1
|
Okon K, Zubik-Duda M, Nosalewicz A. Light-driven modulation of plant response to water deficit. A review. FUNCTIONAL PLANT BIOLOGY : FPB 2025; 52:FP24295. [PMID: 40261980 DOI: 10.1071/fp24295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Accepted: 04/04/2025] [Indexed: 04/24/2025]
Abstract
The dependence of agriculture on water availability is an important premise justifying attempts to enhance water use efficiency for plant production. Photosynthetic efficiency, directly impacts biomass production, is dependent on both water availability and the quality and quantity of light. Understanding how these factors interact is crucial for improving crop yields. Many overlapping signalling pathways and functions of common bioactive molecules that shape plant responses to both water deficit and light have been identified and discussed in this review. Separate or combined action of these environmental factors include the generation of reactive oxygen species, biosynthesis of abscisic acid, stomatal functioning, chloroplast movement and alterations in the levels of photosynthetic pigments and bioactive molecules. Plant response to water deficit depends on light intensity and its characteristics, with differentiated impacts from UV, blue, and red light bands determining the strength and synergistic or antagonistic nature of interactions. Despite its significance, the combined effects of these environmental factors remain insufficiently explored. The findings highlight the potential for optimising horticultural production through controlled light conditions and regulated deficit irrigation. Future research should assess light and water manipulation strategies to enhance resource efficiency and crop nutritional value.
Collapse
Affiliation(s)
- K Okon
- Institute of Agrophysics, Polish Academy of Sciences, Lublin, Poland
| | - M Zubik-Duda
- Department of Biophysics, Institute of Physics, Maria Curie-Sklodowska University in Lublin, Lublin, Poland
| | - A Nosalewicz
- Institute of Agrophysics, Polish Academy of Sciences, Lublin, Poland
| |
Collapse
|
2
|
Li M, Chen Z, Li X, Yu S, Xu S, Qiu S, Ge S. Physiological and genetic responses of Chlorella sp. to nitrite accumulation in microalgal-bacterial consortium with partial nitrification treating municipal wastewater. WATER RESEARCH 2025; 280:123473. [PMID: 40086147 DOI: 10.1016/j.watres.2025.123473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Revised: 02/17/2025] [Accepted: 03/09/2025] [Indexed: 03/16/2025]
Abstract
The integration of microalgal-bacterial consortium (MBC) with partial nitrification (PN-MBC) offers a promising strategy for low-carbon wastewater treatment. However, the gradually accumulated nitrite levels challenge microalgal activities and system stability. This study demonstrated the nitrite tolerance (10-300 mg/L) of Chlorella sp., isolated from the PN-MBC system, and the underlying mechanism. Physiological assays, transcriptomic analysis, and bioinformatics revealed that nitrite significantly affected photosynthesis, DNA processing, carbon metabolism, signal transduction, and protein processing. Specifically, nitrite inhibited photosystem II by targeting the PsbO subunit, disrupting electron transport and the proton gradient, hindering carbon fixation in the Calvin cycle. It also caused DNA damage, including strand breaks, base modifications and mismatches, with upregulated DNA repair pathways and biomass growth stagnation between Days 5-7. In response, Chlorella sp. upregulated carbon metabolism and oxidative phosphorylation to enhance ATP synthesis, while exopolysaccharides were secreted for energy storage, and protein processing was downregulated to mitigate proteotoxic stress. Evolution analysis suggested that active site variations in carbon metabolism enzymes contributed to Chlorella sp.'s enhanced nitrite resilience. These findings advance current understandings of nitrite's effects on microalgae and offer insights for optimizing PN-MBC performance under high-nitrite conditions.
Collapse
Affiliation(s)
- Mengting Li
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Xiao Ling Wei 200, Nanjing 210094, Jiangsu, China
| | - Zhipeng Chen
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Xiao Ling Wei 200, Nanjing 210094, Jiangsu, China
| | - Xiang Li
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Xiao Ling Wei 200, Nanjing 210094, Jiangsu, China
| | - Sheng Yu
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Xiao Ling Wei 200, Nanjing 210094, Jiangsu, China
| | - Shiling Xu
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Xiao Ling Wei 200, Nanjing 210094, Jiangsu, China
| | - Shuang Qiu
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Xiao Ling Wei 200, Nanjing 210094, Jiangsu, China.
| | - Shijian Ge
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Xiao Ling Wei 200, Nanjing 210094, Jiangsu, China.
| |
Collapse
|
3
|
Huang Y, He J, Wang Y, Li L, Lin S. Nitrogen source type modulates heat stress response in coral symbiont ( Cladocopium goreaui). Appl Environ Microbiol 2025; 91:e0059124. [PMID: 39772785 PMCID: PMC11837503 DOI: 10.1128/aem.00591-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 10/09/2024] [Indexed: 01/11/2025] Open
Abstract
Ocean warming due to climate change endangers coral reefs, and regional nitrogen overloading exacerbates the vulnerability of reef-building corals as the dual stress disrupts coral-Symbiodiniaceae mutualism. Different forms of nitrogen may create different interactive effects with thermal stress, but the underlying mechanisms remain elusive. To address the gap, we measured and compared the physiological and transcriptional responses of the Symbiodiniaceae Cladocopium goreaui to heat stress (31°C) when supplied with different types of nitrogen (nitrate, ammonium, or urea). Under heat stress (HS), cell proliferation and photosynthesis of C. goreaui declined, while cell size, lipid storage, and total antioxidant capacity increased, both to varied extents depending on the nitrogen type. Nitrate-cultured cells exhibited the most robust acclimation to HS, as evidenced by the fewest differentially expressed genes (DEGs) and less ROS accumulation, possibly due to activated nitrate reduction and enhanced ascorbate biogenesis. Ammonium-grown cultures exhibited higher algal proliferation and ROS scavenging capacity due to enhanced carotenoid and ascorbate quenching, but potentially reduced host recognizability due to the downregulation of N-glycan biosynthesis genes. Urea utilization led to the greatest ROS accumulation as genes involved in photorespiration, plant respiratory burst oxidase (RBOH), and protein refolding were markedly upregulated, but the greatest cutdown in photosynthate potentially available to corals as evidenced by photoinhibition and selfish lipid storage, indicating detrimental effects of urea overloading. The differential warming nitrogen-type interactive effects documented here has significant implication in coral-Symbiodiniaceae mutualism, which requires further research.IMPORTANCERegional nitrogen pollution exacerbates coral vulnerability to globally rising sea-surface temperature, with different nitrogen types exerting different interactive effects. How this occurs is poorly understood and understudied. This study explored the underlying mechanism by comparing physiological and transcriptional responses of a coral symbiont to heat stress under different nitrogen supplies (nitrate, ammonium, and urea). The results showed some common, significant responses to heat stress as well as some unique, N-source dependent responses. These findings underscore that nitrogen eutrophication is not all the same, the form of nitrogen pollution should be considered in coral conservation, and special attention should be given to urea pollution.
Collapse
Affiliation(s)
- Yulin Huang
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, Fujian, China
| | - Jiamin He
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, Fujian, China
| | - Yujie Wang
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, Fujian, China
| | - Ling Li
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, Fujian, China
| | - Senjie Lin
- Department of Marine Sciences, University of Connecticut, Groton, Connecticut, USA
| |
Collapse
|
4
|
Milburn G, Morris CM, Kosola E, Patel-Tupper D, Liu J, Pham DH, Acosta-Gamboa L, Stone WD, Pardi S, Hillman K, McHargue WE, Becker E, Kang X, Sumner J, Bailey C, Thielen PM, Jander G, Kane CN, McAdam SAM, Lawton TJ, Nusinow DA, Zhang F, Gore MA, Cheng J, Niyogi KK, Zhang R. Modification of Non-photochemical Quenching Pathways in the C 4 Model Plant Setaria viridis Revealed Shared and Unique Photoprotection Mechanisms as Compared to C 3 Plants. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.12.632622. [PMID: 39868288 PMCID: PMC11761403 DOI: 10.1101/2025.01.12.632622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Light is essential for photosynthesis; however, excess light can increase the accumulation of photoinhibitory reactive oxygen species that reduce photosynthetic efficiency. Plants have evolved photoprotective non-photochemical quenching (NPQ) pathways to dissipate excess light energy. In tobacco and soybean (C3 plants), overexpression of three NPQ genes, violaxanthin de-epoxidase (VDE), Photosystem II Subunit S (PsbS), and zeaxanthin epoxidase (ZEP), hereafter VPZ, resulted in faster NPQ induction and relaxation kinetics, and increased crop yields in field conditions. NPQ is well-studied in C3 plants; however, NPQ and the translatability of the VPZ approach in C4 plants is poorly understood. The green foxtail Setaria viridis is an excellent model to study photosynthesis and photoprotection in C4 plants. To understand the regulation of NPQ and photosynthesis in C4 plants, we performed transient overexpression in Setaria protoplasts and generated (and employed) stable transgenic Setaria plants overexpressing one of the three Arabidopsis NPQ genes or all three NPQ genes (AtVPZ lines). Overexpressing (OE) AtVDE and AtZEP in Setaria produced similar results as in C3 plants, with increased or reduced zeaxanthin (thus NPQ), respectively. However, overexpressing AtPsbS appeared to be challenging in Setaria, with largely reduced NPQ in protoplasts and under-represented homozygous AtPsbS-OE lines, potentially due to competitive and tight heterodimerization of AtPsbS and SvPsbS proteins. Furthermore, Setaria AtVPZ lines had increased zeaxanthin, faster NPQ induction, higher NPQ level, but slower NPQ relaxation. Despite this, AtVPZ lines had improved growth as compared to wildtype under several conditions, especially high temperatures, which is not related to the faster relaxation of NPQ but may be attributable to increased zeaxanthin and NPQ in C4 plants. Our results identified shared and unique characteristics of the NPQ pathway in C4 model Setaria as compared to C3 plants and provide insights to improve C4 crop yields under fluctuating environmental conditions.
Collapse
Affiliation(s)
- Grace Milburn
- Donald Danforth Plant Science Center, St. Louis, MO, USA
| | - Cheyenne M. Morris
- Donald Danforth Plant Science Center, St. Louis, MO, USA
- Current address: Washington University in Saint Louis, Plant and Microbial Biosciences Program, St. Louis, MO, USA
| | - Eileen Kosola
- Donald Danforth Plant Science Center, St. Louis, MO, USA
| | - Dhruv Patel-Tupper
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, CA, USA
- Howard Hughes Medical Institute, University of California, Berkeley, CA, USA
| | - Jian Liu
- Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, Missouri, USA
| | | | - Lucia Acosta-Gamboa
- Plant Breeding and Genetics Section, School of Integrated Plant Science, Cornell University, Ithaca, NY, USA
| | - William D. Stone
- Johns Hopkins University Applied Physics Laboratory, Laurel, MD, USA
| | - Sarah Pardi
- Donald Danforth Plant Science Center, St. Louis, MO, USA
| | - Kylee Hillman
- Donald Danforth Plant Science Center, St. Louis, MO, USA
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, CA, USA
| | - William E. McHargue
- Donald Danforth Plant Science Center, St. Louis, MO, USA
- Current address: Washington University in Saint Louis, Plant and Microbial Biosciences Program, St. Louis, MO, USA
| | - Eric Becker
- Donald Danforth Plant Science Center, St. Louis, MO, USA
| | - Xiaojun Kang
- University of Minnesota, Department of Plant and Microbial Biology, Minneapolis, MN, USA
| | - Josh Sumner
- Donald Danforth Plant Science Center, St. Louis, MO, USA
| | - Catherine Bailey
- Donald Danforth Plant Science Center, St. Louis, MO, USA
- Current address: Bioinformatics and Computational Biology, Saint Louis University, MO, USA
| | - Peter M. Thielen
- Johns Hopkins University Applied Physics Laboratory, Laurel, MD, USA
| | - Georg Jander
- Boyce Thompson Institute, 533 Tower Road, Ithaca, NY, USA
| | - Cade N. Kane
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, USA
- Current address: Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA
| | - Scott A. M. McAdam
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, USA
| | - Thomas J. Lawton
- Johns Hopkins University Applied Physics Laboratory, Laurel, MD, USA
| | | | - Feng Zhang
- University of Minnesota, Department of Plant and Microbial Biology, Minneapolis, MN, USA
| | - Michael A. Gore
- Plant Breeding and Genetics Section, School of Integrated Plant Science, Cornell University, Ithaca, NY, USA
| | - Jianlin Cheng
- Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, Missouri, USA
| | - Krishna K. Niyogi
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, CA, USA
- Howard Hughes Medical Institute, University of California, Berkeley, CA, USA
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Innovative Genomics Institute, University of California, Berkeley, CA, USA
| | - Ru Zhang
- Donald Danforth Plant Science Center, St. Louis, MO, USA
| |
Collapse
|
5
|
Horn A, Lu Y, Astorga Ríos FJ, Toft Simonsen H, Becker JD. Transcriptional and functional characterization in the terpenoid precursor pathway of the early land plant Physcomitrium patens. PLANT BIOLOGY (STUTTGART, GERMANY) 2025; 27:29-39. [PMID: 39601615 DOI: 10.1111/plb.13741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 10/14/2024] [Indexed: 11/29/2024]
Abstract
Isoprenoids comprise the largest group of plant specialized metabolites. 1-deoxy-D-xylulose-5-phosphate synthase (DXS) is one of the major rate-limiting enzymes in their biosynthesis. The DXS family expanded structurally and functionally during evolution and is believed to have significantly contributed to metabolic complexity and diversity in plants. This family has not yet been studied in Physcomitrium patens or other bryophytes. Here, we assessed the degree of evolutionary expansion in the DXS family in bryophytes and, more specifically, in P. patens using phylogenetic analysis. Transcriptome profiling was applied to investigate tissue-specific, developmental, and environmental responses, such as salt stress, in the DXS family. Moreover, the effect of salt stress on terpenoid biosynthesis was monitored through metabolomics. The phylogenetic analysis of DXS revealed that a structural expansion occurred in bryophytes, but not in P. patens. Functional complementation assay revealed functional activity in all four copies. Comparative transcriptomics showed tissue- and condition-specific divergence in the expression profiles of DXS copies and demonstrated specific stress responses for PpDXS1D, particularly to salt stress. These findings coincide with increased flux in the pathway towards downstream metabolites under salt stress. Additionally, co-expression network analysis revealed significant differences between the co-expressed genes of the DXS copies and illustrated enrichment of stress-responsive genes in the PpDXS1D network. These results suggest that the DXS family in P. patens is conserved but undergoes differential transcriptional regulation, which might allow P. patens to fine-tune DXS levels under different conditions, such as abiotic stress.
Collapse
Affiliation(s)
- A Horn
- ITQB NOVA-Instituto de Tecnologia Química e Biológica António Xavier, Oeiras, Portugal
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Y Lu
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - F J Astorga Ríos
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
- Université Jean Monnet Saint-Etienne, CNRS, LBVpam, Saint-Etienne, France
| | - H Toft Simonsen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
- Université Jean Monnet Saint-Etienne, CNRS, LBVpam, Saint-Etienne, France
| | - J D Becker
- ITQB NOVA-Instituto de Tecnologia Química e Biológica António Xavier, Oeiras, Portugal
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
| |
Collapse
|
6
|
Medina A, Eon M, Mazzella N, Bonnineau C, Millan-Navarro D, Moreira A, Morin S, Creusot N. Sensitivity shift of the meta-metabolome and photosynthesis to the chemical stress in periphyton between months along one year and a half period: Case study of a terbuthylazine exposure. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 957:177681. [PMID: 39577586 DOI: 10.1016/j.scitotenv.2024.177681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 11/17/2024] [Accepted: 11/19/2024] [Indexed: 11/24/2024]
Abstract
Despite the knowledge of the effects of contaminants on periphyton, information is limited about their natural fluctuations in sensitivity to chemical stress between various months. In particular, the molecular and biochemical mechanisms associated with sensitivity of photosynthesis and its fluctuations remain poorly described. To tackle this lack of knowledge, meta-metabolomics offers a comprehensive picture of the sensitive molecular response preceding the physiological impact. This study aimed to describe changes in the sensitivity of periphyton to chemical stress at different months over one year and a half period, at both the physiological and molecular levels by measuring photosynthetic yield and meta-metabolome responses (targeted and untargeted approaches). Periphyton was colonized for four weeks and then exposed to a range of terbuthylazine concentrations (0.3-30 μg L-1) under controlled conditions for 4 h. Sensitivity was assessed by determining the benchmark doses for the meta-metabolome and photosynthesis, along with the cumulative distribution of aggregated metabolomics signals. The results showed a strong sensitivity shift in the meta-metabolome compared to a smaller shift in photosynthetic yield at different months. This study also confirmed the high sensitivity of the meta-metabolome, as most signals responded before photosynthesis. The annotation highlighted the discrepancies in the molecular response to TBA between the months in terms of metabolite classes (e.g. amino acids, alkaloids, and lipids), their sensitivity, and trends in common classes across months, and correlation to photosynthesis inhibition, notably oxylipins. Overall, this study highlights that the molecular response of the periphyton to chemical stress, and thus toxicity pathways, may differ between the months but can still lead to similar physiological responses.
Collapse
Affiliation(s)
- Arthur Medina
- INRAE Nouvelle-Aquitaine Bordeaux, UR EABX, 50 avenue de Verdun, Cestas 33612, France
| | - Melissa Eon
- INRAE Nouvelle-Aquitaine Bordeaux, UR EABX, 50 avenue de Verdun, Cestas 33612, France; Plateforme Bordeaux Metabolome, F-33140 Villenave d'Ornon, France
| | - Nicolas Mazzella
- INRAE Nouvelle-Aquitaine Bordeaux, UR EABX, 50 avenue de Verdun, Cestas 33612, France; Plateforme Bordeaux Metabolome, F-33140 Villenave d'Ornon, France
| | - Chloé Bonnineau
- INRAE Nouvelle-Aquitaine Bordeaux, UR EABX, 50 avenue de Verdun, Cestas 33612, France
| | - Débora Millan-Navarro
- INRAE Nouvelle-Aquitaine Bordeaux, UR EABX, 50 avenue de Verdun, Cestas 33612, France
| | - Aurelie Moreira
- INRAE Nouvelle-Aquitaine Bordeaux, UR EABX, 50 avenue de Verdun, Cestas 33612, France; Plateforme Bordeaux Metabolome, F-33140 Villenave d'Ornon, France
| | - Soizic Morin
- INRAE Nouvelle-Aquitaine Bordeaux, UR EABX, 50 avenue de Verdun, Cestas 33612, France
| | - Nicolas Creusot
- INRAE Nouvelle-Aquitaine Bordeaux, UR EABX, 50 avenue de Verdun, Cestas 33612, France; Plateforme Bordeaux Metabolome, F-33140 Villenave d'Ornon, France.
| |
Collapse
|
7
|
Judy KJ, Pinseel E, Downey KM, Lewis JA, Alverson AJ. The Divergent Responses of Salinity Generalists to Hyposaline Stress Provide Insights Into the Colonisation of Freshwaters by Diatoms. Mol Ecol 2024; 33:e17556. [PMID: 39432060 DOI: 10.1111/mec.17556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 09/17/2024] [Accepted: 09/30/2024] [Indexed: 10/22/2024]
Abstract
Environmental transitions, such as the salinity divide separating marine and fresh waters, shape biodiversity over both shallow and deep timescales, opening up new niches and creating opportunities for accelerated speciation and adaptive radiation. Understanding the genetics of environmental adaptation is central to understanding how organisms colonise and subsequently diversify in new habitats. We used time-resolved transcriptomics to contrast the hyposalinity stress responses of two diatoms. Skeletonema marinoi has deep marine ancestry but has recently invaded brackish waters. Cyclotella cryptica has deep freshwater ancestry and can withstand a much broader salinity range. Skeletonema marinoi is less adept at mitigating even mild salinity stress compared to Cyclotella cryptica, which has distinct mechanisms for rapid mitigation of hyposaline stress and long-term growth in low salinity. We show that the cellular mechanisms underlying low salinity tolerance, which has allowed diversification across freshwater habitats worldwide, includes elements that are both conserved and variable across the diatom lineage. The balance between ancestral and lineage-specific environmental responses in phytoplankton have shaped marine-freshwater transitions on evolutionary timescales and, on contemporary timescales, will affect which lineages survive and adapt to changing ocean conditions.
Collapse
Affiliation(s)
- Kathryn J Judy
- Department of Biological Sciences, University of Arkansas, Fayetteville, Arkansas, USA
| | - Eveline Pinseel
- Department of Biological Sciences, University of Arkansas, Fayetteville, Arkansas, USA
- Laboratory of Protistology & Aquatic Ecology, Department of Biology, Ghent University, Ghent, Belgium
| | - Kala M Downey
- Department of Biological Sciences, University of Arkansas, Fayetteville, Arkansas, USA
| | - Jeffrey A Lewis
- Department of Biological Sciences, University of Arkansas, Fayetteville, Arkansas, USA
| | - Andrew J Alverson
- Department of Biological Sciences, University of Arkansas, Fayetteville, Arkansas, USA
| |
Collapse
|
8
|
Huang Y, Weng Z, Li S, Zhang S, Chen H, Luo Q, Yang R, Liu T, Wang T, Zhang P, Chen J. The photosynthetic performance and photoprotective role of carotenoids response to light stress in intertidal red algae Neoporphyra haitanensis. JOURNAL OF PHYCOLOGY 2024; 60:942-955. [PMID: 39016211 DOI: 10.1111/jpy.13480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 04/21/2024] [Accepted: 05/02/2024] [Indexed: 07/18/2024]
Abstract
Neoporphyra haitanensis, a red alga harvested for food, thrives in the intertidal zone amid dynamic and harsh environments. High irradiance represents a major stressor in this habitat, posing a threat to the alga's photosynthetic apparatus. Interestingly, N. haitanensis has adapted to excessive light despite the absence of a crucial xanthophyll cycle-dependent photoprotection pathway. Thus, it is valuable to investigate the mechanisms by which N. haitanensis copes with excessive light and to understand the photoprotective roles of carotenoids. Under high light intensities and prolonged irradiation time, N. haitanensis displayed reduction in photosynthetic efficiency and phycobiliproteins levels, as well as different responses in carotenoids. The decreased carotene contents suggested their involvement in the synthesis of xanthophylls, as evidenced by the up-regulation of lycopene-β-cyclase (lcyb) and zeaxanthin epoxidase (zep) genes. Downstream xanthophylls such as lutein, zeaxanthin, and antheraxanthin increased proportionally to light stress, potentially participating in scavenging reactive oxygen species (ROS). When accompanied by the enhanced activity of ascorbate peroxidase (APX), these factors resulted in a reduction in ROS production. The responses of intermediates α-cryptoxanthin and β-cryptoxanthin were felt somewhere between carotenes and zeaxanthin/lutein. Furthermore, these changes were ameliorated when the organism was placed in darkness. In summary, down-regulation of the organism's photosynthetic capacity, coupled with heightened xanthophylls and APX activity, activates photoinhibition quenching (qI) and antioxidant activity, helping N. haitanensis to protect the organism from the damaging effects of excessive light exposure. These findings provide insights into how red algae adapt to intertidal lifestyles.
Collapse
Affiliation(s)
- Yongbo Huang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo, Zhejiang, China
| | - Ziyu Weng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo, Zhejiang, China
| | - Shuang Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo, Zhejiang, China
| | - Shuyu Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo, Zhejiang, China
| | - Haimin Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo, Zhejiang, China
| | - Qijun Luo
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo, Zhejiang, China
| | - Rui Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo, Zhejiang, China
| | - Tao Liu
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, China
- State Key Laboratory of Mariculture Breeding, Xiamen University, Xiamen, China
| | - Tiegan Wang
- Zhejiang Mariculture Research Institute, Wenzhou, Zhejiang, China
| | - Peng Zhang
- Zhejiang Mariculture Research Institute, Wenzhou, Zhejiang, China
| | - Juanjuan Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo, Zhejiang, China
| |
Collapse
|
9
|
Maciel F, Berni P, Geada P, Teixeira J, Silva J, Vicente A. Identification and optimization of the key growth parameters involved in carotenoids production of the marine microalga Pavlova gyrans. Sci Rep 2024; 14:17224. [PMID: 39060334 PMCID: PMC11282313 DOI: 10.1038/s41598-024-66986-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024] Open
Abstract
In this work, a multivariate analysis was carried out, using a Plackett-Burman (PB) design involving seventeen growth parameters, on carotenoids production of Pavlova gyrans (p < 0.10). Each assay was analysed regarding its content (mg g-1) of fucoxanthin (Fx), diatoxanthin, diadinoxanthin, β-carotene (βCar), α-carotene, and the sum of all carotenoids analysed individually (TCar). According to the statistical analysis, modified medium formulations were developed for the particular cases of Fx, βCar, and TCar. The study showed that Fx content was positively affected by nitrogen supplementation and lower light intensities. Higher concentrations of nitrogen and iron increased the final content of βCar as well. Similarly, salinity, light intensity, nitrogen, iron, and cobalt were identified as key factors in TCar production. The PB-based formulations showed significant improvements (p < 0.05) for TCar (11.794 mg g-1) and Fx (6.153 mg g-1) when compared to the control conditions (Walne's medium-2.010 mg g-1). Furthermore, effective control of key variables (e.g., light intensity) throughout P. gyrans growth proved successful (p < 0.05), increasing the productivity of Fx (0.759 mg L-1 d-1) and TCar (1.615 mg L-1 d-1).
Collapse
Affiliation(s)
- Filipe Maciel
- CEB - Centre of Biological Engineering, University of Minho, Campus de Gualtar, Braga, Portugal
- LABBELS -Associate Laboratory, Braga, Guimarães, Portugal
| | - Paulo Berni
- CEB - Centre of Biological Engineering, University of Minho, Campus de Gualtar, Braga, Portugal
- LABBELS -Associate Laboratory, Braga, Guimarães, Portugal
| | - Pedro Geada
- CEB - Centre of Biological Engineering, University of Minho, Campus de Gualtar, Braga, Portugal.
- LABBELS -Associate Laboratory, Braga, Guimarães, Portugal.
| | - José Teixeira
- CEB - Centre of Biological Engineering, University of Minho, Campus de Gualtar, Braga, Portugal
- LABBELS -Associate Laboratory, Braga, Guimarães, Portugal
| | - Joana Silva
- ALLMICROALGAE, Natural Products S.A., Lisbon, Portugal
| | - António Vicente
- CEB - Centre of Biological Engineering, University of Minho, Campus de Gualtar, Braga, Portugal
- LABBELS -Associate Laboratory, Braga, Guimarães, Portugal
| |
Collapse
|
10
|
Vancoillie F, Verkempinck SHE, Hendrickx ME, Van Loey AM, Grauwet T. Farm to Fork Stability of Phytochemicals and Micronutrients in Brassica oleracea and Allium Vegetables. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024. [PMID: 39012491 DOI: 10.1021/acs.jafc.4c00265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
Brassica oleracea and Allium vegetables are known for their unique, family specific, water-soluble phytochemicals, glucosinolates, and S-alk(en)yl-l-cysteine sulfoxides, respectively. However, they are also important delivery systems of several other health-related compounds, such as carotenoids (lipid-soluble phytochemicals), vitamin C (water-soluble micronutrient), and vitamin K1 (lipid-soluble micronutrient). When all-year-round availability or transport over long distances is targeted for these often seasonal, locally grown vegetables, processing becomes indispensable. However, the vegetable processing chain, which consists of multiple steps (e.g., pretreatment, preservation, storage, preparation), can impact the nutritional quality of these vegetables corresponding to the nature of the health-related compounds and their susceptibility to (bio)chemical conversions. Since information about the impact of the vegetable processing chain is scattered per compound or processing step, this review targets an integration of the state of the art and discusses needs for future research. Starting with a discussion on substrate-enzyme location within the vegetable matrix, an overview is provided of the impact and potential of processing, encompassing a wide range of (nonenzymatic) conversions.
Collapse
Affiliation(s)
- Flore Vancoillie
- KU Leuven Department of Microbial and Molecular Systems, Laboratory of Food Technology, Kasteelpark Arenberg 22 Box 2457, 3001 Leuven, Belgium
| | - Sarah H E Verkempinck
- KU Leuven Department of Microbial and Molecular Systems, Laboratory of Food Technology, Kasteelpark Arenberg 22 Box 2457, 3001 Leuven, Belgium
| | - Marc E Hendrickx
- KU Leuven Department of Microbial and Molecular Systems, Laboratory of Food Technology, Kasteelpark Arenberg 22 Box 2457, 3001 Leuven, Belgium
| | - Ann M Van Loey
- KU Leuven Department of Microbial and Molecular Systems, Laboratory of Food Technology, Kasteelpark Arenberg 22 Box 2457, 3001 Leuven, Belgium
| | - Tara Grauwet
- KU Leuven Department of Microbial and Molecular Systems, Laboratory of Food Technology, Kasteelpark Arenberg 22 Box 2457, 3001 Leuven, Belgium
| |
Collapse
|
11
|
Rajčić MV, Šircelj H, Matić NA, Pavkov SD, Poponessi S, Tosti TB, Sabovljević AD, Sabovljević MS, Vujičić MM. Effects of the Salt Stress Duration and Intensity on Developmental and Physiological Features of the Moss Polytrichum formosum. PLANTS (BASEL, SWITZERLAND) 2024; 13:1438. [PMID: 38891247 PMCID: PMC11174806 DOI: 10.3390/plants13111438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/16/2024] [Accepted: 05/18/2024] [Indexed: 06/21/2024]
Abstract
The two accessions of the polytrichaceous moss species Polytrichum formosum, namely German and Serbian genotypes, were subjected to salt stress, aiming to study the species' developmental and physiological features. Various concentrations of sodium chloride were applied to an axenic in vitro culture of the two moss genotypes, and the growth parameters as well as physiological feature changes were followed. As inferred by the morpho-developmental parameters and survival index, the Serbian genotype showed higher resistance to salt stress as compared to the German one. However, both moss genotypes survived the highest applied concentration (500 mM). As expected, short exposures to salt were rather easily overcome. No clear patterns in sugar content and changes were observed during the stress, but they are surely included in salt stress response and tolerance in P. formosum. Longer stress increased total chlorophyll content in both genotypes. In short-term applied salt stress, the Serbian genotype had a higher total chlorophyll concentration to control unstressed plants, while the German genotype decreased the total amount of chlorophyll. Similarly, carotenoids were shown to be significantly higher in the Serbian genotype, both in unstressed and treated plants, compared to the German one. The contents of tocopherols were higher in the Serbian genotype in controlled unstressed and subsequently short- and long-stressed plantlets compared to the German accession. In general, we can assume that P. formosum is unexpectedly tolerant to salt stress and that there are differences within various accessions of overall European populations, as referred by two randomly selected genotypes, which is most probably a consequence of different genetic structure.
Collapse
Affiliation(s)
- Marija V. Rajčić
- Institute of Botany and Botanical Garden, Faculty of Biology, University of Belgrade, Takovska 43, RS-11000 Belgrade, Serbia; (N.A.M.); (A.D.S.); (M.S.S.); (M.M.V.)
| | - Helena Šircelj
- Agronomy Department, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, SI-1000 Ljubljana, Slovenia
| | - Nikolina A. Matić
- Institute of Botany and Botanical Garden, Faculty of Biology, University of Belgrade, Takovska 43, RS-11000 Belgrade, Serbia; (N.A.M.); (A.D.S.); (M.S.S.); (M.M.V.)
| | - Sara D. Pavkov
- Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića 3, RS-21000 Novi Sad, Serbia
| | - Silvia Poponessi
- Department of Life and Environmental Sciences, Botany Section, University of Cagliari, IT-09123 Cagliari, Italy
| | - Tomislav B. Tosti
- Faculty of Chemistry, University of BelgradSe, Studentski trg 12–16, RS-11158 Belgrade, Serbia;
| | - Aneta D. Sabovljević
- Institute of Botany and Botanical Garden, Faculty of Biology, University of Belgrade, Takovska 43, RS-11000 Belgrade, Serbia; (N.A.M.); (A.D.S.); (M.S.S.); (M.M.V.)
- Center of Plant Biotechnology and Conservation (CPBC), Takovska 43, RS-11000 Belgrade, Serbia
| | - Marko S. Sabovljević
- Institute of Botany and Botanical Garden, Faculty of Biology, University of Belgrade, Takovska 43, RS-11000 Belgrade, Serbia; (N.A.M.); (A.D.S.); (M.S.S.); (M.M.V.)
- Center of Plant Biotechnology and Conservation (CPBC), Takovska 43, RS-11000 Belgrade, Serbia
- Department of Botany, Institute of Biology and Ecology, Faculty of Science, Pavol Jozef Šafárik University in Kosice, Mánesova 23, SK-040 01 Košice, Slovakia
| | - Milorad M. Vujičić
- Institute of Botany and Botanical Garden, Faculty of Biology, University of Belgrade, Takovska 43, RS-11000 Belgrade, Serbia; (N.A.M.); (A.D.S.); (M.S.S.); (M.M.V.)
- Center of Plant Biotechnology and Conservation (CPBC), Takovska 43, RS-11000 Belgrade, Serbia
| |
Collapse
|
12
|
Li C, Wang C, Cheng Z, Li Y, Li W. Carotenoid biosynthesis genes LcLCYB, LcLCYE, and LcBCH from wolfberry confer increased carotenoid content and improved salt tolerance in tobacco. Sci Rep 2024; 14:10586. [PMID: 38719951 PMCID: PMC11079049 DOI: 10.1038/s41598-024-60848-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 04/29/2024] [Indexed: 05/12/2024] Open
Abstract
Carotenoids play essential roles in plant growth and development and provide plants with a tolerance to a series of abiotic stresses. In this study, the function and biological significance of lycopene β-cyclase, lycopene ε-cyclase, and β-carotene hydroxylase, which are responsible for the modification of the tetraterpene skeleton procedure, were isolated from Lycium chinense and analyzed. The overexpression of lycopene β-cyclase, lycopene ε-cyclase, and β-carotene hydroxylase promoted the accumulation of total carotenoids and photosynthesis enhancement, reactive oxygen species scavenging activity, and proline content of tobacco seedlings after exposure to the salt stress. Furthermore, the expression of the carotenoid biosynthesis genes and stress-related genes (ascorbate peroxidase, catalase, peroxidase, superoxide dismutase, and pyrroline-5-carboxylate reductase) were detected and showed increased gene expression level, which were strongly associated with the carotenoid content and reactive oxygen species scavenging activity. After exposure to salt stress, the endogenous abscisic acid content was significantly increased and much higher than those in control plants. This research contributes to the development of new breeding aimed at obtaining stronger salt tolerance plants with increased total carotenoids and vitamin A content.
Collapse
Affiliation(s)
- Chen Li
- College of Life Sciences, Dezhou University, 566 University Road, Dezhou, 253023, Shandong Province, China
| | - Caili Wang
- College of Life Sciences, Dezhou University, 566 University Road, Dezhou, 253023, Shandong Province, China.
| | - Zhiyang Cheng
- College of Life Sciences, Dezhou University, 566 University Road, Dezhou, 253023, Shandong Province, China
| | - Yu Li
- College of Life Sciences, Dezhou University, 566 University Road, Dezhou, 253023, Shandong Province, China
| | - Wenjing Li
- College of Life Sciences, Dezhou University, 566 University Road, Dezhou, 253023, Shandong Province, China
| |
Collapse
|
13
|
Khoramizadeh F, Garibay-Hernández A, Mock HP, Bilger W. Improvement of the Quality of Wild Rocket ( Diplotaxis tenuifolia) with Respect to Health-Related Compounds by Enhanced Growth Irradiance. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:9735-9745. [PMID: 38648561 PMCID: PMC11066873 DOI: 10.1021/acs.jafc.3c07698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 04/03/2024] [Accepted: 04/05/2024] [Indexed: 04/25/2024]
Abstract
For healthier human nutrition, it is desirable to provide food with a high content of nutraceuticals such as polyphenolics, vitamins, and carotenoids. We investigated to what extent high growth irradiance influences the content of phenolics, α-tocopherol and carotenoids, in wild rocket (Diplotaxis tenuifolia), which is increasingly used as a salad green. Potted plants were grown in a climate chamber with a 16 h day length at photosynthetic photon flux densities varying from 20 to 1250 μmol m-2 s-1. Measurements of the maximal quantum yield of photosystem II, FV/FM, and of the epoxidation state of the violaxanthin cycle (V-cycle) showed that the plants did not suffer from excessive light for photosynthesis. Contents of carotenoids belonging to the V-cycle, α-tocopherol and several quercetin derivatives, increased nearly linearly with irradiance. Nonintrusive measurements of chlorophyll fluorescence induced by UV-A and blue light relative to that induced by red light, indicating flavonoid and carotenoid content, allowed not only a semiquantitative measurement of both compounds but also allowed to follow their dynamic changes during reciprocal transfers between low and high growth irradiance. The results show that growth irradiance has a strong influence on the content of three different types of compounds with antioxidative properties and that it is possible to determine the contents of flavonoids and specific carotenoids in intact leaves using chlorophyll fluorescence. The results may be used for breeding to enhance healthy compounds in wild rocket leaves and to monitor their content for selection of appropriate genotypes.
Collapse
Affiliation(s)
- Fahimeh Khoramizadeh
- Botanical
Institute, Christian-Albrechts University
Kiel, Olshausenstr. 40, Kiel D-24098, Germany
| | - Adriana Garibay-Hernández
- Molecular
Biotechnology and Systems Biology, Rheinland-Pfälzische
TU Kaiserslautern, Paul-Ehrlich
Straße 23, Kaiserslautern D-67663, Germany
- Leibniz
Institute for Plant Genetics and Crop Plant Research (IPK), Corrensstraße 3, Seeland, OT Gatersleben D-06466, Germany
| | - Hans-Peter Mock
- Leibniz
Institute for Plant Genetics and Crop Plant Research (IPK), Corrensstraße 3, Seeland, OT Gatersleben D-06466, Germany
| | - Wolfgang Bilger
- Botanical
Institute, Christian-Albrechts University
Kiel, Olshausenstr. 40, Kiel D-24098, Germany
| |
Collapse
|
14
|
Mubeen S, Pan J, Saeed W, Luo D, Rehman M, Hui Z, Chen P. Exogenous methyl jasmonate enhanced kenaf (Hibiscus cannabinus) tolerance against lead (Pb) toxicity by improving antioxidant capacity and osmoregulators. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:30806-30818. [PMID: 38613757 DOI: 10.1007/s11356-024-33189-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 03/29/2024] [Indexed: 04/15/2024]
Abstract
In this study, the effects of exogenous methyl jasmonate (MeJA) on metal uptake and its ability to attenuate metal toxicity in kenaf plants under Pb stress were investigated. The experiment was conducted with five different MeJA concentrations (0, 40, 80, 160, and 320 μM) as a foilar application to kenaf plants exposed to 200 μM Pb stress. The results revealed that pretreatmen of MeJA significantly increased plant dry weight, plant height, and root architecture at all concentrations tested, with the most significant increase at 320 μM. Foliar application of MeJA at 160 μM and 320 μM increased the Pb concentrations in leaves and stems as well as the translocation factor (TF) from root to leaf. However, the bioaccumulation factor in the shoot initially decreased and then increased with increasing MeJA concentration. By increasing enzymatic (SOD, POD, and CAT) and non-enzymatic (AsA and non-protein thiols) antioxidants, MeJA pretreatment decreased lipid peroxidation, O2- and H2O2 accumulation and recovered photosynthetic pigment content under Pb stress. Increased osmolytes (proline, sugar, and starch) and protein content after MeJA pretreatment under Pb stress restore cellular homeostasis and improved kenaf tolerance. Our results suggest that MeJA pretreatment modifies the antioxidant machinery of kenaf and inhibits stress-related processes that cause lipid peroxidation, hence enhancing plant tolerance to Pb stress.
Collapse
Affiliation(s)
- Samavia Mubeen
- Guangxi Key Laboratory of Agro-environment and Agric-products Safety, Key Laboratory of Plant Genetics and Breeding, College of Agriculture, Guangxi University, Nanning, 530004, China
| | - Jiao Pan
- Guangxi Key Laboratory of Agro-environment and Agric-products Safety, Key Laboratory of Plant Genetics and Breeding, College of Agriculture, Guangxi University, Nanning, 530004, China
| | - Wajid Saeed
- Guangxi Key Laboratory of Agro-environment and Agric-products Safety, Key Laboratory of Plant Genetics and Breeding, College of Agriculture, Guangxi University, Nanning, 530004, China
| | - Dengjie Luo
- Guangxi Key Laboratory of Agro-environment and Agric-products Safety, Key Laboratory of Plant Genetics and Breeding, College of Agriculture, Guangxi University, Nanning, 530004, China
| | - Muzammal Rehman
- Guangxi Key Laboratory of Agro-environment and Agric-products Safety, Key Laboratory of Plant Genetics and Breeding, College of Agriculture, Guangxi University, Nanning, 530004, China
| | - Zhang Hui
- Guangxi Key Laboratory of Agro-environment and Agric-products Safety, Key Laboratory of Plant Genetics and Breeding, College of Agriculture, Guangxi University, Nanning, 530004, China
| | - Peng Chen
- Guangxi Key Laboratory of Agro-environment and Agric-products Safety, Key Laboratory of Plant Genetics and Breeding, College of Agriculture, Guangxi University, Nanning, 530004, China.
| |
Collapse
|
15
|
Drouet K, Lemée R, Guilloud E, Schmitt S, Laza-Martinez A, Seoane S, Boutoute M, Réveillon D, Hervé F, Siano R, Jauzein C. Ecophysiological responses of Ostreopsis towards temperature: A case study of benthic HAB facing ocean warming. HARMFUL ALGAE 2024; 135:102648. [PMID: 38830713 DOI: 10.1016/j.hal.2024.102648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 04/05/2024] [Accepted: 05/15/2024] [Indexed: 06/05/2024]
Abstract
Reports of the benthic dinoflagellate Ostreopsis spp. have been increasing in the last decades, especially in temperate areas. In a context of global warming, evidences of the effects of increasing sea temperatures on its physiology and its distribution are still lacking and need to be investigated. In this study, the influence of temperature on growth, ecophysiology and toxicity was assessed for several strains of O. cf. siamensis from the Bay of Biscay (NE Atlantic) and O. cf. ovata from NW Mediterranean Sea. Cultures were acclimated to temperatures ranging from 14.5 °C to 32 °C in order to study the whole range of each strain-specific thermal niche. Acclimation was successful for temperatures ranging from 14.5 °C to 25 °C for O. cf. siamensis and from 19 °C to 32 °C for O. cf. ovata, with the highest growth rates measured at 22 °C (0.54-1.06 d-1) and 28 °C (0.52-0.75 d-1), respectively. The analysis of cellular content of pigments and lipids revealed some aspects of thermal acclimation processes in Ostreopsis cells. Specific capacities of O. cf. siamensis to cope with stress of cold temperatures were linked with the activation of a xanthophyll cycle based on diadinoxanthin. Lipids (neutral reserve lipids and polar ones) also revealed species-specific variations, with increases in cellular content noted under extreme temperature conditions. Variations in toxicity were assessed through the Artemia franciscana bioassay. For both species, a decrease in toxicity was observed when temperature dropped under the optimal temperature for growth. No PLTX-like compounds were detected in O. cf. siamensis strains. Thus, the main part of the lethal effect observed on A. franciscana was dependent on currently unknown compounds. From a multiclonal approach, this work allowed for defining specificities in the thermal niche and acclimation strategies of O. cf. siamensis and O. cf. ovata towards temperature. Potential impacts of climate change on the toxic risk associated with Ostreopsis blooms in both NW Mediterranean Sea and NE Atlantic coast is further discussed, taking into account variations in the geographic distribution, growth abilities and toxicity of each species.
Collapse
Affiliation(s)
- K Drouet
- Sorbonne Université, CNRS - Laboratoire d'Océanographie de Villefranche (UMR 7093), Villefranche-sur-Mer, 06230, France; Ifremer, DYNECO/Pelagos, F-29280, Plouzané, France.
| | - R Lemée
- Sorbonne Université, CNRS - Laboratoire d'Océanographie de Villefranche (UMR 7093), Villefranche-sur-Mer, 06230, France
| | - E Guilloud
- Ifremer, DYNECO/Pelagos, F-29280, Plouzané, France
| | - S Schmitt
- Ifremer, DYNECO/Pelagos, F-29280, Plouzané, France
| | - A Laza-Martinez
- Department of Plant Biology and Ecology, University of the Basque Country UPV/EHU, Leioa, 48940, Spain; Research Centre for Experimental Marine Biology and Biotechnology (Plentzia Marine Station, PiE- UPV/EHU), Plentzia, 48620, Spain
| | - S Seoane
- Department of Plant Biology and Ecology, University of the Basque Country UPV/EHU, Leioa, 48940, Spain; Research Centre for Experimental Marine Biology and Biotechnology (Plentzia Marine Station, PiE- UPV/EHU), Plentzia, 48620, Spain
| | - M Boutoute
- Sorbonne Université, CNRS - Laboratoire d'Océanographie de Villefranche (UMR 7093), Villefranche-sur-Mer, 06230, France
| | - D Réveillon
- Ifremer, PHYTOX, Laboratoire METALG, F-44000, Nantes, France
| | - F Hervé
- Ifremer, PHYTOX, Laboratoire METALG, F-44000, Nantes, France
| | - R Siano
- Ifremer, DYNECO/Pelagos, F-29280, Plouzané, France
| | - C Jauzein
- Ifremer, DYNECO/Pelagos, F-29280, Plouzané, France
| |
Collapse
|
16
|
Riaz A, Thomas J, Ali HH, Zaheer MS, Ahmad N, Pereira A. High night temperature stress on rice ( Oryza sativa) - insights from phenomics to physiology. A review. FUNCTIONAL PLANT BIOLOGY : FPB 2024; 51:FP24057. [PMID: 38815128 DOI: 10.1071/fp24057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 05/12/2024] [Indexed: 06/01/2024]
Abstract
Rice (Oryza sativa ) faces challenges to yield and quality due to urbanisation, deforestation and climate change, which has exacerbated high night temperature (HNT). This review explores the impacts of HNT on the physiological, molecular and agronomic aspects of rice growth. Rise in minimum temperature threatens a potential 41% reduction in rice yield by 2100. HNT disrupts rice growth stages, causing reduced seed germination, biomass, spikelet sterility and poor grain development. Recent findings indicate a 4.4% yield decline for every 1°C increase beyond 27°C, with japonica ecotypes exhibiting higher sensitivity than indica. We examine the relationships between elevated CO2 , nitrogen regimes and HNT, showing that the complexity of balancing positive CO2 effects on biomass with HNT challenges. Nitrogen enrichment proves crucial during the vegetative stage but causes disruption to reproductive stages, affecting grain yield and starch synthesis. Additionally, we elucidate the impact of HNT on plant respiration, emphasising mitochondrial respiration, photorespiration and antioxidant responses. Genomic techniques, including CRISPR-Cas9, offer potential for manipulating genes for HNT tolerance. Plant hormones and carbohydrate enzymatic activities are explored, revealing their intricate roles in spikelet fertility, grain size and starch metabolism under HNT. Gaps in understanding genetic factors influencing heat tolerance and potential trade-offs associated with hormone applications remain. The importance of interdisciplinary collaboration is needed to provide a holistic approach. Research priorities include the study of regulatory mechanisms, post-anthesis effects, cumulative HNT exposure and the interaction between climate variability and HNT impact to provide a research direction to enhance rice resilience in a changing climate.
Collapse
Affiliation(s)
- Awais Riaz
- Department of Crop, Soil, and Environmental Sciences, Faculty of Agriculture Food and Life Sciences, University of Arkansas System Division of Agriculture, Fayetteville, AR 72701, USA
| | - Julie Thomas
- Department of Crop, Soil, and Environmental Sciences, Faculty of Agriculture Food and Life Sciences, University of Arkansas System Division of Agriculture, Fayetteville, AR 72701, USA
| | - Hafiz Haider Ali
- Department of Crop, Soil, and Environmental Sciences, Faculty of Agriculture Food and Life Sciences, University of Arkansas System Division of Agriculture, Fayetteville, AR 72701, USA; and Department of Agriculture, Government College University Lahore, Lahore 54000, Pakistan; and Department of Plant Sciences, Aberdeen Research & Extension Center, University of Idaho, Aberdeen, ID, USA
| | - Muhammad Saqlain Zaheer
- Department of Agricultural Engineering, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, Pakistan
| | - Naushad Ahmad
- Department of Chemistry, College of Science, King Saud University, Riyadh11451, Saudi Arabia
| | - Andy Pereira
- Department of Crop, Soil, and Environmental Sciences, Faculty of Agriculture Food and Life Sciences, University of Arkansas System Division of Agriculture, Fayetteville, AR 72701, USA
| |
Collapse
|
17
|
Kamakura S, Bilcke G, Sato S. Transcriptional responses to salinity-induced changes in cell wall morphology of the euryhaline diatom Pleurosira laevis. JOURNAL OF PHYCOLOGY 2024; 60:308-326. [PMID: 38446079 DOI: 10.1111/jpy.13437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 01/23/2024] [Accepted: 02/05/2024] [Indexed: 03/07/2024]
Abstract
Diatoms are unicellular algae with morphologically diverse silica cell walls, which are called frustules. The mechanism of frustule morphogenesis has attracted attention in biology and nanomaterials engineering. However, the genetic regulation of the morphology remains unclear. We therefore used transcriptome sequencing to search for genes involved in frustule morphology in the centric diatom Pleurosira laevis, which exhibits morphological plasticity between flat and domed valve faces in salinity 2 and 7, respectively. We observed differential expression of transposable elements (TEs) and transporters, likely due to osmotic response. Up-regulation of mechanosensitive ion channels and down-regulation of Ca2+-ATPases in cells with flat valves suggested that cytosolic Ca2+ levels were changed between the morphologies. Calcium signaling could be a mechanism for detecting osmotic pressure changes and triggering morphological shifts. We also observed an up-regulation of ARPC1 and annexin, involved in the regulation of actin filament dynamics known to affect frustule morphology, as well as the up-regulation of genes encoding frustule-related proteins such as BacSETs and frustulin. Taken together, we propose a model in which salinity-induced morphogenetic changes are driven by upstream responses, such as the regulation of cytosolic Ca2+ levels, and downstream responses, such as Ca2+-dependent regulation of actin dynamics and frustule-related proteins. This study highlights the sensitivity of euryhaline diatoms to environmental salinity and the role of active cellular processes in controlling gross valve morphology under different osmotic pressures.
Collapse
Affiliation(s)
- Shiho Kamakura
- Graduate School of Bioscience and Biotechnology, Fukui Prefectural University, Obama, Fukui, Japan
| | - Gust Bilcke
- VIB Center for Plant Systems Biology, Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Protistology and Aquatic Ecology, Department of Biology, Ghent University, Ghent, Belgium
| | - Shinya Sato
- Faculty of Marine Science and Technology, Fukui Prefectural University, Obama, Fukui, Japan
| |
Collapse
|
18
|
Morelli L, Havurinne V, Madeira D, Martins P, Cartaxana P, Cruz S. Photoprotective mechanisms in Elysia species hosting Acetabularia chloroplasts shed light on host-donor compatibility in photosynthetic sea slugs. PHYSIOLOGIA PLANTARUM 2024; 176:e14273. [PMID: 38566156 DOI: 10.1111/ppl.14273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/13/2024] [Accepted: 03/18/2024] [Indexed: 04/04/2024]
Abstract
Sacoglossa sea slugs have garnered attention due to their ability to retain intracellular functional chloroplasts from algae, while degrading other algal cell components. While protective mechanisms that limit oxidative damage under excessive light are well documented in plants and algae, the photoprotective strategies employed by these photosynthetic sea slugs remain unresolved. Species within the genus Elysia are known to retain chloroplasts from various algal sources, but the extent to which the metabolic processes from the donor algae can be sustained by the sea slugs is unclear. By comparing responses to high-light conditions through kinetic analyses, molecular techniques, and biochemical assays, this study shows significant differences between two photosynthetic Elysia species with chloroplasts derived from the green alga Acetabularia acetabulum. Notably, Elysia timida displayed remarkable tolerance to high-light stress and sophisticated photoprotective mechanisms such as an active xanthophyll cycle, efficient D1 protein recycling, accumulation of heat-shock proteins and α-tocopherol. In contrast, Elysia crispata exhibited absence or limitations in these photoprotective strategies. Our findings emphasize the intricate relationship between the host animal and the stolen chloroplasts, highlighting different capacities to protect the photosynthetic organelle from oxidative damage.
Collapse
Affiliation(s)
- Luca Morelli
- ECOMARE-Laboratory for Innovation and Sustainability of Marine Biological Resources, CESAM - Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Aveiro, Portugal
| | - Vesa Havurinne
- ECOMARE-Laboratory for Innovation and Sustainability of Marine Biological Resources, CESAM - Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Aveiro, Portugal
| | - Diana Madeira
- ECOMARE-Laboratory for Innovation and Sustainability of Marine Biological Resources, CESAM - Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Aveiro, Portugal
| | - Patrícia Martins
- ECOMARE-Laboratory for Innovation and Sustainability of Marine Biological Resources, CESAM - Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Aveiro, Portugal
| | - Paulo Cartaxana
- ECOMARE-Laboratory for Innovation and Sustainability of Marine Biological Resources, CESAM - Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Aveiro, Portugal
| | - Sónia Cruz
- ECOMARE-Laboratory for Innovation and Sustainability of Marine Biological Resources, CESAM - Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Aveiro, Portugal
| |
Collapse
|
19
|
Haque MI, Shapira O, Attia Z, Cohen Y, Charuvi D, Azoulay-Shemer T. Induction of stomatal opening following a night-chilling event alleviates physiological damage in mango trees. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 206:108221. [PMID: 38048702 DOI: 10.1016/j.plaphy.2023.108221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 11/01/2023] [Accepted: 11/20/2023] [Indexed: 12/06/2023]
Abstract
Chilling events have become more frequent with climate change and are a significant abiotic factor causing physiological damage to plants and, consequently, reducing crop yield. Like other tropical and subtropical plants, mango (Mangifera indica L.) is particularly sensitive to chilling events, especially if they are followed by bright sunny days. It was previously shown that in mango leaves stomatal opening is restricted in the morning following a night-chilling event. This impairment results in restraint of carbon assimilation and subsequently, photoinhibition and reactive oxygen species production, which leads to chlorosis and in severe cases, cell death. Our detailed physiological analysis showed that foliar application of the guard cell H+-ATPase activator, fusicoccin, in the morning after a cold night, mitigates the physiological damage from 'cold night-bright day' abiotic stress. This application restored stomatal opening, thereby enabling gas exchange, releasing the photosynthetic machinery from harmful excess photon energy, and improving the plant's overall physiological state. The mechanisms by which plants react to this abiotic stress are examined in this work. The foliar application of compounds that cause stomatal opening as a potential method of minimizing physiological damage due to night chilling is discussed.
Collapse
Affiliation(s)
- Md Intesaful Haque
- Fruit Tree Sciences, Volcani Center, Agricultural Research Organization, Newe Ya'ar Research Center, Ramat Yishay, Israel
| | - Or Shapira
- Fruit Tree Sciences, Volcani Center, Agricultural Research Organization, Newe Ya'ar Research Center, Ramat Yishay, Israel
| | - Ziv Attia
- Fruit Tree Sciences, Volcani Center, Agricultural Research Organization, Newe Ya'ar Research Center, Ramat Yishay, Israel
| | - Yuval Cohen
- Institute of Plant Sciences, Volcani Center, Agricultural Research Organization, Rishon LeZion, Israel
| | - Dana Charuvi
- Institute of Plant Sciences, Volcani Center, Agricultural Research Organization, Rishon LeZion, Israel
| | - Tamar Azoulay-Shemer
- Fruit Tree Sciences, Volcani Center, Agricultural Research Organization, Newe Ya'ar Research Center, Ramat Yishay, Israel.
| |
Collapse
|
20
|
Pedrelli A, Ricci GP, Panattoni A, Nali C, Cotrozzi L. Physiological and Biochemical Responses Induced by Plum Pox Virus and Plum Bark Necrosis Steam Pitting Associated Virus in Tuscany Autochthonous Plum cv. Coscia di Monaca. PLANTS (BASEL, SWITZERLAND) 2023; 12:3264. [PMID: 37765428 PMCID: PMC10535208 DOI: 10.3390/plants12183264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/11/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023]
Abstract
The present study focused on trees of Tuscany autochthonous plum cv. Coscia di Monaca in order to evaluate the presence of viruses and elucidate the physiological and biochemical responses to virus infections under real field conditions. Among the several investigated viruses, plums tested positive only to plum pox virus (PPV) and plum bark necrosis steam pitting associated virus (PBNSPaV), occurring as both singular and co-infections. This is the first report of PBNSPaV in a Tuscany orchard. Furthermore, the present study not only confirmed the detrimental effects of PPV on the carbon dioxide assimilation rate due to both stomatal limitations and mesophyll impairments, but also showed that although PBNSPaV did not induce such photosynthetic impairments when occurring as singular infection, it enhanced this damaging effect when present as a co-infection with PPV, as confirmed by a severe decrease in the chlorophyll content. Infection-specific responses in terms of accessory pigments (i.e., carotenoids and xanthophylls), as well as sugars and organic acids, were also reported, these being likely related to photoprotective mechanisms and osmotic regulations under virus-induced oxidative stress. Overall, the results here presented represent an important step to fill knowledge gaps about the interaction of plant viruses and autochthonous Prunus cultivars.
Collapse
Affiliation(s)
| | | | | | - Cristina Nali
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy; (A.P.); (G.P.R.); (A.P.); (L.C.)
| | | |
Collapse
|
21
|
Jahed KR, Saini AK, Sherif SM. Coping with the cold: unveiling cryoprotectants, molecular signaling pathways, and strategies for cold stress resilience. FRONTIERS IN PLANT SCIENCE 2023; 14:1246093. [PMID: 37649996 PMCID: PMC10465183 DOI: 10.3389/fpls.2023.1246093] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 07/31/2023] [Indexed: 09/01/2023]
Abstract
Low temperature stress significantly threatens crop productivity and economic sustainability. Plants counter this by deploying advanced molecular mechanisms to perceive and respond to cold stress. Transmembrane proteins initiate these responses, triggering a series of events involving secondary messengers such as calcium ions (Ca2+), reactive oxygen species (ROS), and inositol phosphates. Of these, calcium signaling is paramount, activating downstream phosphorylation cascades and the transcription of cold-responsive genes, including cold-regulated (COR) genes. This review focuses on how plants manage freeze-induced damage through dual strategies: cold tolerance and cold avoidance. Tolerance mechanisms involve acclimatization to decreasing temperatures, fostering gradual accumulation of cold resistance. In contrast, avoidance mechanisms rely on cryoprotectant molecules like potassium ions (K+), proline, glycerol, and antifreeze proteins (AFPs). Cryoprotectants modulate intracellular solute concentration, lower the freezing point, inhibit ice formation, and preserve plasma membrane fluidity. Additionally, these molecules demonstrate antioxidant activity, scavenging ROS, preventing protein denaturation, and subsequently mitigating cellular damage. By forming extensive hydrogen bonds with water molecules, cryoprotectants also limit intercellular water movement, minimizing extracellular ice crystal formation, and cell dehydration. The deployment of cryoprotectants is a key adaptive strategy that bolsters plant resilience to cold stress and promotes survival in freezing environments. However, the specific physiological and molecular mechanisms underlying these protective effects remain insufficiently understood. Therefore, this review underscores the need for further research to elucidate these mechanisms and assess their potential impact on crop productivity and sustainability, contributing to the progressive discourse in plant biology and environmental science.
Collapse
Affiliation(s)
| | | | - Sherif M. Sherif
- Alson H. Smith Jr. Agricultural Research and Extension Center, School of Plant and Environmental Sciences, Virginia Tech, Winchester, VA, United States
| |
Collapse
|
22
|
Pashkovskiy P, Ivanov Y, Ivanova A, Kartashov A, Zlobin I, Lyubimov V, Ashikhmin A, Bolshakov M, Kreslavski V, Kuznetsov V, Allakhverdiev SI. Effect of Light of Different Spectral Compositions on Pro/Antioxidant Status, Content of Some Pigments and Secondary Metabolites and Expression of Related Genes in Scots Pine. PLANTS (BASEL, SWITZERLAND) 2023; 12:2552. [PMID: 37447113 DOI: 10.3390/plants12132552] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/02/2023] [Accepted: 07/04/2023] [Indexed: 07/15/2023]
Abstract
The aim of this study was to investigate the effect of light quality (white fluorescent light, WFL, containing UV components), red light (RL, 660 nm), blue light (BL, 450 nm), and white LED light (WL, 450 + 580 nm) on the components of the cellular antioxidant system in Pinus sylvestris L. in needles, roots, and hypocotyls, focusing on the accumulation of key secondary metabolites and the expression of related genes. The qualitative and quantitative composition of carotenoids; the content of the main photosynthetic pigments, phenolic compounds, flavonoids (catechins, proanthocyanidins, anthocyanins), ascorbate, and glutathione; the activity of the main antioxidant enzymes; the content of hydrogen peroxide; and the intensity of lipid peroxidation (MDA and 4-HNE contents) were determined. RL resulted in an increase in the content of hydrogen peroxide and 4-HNE, as well as the total fraction of flavonoids in the needles. It also enhanced the expression of several PR (pathogen-related) genes compared to BL and WL. WFL increased the content of phenols, including flavonoids, and enhanced the overall activity of low-molecular antioxidants in needles and hypocotyls. BL increased the content of ascorbate and glutathione, including reduced glutathione, in the needles and simultaneously decreased the activity of peroxidases. Thus, by modifying the light quality, it is possible to regulate the accumulation of secondary metabolites in pine roots and needles, thereby influencing their resistance to various biotic and abiotic stressors.
Collapse
Affiliation(s)
- Pavel Pashkovskiy
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya Street 35, 127276 Moscow, Russia
| | - Yury Ivanov
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya Street 35, 127276 Moscow, Russia
| | - Alexandra Ivanova
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya Street 35, 127276 Moscow, Russia
| | - Alexander Kartashov
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya Street 35, 127276 Moscow, Russia
| | - Ilya Zlobin
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya Street 35, 127276 Moscow, Russia
| | - Valery Lyubimov
- Institute of Basic Biological Problems, Russian Academy of Sciences, Institutskaya Street 2, 142290 Pushchino, Russia
| | - Aleksandr Ashikhmin
- Institute of Basic Biological Problems, Russian Academy of Sciences, Institutskaya Street 2, 142290 Pushchino, Russia
| | - Maksim Bolshakov
- Institute of Basic Biological Problems, Russian Academy of Sciences, Institutskaya Street 2, 142290 Pushchino, Russia
| | - Vladimir Kreslavski
- Institute of Basic Biological Problems, Russian Academy of Sciences, Institutskaya Street 2, 142290 Pushchino, Russia
| | - Vladimir Kuznetsov
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya Street 35, 127276 Moscow, Russia
| | - Suleyman I Allakhverdiev
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya Street 35, 127276 Moscow, Russia
| |
Collapse
|
23
|
Wang M, Li G, Feng Z, Liu Y, Yuan X, Uscola M. A wider spectrum of avoidance and tolerance mechanisms explained ozone sensitivity of two white poplar ploidy levels. ANNALS OF BOTANY 2023; 131:655-666. [PMID: 36694346 PMCID: PMC10147324 DOI: 10.1093/aob/mcad019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 01/23/2023] [Indexed: 05/20/2023]
Abstract
BACKGROUND AND AIMS Polyploidization can improve plant mass yield for bioenergy support, yet few studies have investigated ozone (O3) sensitivity linked to internal regulatory mechanisms at different ploidy levels. METHODS Diploid and triploid Populus tomentosa plants were exposed to ambient and ambient plus 60 ppb [O3]. We explored their differences in sensitivity (leaf morphological, physiological and biochemical traits, and plant mass) as well as mechanisms of avoidance (stomatal conductance, xanthophyll cycle, thermal dissipation) and tolerance (ROS scavenging system) in response to O3 at two developmental phases. KEY RESULTS Triploid plants had the highest plant growth under ambient O3, even under O3 fumigation. However, triploid plants were the most sensitive to O3 and under elevated O3 showed the largest decreases in photosynthetic capacity and performance, as well as increased shoot:root ratio, and the highest lipid peroxidation. Thus, plant mass production could be impacted in triploid plants under long-term O3 contamination. Both diploid and triploid plants reduced stomatal aperture in response to O3, thereby reducing O3 entrance, yet only in diploid plants was reduced stomatal aperture associated with minimal (non-significant) damage to photosynthetic pigments and lower lipid peroxidation. CONCLUSIONS Tolerance mechanisms of plants of both ploidy levels mainly focused on the enzymatic reduction of hydrogen peroxide through catalase and peroxidase, yet these homeostatic regulatory mechanisms were higher in diploid plants. Our study recommends triploid white poplar as a bioenergy species only under short-term O3 contamination. Under continuously elevated O3 over the long term, diploid white poplar may perform better.
Collapse
Affiliation(s)
- Miaomiao Wang
- Key Laboratory for Silviculture and Conservation, Ministry of Education, Beijing Forestry University, Beijing 100083, China
| | - Guolei Li
- Key Laboratory for Silviculture and Conservation, Ministry of Education, Beijing Forestry University, Beijing 100083, China
- Research Center of Deciduous Oaks, Beijing Forestry University, Beijing 100083, China
- National Innovation Alliance of Valuable Deciduous Tree Industry, Beijing Forestry University, Beijing 100083, China
| | - Zhaozhong Feng
- Key Laboratory of Agrometeorology of Jiangsu Province, Institute of Ecology, School of Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Yong Liu
- Key Laboratory for Silviculture and Conservation, Ministry of Education, Beijing Forestry University, Beijing 100083, China
- Research Center of Deciduous Oaks, Beijing Forestry University, Beijing 100083, China
- National Innovation Alliance of Valuable Deciduous Tree Industry, Beijing Forestry University, Beijing 100083, China
| | - Xiangyang Yuan
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Mercedes Uscola
- Universidad de Alcalá, Forest Ecology and Restoration Group, Departamento de Ciencias de la Vida, U.D. Ecología, Apdo. 20, E-28805, Alcalá de Henares, Madrid, Spain
| |
Collapse
|
24
|
Singh DP, Bisen MS, Prabha R, Maurya S, Yerasu SR, Shukla R, Tiwari JK, Chaturvedi KK, Farooqi MS, Srivastava S, Rai A, Sarma BK, Rai N, Singh PM, Behera TK, Farag MA. Untargeted Metabolomics of Alternaria solani-Challenged Wild Tomato Species Solanum cheesmaniae Revealed Key Metabolite Biomarkers and Insight into Altered Metabolic Pathways. Metabolites 2023; 13:585. [PMID: 37233626 PMCID: PMC10220610 DOI: 10.3390/metabo13050585] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/17/2023] [Accepted: 03/20/2023] [Indexed: 05/27/2023] Open
Abstract
Untargeted metabolomics of moderately resistant wild tomato species Solanum cheesmaniae revealed an altered metabolite profile in plant leaves in response to Alternaria solani pathogen. Leaf metabolites were significantly differentiated in non-stressed versus stressed plants. The samples were discriminated not only by the presence/absence of specific metabolites as distinguished markers of infection, but also on the basis of their relative abundance as important concluding factors. Annotation of metabolite features using the Arabidopsis thaliana (KEGG) database revealed 3371 compounds with KEGG identifiers belonging to biosynthetic pathways including secondary metabolites, cofactors, steroids, brassinosteroids, terpernoids, and fatty acids. Annotation using the Solanum lycopersicum database in PLANTCYC PMN revealed significantly upregulated (541) and downregulated (485) features distributed in metabolite classes that appeared to play a crucial role in defense, infection prevention, signaling, plant growth, and plant homeostasis to survive under stress conditions. The orthogonal partial least squares discriminant analysis (OPLS-DA), comprising a significant fold change (≥2.0) with VIP score (≥1.0), showed 34 upregulated biomarker metabolites including 5-phosphoribosylamine, kaur-16-en-18-oic acid, pantothenate, and O-acetyl-L-homoserine, along with 41 downregulated biomarkers. Downregulated metabolite biomarkers were mapped with pathways specifically known for plant defense, suggesting their prominent role in pathogen resistance. These results hold promise for identifying key biomarker metabolites that contribute to disease resistive metabolic traits/biosynthetic routes. This approach can assist in mQTL development for the stress breeding program in tomato against pathogen interactions.
Collapse
Affiliation(s)
| | | | - Ratna Prabha
- ICAR-Indian Agricultural Statistics Research Institute, Library Avenue, New Delhi 110012, India
| | - Sudarshan Maurya
- ICAR-Indian Institute of Vegetable Research, Varanasi 221305, India
| | | | - Renu Shukla
- Indian Council of Agricultural Research, New Delhi 110012, India
| | | | | | - Md. Samir Farooqi
- ICAR-Indian Agricultural Statistics Research Institute, Library Avenue, New Delhi 110012, India
| | - Sudhir Srivastava
- ICAR-Indian Agricultural Statistics Research Institute, Library Avenue, New Delhi 110012, India
| | - Anil Rai
- ICAR-Indian Agricultural Statistics Research Institute, Library Avenue, New Delhi 110012, India
| | - Birinchi Kumar Sarma
- Department of Mycology and Plant Pathology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi 221005, India
| | - Nagendra Rai
- ICAR-Indian Institute of Vegetable Research, Varanasi 221305, India
| | | | | | - Mohamed A. Farag
- Pharmacognosy Department, College of Pharmacy, Cairo University, Cairo 11562, Egypt
| |
Collapse
|
25
|
Meléndez-Martínez AJ, Esquivel P, Rodriguez-Amaya DB. Comprehensive review on carotenoid composition: Transformations during processing and storage of foods. Food Res Int 2023; 169:112773. [DOI: 10.1016/j.foodres.2023.112773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 03/22/2023] [Accepted: 03/24/2023] [Indexed: 04/08/2023]
|
26
|
Hattan JI, Furubayashi M, Maoka T, Takemura M, Misawa N. Reconstruction of the Native Biosynthetic System of Carotenoids in E. coli─Biosynthesis of a Series of Carotenoids Specific to Paprika Fruit. ACS Synth Biol 2023; 12:1072-1080. [PMID: 36943278 DOI: 10.1021/acssynbio.2c00578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
Capsanthin, capsorubin, cucurbitaxanthin A, and capsanthin 3,6-epoxide, a series of carotenoids specific to the red fruit of paprika (Capsicum annuum), were produced in pathway-engineered Escherichia coli cells. These cells functionally expressed multiple genes for eight carotenogenic enzymes, two of which, paprika capsanthin/capsorubin synthase (CaCCS) and zeaxanthin epoxidase (CaZEP), were designed to be located adjacently. The biosynthesis of these carotenoids, except for capsanthin, was the first successful attempt in E. coli. In a previous study, the levels of capsanthin synthesized were low despite the high expression of the CaCCS gene, which may have been due to the dual activity of CaCCS as a lycopene β-cyclase and CCS. An enhanced interaction between CaCCS and CaZEP that supplies antheraxanthin and violaxanthin, substrates for CaCCS, was considered to be crucial for an efficient reaction. To achieve this, we adapted S·tag and S-protein binding. The S·tag Thrombin Purification Kit (Novagen) is merchandized for in vitro affinity purification, and S·tag-fused proteins in the E. coli lysate are specifically trapped by S-proteins fixed on the agarose carrier. Furthermore, S-proteins have been reported to oligomerize via C-terminal swapping. In the present study, CaCCS and CaZEP were individually fused to the S·tag and designed to interact on oligomerized S-protein scaffolds in E. coli, which led to the biosynthesis of not only capsanthin and capsorubin but also cucurbitaxanthin A and capsanthin 3,6-epoxide. The latter reaction by CaCCS was assigned for the first time. This approach reinforces the scaffold's importance for multienzyme pathways when native biosynthetic systems are reconstructed in microorganisms.
Collapse
Affiliation(s)
- Jun-Ichiro Hattan
- Research Institute for Bioresources and Biotechnology, Ishikawa Prefectural University, 1-308 Suematsu, Nonoichi-shi 921-8836, Ishikawa, Japan
| | - Maiko Furubayashi
- National Institute of Advanced Industrial Science and Technology, 2-17-2-1 Tsukisamu-Higashi, Toyohira-ku, Sapporo 062-8517, Hokkaido, Japan
| | - Takashi Maoka
- Research Institute for Production Development, Division of Food Function and Chemistry, 15 Shimogamo-morimoto, Sakyo-ku, Kyoto 606-0858, Japan
| | - Miho Takemura
- Research Institute for Bioresources and Biotechnology, Ishikawa Prefectural University, 1-308 Suematsu, Nonoichi-shi 921-8836, Ishikawa, Japan
| | - Norihiko Misawa
- Research Institute for Bioresources and Biotechnology, Ishikawa Prefectural University, 1-308 Suematsu, Nonoichi-shi 921-8836, Ishikawa, Japan
| |
Collapse
|
27
|
Amendola S, Kneip JS, Meyer F, Perozeni F, Cazzaniga S, Lauersen KJ, Ballottari M, Baier T. Metabolic Engineering for Efficient Ketocarotenoid Accumulation in the Green Microalga Chlamydomonas reinhardtii. ACS Synth Biol 2023; 12:820-831. [PMID: 36821819 DOI: 10.1021/acssynbio.2c00616] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
Astaxanthin is a valuable ketocarotenoid with various pharmaceutical and nutraceutical applications. Green microalgae harbor natural capacities for pigment accumulation due to their 2-C-methyl-d-erythritol 4-phosphate (MEP) pathway. Recently, a redesigned ß-carotene ketolase (BKT) was found to enable ketocarotenoid accumulation in the model microalga Chlamydomonas reinhardtii, and transformants exhibited reduced photoinhibition under high-light. Here, a systematic screening by synthetic transgene design of carotenoid pathway enzymes and overexpression from the nuclear genome identified phytoene synthase (PSY/crtB) as a bottleneck for carotenoid accumulation in C. reinhardtii. Increased ß-carotene hydroxylase (CHYB) activity was found to be essential for engineered astaxanthin accumulation. A combined BKT, crtB, and CHYB expression strategy resulted in a volumetric astaxanthin production of 9.5 ± 0.3 mg L-1 (4.5 ± 0.1 mg g-1 CDW) in mixotrophic and 23.5 mg L-1 (1.09 mg L-1 h-1) in high cell density conditions, a 4-fold increase compared to previous reports in C. reinhardtii. This work presents a systematic investigation of bottlenecks in astaxanthin accumulation in C. reinhardtii and the phototrophic green cell factory design for competitive use in industrial biotechnology.
Collapse
Affiliation(s)
- Sofia Amendola
- Algae Biotechnology and Bioenergy, Faculty of Biology, Center for Biotechnology (CeBiTec), Bielefeld University, 33615 Bielefeld, Germany
| | - Jacob S Kneip
- Algae Biotechnology and Bioenergy, Faculty of Biology, Center for Biotechnology (CeBiTec), Bielefeld University, 33615 Bielefeld, Germany
| | - Florian Meyer
- Genetics of Prokaryotes, Faculty of Biology, Center for Biotechnology (CeBiTec), Bielefeld University, 33615 Bielefeld, Germany
| | - Federico Perozeni
- Department of Biotechnology, University of Verona, 37129 Verona, Italy
| | - Stefano Cazzaniga
- Department of Biotechnology, University of Verona, 37129 Verona, Italy
| | - Kyle J Lauersen
- Bioengineering Program, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Kingdom of Saudi Arabia
| | - Matteo Ballottari
- Department of Biotechnology, University of Verona, 37129 Verona, Italy
| | - Thomas Baier
- Algae Biotechnology and Bioenergy, Faculty of Biology, Center for Biotechnology (CeBiTec), Bielefeld University, 33615 Bielefeld, Germany
| |
Collapse
|
28
|
Parihar A, Malaviya P. Textile wastewater phytoremediation using Spirodela polyrhiza (L.) Schleid. assisted by novel bacterial consortium in a two-step remediation system. ENVIRONMENTAL RESEARCH 2023; 221:115307. [PMID: 36657596 DOI: 10.1016/j.envres.2023.115307] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 01/09/2023] [Accepted: 01/12/2023] [Indexed: 06/17/2023]
Abstract
The study aims at developing a phyto-microremediation system for textile wastewater treatment using Spirodela polyrhiza (L.) Schleid. and a consortium of bacterial strains isolated from textile wastewater-contaminated matrices and rhizosphere of S. polyrhiza. The sequential phyto-microremediation of textile wastewater was carried out utilizing two-stage phyto-microremediation systems I [phytoremediation system (Stage 1) preceded microremediation system (Stage 2)] and II [microremediation system (Stage 1) preceded phytoremediation system (Stage 2)]. Pseudomonas stutzeri, Janibacter anophelis, Bacillus safensis, Bacillus pumilus, Bacillus thuringiensis, and Bacillus cereus constituted the bacterial consortium that was involved in the microremediation of textile wastewater. Biochemical characterization of Spirodela on exposure to untreated textile wastewater showed cadmium and nickel uptake as 26.03 and 22.99 mg g-1 dw-1. S. polyrhiza exhibited anatomical changes like distortion in the structure of the xylem, phloem, lower epidermis, and increased aerenchyma formation when remediating textile wastewater. The textile wastewater bioremediation in phyto-microremediation system I gives final reduction of COD 77.36%, color 91.70%, calcium 61.65%, iron 69.41%, nickel 89.30%, cadmium 88.37%, nitrate 70.83%, phosphate 73.11%, and sulfate 75.49%. Further, LC-MS analysis of treated wastewater from phyto-microremediation system I have shown biotransformation of metabolites into simpler compounds like 2-{Bis [4-(2-cyanophenoxy)phenyl]methyl}benzoic acid (C34H22N2O4). The FTIR spectrum of bacterial biomass exposed to textile wastewater exhibits substantial shifts of various bands in the IR region for functional groups such as alcohol, alkene, esters, azide, and amine as compared to non-exposed biomass.
Collapse
Affiliation(s)
- Akrity Parihar
- Department of Environmental Sciences, University of Jammu, Jammu, 180006, J&K, India
| | - Piyush Malaviya
- Department of Environmental Sciences, University of Jammu, Jammu, 180006, J&K, India.
| |
Collapse
|
29
|
Hammerling U, Kim YK, Quadro L. Quantum chemistry rules retinoid biology. Commun Biol 2023; 6:227. [PMID: 36854887 PMCID: PMC9974979 DOI: 10.1038/s42003-023-04602-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 02/16/2023] [Indexed: 03/02/2023] Open
Abstract
This Perspective discusses how retinol catalyzes resonance energy transfer (RET) reactions pivotally important for mitochondrial energy homeostasis by protein kinase C δ (PKCδ). PKCδ signals to the pyruvate dehydrogenase complex, controlling oxidative phosphorylation. The PKCδ-retinol complex reversibly responds to the redox potential of cytochrome c, that changes with the electron transfer chain workload. In contrast, the natural retinoid anhydroretinol irreversibly activates PKCδ. Its elongated conjugated-double-bond system limits the energy quantum absorbed by RET. Consequently, while capable of triggering the exergonic activating pathway, anhydroretinol fails to activate the endergonic silencing path, trapping PKCδ in the ON position and causing harmful levels of reactive oxygen species. However, physiological retinol levels displace anhydroretinol, buffer cyotoxicity and potentially render anhydroretinol useful for rapid energy generation. Intriguingly, apocarotenoids, the primary products of the mitochondrial β-carotene,9'-10'-oxygenase, have all the anhydroretinol-like features, including modulation of energy homeostasis. We predict significant conceptual advances to stem from further understanding of the retinoid-catalyzed RET.
Collapse
Affiliation(s)
- Ulrich Hammerling
- Department of Food Science, Rutgers Center for Lipid Research and Institute of Food Nutrition and Health, Rutgers University, New Brunswick, NJ, USA.
| | - Youn-Kyung Kim
- Department of Food Science, Rutgers Center for Lipid Research and Institute of Food Nutrition and Health, Rutgers University, New Brunswick, NJ, USA
| | - Loredana Quadro
- Department of Food Science, Rutgers Center for Lipid Research and Institute of Food Nutrition and Health, Rutgers University, New Brunswick, NJ, USA.
| |
Collapse
|
30
|
Stra A, Almarwaey LO, Alagoz Y, Moreno JC, Al-Babili S. Carotenoid metabolism: New insights and synthetic approaches. FRONTIERS IN PLANT SCIENCE 2023; 13:1072061. [PMID: 36743580 PMCID: PMC9891708 DOI: 10.3389/fpls.2022.1072061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 12/29/2022] [Indexed: 06/18/2023]
Abstract
Carotenoids are well-known isoprenoid pigments naturally produced by plants, algae, photosynthetic bacteria as well as by several heterotrophic microorganisms. In plants, they are synthesized in plastids where they play essential roles in light-harvesting and in protecting the photosynthetic apparatus from reactive oxygen species (ROS). Carotenoids are also precursors of bioactive metabolites called apocarotenoids, including vitamin A and the phytohormones abscisic acid (ABA) and strigolactones (SLs). Genetic engineering of carotenogenesis made possible the enhancement of the nutritional value of many crops. New metabolic engineering approaches have recently been developed to modulate carotenoid content, including the employment of CRISPR technologies for single-base editing and the integration of exogenous genes into specific "safe harbors" in the genome. In addition, recent studies revealed the option of synthetic conversion of leaf chloroplasts into chromoplasts, thus increasing carotenoid storage capacity and boosting the nutritional value of green plant tissues. Moreover, transient gene expression through viral vectors allowed the accumulation of carotenoids outside the plastid. Furthermore, the utilization of engineered microorganisms allowed efficient mass production of carotenoids, making it convenient for industrial practices. Interestingly, manipulation of carotenoid biosynthesis can also influence plant architecture, and positively impact growth and yield, making it an important target for crop improvements beyond biofortification. Here, we briefly describe carotenoid biosynthesis and highlight the latest advances and discoveries related to synthetic carotenoid metabolism in plants and microorganisms.
Collapse
Affiliation(s)
- Alice Stra
- The Bioactives Laboratory, Center for Desert Agriculture, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
- Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Lamyaa O. Almarwaey
- The Bioactives Laboratory, Center for Desert Agriculture, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
- Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Yagiz Alagoz
- The Bioactives Laboratory, Center for Desert Agriculture, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
- Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Juan C. Moreno
- The Bioactives Laboratory, Center for Desert Agriculture, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
- Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Salim Al-Babili
- The Bioactives Laboratory, Center for Desert Agriculture, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
- Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| |
Collapse
|
31
|
Chouhan N, Yadav RM, Pandey J, Subramanyam R. High light-induced changes in thylakoid supercomplexes organization from cyclic electron transport mutants of Chlamydomonas reinhardtii. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2023; 1864:148917. [PMID: 36108725 DOI: 10.1016/j.bbabio.2022.148917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 09/03/2022] [Accepted: 09/08/2022] [Indexed: 11/15/2022]
Abstract
The localization of carotenoids and macromolecular organization of thylakoid supercomplexes have not been reported yet in Chlamydomonas reinhardtii WT and cyclic electron transport mutants (pgrl1 and pgr5) under high light. Here, the various pigments, protein composition, and pigment-protein interactions were analyzed from the cells, thylakoids, and sucrose density gradient (SDG) fractions. Also, the supercomplexes of thylakoids were separated from BN-PAGE and SDG. The abundance of light-harvesting complex (LHC) II trimer complexes and pigment-pigment interaction were changed slightly under high light, shown by circular dichroism. However, a drastic change was seen in photosystem (PS)I-LHCI complexes than PSII complexes, especially in pgrl1 and pgr5. The lutein and β-carotene increased under high light in LHCII trimers compared to other supercomplexes, indicating that these pigments protected the LHCII trimers against high light. However, the presence of xanthophylls, lutein, and β-carotene was less in PSI-LHCI, indicating that pigment-protein complexes altered in high light. Even the real-time PCR data shows that the pgr5 mutant does not accumulate zeaxanthin dependent genes under high light, which shows that violaxanthin is not converting into zeaxanthin under high light. Also, the protein data confirms that the LHCSR3 expression is absent in pgr5, however it is presented in LHCII trimer in WT and pgrl1. Interestingly, some of the core proteins were aggregated in pgr5, which led to change in photosynthesis efficiency in high light.
Collapse
Affiliation(s)
- Nisha Chouhan
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad 500046, India
| | - Ranay Mohan Yadav
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad 500046, India
| | - Jayendra Pandey
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad 500046, India
| | - Rajagopal Subramanyam
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad 500046, India.
| |
Collapse
|
32
|
Vosnjak M, Sircelj H, Vodnik D, Usenik V. Physio-Biochemical Responses of Sweet Cherry Leaf to Natural Cold Conditions. PLANTS (BASEL, SWITZERLAND) 2022; 11:3507. [PMID: 36559619 PMCID: PMC9782851 DOI: 10.3390/plants11243507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/05/2022] [Accepted: 12/09/2022] [Indexed: 06/17/2023]
Abstract
Trees of the sweet cherry cultivar 'Grace Star' (Prunus avium L.) were exposed to low temperatures without frost for two consecutive nights under natural conditions 36 d after flowering, to study the effects on the physiological properties and metabolic status of leaves. The response was studied by measuring chlorophyll fluorescence and gas exchange parameters and by analyzing chloroplast pigments (i) immediately after exposure, (ii) 24 h and (iii) 48 h later. The first exposure at 2.4 (±0.2) °C and a minimum of 0.8 °C elicited more changes than the second exposure at 4.9 (±0.3) °C and a minimum of 2.4 °C. After the first exposure, the maximum quantum yield of PS II (Fv/Fm), effective quantum efficiency of PS II, net photosynthesis (PN), stomatal conductance (gs), transpiration, and intercellular CO2 concentration were significantly lower, and after the second exposure, the content of chlorophyll b, total chlorophyll, β-carotene, and lutein were lower. The content of antheraxanthin and zeaxanthin was higher immediately after both exposures, and that of antheraxanthin was also higher 24 h later. Recovery took longer in trees that were exposed twice. Fv/Fm recovered within 48 h, but the de-epoxidation state of the xanthophyll cycle pool, PN, and gs did not reach the level of controls, indicating that the stress effect lasted several days which is probably sufficient to cause fruit drop and reduce yield.
Collapse
|
33
|
Lima S, Lokesh J, Schulze PSC, Wijffels RH, Kiron V, Scargiali F, Petters S, Bernstein HC, Morales-Sánchez D. Flashing lights affect the photophysiology and expression of carotenoid and lipid synthesis genes in Nannochloropsis gaditana. J Biotechnol 2022; 360:171-181. [PMID: 36417987 DOI: 10.1016/j.jbiotec.2022.11.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/16/2022] [Accepted: 11/18/2022] [Indexed: 11/21/2022]
Abstract
Nannochloropsis gaditana is a promising microalga for biotechnology. One of the strategies to stimulate its full potential in metabolite production is exposure to flashing lights. Here, we report how N. gaditana adapts to different flashing light regimes (5, 50, and 500 Hz) by changing its cellular physiology and the relative expression of genes related to critical cellular functions. We analyzed the differential mRNA abundance of genes related to photosynthesis, nitrogen assimilation and biosynthesis of chlorophyll, carotenoids, lipids, fatty acids and starch. Analysis of photosynthetic efficiency and high mRNA abundance of photoprotection genes supported the inference that excess excitation energy provided by light absorbance during photosynthesis was produced under low frequency flashing lights and was dissipated by photopigments via the xanthophyll-cycle. Increased relative expression levels of genes related to the synthesis of carotenoids and chlorophyll confirmed the accumulation of photopigments previously observed at low frequency flashing lights. Higher differential mRNA abundance of genes related to the triacylglycerol biosynthesis were observed at lower frequency flashing lights, possibly triggered by a poor nitrogen assimilation caused by low mRNA abundance of a nitrate reductase gene. This study advances a new understanding of algal physiology and metabolism leading to improved cellular performance and metabolite production.
Collapse
Affiliation(s)
- Serena Lima
- Engineering Department, University of Palermo, Palermo, Italy
| | - Jep Lokesh
- Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway; INRAE E2S UPPA, NUMEA, Université de Pau et des Pays de l'Adour, Saint-Pée-sur-Nivelle, France
| | - Peter S C Schulze
- Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway; GreenColab - Associação Oceano Verde, University of Algarve, Faro, Portugal
| | - Rene H Wijffels
- Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway; Bioprocess Engineering, AlgaePARC, Wageningen University, Netherlands
| | - Viswanath Kiron
- Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway
| | | | - Sebastian Petters
- The Norwegian College of Fisheries Sciences, Faculty of Biosciences, Fisheries and Economics, The Arctic University of Norway, Tromsø, Norway
| | - Hans C Bernstein
- The Norwegian College of Fisheries Sciences, Faculty of Biosciences, Fisheries and Economics, The Arctic University of Norway, Tromsø, Norway
| | - Daniela Morales-Sánchez
- Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway; The Norwegian College of Fisheries Sciences, Faculty of Biosciences, Fisheries and Economics, The Arctic University of Norway, Tromsø, Norway.
| |
Collapse
|
34
|
Fierli D, Barone ME, Graceffa V, Touzet N. Cold stress combined with salt or abscisic acid supplementation enhances lipogenesis and carotenogenesis in Phaeodactylum tricornutum (Bacillariophyceae). Bioprocess Biosyst Eng 2022; 45:1967-1977. [PMID: 36264371 DOI: 10.1007/s00449-022-02800-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 10/07/2022] [Indexed: 11/02/2022]
Abstract
Compounds from microalgae such as ω3-fatty acids or carotenoid are commercially exploited within the pharmacology, nutraceutical, or cosmetic sectors. The co-stimulation of several compounds of interest may improve the cost-effectiveness of microalgal biorefinery pipelines. This study focussed on Phaeodactylum tricornutum to investigate the effects on lipogenesis and carotenogenesis of combined stressors, here cold temperature and addition of NaCl salt or the phytohormone abscisic acid, using a two-stage cultivation strategy. Cold stress with NaCl or phytohormone addition increased the neutral lipid content of the biomass (20 to 35%). These treatments also enhanced the proportions of EPA (22% greater than control) in the fatty acid profile. Also, these treatments had a stimulatory effect on carotenogenesis, especially the combination of cold stress with NaCl addition, which returned the highest production of fucoxanthin (33% increase). The gene expression of diacylglycerol acyltransferase (DGAT) and the ω-3 desaturase precursor (PTD15) were enhanced 4- and 16-fold relative to the control, respectively. In addition, zeaxanthin epoxidase 3 (ZEP3), was downregulated at low temperature when combined with abscisic acid. These results highlight the benefits of applying a combination of low temperature and salinity stress, to simultaneously enhance the yields of the valuable metabolites EPA and fucoxanthin in Phaeodactylum tricornutum.
Collapse
Affiliation(s)
- David Fierli
- School of Science, Department of Environmental Science, Centre for Environmental Research, Sustainability and Innovation, Atlantic Technological University, Ash Ln, Ballytivnan, Sligo, F91 YW50, Ireland.
| | - Maria Elena Barone
- School of Science, Department of Environmental Science, Centre for Environmental Research, Sustainability and Innovation, Atlantic Technological University, Ash Ln, Ballytivnan, Sligo, F91 YW50, Ireland
| | - Valeria Graceffa
- School of Science, Department of Life Sciences, Cellular Health and Toxicology Research Group (CHAT), Atlantic Technological University, Ash Ln, Ballytivnan, Sligo, F91 YW50, Ireland
| | - Nicolas Touzet
- School of Science, Department of Environmental Science, Centre for Environmental Research, Sustainability and Innovation, Atlantic Technological University, Ash Ln, Ballytivnan, Sligo, F91 YW50, Ireland
| |
Collapse
|
35
|
Chatterjee P, Schafran P, Li FW, Meeks JC. Nostoc Talks Back: Temporal Patterns of Differential Gene Expression During Establishment of Anthoceros-Nostoc Symbiosis. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2022; 35:917-932. [PMID: 35802132 DOI: 10.1094/mpmi-05-22-0101-r] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Endosymbiotic associations between hornworts and nitrogen-fixing cyanobacteria form when the plant is limited for combined nitrogen (N). We generated RNA-seq data to examine temporal gene expression patterns during the culturing of N-starved Anthoceros punctatus in the absence and the presence of symbiotic cyanobacterium Nostoc punctiforme. In symbiont-free A. punctatus gametophytes, N starvation caused downregulation of chlorophyll content and chlorophyll fluorescence characteristics as well as transcription of photosynthesis-related genes. This downregulation was reversed in A. punctatus cocultured with N. punctiforme, corresponding to the provision by the symbiont of N2-derived NH4+, which commenced within 5 days of coculture and reached a maximum by 14 days. We also observed transient increases in transcription of ammonium and nitrate transporters in a N. punctiforme-dependent manner as well as that of a SWEET transporter that was initially independent of N2-derived NH4+. The temporal patterns of differential gene expression indicated that N. punctiforme transmits signals that impact gene expression to A. punctatus both prior to and after its provision of fixed N. This study is the first illustrating the temporal patterns of gene expression during establishment of an endosymbiotic nitrogen-fixing association in this monophyletic evolutionary lineage of land plants. [Formula: see text] Copyright © 2022 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Poulami Chatterjee
- Department of Microbiology and Molecular Genetics, University of California, Davis, CA 95616, U.S.A
| | - Peter Schafran
- Boyce Thompson Institute, Ithaca, NY 14853, U.S.A
- Plant Biology Section, Cornell University, Ithaca, NY 14953, U.S.A
| | - Fay-Wei Li
- Boyce Thompson Institute, Ithaca, NY 14853, U.S.A
- Plant Biology Section, Cornell University, Ithaca, NY 14953, U.S.A
| | - John C Meeks
- Department of Microbiology and Molecular Genetics, University of California, Davis, CA 95616, U.S.A
| |
Collapse
|
36
|
Satyakam, Zinta G, Singh RK, Kumar R. Cold adaptation strategies in plants—An emerging role of epigenetics and antifreeze proteins to engineer cold resilient plants. Front Genet 2022; 13:909007. [PMID: 36092945 PMCID: PMC9459425 DOI: 10.3389/fgene.2022.909007] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 07/21/2022] [Indexed: 11/13/2022] Open
Abstract
Cold stress adversely affects plant growth, development, and yield. Also, the spatial and geographical distribution of plant species is influenced by low temperatures. Cold stress includes chilling and/or freezing temperatures, which trigger entirely different plant responses. Freezing tolerance is acquired via the cold acclimation process, which involves prior exposure to non-lethal low temperatures followed by profound alterations in cell membrane rigidity, transcriptome, compatible solutes, pigments and cold-responsive proteins such as antifreeze proteins. Moreover, epigenetic mechanisms such as DNA methylation, histone modifications, chromatin dynamics and small non-coding RNAs play a crucial role in cold stress adaptation. Here, we provide a recent update on cold-induced signaling and regulatory mechanisms. Emphasis is given to the role of epigenetic mechanisms and antifreeze proteins in imparting cold stress tolerance in plants. Lastly, we discuss genetic manipulation strategies to improve cold tolerance and develop cold-resistant plants.
Collapse
|
37
|
Thong CH, Priyanga N, Ng FL, Pappathi M, Periasamy V, Phang SM, Gnana kumar G. Metal organic frameworks (MOFs) as potential anode materials for improving power generation from algal biophotovoltaic (BPV) platforms. Catal Today 2022. [DOI: 10.1016/j.cattod.2021.07.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
38
|
Duarte-Sierra A, Forney CF, Thomas M, Angers P, Arul J. Phytochemical Enhancement in Broccoli Florets after Harvest by Controlled Doses of Ozone. Foods 2022; 11:foods11152195. [PMID: 35892781 PMCID: PMC9329930 DOI: 10.3390/foods11152195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 07/19/2022] [Accepted: 07/20/2022] [Indexed: 11/16/2022] Open
Abstract
The objective of this work was to examine the effect of controlled doses of O3 (0, 5 µL L−1 of O3 for 60 min, and 5 µL L−1 of O3 for 720 min) on the quality and phytochemical content of broccoli florets during postharvest storage. The optimal dose was found at 5 µL L−1 of O3 for 60 min, from the color retention of broccoli florets exposed to the gas treatment. Overall, the antioxidant capacity of the florets was significantly affected by both doses of O3 compared to the non-exposed florets. The profile of glucosinolates was determined for up to 14 days in broccoli florets stored at 4 °C by LC-MS. The amount of total glucobrassicins and total hydroxy-cinnamates in florets significantly (p ≤ 0.05) improved by the application of 5 µL L−1 of O3 for 60 min compared to non-treated florets. The up-regulation of genes of the tryptophan-derived glucosinolate pathway was observed immediately after both treatments. The gene expression of CYP79A2 and CYP79B3 in broccoli was significantly higher in broccoli florets exposed to 5 µL L−1 of O3 for 720 min compared to non-exposed florets. Although enhancement of secondary metabolites can be achieved by the fumigation of broccoli florets with low doses of ozone, quality parameters, particularly weight loss, can be compromised.
Collapse
Affiliation(s)
- Arturo Duarte-Sierra
- Food Science Department, Laval University, Quebec, QC G1V 0A6, Canada; (M.T.); (P.A.); (J.A.)
- Institute on Nutrition and Functional Foods (INAF), Laval University, Quebec, QC G1V 0A6, Canada
- Center for Research in Plant Innovation (CRIV), Laval University, Quebec, QC G1V 0A6, Canada
- Correspondence:
| | - Charles F. Forney
- Kentville Research and Development Centre, Agriculture and Agri-Food Canada, 32 Main Street, Kentville, NS B4N 1J5, Canada;
| | - Minty Thomas
- Food Science Department, Laval University, Quebec, QC G1V 0A6, Canada; (M.T.); (P.A.); (J.A.)
| | - Paul Angers
- Food Science Department, Laval University, Quebec, QC G1V 0A6, Canada; (M.T.); (P.A.); (J.A.)
- Institute on Nutrition and Functional Foods (INAF), Laval University, Quebec, QC G1V 0A6, Canada
| | - Joseph Arul
- Food Science Department, Laval University, Quebec, QC G1V 0A6, Canada; (M.T.); (P.A.); (J.A.)
| |
Collapse
|
39
|
Permann C, Becker B, Holzinger A. Temperature- and light stress adaptations in Zygnematophyceae: The challenges of a semi-terrestrial lifestyle. FRONTIERS IN PLANT SCIENCE 2022; 13:945394. [PMID: 35928713 PMCID: PMC9343959 DOI: 10.3389/fpls.2022.945394] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 06/29/2022] [Indexed: 06/15/2023]
Abstract
Streptophyte green algae comprise the origin of land plants and therefore life on earth as we know it today. While terrestrialization opened new habitats, leaving the aquatic environment brought additional abiotic stresses. More-drastic temperature shifts and high light levels are major abiotic stresses in semi-terrestrial habitats, in addition to desiccation, which has been reviewed elsewhere. Zygnematophyceae, a species-rich class of streptophyte green algae, is considered a sister-group to embryophytes. They have developed a variety of avoidance and adaptation mechanisms to protect against temperature extremes and high radiation in the form of photosynthetically active and ultraviolet radiation (UV) radiation occurring on land. Recently, knowledge of transcriptomic and metabolomic changes as consequences of these stresses has become available. Land-plant stress-signaling pathways producing homologs of key enzymes have been described in Zygnematophyceae. An efficient adaptation strategy is their mat-like growth habit, which provides self-shading and protects lower layers from harmful radiation. Additionally, Zygnematophyceae possess phenolic compounds with UV-screening ability. Resting stages such as vegetative pre-akinetes tolerate freezing to a much higher extent than do young cells. Sexual reproduction occurs by conjugation without the formation of flagellated male gametes, which can be seen as an advantage in water-deficient habitats. The resulting zygospores possess a multilayer cell wall, contributing to their resistance to terrestrial conditions. Especially in the context of global change, understanding temperature and light tolerance is crucial.
Collapse
Affiliation(s)
- Charlotte Permann
- Department of Botany, Functional Plant Biology, University of Innsbruck, Innsbruck, Austria
| | - Burkhard Becker
- Department of Biology, Institute for Plant Sciences, University of Cologne, Cologne, Germany
| | - Andreas Holzinger
- Department of Botany, Functional Plant Biology, University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
40
|
Pinseel E, Nakov T, Van den Berge K, Downey KM, Judy KJ, Kourtchenko O, Kremp A, Ruck EC, Sjöqvist C, Töpel M, Godhe A, Alverson AJ. Strain-specific transcriptional responses overshadow salinity effects in a marine diatom sampled along the Baltic Sea salinity cline. THE ISME JOURNAL 2022; 16:1776-1787. [PMID: 35383290 PMCID: PMC9213524 DOI: 10.1038/s41396-022-01230-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 03/16/2022] [Accepted: 03/21/2022] [Indexed: 05/01/2023]
Abstract
The salinity gradient separating marine and freshwater environments represents a major ecological divide for microbiota, yet the mechanisms by which marine microbes have adapted to and ultimately diversified in freshwater environments are poorly understood. Here, we take advantage of a natural evolutionary experiment: the colonization of the brackish Baltic Sea by the ancestrally marine diatom Skeletonema marinoi. To understand how diatoms respond to low salinity, we characterized transcriptomic responses of acclimated S. marinoi grown in a common garden. Our experiment included eight strains from source populations spanning the Baltic Sea salinity cline. Gene expression analysis revealed that low salinities induced changes in the cellular metabolism of S. marinoi, including upregulation of photosynthesis and storage compound biosynthesis, increased nutrient demand, and a complex response to oxidative stress. However, the strain effect overshadowed the salinity effect, as strains differed significantly in their response, both regarding the strength and the strategy (direction of gene expression) of their response. The high degree of intraspecific variation in gene expression observed here highlights an important but often overlooked source of biological variation associated with how diatoms respond to environmental change.
Collapse
Affiliation(s)
- Eveline Pinseel
- Department of Biological Sciences, University of Arkansas, Fayetteville, AR, USA.
| | - Teofil Nakov
- Department of Biological Sciences, University of Arkansas, Fayetteville, AR, USA
| | - Koen Van den Berge
- Department of Statistics, University of California, Berkeley, CA, USA
- Department of Applied Mathematics, Computer Science and Statistics, Ghent University, Ghent, Belgium
- Bioinformatics Institute Ghent, Ghent University, Ghent, Belgium
| | - Kala M Downey
- Department of Biological Sciences, University of Arkansas, Fayetteville, AR, USA
| | - Kathryn J Judy
- Department of Biological Sciences, University of Arkansas, Fayetteville, AR, USA
| | - Olga Kourtchenko
- Department of Marine Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Anke Kremp
- Leibniz-Institute for Baltic Sea Research Warnemünde, Rostock, Germany
| | - Elizabeth C Ruck
- Department of Biological Sciences, University of Arkansas, Fayetteville, AR, USA
| | - Conny Sjöqvist
- Environmental and Marine Biology, Åbo Akademi University, Åbo, Finland
| | - Mats Töpel
- Department of Marine Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Anna Godhe
- Department of Marine Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Andrew J Alverson
- Department of Biological Sciences, University of Arkansas, Fayetteville, AR, USA.
| |
Collapse
|
41
|
Nosalewicz A, Okoń K, Skorupka M. Non-Photochemical Quenching under Drought and Fluctuating Light. Int J Mol Sci 2022; 23:ijms23095182. [PMID: 35563573 PMCID: PMC9105319 DOI: 10.3390/ijms23095182] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 04/29/2022] [Accepted: 04/30/2022] [Indexed: 11/16/2022] Open
Abstract
Plants grow in a variable environment in regard to soil water and light driving photochemical reactions. Light energy exceeding plant capability to use it for photochemical reactions must be dissipated by processes of non-photochemical quenching (NPQ). The aim of the study was to evaluate the impact of various components of NPQ on the response of Arabidopsis thaliana to fluctuating light and water availability. A laboratory experiment with Arabidopsis thaliana wild type (WT) and mutants npq1 and npq4 grown under optimum or reduced water availability was conducted. Dark-adapted plants were illuminated with fluctuating light (FL) of two intensities (55 and 530 μmol m−2 s−1) with each of the phases lasting for 20 s. The impact of water availability on the role of zeaxanthin and PsbS protein in NPQ induced at FL was analysed. The water deficit affected the dynamics of NPQ induced by FL. The lack of zeaxanthin or PsbS reduced plant capability to cope with FL. The synergy of both of these components was enhanced in regard to the amplitude of NPQ in the drought conditions. PsbS was shown as a component of primary importance in suiting plant response to FL under optimum and reduced water availability.
Collapse
|
42
|
Bhadmus OA, Badu-Apraku B, Adeyemo OA, Agre PA, Queen ON, Ogunkanmi AL. Genome-Wide Association Analysis Reveals Genetic Architecture and Candidate Genes Associated with Grain Yield and Other Traits under Low Soil Nitrogen in Early-Maturing White Quality Protein Maize Inbred Lines. Genes (Basel) 2022; 13:genes13050826. [PMID: 35627211 PMCID: PMC9141126 DOI: 10.3390/genes13050826] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/29/2022] [Accepted: 04/30/2022] [Indexed: 02/01/2023] Open
Abstract
Maize production in the savannas of sub-Saharan Africa (SSA) is constrained by the low nitrogen in the soils. The identification of quantitative trait loci (QTL) conferring tolerance to low soil nitrogen (low-N) is crucial for the successful breeding of high-yielding QPM maize genotypes under low-N conditions. The objective of this study was to identify QTLs significantly associated with grain yield and other low-N tolerance-related traits under low-N. The phenotypic data of 140 early-maturing white quality protein maize (QPM) inbred lines were evaluated under low-N. The inbred lines were genotyped using 49,185 DArTseq markers, from which 7599 markers were filtered for population structure analysis and genome-wide association study (GWAS). The inbred lines were grouped into two major clusters based on the population structure analysis. The GWAS identified 24, 3, 10, and 3 significant SNPs respectively associated with grain yield, stay-green characteristic, and plant and ear aspects, under low-N. Sixteen SNP markers were physically located in proximity to 32 putative genes associated with grain yield, stay-green characteristic, and plant and ear aspects. The putative genes GRMZM2G127139, GRMZM5G848945, GRMZM2G031331, GRMZM2G003493, GRMZM2G067964, GRMZM2G180254, on chromosomes 1, 2, 8, and 10 were involved in cellular nitrogen assimilation and biosynthesis, normal plant growth and development, nitrogen assimilation, and disease resistance. Following the validation of the markers, the putative candidate genes and SNPs could be used as genomic markers for marker-assisted selection, to facilitate genetic gains for low-N tolerance in maize production.
Collapse
Affiliation(s)
- Olatunde A. Bhadmus
- Department of Cell Biology and Genetics, University of Lagos, Lagos 101017, Nigeria; (O.A.B.); (O.A.A.); (A.L.O.)
- International Institute of Tropical Agriculture, IITA, PMB 5320 Oyo Road, Ibadan 200285, Nigeria; (P.A.A.); (O.N.Q.)
| | - Baffour Badu-Apraku
- International Institute of Tropical Agriculture, IITA, PMB 5320 Oyo Road, Ibadan 200285, Nigeria; (P.A.A.); (O.N.Q.)
- Correspondence:
| | - Oyenike A. Adeyemo
- Department of Cell Biology and Genetics, University of Lagos, Lagos 101017, Nigeria; (O.A.B.); (O.A.A.); (A.L.O.)
| | - Paterne A. Agre
- International Institute of Tropical Agriculture, IITA, PMB 5320 Oyo Road, Ibadan 200285, Nigeria; (P.A.A.); (O.N.Q.)
| | - Offornedo N. Queen
- International Institute of Tropical Agriculture, IITA, PMB 5320 Oyo Road, Ibadan 200285, Nigeria; (P.A.A.); (O.N.Q.)
| | - Adebayo L. Ogunkanmi
- Department of Cell Biology and Genetics, University of Lagos, Lagos 101017, Nigeria; (O.A.B.); (O.A.A.); (A.L.O.)
| |
Collapse
|
43
|
Role of LOC_Os01g68450, Containing DUF2358, in Salt Tolerance Is Mediated via Adaptation of Absorbed Light Energy Dissipation. PLANTS 2022; 11:plants11091233. [PMID: 35567234 PMCID: PMC9105198 DOI: 10.3390/plants11091233] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 04/27/2022] [Indexed: 11/16/2022]
Abstract
Salt stress affects plant growth and productivity. In this study we determined the roles of eight genes involved in photosynthesis, using gene co-expression network analysis, under salt-stress conditions using Arabidopsis knockout mutants. The green area of the leaves was minimum in the at1g65230 mutant line. Rice LOC_Os01g68450, a homolog of at1g65230, was ectopically expressed in the at1g65230 mutant line to generate revertant lines. Under salt stress, the revertant lines exhibited significantly higher net photosynthesis rates than the at1g65230 mutant line. Moreover, the operating efficiency of photosystem II (PSII) and electron transport rate of the revertant lines were higher than those of the wild type and at1g65230 mutant line after 10 days of exposure to salt stress. After this period, the protein PsbD–the component of PSII–decreased in all lines tested without significant difference among them. However, the chlorophyll a and b, carotenoid, and anthocyanin contents of revertant lines were higher than those of the mutant line. Furthermore, lower maximum chlorophyll fluorescence was detected in the revertant lines. This suggests that LOC_Os01g68450 expression contributed to the salt tolerance phenotype by modifying the energy dissipation process and led to the ability to maintain photosynthesis under salt stress conditions.
Collapse
|
44
|
Lunn D, Smith GA, Wallis JG, Browse J. Overexpression mutants reveal a role for a chloroplast MPD protein in regulation of reactive oxygen species during chilling in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:2666-2681. [PMID: 35084440 PMCID: PMC9015808 DOI: 10.1093/jxb/erac029] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 01/24/2022] [Indexed: 06/14/2023]
Abstract
Reactive oxygen species (ROS) contribute to cellular damage in several different contexts, but their role during chilling damage is poorly defined. Chilling sensitivity both limits the distribution of plant species and causes devastating crop losses worldwide. Our screen of chilling-tolerant Arabidopsis (Arabidopsis thaliana) for mutants that suffer chilling damage identified a gene (At4g03410) encoding a chloroplast Mpv17_PMP22 protein, MPD1, with no previous connection to chilling. The chilling-sensitive mpd1-1 mutant is an overexpression allele that we successfully phenocopied by creating transgenic lines with a similar level of MPD1 overexpression. In mammals and yeast, MPD1 homologs are associated with ROS management. In chilling conditions, Arabidopsis overexpressing MPD1 accumulated H2O2 to higher levels than wild-type controls and exhibited stronger induction of ROS response genes. Paraquat application exacerbated chilling damage, confirming that the phenotype occurs due to ROS dysregulation. We conclude that at low temperature increased MPD1 expression results in increased ROS production, causing chilling damage. Our discovery of the effect of MPD1 overexpression on ROS production under chilling stress implies that investigation of the nine other members of the Mpv17_PMP22 family in Arabidopsis may lead to new discoveries regarding ROS signaling and management in plants.
Collapse
Affiliation(s)
- Daniel Lunn
- Institute of Biological Chemistry, Washington State University, Pullman, WA 99164-6340, USA
| | - Gracen A Smith
- Institute of Biological Chemistry, Washington State University, Pullman, WA 99164-6340, USA
| | - James G Wallis
- Institute of Biological Chemistry, Washington State University, Pullman, WA 99164-6340, USA
| | - John Browse
- Institute of Biological Chemistry, Washington State University, Pullman, WA 99164-6340, USA
| |
Collapse
|
45
|
Palmitessa OD, Durante M, Somma A, Mita G, D’Imperio M, Serio F, Santamaria P. Nutraceutical Profile of "Carosello" ( Cucumis melo L.) Grown in an Out-of-Season Cycle under LEDs. Antioxidants (Basel) 2022; 11:777. [PMID: 35453463 PMCID: PMC9026761 DOI: 10.3390/antiox11040777] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/07/2022] [Accepted: 04/12/2022] [Indexed: 02/04/2023] Open
Abstract
The world population is projected to increase to 9.9 billion by 2050 and, to ensure food security and quality, agriculture must sustainably multiply production, increase the nutritional value of fruit and vegetables, and preserve genetic variability. In this work, an Apulian landrace of Cucumis melo L. called "Carosello leccese" was grown in a greenhouse with a soilless technique under light-emitting diodes (LEDs) used as supplementary light system. The obtained results showed that "Carosello leccese" contains up to 71.0 mg·g-1 dried weight (DW) of potassium and several bioactive compounds important for human health such as methyl gallate (35.58 µg·g-1 DW), α-tocopherol (10.12 µg·g-1 DW), and β-carotene (up to 9.29 µg·g-1 DW under LEDs). In fact, methyl gallate has antioxidative and antiviral effects in vitro and in vivo, tocopherols are well recognized for their effective inhibition of lipid oxidation in foods and biological systems and carotenoids are known to be very efficient physical and chemical quenchers of singlet oxygen. Finally, it was demonstrated that the LEDs' supplementary light did not negatively influence the biochemical profile of the peponids, confirming that it can be considered a valid technique to enhance horticultural production without reducing the content of the bioactive compounds of the fruits.
Collapse
Affiliation(s)
- Onofrio Davide Palmitessa
- Department of Agricultural and Environmental Science, University of Bari Aldo Moro, Via Amendola 165/a, 70126 Bari, Italy; (O.D.P.); (A.S.); (P.S.)
| | - Miriana Durante
- Institute of Sciences of Food Production, National Research Council of Italy, 73100 Lecce, Italy; (M.D.); (G.M.)
| | - Annalisa Somma
- Department of Agricultural and Environmental Science, University of Bari Aldo Moro, Via Amendola 165/a, 70126 Bari, Italy; (O.D.P.); (A.S.); (P.S.)
| | - Giovanni Mita
- Institute of Sciences of Food Production, National Research Council of Italy, 73100 Lecce, Italy; (M.D.); (G.M.)
| | - Massimiliano D’Imperio
- Institute of Sciences of Food Production, National Research Council of Italy, 70126 Bari, Italy;
| | - Francesco Serio
- Institute of Sciences of Food Production, National Research Council of Italy, 70126 Bari, Italy;
| | - Pietro Santamaria
- Department of Agricultural and Environmental Science, University of Bari Aldo Moro, Via Amendola 165/a, 70126 Bari, Italy; (O.D.P.); (A.S.); (P.S.)
| |
Collapse
|
46
|
Simkin AJ, Kapoor L, Doss CGP, Hofmann TA, Lawson T, Ramamoorthy S. The role of photosynthesis related pigments in light harvesting, photoprotection and enhancement of photosynthetic yield in planta. PHOTOSYNTHESIS RESEARCH 2022; 152:23-42. [PMID: 35064531 DOI: 10.1007/s11120-021-00892-6] [Citation(s) in RCA: 114] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 12/13/2021] [Indexed: 05/06/2023]
Abstract
Photosynthetic pigments are an integral and vital part of all photosynthetic machinery and are present in different types and abundances throughout the photosynthetic apparatus. Chlorophyll, carotenoids and phycobilins are the prime photosynthetic pigments which facilitate efficient light absorption in plants, algae, and cyanobacteria. The chlorophyll family plays a vital role in light harvesting by absorbing light at different wavelengths and allowing photosynthetic organisms to adapt to different environments, either in the long-term or during transient changes in light. Carotenoids play diverse roles in photosynthesis, including light capture and as crucial antioxidants to reduce photodamage and photoinhibition. In the marine habitat, phycobilins capture a wide spectrum of light and have allowed cyanobacteria and red algae to colonise deep waters where other frequencies of light are attenuated by the water column. In this review, we discuss the potential strategies that photosynthetic pigments provide, coupled with development of molecular biological techniques, to improve crop yields through enhanced light harvesting, increased photoprotection and improved photosynthetic efficiency.
Collapse
Affiliation(s)
- Andrew J Simkin
- School of Biosciences, University of Kent, Canterbury, CT2 7NJ, United Kingdom
| | - Leepica Kapoor
- School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, 632014, Tamil Nadu, India
| | - C George Priya Doss
- School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, 632014, Tamil Nadu, India
| | - Tanja A Hofmann
- OSFC, Scrivener Drive, Pinewood, Ipswich, IP8 3SU, United Kingdom
| | - Tracy Lawson
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester, CO4 3SQ, United Kingdom
| | - Siva Ramamoorthy
- School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, 632014, Tamil Nadu, India.
| |
Collapse
|
47
|
Lourkisti R, Froelicher Y, Morillon R, Berti L, Santini J. Enhanced Photosynthetic Capacity, Osmotic Adjustment and Antioxidant Defenses Contribute to Improve Tolerance to Moderate Water Deficit and Recovery of Triploid Citrus Genotypes. Antioxidants (Basel) 2022; 11:antiox11030562. [PMID: 35326213 PMCID: PMC8944853 DOI: 10.3390/antiox11030562] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/10/2022] [Accepted: 03/11/2022] [Indexed: 11/22/2022] Open
Abstract
Currently, drought stress is a major issue for crop productivity, and future climate models predict a rise in frequency and severity of drought episodes. Polyploidy has been related to improved tolerance of plants to environmental stresses. In Citrus breeding programs, the use of triploidy is an effective way to produce seedless fruits, one of the greatest consumer expectations. The current study used physiological and biochemical parameters to assess the differential responses to moderate water deficit of 3x genotypes compared to 2x genotypes belonging to the same hybridization. Both parents, the mandarin Fortune and Ellendale tangor, were also included in the experimental design, while the 2x common clementine tree was used as reference. Water deficit affects leaf water status, as well as physiological and detoxification processes. Triploid genotypes showed a better ability to maintain water status through increased proline content and photosynthetic capacity. Moreover, less oxidative damage was associated with stronger antioxidant defenses in triploid genotypes. We also found that triploidy improved the recovery capacity after a water deficit episode.
Collapse
Affiliation(s)
- Radia Lourkisti
- Laboratoire de Biochimie et Biologie Moléculaire du Végétal, Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche (UMR), 6134 Sciences pour l’Environnement (SPE), Université de Corse, 20250 Corte, France; (L.B.); (J.S.)
- Correspondence: ; Tel.: +33-420-202-268
| | - Yann Froelicher
- Centre de Coopération Internationale en Recherche Agronomique pour le Développement (CIRAD), UMR AGAP Institut, INRAE, Institut Agro, University Montpellier, 34398 Montpellier, France; (Y.F.); (R.M.)
- CIRAD, UMR AGAP, 20230 San Giuliano, France
| | - Raphaël Morillon
- Centre de Coopération Internationale en Recherche Agronomique pour le Développement (CIRAD), UMR AGAP Institut, INRAE, Institut Agro, University Montpellier, 34398 Montpellier, France; (Y.F.); (R.M.)
- CIRAD, UMR AGAP Institut, 34398 Montpellier, France
| | - Liliane Berti
- Laboratoire de Biochimie et Biologie Moléculaire du Végétal, Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche (UMR), 6134 Sciences pour l’Environnement (SPE), Université de Corse, 20250 Corte, France; (L.B.); (J.S.)
| | - Jérémie Santini
- Laboratoire de Biochimie et Biologie Moléculaire du Végétal, Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche (UMR), 6134 Sciences pour l’Environnement (SPE), Université de Corse, 20250 Corte, France; (L.B.); (J.S.)
| |
Collapse
|
48
|
Sala-Carvalho WR, Montessi-Amaral FP, Esposito MP, Campestrini R, Rossi M, Peralta DF, Furlan CM. Metabolome of Ceratodon purpureus (Hedw.) Brid., a cosmopolitan moss: the influence of seasonality. PLANTA 2022; 255:77. [PMID: 35239061 DOI: 10.1007/s00425-022-03857-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 02/10/2022] [Indexed: 06/14/2023]
Abstract
Ceratodon purpureus showed changes in disaccharides, flavonoids, and carotenoids throughout annual seasons. These changes indicate harsher environmental conditions during the dry period, directing metabolic precursors to enhance the antioxidant system. Bryophytes are a group of land plants comprising mosses (Bryophyta), liverworts (Marchantyophyta), and hornworts (Antocerotophyta). This study uses the molecular networking approach to investigate the influence of seasonality (dry and rainy seasons) on the metabolome and redox status of the moss Ceratodon purpureus (Hedw.) Brid., from Campos do Jordão, Brazil. Samples of C. purpureus were submitted to three extraction methods: 80% methanol producing the soluble fraction (intracellular compounds), followed by debris hydrolysis using sodium hydroxide producing the insoluble fraction (cell wall conjugated compounds), both analyzed by HPLC-MS; and extraction using pre-cooled methanol, separated into polar and non-polar fractions, being both analyzed by GC-MS. All fractions were processed using the Global Natural Product Social Molecular Network (GNPS). The redox status was assessed by the analysis of four enzyme activities combined with the analysis of the contents of ascorbate, glutathione, carotenoids, reactive oxygen species (ROS), and malondialdehyde acid (MDA). During the dry period, there was an increase of most biflavonoids, as well as phospholipids, disaccharides, long-chain fatty acids, carotenoids, antioxidant enzymes, ROS, and MDA. Results indicate that C. purpureus is under harsher environmental conditions during the dry period, mainly due to low temperature and less water availability (low rainfall).
Collapse
Affiliation(s)
- Wilton R Sala-Carvalho
- Department of Botany, Institute of Biosciences, University of São Paulo, Rua Do Matão, 277, SP, 05508-090, Brazil
| | - Francisco P Montessi-Amaral
- Department of Botany, Institute of Biosciences, University of São Paulo, Rua Do Matão, 277, SP, 05508-090, Brazil
| | - Marisia P Esposito
- Department of Botany, Institute of Biosciences, University of São Paulo, Rua Do Matão, 277, SP, 05508-090, Brazil
| | - Richard Campestrini
- Department of Botany, Institute of Biosciences, University of São Paulo, Rua Do Matão, 277, SP, 05508-090, Brazil
| | - Magdalena Rossi
- Department of Botany, Institute of Biosciences, University of São Paulo, Rua Do Matão, 277, SP, 05508-090, Brazil
| | - Denilson F Peralta
- Instituto de Pesquisas Ambientais, Avenida Miguel Estéfano, 3687, SP, 04301-012, Brazil
| | - Claudia M Furlan
- Department of Botany, Institute of Biosciences, University of São Paulo, Rua Do Matão, 277, SP, 05508-090, Brazil.
| |
Collapse
|
49
|
Coelho LF, Madden J, Kaltenegger L, Zinder S, Philpot W, Esquível MG, Canário J, Costa R, Vincent WF, Martins Z. Color Catalogue of Life in Ice: Surface Biosignatures on Icy Worlds. ASTROBIOLOGY 2022; 22:313-321. [PMID: 34964651 DOI: 10.1089/ast.2021.0008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
With thousands of discovered planets orbiting other stars and new missions that will explore our solar system, the search for life in the universe has entered a new era. However, a reference database to enable our search for life on the surface of icy exoplanets and exomoons by using records from Earth's icy biota is missing. Therefore, we developed a spectra catalogue of life in ice to facilitate the search for extraterrestrial signs of life. We measured the reflection spectra of 80 microorganisms-with a wide range of pigments-isolated from ice and water. We show that carotenoid signatures are wide-ranged and intriguing signs of life. Our measurements allow for the identification of such surface life on icy extraterrestrial environments in preparation for observations with the upcoming ground- and space-based telescopes. Dried samples reveal even higher reflectance, which suggests that signatures of surface biota could be more intense on exoplanets and moons that are drier than Earth or on environments like Titan where potential life-forms may use a different solvent. Our spectra library covers the visible to near-infrared and is available online. It provides a guide for the search for surface life on icy worlds based on biota from Earth's icy environments.
Collapse
Affiliation(s)
- Lígia F Coelho
- Centro de Química Estrutural, Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
- Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - Jack Madden
- Department of Astronomy, Cornell University, Ithaca, New York, USA
- Carl Sagan Institute, Ithaca, New York, USA
| | - Lisa Kaltenegger
- Department of Astronomy, Cornell University, Ithaca, New York, USA
- Carl Sagan Institute, Ithaca, New York, USA
| | - Stephen Zinder
- Carl Sagan Institute, Ithaca, New York, USA
- Department of Microbiology, Cornell University, Ithaca, New York, USA
| | - William Philpot
- Carl Sagan Institute, Ithaca, New York, USA
- School of Civil and Environmental Engineering, Cornell University, Ithaca, New York, USA
| | - M Glória Esquível
- Landscape, Environment, Agriculture and Food-LEAF Centre, Instituto Superior de Agronomia, Universidade de Lisboa, Lisboa, Portugal
| | - João Canário
- Centro de Química Estrutural, Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - Rodrigo Costa
- Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - Warwick F Vincent
- Centre for Northern Studies (CEN), Takuvik & Biology Department, Université Laval, Québec, Canada
| | - Zita Martins
- Centro de Química Estrutural, Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| |
Collapse
|
50
|
Serrano-Pérez E, Romero-Losada AB, Morales-Pineda M, García-Gómez ME, Couso I, García-González M, Romero-Campero FJ. Transcriptomic and Metabolomic Response to High Light in the Charophyte Alga Klebsormidium nitens. FRONTIERS IN PLANT SCIENCE 2022; 13:855243. [PMID: 35599877 PMCID: PMC9121098 DOI: 10.3389/fpls.2022.855243] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 03/28/2022] [Indexed: 05/04/2023]
Abstract
The characterization of the molecular mechanisms, such as high light irradiance resistance, that allowed plant terrestralization is a cornerstone in evolutionary studies since the conquest of land by plants played a pivotal role in life evolution on Earth. Viridiplantae or the green lineage is divided into two clades, Chlorophyta and Streptophyta, that in turn splits into Embryophyta or land plants and Charophyta. Charophyta are used in evolutionary studies on plant terrestralization since they are generally accepted as the extant algal species most closely related to current land plants. In this study, we have chosen the facultative terrestrial early charophyte alga Klebsormidium nitens to perform an integrative transcriptomic and metabolomic analysis under high light in order to unveil key mechanisms involved in the early steps of plants terrestralization. We found a fast chloroplast retrograde signaling possibly mediated by reactive oxygen species and the inositol polyphosphate 1-phosphatase (SAL1) and 3'-phosphoadenosine-5'-phosphate (PAP) pathways inducing gene expression and accumulation of specific metabolites. Systems used by both Chlorophyta and Embryophyta were activated such as the xanthophyll cycle with an accumulation of zeaxanthin and protein folding and repair mechanisms constituted by NADPH-dependent thioredoxin reductases, thioredoxin-disulfide reductases, and peroxiredoxins. Similarly, cyclic electron flow, specifically the pathway dependent on proton gradient regulation 5, was strongly activated under high light. We detected a simultaneous co-activation of the non-photochemical quenching mechanisms based on LHC-like stress related (LHCSR) protein and the photosystem II subunit S that are specific to Chlorophyta and Embryophyta, respectively. Exclusive Embryophyta systems for the synthesis, sensing, and response to the phytohormone auxin were also activated under high light in K. nitens leading to an increase in auxin content with the concomitant accumulation of amino acids such as tryptophan, histidine, and phenylalanine.
Collapse
Affiliation(s)
- Emma Serrano-Pérez
- Microalgae Systems Biology and Biotechnology Research Group, Institute for Plant Biochemistry and Photosynthesis, Universidad de Sevilla – Consejo Superior de Investigaciones Científicas, Seville, Spain
- Department of Computer Science and Artificial Intelligence, Universidad de Sevilla, Seville, Spain
| | - Ana B. Romero-Losada
- Microalgae Systems Biology and Biotechnology Research Group, Institute for Plant Biochemistry and Photosynthesis, Universidad de Sevilla – Consejo Superior de Investigaciones Científicas, Seville, Spain
- Department of Computer Science and Artificial Intelligence, Universidad de Sevilla, Seville, Spain
| | - María Morales-Pineda
- Microalgae Systems Biology and Biotechnology Research Group, Institute for Plant Biochemistry and Photosynthesis, Universidad de Sevilla – Consejo Superior de Investigaciones Científicas, Seville, Spain
| | - M. Elena García-Gómez
- Microalgae Systems Biology and Biotechnology Research Group, Institute for Plant Biochemistry and Photosynthesis, Universidad de Sevilla – Consejo Superior de Investigaciones Científicas, Seville, Spain
| | - Inmaculada Couso
- Microalgae Systems Biology and Biotechnology Research Group, Institute for Plant Biochemistry and Photosynthesis, Universidad de Sevilla – Consejo Superior de Investigaciones Científicas, Seville, Spain
| | - Mercedes García-González
- Microalgae Systems Biology and Biotechnology Research Group, Institute for Plant Biochemistry and Photosynthesis, Universidad de Sevilla – Consejo Superior de Investigaciones Científicas, Seville, Spain
| | - Francisco J. Romero-Campero
- Microalgae Systems Biology and Biotechnology Research Group, Institute for Plant Biochemistry and Photosynthesis, Universidad de Sevilla – Consejo Superior de Investigaciones Científicas, Seville, Spain
- Department of Computer Science and Artificial Intelligence, Universidad de Sevilla, Seville, Spain
- *Correspondence: Francisco J. Romero-Campero,
| |
Collapse
|