrity and function were assessed via transendothelial electrical resistance (TEER) and paracellular flux of sodium fluorescein (NaF, 376 Da). Nox activity (lucigenin assay), superoxide anion production (cytochrome-C reduction assay), cellular proliferative capacity (wound scratch assay) and actin cytoskeletal formation (rhodamine-phalloidin staining) were assessed both in HBMECs and HAs using the specific methodologies indicated in brackets. Therapeutic hypothermia augmented the protective effects of PKC-β or Nox2 inhibition on BBB integrity and function in experimental setting of hyperglycaemia, as evidenced by increases in TEER and concomitant decreases in paracellular flux of NaF. The combinatory approaches were more effective in repairing physical damage exerted on HBMEC and HA monolayers by wound scratch and in decreasing Nox activity and superoxide anion production compared to sole treatment regimen with either agent. Similarly, the combinatory approaches were more effective in suppressing actin stress fibre formation and maintaining normal cytoskeletal structure. Therapeutic hypothermia augments the cerebral barrier-restorative capacity of agents specifically targeting PKC-β or Nox2 pathways.
Collapse
Affiliation(s)
- Rais Reskiawan A Kadir
- Academic Unit of Mental Health and Clinical Neuroscience, School of Medicine, The University of Nottingham, Hucknall Road, Nottingham, NG5 1PB, UK
| | - Mansour Alwjwaj
- Academic Unit of Mental Health and Clinical Neuroscience, School of Medicine, The University of Nottingham, Hucknall Road, Nottingham, NG5 1PB, UK
| | - Zoe McCarthy
- Academic Unit of Mental Health and Clinical Neuroscience, School of Medicine, The University of Nottingham, Hucknall Road, Nottingham, NG5 1PB, UK
| | - Ulvi Bayraktutan
- Academic Unit of Mental Health and Clinical Neuroscience, School of Medicine, The University of Nottingham, Hucknall Road, Nottingham, NG5 1PB, UK.
| |
Collapse
|
35
|
Tsai ST, Lin FY, Chen PS, Chiang HY, Kuo CC. Three-year mortality in cryptococcal meningitis: Hyperglycemia predict unfavorable outcome. PLoS One 2021; 16:e0251749. [PMID: 34048463 PMCID: PMC8162582 DOI: 10.1371/journal.pone.0251749] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 05/02/2021] [Indexed: 11/18/2022] Open
Abstract
Existing evidence revealed grave prognosis for cryptococcal meningitis (CM), particularly its short-term mortality. However, its long-term survival and prognostic factors remained unknown. This study investigated 3-year mortality and analyzed its predictive factors in patients with CM. This retrospective cohort study with 83 cerebrospinal fluid culture-confirmed CM patients was conducted at China Medical University Hospital from 2003 to 2016. The 3-year mortality rate in patients with CM was 54% (45 deaths among 83 patients). Advanced age, human immunodeficiency virus (HIV) seronegative state, low Glasgow Coma Scale score on admission, decreased hemoglobin and hyperglycemia on diagnosis were associated with 3-year mortality. After multivariate adjustment in the Cox proportional hazard model, only severe hyperglycemia (serum glucose ≥200 mg/dL) on diagnosis could predict 3-year mortality.
Collapse
Affiliation(s)
- Sheng-Ta Tsai
- Department of Neurology, China Medical University Hospital and College of Medicine, China Medical University, Taichung, Taiwan
| | - Fu-Yu Lin
- Department of Neurology, China Medical University Hospital and College of Medicine, China Medical University, Taichung, Taiwan
- * E-mail:
| | - Pei-Shan Chen
- Big Data Center, China Medical University Hospital and College of Medicine, China Medical University, Taichung, Taiwan
| | - Hsiu-Yin Chiang
- Big Data Center, China Medical University Hospital and College of Medicine, China Medical University, Taichung, Taiwan
| | - Chin-Chi Kuo
- Big Data Center, China Medical University Hospital and College of Medicine, China Medical University, Taichung, Taiwan
- Division of Nephrology, Department of Internal Medicine, China Medical University Hospital and College of Medicine, China Medical University, Taichung, Taiwan
| |
Collapse
|
36
|
Geng X, Shen J, Li F, Yip J, Guan L, Rajah G, Peng C, DeGracia D, Ding Y. Phosphoenolpyruvate Carboxykinase (PCK) in the Brain Gluconeogenic Pathway Contributes to Oxidative and Lactic Injury After Stroke. Mol Neurobiol 2021; 58:2309-2321. [PMID: 33417227 DOI: 10.1007/s12035-020-02251-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 12/04/2020] [Indexed: 12/30/2022]
Abstract
To demonstrate the role of the rate-limiting and ATP-dependent gluconeogenic enzyme phosphoenolpyruvate carboxykinase (PCK) in oxidative and lactic stress and the effect of phenothiazine on PCK after stroke, a total of 168 adult male Sprague Dawley rats (3 months old, 280-300 g) underwent 2-h intraluminal middle cerebral artery occlusion (MCAO) and reperfusion for 6, 24, 48 h, or 7 days. Phenothiazine (chlorpromazine and promethazine (C+P)) (8 mg/kg) and 3-mercaptopicolinic acid (3-MPA, a PCK inhibitor, 100 μM) were administered at reperfusion onset. The effects of phosphoenolpyruvate, 3-MPA, or PCK knockdown were studied in neuronal cultures subjected to oxygen/glucose deprivation. Reactive oxygen species, lactate, phosphoenolpyruvate (PEP; a gluconeogenic product), mRNA, and protein of total PCK, PCK-1, and PCK-2 increased after MCAO and oxygen-glucose deprivation (OGD). Oxaloacetate (a gluconeogenic substrate) decreased, while PEP and glucose were increased, suggesting reactive gluconeogenesis. These changes were attenuated by phenothiazine, 3-MPA, or PCK shRNA. PCK-1 and -2 existed primarily in neurons, while the effects of ischemic stroke on the PCK expression were seen predominately in astrocytes. Thus, phenothiazine reduced infarction and oxidative/lactic stress by inhibiting PCKs, leading to functional recovery.
Collapse
Affiliation(s)
- Xiaokun Geng
- China-America Institute of Neuroscience, Beijing Luhe Hospital, Capital Medical University, Beijing, China.
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI, 48201, USA.
- Department of Neurology, Beijing Luhe Hospital, Capital Medical University, No. 82 Xinhua South Road, Tongzhou District, Beijing, 101149, China.
| | - Jiamei Shen
- China-America Institute of Neuroscience, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Fengwu Li
- China-America Institute of Neuroscience, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - James Yip
- Department of Pathology, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI, USA
| | - Longfei Guan
- China-America Institute of Neuroscience, Beijing Luhe Hospital, Capital Medical University, Beijing, China
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI, 48201, USA
- John D. Dingell VA Medical Center, Detroit, MI, USA
| | - Gary Rajah
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI, 48201, USA
- Department of Neurosurgery, Munson Medical Center, Traverse City, MI, 49684, USA
| | - Changya Peng
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Donald DeGracia
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI, USA
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Yuchuan Ding
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI, 48201, USA.
- John D. Dingell VA Medical Center, Detroit, MI, USA.
| |
Collapse
|
37
|
Cheng Z, Li FW, Stone CR, Elkin K, Peng CY, Bardhi R, Geng XK, Ding YC. Normobaric oxygen therapy attenuates hyperglycolysis in ischemic stroke. Neural Regen Res 2021; 16:1017-1023. [PMID: 33269745 PMCID: PMC8224134 DOI: 10.4103/1673-5374.300452] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Normobaric oxygen therapy has gained attention as a simple and convenient means of achieving neuroprotection against the pathogenic cascade initiated by acute ischemic stroke. The mechanisms underlying the neuroprotective efficacy of normobaric oxygen therapy, however, have not been fully elucidated. It is hypothesized that cerebral hyperglycolysis is involved in the neuroprotection of normobaric oxygen therapy against ischemic stroke. In this study, Sprague-Dawley rats were subjected to either 2-hour middle cerebral artery occlusion followed by 3- or 24-hour reperfusion or to a permanent middle cerebral artery occlusion event. At 2 hours after the onset of ischemia, all rats received either 95% oxygen normobaric oxygen therapy for 3 hours or room air. Compared with room air, normobaric oxygen therapy significantly reduced the infarct volume, neurological deficits, and reactive oxygen species and increased the production of adenosine triphosphate in ischemic rats. These changes were associated with reduced transcriptional and translational levels of the hyperglycolytic enzymes glucose transporter 1 and 3, phosphofructokinase 1, and lactate dehydrogenase. In addition, normobaric oxygen therapy significantly reduced adenosine monophosphate-activated protein kinase mRNA expression and phosphorylated adenosine monophosphate-activated protein kinase protein expression. These findings suggest that normobaric oxygen therapy can reduce hyperglycolysis through modulating the adenosine monophosphate-activated protein kinase signaling pathway and alleviating oxidative injury, thereby exhibiting neuroprotective effects in ischemic stroke. This study was approved by the Institutional Animal Investigation Committee of Capital Medical University (approval No. AEEI-2018-033) on August 13, 2018.
Collapse
Affiliation(s)
- Zhe Cheng
- Department of Neurology, Luhe Hospital, Capital Medical University, Beijing, China
| | - Feng-Wu Li
- China-America Institute of Neuroscience, Luhe Hospital, Capital Medical University, Beijing, China
| | - Christopher R Stone
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI, USA
| | - Kenneth Elkin
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI, USA
| | - Chang-Ya Peng
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI, USA
| | - Redina Bardhi
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI, USA
| | - Xiao-Kun Geng
- Department of Neurology; China-America Institute of Neuroscience, Luhe Hospital, Capital Medical University, Beijing, China; Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI, USA
| | - Yu-Chuan Ding
- China-America Institute of Neuroscience, Luhe Hospital, Capital Medical University, Beijing, China; Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI, USA
| |
Collapse
|
38
|
Catangui EJ. Role of the nurse in the hyperacute care and management of patients following stroke. Nurs Stand 2020; 36:70-75. [PMID: 33369311 DOI: 10.7748/ns.2020.e11469] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/10/2020] [Indexed: 11/09/2022]
Abstract
Stroke is a medical emergency that affects millions of people worldwide each year. The first 24-72 hours following a stroke is a critical stage in the patient's management because deterioration can occur during this period. Hyperacute care is a time-sensitive method of managing stroke that has improved the provision of holistic and evidence-based stroke care. This article describes the care and management that patients require in the first 24-72 hours following stroke. It details the evidence-based practice that this involves, and explains the role of the nurse in providing hyperacute care.
Collapse
Affiliation(s)
- Elmer Javier Catangui
- Nursing Services, Ministry of National Guard Health Affairs, King Abdulaziz Medical City, Riyadh, Kingdom of Saudi Arabia
| |
Collapse
|
39
|
Demir CF, Balduz M, Taşcı İ, Kuloğlu T. Protective effect of pregabalin on the brain tissue of diabetic rats. Diabetol Int 2020; 12:207-216. [PMID: 33786275 DOI: 10.1007/s13340-020-00476-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 10/28/2020] [Indexed: 01/24/2023]
Abstract
Purpose Diabetes mellitus (DM) is a metabolic disorder characterized by insulin deficiency or insulin resistance. Pregabalin (PGB) is an antiepileptic drug with proven efficacy in the treatment of epilepsy, generalized anxiety disorder, and neuropathic pain. In this study, we aimed to investigate the protective effects of PGB in brain tissue of rats with streptozotocin (STZ)-induced experimental diabetes. Materials and methods Twenty-eight Wistar albino male rats were randomly divided into four groups with seven rats each: (I) Control group, (II) PGB (50 mg/kg PBG), (III) DM, and (IV) DM + PGB (50 mg/kg/day PGB per orally for 8 weeks). Diabetes was induced with an intraperitoneal (i.p.) STZ injection (Sigma Chemical Co Louis Missour, USA) at a dose of 180 mg/kg. STZ was dissolved in 0.1 M phosphate-citrate tampon (pH 4.5). Paraffin sections were examined using histological and immunohistochemical analyses. To detect oxidative damage biochemically, malondialdehyde (MDA), the end product of lipid peroxidation; superoxide dismutase (SOD), catalase (CAT), glutathione (GSH) and glutathione peroxidase (GPx) which are antioxidant enzymes, levels were studied. In addition, bax, caspase-3 enzyme activities and TUNEL assay were studied to evaluate the apoptosis status. Results In the DM group, MDA concentrations were significantly higher and GPx and SOD activities were significantly lower compared to the control group. MDA concentrations were significantly lower and SOD activity was significantly higher in the DM + PGB group than in the DM group. The GPx activity in the DM group decreased significantly compared to the control group. In immunohistochemical examinations (Bax, Caspase-3 and TUNEL), the apoptosis rate was significantly lower in the in DM + PGB group than in the DM group. Conclusion Pregabalin may prevent harmful effects of oxidative damage by decreasing the MDA levels and increasing the SOD levels. In addition, it was thought that PGB may have antiapoptotic properties due to decreased bax and caspase-3 immunoreactivity and TUNEL positivity in PGB groups. Based on these findings, we think that PGB may be effective in reducing the risk of brain damage associated with DM.
Collapse
Affiliation(s)
- Caner F Demir
- Department of Neurology, Firat University School of Medicine, Elazig, Turkey
| | - Metin Balduz
- Department of Neurology, Çukurova State Hospital, Adana, Turkey
| | - İrem Taşcı
- Department of Neurology, Malatya Training Research Hospital, Malatya, Turkey
| | - Tuncay Kuloğlu
- Department of Histology, Firat University School of Medicine, Elazig, Turkey
| |
Collapse
|
40
|
Kadenbach B. Regulation of cytochrome c oxidase contributes to health and optimal life. World J Biol Chem 2020; 11:52-61. [PMID: 33024517 PMCID: PMC7520645 DOI: 10.4331/wjbc.v11.i2.52] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 08/01/2020] [Accepted: 08/25/2020] [Indexed: 02/06/2023] Open
Abstract
The generation of cellular energy in the form of ATP occurs mainly in mitochondria by oxidative phosphorylation. Cytochrome c oxidase (CytOx), the oxygen accepting and rate-limiting step of the respiratory chain, regulates the supply of variable ATP demands in cells by “allosteric ATP-inhibition of CytOx.” This mechanism is based on inhibition of oxygen uptake of CytOx at high ATP/ADP ratios and low ferrocytochrome c concentrations in the mitochondrial matrix via cooperative interaction of the two substrate binding sites in dimeric CytOx. The mechanism keeps mitochondrial membrane potential ΔΨm and reactive oxygen species (ROS) formation at low healthy values. Stress signals increase cytosolic calcium leading to Ca2+-dependent dephosphorylation of CytOx subunit I at the cytosolic side accompanied by switching off the allosteric ATP-inhibition and monomerization of CytOx. This is followed by increase of ΔΨm and formation of ROS. A hypothesis is presented suggesting a dynamic change of binding of NDUFA4, originally identified as a subunit of complex I, between monomeric CytOx (active state with high ΔΨm, high ROS and low efficiency) and complex I (resting state with low ΔΨm, low ROS and high efficiency).
Collapse
Affiliation(s)
- Bernhard Kadenbach
- Department of Chemistry/Biochemistry, Fachbereich Chemie, Philipps-Universität Marburg, Marburg D-35043, Hessen, Germany
| |
Collapse
|
41
|
Murakami M, Ikeda Y, Nakagawa Y, Tsuji A, Kitagishi Y, Matsuda S. Special bioactive compounds and functional foods may exhibit neuroprotective effects in patients with dementia (Review). Biomed Rep 2020; 13:1. [PMID: 32509304 PMCID: PMC7271706 DOI: 10.3892/br.2020.1310] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 05/07/2020] [Indexed: 12/13/2022] Open
Abstract
Dementia is a failure of cognitive ability characterized by severe neurodegeneration in select neural systems, and Alzheimer's disease (AD) is the most common type of neurodegenerative disease. Although numerous studies have provided insights into the pathogenesis of AD, the underlying signaling and molecular pathways mediating the progressive decline of cognitive function remain poorly understood. Recent progress in molecular biology has provided an improved understanding of the importance of molecular pathogenesis of AD, and has proposed an association between DNA repair mechanisms and AD. In particular, the fundamental roles of phosphatase and tensin homologue deleted on chromosome 10 (PTEN) and breast cancer gene 1 (BRCA1) tumor suppressors have been shown to regulate the pathogenesis of neurodegeneration. Consequently, onset of neurodegenerative diseases may be deferred with the use of dietary neuroprotective agents which alter the signaling mediated by the aforementioned tumor suppressors. In a healthy neuron, homeostasis of key intracellular molecules is of great importance, and preventing neuronal apoptosis is one of the primary goals of treatments designed for dementia-associated diseases. In the present review, progress into the understanding of dietary regulation for preventing or limiting development of dementia is discussed with a focus on the modulatory roles of PTEN and BRCA1 signaling.
Collapse
Affiliation(s)
- Mutsumi Murakami
- Department of Food Science and Nutrition, Nara Women's University, Kita-Uoya Nishimachi, Nara 630-8506, Japan
| | - Yuka Ikeda
- Department of Food Science and Nutrition, Nara Women's University, Kita-Uoya Nishimachi, Nara 630-8506, Japan
| | - Yukie Nakagawa
- Department of Food Science and Nutrition, Nara Women's University, Kita-Uoya Nishimachi, Nara 630-8506, Japan
| | - Ai Tsuji
- Department of Food Science and Nutrition, Nara Women's University, Kita-Uoya Nishimachi, Nara 630-8506, Japan
| | - Yasuko Kitagishi
- Department of Food Science and Nutrition, Nara Women's University, Kita-Uoya Nishimachi, Nara 630-8506, Japan
| | - Satoru Matsuda
- Department of Food Science and Nutrition, Nara Women's University, Kita-Uoya Nishimachi, Nara 630-8506, Japan
| |
Collapse
|
42
|
Youssef MM, Abd El-Latif HA, El-Yamany MF, Georgy GS. Aliskiren and captopril improve cognitive deficits in poorly controlled STZ-induced diabetic rats via amelioration of the hippocampal P-ERK, GSK3β, P-GSK3β pathway. Toxicol Appl Pharmacol 2020; 394:114954. [PMID: 32171570 DOI: 10.1016/j.taap.2020.114954] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 03/08/2020] [Accepted: 03/10/2020] [Indexed: 12/22/2022]
Abstract
Learning and memory deficits are obvious symptoms that develop over time in patients with poorly controlled diabetes. Hyperactivity of the renin-angiotensin system (RAS) is directly associated with β-cell dysfunction and diabetic complications, including cognitive impairment. Here, we investigated the protective and molecular effects of two RAS modifiers, aliskiren; renin inhibitor and captopril; angiotensin converting enzyme inhibitor, on cognitive deficits in the rat hippocampus. Injection of low dose streptozotocin for 4 days resulted in type 1 diabetes. Then, poorly controlled diabetes was mimicked with ineffective daily doses of insulin for 4 weeks. The hyperglycaemia and pancreatic atrophy caused memory disturbance that were identifiable in behavioural tests, hippocampal neurodegeneration, and the following significant changes in the hippocampus, increases in the inflammatory marker interleukin 1β, cholinesterase, the oxidative stress marker malondialdehyde and protein expression of phosphorylated extracellular-signal-regulated kinase and glycogen synthase kinase-3 beta versus decrease in the antioxidant reduced glutathione and protein expression of phosphorylated glycogen synthase kinase-3 beta. Blocking RAS with either drugs along with insulin amended all previously mentioned parameters. Aliskiren stabilized the blood glucose level and restored normal pancreatic integrity and hippocampal malondialdehyde level. Aliskiren showed superior protection against the hippocampal degeneration displayed in the earlier behavioural modification in the passive avoidance test, and the aliskiren group outperformed the control group in the novel object recognition test. We therefore conclude that aliskiren and captopril reversed the diabetic state and cognitive deficits in rats with poorly controlled STZ-induced diabetes through reducing oxidative stress and inflammation and modulating protein expression.
Collapse
Affiliation(s)
- Madonna M Youssef
- Department of Pharmacology, National organization for drug control and research (NODCAR), Giza, Egypt.
| | - H A Abd El-Latif
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Cairo University, Kasr El-Aini St, Cairo 11562, Egypt
| | - M F El-Yamany
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Cairo University, Kasr El-Aini St, Cairo 11562, Egypt
| | - Gehan S Georgy
- Department of Pharmacology, National organization for drug control and research (NODCAR), Giza, Egypt
| |
Collapse
|
43
|
Li Y, Zhang Y, Ma L, Niu X, Chang J. Risk of stroke-associated pneumonia during hospitalization: predictive ability of combined A 2DS 2 score and hyperglycemia. BMC Neurol 2019; 19:298. [PMID: 31766993 PMCID: PMC6876087 DOI: 10.1186/s12883-019-1497-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 10/14/2019] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Stroke-associated pneumonia (SAP) is a common complication of cerebrovascular disease. The A2DS2 score has been used to predict the risk of SAP. However, hyperglycemia is not included in this scale. The purpose of the present study was to explore whether the A2DS2 scoring system and hyperglycemia could predict the risk of SAP more effectively than the conventional A2DS2 scale. METHODS This retrospective study enrolled 2552 patients with acute ischemic stroke. The A2DS2 scores, fasting blood glucose level and blood glucose level on admission were collected. Regression analysis was used to identify the independent risk factors of SAP. ROC curve analysis was used to evaluate the specificity and sensitivity of the combined A2DS2 score and fasting hyperglycemia for predicting SAP. RESULTS Fasting hyperglycemia was an independent risk factor for SAP (OR = 2.95; 95% confidence interval: 2.11-4.12; P < 0.001). The area under curve of the combined A2DS2 score and fasting hyperglycemia was significantly higher than that of the A2DS2 score alone (0.814 vs. 0.793; P = 0.020). CONCLUSION Fasting hyperglycemia is an independent risk factor for predicting SAP. Compared with the A2DS2 score, the modified A2DS2 score (combined A2DS2 score and fasting hyperglycemia) is more effective in predicting the risk of SAP.
Collapse
Affiliation(s)
- Yang Li
- Department of Neurology, the First Hospital of Shanxi Medical University, No. 58 Jiefang South Road, Yingze District, Taiyuan, 030000 China
| | - Yu Zhang
- Department of Neurology, the First Hospital of Shanxi Medical University, No. 58 Jiefang South Road, Yingze District, Taiyuan, 030000 China
| | - Liansheng Ma
- Department of Neurology, the First Hospital of Shanxi Medical University, No. 58 Jiefang South Road, Yingze District, Taiyuan, 030000 China
| | | | - Junsen Chang
- Department of Neurology, the First Hospital of Shanxi Medical University, No. 58 Jiefang South Road, Yingze District, Taiyuan, 030000 China
| |
Collapse
|
44
|
Chen L, Geng L, Chen J, Yan Y, Yang L, Zhao J, Sun Q, He J, Bai L, Wang X. Effects of Urinary Kallidinogenase on NIHSS score, mRS score, and fasting glucose levels in acute ischemic stroke patients with abnormal glucose metabolism: A prospective cohort study. Medicine (Baltimore) 2019; 98:e17008. [PMID: 31464958 PMCID: PMC6736392 DOI: 10.1097/md.0000000000017008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Urinary kallidinogenase may assist recovery acute ischemic stroke. This study evaluated the effect of urinary kallidinogenase on National Institute of Health Stroke Scale (NIHSS) score, modified Rankin scale (mRS) score, and fasting glucose levels in patients with acute ischemic stroke (AIS) combined with diabetes mellitus and impaired fasting glucose.Patients with AIS and abnormal glucose metabolism were enrolled in this prospective cohort study and divided into 2 groups. The human urinary kallidinogenase (HUK) group were treated with urinary kallidinogenase and standard treatment; the control group received standard treatment. NIHSS scores, mRS scores, and fasting blood glucose were evaluated and compared.A total of 113 patients were included: 58 in the HUK group and 55 in the control group. NIHSS scores decreased with treatment in both groups (time effect P < .05), but were lower in the HUK group (main effect P = .026). The mRS score decreased in both groups from 10 until 90 days after treatment (time effect P < .05); the 2 groups were similar (main effect, P = .130). Blood glucose levels decreased in both groups 10 days after treatment (time effect, P < .05), but there was no significant treatment effect (main effect, P = .635). Multivariate analysis showed blood uric acid >420 μmol/L (odds ratio [OR]: 0.053, 95% confidence interval [CI]: 0.008-0.350; P = .002) and application of HUK (OR: 0.217, 95% CI: 0.049-0.954; P = .043) were associated with 90% NIHSS recovery. Baseline NIHSS score was independently associated with poor curative effect.Urinary kallidinogenase with conventional therapy significantly improved NIHSS scores in patients with AIS. Urinary kallidinogenase also showed a trend toward lower fasting blood glucose levels, although the level did not reach significance.
Collapse
Affiliation(s)
- Lei Chen
- Department of Neurology, The Second Hospital of Hebei Medical University
- Department of Neurology, The first hospital of Shijiazhuang, Shijiazhuang
| | - Lianxia Geng
- Department of Neurology, The Second Hospital of Hebei Medical University
| | - Junmin Chen
- Department of Neurology, The Second Hospital of Hebei Medical University
| | - Yan Yan
- Department of Neurology, Xingtai People's Hospital, Xingtai, China
| | - Lan Yang
- Department of Neurology, The Second Hospital of Hebei Medical University
| | - Jing Zhao
- Department of Neurology, The Second Hospital of Hebei Medical University
| | - Qian Sun
- Department of Neurology, The Second Hospital of Hebei Medical University
| | - Junna He
- Department of Neurology, The Second Hospital of Hebei Medical University
| | - Lin Bai
- Department of Neurology, The Second Hospital of Hebei Medical University
| | - Xiaopeng Wang
- Department of Neurology, The Second Hospital of Hebei Medical University
| |
Collapse
|
45
|
Abstract
Acute ischemic stroke (AIS) is a medical emergency that requires prompt recognition and streamlined work-up to ensure that time-dependent therapies are initiated to achieve the best outcomes. This article discusses frequently missed AIS in the emergency department, the role of various imagining modalities in the work-up of AIS, updates on the use of intravenous thrombolytics and endovascular therapy for AIS, pearls on supportive care management of AIS, and prehospital and hospital process improvements to shorten door-to-needle time.
Collapse
Affiliation(s)
- Alfredo E Urdaneta
- Department of Emergency Medicine, Stanford University, 900 Welch Road, Suite 350, Palo Alto, CA 94305, USA.
| | - Paulomi Bhalla
- Department of Neurology, Stanford Health Care - Valley Care, Stanford University, 300 Pasteur Drive, Palo Alto, CA 94304, USA
| |
Collapse
|
46
|
Ji Y, Stone C, Guan L, Peng C, Han W. Is air pollution a potential cause of neuronal injury? Neurol Res 2019; 41:742-748. [DOI: 10.1080/01616412.2019.1609170] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Yu Ji
- Department of General Surgery, Beijing Luhe Hospital, Capital Medical University, Beijing, China
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI, USA
| | - Christopher Stone
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI, USA
| | - Longfei Guan
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI, USA
- China-America Institute of Neuroscience, Beijing Luhe Hospital, Capital Medical University, Beijing, China
- Department of Research & Development Center, John D. Dingell VA Medical Center, Detroit, MI, USA
| | - Changya Peng
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI, USA
- Department of Research & Development Center, John D. Dingell VA Medical Center, Detroit, MI, USA
| | - Wei Han
- Department of General Surgery, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
47
|
Zhu H, Chandra A, Geng X, Cheng Z, Tong Y, Du H, Ding Y. Low dose concomitant treatment with chlorpromazine and promethazine is safe in acute ischemic stroke. J Neurosurg Sci 2019; 63:265-269. [DOI: 10.23736/s0390-5616.19.04665-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
48
|
Pathology and Prevention of Secondary Brain Injury for Neurocritical Care Physicians. Neurocrit Care 2019. [DOI: 10.1007/978-981-13-7272-8_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
49
|
Zeng N, Wang A, Zhong C, Zheng X, Zhu Z, Xu T, Peng Y, Peng H, Li Q, Ju Z, Geng D, Zhang Y, He J. Association of serum galectin-3 with risks of death and vascular events in acute ischaemic stroke patients: the role of hyperglycemia. Eur J Neurol 2018; 26:415-421. [PMID: 30414289 DOI: 10.1111/ene.13856] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 11/05/2018] [Indexed: 01/04/2023]
Abstract
BACKGROUND AND PURPOSE Whether the association between galectin-3 and stroke outcome is modified by fasting plasma glucose (FPG) is unknown. The aim was to evaluate the prognostic effect of galectin-3 amongst ischaemic stroke patients stratified by FPG. METHODS In all, 3082 ischaemic stroke patients were included in this study and serum galectin-3 was tested at baseline. The primary outcome was a composite outcome of death and vascular events, and secondary outcomes were death, stroke recurrence and vascular events within 1 year after stroke. RESULTS Increased galectin-3 was significantly associated with the primary outcome, stroke recurrence and vascular events in the patients with hyperglycemia but not in those with normoglycemia (P for interaction < 0.05 for all). The multivariate-adjusted hazard ratios (95% confidence intervals) were 1.72 (1.05-2.84), 2.64 (1.14-6.12) and 2.68 (1.33-5.38) for the primary outcome, stroke recurrence and vascular events, respectively. A linear association between galectin-3 and the primary outcome was observed in hyperglycemic patients (P for linearity = 0.007). CONCLUSION Increased galectin-3 was associated with the primary outcome, stroke recurrence and vascular events within 1 year after stroke in the patients with hyperglycemia, suggesting that galectin-3 may be an important prognostic factor for ischaemic stroke patients with hyperglycemia.
Collapse
Affiliation(s)
- N Zeng
- Department of Epidemiology, School of Public Health and Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou, China
| | - A Wang
- Department of Epidemiology, School of Public Health and Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou, China
| | - C Zhong
- Department of Epidemiology, School of Public Health and Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou, China.,Department of Epidemiology, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, USA
| | - X Zheng
- Department of Epidemiology, School of Public Health and Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou, China
| | - Z Zhu
- Department of Epidemiology, School of Public Health and Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou, China
| | - T Xu
- Department of Epidemiology, School of Public Health and Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou, China.,Department of Epidemiology, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, USA
| | - Y Peng
- Department of Neurology, Affiliated Hospital of North China University of Science and Technology, Hebei, China
| | - H Peng
- Department of Epidemiology, School of Public Health and Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou, China
| | - Q Li
- Department of Epidemiology, School of Public Health, Taishan Medical College, Shandong, China
| | - Z Ju
- Department of Neurology, Kerqin District First People's Hospital of Tongliao City, Tongliao, Inner Mongolia, China
| | - D Geng
- Department of Neurology, Affiliated Hospital of Xuzhou Medical College, Jiangsu, China
| | - Y Zhang
- Department of Epidemiology, School of Public Health and Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou, China.,Department of Epidemiology, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, USA
| | - J He
- Department of Epidemiology, School of Public Health and Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou, China.,Department of Epidemiology, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, USA
| |
Collapse
|
50
|
McBride DW, Gren ECK, Kelln W, Hayes WK, Zhang JH. Crotalus atrox disintegrin reduces hemorrhagic transformation by attenuating matrix metalloproteinase-9 activity after middle cerebral artery occlusion in hyperglycemic male rats. J Neurosci Res 2018; 98:191-200. [PMID: 30242872 DOI: 10.1002/jnr.24334] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 08/24/2018] [Accepted: 09/04/2018] [Indexed: 01/14/2023]
Abstract
Hemorrhagic transformation after ischemic stroke is an independent predictor for poor outcome and is characterized by blood vessel rupture leading to brain edema. To date, no therapies for preventing hemorrhagic transformation exist. Disintegrins from the venom of Crotalus atrox have targets within the coagulation cascade, including receptors on platelets. We hypothesized that disintegrins from C. atrox venom can attenuate hemorrhagic transformation by preventing activation of matrix metalloproteinase after middle cerebral artery occlusion (MCAO) in hyperglycemic rats. We subjected 48 male Sprague-Dawley rats weighing 240-260 g to MCAO and hyperglycemia to induce hemorrhagic transformation of the infarction. At reperfusion, we administered either saline (vehicle), whole C. atrox venom (two doses were used), or fractionated C. atrox venom (HPLC Fraction 2). Rats were euthanized 24 hr post-ictus for measurement of infarction and hemoglobin volume. Reversed-phase HPLC was performed to fractionate the whole venom and peaks were combined to form Fraction 2, which contained the disintegrin Crotatroxin. Fraction 2 protected against hemorrhagic transformation after MCAO, and attenuated activation of matrix metalloproteinase-9. Administering matrix metalloproteinase antagonists prevented the protection by Fraction 2. The results of this study indicate that disintegrins found in C. atrox venom may have therapeutic potential for reducing hemorrhagic transformation after ischemic stroke. Moreover, the RP-HPLC fractions retained sufficient protein activity to suggest that gentler and less efficient orthogonal chromatographic methods may be unnecessary to isolate proteins and explore their function.
Collapse
Affiliation(s)
- Devin W McBride
- The Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas.,Department of Physiology & Pharmacology, Loma Linda University School of Medicine, Loma Linda, California
| | - Eric C K Gren
- Department of Earth and Biological Sciences, Loma Linda University School of Medicine, Loma Linda, California
| | - Wayne Kelln
- Department of Earth and Biological Sciences, Loma Linda University School of Medicine, Loma Linda, California
| | - William K Hayes
- Department of Earth and Biological Sciences, Loma Linda University School of Medicine, Loma Linda, California
| | - John H Zhang
- Department of Physiology & Pharmacology, Loma Linda University School of Medicine, Loma Linda, California.,Department of Neurosurgery, Loma Linda University School of Medicine, Loma Linda, California.,Department of Anesthesiology, Loma Linda University School of Medicine, Loma Linda, California
| |
Collapse
|