1
|
Nik Mohd Hasan NFF, Achour A, Koopmann T, Gammeren AV, van der Leeuw J, Ceelie H, Stieber D, Baas F, Harteveld CL. Unusual Causes of β Thalassemia Trait: Discovery of another Three Novel SUPT5H Variants. Hemoglobin 2025; 49:145-148. [PMID: 40159794 DOI: 10.1080/03630269.2025.2484230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Accepted: 03/12/2025] [Indexed: 04/02/2025]
Abstract
Beta (β) thalassemia is an inherited disorder that occurs following mutations or deletions in the β globin gene. Rarely, it is caused by variants in genes coding for erythroid transcriptional factors or trans-acting factors. Here, we report three novel variants of SUPT5H revealed by next generation sequencing. This, gene has been progressively acknowledged as a mimicker of β thalassemia trait in two independent individuals and one family. These individuals have the same features, including hypochromic microcytic indices, increased Hb A2 levels, without mutations in the β globin gene. The three novel SUPT5H variants identified in this study (c.1168_1169del, c.2688del and c.307+1G>A) are frameshift variants leading to a premature stop codon or an intronic variant predicted to alter the splice site consensus sequence by in silico software. All three variants are characterized as Loss-of-Function variants either by generating a truncated protein or haplo-insufficiency due to nonsense-mediated decay. These findings confirm the general observation that most variants in SUPT5H associated with a β thalassemia trait phenotype are Loss-of-Function variants. This gene should be considered as a potential target gene in the genetic diagnosis of any unsolved cases of increased HbA2 and unexplained inconsistency of phenotype and genotype of β thalassemia intermedia.
Collapse
Affiliation(s)
- Nik Fatma Fairuz Nik Mohd Hasan
- Department of Clinical Genetics, Leiden University Medical Centre, Leiden, The Netherlands
- Department of Pathology, Hospital Raja Perempuan Zainab II, Kelantan, Malaysia
| | - Ahlem Achour
- Department of Clinical Genetics, Leiden University Medical Centre, Leiden, The Netherlands
- Department of Congenital and Hereditary Diseases, Charles Nicolle Hospital, Tunis, Tunisia
- Laboratory of Human Genetics, Faculty of Medicine of Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Tamara Koopmann
- Department of Clinical Genetics, Leiden University Medical Centre, Leiden, The Netherlands
| | | | | | - Huib Ceelie
- Franciscus Gasthuis & Vlietland Rotterdam, Rotterdam, The Netherlands
| | - Daniel Stieber
- Laboratoire National de Santé, National Center of Genetics, Dudelange, Luxembourg
| | - Frank Baas
- Department of Clinical Genetics, Leiden University Medical Centre, Leiden, The Netherlands
| | - Cornelis L Harteveld
- Department of Clinical Genetics, Leiden University Medical Centre, Leiden, The Netherlands
| |
Collapse
|
2
|
Loh JB, Ross JM, Musallam KM, Kuo KHM. Trans-acting genetic modifiers of clinical severity in heterozygous β-Thalassemia trait. Ann Hematol 2024; 103:4437-4447. [PMID: 39316111 DOI: 10.1007/s00277-024-06007-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 09/10/2024] [Indexed: 09/25/2024]
Abstract
There is a group of beta (β)-thalassemia trait 'carriers' (with heterozygous mutations) who should be asymptomatic with minor abnormalities in their hematological parameters, but experience more severe disease manifestations than predicted based solely on their β-globin genotype. This review focuses on literature describing trans-acting genetic modifiers outside of the α- and β-globin gene clusters that could cause this phenomenon. These genetic modifiers are categorized into: mutations affecting the quantity of alpha-globin products, non-globin mutations affecting erythropoiesis, membranopathies, enzymopathies and erythrocyte-independent modifiers of complications relating to β-thalassemia. Although some genetic determinants seem to correlate more directly with β-thalassemia trait severity, such as mutations in SUPT5H, PIEZO1 and hereditary elliptocytosis, the difficulties of linking the contribution of other modulating factors are elucidated in this review. Targeted next generation sequencing of hemolytic anemias can be helpful but also raises another quandary in interpreting variants of uncertain significance. The accrual of knowledge, along with the increased availability of genetic testing for genetic modifiers has considerable potential for clinical applications such as genetic counselling, decision-making for clinical interventions and prognostication, and perhaps generating new therapeutic targets.
Collapse
Affiliation(s)
- Joanna B Loh
- Division of Hematology, Department of Medicine, University of Toronto, Toronto, ON, Canada
| | - Jules M Ross
- Division of Hematology, Department of Medicine, University of Toronto, Toronto, ON, Canada
| | - Khaled M Musallam
- Center for Research on Rare Blood Disorders (CR-RBD), Burjeel Medical City, Abu Dhabi, United Arab Emirates
- Division of Hematology/Oncology, Department of Pediatrics, Weill Cornell Medicine, New York, NY, USA
| | - Kevin H M Kuo
- Division of Hematology, Department of Medicine, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
3
|
Ding B, Mao Y, Li Y, Xin M, Jiang S, Hu X, Xu Q, Ding Q, Wang X. A novel GATA1 variant p.G229D causing the defect of procoagulant platelet formation. Thromb Res 2024; 234:39-50. [PMID: 38159323 DOI: 10.1016/j.thromres.2023.12.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 12/19/2023] [Accepted: 12/19/2023] [Indexed: 01/03/2024]
Abstract
INTRODUCTION GATA1 is one of the master transcription factors in hematopoietic lineages development which is crucial for megakaryocytic differentiation and maturation. Previous studies have shown that distinct GATA1 variants are associated with varying severities of macrothrombocytopenia and platelet dysfunction. OBJECTIVE To determine the underlying pathological mechanisms of a novel GATA1 variant (c. 686G > A, p. G229D) in a patient with recurrent traumatic muscle hematomas. METHODS Comprehensive phenotypic analysis of the patient platelets was performed. Procoagulant platelet formation and function were detected using flow cytometry assay and thrombin generation test (TGT), respectively. The ANO6 expression was measured by qPCR and western blot. The intracellular supramaximal calcium flux was detected by Fluo-5N fluorescent assay. RESULTS The patient displayed mild macrothrombocytopenia with defects of platelet granules, aggregation, and integrin αIIbβ3 activation. The percentage of the procoagulant platelet formation of the patient upon the stimulation of thrombin plus collagen was lower than that of the healthy controls (40.9 % vs 49.0 % ± 5.1 %). The patient platelets exhibited a marked reduction of thrombin generation in platelet rich plasma TGT compared to the healthy controls (peak value: ∼70 % of the healthy controls; the endogenous thrombin potential: ∼40 % of the healthy controls). The expression of ANO6 and intracellular calcium flux were impaired, which together with abnormal granules of the patient platelets might contribute to defect of procoagulant platelet function. CONCLUSIONS The G229D variant could lead to a novel platelet phenotype characterized by defective procoagulant platelet formation and function, which extended the range of GATA1 variants associated platelet disorders.
Collapse
Affiliation(s)
- Biying Ding
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China; State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yinqi Mao
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China; State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yang Li
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China; State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Min Xin
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Shifeng Jiang
- State Key Laboratory of Microbial Metabolism & Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaobo Hu
- Department of Molecular Biology, Shanghai Center for Clinical Laboratory, Shanghai, China
| | - Qin Xu
- State Key Laboratory of Microbial Metabolism & Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China.
| | - Qiulan Ding
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China; Collaborative Innovation Center of Hematology, Shanghai Jiaotong University School of Medicine, Shanghai, China.
| | - Xuefeng Wang
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China; Collaborative Innovation Center of Hematology, Shanghai Jiaotong University School of Medicine, Shanghai, China.
| |
Collapse
|
4
|
Takasaki K, Chou ST. GATA1 in Normal and Pathologic Megakaryopoiesis and Platelet Development. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1459:261-287. [PMID: 39017848 DOI: 10.1007/978-3-031-62731-6_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
GATA1 is a highly conserved hematopoietic transcription factor (TF), essential for normal erythropoiesis and megakaryopoiesis, that encodes a full-length, predominant isoform and an amino (N) terminus-truncated isoform GATA1s. It is consistently expressed throughout megakaryocyte development and interacts with its target genes either independently or in association with binding partners such as FOG1 (friend of GATA1). While the N-terminus and zinc finger have classically been demonstrated to be necessary for the normal regulation of platelet-specific genes, murine models, cell-line studies, and human case reports indicate that the carboxy-terminal activation domain and zinc finger also play key roles in precisely controlling megakaryocyte growth, proliferation, and maturation. Murine models have shown that disruptions to GATA1 increase the proliferation of immature megakaryocytes with abnormal architecture and impaired terminal differentiation into platelets. In humans, germline GATA1 mutations result in variable cytopenias, including macrothrombocytopenia with abnormal platelet aggregation and excessive bleeding tendencies, while acquired GATA1s mutations in individuals with trisomy 21 (T21) result in transient abnormal myelopoiesis (TAM) and myeloid leukemia of Down syndrome (ML-DS) arising from a megakaryocyte-erythroid progenitor (MEP). Taken together, GATA1 plays a key role in regulating megakaryocyte differentiation, maturation, and proliferative capacity. As sequencing and proteomic technologies expand, additional GATA1 mutations and regulatory mechanisms contributing to human diseases of megakaryocytes and platelets are likely to be revealed.
Collapse
Affiliation(s)
- Kaoru Takasaki
- Department of Pediatrics, Division of Hematology, University of Pennsylvania Perelman School of Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Stella T Chou
- Department of Pediatrics, Division of Hematology, University of Pennsylvania Perelman School of Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA.
- Department of Pathology and Laboratory Medicine, Division of Transfusion Medicine, University of Pennsylvania Perelman School of Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA.
| |
Collapse
|
5
|
Wang ZQ, Zhang ZC, Wu YY, Pi YN, Lou SH, Liu TB, Lou G, Yang C. Bromodomain and extraterminal (BET) proteins: biological functions, diseases, and targeted therapy. Signal Transduct Target Ther 2023; 8:420. [PMID: 37926722 PMCID: PMC10625992 DOI: 10.1038/s41392-023-01647-6] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 08/23/2023] [Accepted: 09/12/2023] [Indexed: 11/07/2023] Open
Abstract
BET proteins, which influence gene expression and contribute to the development of cancer, are epigenetic interpreters. Thus, BET inhibitors represent a novel form of epigenetic anticancer treatment. Although preliminary clinical trials have shown the anticancer potential of BET inhibitors, it appears that these drugs have limited effectiveness when used alone. Therefore, given the limited monotherapeutic activity of BET inhibitors, their use in combination with other drugs warrants attention, including the meaningful variations in pharmacodynamic activity among chosen drug combinations. In this paper, we review the function of BET proteins, the preclinical justification for BET protein targeting in cancer, recent advances in small-molecule BET inhibitors, and preliminary clinical trial findings. We elucidate BET inhibitor resistance mechanisms, shed light on the associated adverse events, investigate the potential of combining these inhibitors with diverse therapeutic agents, present a comprehensive compilation of synergistic treatments involving BET inhibitors, and provide an outlook on their future prospects as potent antitumor agents. We conclude by suggesting that combining BET inhibitors with other anticancer drugs and innovative next-generation agents holds great potential for advancing the effective targeting of BET proteins as a promising anticancer strategy.
Collapse
Affiliation(s)
- Zhi-Qiang Wang
- Department of Gynecology Oncology, Harbin Medical University Cancer Hospital, Harbin, 150086, China
| | - Zhao-Cong Zhang
- Department of Gynecology Oncology, Harbin Medical University Cancer Hospital, Harbin, 150086, China
| | - Yu-Yang Wu
- School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Ya-Nan Pi
- Department of Gynecology Oncology, Harbin Medical University Cancer Hospital, Harbin, 150086, China
| | - Sheng-Han Lou
- Department of Colorectal Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Tian-Bo Liu
- Department of Gynecology Oncology, Harbin Medical University Cancer Hospital, Harbin, 150086, China
| | - Ge Lou
- Department of Gynecology Oncology, Harbin Medical University Cancer Hospital, Harbin, 150086, China.
| | - Chang Yang
- Department of Gynecology Oncology, Harbin Medical University Cancer Hospital, Harbin, 150086, China.
| |
Collapse
|
6
|
Sun XH, Liu Q, Wu SN, Xu WH, Chen K, Shao JB, Jiang H. Cytopenia: a report of haplo-cord transplantation in twin brothers caused by a novel germline GATA1 mutation and family survey. Ann Hematol 2023; 102:3177-3184. [PMID: 37460606 DOI: 10.1007/s00277-023-05363-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 07/07/2023] [Indexed: 10/12/2023]
Abstract
Cytopenia due to the abnormal regulation of GATA1 could manifest as varying degrees of thrombocytopenia and/or anemia and more severely in male children than in female children. Here, we describe the case of pancytopenic and transfusion-dependent twin brothers at our center whose bone marrow puncture revealed low bone marrow hyperplasia. Whole-exome sequencing revealed that the twins had a new germline GATA1 mutation (nm_002049: exon 3:c.515 T >C:p.F172S), which confirmed the diagnosis of GATA1 mutation-related pancytopenia. The mutation was inherited from their mother, who was heterozygous for the mutation. Sanger sequencing verified the pathogenicity of the mutation. Further family morbidity survey confirmed that GATA1 mutation-related pancytopenia is an X-linked recessive genetic disorder. We developed haploid hematopoietic stem cell transplantation programs for twins, with the father as the only donor, and finally, the hematopoietic reconstruction was successful. Although they experienced acute graft-versus-host disease, hemorrhagic cystitis, and a viral infection in the early stage, no abnormal manifestations or transplant-related complications were observed 3 months after transplantation. Through hematopoietic stem cell transplantation technology for one donor and two receptors, we eventually cured the twins. The p.F172S variant in the new germline GATA1 mutation may play an essential role in the pathogenesis of GATA1 mutation-related cytopenia.
Collapse
Affiliation(s)
- Xing-Hua Sun
- Department of Hematology and Oncology, Shanghai Children's Hospital, School of Medicine, Shanghai Jiao Tong University, No. 24, Lane 1400, Beijing West Road, Jing'an District, Shanghai, 200040, China
| | - Qin Liu
- Department of Hematology and Oncology, Shanghai Children's Hospital, School of Medicine, Shanghai Jiao Tong University, No. 24, Lane 1400, Beijing West Road, Jing'an District, Shanghai, 200040, China
| | - Sheng-Nan Wu
- Central Laboratory, Shanghai Children's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Wu-Hen Xu
- Central Laboratory, Shanghai Children's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Kai Chen
- Department of Hematology and Oncology, Shanghai Children's Hospital, School of Medicine, Shanghai Jiao Tong University, No. 24, Lane 1400, Beijing West Road, Jing'an District, Shanghai, 200040, China.
| | - Jing-Bo Shao
- Department of Hematology and Oncology, Shanghai Children's Hospital, School of Medicine, Shanghai Jiao Tong University, No. 24, Lane 1400, Beijing West Road, Jing'an District, Shanghai, 200040, China
| | - Hui Jiang
- Department of Hematology and Oncology, Shanghai Children's Hospital, School of Medicine, Shanghai Jiao Tong University, No. 24, Lane 1400, Beijing West Road, Jing'an District, Shanghai, 200040, China
| |
Collapse
|
7
|
Ling T, Zhang K, Yang J, Gurbuxani S, Crispino JD. Gata1s mutant mice display persistent defects in the erythroid lineage. Blood Adv 2023; 7:3253-3264. [PMID: 36350717 PMCID: PMC10336263 DOI: 10.1182/bloodadvances.2022008124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 09/23/2022] [Accepted: 10/17/2022] [Indexed: 11/11/2022] Open
Abstract
GATA1 mutations that result in loss of the N-terminal 83 amino acids are a feature of myeloid leukemia in children with Down syndrome, rare familial cases of dyserythropoietic anemia, and a subset of cases of Diamond-Blackfan anemia. The Gata1s mouse model, which expresses only the short GATA1 isoform that begins at methionine 84, has been shown to have a defect in hematopoiesis, especially impaired erythropoiesis with expanded megakaryopoiesis, during gestation. However, these mice reportedly did not show any postnatal phenotype. Here, we demonstrate that Gata1s mutant mice display macrocytic anemia and features of aberrant megakaryopoiesis throughout life, culminating in profound splenomegaly and bone marrow fibrosis. These data support the use of this animal model for studies of GATA1 deficiencies.
Collapse
Affiliation(s)
- Te Ling
- Department of Hematology, St. Jude Children’s Research Hospital, Memphis, TN
| | - Kevin Zhang
- Department of Hematology, St. Jude Children’s Research Hospital, Memphis, TN
| | - Jiayue Yang
- Department of Microbiology, School of Molecular and Cellular Biology, University of Illinois Urbana-Champaign, Champaign, IL
| | | | - John D. Crispino
- Department of Hematology, St. Jude Children’s Research Hospital, Memphis, TN
| |
Collapse
|
8
|
Zerella JR, Homan CC, Arts P, Brown AL, Scott HS, Hahn CN. Transcription factor genetics and biology in predisposition to bone marrow failure and hematological malignancy. Front Oncol 2023; 13:1183318. [PMID: 37377909 PMCID: PMC10291195 DOI: 10.3389/fonc.2023.1183318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 05/26/2023] [Indexed: 06/29/2023] Open
Abstract
Transcription factors (TFs) play a critical role as key mediators of a multitude of developmental pathways, with highly regulated and tightly organized networks crucial for determining both the timing and pattern of tissue development. TFs can act as master regulators of both primitive and definitive hematopoiesis, tightly controlling the behavior of hematopoietic stem and progenitor cells (HSPCs). These networks control the functional regulation of HSPCs including self-renewal, proliferation, and differentiation dynamics, which are essential to normal hematopoiesis. Defining the key players and dynamics of these hematopoietic transcriptional networks is essential to understanding both normal hematopoiesis and how genetic aberrations in TFs and their networks can predispose to hematopoietic disease including bone marrow failure (BMF) and hematological malignancy (HM). Despite their multifaceted and complex involvement in hematological development, advances in genetic screening along with elegant multi-omics and model system studies are shedding light on how hematopoietic TFs interact and network to achieve normal cell fates and their role in disease etiology. This review focuses on TFs which predispose to BMF and HM, identifies potential novel candidate predisposing TF genes, and examines putative biological mechanisms leading to these phenotypes. A better understanding of the genetics and molecular biology of hematopoietic TFs, as well as identifying novel genes and genetic variants predisposing to BMF and HM, will accelerate the development of preventative strategies, improve clinical management and counseling, and help define targeted treatments for these diseases.
Collapse
Affiliation(s)
- Jiarna R. Zerella
- Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, Australia
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA, Australia
| | - Claire C. Homan
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA, Australia
- Department of Genetics and Molecular Pathology, SA Pathology, Adelaide, SA, Australia
| | - Peer Arts
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA, Australia
- Department of Genetics and Molecular Pathology, SA Pathology, Adelaide, SA, Australia
| | - Anna L. Brown
- Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, Australia
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA, Australia
- Department of Genetics and Molecular Pathology, SA Pathology, Adelaide, SA, Australia
| | - Hamish S. Scott
- Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, Australia
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA, Australia
- Department of Genetics and Molecular Pathology, SA Pathology, Adelaide, SA, Australia
| | - Christopher N. Hahn
- Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, Australia
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA, Australia
- Department of Genetics and Molecular Pathology, SA Pathology, Adelaide, SA, Australia
| |
Collapse
|
9
|
Martin-Rufino JD, Castano N, Pang M, Grody EI, Joubran S, Caulier A, Wahlster L, Li T, Qiu X, Riera-Escandell AM, Newby GA, Al'Khafaji A, Chaudhary S, Black S, Weng C, Munson G, Liu DR, Wlodarski MW, Sims K, Oakley JH, Fasano RM, Xavier RJ, Lander ES, Klein DE, Sankaran VG. Massively parallel base editing to map variant effects in human hematopoiesis. Cell 2023; 186:2456-2474.e24. [PMID: 37137305 PMCID: PMC10225359 DOI: 10.1016/j.cell.2023.03.035] [Citation(s) in RCA: 72] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 02/26/2023] [Accepted: 03/30/2023] [Indexed: 05/05/2023]
Abstract
Systematic evaluation of the impact of genetic variants is critical for the study and treatment of human physiology and disease. While specific mutations can be introduced by genome engineering, we still lack scalable approaches that are applicable to the important setting of primary cells, such as blood and immune cells. Here, we describe the development of massively parallel base-editing screens in human hematopoietic stem and progenitor cells. Such approaches enable functional screens for variant effects across any hematopoietic differentiation state. Moreover, they allow for rich phenotyping through single-cell RNA sequencing readouts and separately for characterization of editing outcomes through pooled single-cell genotyping. We efficiently design improved leukemia immunotherapy approaches, comprehensively identify non-coding variants modulating fetal hemoglobin expression, define mechanisms regulating hematopoietic differentiation, and probe the pathogenicity of uncharacterized disease-associated variants. These strategies will advance effective and high-throughput variant-to-function mapping in human hematopoiesis to identify the causes of diverse diseases.
Collapse
Affiliation(s)
- Jorge D Martin-Rufino
- Division of Hematology/Oncology, Boston Children's Hospital and Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; PhD Program in Biological and Biomedical Sciences, Harvard Medical School, Boston, MA 02115, USA
| | - Nicole Castano
- Division of Hematology/Oncology, Boston Children's Hospital and Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Michael Pang
- Division of Hematology/Oncology, Boston Children's Hospital and Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Harvard-MIT Health Sciences and Technology, Harvard Medical School, Boston, MA 02115, USA
| | | | - Samantha Joubran
- Division of Hematology/Oncology, Boston Children's Hospital and Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Chemical Biology PhD Program, Harvard Medical School, Boston, MA 02115, USA
| | - Alexis Caulier
- Division of Hematology/Oncology, Boston Children's Hospital and Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Lara Wahlster
- Division of Hematology/Oncology, Boston Children's Hospital and Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Tongqing Li
- Department of Pharmacology and Yale Cancer Biology Institute, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Xiaojie Qiu
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | | | - Gregory A Newby
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA; Howard Hughes Medical Institute, Harvard University, Cambridge, MA 02138, USA
| | - Aziz Al'Khafaji
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | | | - Susan Black
- Division of Hematology/Oncology, Boston Children's Hospital and Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Chen Weng
- Division of Hematology/Oncology, Boston Children's Hospital and Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Glen Munson
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - David R Liu
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA; Howard Hughes Medical Institute, Harvard University, Cambridge, MA 02138, USA
| | - Marcin W Wlodarski
- Department of Hematology, St Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Kacie Sims
- St. Jude Affiliate Clinic at Our Lady of the Lake Children's Health, Baton Rouge, LA 70809, USA
| | - Jamie H Oakley
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta and Emory University, Atlanta, GA 30322, USA
| | - Ross M Fasano
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta and Emory University, Atlanta, GA 30322, USA
| | - Ramnik J Xavier
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Center for Computational and Integrative Biology, Department of Molecular Biology, and Center for the Study of Inflammatory Bowel Disease, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Eric S Lander
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Daryl E Klein
- Department of Pharmacology and Yale Cancer Biology Institute, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Vijay G Sankaran
- Division of Hematology/Oncology, Boston Children's Hospital and Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA.
| |
Collapse
|
10
|
Abstract
Thalassemia syndromes are common monogenic disorders and represent a significant health issue worldwide. In this review, the authors elaborate on fundamental genetic knowledge about thalassemias, including the structure and location of globin genes, the production of hemoglobin during development, the molecular lesions causing α-, β-, and other thalassemia syndromes, the genotype-phenotype correlation, and the genetic modifiers of these conditions. In addition, they briefly discuss the molecular techniques applied for diagnosis and innovative cell and gene therapy strategies to cure these conditions.
Collapse
Affiliation(s)
- Nicolò Tesio
- Department of Clinical and Biological Sciences, San Luigi Gonzaga University Hospital, University of Torino, Regione Gonzole, 10, 10043 Orbassano, Turin, Italy. https://twitter.com/nicolotesio
| | - Daniel E Bauer
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA; Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA; Department of Pediatrics, Harvard Stem Cell Institute, Broad Institute, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
11
|
Yuan H, Liu Y, Zhang J, Dong JF, Zhao Z. Transcription factors in megakaryocytes and platelets. Front Immunol 2023; 14:1140501. [PMID: 36969155 PMCID: PMC10034027 DOI: 10.3389/fimmu.2023.1140501] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 03/01/2023] [Indexed: 03/11/2023] Open
Abstract
Transcription factors bind promoter or regulatory sequences of a gene to regulate its rate of transcription. However, they are also detected in anucleated platelets. The transcription factors RUNX1, GATA1, STAT3, NFκB, and PPAR have been widely reported to play key roles in the pathophysiology of platelet hyper-reactivity, thrombosis, and atherosclerosis. These non-transcriptional activities are independent of gene transcription or protein synthesis but their underlying mechanisms of action remain poorly defined. Genetic and acquired defects in these transcription factors are associated with the production of platelet microvesicles that are known to initiate and propagate coagulation and to promote thrombosis. In this review, we summarize recent developments in the study of transcription factors in platelet generation, reactivity, and production of microvesicles, with a focus on non-transcriptional activities of selected transcription factors.
Collapse
Affiliation(s)
- Hengjie Yuan
- Tianjin Institute of Neurology, Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- BloodWorks Research Institute, Seattle, WA, United States
| | - Yafan Liu
- Tianjin Institute of Neurology, Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Jianning Zhang
- Tianjin Institute of Neurology, Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Jing-fei Dong
- BloodWorks Research Institute, Seattle, WA, United States
- Division of Hematology, Department of Medicine, University of Washington, School of Medicine, Seattle, WA, United States
- *Correspondence: Zilong Zhao, ; Jing-fei Dong,
| | - Zilong Zhao
- Tianjin Institute of Neurology, Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- BloodWorks Research Institute, Seattle, WA, United States
- *Correspondence: Zilong Zhao, ; Jing-fei Dong,
| |
Collapse
|
12
|
Guo J, Zheng Q, Peng Y. BET proteins: Biological functions and therapeutic interventions. Pharmacol Ther 2023; 243:108354. [PMID: 36739915 DOI: 10.1016/j.pharmthera.2023.108354] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 01/29/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023]
Abstract
Bromodomain and extra-terminal (BET) family member proteins (BRD2, BRD3, BRD4 and BRDT) play a pivotal role in interpreting the epigenetic information of histone Kac modification, thus controlling gene expression, remodeling chromatin structures and avoid replicative stress-induced DNA damages. Abnormal activation of BET proteins is tightly correlated to various human diseases, including cancer. Therefore, BET bromodomain inhibitors (BBIs) were considered as promising therapeutics to treat BET-related diseases, raising >70 clinical trials in the past decades. Despite preliminary effects achieved, drug resistance and adverse events represent two major challenges for current BBIs development. In this review, we will introduce the biological functions of BET proteins in both physiological and pathological conditions; and summarize the progress in current BBI drug development. Moreover, we will also discuss the major challenges in the front of BET inhibitor development and provide rational strategies to overcome these obstacles.
Collapse
Affiliation(s)
- Jiawei Guo
- Laboratory of Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Qingquan Zheng
- Laboratory of Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yong Peng
- Laboratory of Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China; Frontier Medical Center, Tianfu Jincheng Laboratory, Chengdu, 610212, China.
| |
Collapse
|
13
|
A Novel GATA1 Variant in the C-Terminal Zinc Finger Compared with the Platelet Phenotype of Patients with A Likely Pathogenic Variant in the N-Terminal Zinc Finger. Cells 2022; 11:cells11203223. [PMID: 36291092 PMCID: PMC9600848 DOI: 10.3390/cells11203223] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/22/2022] [Accepted: 10/10/2022] [Indexed: 01/19/2023] Open
Abstract
The GATA1 transcription factor is essential for normal erythropoiesis and megakaryocytic differentiation. Germline GATA1 pathogenic variants in the N-terminal zinc finger (N-ZF) are typically associated with X-linked thrombocytopenia, platelet dysfunction, and dyserythropoietic anemia. A few variants in the C-terminal ZF (C-ZF) domain are described with normal platelet count but altered platelet function as the main characteristic. Independently performed molecular genetic analysis identified a novel hemizygous variant (c.865C>T, p.H289Y) in the C-ZF region of GATA1 in a German patient and in a Spanish patient. We characterized the bleeding and platelet phenotype of these patients and compared these findings with the parameters of two German siblings carrying the likely pathogenic variant p.D218N in the GATA1 N-ZF domain. The main difference was profound thrombocytopenia in the brothers carrying the p.D218N variant compared to a normal platelet count in patients carrying the p.H289Y variant; only the Spanish patient occasionally developed mild thrombocytopenia. A functional platelet defect affecting αIIbβ3 integrin activation and α-granule secretion was present in all patients. Additionally, mild anemia, anisocytosis, and poikilocytosis were observed in the patients with the C-ZF variant. Our data support the concept that GATA1 variants located in the different ZF regions can lead to clinically diverse manifestations.
Collapse
|
14
|
Camargo R, Sahoo SS, Córdoba JC, Magalhães IQ. Germline GATA1 exon 2 mutation associated with chronic cytopenia and a non-down syndrome transient abnormal myelopoiesis with clonal trisomy 21. Leukemia 2022; 36:2347-2350. [PMID: 35941211 DOI: 10.1038/s41375-022-01638-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 06/21/2022] [Accepted: 06/27/2022] [Indexed: 11/09/2022]
|
15
|
Warren JT, Di Paola J. Genetics of inherited thrombocytopenias. Blood 2022; 139:3264-3277. [PMID: 35167650 PMCID: PMC9164741 DOI: 10.1182/blood.2020009300] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 02/04/2022] [Indexed: 01/19/2023] Open
Abstract
The inherited thrombocytopenia syndromes are a group of disorders characterized primarily by quantitative defects in platelet number, though with a variety demonstrating qualitative defects and/or extrahematopoietic findings. Through collaborative international efforts applying next-generation sequencing approaches, the list of genetic syndromes that cause thrombocytopenia has expanded significantly in recent years, now with over 40 genes implicated. In this review, we focus on what is known about the genetic etiology of inherited thrombocytopenia syndromes and how the field has worked to validate new genetic discoveries. We highlight the important role for the clinician in identifying a germline genetic diagnosis and strategies for identifying novel causes through research-based endeavors.
Collapse
Affiliation(s)
- Julia T Warren
- Division of Hematology-Oncology, Department of Pediatrics, Washington University School of Medicine, St. Louis, MO
| | - Jorge Di Paola
- Division of Hematology-Oncology, Department of Pediatrics, Washington University School of Medicine, St. Louis, MO
| |
Collapse
|
16
|
A R307H substitution in GATA1 that prevents S310 phosphorylation causes severe fetal anemia. Blood Adv 2022; 6:4330-4334. [PMID: 35580337 PMCID: PMC9327554 DOI: 10.1182/bloodadvances.2021006347] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 05/08/2022] [Indexed: 01/19/2023] Open
|
17
|
Chauhan W, Shoaib S, Fatma R, Zaka‐ur‐Rab Z, Afzal M. β‐thalassemia, and the advent of new Interventions beyond Transfusion and Iron chelation. Br J Clin Pharmacol 2022; 88:3610-3626. [DOI: 10.1111/bcp.15343] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 03/10/2022] [Accepted: 03/29/2022] [Indexed: 01/19/2023] Open
Affiliation(s)
- Waseem Chauhan
- Human Genetics and Toxicology Laboratory, Department of Zoology Aligarh Muslim University Aligarh India
| | - Shoaib Shoaib
- Department of Biochemistry, JNMC Aligarh Muslim University Aligarh India
| | - Rafat Fatma
- Human Genetics and Toxicology Laboratory, Department of Zoology Aligarh Muslim University Aligarh India
| | - Zeeba Zaka‐ur‐Rab
- Department of Pediatrics, JNMC Aligarh Muslim University Aligarh India
| | - Mohammad Afzal
- Human Genetics and Toxicology Laboratory, Department of Zoology Aligarh Muslim University Aligarh India
| |
Collapse
|
18
|
van Dooijeweert B, Kia SK, Dahl N, Fenneteau O, Leguit R, Nieuwenhuis E, van Solinge W, van Wijk R, Da Costa L, Bartels M. GATA-1 Defects in Diamond-Blackfan Anemia: Phenotypic Characterization Points to a Specific Subset of Disease. Genes (Basel) 2022; 13:genes13030447. [PMID: 35328001 PMCID: PMC8949872 DOI: 10.3390/genes13030447] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 02/13/2022] [Accepted: 02/24/2022] [Indexed: 02/01/2023] Open
Abstract
Diamond−Blackfan anemia (DBA) is one of the inherited bone marrow failure syndromes marked by erythroid hypoplasia. Underlying variants in ribosomal protein (RP) genes account for 80% of cases, thereby classifying DBA as a ribosomopathy. In addition to RP genes, extremely rare variants in non-RP genes, including GATA1, the master transcription factor in erythropoiesis, have been reported in recent years in patients with a DBA-like phenotype. Subsequently, a pivotal role for GATA-1 in DBA pathophysiology was established by studies showing the impaired translation of GATA1 mRNA downstream of the RP haploinsufficiency. Here, we report on a patient from the Dutch DBA registry, in which we found a novel hemizygous variant in GATA1 (c.220+2T>C), and an Iranian patient with a previously reported variant in the initiation codon of GATA1 (c.2T>C). Although clinical features were concordant with DBA, the bone marrow morphology in both patients was not typical for DBA, showing moderate erythropoietic activity with signs of dyserythropoiesis and dysmegakaryopoiesis. This motivated us to re-evaluate the clinical characteristics of previously reported cases, which resulted in the comprehensive characterization of 18 patients with an inherited GATA-1 defect in exon 2 that is presented in this case-series. In addition, we re-investigated the bone marrow aspirate of one of the previously published cases. Altogether, our observations suggest that DBA caused by GATA1 defects is characterized by distinct phenotypic characteristics, including dyserythropoiesis and dysmegakaryopoiesis, and therefore represents a distinct phenotype within the DBA disease spectrum, which might need specific clinical management.
Collapse
Affiliation(s)
- Birgit van Dooijeweert
- Central Diagnostic Laboratory Research, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands; (B.v.D.); (W.v.S.); (R.v.W.)
- Department of Pediatric Hematology, van Creveldkliniek, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| | - Sima Kheradmand Kia
- Laboratory for Red Blood Cell Diagnostics, Sanquin, 1006 AD Amsterdam, The Netherlands;
- Peyvand Lab Complex, Shiraz 7363871347, Iran
| | - Niklas Dahl
- Department of Immunology, Genetics and Pathology, Uppsala University and Children’s Hospital, 751 85 Uppsala, Sweden;
| | - Odile Fenneteau
- AP-HP, Service d’Hématologie Biologique, Hôpital Robert Debré, University of Paris Cité, Hematim EA 4666, UPJV, F-75019 Paris, France; (O.F.); (L.D.C.)
| | - Roos Leguit
- Department of Pathology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands;
| | - Edward Nieuwenhuis
- Department of Pediatrics, University Medical Center Utrecht, 3508 AB Utrecht, The Netherlands;
| | - Wouter van Solinge
- Central Diagnostic Laboratory Research, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands; (B.v.D.); (W.v.S.); (R.v.W.)
| | - Richard van Wijk
- Central Diagnostic Laboratory Research, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands; (B.v.D.); (W.v.S.); (R.v.W.)
| | - Lydie Da Costa
- AP-HP, Service d’Hématologie Biologique, Hôpital Robert Debré, University of Paris Cité, Hematim EA 4666, UPJV, F-75019 Paris, France; (O.F.); (L.D.C.)
| | - Marije Bartels
- Department of Pediatric Hematology, van Creveldkliniek, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
- Department of Pediatrics, University Medical Center Utrecht, 3508 AB Utrecht, The Netherlands;
- Correspondence:
| |
Collapse
|
19
|
Jaing TH, Chang TY, Chen SH, Lin CW, Wen YC, Chiu CC. Molecular genetics of β-thalassemia: A narrative review. Medicine (Baltimore) 2021; 100:e27522. [PMID: 34766559 PMCID: PMC8589257 DOI: 10.1097/md.0000000000027522] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/22/2021] [Accepted: 07/26/2021] [Indexed: 01/05/2023] Open
Abstract
ABSTRACT β-thalassemia is a hereditary hematological disease caused by over 350 mutations in the β-globin gene (HBB). Identifying the genetic variants affecting fetal hemoglobin (HbF) production combined with the α-globin genotype provides some prediction of disease severity for β-thalassemia. However, the generation of an additive composite genetic risk score predicts prognosis, and guide management requires a larger panel of genetic modifiers yet to be discovered.Presently, using data from prior clinical trials guides the design of further research and academic studies based on gene augmentation, while fundamental insights into globin switching and new technology developments have inspired the investigation of novel gene therapy approaches.Genetic studies have successfully characterized the causal variants and pathways involved in HbF regulation, providing novel therapeutic targets for HbF reactivation. In addition to these HBB mutation-independent strategies involving HbF synthesis de-repression, the expanding genome editing toolkit provides increased accuracy to HBB mutation-specific strategies encompassing adult hemoglobin restoration for personalized treatment of hemoglobinopathies. Allogeneic hematopoietic stem cell transplantation was, until very recently, the curative option available for patients with transfusion-dependent β-thalassemia. Gene therapy currently represents a novel therapeutic promise after many years of extensive preclinical research to optimize gene transfer protocols.We summarize the current state of developments in the molecular genetics of β-thalassemia over the last decade, including the mechanisms associated with ineffective erythropoiesis, which have also provided valid therapeutic targets, some of which have been shown as a proof-of-concept.
Collapse
Affiliation(s)
- Tang-Her Jaing
- Divisions of Hematology and Oncology, Department of Pediatrics, Chang Gung Children's Hospital, Chang Gung University, Taoyuan, Taiwan
| | - Tsung-Yen Chang
- Divisions of Hematology and Oncology, Department of Pediatrics, Chang Gung Children's Hospital, Chang Gung University, Taoyuan, Taiwan
| | - Shih-Hsiang Chen
- Divisions of Hematology and Oncology, Department of Pediatrics, Chang Gung Children's Hospital, Chang Gung University, Taoyuan, Taiwan
| | - Chen-Wei Lin
- School of Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Yu-Chuan Wen
- Department of Nursing, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Chia-Chi Chiu
- Department of Nursing, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| |
Collapse
|
20
|
Barbarani G, Łabedz A, Ronchi AE. β-Hemoglobinopathies: The Test Bench for Genome Editing-Based Therapeutic Strategies. Front Genome Ed 2021; 2:571239. [PMID: 34713219 PMCID: PMC8525389 DOI: 10.3389/fgeed.2020.571239] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 10/29/2020] [Indexed: 12/26/2022] Open
Abstract
Hemoglobin is a tetrameric protein composed of two α and two β chains, each containing a heme group that reversibly binds oxygen. The composition of hemoglobin changes during development in order to fulfill the need of the growing organism, stably maintaining a balanced production of α-like and β-like chains in a 1:1 ratio. Adult hemoglobin (HbA) is composed of two α and two β subunits (α2β2 tetramer), whereas fetal hemoglobin (HbF) is composed of two γ and two α subunits (α2γ2 tetramer). Qualitative or quantitative defects in β-globin production cause two of the most common monogenic-inherited disorders: β-thalassemia and sickle cell disease. The high frequency of these diseases and the relative accessibility of hematopoietic stem cells make them an ideal candidate for therapeutic interventions based on genome editing. These strategies move in two directions: the correction of the disease-causing mutation and the reactivation of the expression of HbF in adult cells, in the attempt to recreate the effect of hereditary persistence of fetal hemoglobin (HPFH) natural mutations, which mitigate the severity of β-hemoglobinopathies. Both lines of research rely on the knowledge gained so far on the regulatory mechanisms controlling the differential expression of globin genes during development.
Collapse
Affiliation(s)
- Gloria Barbarani
- Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, Milan, Italy
| | - Agata Łabedz
- Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, Milan, Italy
| | | |
Collapse
|
21
|
Martelli F, Verachi P, Zingariello M, Mazzarini M, Vannucchi AM, Lonetti A, Bacci B, Sarli G, Migliaccio AR. hGATA1 Under the Control of a μLCR/β-Globin Promoter Rescues the Erythroid but Not the Megakaryocytic Phenotype Induced by the Gata1 low Mutation in Mice. Front Genet 2021; 12:720552. [PMID: 34707640 PMCID: PMC8542976 DOI: 10.3389/fgene.2021.720552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 09/24/2021] [Indexed: 11/13/2022] Open
Abstract
The phenotype of mice carrying the Gata1low mutation that decreases expression of Gata1 in erythroid cells and megakaryocytes, includes anemia, thrombocytopenia, hematopoietic failure in bone marrow and development of extramedullary hematopoiesis in spleen. With age, these mice develop myelofibrosis, a disease sustained by alterations in stem/progenitor cells and megakaryocytes. This study analyzed the capacity of hGATA1 driven by a μLCR/β-globin promoter to rescue the phenotype induced by the Gata1low mutation in mice. Double hGATA1/Gata1low/0 mice were viable at birth with hematocrits greater than those of their Gata1low/0 littermates but platelet counts remained lower than normal. hGATA1 mRNA was expressed by progenitor and erythroid cells from double mutant mice but not by megakaryocytes analyzed in parallel. The erythroid cells from hGATA1/Gata1low/0 mice expressed greater levels of GATA1 protein and of α- and β-globin mRNA than cells from Gata1low/0 littermates and a reduced number of them was in apoptosis. By contrast, hGATA1/Gata1low/0 megakaryocytes expressed barely detectable levels of GATA1 and their expression of acetylcholinesterase, Von Willebrand factor and platelet factor 4 as well as their morphology remained altered. In comparison with Gata1+/0 littermates, Gata1low/0 mice contained significantly lower total and progenitor cell numbers in bone marrow while the number of these cells in spleen was greater than normal. The presence of hGATA1 greatly increased the total cell number in the bone marrow of Gata1low/0 mice and, although did not affect the total cell number of the spleen which remained greater than normal, it reduced the frequency of progenitor cells in this organ. The ability of hGATA1 to rescue the hematopoietic functions of the bone marrow of the double mutants was confirmed by the observation that these mice survive well splenectomy and did not develop myelofibrosis with age. These results indicate that hGATA1 under the control of µLCR/β-globin promoter is expressed in adult progenitors and erythroid cells but not in megakaryocytes rescuing the erythroid but not the megakaryocyte defect induced by the Gata1low/0 mutation.
Collapse
Affiliation(s)
- Fabrizio Martelli
- National Center for Drug Research and Evaluation, Istituto Superiore di Sanità, Rome, Italy
| | - Paola Verachi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Maria Zingariello
- Unit of Microscopic and Ultrastructural Anatomy, Department of Medicine, University Campus Bio-Medico, Rome, Italy
| | - Maria Mazzarini
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Alessandro M Vannucchi
- Department of Clinical and Experimental Medicine, Center of Research and Innovation of Myeloproliferative neoplasms (CRIMM), AOU Careggi, University of Florence, Florence, Italy
| | - Annalisa Lonetti
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Barbara Bacci
- Department of Veterinary Medical Sciences, University of Bologna, Bologna, Italy
| | - Giuseppe Sarli
- Department of Veterinary Medical Sciences, University of Bologna, Bologna, Italy
| | - Anna Rita Migliaccio
- Myeloproliferative Neoplasm Research Consortium, New York, NY, United States.,Department of Medicine and Surgery, University Campus Bio-Medico, Rome, Italy
| |
Collapse
|
22
|
Saultier P, Cabantous S, Puceat M, Peiretti F, Bigot T, Saut N, Bordet JC, Canault M, van Agthoven J, Loosveld M, Payet-Bornet D, Potier D, Falaise C, Bernot D, Morange PE, Alessi MC, Poggi M. GATA1 pathogenic variants disrupt MYH10 silencing during megakaryopoiesis. J Thromb Haemost 2021; 19:2287-2301. [PMID: 34060193 DOI: 10.1111/jth.15412] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 05/24/2021] [Indexed: 12/11/2022]
Abstract
BACKGROUND GATA1 is an essential transcription factor for both polyploidization and megakaryocyte (MK) differentiation. The polyploidization defect observed in GATA1 variant carriers is not well understood. OBJECTIVE To extensively phenotype two pedigrees displaying different variants in the GATA1 gene and determine if GATA1 controls MYH10 expression levels, a key modulator of MK polyploidization. METHOD A total of 146 unrelated propositi with constitutional thrombocytopenia were screened on a multigene panel. We described the genotype-phenotype correlation in GATA1 variant carriers and investigated the effect of these novel variants on MYH10 transcription using luciferase constructs. RESULTS The clinical profile associated with the p.L268M variant localized in the C terminal zinc finger was unusual in that the patient displayed bleeding and severe platelet aggregation defects without early-onset thrombocytopenia. p.N206I localized in the N terminal zinc finger was associated, on the other hand, with severe thrombocytopenia (15G/L) in early life. High MYH10 levels were evidenced in platelets of GATA1 variant carriers. Analysis of MKs anti-GATA1 chromatin immunoprecipitation-sequencing data revealed two GATA1 binding sites, located in the 3' untranslated region and in intron 8 of the MYH10 gene. Luciferase reporter assays showed their respective role in the regulation of MYH10 gene expression. Both GATA1 variants significantly alter intron 8 driven MYH10 transcription. CONCLUSION The discovery of an association between MYH10 and GATA1 is a novel one. Overall, this study suggests that impaired MYH10 silencing via an intronic regulatory element is the most likely cause of GATA1-related polyploidization defect.
Collapse
Affiliation(s)
- Paul Saultier
- Aix Marseille Univ, INSERM, INRAe, C2VN, Marseille, France
- Department of Pediatric Hematology, Immunology and Oncology, APHM, La Timone Children's Hospital, Marseille, France
| | | | | | | | - Timothée Bigot
- Aix Marseille Univ, INSERM, INRAe, C2VN, Marseille, France
| | - Noémie Saut
- Aix Marseille Univ, INSERM, INRAe, C2VN, Marseille, France
- APHM, CHU Timone, French Reference Center on Inherited Platelet Disorders, Marseille, France
| | | | | | - Johannes van Agthoven
- Structural Biology Program, Division of Nephrology/Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Marie Loosveld
- APHM, CHU Timone, French Reference Center on Inherited Platelet Disorders, Marseille, France
- Aix-Marseille Univ, CNRS, INSERM, CIML, Marseille, France
| | | | | | - Céline Falaise
- Department of Pediatric Hematology, Immunology and Oncology, APHM, La Timone Children's Hospital, Marseille, France
- APHM, CHU Timone, French Reference Center on Inherited Platelet Disorders, Marseille, France
| | - Denis Bernot
- Aix Marseille Univ, INSERM, INRAe, C2VN, Marseille, France
| | - Pierre-Emmanuel Morange
- Aix Marseille Univ, INSERM, INRAe, C2VN, Marseille, France
- APHM, CHU Timone, French Reference Center on Inherited Platelet Disorders, Marseille, France
| | - Marie-Christine Alessi
- Aix Marseille Univ, INSERM, INRAe, C2VN, Marseille, France
- APHM, CHU Timone, French Reference Center on Inherited Platelet Disorders, Marseille, France
| | - Marjorie Poggi
- Aix Marseille Univ, INSERM, INRAe, C2VN, Marseille, France
| |
Collapse
|
23
|
Specific proteome changes in platelets from individuals with GATA1-, GFI1B-, and RUNX1-linked bleeding disorders. Blood 2021; 138:86-90. [PMID: 33690840 DOI: 10.1182/blood.2020008118] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 03/04/2021] [Indexed: 11/20/2022] Open
Abstract
Mutations in the transcription factors GATA binding factor 1 (GATA1), growth factor independence 1B (GFI1B), and Runt-related transcription factor 1 (RUNX1) cause familial platelet and bleeding disorders. Mutant platelets exhibit common abnormalities including an α-granule reduction resulting in a grayish appearance in blood smears. This suggests that similar pathways are deregulated by different transcription factor mutations. To identify common factors, full platelet proteomes from 11 individuals with mutant GATA1R216Q, GFI1BQ287*, RUNX1Q154Rfs, or RUNX1TD2-6 and 28 healthy controls were examined by label-free quantitative mass spectrometry. In total, 2875 platelet proteins were reliably quantified. Clustering analysis of more than 300 differentially expressed proteins revealed profound differences between cases and controls. Among cases, 44 of 143 significantly downregulated proteins were assigned to platelet function, hemostasis, and granule biology, in line with platelet dysfunction and bleedings. Remarkably, none of these proteins were significantly diminished in all affected cases. Similarly, no proteins were commonly overrepresented in all affected cases compared with controls. These data indicate that the studied transcription factor mutations alter platelet proteomes in distinct largely nonoverlapping manners. This work provides the quantitative landscape of proteins that affect platelet function when deregulated by mutated transcription factors in inherited bleeding disorders.
Collapse
|
24
|
Ali H, Khan F, Ghulam Musharraf S. Acyclovir induces fetal hemoglobin via downregulation of γ-globin repressors, BCL11A and SOX6 trans-acting factors. Biochem Pharmacol 2021; 190:114612. [PMID: 34010599 DOI: 10.1016/j.bcp.2021.114612] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 05/11/2021] [Accepted: 05/13/2021] [Indexed: 10/21/2022]
Abstract
Pharmacological reactivation of developmentally silenced fetal hemoglobin (HbF) is an attractive approach to ameliorate the clinical manifestations of β-thalassemia and sickle cell anemia. Hydroxyurea, the only HbF inducer, has obtained regulatory approval. However, hydroxyurea non-responders and associated myelosuppression making its widespread use undesirable. A high level of HbF with safe and effective agents remains an elusive therapeutic goal for this global health burden. This study demonstrated the effect of acyclovir on γ-globin expression and erythropoiesis, associated with increased HbF production. In vitro, human erythroleukemia cells and human CD34+ erythroid progenitors, and in vivo β-YAC transgenic mice were used as experimental models. We found that acyclovir significantly induces expression of the γ-globin gene and HbF synthesis in CD34+ erythroid progenitors, without affecting terminal erythroid differentiation and erythroid cell proliferation. In contrast to other HbF inducers, no associated cytotoxicity with acyclovir was observed. Further, we reported the effect of acyclovir on γ-globin gene transcriptional regulators including BCL11A, FOP1, KLF1 SOX6, and GATA-1. Significant downregulation of the γ-globin repressors BCL11A and SOX6 was observed at both mRNA and protein levels. Whereas, GATA-1, a master erythroid transcription factor, was upregulated in acyclovir treated human CD34+ erythroid culture. Similarly, the HbF inducing effect of acyclovir in β-YAC transgenic mice revealed a good in vitro correlation, with a substantial increase in fetal globin mRNA, and F cells population. These findings collectively suggest acyclovir as an effective HbF inducer and pave the way to evaluate its clinical efficacy in treating β-globin disorders.
Collapse
Affiliation(s)
- Hamad Ali
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Faisal Khan
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Syed Ghulam Musharraf
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan; H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan.
| |
Collapse
|
25
|
Svidnicki MCCM, Filho MAF, Brandão MM, Dos Santos M, de Oliveira Dias R, Tavares RS, Assis-Mendonça GR, Traina F, Saad STO. New germline GATA1 variant in females with anemia and thrombocytopenia. Blood Cells Mol Dis 2021; 88:102545. [PMID: 33611093 DOI: 10.1016/j.bcmd.2021.102545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 01/28/2021] [Accepted: 01/28/2021] [Indexed: 10/22/2022]
Abstract
Familial forms of bone marrow defects are rare disorders and description of new cases are valuable opportunities to clarify the molecular machinery that triggers hematopoiesis and blood formation, as well as risk to malignant transformation. We investigated the genetic scenario and possible patterns of transmission in a rare case of familial myeloid disorder with a history of exposure to pesticides. Blood counts of two proband sisters, age 41 and 42, revealed mild anemia, neutrophilia and thrombocytopenia with bone marrow finding mimicking primary myelofibrosis in the cellular phase. We analyzed the coding regions of 78 myeloid neoplasms-related genes and 16 encoding xenobiotic metabolizing genes using Next-Generation Sequencing. The GATA1 variant c.788C > T, p.T263M, located in the C-terminal zinc finger domain of GATA1, was detected in the DNA of the two sisters. The screening of the other kindreds also revealed the p.T263M variant in the mother and two daughters with the same bone marrow disorder. This is the first report of an alteration in the GATA1 CF domain causing anemia, thrombocytopenia and megakaryocyte proliferation with mild myelofibrosis, correlating a new GATA1 germline variant with myeloid disorder.
Collapse
Affiliation(s)
| | | | - Marcelo Mendes Brandão
- Molecular Biology and Genetic Engeneering Center, University of Campinas, Campinas, São Paulo, Brazil
| | | | | | | | | | - Fabíola Traina
- Hematology and Transfusion Medicine Center, University of Campinas, Campinas, São Paulo, Brazil
| | | |
Collapse
|
26
|
Zhou X, Medina S, Bolt AM, Zhang H, Wan G, Xu H, Lauer FT, Wang SC, Burchiel SW, Liu KJ. Inhibition of red blood cell development by arsenic-induced disruption of GATA-1. Sci Rep 2020; 10:19055. [PMID: 33149232 PMCID: PMC7643154 DOI: 10.1038/s41598-020-76118-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 10/21/2020] [Indexed: 01/16/2023] Open
Abstract
Anemia is a hematological disorder that adversely affects the health of millions of people worldwide. Although many variables influence the development and exacerbation of anemia, one major contributing factor is the impairment of erythropoiesis. Normal erythropoiesis is highly regulated by the zinc finger transcription factor GATA-1. Disruption of the zinc finger motifs in GATA-1, such as produced by germline mutations, compromises the function of this critical transcription factor and causes dyserythropoietic anemia. Herein, we utilize a combination of in vitro and in vivo studies to provide evidence that arsenic, a widespread environmental toxicant, inhibits erythropoiesis likely through replacing zinc within the zinc fingers of the critical transcription factor GATA-1. We found that arsenic interacts with the N- and C-terminal zinc finger motifs of GATA-1, causing zinc loss and inhibition of DNA and protein binding activities, leading to dyserythropoiesis and an imbalance of hematopoietic differentiation. For the first time, we show that exposures to a prevalent environmental contaminant compromises the function of a key regulatory factor in erythropoiesis, producing effects functionally similar to inherited GATA-1 mutations. These findings highlight a novel molecular mechanism by which arsenic exposure may cause anemia and provide critical insights into potential prevention and intervention for arsenic-related anemias.
Collapse
Affiliation(s)
- Xixi Zhou
- Department of Pharmaceutical Sciences, The University of New Mexico College of Pharmacy, Albuquerque, NM, 87131, USA
| | - Sebastian Medina
- Department of Pharmaceutical Sciences, The University of New Mexico College of Pharmacy, Albuquerque, NM, 87131, USA
- Department of Biology, New Mexico Highlands University, Las Vegas, NM, 87701, USA
| | - Alicia M Bolt
- Department of Pharmaceutical Sciences, The University of New Mexico College of Pharmacy, Albuquerque, NM, 87131, USA
| | - Haikun Zhang
- Department of Pharmaceutical Sciences, The University of New Mexico College of Pharmacy, Albuquerque, NM, 87131, USA
| | - Guanghua Wan
- Department of Pharmaceutical Sciences, The University of New Mexico College of Pharmacy, Albuquerque, NM, 87131, USA
| | - Huan Xu
- School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Fredine T Lauer
- Department of Pharmaceutical Sciences, The University of New Mexico College of Pharmacy, Albuquerque, NM, 87131, USA
| | - Shu Chun Wang
- Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300020, China
| | - Scott W Burchiel
- Department of Pharmaceutical Sciences, The University of New Mexico College of Pharmacy, Albuquerque, NM, 87131, USA
| | - Ke Jian Liu
- Department of Pharmaceutical Sciences, The University of New Mexico College of Pharmacy, Albuquerque, NM, 87131, USA.
| |
Collapse
|
27
|
Shim YJ. Genetic classification and confirmation of inherited platelet disorders: current status in Korea. Clin Exp Pediatr 2020; 63:79-87. [PMID: 31477680 PMCID: PMC7073384 DOI: 10.3345/kjp.2019.00052] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Accepted: 08/21/2019] [Indexed: 12/26/2022] Open
Abstract
Inherited platelet disorders (IPDs), which manifest as primary hemostasis defects, often underlie abnormal bleeding and a family history of thrombocytopenia, bone marrow failure, hematologic malignancies, undefined mucocutaneous bleeding disorder, or congenital bony defects. Wide heterogeneity in IPD types with regard to the presence or absence of thrombocytopenia, platelet dysfunction, bone marrow failure, and dysmegakaryopoiesis is observed in patients. The individual processes involved in platelet production and hemostasis are genetically controlled; to date, mutations of more than 50 genes involved in various platelet biogenesis steps have been implicated in IPDs. Representative IPDs resulting from defects in specific pathways, such as thrombopoietin/MPL signaling; transcriptional regulation; granule formation, trafficking, and secretion; proplatelet formation; cytoskeleton regulation; and transmembrane glycoprotein signaling are reviewed, and the underlying gene mutations are discussed based on the National Center for Biotechnology Information database and Online Mendelian Inheritance in Man accession number. Further, the status and prevalence of genetically confirmed IPDs in Korea are explored based on searches of the PubMed and KoreaMed databases. IPDs are congenital bleeding disorders that can be dangerous due to unexpected bleeding and require genetic counseling for family members and descendants. Therefore, the pediatrician should be suspicious and aware of IPDs and perform the appropriate tests if the patient has unexpected bleeding. However, all IPDs are extremely rare; thus, the domestic incidences of IPDs are unclear and their diagnosis is difficult. Diagnostic confirmation or differential diagnoses of IPDs are challenging, time-consuming, and expensive, and patients are frequently misdiagnosed. Comprehensive molecular characterization and classification of these disorders should enable accurate and precise diagnosis and facilitate improved patient management.
Collapse
Affiliation(s)
- Ye Jee Shim
- Department of Pediatrics, Keimyung University School of Medicine, Keimyung University Dongsan Medical Center, Daegu, Korea
| |
Collapse
|
28
|
Chromatin occupancy and epigenetic analysis reveal new insights into the function of the GATA1 N terminus in erythropoiesis. Blood 2020; 134:1619-1631. [PMID: 31409672 DOI: 10.1182/blood.2019001234] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Accepted: 08/05/2019] [Indexed: 12/13/2022] Open
Abstract
Mutations in GATA1, which lead to expression of the GATA1s isoform that lacks the GATA1 N terminus, are seen in patients with Diamond-Blackfan anemia (DBA). In our efforts to better understand the connection between GATA1s and DBA, we comprehensively studied erythropoiesis in Gata1s mice. Defects in yolks sac and fetal liver hematopoiesis included impaired terminal maturation and reduced numbers of erythroid progenitors. RNA-sequencing revealed that both erythroid and megakaryocytic gene expression patterns were altered by the loss of the N terminus, including aberrant upregulation of Gata2 and Runx1. Dysregulation of global H3K27 methylation was found in the erythroid progenitors upon loss of N terminus of GATA1. Chromatin-binding assays revealed that, despite similar occupancy of GATA1 and GATA1s, there was a striking reduction of H3K27me3 at regulatory elements of the Gata2 and Runx1 genes. Consistent with the observation that overexpression of GATA2 has been reported to impair erythropoiesis, we found that haploinsufficiency of Gata2 rescued the erythroid defects of Gata1s fetuses. Together, our integrated genomic analysis of transcriptomic and epigenetic signatures reveals that, Gata1 mice provide novel insights into the role of the N terminus of GATA1 in transcriptional regulation and red blood cell maturation which may potentially be useful for DBA patients.
Collapse
|
29
|
Ludhiadch A, Muralidharan A, Balyan R, Munshi A. The molecular basis of platelet biogenesis, activation, aggregation and implications in neurological disorders. Int J Neurosci 2020; 130:1237-1249. [PMID: 32069430 DOI: 10.1080/00207454.2020.1732372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Platelets are anucleated blood constituents, vital for hemostasis and involved in the pathophysiology of several cardiovascular, neurovascular diseases as well as inflammatory processes and metastasis. Over the past few years, the molecular processes that regulate the function of platelets in hemostasis and thrombosis have emerged revealing platelets to be perhaps more complex than may have been expected. The most understood part of platelets is to respond to a blood vessel injury by altering shape, secreting granule contents, and aggregating. These responses, while advantageous for hemostasis, can become detrimental when they root ischemia or infarction. Only a few transcription and signaling factors involved in platelet biogenesis have been identified till date. Platelets encompass an astonishingly complete array of organelles and storage granules including mitochondria, lysosomes, alpha granules, dense granules, a dense tubular system (analogous to the endoplasmic reticulum of nucleated cells); a highly invaginated plasma membrane system known as the open canalicular system (OCS) and large fields of glycogen. Platelets as a model cells to study neurological disorders have been recommended by several researchers since several counterparts exist between platelets and the brain, which make them interesting for studying the neurobiology of various neurological disorders. This review has been compiled with an aim to integrate the latest research on platelet biogenesis, activation and aggregation focusing on the molecular pathways that power and regulate these processes. The dysregulation of important molecular players affecting fluctuating platelet biology and thereby resulting in neurovascular diseases has also been discussed.
Collapse
Affiliation(s)
- Abhilash Ludhiadch
- Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda, Punjab, India
| | - Abhishek Muralidharan
- Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda, Punjab, India
| | - Renuka Balyan
- Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda, Punjab, India
| | - Anjana Munshi
- Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda, Punjab, India
| |
Collapse
|
30
|
Jamwal M, Aggarwal A, Sharma P, Bansal D, Maitra A, Das R. Phenotypic and genetic heterogeneity arising from a novel substitution at amino acid position Val205 in GATA1 related X-linked thrombocytopenia with dyserythropoietic anemia. Blood Cells Mol Dis 2019; 81:102391. [PMID: 31865264 DOI: 10.1016/j.bcmd.2019.102391] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 11/28/2019] [Indexed: 11/17/2022]
Affiliation(s)
- Manu Jamwal
- Department of Hematology, Post Graduate Institute of Medical Education and Research, Chandigarh 160012, India
| | - Anu Aggarwal
- Department of Hematology, Post Graduate Institute of Medical Education and Research, Chandigarh 160012, India
| | - Prashant Sharma
- Department of Hematology, Post Graduate Institute of Medical Education and Research, Chandigarh 160012, India
| | - Deepak Bansal
- Department of Pediatrics (Hemato-Oncology), Post Graduate Institute of Medical Education and Research, Chandigarh 160012, India
| | - Arindam Maitra
- National Institute of Biomedical Genomics, Kalyani, West Bengal 741251, India.
| | - Reena Das
- Department of Hematology, Post Graduate Institute of Medical Education and Research, Chandigarh 160012, India.
| |
Collapse
|
31
|
Shimizu R, Yamamoto M. Quantitative and qualitative impairments in GATA2 and myeloid neoplasms. IUBMB Life 2019; 72:142-150. [PMID: 31675473 DOI: 10.1002/iub.2188] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Accepted: 10/07/2019] [Indexed: 12/27/2022]
Abstract
GATA2 is a key transcription factor critical for hematopoietic cell development. During the past decade, it became clear that heterozygous germline mutations in the GATA2 gene cause bone marrow failure and primary immunodeficiency syndrome, conditions that lead to a predisposition toward myeloid neoplasms, such as myelodysplastic syndrome, acute myeloid leukemia, and chronic myelomonocytic leukemia. Somatic mutations of the GATA2 gene are also involved in the pathogenesis of myeloid malignancies. Cases with GATA2 gene mutations are divided into two groups, resulting in either a quantitative deficiency or a qualitative defect in the GATA2 protein depending on the mutation position and type. In the former case, GATA2 mRNA expression from the mutant allele is markedly reduced or completely abrogated, and reduced GATA2 protein expression is involved in the pathogenesis. In the latter case, almost equal amounts of structurally abnormal and wildtype GATA2 proteins are predicted to be present and contribute to the pathogenesis. The development of mouse models of these human GATA2-related diseases has been undertaken, which naturally develop myeloid neoplasms.
Collapse
Affiliation(s)
- Ritsuko Shimizu
- Department of Molecular Hematology, Tohoku University Graduate School of Medicine, Sendai, Japan.,Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
| | - Masayuki Yamamoto
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan.,Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
32
|
Ling T, Crispino JD. GATA1 mutations in red cell disorders. IUBMB Life 2019; 72:106-118. [PMID: 31652397 DOI: 10.1002/iub.2177] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 09/18/2019] [Indexed: 01/01/2023]
Abstract
GATA1 is an essential regulator of erythroid cell gene expression and maturation. In its absence, erythroid progenitors are arrested in differentiation and undergo apoptosis. Much has been learned about GATA1 function through animal models, which include genetic knockouts as well as ones with decreased levels of expression. However, even greater insights have come from the finding that a number of rare red cell disorders, including Diamond-Blackfan anemia, are associated with GATA1 mutations. These mutations affect the amino-terminal zinc finger (N-ZF) and the amino-terminus of the protein, and in both cases can alter the DNA-binding activity, which is primarily conferred by the third functional domain, the carboxyl-terminal zinc finger (C-ZF). Here we discuss the role of GATA1 in erythropoiesis with an emphasis on the mutations found in human patients with red cell disorders.
Collapse
Affiliation(s)
- Te Ling
- Division of Hematology/Oncology, Northwestern University, Chicago, Illinois
| | - John D Crispino
- Division of Hematology/Oncology, Northwestern University, Chicago, Illinois
| |
Collapse
|
33
|
Riley R, Khan A, Pai S, Warmke L, Winkler M, Gunning W. A Case of Chronic Thrombocytopenia in a 17-Year-Old Female. Lab Med 2019; 50:406-420. [PMID: 31228350 DOI: 10.1093/labmed/lmz013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Storage pool deficiency (SPD) is a group of rare platelet disorders that result from deficiencies in α-granules, δ-granules, or both. One type of α-SPD is gray platelet syndrome (GPS), caused by mutations in the neurobeachin-like 2 (NBEAL2) gene that results in a bleeding diathesis, thrombocytopenia, splenomegaly, and progressive myelofibrosis. Due to the lack of α-granules, platelets have a gray and degranulated appearance by light microscopy. However, definitive diagnosis of GPS requires confirmation of α-granule deficiency by electron microscopy. Treatment is nonspecific, with the conservative utilization of platelet transfusions being the most important form of therapy. We present a case of a 17-year-old female with a past medical history of thrombocytopenia, first identified at the age of five. Her clinical symptomatology included chronic fatigue, gingival bleeding, bruising, menorrhagia, and leg pain. This report will discuss both the clinical and the pathophysiologic aspects of this rare platelet disorder.
Collapse
Affiliation(s)
- Roger Riley
- Departments of Pathology, Virginia Commonwealth University (VCU) School of Medicine, Richmond
| | - Asad Khan
- Departments of Pediatrics, Virginia Commonwealth University (VCU) School of Medicine, Richmond
| | - Shella Pai
- Departments of Pathology, Virginia Commonwealth University (VCU) School of Medicine, Richmond
| | - Laura Warmke
- Department of Pathology and Laboratory Medicine, University of Texas MD Anderson Cancer Center, Houston
| | | | - William Gunning
- Department of Pathology, University of Toledo College of Medicine, Toledo, Ohio
| |
Collapse
|
34
|
Asnafi AA, Mohammadi MB, Rezaeeyan H, Davari N, Saki N. Prognostic significance of mutated genes in megakaryocytic disorders. Oncol Rev 2019; 13:408. [PMID: 31410247 PMCID: PMC6661530 DOI: 10.4081/oncol.2019.408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 06/28/2019] [Indexed: 01/19/2023] Open
Abstract
Megakaryopoiesis is a process during which platelets that play a major role in hemostasis are produced due to differentiation and maturation of megakaryocytic precursors. Several genes, including oncogenes and tumor suppressor genes, play a role in the regulation of this process. This study was conducted to investigate the oncogenes and tumor suppressor genes as well as their mutations during the megakaryopoiesis process, which can lead to megakaryocytic disorders. Relevant literature was identified by a PubMed search (1998-2019) of English language papers using the terms ‘Megakaryopoiesis’, ‘Mutation’, ‘oncogenes’, and ‘Tumor Suppressor’. According to investigations, several mutations occur in the genes implicated in megakaryopoiesis, which abnormally induce or inhibit megakaryocyte production, differentiation, and maturation, leading to platelet disorders. GATA-1 is one of the important genes in megakaryopoiesis and its mutations can be considered among the factors involved in the incidence of these disorders. Considering the essential role of these genes (such as GATA- 1) in megakaryopoiesis and the involvement of their mutations in platelet disorders, study and examination of these changes can be a positive step in the diagnosis and prognosis of these diseases.
Collapse
Affiliation(s)
- Ali Amin Asnafi
- Thalassemia and Hemoglobinopathy Research Center, Research Institute of Health, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohammad Bagher Mohammadi
- Thalassemia and Hemoglobinopathy Research Center, Research Institute of Health, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Hadi Rezaeeyan
- Thalassemia and Hemoglobinopathy Research Center, Research Institute of Health, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Nader Davari
- Thalassemia and Hemoglobinopathy Research Center, Research Institute of Health, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Najmaldin Saki
- Thalassemia and Hemoglobinopathy Research Center, Research Institute of Health, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
35
|
Barbarani G, Fugazza C, Strouboulis J, Ronchi AE. The Pleiotropic Effects of GATA1 and KLF1 in Physiological Erythropoiesis and in Dyserythropoietic Disorders. Front Physiol 2019; 10:91. [PMID: 30809156 PMCID: PMC6379452 DOI: 10.3389/fphys.2019.00091] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 01/25/2019] [Indexed: 01/19/2023] Open
Abstract
In the last few years, the advent of new technological approaches has led to a better knowledge of the ontogeny of erythropoiesis during development and of the journey leading from hematopoietic stem cells (HSCs) to mature red blood cells (RBCs). Our view of a well-defined hierarchical model of hematopoiesis with a near-homogeneous HSC population residing at the apex has been progressively challenged in favor of a landscape where HSCs themselves are highly heterogeneous and lineages separate earlier than previously thought. The coordination of these events is orchestrated by transcription factors (TFs) that work in a combinatorial manner to activate and/or repress their target genes. The development of next generation sequencing (NGS) has facilitated the identification of pathological mutations involving TFs underlying hematological defects. The examples of GATA1 and KLF1 presented in this review suggest that in the next few years the number of TF mutations associated with dyserythropoietic disorders will further increase.
Collapse
Affiliation(s)
- Gloria Barbarani
- Dipartimento di Biotecnologie e Bioscienze, Università degli Studi Milano-Bicocca, Milan, Italy
| | - Cristina Fugazza
- Dipartimento di Biotecnologie e Bioscienze, Università degli Studi Milano-Bicocca, Milan, Italy
| | - John Strouboulis
- School of Cancer & Pharmaceutical Sciences, Faculty of Life Sciences & Medicine, King's College London, London, United Kingdom
| | - Antonella E Ronchi
- Dipartimento di Biotecnologie e Bioscienze, Università degli Studi Milano-Bicocca, Milan, Italy
| |
Collapse
|
36
|
|
37
|
Lambert MP, Poncz M. Inherited Thrombocytopenias. Platelets 2019. [DOI: 10.1016/b978-0-12-813456-6.00046-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
38
|
Katsumura KR, Mehta C, Hewitt KJ, Soukup AA, Fraga de Andrade I, Ranheim EA, Johnson KD, Bresnick EH. Human leukemia mutations corrupt but do not abrogate GATA-2 function. Proc Natl Acad Sci U S A 2018; 115:E10109-E10118. [PMID: 30301799 PMCID: PMC6205465 DOI: 10.1073/pnas.1813015115] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
By inducing the generation and function of hematopoietic stem and progenitor cells, the master regulator of hematopoiesis GATA-2 controls the production of all blood cell types. Heterozygous GATA2 mutations cause immunodeficiency, myelodysplastic syndrome, and acute myeloid leukemia. GATA2 disease mutations commonly disrupt amino acid residues that mediate DNA binding or cis-elements within a vital GATA2 intronic enhancer, suggesting a haploinsufficiency mechanism of pathogenesis. Mutations also occur in GATA2 coding regions distinct from the DNA-binding carboxyl-terminal zinc finger (C-finger), including the amino-terminal zinc finger (N-finger), and N-finger function is not established. Whether distinct mutations differentially impact GATA-2 mechanisms is unknown. Here, we demonstrate that N-finger mutations decreased GATA-2 chromatin occupancy and attenuated target gene regulation. We developed a genetic complementation assay to quantify GATA-2 function in myeloid progenitor cells from Gata2 -77 enhancer-mutant mice. GATA-2 complementation increased erythroid and myeloid differentiation. While GATA-2 disease mutants were not competent to induce erythroid differentiation of Lin-Kit+ myeloid progenitors, unexpectedly, they promoted myeloid differentiation and proliferation. As the myelopoiesis-promoting activity of GATA-2 mutants exceeded that of GATA-2, GATA2 disease mutations are not strictly inhibitory. Thus, we propose that the haploinsufficiency paradigm does not fully explain GATA-2-linked pathogenesis, and an amalgamation of qualitative and quantitative defects instigated by GATA2 mutations underlies the complex phenotypes of GATA-2-dependent pathologies.
Collapse
Affiliation(s)
- Koichi R Katsumura
- University of Wisconsin-Madison Blood Research Program, Department of Cell and Regenerative Biology, Wisconsin Institutes for Medical Research, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705
- University of Wisconsin Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705
| | - Charu Mehta
- University of Wisconsin-Madison Blood Research Program, Department of Cell and Regenerative Biology, Wisconsin Institutes for Medical Research, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705
- University of Wisconsin Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705
| | - Kyle J Hewitt
- University of Wisconsin-Madison Blood Research Program, Department of Cell and Regenerative Biology, Wisconsin Institutes for Medical Research, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705
- University of Wisconsin Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705
| | - Alexandra A Soukup
- University of Wisconsin-Madison Blood Research Program, Department of Cell and Regenerative Biology, Wisconsin Institutes for Medical Research, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705
- University of Wisconsin Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705
| | - Isabela Fraga de Andrade
- University of Wisconsin-Madison Blood Research Program, Department of Cell and Regenerative Biology, Wisconsin Institutes for Medical Research, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705
- University of Wisconsin Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705
| | - Erik A Ranheim
- Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705
| | - Kirby D Johnson
- University of Wisconsin-Madison Blood Research Program, Department of Cell and Regenerative Biology, Wisconsin Institutes for Medical Research, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705
- University of Wisconsin Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705
| | - Emery H Bresnick
- University of Wisconsin-Madison Blood Research Program, Department of Cell and Regenerative Biology, Wisconsin Institutes for Medical Research, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705;
- University of Wisconsin Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705
| |
Collapse
|
39
|
Jafari M, Ghadami E, Dadkhah T, Akhavan-Niaki H. PI3k/AKT signaling pathway: Erythropoiesis and beyond. J Cell Physiol 2018; 234:2373-2385. [PMID: 30192008 DOI: 10.1002/jcp.27262] [Citation(s) in RCA: 221] [Impact Index Per Article: 31.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 07/24/2018] [Indexed: 12/20/2022]
Abstract
Erythropoiesis is a multi-step process that involves the differentiation of hematopoietic stem cells into mature red blood cells (RBCs). This process is regulated by several signaling pathways, transcription factors and microRNAs (miRNAs). Many studies have shown that dysregulation of this process can lead to hematologic disorders. PI3K/AKT is one of the most important pathways that control many cellular processes including, cell division, autophagy, survival, and differentiation. In this review, we focus on the role of PI3K/AKT pathway in erythropoiesis and discuss the function of some of the most important genes, transcription factors, and miRNAs that regulate different stages of erythropoiesis which play roles in differentiation and maturation of RBCs, prevention of apoptosis, and autophagy induction. Understanding the role of the PI3K pathway in erythropoiesis may provide new insights into diagnosing erythrocyte disorders.
Collapse
Affiliation(s)
- Mahjoobeh Jafari
- Department of Genetics, Faculty of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Elham Ghadami
- Department of Genetics, Faculty of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Tahereh Dadkhah
- Department of Genetics, Faculty of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Haleh Akhavan-Niaki
- Department of Genetics, Faculty of Medicine, Babol University of Medical Sciences, Babol, Iran
| |
Collapse
|
40
|
Moreno-Carralero MI, Horta-Herrera S, Morado-Arias M, Ricard-Andrés MP, Lemes-Castellano A, Abio-Calvete M, Cedena-Romero MT, González-Fernández FA, Llorente-González L, Periago-Peralta AM, de-la-Iglesia-Íñigo S, Méndez M, Morán-Jiménez MJ. Clinical and genetic features of congenital dyserythropoietic anemia (CDA). Eur J Haematol 2018; 101:368-378. [PMID: 29901818 DOI: 10.1111/ejh.13112] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/11/2018] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Congenital dyserythropoietic anemias (CDA) are characterized by hyporegenerative anemia with inadequate reticulocyte values, ineffective erythropoiesis, and hemolysis. Distinctive morphology of bone marrow erythroblasts and identification of causative genes allow classification into 4 types caused by variants in CDAN1, c15orf41, SEC23B, KIF23, and KLF1 genes. OBJECTIVE Identify pathogenic variants in CDA patients. METHODS Massive parallel sequencing with a targeted gene panel, Sanger sequencing, Comparative Genome Hybridization (CGH), and in silico predictive analysis of pathogenicity. RESULTS Pathogenic variants were found in 21 of 53 patients studied from 44 unrelated families. Six variants were found in CDAN1: two reported, p.Arg714Trp and p.Arg725Trp and, four novel, p.Arg623Trp, p.Arg946Trp, p.Phe1125Ser and p.Ser1227Gly. Twelve variants were found in SEC23B: seven reported, p.Arg14Trp, p.Glu109Lys, p.Arg217Ter, c.835-2A>G, p.Arg535Ter, p.Arg550Ter and p.Arg718Ter and, five novel, p.Val164Leu, p.Arg190Gln, p.Gln521Ter, p.Arg546Trp, and p.Arg611Gln. The variant p.Glu325Lys in KLF1 was found in one patient and p.Tyr365Cys in ALAS2 in an other. Moreover, we identified genomic rearrangements by CGH in some SEC23B-monoallelic patients. CONCLUSIONS New technologies for genetic studies will help to find variants in other genes, in addition to those known, that contribute to or modulate the CDA phenotype or support the correct diagnosis.
Collapse
Affiliation(s)
| | | | - Marta Morado-Arias
- Servicio de Hematología y Hemoterapia, Hospital Universitario La Paz, Madrid, Spain
| | | | - Angelina Lemes-Castellano
- Servicio de Hematología y Hemoterapia, Hospital Universitario de Gran Canaria Doctor Negrín, Las Palmas de Gran Canaria, Gran Canaria, Spain
| | - Mariola Abio-Calvete
- Servicio de Hematología y Hemoterapia, Hospital Virgen de la Salud, Complejo Hospitalario de Toledo, Toledo, Spain
| | | | | | - Laura Llorente-González
- Servicio de Hematología y Hemoterapia, Hospital Universitario Puerta de Hierro, Majadahonda, Spain
| | | | - Silvia de-la-Iglesia-Íñigo
- Servicio de Hematología y Hemoterapia, Hospital Universitario de Gran Canaria Doctor Negrín, Las Palmas de Gran Canaria, Gran Canaria, Spain
| | - Manuel Méndez
- Instituto de Investigación Hospital 12 de Octubre, Madrid, Spain
| | | |
Collapse
|
41
|
Ghosh K, Bhattacharya M, Chowdhury R, Mishra K, Ghosh M. Inherited Macrothrombocytopenia: Correlating Morphology, Epidemiology, Molecular Pathology and Clinical Features. Indian J Hematol Blood Transfus 2018; 34:387-397. [PMID: 30127546 PMCID: PMC6081320 DOI: 10.1007/s12288-018-0950-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 03/14/2018] [Indexed: 01/19/2023] Open
Abstract
Inherited macrothrombocytopenia is increasingly being recognized as a relatively common condition. This descriptive review aims at focusing on the different areas of advancement that have taken place with this condition with particular reference to India. A pubmed search of articles between January 1990 and October 2017 with the key words-macrothrombocytopenia, asymptomatic macrothrombocytopenia, macrothrombocytopenia India, syndromic macrothrombocytopenia, molecular pathology, megakaryopoiesis and platelet formation were searched. The shortlisted articles were then read. Review articles provided additional references and the articles thus obtained were also read. Special interest and research conducted by the authors provided further sources of information. A total of 487 articles were found of which 68 articles were related to our subject of review. Review articles were read and additional articles from the reference quoted. Forty-four percent of nonsyndromic Inherited macrothrombocytopenia showed mutations of MYH9, GP1BB, GP1Ba, GPIX, ABCG5 and 8, ACTN, FLI, TUBB and RUNX1 frequently in heterozygous state. All types of inheritance pattern namely autosomal dominant, recessive and sex linked patterns have been described. Syndromic causes of this phenomenon are well known and have been described. Many asymptomatic patients do have mild or moderate bleeding history. Clinical algorithms to differentiate chronic ITP associated macrothrombocytopenia from inherited variety have been explored. Inherited macrothrombocytopenia is an emerging area of interest in platelet biology with its implication in diagnosis, prognosis, genetic counseling, management and in transfusion medicine.
Collapse
Affiliation(s)
- Kanjaksha Ghosh
- Surat Raktadan Kendra and Research Centre, Udhna Magdalla Road, Near Chosath Joganio Mataji Temple, Surat, 395002 India
| | - Maitreyee Bhattacharya
- Institute of Haematology and Transfusion Medicine, Medical College, Kolkata, 12 College Street, Kolkata, 700078 India
| | - Ranjini Chowdhury
- Institute of Haematology and Transfusion Medicine, Medical College, Kolkata, 12 College Street, Kolkata, 700078 India
| | - Kanchan Mishra
- Surat Raktadan Kendra and Research Centre, Udhna Magdalla Road, Near Chosath Joganio Mataji Temple, Surat, 395002 India
| | - Malay Ghosh
- P-78 Green View, Garia-P.O., Kolkata, 700084 India
| |
Collapse
|
42
|
Asadov C, Alimirzoeva Z, Mammadova T, Aliyeva G, Gafarova S, Mammadov J. β-Thalassemia intermedia: a comprehensive overview and novel approaches. Int J Hematol 2018; 108:5-21. [PMID: 29380178 DOI: 10.1007/s12185-018-2411-9] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 01/19/2018] [Accepted: 01/24/2018] [Indexed: 01/19/2023]
Abstract
β-Thalassemia intermedia is a clinical condition of intermediate gravity between β-thalassemia minor, the asymptomatic carrier, and β-thalassemia major, the transfusion-dependent severe anemia. It is characterized by a significant clinical polymorphism, which is attributable to its genetic heterogeneity. Ineffective erythropoiesis, chronic anemia, and iron overload contribute to the clinical complications of thalassemia intermedia through stepwise pathophysiological mechanisms. These complications, including splenomegaly, extramedullary erythropoiesis, iron accumulation, leg ulcers, thrombophilia, and bone abnormalities can be managed via fetal hemoglobin induction, occasional transfusions, chelation, and in some cases, stem cell transplantation. Given its clinical diversity, thalassemia intermedia patients require tailored approaches to therapy. Here we present an overview and novel approaches to the genetic basis, pathophysiological mechanisms, clinical complications, and optimal management of thalassemia intermedia.
Collapse
Affiliation(s)
- Chingiz Asadov
- Institute of Hematology and Transfusiology, M. Gashgai Str. 87, AZ1007, Baku, Azerbaijan.
| | - Zohra Alimirzoeva
- Institute of Hematology and Transfusiology, M. Gashgai Str. 87, AZ1007, Baku, Azerbaijan
| | - Tahira Mammadova
- Institute of Hematology and Transfusiology, M. Gashgai Str. 87, AZ1007, Baku, Azerbaijan
| | - Gunay Aliyeva
- Institute of Hematology and Transfusiology, M. Gashgai Str. 87, AZ1007, Baku, Azerbaijan
| | - Shahla Gafarova
- Institute of Hematology and Transfusiology, M. Gashgai Str. 87, AZ1007, Baku, Azerbaijan
| | - Jeyhun Mammadov
- Thalassemia Centre, Fataly Khan Khoysky Str. 128, AZ1072, Baku, Azerbaijan
| |
Collapse
|
43
|
|
44
|
Freson K, Wijgaerts A, Van Geet C. GATA1 gene variants associated with thrombocytopenia and anemia. Platelets 2017; 28:731-734. [DOI: 10.1080/09537104.2017.1361525] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Kathleen Freson
- Department of Cardiovascular Sciences, Center for Molecular and Vascular Biology, KU Leuven, Leuven, Belgium
| | - Anouck Wijgaerts
- Department of Cardiovascular Sciences, Center for Molecular and Vascular Biology, KU Leuven, Leuven, Belgium
| | - Chris Van Geet
- Department of Cardiovascular Sciences, Center for Molecular and Vascular Biology, KU Leuven, Leuven, Belgium
| |
Collapse
|
45
|
Molecular basis of β thalassemia and potential therapeutic targets. Blood Cells Mol Dis 2017; 70:54-65. [PMID: 28651846 DOI: 10.1016/j.bcmd.2017.06.001] [Citation(s) in RCA: 130] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 06/09/2017] [Accepted: 06/09/2017] [Indexed: 12/15/2022]
Abstract
The remarkable phenotypic diversity of β thalassemia that range from severe anemia and transfusion-dependency, to a clinically asymptomatic state exemplifies how a spectrum of disease severity can be generated in single gene disorders. While the genetic basis for β thalassemia, and how severity of the anemia could be modified at different levels of its pathophysiology have been well documented, therapy remains largely supportive with bone marrow transplant being the only cure. Identification of the genetic variants modifying fetal hemoglobin (HbF) production in combination with α globin genotype provide some prediction of disease severity for β thalassemia but generation of a personalized genetic risk score to inform prognosis and guide management requires a larger panel of genetic modifiers yet to be discovered. Nonetheless, genetic studies have been successful in characterizing the key variants and pathways involved in HbF regulation, providing new therapeutic targets for HbF reactivation. BCL11A has been established as a quantitative repressor, and progress has been made in manipulating its expression using genomic and gene-editing approaches for therapeutic benefits. Recent discoveries and understanding in the mechanisms associated with ineffective and abnormal erythropoiesis have also provided additional therapeutic targets, a couple of which are currently being tested in clinical trials.
Collapse
|
46
|
Hematopoietic transcription factor mutations: important players in inherited platelet defects. Blood 2017; 129:2873-2881. [PMID: 28416505 DOI: 10.1182/blood-2016-11-709881] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 01/26/2017] [Indexed: 01/19/2023] Open
Abstract
Transcription factors (TFs) are proteins that bind to specific DNA sequences and regulate expression of genes. The molecular and genetic mechanisms in most patients with inherited platelet defects are unknown. There is now increasing evidence that mutations in hematopoietic TFs are an important underlying cause for defects in platelet production, morphology, and function. The hematopoietic TFs implicated in patients with impaired platelet function and number include runt-related transcription factor 1, Fli-1 proto-oncogene, E-twenty-six (ETS) transcription factor (friend leukemia integration 1), GATA-binding protein 1, growth factor independent 1B transcriptional repressor, ETS variant 6, ecotropic viral integration site 1, and homeobox A11. These TFs act in a combinatorial manner to bind sequence-specific DNA within promoter regions to regulate lineage-specific gene expression, either as activators or repressors. TF mutations induce rippling downstream effects by simultaneously altering the expression of multiple genes. Mutations involving these TFs affect diverse aspects of megakaryocyte biology, and platelet production and function, culminating in thrombocytopenia and platelet dysfunction. Some are associated with predisposition to hematologic malignancies. These TF variants may occur more frequently in patients with inherited platelet defects than generally appreciated. This review focuses on alterations in hematopoietic TFs in the pathobiology of inherited platelet defects.
Collapse
|
47
|
Lee WY, Weinberg OK, Pinkus GS. GATA1 Is a Sensitive and Specific Nuclear Marker for Erythroid and Megakaryocytic Lineages. Am J Clin Pathol 2017; 147:420-426. [PMID: 28340113 DOI: 10.1093/ajcp/aqx018] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
OBJECTIVES GATA binding factor 1 (GATA1) is a transcription factor essential for erythromegakaryocytic differentiation. Given its function in lineage specification, we sought to evaluate the immunohistochemical profile of GATA1 in normal marrow and acute leukemia and assess the use of GATA1 as a specific erythromegakaryocytic immunohistochemical marker. METHODS Immunohistochemical studies for GATA1 expression were performed on bone marrow biopsy specimens to define its role in the evaluation of acute leukemia and other hematologic disorders. RESULTS In normal marrows, intense nuclear reactivity is seen in immature erythroid precursors and megakaryocytes. Weak to moderate nuclear positivity is seen in eosinophils and mast cells. In marrows involved by acute leukemia, blasts of pure erythroleukemia and acute megakaryoblastic leukemia exhibit intense nuclear GATA1 positivity, while blasts of acute myeloid leukemia of other categories are negative. GATA1 is also absent in the blasts of acute lymphoblastic leukemia/lymphoma and in the neoplastic cells of metastatic carcinoma and plasma cell neoplasms. CONCLUSIONS Intense GATA1 nuclear expression is a sensitive and specific marker for cells of erythroid and megakaryocytic lineages and is an excellent marker for neoplastic cells of pure erythroleukemia and acute megakaryoblastic leukemia.
Collapse
Affiliation(s)
- Winston Y. Lee
- From the Department of Pathology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA
| | - Olga K. Weinberg
- From the Department of Pathology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA
- Department of Pathology, Boston Children’s Hospital, Boston, MA
| | - Geraldine S. Pinkus
- From the Department of Pathology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA
| |
Collapse
|
48
|
GATA factor mutations in hematologic disease. Blood 2017; 129:2103-2110. [PMID: 28179280 DOI: 10.1182/blood-2016-09-687889] [Citation(s) in RCA: 140] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 10/11/2016] [Indexed: 02/06/2023] Open
Abstract
GATA family proteins play essential roles in development of many cell types, including hematopoietic, cardiac, and endodermal lineages. The first three factors, GATAs 1, 2, and 3, are essential for normal hematopoiesis, and their mutations are responsible for a variety of blood disorders. Acquired and inherited GATA1 mutations contribute to Diamond-Blackfan anemia, acute megakaryoblastic leukemia, transient myeloproliferative disorder, and a group of related congenital dyserythropoietic anemias with thrombocytopenia. Conversely, germ line mutations in GATA2 are associated with GATA2 deficiency syndrome, whereas acquired mutations are seen in myelodysplastic syndrome, acute myeloid leukemia, and in blast crisis transformation of chronic myeloid leukemia. The fact that mutations in these genes are commonly seen in blood disorders underscores their critical roles and highlights the need to develop targeted therapies for transcription factors. This review focuses on hematopoietic disorders that are associated with mutations in two prominent GATA family members, GATA1 and GATA2.
Collapse
|
49
|
Hasegawa A, Shimizu R. GATA1 Activity Governed by Configurations of cis-Acting Elements. Front Oncol 2017; 6:269. [PMID: 28119852 PMCID: PMC5220053 DOI: 10.3389/fonc.2016.00269] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 12/19/2016] [Indexed: 01/19/2023] Open
Abstract
The transcription factor GATA1 regulates the expression of essential erythroid and megakaryocytic differentiation genes through binding to the DNA consensus sequence WGATAR. The GATA1 protein has four functional domains, including two centrally located zinc-finger domains and two transactivation domains at the N- and C-termini. These functional domains play characteristic roles in the elaborate regulation of diversified GATA1 target genes, each of which exhibits a unique expression profile. Three types of GATA1-related hematological malignancies have been reported. One is a structural mutation in the GATA1 gene, resulting in the production of a short form of GATA1 that lacks the N-terminal transactivation domain and is found in Down syndrome-related acute megakaryocytic leukemia. The other two are cis-acting regulatory mutations affecting expression of the Gata1 gene, which have been shown to cause acute erythroblastic leukemia and myelofibrosis in mice. Therefore, imbalanced gene regulation caused by qualitative and quantitative changes in GATA1 is thought to be involved in specific hematological disease pathogenesis. In the present review, we discuss recent advances in understanding the mechanisms of differential transcriptional regulation by GATA1 during erythroid differentiation, with special reference to the binding kinetics of GATA1 at conformation-specific binding sites.
Collapse
Affiliation(s)
- Atsushi Hasegawa
- Department of Molecular Hematology, Tohoku University Graduate School of Medicine, Sendai, Japan; Department of Molecular Oncology, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Ritsuko Shimizu
- Department of Molecular Hematology, Tohoku University Graduate School of Medicine, Sendai, Japan; Medical Mega-Bank Organization, Tohoku University, Sendai, Japan
| |
Collapse
|
50
|
Thein SL. Genetic Basis and Genetic Modifiers of β-Thalassemia and Sickle Cell Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1013:27-57. [PMID: 29127676 DOI: 10.1007/978-1-4939-7299-9_2] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
β-thalassemia and sickle cell disease (SCD) are prototypical Mendelian single gene disorders, both caused by mutations affecting the adult β-globin gene. Despite the apparent genetic simplicity, both disorders display a remarkable spectrum of phenotypic severity and share two major genetic modifiers-α-globin genotype and innate ability to produce fetal hemoglobin (HbF, α2γ2).This article provides an overview of the genetic basis for SCD and β-thalassemia, and genetic modifiers identified through phenotype correlation studies. Identification of the genetic variants modifying HbF production in combination with α-globin genotype provide some prediction of disease severity for β-thalassemia and SCD but generation of a personalized genetic risk score to inform prognosis and guide management requires a larger panel of genetic modifiers yet to be discovered.Nonetheless, genetic studies have been successful in characterizing some of the key variants and pathways involved in HbF regulation, providing new therapeutic targets for HbF reactivation.
Collapse
Affiliation(s)
- Swee Lay Thein
- Sickle Cell Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Building 10, Room 6S241 MSC 1589, 10 Center Dr., Bethesda, MD, 20892-1589, USA.
| |
Collapse
|