1
|
Poblano-Pérez LI, Monroy-García A, Fragoso-González G, Mora-García MDL, Castell-Rodríguez A, Mayani H, Álvarez-Pérez MA, Pérez-Tapia SM, Macías-Palacios Z, Vallejo-Castillo L, Montesinos JJ. Mesenchymal Stem/Stromal Cells Derived from Dental Tissues Mediate the Immunoregulation of T Cells through the Purinergic Pathway. Int J Mol Sci 2024; 25:9578. [PMID: 39273524 PMCID: PMC11395442 DOI: 10.3390/ijms25179578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/26/2024] [Accepted: 08/30/2024] [Indexed: 09/15/2024] Open
Abstract
Human dental tissue mesenchymal stem cells (DT-MSCs) constitute an attractive alternative to bone marrow-derived mesenchymal stem cells (BM-MSCs) for potential clinical applications because of their accessibility and anti-inflammatory capacity. We previously demonstrated that DT-MSCs from dental pulp (DP-MSCs), periodontal ligaments (PDL-MSCs), and gingival tissue (G-MSCs) show immunosuppressive effects similar to those of BM, but to date, the DT-MSC-mediated immunoregulation of T lymphocytes through the purinergic pathway remains unknown. In the present study, we compared DP-MSCs, PDL-MSCs, and G-MSCs in terms of CD26, CD39, and CD73 expression; their ability to generate adenosine (ADO) from ATP and AMP; and whether the concentrations of ADO that they generate induce an immunomodulatory effect on T lymphocytes. BM-MSCs were included as the gold standard. Our results show that DT-MSCs present similar characteristics among the different sources analyzed in terms of the properties evaluated; however, interestingly, they express more CD39 than BM-MSCs; therefore, they generate more ADO from ATP. In contrast to those produced by BM-MSCs, the concentrations of ADO produced by DT-MSCs from ATP inhibited the proliferation of CD3+ T cells and promoted the generation of CD4+CD25+FoxP3+CD39+CD73+ Tregs and Th17+CD39+ lymphocytes. Our data suggest that DT-MSCs utilize the adenosinergic pathway as an immunomodulatory mechanism and that this mechanism is more efficient than that of BM-MSCs.
Collapse
Affiliation(s)
- Luis Ignacio Poblano-Pérez
- Mesenchymal Stem Cell Laboratory, Oncology Research Unit, Oncology Hospital, Centro Médico Nacional SXXI, Instituto Mexicano del Seguro Social, Mexico City 06720, Mexico
- Programa de Doctorado en Ciencias Biomédicas, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Alberto Monroy-García
- Immunology and Cancer Laboratory, Oncology Research Unit, Oncology Hospital, Centro Médico Nacional SXXI, Instituto Mexicano del Seguro Social, Mexico City 06720, Mexico
| | - Gladis Fragoso-González
- Institute of Biomedical Research, Department of Immunology, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - María de Lourdes Mora-García
- Immunobiology Laboratory, Cell Differentiation and Cancer Unit, Facultad de Estudios Superiores-Zaragoza, Universidad Nacional Autónoma de México, Mexico City 09230, Mexico
| | - Andrés Castell-Rodríguez
- Department of Cellular and Tissue Biology, Faculty of Medicine, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Héctor Mayani
- Hematopoietic Stem Cell Laboratory, Oncology Research Unit, Oncology Hospital, Centro Médico Nacional SXXI, Instituto Mexicano del Seguro Social, Mexico City 06720, Mexico
| | - Marco Antonio Álvarez-Pérez
- Tissue Bioengineering Laboratory, Postgraduate Studies, Research Division, Faculty of Dentistry, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Sonia Mayra Pérez-Tapia
- Research and Development in Biotherapeutic Unit (UDIBI), National School of Biological Sciences, Instituto Politécnico Nacional, Mexico City 11340, Mexico
- National Laboratory for Specialized Services of Investigation, Development and Innovation (I+D+i) for Pharma Chemicals and Biotechnological Products (LANSEIDI-FarBiotec-CONACyT), Instituto Politécnico Nacional, Mexico City 11340, Mexico
- Department of Immunology, National School of Biological Sciences, Instituto Politécnico Nacional, Mexico City 11340, Mexico
| | - Zaira Macías-Palacios
- Research and Development in Biotherapeutic Unit (UDIBI), National School of Biological Sciences, Instituto Politécnico Nacional, Mexico City 11340, Mexico
- National Laboratory for Specialized Services of Investigation, Development and Innovation (I+D+i) for Pharma Chemicals and Biotechnological Products (LANSEIDI-FarBiotec-CONACyT), Instituto Politécnico Nacional, Mexico City 11340, Mexico
| | - Luis Vallejo-Castillo
- Research and Development in Biotherapeutic Unit (UDIBI), National School of Biological Sciences, Instituto Politécnico Nacional, Mexico City 11340, Mexico
- National Laboratory for Specialized Services of Investigation, Development and Innovation (I+D+i) for Pharma Chemicals and Biotechnological Products (LANSEIDI-FarBiotec-CONACyT), Instituto Politécnico Nacional, Mexico City 11340, Mexico
| | - Juan José Montesinos
- Mesenchymal Stem Cell Laboratory, Oncology Research Unit, Oncology Hospital, Centro Médico Nacional SXXI, Instituto Mexicano del Seguro Social, Mexico City 06720, Mexico
| |
Collapse
|
2
|
Poblano-Pérez LI, Castro-Manrreza ME, González-Alva P, Fajardo-Orduña GR, Montesinos JJ. Mesenchymal Stromal Cells Derived from Dental Tissues: Immunomodulatory Properties and Clinical Potential. Int J Mol Sci 2024; 25:1986. [PMID: 38396665 PMCID: PMC10888494 DOI: 10.3390/ijms25041986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 01/30/2024] [Accepted: 02/05/2024] [Indexed: 02/25/2024] Open
Abstract
Mesenchymal stem/stromal cells (MSCs) are multipotent cells located in different areas of the human body. The oral cavity is considered a potential source of MSCs because they have been identified in several dental tissues (D-MSCs). Clinical trials in which cells from these sources were used have shown that they are effective and safe as treatments for tissue regeneration. Importantly, immunoregulatory capacity has been observed in all of these populations; however, this function may vary among the different types of MSCs. Since this property is of clinical interest for cell therapy protocols, it is relevant to analyze the differences in immunoregulatory capacity, as well as the mechanisms used by each type of MSC. Interestingly, D-MSCs are the most suitable source for regenerating mineralized tissues in the oral region. Furthermore, the clinical potential of D-MSCs is supported due to their adequate capacity for proliferation, migration, and differentiation. There is also evidence for their potential application in protocols against autoimmune diseases and other inflammatory conditions due to their immunosuppressive capacity. Therefore, in this review, the immunoregulatory mechanisms identified at the preclinical level in combination with the different types of MSCs found in dental tissues are described, in addition to a description of the clinical trials in which MSCs from these sources have been applied.
Collapse
Affiliation(s)
- Luis Ignacio Poblano-Pérez
- Mesenchymal Stem Cell Laboratory, Oncology Research Unit, Oncology Hospital, National Medical Center (IMSS), Mexico City 06720, Mexico; (L.I.P.-P.); (G.R.F.-O.)
| | - Marta Elena Castro-Manrreza
- Immunology and Stem Cells Laboratory, FES Zaragoza, National Autonomous University of Mexico (UNAM), Mexico City 09230, Mexico;
| | - Patricia González-Alva
- Tissue Bioengineering Laboratory, Postgraduate Studies, Research Division, Faculty of Dentistry, National Autonomous University of Mexico (UNAM), Mexico City 04510, Mexico;
| | - Guadalupe R. Fajardo-Orduña
- Mesenchymal Stem Cell Laboratory, Oncology Research Unit, Oncology Hospital, National Medical Center (IMSS), Mexico City 06720, Mexico; (L.I.P.-P.); (G.R.F.-O.)
| | - Juan José Montesinos
- Mesenchymal Stem Cell Laboratory, Oncology Research Unit, Oncology Hospital, National Medical Center (IMSS), Mexico City 06720, Mexico; (L.I.P.-P.); (G.R.F.-O.)
| |
Collapse
|
3
|
Miceli V. Use of priming strategies to advance the clinical application of mesenchymal stromal/stem cell-based therapy. World J Stem Cells 2024; 16:7-18. [PMID: 38292438 PMCID: PMC10824041 DOI: 10.4252/wjsc.v16.i1.7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/18/2023] [Accepted: 12/28/2023] [Indexed: 01/22/2024] Open
Abstract
Mesenchymal stromal/stem cells (MSCs) have garnered significant attention in the field of regenerative medicine due to their remarkable therapeutic potential. MSCs play a pivotal role in maintaining tissue homeostasis and possess diverse functions in tissue repair and recovery in various organs. These cells are characterized by easy accessibility, few ethical concerns, and adaptability to in vitro cultures, making them a valuable resource for cell therapy in several clinical conditions. Over the years, it has been shown that the true therapeutic power of MSCs lies not in cell engraftment and replacement but in their ability to produce critical paracrine factors, including cytokines, growth factors, and exosomes (EXOs), which modulate the tissue microenvironment and facilitate repair and regeneration processes. Consequently, MSC-derived products, such as conditioned media and EXOs, are now being extensively evaluated for their potential medical applications, offering advantages over the long-term use of whole MSCs. However, the efficacy of MSC-based treatments varies in clinical trials due to both intrinsic differences resulting from the choice of diverse cell sources and non-standardized production methods. To address these concerns and to enhance MSC therapeutic potential, researchers have explored many priming strategies, including exposure to inflammatory molecules, hypoxic conditions, and three-dimensional culture techniques. These approaches have optimized MSC secretion of functional factors, empowering them with enhanced immunomodulatory, angiogenic, and regenerative properties tailored to specific medical conditions. In fact, various priming strategies show promise in the treatment of numerous diseases, from immune-related disorders to acute injuries and cancer. Currently, in order to exploit the full therapeutic potential of MSC therapy, the most important challenge is to optimize the modulation of MSCs to obtain adapted cell therapy for specific clinical disorders. In other words, to unlock the complete potential of MSCs in regenerative medicine, it is crucial to identify the most suitable tissue source and develop in vitro manipulation protocols specific to the type of disease being treated.
Collapse
Affiliation(s)
- Vitale Miceli
- Department of Research, Istituto Mediterraneo per i Trapianti e Terapie ad alta Specializzazione, Palermo 90127, Italy.
| |
Collapse
|
4
|
Miceli V, Zito G, Bulati M, Gallo A, Busà R, Iannolo G, Conaldi PG. Different priming strategies improve distinct therapeutic capabilities of mesenchymal stromal/stem cells: Potential implications for their clinical use. World J Stem Cells 2023; 15:400-420. [PMID: 37342218 PMCID: PMC10277962 DOI: 10.4252/wjsc.v15.i5.400] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 03/07/2023] [Accepted: 04/17/2023] [Indexed: 05/26/2023] Open
Abstract
Mesenchymal stromal/stem cells (MSCs) have shown significant therapeutic potential, and have therefore been extensively investigated in preclinical studies of regenerative medicine. However, while MSCs have been shown to be safe as a cellular treatment, they have usually been therapeutically ineffective in human diseases. In fact, in many clinical trials it has been shown that MSCs have moderate or poor efficacy. This inefficacy appears to be ascribable primarily to the heterogeneity of MSCs. Recently, specific priming strategies have been used to improve the therapeutic properties of MSCs. In this review, we explore the literature on the principal priming approaches used to enhance the preclinical inefficacy of MSCs. We found that different priming strategies have been used to direct the therapeutic effects of MSCs toward specific pathological processes. Particularly, while hypoxic priming can be used primarily for the treatment of acute diseases, inflammatory cytokines can be used mainly to prime MSCs in order to treat chronic immune-related disorders. The shift in approach from regeneration to inflammation implies, in MSCs, a shift in the production of functional factors that stimulate regenerative or anti-inflammatory pathways. The opportunity to fine-tune the therapeutic properties of MSCs through different priming strategies could conceivably pave the way for optimizing their therapeutic potential.
Collapse
Affiliation(s)
- Vitale Miceli
- Department of Research, IRCCS ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad alta Specializzazione), Palermo 90127, Italy.
| | - Giovanni Zito
- Department of Research, IRCCS ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad alta Specializzazione), Palermo 90127, Italy
| | - Matteo Bulati
- Department of Research, IRCCS ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad alta Specializzazione), Palermo 90127, Italy
| | - Alessia Gallo
- Department of Research, IRCCS ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad alta Specializzazione), Palermo 90127, Italy
| | - Rosalia Busà
- Department of Research, IRCCS ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad alta Specializzazione), Palermo 90127, Italy
| | - Gioacchin Iannolo
- Department of Research, IRCCS ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad alta Specializzazione), Palermo 90127, Italy
| | - Pier Giulio Conaldi
- Department of Research, IRCCS ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad alta Specializzazione), Palermo 90127, Italy
| |
Collapse
|
5
|
Chen P, Tang S, Li M, Wang D, Chen C, Qiu Y, Fang Z, Zhang H, Gao H, Weng H, Hu K, Lin J, Lin Q, Tan Y, Li S, Chen J, Chen L, Chen X. Single-Cell and Spatial Transcriptomics Decodes Wharton's Jelly-Derived Mesenchymal Stem Cells Heterogeneity and a Subpopulation with Wound Repair Signatures. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2204786. [PMID: 36504438 PMCID: PMC9896049 DOI: 10.1002/advs.202204786] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 11/18/2022] [Indexed: 06/17/2023]
Abstract
The highly heterogeneous characteristics of Wharton's jelly mesenchymal stem cells (WJ-MSCs) may be responsible for the poor clinical outcomes and poor reproducibility of treatments based on WJ-MSCs. Exploration of WJ-MSC heterogeneity with multimodal single-cell technologies will aid in establishing accurate MSC subtyping and developing screening protocols for dominant functional subpopulations. Here, the characteristics of WJ-MSCs are systematically analyzed by single cell and spatial transcriptome sequencing. Single-cell transcriptomics analysis identifies four WJ-MSC subpopulations, namely proliferative_MSCs, niche-supporting_MSCs, metabolism-related_MSCs and biofunctional-type_MSCs. Furthermore, the transcriptome, cellular heterogeneity, and cell-state trajectories of these subpopulations are characterized. Intriguingly, the biofunctional-type MSCs (marked by S100A9, CD29, and CD142) selected in this study exhibit promising wound repair properties in vitro and in vivo. Finally, by integrating omics data, it has been found that the S100A9+ CD29+ CD142+ subpopulation is more enriched in the fetal segment of the umbilical cord, suggesting that this subpopulation deriving from the fetal segment may have potential for developing into an ideal therapeutic agent for wound healing. Overall, the presented study comprehensively maps the heterogeneity of WJ-MSCs and provides an essential resource for future development of WJ-MSC-based drugs.
Collapse
|
6
|
Evaluation of the Therapeutic Potential of Mesenchymal Stem Cells (MSCs) in Preclinical Models of Autoimmune Diseases. Stem Cells Int 2022; 2022:6379161. [PMID: 35935180 PMCID: PMC9352490 DOI: 10.1155/2022/6379161] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 07/08/2022] [Indexed: 12/16/2022] Open
Abstract
Autoimmune diseases, chronic in nature, are generally hard to alleviate. Present long-term treatments with available drugs such as steroids, immune-suppressive drugs, or antibodies have several debilitating side effects. Therefore, new treatment options are urgently needed. Stem cells, in general, have the potential to reduce immune-mediated damage through immunomodulation and T cell regulation (T regs) by inhibiting the proliferation of dendritic cells and T and B cells and reducing inflammation through the generation of immunosuppressive biomolecules like interleukin 10 (IL-10), transforming growth factor-β (TGF-β), nitric oxide (NO), indoleamine 2,3-dioxygenase (IDO), and prostaglandin E2 (PGE2). Many stem cell-based therapeutics have been evaluated in the clinic, but the overall clinical outcomes in terms of efficacy and the longevity of therapeutic benefits seem to be variable and inconsistent with the postulated benefits. This emphasizes a greater need for building robust preclinical models and models that can better predict the clinical translation of stem cell-based therapeutics. Stem cell therapy based on MSCs having the definitive potential to regulate the immune system and control inflammation is emerging as a promising tool for the treatment of autoimmune disorders while promoting tissue regeneration. MSCs, derived from bone marrow, umbilical cord, and adipose tissue, have been shown to be highly immunomodulatory and anti-inflammatory and shown to enhance tissue repair and regeneration in preclinical models as well as in clinical settings. In this article, a review on the status of MSC-based preclinical disease models with emphasis on understanding disease mechanisms in chronic inflammatory disorders caused by exaggerated host immune response in rheumatoid arthritis (RA) and systemic lupus erythematosus (SLE) was carried out. We also emphasized various factors that better predict the translation of stem cell therapeutic outcomes from preclinical disease models to human patients.
Collapse
|
7
|
Jones OY, McCurdy D. Cell Based Treatment of Autoimmune Diseases in Children. Front Pediatr 2022; 10:855260. [PMID: 35615628 PMCID: PMC9124972 DOI: 10.3389/fped.2022.855260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 03/14/2022] [Indexed: 11/28/2022] Open
Abstract
Mesenchymal stem cells have recently been recoined as medicinal signaling cells (MSC) for their ability to promote tissue homeostasis through immune modulation, angiogenesis and tropism. During the last 20 years, there has been a plethora of publications using MSC in adults and to lesser extent neonates on a variety of illnesses. In parts of the world, autologous and allogeneic MSCs have been purified and used to treat a range of autoimmune conditions, including graft versus host disease, Crohn's disease, multiple sclerosis, refractory systemic lupus erythematosus and systemic sclerosis. Generally, these reports are not part of stringent clinical trials but are of note for good outcomes with minimal side effects. This review is to summarize the current state of the art in MSC therapy, with a brief discussion of cell preparation and safety, insights into mechanisms of action, and a review of published reports of MSC treatment of autoimmune diseases, toward the potential application of MSC in treatment of children with severe autoimmune diseases using multicenter clinical trials and treatment algorithms.
Collapse
Affiliation(s)
- Olcay Y. Jones
- Division of Pediatric Rheumatology, Department of Pediatrics, Walter Reed National Military Medical Center, Bethesda, MD, United States
| | - Deborah McCurdy
- Division of Allergy, Immunology, and Rheumatology, Department of Pediatrics, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
8
|
Gallo A, Cuscino N, Contino F, Bulati M, Pampalone M, Amico G, Zito G, Carcione C, Centi C, Bertani A, Conaldi PG, Miceli V. Changes in the Transcriptome Profiles of Human Amnion-Derived Mesenchymal Stromal/Stem Cells Induced by Three-Dimensional Culture: A Potential Priming Strategy to Improve Their Properties. Int J Mol Sci 2022; 23:863. [PMID: 35055049 PMCID: PMC8778321 DOI: 10.3390/ijms23020863] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/08/2022] [Accepted: 01/11/2022] [Indexed: 02/07/2023] Open
Abstract
Mesenchymal stromal/stem cells (MSCs) are believed to function in vivo as a homeostatic tool that shows therapeutic properties for tissue repair/regeneration. Conventionally, these cells are expanded in two-dimensional (2D) cultures, and, in that case, MSCs undergo genotypic/phenotypic changes resulting in a loss of their therapeutic capabilities. Moreover, several clinical trials using MSCs have shown controversial results with moderate/insufficient therapeutic responses. Different priming methods were tested to improve MSC effects, and three-dimensional (3D) culturing techniques were also examined. MSC spheroids display increased therapeutic properties, and, in this context, it is crucial to understand molecular changes underlying spheroid generation. To address these limitations, we performed RNA-seq on human amnion-derived MSCs (hAMSCs) cultured in both 2D and 3D conditions and examined the transcriptome changes associated with hAMSC spheroid formation. We found a large number of 3D culture-sensitive genes and identified selected genes related to 3D hAMSC therapeutic effects. In particular, we observed that these genes can regulate proliferation/differentiation, as well as immunomodulatory and angiogenic processes. We validated RNA-seq results by qRT-PCR and methylome analysis and investigation of secreted factors. Overall, our results showed that hAMSC spheroid culture represents a promising approach to cell-based therapy that could significantly impact hAMSC application in the field of regenerative medicine.
Collapse
Affiliation(s)
- Alessia Gallo
- Research Department, IRCCS ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione), 90127 Palermo, Italy; (A.G.); (N.C.); (F.C.); (M.B.); (G.Z.); (C.C.); (P.G.C.)
| | - Nicola Cuscino
- Research Department, IRCCS ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione), 90127 Palermo, Italy; (A.G.); (N.C.); (F.C.); (M.B.); (G.Z.); (C.C.); (P.G.C.)
| | - Flavia Contino
- Research Department, IRCCS ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione), 90127 Palermo, Italy; (A.G.); (N.C.); (F.C.); (M.B.); (G.Z.); (C.C.); (P.G.C.)
| | - Matteo Bulati
- Research Department, IRCCS ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione), 90127 Palermo, Italy; (A.G.); (N.C.); (F.C.); (M.B.); (G.Z.); (C.C.); (P.G.C.)
| | - Mariangela Pampalone
- Fondazione Ri.MED, 90127 Palermo, Italy; (M.P.); (G.A.); (C.C.)
- Department of Laboratory Medicine and Advanced Biotechnologies, IRCCS ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione), 90127 Palermo, Italy
| | - Giandomenico Amico
- Fondazione Ri.MED, 90127 Palermo, Italy; (M.P.); (G.A.); (C.C.)
- Department of Laboratory Medicine and Advanced Biotechnologies, IRCCS ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione), 90127 Palermo, Italy
| | - Giovanni Zito
- Research Department, IRCCS ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione), 90127 Palermo, Italy; (A.G.); (N.C.); (F.C.); (M.B.); (G.Z.); (C.C.); (P.G.C.)
| | | | - Claudio Centi
- Research Department, IRCCS ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione), 90127 Palermo, Italy; (A.G.); (N.C.); (F.C.); (M.B.); (G.Z.); (C.C.); (P.G.C.)
| | - Alessandro Bertani
- Thoracic Surgery and Lung Transplantation Unit, IRCCS ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione), 90127 Palermo, Italy;
| | - Pier Giulio Conaldi
- Research Department, IRCCS ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione), 90127 Palermo, Italy; (A.G.); (N.C.); (F.C.); (M.B.); (G.Z.); (C.C.); (P.G.C.)
| | - Vitale Miceli
- Research Department, IRCCS ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione), 90127 Palermo, Italy; (A.G.); (N.C.); (F.C.); (M.B.); (G.Z.); (C.C.); (P.G.C.)
| |
Collapse
|
9
|
Zhou T, Rong M, Wang Z, Chu H, Chen C, Zhang J, Tian Z. Conditioned medium derived from 3D tooth germs: A novel cocktail for stem cell priming and early in vivo pulp regeneration. Cell Prolif 2021; 54:e13129. [PMID: 34585454 PMCID: PMC8560607 DOI: 10.1111/cpr.13129] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/13/2021] [Accepted: 09/03/2021] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVES Conditioned medium (CM) from 2D cell culture can mitigate the weakened regenerative capacity of the implanted stem cells. However, the capacity of 3D CM to prime dental pulp stem cells (DPSCs) for pulp regeneration and its protein profile are still elusive. We aim to investigate the protein profile of CM derived from 3D tooth germs, and to unveil its potential for DPSCs-based pulp regeneration. MATERIALS AND METHODS We prepared CM of 3D ex vivo cultured tooth germ organs (3D TGO-CM) and CM of 2D cultured tooth germ cells (2D TGC-CM) and applied them to prime DPSCs. Influences on cell behaviours and protein profiles of CMs were compared. In vivo pulp regeneration of CMs-primed DPSCs was explored using a tooth root fragment model on nude mice. RESULTS TGO-CM enhanced DPSCs proliferation, migration, in vitro mineralization, odontogenic differentiation, and angiogenesis performances. The TGO-CM group generated superior pulp structures, more odontogenic cells attachment, and enhanced vasculature at 4 weeks post-surgery, compared with the TGC-CM group. Secretome analysis revealed that TGO-CM contained more odontogenic and angiogenic growth factors and fewer pro-inflammatory cytokines. Mechanisms leading to the differential CM profiles may be attributed to the cytokine-cytokine receptor interaction and PI3K-Akt signalling pathway. CONCLUSIONS The unique secretome profile of 3D TGO-CM made it a successful priming cocktail to enhance DPSCs-based early pulp regeneration.
Collapse
Affiliation(s)
- Tengfei Zhou
- Department of Periodontology and Oral Implantology, Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Mingdeng Rong
- Department of Periodontology and Oral Implantology, Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Zijie Wang
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Hongxing Chu
- Department of Periodontology and Oral Implantology, Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Chuying Chen
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jiayi Zhang
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zhihui Tian
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- School of Stomatology, Southern Medical University, Guangzhou, China
| |
Collapse
|
10
|
Rodas G, Soler-Rich R, Rius-Tarruella J, Alomar X, Balius R, Orozco L, Masci L, Maffulli N. Effect of Autologous Expanded Bone Marrow Mesenchymal Stem Cells or Leukocyte-Poor Platelet-Rich Plasma in Chronic Patellar Tendinopathy (With Gap >3 mm): Preliminary Outcomes After 6 Months of a Double-Blind, Randomized, Prospective Study. Am J Sports Med 2021; 49:1492-1504. [PMID: 33783227 DOI: 10.1177/0363546521998725] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Patellar tendinopathy is common. The success of traditional management, including isometric or eccentric exercises combined with shockwave therapy and even surgery, is limited. Therefore, it is important to determine whether biological treatments such as ultrasound-guided intratendinous and peritendinous injections of autologous expanded bone marrow mesenchymal stem cells (BM-MSCs) or leukocyte-poor platelet-rich plasma (Lp-PRP) improve clinical outcomes in athletic patients with patellar tendinopathy. STUDY DESIGN Randomized controlled trial; Level of evidence, 2. METHODS A prospective, double-blinded, randomized, 2-arm parallel group, active controlled, phase 1/2 single-center clinical study was performed in patients who had proximal patellar tendinopathy with a lesion >3 mm. A total of 20 participants (age 18-48 years) with pain for >4 months (mean, 23.6 months) and unresponsive to nonoperative treatments were randomized into 2 groups. Of these, 10 participants were treated with BM-MSC (20 × 106 cells) and 10 with Lp-PRP. Both groups performed the same postintervention rehabilitation protocol. Outcomes included the Victorian Institute of Sport Assessment for pain (VISA-P), self-reported tendon pain during activity (visual analog scale [VAS]), muscle function by dynamometry, tendon thickness and intratendinous vascularity by ultrasonographic imaging and Doppler signal, ultrasound tissue characterization (UTC) echo type changes, and magnetic resonance imaging (MRI) T2-weighted mapping changes. Participants were followed longitudinally for 6 months. RESULTS The average VAS scores improved in both groups at all time points, and there was a significant reduction in pain during sporting activities (P < .05). In both groups, the average mean VISA-P scores at 6 months were significantly increased compared with baseline (66 BM-MSC group and 72.90 Lp-PRP group), with no significant differences in VAS or VISA-P scores between the groups. There were statistically significant greater improvements in tendon structure on 2-dimensional ultrasound and UTC in the BM-MSC group compared with the Lp-PRP group at 6 months. Similarly, the BM-MSC group demonstrated significant evidence of restoration of tendon structure on MRI compared with the Lp-PRP group at 6 months. Only the participants in the BM-MSC group showed evidence of normalization of tendon structure, with statistically significant differences between the groups on T2-weighted, fat-saturated sagittal and coronal scans and hypersignal in T2-weighted on spin-echo T2-weighted coronal MRI scan. Both treatments were safe, and no significant adverse events were reported in either group. CONCLUSION Treatment with BM-MSC or Lp-PRP in combination with rehabilitation in chronic patellar tendinopathy is effective in reducing pain and improving activity levels in active participants. Participants who received BM-MSC treatment demonstrated greater improvement in tendon structure compared with those who received Lp-PRP. REGISTRATION 2016-001262-28 (EudraCT identifier); NCT03454737 (ClinicalTrials.gov identifier).
Collapse
Affiliation(s)
- Gil Rodas
- Medical Department FC Barcelona, Barcelona, Spain.,Sports Medicine Unit, Clínic Hospital and Sant Joan de Déu Hospital, Barcelona, Spain
| | - Robert Soler-Rich
- Institut de Teràpia Regenerativa Tissular, Centro Médico Teknon, Barcelona, Spain
| | - Joan Rius-Tarruella
- Institut de Teràpia Regenerativa Tissular, Centro Médico Teknon, Barcelona, Spain
| | - Xavier Alomar
- Diagnóstico por la Imagen, Clínica Creu Blanca, Barcelona, Spain
| | - Ramon Balius
- Consell Català de l'Esport, Generalitat de Catalunya, Barcelona, Spain
| | - Lluís Orozco
- Institut de Teràpia Regenerativa Tissular, Centro Médico Teknon, Barcelona, Spain
| | - Lorenzo Masci
- Institute of Sports Exercise and Health (ISEH), London, UK
| | - Nicola Maffulli
- Department of Musculoskeletal Disorders, University of Salerno School of Medicine, Surgery and Dentistry, Salerno, Italy.,Centre for Sports and Exercise Medicine, Queen Mary University of London, London, UK.,School of Pharmacy and Bioengineering, Keele University School of Medicine, Staffordshire, UK
| |
Collapse
|
11
|
Seo E, Lee BH, Lee JH, Park YS, Im HJ, Lee J. Hematopoietic stem cell transplantation in an infant with dedicator of cytokinesis 8 (DOCK8) deficiency associated with systemic lupus erythematosus: A case report. Medicine (Baltimore) 2021; 100:e20866. [PMID: 33787566 PMCID: PMC8021304 DOI: 10.1097/md.0000000000020866] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 05/21/2020] [Indexed: 01/04/2023] Open
Abstract
INTRODUCTION DOCK8 deficiency is a primary immunodeficiency characterized by recurrent infections, severe allergic disease, and autoimmunity. Here, we report a patient with DOCK8 deficiency that was initially presented as systemic lupus erythematosus (SLE) without recurrent infections and treated with hematopoietic stem cell transplantation (HSCT). PATIENT CONCERNS A 16-month-old boy with a previous history of eczema developed high fever and hand and foot swelling. Over time, multiple purpura, oral ulcers, and oliguria developed with a persistent fever. His laboratory findings showed anemia, thrombocytopenia, and coagulopathy with a high level of C-reactive protein (CRP). No definite pathogens were identified. The complement fractions C3, C4, and CH50 were low. Autoantibodies including antinuclear antibody (ANA) and anti-ds DNA antibody were positive. He definitively satisfied the 2015 ACR/SLICC revised criteria for the diagnosis of SLE (7 points out of 16); therefore, he was treated with a steroid. Lupus nephritis was confirmed by renal biopsy later. Considering the early-onset SLE, partial exome sequencing was performed. DIAGNOSIS One heterozygous missense variant, c.5536A>G (p.Lys1846Glu), which was inherited from his father, and heterozygous deletion of exon 1 to 8 inherited from his mother were found. Through the results of the genetic testing, the patient was confirmed to have DOCK8 deficiency. INTERVENTIONS At the age of 28 months, he received haploidentical HSCT from his mother as a donor. OUTCOMES Laboratory findings including complement fractions C3, C4, CH50, anti-ds DNA antibody, and the ANA became normal after HSCT. Currently, at 12 months post-HSCT, he is doing well, without any autoimmune features or infections. CONCLUSIONS DOCK8 deficiency can be presented as autoimmune disease such as SLE. Encountering a child diagnosed with SLE at a very young age, pediatricians should consider immunodeficiency syndrome including DOCK8 deficiency.
Collapse
Affiliation(s)
- Euri Seo
- Department of Pediatrics, Asan Medical Center Children's Hospital, University of Ulsan College of Medicine, Seoul
- Department of Pediatrics, Dongguk University Ilsan Hospital, Goyang, Korea
| | - Beom Hee Lee
- Department of Pediatrics, Asan Medical Center Children's Hospital, University of Ulsan College of Medicine, Seoul
| | - Joo Hoon Lee
- Department of Pediatrics, Asan Medical Center Children's Hospital, University of Ulsan College of Medicine, Seoul
| | - Young Seo Park
- Department of Pediatrics, Asan Medical Center Children's Hospital, University of Ulsan College of Medicine, Seoul
| | - Ho Joon Im
- Department of Pediatrics, Asan Medical Center Children's Hospital, University of Ulsan College of Medicine, Seoul
| | - Jina Lee
- Department of Pediatrics, Asan Medical Center Children's Hospital, University of Ulsan College of Medicine, Seoul
| |
Collapse
|
12
|
Ramalingam S, Shah A. Stem Cell Therapy as a Treatment for Autoimmune Disease-Updates in Lupus, Scleroderma, and Multiple Sclerosis. Curr Allergy Asthma Rep 2021; 21:22. [PMID: 33759038 DOI: 10.1007/s11882-021-00996-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/08/2021] [Indexed: 12/29/2022]
Abstract
PURPOSE OF REVIEW Evidence for hematopoietic stem cell transplantation (HCT) in autoimmune disease has been building since the 1990s; however, many clinicians may not yet be aware of its applications to autoimmune disease. We review the basic tenets of HCT and evidence for autologous HCT in multiple sclerosis (MS), systemic sclerosis (SSc), and lupus with an emphasis on recent advanced phase trials. RECENT FINDINGS In MS, the phase 3 randomized MIST trial and the phase 2 randomized ASTIMS trial demonstrated the efficacy of autologous HCT in refractory MS over disease-modifying therapies and mitoxantrone, respectively. In SSc, the phase 3 randomized ASTIS trial and the phase 2 randomized SCOT trial demonstrated the efficacy of autologous HCT in advanced SSc compared to cyclophosphamide. The evidence for HCT in autoimmune diseases continues to grow, particularly in MS and SSc. In lupus, large, comparative trials are still needed. Across autoimmune diseases, questions that still remain to be answered include optimizing patient selection to limit TRM, the appropriate use of MAC, and the necessity for graft manipulation. Furthermore, collaboration between disease-specific and transplant physicians is imperative to expand the appropriate use of HCT in routine clinical practice.
Collapse
Affiliation(s)
- Sendhilnathan Ramalingam
- Division of Hematologic Malignancies and Cellular Therapy, Duke University School of Medicine, Durham, NC, USA
| | - Ankoor Shah
- Division of Rheumatology and Immunology, Duke University School of Medicine, Box 3874, Durham, NC, 27710, USA.
| |
Collapse
|
13
|
Miceli V, Bulati M, Iannolo G, Zito G, Gallo A, Conaldi PG. Therapeutic Properties of Mesenchymal Stromal/Stem Cells: The Need of Cell Priming for Cell-Free Therapies in Regenerative Medicine. Int J Mol Sci 2021; 22:763. [PMID: 33466583 PMCID: PMC7828743 DOI: 10.3390/ijms22020763] [Citation(s) in RCA: 100] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/10/2021] [Accepted: 01/12/2021] [Indexed: 02/07/2023] Open
Abstract
Mesenchymal stromal/stem cells (MSCs) are multipotent adult stem cells that support homeostasis during tissue regeneration. In the last decade, cell therapies based on the use of MSCs have emerged as a promising strategy in the field of regenerative medicine. Although these cells possess robust therapeutic properties that can be applied in the treatment of different diseases, variables in preclinical and clinical trials lead to inconsistent outcomes. MSC therapeutic effects result from the secretion of bioactive molecules affected by either local microenvironment or MSC culture conditions. Hence, MSC paracrine action is currently being explored in several clinical settings either using a conditioned medium (CM) or MSC-derived exosomes (EXOs), where these products modulate tissue responses in different types of injuries. In this scenario, MSC paracrine mechanisms provide a promising framework for enhancing MSC therapeutic benefits, where the composition of secretome can be modulated by priming of the MSCs. In this review, we examine the literature on the priming of MSCs as a tool to enhance their therapeutic properties applicable to the main processes involved in tissue regeneration, including the reduction of fibrosis, the immunomodulation, the stimulation of angiogenesis, and the stimulation of resident progenitor cells, thereby providing new insights for the therapeutic use of MSCs-derived products.
Collapse
Affiliation(s)
- Vitale Miceli
- Research Department, IRCCS ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad alta Specializzazione), 90127 Palermo, Italy; (M.B.); (G.I.); (G.Z.); (A.G.); (P.G.C.)
| | | | | | | | | | | |
Collapse
|
14
|
An Update on the Potential of Mesenchymal Stem Cell Therapy for Cutaneous Diseases. Stem Cells Int 2021; 2021:8834590. [PMID: 33505474 PMCID: PMC7806381 DOI: 10.1155/2021/8834590] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 12/21/2020] [Accepted: 12/25/2020] [Indexed: 12/15/2022] Open
Abstract
Mesenchymal stem or stromal cells (MSCs) are nonhematopoietic postnatal stem cells with self-renewal, multipotent differentiation, and potent immunomodulatory and anti-inflammatory capabilities, thus playing an important role in tissue repair and regeneration. Numerous clinical and preclinical studies have demonstrated the potential application of MSCs in the treatment of tissue inflammation and immune diseases, including inflammatory skin diseases. Therefore, understanding the biological and immunological characteristics of MSCs is important to standardize and optimize MSC-based regenerative therapy. In this review, we highlight the mechanisms underlying MSC-mediated immunomodulation and tissue repair/regeneration and present the latest development of MSC-based clinical trials on cutaneous diseases.
Collapse
|
15
|
Wu W, Xiao ZX, Zeng D, Huang F, Wang J, Liu Y, Bellanti JA, Olsen N, Zheng SG. B7-H1 Promotes the Functional Effect of Human Gingiva-Derived Mesenchymal Stem Cells on Collagen-Induced Arthritis Murine Model. Mol Ther 2020; 28:2417-2429. [PMID: 32707035 PMCID: PMC7646216 DOI: 10.1016/j.ymthe.2020.07.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Revised: 03/20/2020] [Accepted: 06/28/2020] [Indexed: 02/06/2023] Open
Abstract
Recent studies found that mesenchymal stem cells (MSCs), by virtue of their tissue recovery and immunoregulatory properties, have shown a broad prospect for applications in various autoimmune and degenerative diseases. Although the potential therapeutic use of MSCs is considerable, studies and clinical treatment efficacy are preliminary due to the heterogeneity of MSCs. Herein, based on RNA-sequencing (RNA-seq) and single cell sequence properties, we demonstrated that B7-H1 plays an important role in the immunosuppressive function of human gingiva-derived mesenchymal stem cells (GMSCs) in a collagen-induced arthritis murine model that is dependent on STAT3 signaling. Our data offer convincing evidence that B7-H1 expression by GMSCs helps to identify a new subpopulation of MSCs with a greater immunosuppressive property. The approach provides a unique and additional strategy for stem cells-based therapies of autoimmune and other inflammatory diseases.
Collapse
Affiliation(s)
- Wenbin Wu
- Department of Clinical Immunology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Ze Xiu Xiao
- Department of Clinical Immunology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Donglan Zeng
- Department of Clinical Immunology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Feng Huang
- Department of Clinical Immunology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Julie Wang
- Department of Internal Medicine, Ohio State University College of Medicine and Wexner Medical Center, Columbus, OH 43210, USA
| | - Yanying Liu
- Department of Rheumatology & Immunology, Peking University People's Hospital, Beijing 100044, China
| | - Joseph A Bellanti
- Departments of Pediatrics and Microbiology-Immunology and the International Center for Interdisciplinary Studies of Immunology (ICISI), Georgetown University Medical Center, Washington, DC 20057, USA
| | - Nancy Olsen
- Department of Medicine, Penn State University Hershey Medical Center, Hershey, PA 17033, USA
| | - Song Guo Zheng
- Department of Internal Medicine, Ohio State University College of Medicine and Wexner Medical Center, Columbus, OH 43210, USA.
| |
Collapse
|
16
|
Kamaldinov T, Erndt-Marino J, Levin M, Kaplan DL, Hahn MS. Assessment of Enrichment of Human Mesenchymal Stem Cells Based on Plasma and Mitochondrial Membrane Potentials. Bioelectricity 2020; 2:21-32. [PMID: 32292894 DOI: 10.1089/bioe.2019.0024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Background: Human mesenchymal stem cells (hMSCs) are utilized preclinically and clinically as a candidate cell therapy for a wide range of inflammatory and degenerative diseases. Despite promising results in early clinical trials, consistent outcomes with hMSC-based therapies have proven elusive in many of these applications. In this work, we attempt to address this limitation through the design of a stem cell therapy to enrich hMSCs for desired electrical and ionic properties with enhanced stemness and immunomodulatory/regenerative capacity. Materials and Methods: In this study, we sought to develop initial protocols to achieve electrically enriched hMSCs (EE-hMSCs) with distinct electrical states and assess the potential relationship with respect to hMSC state and function. We sorted hMSCs based on fluorescence intensity of tetramethylrhodamine ethyl ester (TMRE) and investigated phenotypic differences between the sorted populations. Results: Subpopulations of EE-hMSCs exhibit differential expression of genes associated with senescence, stemness, immunomodulation, and autophagy. EE-hMSCs with low levels of TMRE, indicative of depolarized membrane potential, have reduced mRNA expression of senescence-associated markers, and increased mRNA expression of autophagy and immunomodulatory markers relative to EE-hMSCs with high levels of TMRE (hyperpolarized). Conclusions : This work suggests that the utilization of EE-hMSCs may provide a novel strategy for cell therapies, enabling live cell enrichment for distinct phenotypes that can be exploited for different therapeutic outcomes.
Collapse
Affiliation(s)
- Timothy Kamaldinov
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, New York
| | - Josh Erndt-Marino
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, New York.,Department of Biomedical Engineering, Tufts University, Medford, Massachusetts.,Allen Discovery Center at Tufts University, Department of Biology, Tufts University, Medford, Massachusetts
| | - Michael Levin
- Allen Discovery Center at Tufts University, Department of Biology, Tufts University, Medford, Massachusetts
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts.,Allen Discovery Center at Tufts University, Department of Biology, Tufts University, Medford, Massachusetts
| | - Mariah S Hahn
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, New York
| |
Collapse
|
17
|
Yin L, Yang Z, Wu Y, Denslin V, Yu CC, Tee CA, Lim CT, Han J, Lee EH. Label-free separation of mesenchymal stem cell subpopulations with distinct differentiation potencies and paracrine effects. Biomaterials 2020; 240:119881. [PMID: 32092592 DOI: 10.1016/j.biomaterials.2020.119881] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 01/23/2020] [Accepted: 02/11/2020] [Indexed: 12/23/2022]
Abstract
Mesenchymal stem cells (MSCs) have the capability to differentiate into multiple cell lineages, and produce trophic factors to facilitate tissue repair and regeneration, and disease regression. However, the heterogeneity of MSCs, whether inherent or developed during culture expansion, has a significant impact on their therapeutic efficacy. Therefore, the ability to identify and select an efficacious subpopulation of MSCs targeting specific tissue damage or disease holds great clinical significance. In this study, we separated three subpopulations from culture expanded human bone marrow derived MSCs according to cell size, using a high-throughput label-free microfluidic cell sorting technology. The size-sorted MSC subpopulations varied in tri-lineage differentiation potencies. The large MSCs showed the strongest osteogenesis, medium-size MSCs were advantageous in chondrogenesis and adipogenesis, and the small MSCs showed the weakest tri-lineage differentiation. The size-sorted MSC subpopulations also exhibited different secretome profiles. The large MSC secretome possessed highest levels of osteogenic promotor proteins and senescence-associated factors, but lower levels of osteogenic inhibitor proteins compared to the medium-size MSC secretome. The medium-size MSC secretome had high levels of chondrogenic promotor proteins, and contained lower levels of chondrogenic inhibitor proteins compared to the large MSC secretome. The secretome of size-sorted MSC subpopulations showed differences in paracrine effects. We found that the secretome of large MSCs enhanced osteogenic and adipogenic potencies during MSC culture expansion, but also induced cell senescence; and the secretome of medium-size MSCs promoted chondrogenesis. This study demonstrates size-dependent differentiation potency and secretome profile of MSC subpopulations, and provides an effective and practical technology to isolate the respective subpopulations, which may be used for more targeted tissue repair and regeneration.
Collapse
Affiliation(s)
- Lu Yin
- Critical Analytics for Manufacturing of Personalised Medicine Interdisciplinary Research Group, Singapore-MIT Alliance in Research and Technology, 1 Create Way, #04-13/14, Singapore, 138602, Singapore
| | - Zheng Yang
- Critical Analytics for Manufacturing of Personalised Medicine Interdisciplinary Research Group, Singapore-MIT Alliance in Research and Technology, 1 Create Way, #04-13/14, Singapore, 138602, Singapore; NUS Tissue Engineering Program, Life Sciences Institute, National University of Singapore 27 Medical Drive1, DSO (Kent Bridge) Building, Level 4, Singapore, 11751, Singapore; Department of Orthopaedic Surgery, National University of Singapore, 1E Kent Ridge Road, NUHS Tower block 11, Singapore, 119288, Singapore
| | - Yingnan Wu
- NUS Tissue Engineering Program, Life Sciences Institute, National University of Singapore 27 Medical Drive1, DSO (Kent Bridge) Building, Level 4, Singapore, 11751, Singapore; Department of Orthopaedic Surgery, National University of Singapore, 1E Kent Ridge Road, NUHS Tower block 11, Singapore, 119288, Singapore
| | - Vinitha Denslin
- NUS Tissue Engineering Program, Life Sciences Institute, National University of Singapore 27 Medical Drive1, DSO (Kent Bridge) Building, Level 4, Singapore, 11751, Singapore; Department of Orthopaedic Surgery, National University of Singapore, 1E Kent Ridge Road, NUHS Tower block 11, Singapore, 119288, Singapore
| | - Chia Chen Yu
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, 77 Massachusetts Ave, Cambridge, MA 02139, USA
| | - Ching Ann Tee
- Critical Analytics for Manufacturing of Personalised Medicine Interdisciplinary Research Group, Singapore-MIT Alliance in Research and Technology, 1 Create Way, #04-13/14, Singapore, 138602, Singapore; Department of Orthopaedic Surgery, National University of Singapore, 1E Kent Ridge Road, NUHS Tower block 11, Singapore, 119288, Singapore
| | - Chwee Teck Lim
- Critical Analytics for Manufacturing of Personalised Medicine Interdisciplinary Research Group, Singapore-MIT Alliance in Research and Technology, 1 Create Way, #04-13/14, Singapore, 138602, Singapore; Mechanobiology Institute, National University of Singapore, 5A Engineering Drive 1, T-Lab, #10-01, Singapore, 117411, Singapore; Department of Biomedical Engineering, National University of Singapore, 4 Engineering Drive 3, Engineering Block 4, #04-08, Singapore, 117583, Singapore; Institute for Health Innovation and Technology, National University of Singapore, MD6, 14 Medical Drive, #14-01, Singapore, 117599, Singapore
| | - Jongyoon Han
- Critical Analytics for Manufacturing of Personalised Medicine Interdisciplinary Research Group, Singapore-MIT Alliance in Research and Technology, 1 Create Way, #04-13/14, Singapore, 138602, Singapore; Department of Electrical Engineering and Computer Science, Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA.
| | - Eng Hin Lee
- Critical Analytics for Manufacturing of Personalised Medicine Interdisciplinary Research Group, Singapore-MIT Alliance in Research and Technology, 1 Create Way, #04-13/14, Singapore, 138602, Singapore; NUS Tissue Engineering Program, Life Sciences Institute, National University of Singapore 27 Medical Drive1, DSO (Kent Bridge) Building, Level 4, Singapore, 11751, Singapore; Department of Orthopaedic Surgery, National University of Singapore, 1E Kent Ridge Road, NUHS Tower block 11, Singapore, 119288, Singapore.
| |
Collapse
|
18
|
Nakashima T, Liu T, Hu B, Wu Z, Ullenbruch M, Omori K, Ding L, Hattori N, Phan SH. Role of B7H3/IL-33 Signaling in Pulmonary Fibrosis-induced Profibrogenic Alterations in Bone Marrow. Am J Respir Crit Care Med 2019; 200:1032-1044. [PMID: 31106564 PMCID: PMC6794107 DOI: 10.1164/rccm.201808-1560oc] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 05/14/2019] [Indexed: 01/12/2023] Open
Abstract
Rationale: The impact of lung insult on the bone marrow (BM) and subsequent disease is unknown.Objectives: To study alterations in the BM in response to lung injury/fibrosis and examine their impact on subsequent lung insult.Methods: BM cells from control or bleomycin-treated donor mice were transplanted into naive mice, which were subsequently evaluated for bleomycin-induced pulmonary fibrosis. In addition, the effect of prior bleomycin treatment on subsequent fibrosis was examined in wild-type and B7H3-knockout mice. Samples from patients with idiopathic pulmonary fibrosis were analyzed for potential clinical relevance of the findings.Measurements and Main Results: Recipient mice transplanted with BM from bleomycin-pretreated donors showed significant exacerbation of subsequent fibrosis with increased B7H3+ cell numbers and a T-helper cell type 2-skewed phenotype. Pretreatment with a minimally fibrogenic/nonfibrogenic dose of bleomycin also caused exacerbation, but not in B7H3-deficient mice. Exacerbation was not observed if the mice received naive BM cell transplant after the initial bleomycin pretreatment. Soluble B7H3 stimulated BM Ly6Chi monocytic cell expansion in vitro and caused similar expansion in the lung in vivo. Notably, soluble B7H3 was elevated in plasma of patients with idiopathic pulmonary fibrosis and in BAL fluid in those with acute exacerbation. Finally, ST2 deficiency diminished the bleomycin-induced B7H3 and IL-13 upregulation, suggesting a role for type 2 innate lymphoid cells.Conclusions: Pulmonary fibrosis caused significant alterations in BM with expansion and activation of monocytic cells, which enhanced fibrosis when transplanted to naive recipients with potential mediation by a novel role for B7H3 in the pathophysiology of pulmonary fibrosis in both mice and humans.
Collapse
Affiliation(s)
- Taku Nakashima
- Department of Molecular and Internal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan; and
| | - Tianju Liu
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Biao Hu
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Zhe Wu
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Matthew Ullenbruch
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Keitaro Omori
- Department of Molecular and Internal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan; and
| | - Lin Ding
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Noboru Hattori
- Department of Molecular and Internal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan; and
| | - Sem H. Phan
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan
| |
Collapse
|
19
|
Chen G, Zhang Y, Yu S, Sun W, Miao D. Bmi1 Overexpression in Mesenchymal Stem Cells Exerts Antiaging and Antiosteoporosis Effects by Inactivating p16/p19 Signaling and Inhibiting Oxidative Stress. Stem Cells 2019; 37:1200-1211. [PMID: 30895687 PMCID: PMC6851636 DOI: 10.1002/stem.3007] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 02/24/2019] [Accepted: 03/03/2019] [Indexed: 01/19/2023]
Abstract
We previously demonstrated that Bmi1 deficiency leads to osteoporosis phenotype by inhibiting the proliferation and osteogenic differentiation of bone marrow mesenchymal stem cells (MSCs), but it is unclear whether overexpression of Bmi1 in MSCs stimulates skeletal development and rescues Bmi1 deficiency-induced osteoporosis. To answer this question, we constructed transgenic mice (Bmi1Tg ) that overexpressed Bmi1 driven by the Prx1 gene and analyzed their skeletal phenotype differences with that of wild-type littermates. We then hybridized Bmi1Tg to Bmi1-/- mice to generate Bmi1-/- mice overexpressing Bmi1 in MSCs and compared their skeletal phenotypes with those of Bmi1-/- and wild-type mice using imaging, histopathological, immunohistochemical, histomorphometric, cellular, and molecular methods. Bmi1Tg mice exhibited enhanced bone growth and osteoblast formation, including the augmentation of bone size, cortical and trabecular volume, number of osteoblasts, alkaline phosphatase (ALP)-positive and type I collagen-positive areas, number of total colony forming unit fibroblasts (CFU-f) and ALP+ CFU-f, and osteogenic gene expression levels. Consistently, MSC overexpressing Bmi1 in the Bmi1-/- background not only largely reversed Bmi1 systemic deficiency-induced skeletal growth retardation and osteoporosis, but also partially reversed Bmi1 deficiency-induced systemic growth retardation and premature aging. To further explore the mechanism of action of MSCs overexpressing Bmi1 in antiosteoporosis and antiaging, we examined changes in oxidative stress and expression levels of p16 and p19. Our results showed that overexpression of Bmi1 in MSCs inhibited oxidative stress and downregulated p16 and p19. Taken together, the results of this study indicate that overexpression of Bmi1 in MSCs exerts antiaging and antiosteoporosis effects by inactivating p16/p19 signaling and inhibiting oxidative stress. Stem Cells 2019;37:1200-1211.
Collapse
Affiliation(s)
- Guangpei Chen
- Department of Human Anatomy, Guangzhou University of Chinese Medicine, Guangzhou, People's Republic of China.,The Research Center for Bone and Stem Cells, Nanjing Medical University, Nanjing, People's Republic of China
| | - Ying Zhang
- The Research Center for Bone and Stem Cells, Nanjing Medical University, Nanjing, People's Republic of China.,Department of Anatomy, Histology, and Embryology, Suzhou Health and Technology College, Suzhou, People's Republic of China
| | - Shuxiang Yu
- The Research Center for Bone and Stem Cells, Nanjing Medical University, Nanjing, People's Republic of China
| | - Wen Sun
- The Research Center for Bone and Stem Cells, Nanjing Medical University, Nanjing, People's Republic of China
| | - Dengshun Miao
- The Research Center for Bone and Stem Cells, Nanjing Medical University, Nanjing, People's Republic of China.,The Research Center for Aging, Affiliated Friendship Plastic Surgery Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, People's Republic of China
| |
Collapse
|
20
|
Mesenchymal stem cell-based therapy for autoimmune diseases: emerging roles of extracellular vesicles. Mol Biol Rep 2019; 46:1533-1549. [PMID: 30623280 DOI: 10.1007/s11033-019-04588-y] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 01/03/2019] [Indexed: 02/07/2023]
Abstract
In autoimmune disease body's own immune system knows healthy cells as undesired and foreign cells. Over 80 types of autoimmune diseases have been recognized. Currently, at clinical practice, treatment strategies for autoimmune disorders are based on relieving symptoms and preventing difficulties. In other words, there is no effective and useful therapy up to now. It has been well-known that mesenchymal stem cells (MSCs) possess immunomodulatory effects. This strongly suggests that MSCs might be as a novel modality for treatment of autoimmune diseases. Supporting this notion a few preclinical and clinical studies indicate that MSCs ameliorate autoimmune disorders. Interestingly, it has been found that the beneficial effects of MSCs in autoimmune disorders are not relying only on direct cell-to-cell communication but on their capability to produce a broad range of paracrine factors including growth factors, cytokines and extracellular vehicles (EVs). EVs are multi-signal messengers that play a serious role in intercellular signaling through carrying cargo such as mRNA, miRNA, and proteins. Numerous studies have shown that MSC-derived EVs are able to mimic the effects of the cell of origin on immune cells. In this review, we discuss the current studies dealing with MSC-based therapies in autoimmune diseases and provide a vision and highlight in order to introduce MSC-derived EVs as an alternative and emerging modality for autoimmune disorders.
Collapse
|
21
|
Goldberg AJ, Zaidi R, Brooking D, Kim L, Korda M, Masci L, Green R, O'Donnell P, Smith R. Autologous Stem Cells in Achilles Tendinopathy (ASCAT): protocol for a phase IIA, single-centre, proof-of-concept study. BMJ Open 2018; 8:e021600. [PMID: 29764889 PMCID: PMC5961605 DOI: 10.1136/bmjopen-2018-021600] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
INTRODUCTION Achilles tendinopathy (AT) is a cause of pain and disability affecting both athletes and sedentary individuals. More than 150 000 people in the UK every year suffer from AT.While there is much preclinical work on the use of stem cells in tendon pathology, there is a scarcity of clinical data looking at the use of mesenchymal stem cells to treat tendon disease and there does not appear to be any studies of the use of autologous cultured mesenchymal stem cells (MSCs) for AT. Our hypothesis is that autologous culture expanded MSCs implanted into an area of mid-portion AT will lead to improved pain-free mechanical function. The current paper presents the protocol for a phase IIa clinical study. METHODS AND ANALYSIS The presented protocol is for a non-commercial, single-arm, open-label, phase IIa proof-of-concept study. The study will recruit 10 participants and will follow them up for 6 months. Included will be patients aged 18-70 years with chronic mid-portion AT who have failed at least 6 months of non-operative management. Participants will have a bone marrow aspirate collected from the posterior iliac crest under either local or general anaesthetic. MSCs will be isolated and expanded from the bone marrow. Four to 6 weeks after the harvest, participants will undergo implantation of the culture expanded MSCs under local anaesthetic and ultrasound guidance. The primary outcome will be safety as defined by the incidence rate of serious adverse reaction. The secondary outcomes will be efficacy as measured by patient-reported outcome measures and radiological outcome using ultrasound techniques. ETHICS AND DISSEMINATION The protocol has been approved by the National Research Ethics Service Committee (London, Harrow; reference 13/LO/1670). Trial findings will be disseminated through peer-reviewed publications and conference presentations. TRIAL REGISTRATION NUMBER NCT02064062.
Collapse
Affiliation(s)
- Andrew J Goldberg
- UCL Institute of Orthopaedics and Musculoskeletal Science (IOMS), Royal National Orthopaedic Hospital (RNOH), Stanmore, UK
| | - Razi Zaidi
- Princess Royal University Hospital, Orpington, UK
| | - Deirdre Brooking
- UCL Institute of Orthopaedics and Musculoskeletal Science (IOMS), Royal National Orthopaedic Hospital (RNOH), Stanmore, UK
| | - Louise Kim
- Joint Research and Enterprise Office, St George's, University of London, London, UK
| | | | | | - Ruth Green
- UCL Institute of Orthopaedics and Musculoskeletal Science (IOMS), Royal National Orthopaedic Hospital (RNOH), Stanmore, UK
| | - Paul O'Donnell
- UCL Institute of Orthopaedics and Musculoskeletal Science (IOMS), Royal National Orthopaedic Hospital (RNOH), Stanmore, UK
| | | |
Collapse
|
22
|
Brooks RW, Robbins PD. Treating Age-Related Diseases with Somatic Stem Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1056:29-45. [DOI: 10.1007/978-3-319-74470-4_3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
23
|
Macgregor M, Williams R, Downes J, Bachhuka A, Vasilev K. The Role of Controlled Surface Topography and Chemistry on Mouse Embryonic Stem Cell Attachment, Growth and Self-Renewal. MATERIALS (BASEL, SWITZERLAND) 2017; 10:E1081. [PMID: 28906470 PMCID: PMC5615735 DOI: 10.3390/ma10091081] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 09/12/2017] [Accepted: 09/12/2017] [Indexed: 12/17/2022]
Abstract
The success of stem cell therapies relies heavily on our ability to control their fate in vitro during expansion to ensure an appropriate supply. The biophysical properties of the cell culture environment have been recognised as a potent stimuli influencing cellular behaviour. In this work we used advanced plasma-based techniques to generate model culture substrates with controlled nanotopographical features of 16 nm, 38 nm and 68 nm in magnitude, and three differently tailored surface chemical functionalities. The effect of these two surface properties on the adhesion, spreading, and self-renewal of mouse embryonic stem cells (mESCs) were assessed. The results demonstrated that physical and chemical cues influenced the behaviour of these stem cells in in vitro culture in different ways. The size of the nanotopographical features impacted on the cell adhesion, spreading and proliferation, while the chemistry influenced the cell self-renewal and differentiation.
Collapse
Affiliation(s)
- Melanie Macgregor
- School of Engineering, Future Industries Institute, University of South Australia, Mawson Lakes, SA 5095, Australia.
| | - Rachel Williams
- Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool L7 8TX, UK.
| | - Joni Downes
- Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool L7 8TX, UK.
| | - Akash Bachhuka
- Institute for Photonics and Advanced Sensing, University of Adelaide, Adelaide, SA 5000, Australia.
| | - Krasimir Vasilev
- School of Engineering, Future Industries Institute, University of South Australia, Mawson Lakes, SA 5095, Australia.
| |
Collapse
|
24
|
Jauregui-Amezaga A, Rovira M, López A, Marín P, Rodriguez S, Rimola J, Ordás I, Alfaro I, Panés J, Ricart E. Long-lasting Remission Induced by Syngeneic Haematopoietic Stem Cell Transplantation in a Patient with Refractory Crohn's Disease. J Crohns Colitis 2016; 10:1122-4. [PMID: 26933030 DOI: 10.1093/ecco-jcc/jjw062] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Accepted: 02/23/2016] [Indexed: 02/08/2023]
Abstract
BACKGROUND AND AIMS Autologous haematopoietic stem cell transplantation (HSCT) is considered a salvage therapy for patients with refractory immune-mediated diseases. Syngeneic HSCT may be an alternative to autologous HSCT, with potential advantages in terms of safety and efficacy. METHODS A patient with severe Crohn's disease refractory to available medical therapies underwent a syngeneic HSCT from her identical twin sister. Cyclophosphamide and rabbit anti-thymocyte globulin were administered for conditioning. RESULTS After transplant, the patient presented successful engraftment, complete haematological and immunological reconstitution, and no severe complications. The patient achieved complete remission after transplant which is sustained 4 years after transplantation without any active treatment for Crohn's disease. CONCLUSIONS Patients with refractory immune-mediated diseases who have an identical disease-free twin may benefit from a syngeneic HSCT.
Collapse
Affiliation(s)
| | | | - Alicia López
- Gastroenterology Department, Hospital Clínic a, IDIBAPS, CIBERehd, Barcelona, Spain
| | - Pedro Marín
- Haemotherapy and Haemostasis Department, Hospital Clínic, Barcelona, Spain
| | | | - Jordi Rimola
- Radiology Department, Hospital Clinic, Barcelona, Spain
| | - Ingrid Ordás
- Gastroenterology Department, Hospital Clínic a, IDIBAPS, CIBERehd, Barcelona, Spain
| | - Ignacio Alfaro
- Gastroenterology Department, Hospital Clínic a, IDIBAPS, CIBERehd, Barcelona, Spain
| | - Julian Panés
- Gastroenterology Department, Hospital Clínic a, IDIBAPS, CIBERehd, Barcelona, Spain
| | - Elena Ricart
- Gastroenterology Department, Hospital Clínic a, IDIBAPS, CIBERehd, Barcelona, Spain
| |
Collapse
|
25
|
Jauregui-Amezaga A, Rovira M, Marín P, Salas A, Pinó-Donnay S, Feu F, Elizalde JI, Fernández-Avilés F, Martínez C, Gutiérrez G, Rosiñol L, Carreras E, Urbano A, Lozano M, Cid J, Suárez-Lledó M, Mensa J, Rimola J, Rodríguez S, Masamunt MC, Comas D, Ruíz I, Ramírez-Morros A, Gallego M, Ordás I, Panés J, Ricart E. Improving safety of autologous haematopoietic stem cell transplantation in patients with Crohn's disease. Gut 2016; 65:1456-62. [PMID: 26585938 DOI: 10.1136/gutjnl-2015-309836] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Accepted: 10/24/2015] [Indexed: 12/12/2022]
Abstract
OBJECTIVE To evaluate the feasibility and toxicity of autologous haematopoietic stem cell transplantation (HSCT) for the treatment of refractory Crohn's disease (CD). DESIGN In this prospective study, patients with refractory CD suffering an aggressive disease course despite medical treatment, impaired quality of life and in whom surgery was not an acceptable option underwent HSCT. Toxicity and complications during the procedure and within the first year following transplantation were evaluated, along with the impact of the introduction of supportive measures on safety outcomes. RESULTS 26 patients were enrolled. During mobilisation, 16 patients (62%) presented febrile neutropaenia, including one bacteraemia and two septic shocks. Neutropaenia median time after mobilisation was 5 days. 5 patients withdrew from the study after mobilisation and 21 patients entered the conditioning phase. Haematopoietic recovery median time for neutrophils (>0.5×10(9)/L) was 11 days and for platelets (>20×10(9)/L) 4 days. Twenty patients (95%) suffered febrile neutropaenia and three patients (27%) presented worsening of the perianal CD activity during conditioning. Among non-infectious complications, 6 patients (28.5%) presented antithymocyte globulin reaction, 12 patients (57%) developed mucositis and 2 patients (9.5%) had haemorrhagic complications. Changes in supportive measures over the study, particularly antibiotic prophylaxis regimes during mobilisation and conditioning, markedly diminished the incidence of severe complications. During the first 12-month follow-up, viral infections were the most commonly observed complications, and one patient died due to systemic cytomegalovirus infection. CONCLUSIONS Autologous HSCT for patients with refractory CD is feasible, but extraordinary supportive measures need to be implemented. We suggest that this procedure should only be performed in highly experienced centres.
Collapse
Affiliation(s)
| | - Montserrat Rovira
- Hematology Department, Hospital Clínic de Barcelona, Barcelona, Spain
| | - Pedro Marín
- Hemotherapy and Hemostasis Department, Hospital Clínic de Barcelona, Barcelona, Spain
| | - Azucena Salas
- Gastroenterology Department, Hospital Clínic de Barcelona, IDIBAPS, CIBERehd, Barcelona, Spain
| | - Susana Pinó-Donnay
- Gastroenterology Department, Hospital Clínic de Barcelona, IDIBAPS, CIBERehd, Barcelona, Spain
| | - Faust Feu
- Gastroenterology Department, Hospital Clínic de Barcelona, IDIBAPS, CIBERehd, Barcelona, Spain
| | - J Ignasi Elizalde
- Gastroenterology Department, Hospital Clínic de Barcelona, IDIBAPS, CIBERehd, Barcelona, Spain
| | | | - Carmen Martínez
- Hematology Department, Hospital Clínic de Barcelona, Barcelona, Spain
| | - Gonzalo Gutiérrez
- Hematology Department, Hospital Clínic de Barcelona, Barcelona, Spain
| | - Laura Rosiñol
- Hematology Department, Hospital Clínic de Barcelona, Barcelona, Spain
| | - Enric Carreras
- Hematology Department, Hospital Clínic de Barcelona, Barcelona, Spain
| | - Alvaro Urbano
- Hematology Department, Hospital Clínic de Barcelona, Barcelona, Spain
| | - Miguel Lozano
- Hemotherapy and Hemostasis Department, Hospital Clínic de Barcelona, Barcelona, Spain
| | - Joan Cid
- Hemotherapy and Hemostasis Department, Hospital Clínic de Barcelona, Barcelona, Spain
| | | | - Josep Mensa
- Infectious Diseases Department, Hospital Clinic de Barcelona, Barcelona, Spain
| | - Jordi Rimola
- Radiology Department, Hospital Clínic de Barcelona, Barcelona, Spain
| | - Sonia Rodríguez
- Radiology Department, Hospital Clínic de Barcelona, Barcelona, Spain
| | - Mari Carme Masamunt
- Gastroenterology Department, Hospital Clínic de Barcelona, IDIBAPS, CIBERehd, Barcelona, Spain
| | - Dolors Comas
- Gastroenterology Department, Hospital Clínic de Barcelona, IDIBAPS, CIBERehd, Barcelona, Spain
| | - Irene Ruíz
- Hematology Department, Hospital Clínic de Barcelona, Barcelona, Spain
| | - Anna Ramírez-Morros
- Gastroenterology Department, Hospital Clínic de Barcelona, IDIBAPS, CIBERehd, Barcelona, Spain
| | - Marta Gallego
- Gastroenterology Department, Hospital Clínic de Barcelona, IDIBAPS, CIBERehd, Barcelona, Spain
| | - Ingrid Ordás
- Gastroenterology Department, Hospital Clínic de Barcelona, IDIBAPS, CIBERehd, Barcelona, Spain
| | - Julian Panés
- Gastroenterology Department, Hospital Clínic de Barcelona, IDIBAPS, CIBERehd, Barcelona, Spain
| | - Elena Ricart
- Gastroenterology Department, Hospital Clínic de Barcelona, IDIBAPS, CIBERehd, Barcelona, Spain
| |
Collapse
|
26
|
Maria ATJ, Maumus M, Le Quellec A, Jorgensen C, Noël D, Guilpain P. Adipose-Derived Mesenchymal Stem Cells in Autoimmune Disorders: State of the Art and Perspectives for Systemic Sclerosis. Clin Rev Allergy Immunol 2016; 52:234-259. [DOI: 10.1007/s12016-016-8552-9] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
27
|
Role of stem cells in spondyloarthritis: Pathogenesis, treatment and complications. Hum Immunol 2015; 76:781-8. [DOI: 10.1016/j.humimm.2015.09.038] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Revised: 07/02/2015] [Accepted: 09/26/2015] [Indexed: 01/13/2023]
|
28
|
Kyrcz-Krzemień S, Helbig G, Torba K, Koclęga A, Krawczyk-Kuliś M. Safety and efficacy of hematopoietic stem cells mobilization in patients with multiple sclerosis. Hematology 2015; 21:42-5. [DOI: 10.1179/1607845415y.0000000049] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Affiliation(s)
- Sławomira Kyrcz-Krzemień
- Department of Hematology and Bone Marrow Transplantation, School of Medicine in Katowice, Silesian Medical University, Poland
| | - Grzegorz Helbig
- Department of Hematology and Bone Marrow Transplantation, School of Medicine in Katowice, Silesian Medical University, Poland
| | - Karolina Torba
- Department of Hematology and Bone Marrow Transplantation, School of Medicine in Katowice, Silesian Medical University, Poland
| | - Anna Koclęga
- Department of Hematology and Bone Marrow Transplantation, School of Medicine in Katowice, Silesian Medical University, Poland
| | - Małgorzata Krawczyk-Kuliś
- Department of Hematology and Bone Marrow Transplantation, School of Medicine in Katowice, Silesian Medical University, Poland
| |
Collapse
|
29
|
Ducret M, Fabre H, Degoul O, Atzeni G, McGuckin C, Forraz N, Alliot-Licht B, Mallein-Gerin F, Perrier-Groult E, Farges JC. Manufacturing of dental pulp cell-based products from human third molars: current strategies and future investigations. Front Physiol 2015; 6:213. [PMID: 26300779 PMCID: PMC4526817 DOI: 10.3389/fphys.2015.00213] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 07/16/2015] [Indexed: 01/01/2023] Open
Abstract
In recent years, mesenchymal cell-based products have been developed to improve surgical therapies aimed at repairing human tissues. In this context, the tooth has recently emerged as a valuable source of stem/progenitor cells for regenerating orofacial tissues, with easy access to pulp tissue and high differentiation potential of dental pulp mesenchymal cells. International guidelines now recommend the use of standardized procedures for cell isolation, storage and expansion in culture to ensure optimal reproducibility, efficacy and safety when cells are used for clinical application. However, most dental pulp cell-based medicinal products manufacturing procedures may not be fully satisfactory since they could alter the cells biological properties and the quality of derived products. Cell isolation, enrichment and cryopreservation procedures combined to long-term expansion in culture media containing xeno- and allogeneic components are known to affect cell phenotype, viability, proliferation and differentiation capacities. This article focuses on current manufacturing strategies of dental pulp cell-based medicinal products and proposes a new protocol to improve efficiency, reproducibility and safety of these strategies.
Collapse
Affiliation(s)
- Maxime Ducret
- Laboratoire de Biologie Tissulaire et Ingénierie thérapeutique, UMR5305 Centre National de la Recherche Scientifique/Université Claude Bernard Lyon 1 Lyon, France ; Faculté d'Odontologie, Université de Lyon, Université Claude Bernard Lyon 1 Lyon, France ; Hospices Civils de Lyon, Service de Consultations et Traitements Dentaires Lyon, France
| | - Hugo Fabre
- Laboratoire de Biologie Tissulaire et Ingénierie thérapeutique, UMR5305 Centre National de la Recherche Scientifique/Université Claude Bernard Lyon 1 Lyon, France
| | - Olivier Degoul
- CTI-BIOTECH, Cell Therapy Research Institute Meyzieu, France
| | | | - Colin McGuckin
- CTI-BIOTECH, Cell Therapy Research Institute Meyzieu, France
| | - Nico Forraz
- CTI-BIOTECH, Cell Therapy Research Institute Meyzieu, France
| | - Brigitte Alliot-Licht
- Faculté d'Odontologie, Institut National de la Santé et de la Recherche Médicale UMR1064, Centre de Recherche en Transplantation et Immunologie, Université de Nantes Nantes, France
| | - Frédéric Mallein-Gerin
- Laboratoire de Biologie Tissulaire et Ingénierie thérapeutique, UMR5305 Centre National de la Recherche Scientifique/Université Claude Bernard Lyon 1 Lyon, France
| | - Emeline Perrier-Groult
- Laboratoire de Biologie Tissulaire et Ingénierie thérapeutique, UMR5305 Centre National de la Recherche Scientifique/Université Claude Bernard Lyon 1 Lyon, France
| | - Jean-Christophe Farges
- Laboratoire de Biologie Tissulaire et Ingénierie thérapeutique, UMR5305 Centre National de la Recherche Scientifique/Université Claude Bernard Lyon 1 Lyon, France ; Faculté d'Odontologie, Université de Lyon, Université Claude Bernard Lyon 1 Lyon, France ; Hospices Civils de Lyon, Service de Consultations et Traitements Dentaires Lyon, France
| |
Collapse
|
30
|
Klinker MW, Wei CH. Mesenchymal stem cells in the treatment of inflammatory and autoimmune diseases in experimental animal models. World J Stem Cells 2015; 7:556-567. [PMID: 25914763 PMCID: PMC4404391 DOI: 10.4252/wjsc.v7.i3.556] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Revised: 11/07/2014] [Accepted: 01/12/2015] [Indexed: 02/07/2023] Open
Abstract
Multipotent mesenchymal stromal cells [also known as mesenchymal stem cells (MSCs)] are currently being studied as a cell-based treatment for inflammatory disorders. Experimental animal models of human immune-mediated diseases have been instrumental in establishing their immunosuppressive properties. In this review, we summarize recent studies examining the effectiveness of MSCs as immunotherapy in several widely-studied animal models, including type 1 diabetes, experimental autoimmune arthritis, experimental autoimmune encephalomyelitis, inflammatory bowel disease, graft-vs-host disease, and systemic lupus erythematosus. In addition, we discuss mechanisms identified by which MSCs mediate immune suppression in specific disease models, and potential sources of functional variability of MSCs between studies.
Collapse
|
31
|
Therapeutic efficacy of human mesenchymal stromal cells in the repair of established ventilator-induced lung injury in the rat. Anesthesiology 2015; 122:363-73. [PMID: 25490744 DOI: 10.1097/aln.0000000000000545] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND Rodent mesenchymal stem/stromal cells (MSCs) enhance repair after ventilator-induced lung injury (VILI). We wished to determine the therapeutic potential of human MSCs (hMSCs) in repairing the rodent lung. METHODS In series 1, anesthetized rats underwent VILI (series 1A, n = 8 to 9 per group) or protective ventilation (series 1B, n = 4 per group). After VILI, they were randomized to intravenous administration of (1) vehicle (phosphate-buffered saline); (2) fibroblasts (1 × 10 cells/kg); or (3) human MSCs (1 × 10 cells/kg) and the effect on restoration of lung function and structure assessed. In series 2, the efficacy of hMSC doses of 1, 2, 5, and 10 million/kg was examined (n = 8 per group). Series 3 compared the efficacy of both intratracheal and intraperitoneal hMSC administration to intravascular delivery (n = 5-10 per group). Series 4 examined the efficacy of delayed hMSC administration (n = 8 per group). RESULTS Human MSC's enhanced lung repair, restoring oxygenation (131 ± 19 vs. 103 ± 11 vs. 95 ± 11 mmHg, P = 0.004) compared to vehicle or fibroblast therapy, respectively. hMSCs improved lung compliance, reducing alveolar edema, and restoring lung architecture. hMSCs attenuated lung inflammation, decreasing alveolar cellular infiltration, and decreasing cytokine-induced neutrophil chemoattractant-1 and interleukin-6 while increasing keratinocyte growth factor concentrations. The lowest effective hMSC dose was 2 × 10 hMSC/kg. Intraperitoneal hMSC delivery was less effective than intratracheal or intravenous hMSC. hMSCs enhanced lung repair when administered at later time points after VILI. CONCLUSIONS hMSC therapy demonstrates therapeutic potential in enhancing recovery after VILI.
Collapse
|
32
|
Ikhapoh IA, Pelham CJ, Agrawal DK. Sry-type HMG box 18 contributes to the differentiation of bone marrow-derived mesenchymal stem cells to endothelial cells. Differentiation 2015; 89:87-96. [PMID: 25913202 PMCID: PMC4479266 DOI: 10.1016/j.diff.2015.03.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Revised: 03/01/2015] [Accepted: 03/25/2015] [Indexed: 11/24/2022]
Abstract
OBJECTIVE Mesenchymal stem cells (MSC) have shown therapeutic potential to engraft and either differentiate into or support differentiation of vascular endothelial cells (EC), smooth muscle cells and cardiomyocytes in animal models of ischemic heart disease. Following intracoronary or transendocardial delivery of MSCs, however, only a small fraction of cells engraft and the majority of those persist as an immature cell phenotype. The goal of the current study was to decipher the molecular pathways and mechanisms that control MSC differentiation into ECs. Vascular endothelial growth factor (VEGF-165) treatment is known to enhance in vitro differentiation of MSCs into ECs. We tested the possible involvement of the Sry-type HMG box (Sox) family of transcription factors in this process. METHOD AND RESULTS MSCs were isolated from the bone marrow of Yucatan microswine and underwent a 10 day differentiation protocol. VEGF-165 (50ng/ml) treatment of MSCs in vitro induced a significant increase in the protein expression of VEGFR-2, Sox9 and Sox18, in addition to the EC markers PECAM-1, VE-cadherin and vWF, as determined by Western blot or flow cytometry. siRNA-mediated knockdown of Sox18, as opposed to Sox9, in MSCs prevented VEGF-165-mediated induction of EC markers and capillary tube formation. Inhibition of VEGFR-2 signaling (SC-202850) reduced Sox18 and reduced VEGF-165-induced differentiation of MSCs to ECs. CONCLUSION Here we demonstrate that VEGF-165 mediates MSC differentiation into ECs via VEGFR-2-dependent induction of Sox18, which ultimately coordinates the transcriptional upregulation of specific markers of the EC phenotype.
Collapse
Affiliation(s)
- Izuagie Attairu Ikhapoh
- Department of Medical Microbiology and Immunology Creighton University School of Medicine, Omaha, NE, USA.
| | - Christopher J Pelham
- Department of Biomedical Sciences Creighton University School of Medicine, Omaha, NE, USA
| | - Devendra K Agrawal
- Department of Medical Microbiology and Immunology Creighton University School of Medicine, Omaha, NE, USA; Department of Biomedical Sciences Creighton University School of Medicine, Omaha, NE, USA; Center for Clinical and Translational Science Creighton University School of Medicine, Omaha, NE, USA.
| |
Collapse
|
33
|
Li H, Jiang Y, Jiang X, Guo X, Ning H, Li Y, Liao L, Yao H, Wang X, Liu Y, Zhang Y, Chen H, Mao N. CCR7 guides migration of mesenchymal stem cell to secondary lymphoid organs: a novel approach to separate GvHD from GvL effect. Stem Cells 2015; 32:1890-903. [PMID: 24496849 DOI: 10.1002/stem.1656] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Revised: 12/09/2013] [Accepted: 01/02/2014] [Indexed: 02/07/2023]
Abstract
Inefficient homing of systemically infused mesenchymal stem cells (MSCs) limits the efficacy of existing MSC-based clinical graft-versus-host disease (GvHD) therapies. Secondary lymphoid organs (SLOs) are the major niches for generating immune responses or tolerance. MSCs home to a wide range of organs, but rarely to SLOs after intravenous infusion. Thus, we hypothesized that targeted migration of MSCs into SLOs may significantly improve their immunomodulatory effect. Here, chemokine receptor 7 (CCR7) gene, encoding a receptor that specifically guides migration of immune cells into SLOs, was engineered into a murine MSC line C3H10T1/2 by retrovirus transfection system (MSCs/CCR7). We found that infusion of MSCs/CCR7 potently prolonged the survival of GvHD mouse model. The infused MSCs/CCR7 migrate to SLOs, relocate in proximity with T lymphocytes, therefore, potently inhibited their proliferation, activation, and cytotoxicity. Natural killer (NK) cells contribute to the early control of leukemia relapse. Although MSCs/CCR7 inhibited NK cell activity in vitro coculture, they did not impact on the proportion and cytotoxic capacities of NK cells in the peripheral blood of GvHD mice. In an EL4 leukemia cell loaded GvHD model, MSCs/CCR7 infusion preserved the graft-versus-leukemia (GvL) effect. In conclusion, this study demonstrates that CCR7 guides migration of MSCs to SLOs and thus highly intensify their in vivo immunomodulatory effect while preserving the GvL activity. This exciting therapeutic strategy may improve the clinical efficacy of MSC based therapy for immune diseases.
Collapse
Affiliation(s)
- Hong Li
- Department of Cell Biology, Institute of Basic Medical Sciences, Beijing, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Ratliff ML, Ward JM, Merrill JT, James JA, Webb CF. Differential expression of the transcription factor ARID3a in lupus patient hematopoietic progenitor cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2015; 194:940-9. [PMID: 25535283 PMCID: PMC4297684 DOI: 10.4049/jimmunol.1401941] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Although hematopoietic stem/progenitor cells (HSPCs) are used for transplantation, characterization of the multiple subsets within this population in humans has lagged behind similar studies in mice. We found that expression of the DNA-binding protein, ARID3a, in mouse stem cells was important for normal development of hematopoietic lineages; however, progenitors expressing ARID3a in humans have not been defined. We previously showed increased numbers of ARID3a(+) B cells in nearly half of systemic lupus erythematosus (SLE) patients, and total numbers of ARID3a(+) B cells were associated with increased disease severity. Because expression of ARID3a in those SLE patients occurred throughout all B cell subsets, we hypothesized that ARID3a expression in patient HSPCs might also be increased relative to expression in healthy controls. Our data now show that ARID3a expression is not limited to any defined subset of HSPCs in either healthy controls or SLE patients. Numbers of ARID3a(+) HSPCs in SLE patients were increased over numbers of ARID3a(+) cells in healthy controls. Although all SLE-derived HSPCs exhibited poor colony formation in vitro compared with controls, SLE HSPCs with high numbers of ARID3a(+) cells yielded increased numbers of cells expressing the early progenitor marker, CD34. SLE HSPCs with high numbers of ARID3a(+) cells also more readily generated autoantibody-producing cells than HSPCs with lower levels of ARID3a in a humanized mouse model. These data reveal new functions for ARID3a in early hematopoiesis and suggest that knowledge regarding ARID3a levels in HSPCs could be informative for applications requiring transplantation of those cells.
Collapse
Affiliation(s)
- Michelle L Ratliff
- Immunobiology and Cancer Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104
| | - Julie M Ward
- Immunobiology and Cancer Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104; Microbiology and Immunology Program, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104
| | - Joan T Merrill
- Clinical Pharmacology Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104
| | - Judith A James
- Microbiology and Immunology Program, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104; Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104; Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104; and
| | - Carol F Webb
- Immunobiology and Cancer Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104; Microbiology and Immunology Program, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104; Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104
| |
Collapse
|
35
|
Abstract
Mesenchymal stem cells are a rare subset of stem cells residing in the bone marrow where they closely interact with hematopoietic stem cells and support their growth and differentiation. They can suppress proliferation or functions of many immune cells such as T cells, B cells, natural killer cells and dendritic cells. Recently, a substantial progress has been made in the field of mesenchymal stem cell transplantation. Experimental and clinical data suggest that this therapy has been a promising strategy for severe and refractory systemic lupus erythematosus.
Collapse
Affiliation(s)
- Jun Liang
- Department of Immunology and Rheumatology, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | | |
Collapse
|
36
|
Li H, Jiang YM, Sun YF, Li P, Dang RJ, Ning HM, Li YH, Zhang YJ, Jiang XX, Guo XM, Wen N, Han Y, Mao N, Chen H, Zhang Y. CCR7 expressing mesenchymal stem cells potently inhibit graft-versus-host disease by spoiling the fourth supplemental Billingham's tenet. PLoS One 2014; 9:e115720. [PMID: 25549354 PMCID: PMC4280136 DOI: 10.1371/journal.pone.0115720] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2014] [Accepted: 12/01/2014] [Indexed: 01/01/2023] Open
Abstract
The clinical acute graft-versus-host disease (GvHD)-therapy of mesenchymal stem cells (MSCs) is not as satisfactory as expected. Secondary lymphoid organs (SLOs) are the major niches serve to initiate immune responses or induce tolerance. Our previous study showed that CCR7 guide murine MSC line C3H10T1/2 migrating to SLOs. In this study, CCR7 gene was engineered into murine MSCs by lentivirus transfection system (MSCs/CCR7). The immunomodulatory mechanism of MSCs/CCR7 was further investigated. Provoked by inflammatory cytokines, MSCs/CCR7 increased the secretion of nitric oxide and calmed down the T cell immune response in vitro. Immunofluorescent staining results showed that transfused MSCs/CCR7 can migrate to and relocate at the appropriate T cell-rich zones within SLOs in vivo. MSCs/CCR7 displayed enhanced effect in prolonging the survival and alleviating the clinical scores of the GvHD mice than normal MSCs. Owing to the critical relocation sites, MSCs/CCR7 co-infusion potently made the T cells in SLOs more naïve like, thus control T cells trafficking from SLOs to the target organs. Through spoiling the fourth supplemental Billingham’s tenet, MSCs/CCR7 potently inhibited the development of GvHD. The study here provides a novel therapeutic strategy of MSCs/CCR7 infusion at a low dosage to give potent immunomodulatory effect for clinical immune disease therapy.
Collapse
Affiliation(s)
- Hong Li
- Department of Cell Biology, Institute of Basic Medical Sciences, Beijing 100850, People’s Republic of China
- Department of Hematopoietic Stem Cell Transplantation, Affiliated Hospital to Academy of Military Medical Sciences, Beijing 100071, People’s Republic of China
- * E-mail: (HL); (HC); (YZ)
| | - Yan-Ming Jiang
- Department of Ophthalmology, The Second Artillery General Hospital, Beijing 100088, People’s Republic of China
| | - Yan-Feng Sun
- Department of Pediatrics, General Hospital of Chinese People's Armed Police Forces, Beijing 100039, China
| | - Ping Li
- Department of Stomatology, Chinese PLA General Hospital, Beijing 100853, China
| | - Rui-Jie Dang
- Department of Stomatology, Chinese PLA General Hospital, Beijing 100853, China
| | - Hong-Mei Ning
- Department of Hematopoietic Stem Cell Transplantation, Affiliated Hospital to Academy of Military Medical Sciences, Beijing 100071, People’s Republic of China
| | - Yu-Hang Li
- Department of Hematopoietic Stem Cell Transplantation, Affiliated Hospital to Academy of Military Medical Sciences, Beijing 100071, People’s Republic of China
| | - Ying-Jie Zhang
- Department of Plastic and Reconstructive Surgery, Chinese PLA General Hospital, Beijing 100853, China
| | - Xiao-Xia Jiang
- Department of Cell Biology, Institute of Basic Medical Sciences, Beijing 100850, People’s Republic of China
| | - Xi-Min Guo
- Department of Cell Biology, Institute of Basic Medical Sciences, Beijing 100850, People’s Republic of China
| | - Ning Wen
- Department of Stomatology, Chinese PLA General Hospital, Beijing 100853, China
| | - Yan Han
- Department of Plastic and Reconstructive Surgery, Chinese PLA General Hospital, Beijing 100853, China
| | - Ning Mao
- Department of Cell Biology, Institute of Basic Medical Sciences, Beijing 100850, People’s Republic of China
| | - Hu Chen
- Department of Hematopoietic Stem Cell Transplantation, Affiliated Hospital to Academy of Military Medical Sciences, Beijing 100071, People’s Republic of China
- * E-mail: (HL); (HC); (YZ)
| | - Yi Zhang
- Department of Cell Biology, Institute of Basic Medical Sciences, Beijing 100850, People’s Republic of China
- * E-mail: (HL); (HC); (YZ)
| |
Collapse
|
37
|
Abstract
PURPOSE OF REVIEW To review novel therapeutic targets that are currently under investigation to develop safer, targeted therapies for antiphsopholipid antibody (aPL)-mediated clinical manifestations. RECENT FINDINGS Novel therapeutic options potentially available include anti-CD20 monoclonal antibodies and new-generation anticoagulants (such as direct thrombin and anti-Xa inhibitors). Research focusing on interfering with aPL-mediated cell activation, targeting complement components and the innovative concept of blocking the pathogenic subpopulation of aPL with tailored peptides are currently being explored. SUMMARY Antiphospholipid syndrome is an autoimmune disease characterized by thrombosis and pregnancy morbidity occurring in patients persistently positive for aPL. Current therapeutic options remain confined to long-term anticoagulation with vitamin K antagonists. The future holds much promise with the identification of novel potential targets, many of which are currently under investigation. The challenge will be to design prospective randomized controlled clinical trials to provide the evidence necessary to support integration of these therapies into clinical practice.
Collapse
|
38
|
Jouhadi Z, Khadir K, Ailal F, Bouayad K, Nadifi S, Engelhardt KR, Grimbacher B. Ten-year follow-up of a DOCK8-deficient child with features of systemic lupus erythematosus. Pediatrics 2014; 134:e1458-63. [PMID: 25332498 DOI: 10.1542/peds.2013-1383] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Dedicator of cytokinesis 8 (DOCK8) deficiency is an innate error of adaptive immunity characterized by recurrent infections with viruses, bacteria, and fungi, typically high serum levels of immunoglobulin E, eosinophilia, and a progressive deterioration of T- and B-cell-mediated immunity. DOCK8 mutations are the second most common cause of hyper-immunoglobulin E syndromes (HIES). We report a case of DOCK8 deficiency associated with systemic lupus erythematosus (SLE). Association of SLE with HIES is very rare; to our knowledge, this is the sixth such case reported in the literature. A 10-year-old girl of consanguineous parents was followed in our clinic because of HIES since early childhood. She developed SLE with purpuric and necrotic skin lesions, diffuse arthritis, and glomerulonephritis. These autoimmune features were corroborated by the presence of antinuclear, anti-DNA, and antiphospholipid antibodies. The combination of HIES and autoimmunity makes treatment difficult, because the use of immunosuppressive drugs needed for SLE may worsen existing symptoms caused by the immunodeficiency. Our observation is the first case of association of SLE with HIES in the literature where the primary immune disease is genetically documented and labeled as DOCK8 deficiency.
Collapse
Affiliation(s)
- Zineb Jouhadi
- Pediatric Infectious Diseases and Clinical Immunology Department, and
| | | | - Fatima Ailal
- Pediatric Infectious Diseases and Clinical Immunology Department, and
| | - Kenza Bouayad
- Pediatric Rheumatology, Ibn Rochd Hospital, Medical School, University Hassan II, Casablanca, Morocco
| | - Sellama Nadifi
- Department of Genetics, Medical School, University Hassan II, Casablanca, Morocco; and
| | - Karin R Engelhardt
- Centre of Chronic Immunodeficiency, University Medical Center Freiburg, Freiburg, Germany
| | - Bodo Grimbacher
- Centre of Chronic Immunodeficiency, University Medical Center Freiburg, Freiburg, Germany
| |
Collapse
|
39
|
Paradoxical effects of human adipose tissue-derived mesenchymal stem cells on progression of experimental arthritis in SKG mice. Cell Immunol 2014; 292:94-101. [DOI: 10.1016/j.cellimm.2014.10.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Accepted: 10/28/2014] [Indexed: 12/31/2022]
|
40
|
Bone marrow stromal cells as immunomodulators. A primer for dermatologists. J Dermatol Sci 2014; 77:11-20. [PMID: 25476233 DOI: 10.1016/j.jdermsci.2014.10.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Revised: 09/29/2014] [Accepted: 10/15/2014] [Indexed: 02/07/2023]
Abstract
Bone marrow stromal cells (BMSCs, also known as mesenchymal stem cells or MSCs) represent a unique cell population in the bone marrow with a long-known function to support hematopoiesis and replace skeletal tissues. The recent discovery that BMSCs also possess potent immunoregulatory features attracted a great deal of attention from stem cell biologists, immunologists and clinicians of different specialties worldwide. Initial clinical experience along with several animal models suggested that intravenously delivered BMSCs are able to regulate a wide variety of host immune cells and act in a way that is beneficial for the recipient in a variety of diseases. The role of the present review is to give a short introduction to the biology of BMSCs and to summarize our current understanding of how BMSCs modulate the immune system with special emphasis on available clinical data. Considering the audience of this journal we will also attempt to guide dermatologists in choosing the right skin conditions where BMSCs might be considered as a therapeutic alternative.
Collapse
|
41
|
Sommer IE, van Bekkum DW, Klein H, Yolken R, de Witte L, Talamo G. Severe chronic psychosis after allogeneic SCT from a schizophrenic sibling. Bone Marrow Transplant 2014; 50:153-4. [PMID: 25285805 PMCID: PMC4287892 DOI: 10.1038/bmt.2014.221] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- I E Sommer
- Department of Psychiatry, University Medical Center Utrecht, Utrecht, The Netherlands
| | - D W van Bekkum
- Department of Hematology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - H Klein
- Department of Psychiatry, Groningen University, University Medical Centre Groningen, Groningen, The Netherlands
| | - R Yolken
- Department of Pediatrics, Stanley Division of Developmental Neurovirology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Lot de Witte
- Department of Psychiatry, University Medical Center Utrecht, Utrecht, The Netherlands
| | - G Talamo
- Bone Marrow Transplant Penn State Hershey Cancer Institute Hershey, Hershey, PA, USA
| |
Collapse
|
42
|
Mikkers HM, Freund C, Mummery CL, Hoeben RC. Cell replacement therapies: is it time to reprogram? Hum Gene Ther 2014; 25:866-74. [PMID: 25141889 DOI: 10.1089/hum.2014.097] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Hematopoietic stem cell transplantations have become a very successful therapeutic approach to treat otherwise life-threatening blood disorders. It is thought that stem cell transplantation may also become a feasible treatment option for many non-blood-related diseases. So far, however, the limited availability of human leukocyte antigen-matched donors has hindered development of some cell replacement therapies. The Nobel-prize rewarded finding that pluripotency can be induced in somatic cells via expression of a few transcription factors has led to a revolution in stem cell biology. The possibility to change the fate of somatic cells by expressing key transcription factors has been used not only to generate pluripotent stem cells, but also for directly converting somatic cells into fully differentiated cells of another lineage or more committed progenitor cells. These approaches offer the prospect of generating cell types with a specific genotype de novo, which would circumvent the problems associated with allogeneic cell transplantations. This technology has generated a plethora of new disease-specific research efforts, from studying disease pathogenesis to therapeutic interventions. Here we will discuss the opportunities in this booming field of cell biology and summarize how the scientists in the Netherlands have joined efforts in one area to exploit the new technology.
Collapse
Affiliation(s)
- Harald M Mikkers
- 1 Department of Molecular Cell Biology, Leiden University Medical Center , 2300RC Leiden, The Netherlands
| | | | | | | |
Collapse
|
43
|
Wen Y, Elliott MJ, Huang Y, Miller TO, Corbin DR, Hussain LR, Ratajczak MZ, Fukui Y, Ildstad ST. DOCK2 Is Critical for CD8+TCR−Graft Facilitating Cells to Enhance Engraftment of Hematopoietic Stem and Progenitor Cells. Stem Cells 2014; 32:2732-43. [DOI: 10.1002/stem.1780] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Revised: 05/23/2014] [Accepted: 05/30/2014] [Indexed: 02/06/2023]
Affiliation(s)
| | | | | | | | | | | | - Mariusz Z. Ratajczak
- Stem Cell Biology Program; James Graham Brown Cancer Center, University of Louisville; Louisville Kentucky USA
| | - Yoshinori Fukui
- Division of Immunogenetics, Department of Immunobiology and Neuroscience; Medical Institute of Bioregulation; Kyushu University; Fukuoka Fukuoka Prefecture Japan
| | | |
Collapse
|
44
|
Pacini S. Deterministic and stochastic approaches in the clinical application of mesenchymal stromal cells (MSCs). Front Cell Dev Biol 2014; 2:50. [PMID: 25364757 PMCID: PMC4206995 DOI: 10.3389/fcell.2014.00050] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Accepted: 08/28/2014] [Indexed: 12/23/2022] Open
Abstract
Mesenchymal stromal cells (MSCs) have enormous intrinsic clinical value due to their multi-lineage differentiation capacity, support of hemopoiesis, immunoregulation and growth factors/cytokines secretion. MSCs have thus been the object of extensive research for decades. After completion of many pre-clinical and clinical trials, MSC-based therapy is now facing a challenging phase. Several clinical trials have reported moderate, non-durable benefits, which caused initial enthusiasm to wane, and indicated an urgent need to optimize the efficacy of therapeutic, platform-enhancing MSC-based treatment. Recent investigations suggest the presence of multiple in vivo MSC ancestors in a wide range of tissues, which contribute to the heterogeneity of the starting material for the expansion of MSCs. This variability in the MSC culture-initiating cell population, together with the different types of enrichment/isolation and cultivation protocols applied, are hampering progress in the definition of MSC-based therapies. International regulatory statements require a precise risk/benefit analysis, ensuring the safety and efficacy of treatments. GMP validation allows for quality certification, but the prediction of a clinical outcome after MSC-based therapy is correlated not only to the possible morbidity derived by cell production process, but also to the biology of the MSCs themselves, which is highly sensible to unpredictable fluctuation of isolating and culture conditions. Risk exposure and efficacy of MSC-based therapies should be evaluated by pre-clinical studies, but the batch-to-batch variability of the final medicinal product could significantly limit the predictability of these studies. The future success of MSC-based therapies could lie not only in rational optimization of therapeutic strategies, but also in a stochastic approach during the assessment of benefit and risk factors.
Collapse
Affiliation(s)
- Simone Pacini
- Department of Clinical and Experimental Medicine, University of Pisa Pisa, Italy
| |
Collapse
|
45
|
Kimbrel EA, Kouris NA, Yavanian GJ, Chu J, Qin Y, Chan A, Singh RP, McCurdy D, Gordon L, Levinson RD, Lanza R. Mesenchymal stem cell population derived from human pluripotent stem cells displays potent immunomodulatory and therapeutic properties. Stem Cells Dev 2014; 23:1611-24. [PMID: 24650034 PMCID: PMC4086362 DOI: 10.1089/scd.2013.0554] [Citation(s) in RCA: 126] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Accepted: 03/18/2014] [Indexed: 12/19/2022] Open
Abstract
Mesenchymal stem cells (MSCs) are being tested in a wide range of human diseases; however, loss of potency and inconsistent quality severely limit their use. To overcome these issues, we have utilized a developmental precursor called the hemangioblast as an intermediate cell type in the derivation of a highly potent and replenishable population of MSCs from human embryonic stem cells (hESCs). This method circumvents the need for labor-intensive hand-picking, scraping, and sorting that other hESC-MSC derivation methods require. Moreover, unlike previous reports on hESC-MSCs, we have systematically evaluated their immunomodulatory properties and in vivo potency. As expected, they dynamically secrete a range of bioactive factors, display enzymatic activity, and suppress T-cell proliferation that is induced by either allogeneic cells or mitogenic stimuli. However, they also display unique immunophenotypic properties, as well as a smaller size and >30,000-fold proliferative capacity than bone marrow-derived MSCs. In addition, this is the first report which demonstrates that hESC-MSCs can inhibit CD83 up-regulation and IL-12p70 secretion from dendritic cells and enhance regulatory T-cell populations induced by interleukin 2 (IL-2). This is also the first report which shows that hESC-MSCs have therapeutic efficacy in two different autoimmune disorder models, including a marked increase in survival of lupus-prone mice and a reduction of symptoms in an autoimmune model of uveitis. Our data suggest that this novel and therapeutically active population of MSCs could overcome many of the obstacles that plague the use of MSCs in regenerative medicine and serve as a scalable alternative to current MSC sources.
Collapse
Affiliation(s)
| | | | | | - Jianlin Chu
- Advanced Cell Technology, Marlborough, Massachusetts
| | - Yu Qin
- Department of Ophthalmology, Jules Stein Eye Institute, David Geffen School of Medicine, UCLA, Los Angeles, California
| | - Ann Chan
- Department of Ophthalmology, Jules Stein Eye Institute, David Geffen School of Medicine, UCLA, Los Angeles, California
| | - Ram P. Singh
- Division of Rheumatology, David Geffen School of Medicine, UCLA, Los Angeles, California
| | - Deborah McCurdy
- Division of Rheumatology, David Geffen School of Medicine, UCLA, Los Angeles, California
| | - Lynn Gordon
- Department of Ophthalmology, Jules Stein Eye Institute, David Geffen School of Medicine, UCLA, Los Angeles, California
| | - Ralph D. Levinson
- Department of Ophthalmology, Jules Stein Eye Institute, David Geffen School of Medicine, UCLA, Los Angeles, California
| | - Robert Lanza
- Advanced Cell Technology, Marlborough, Massachusetts
| |
Collapse
|
46
|
Lee R, Perry B, Heywood J, Reese C, Bonner M, Hatfield CM, Silver RM, Visconti RP, Hoffman S, Tourkina E. Caveolin-1 regulates chemokine receptor 5-mediated contribution of bone marrow-derived cells to dermal fibrosis. Front Pharmacol 2014; 5:140. [PMID: 24966836 PMCID: PMC4052341 DOI: 10.3389/fphar.2014.00140] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Accepted: 05/24/2014] [Indexed: 11/13/2022] Open
Abstract
In fibrotic diseases caveolin-1 underexpression in fibroblasts results in collagen overexpression and in monocytes leads to hypermigration. These profibrotic behaviors are blocked by the caveolin-1 scaffolding domain peptide (CSD) which compensates for caveolin-1 deficiency. Monocytes and fibroblasts are related in that monocytes are the progenitors of fibrocytes (CD45+/Collagen I+ cells) that, in turn, are the progenitors of many fibroblasts in fibrotic tissues. In an additional anti-fibrotic activity, CSD blocks monocyte differentiation into fibrocytes. We studied a mouse fibrosis model (Pump Model) involving systemic bleomycin delivery that closely models scleroderma (SSc) in several ways, the most important of which for this study is that fibrosis is observed in the lungs, skin, and internal organs. We show here that dermal thickness is increased 2-fold in the Pump Model and that this effect is almost completely blocked by CSD (p < 0.001). Concomitantly, the subcutaneous fat layer becomes >80% thinner. This effect is also blocked by CSD (p < 0.001). Even in mice receiving vehicle instead of bleomycin, CSD increases the thickness of the fat layer. To study the mechanisms of action of bleomycin and CSD, we examined the accumulation of the chemokine receptor CCR5 and its ligands MIP1α and MIP1β in fibrotic tissue and their roles in monocyte migration. Fibrocytes and other leukocytes expressing CCR5 and its ligands were present at high levels in the fibrotic dermis of SSc patients and Pump Model mice while CSD blocked their accumulation in mouse dermis. Migration toward CCR5 ligands of SSc monocytes and Pump Model bone marrow cells was 3-fold greater than cells from control subjects. This enhanced migration was almost completely blocked by CSD. These results suggest that low monocyte caveolin-1 promotes fibrosis by enhancing the recruitment of fibrocytes and their progenitors into affected tissue.
Collapse
Affiliation(s)
- Rebecca Lee
- Division of Rheumatology and Immunology, Department of Medicine, Medical University of South Carolina Charleston, SC, USA
| | - Beth Perry
- Division of Rheumatology and Immunology, Department of Medicine, Medical University of South Carolina Charleston, SC, USA
| | - Jonathan Heywood
- Division of Rheumatology and Immunology, Department of Medicine, Medical University of South Carolina Charleston, SC, USA
| | - Charles Reese
- Division of Rheumatology and Immunology, Department of Medicine, Medical University of South Carolina Charleston, SC, USA
| | - Michael Bonner
- Division of Rheumatology and Immunology, Department of Medicine, Medical University of South Carolina Charleston, SC, USA
| | - Corey M Hatfield
- Division of Rheumatology and Immunology, Department of Medicine, Medical University of South Carolina Charleston, SC, USA
| | - Richard M Silver
- Division of Rheumatology and Immunology, Department of Medicine, Medical University of South Carolina Charleston, SC, USA
| | - Richard P Visconti
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina Charleston, SC, USA
| | - Stanley Hoffman
- Division of Rheumatology and Immunology, Department of Medicine, Medical University of South Carolina Charleston, SC, USA ; Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina Charleston, SC, USA
| | - Elena Tourkina
- Division of Rheumatology and Immunology, Department of Medicine, Medical University of South Carolina Charleston, SC, USA ; Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina Charleston, SC, USA
| |
Collapse
|
47
|
Peña E, Souza CA, Escuissato DL, Gomes MM, Allan D, Tay J, Dennie CJ. Noninfectious Pulmonary Complications after Hematopoietic Stem Cell Transplantation: Practical Approach to Imaging Diagnosis. Radiographics 2014; 34:663-83. [DOI: 10.1148/rg.343135080] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
48
|
Mastri M, Lin H, Lee T. Enhancing the efficacy of mesenchymal stem cell therapy. World J Stem Cells 2014; 6:82-93. [PMID: 24772236 PMCID: PMC3999784 DOI: 10.4252/wjsc.v6.i2.82] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Revised: 10/29/2013] [Accepted: 01/14/2014] [Indexed: 02/06/2023] Open
Abstract
Mesenchymal stem cell (MSC) therapy is entering a challenging phase after completion of many preclinical and clinical trials. Among the major hurdles encountered in MSC therapy are inconsistent stem cell potency, poor cell engraftment and survival, and age/disease-related host tissue impairment. The recognition that MSCs primarily mediate therapeutic benefits through paracrine mechanisms independent of cell differentiation provides a promising framework for enhancing stem cell potency and therapeutic benefits. Several MSC priming approaches are highlighted, which will likely allow us to harness the full potential of adult stem cells for their future routine clinical use.
Collapse
|
49
|
Martínez-Montiel MDP, Gómez-Gómez GJ, Flores AI. Therapy with stem cells in inflammatory bowel disease. World J Gastroenterol 2014; 20:1211-1227. [PMID: 24574796 PMCID: PMC3921504 DOI: 10.3748/wjg.v20.i5.1211] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2013] [Revised: 11/23/2013] [Accepted: 01/06/2014] [Indexed: 02/07/2023] Open
Abstract
Inflammatory bowel disease (IBD) affects a part of the young population and has a strong impact upon quality of life. The underlying etiology is not known, and the existing treatments are not curative. Furthermore, a significant percentage of patients are refractory to therapy. In recent years there have been great advances in our knowledge of stem cells and their therapeutic applications. In this context, autologous hematopoietic stem cell transplantation (HSCT) has been used in application to severe refractory Crohn's disease (CD), with encouraging results. Allogenic HSCT would correct the genetic defects of the immune system, but is currently not accepted for the treatment of IBD because of its considerable risks. Mesenchymal stem cells (MSCs) have immune regulatory and regenerative properties, and low immunogenicity (both autologous and allogenic MSCs). Based on these properties, MSCs have been used via the systemic route in IBD with promising results, though it is still too soon to draw firm conclusions. Their local administration in perianal CD is the field where most progress has been made in recent years, with encouraging results. The next few years will be decisive for defining the role of such therapy in the management of IBD.
Collapse
|
50
|
Pietras EM, Lakshminarasimhan R, Techner JM, Fong S, Flach J, Binnewies M, Passegué E. Re-entry into quiescence protects hematopoietic stem cells from the killing effect of chronic exposure to type I interferons. ACTA ACUST UNITED AC 2014; 211:245-62. [PMID: 24493802 PMCID: PMC3920566 DOI: 10.1084/jem.20131043] [Citation(s) in RCA: 238] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Quiescence acts as a safeguard mechanism to ensure survival of the HSC pool during chronic IFN-1 exposure Type I interferons (IFN-1s) are antiviral cytokines that suppress blood production while paradoxically inducing hematopoietic stem cell (HSC) proliferation. Here, we clarify the relationship between the proliferative and suppressive effects of IFN-1s on HSC function during acute and chronic IFN-1 exposure. We show that IFN-1–driven HSC proliferation is a transient event resulting from a brief relaxation of quiescence-enforcing mechanisms in response to acute IFN-1 exposure, which occurs exclusively in vivo. We find that this proliferative burst fails to exhaust the HSC pool, which rapidly returns to quiescence in response to chronic IFN-1 exposure. Moreover, we demonstrate that IFN-1–exposed HSCs with reestablished quiescence are largely protected from the killing effects of IFNs unless forced back into the cell cycle due to culture, transplantation, or myeloablative treatment, at which point they activate a p53-dependent proapoptotic gene program. Collectively, our results demonstrate that quiescence acts as a safeguard mechanism to ensure survival of the HSC pool during chronic IFN-1 exposure. We show that IFN-1s can poise HSCs for apoptosis but induce direct cell killing only upon active proliferation, thereby establishing a mechanism for the suppressive effects of IFN-1s on HSC function.
Collapse
Affiliation(s)
- Eric M Pietras
- The Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Department of Medicine, Division of Hematology/Oncology, University of California San Francisco, San Francisco, California 94143
| | | | | | | | | | | | | |
Collapse
|