1
|
Leal-Galvan B, Kumar D, Karim S, Saelao P, Thomas DB, Oliva Chavez A. A glimpse into the world of microRNAs and their putative roles in hard ticks. Front Cell Dev Biol 2024; 12:1460705. [PMID: 39376631 PMCID: PMC11456543 DOI: 10.3389/fcell.2024.1460705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Accepted: 09/10/2024] [Indexed: 10/09/2024] Open
Abstract
Ticks are important blood feeding ectoparasites that transmit pathogens to wildlife, domestic animals, and humans. Hard ticks can feed for several days to weeks, nevertheless they often go undetected. This phenomenon can be explained by a tick's ability to release analgesics, immunosuppressives, anticoagulants, and vasodilators within their saliva. Several studies have identified extracellular vesicles (EVs) as carriers of some of these effector molecules. Further, EVs, and their contents, enhance pathogen transmission, modulate immune responses, and delay wound healing. EVs are double lipid-membrane vesicles that transport intracellular cargo, including microRNAs (miRNAs) to recipient cells. miRNAs are involved in regulating gene expression post-transcriptionally. Interestingly, tick-derived miRNAs have been shown to enhance pathogen transmission and affect vital biological processes such as oviposition, blood digestion, and molting. miRNAs have been found within tick salivary EVs. This review focuses on current knowledge of miRNA loading into EVs and homologies reported in ticks. We also describe findings in tick miRNA profiles, including miRNAs packed within tick salivary EVs. Although no functional studies have been done to investigate the role of EV-derived miRNAs in tick feeding, we discuss the functional characterization of miRNAs in tick biology and pathogen transmission. Lastly, we propose the possible uses of tick miRNAs to develop management tools for tick control and to prevent pathogen transmission. The identification and functional characterization of conserved and tick-specific salivary miRNAs targeting important molecular and immunological pathways within the host could lead to the discovery of new therapeutics for the treatment of tick-borne and non-tick-borne human diseases.
Collapse
Affiliation(s)
- Brenda Leal-Galvan
- Department of Entomology, Texas A&M University, College Station, TX, United States
- USDA-ARS Cattle Fever Tick Research Laboratory, Edinburg, TX, United States
| | - Deepak Kumar
- School of Biological, Environmental, and Earth Sciences, The University of Southern Mississippi, Hattiesburg, MS, United States
| | - Shahid Karim
- School of Biological, Environmental, and Earth Sciences, The University of Southern Mississippi, Hattiesburg, MS, United States
| | - Perot Saelao
- USDA-ARS Veterinary Pest Research Unit, Kerrville, TX, United States
| | - Donald B. Thomas
- USDA-ARS Cattle Fever Tick Research Laboratory, Edinburg, TX, United States
| | - Adela Oliva Chavez
- Department of Entomology, University of Wisconsin—Madison, Madison, WI, United States
| |
Collapse
|
2
|
Eskeland S, Bø-Granquist EG, Stuen S, Lybeck K, Wilhelmsson P, Lindgren PE, Makvandi-Nejad S. Temporal patterns of gene expression in response to inoculation with a virulent Anaplasma phagocytophilum strain in sheep. Sci Rep 2023; 13:20399. [PMID: 37989861 PMCID: PMC10663591 DOI: 10.1038/s41598-023-47801-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 11/18/2023] [Indexed: 11/23/2023] Open
Abstract
The aim of this study was to characterize the gene expression of host immune- and cellular responses to a Norwegian virulent strain of Anaplasma phagocytophilum, the cause of tick-borne fever in sheep. Ten sheep were intravenously inoculated with a live virulent strain of A. phagocytophilum. Clinical-, observational-, hematological data as well as bacterial load, flow cytometric cell count data from peripheral blood mononuclear cells and host's gene expression post infection was analysed. The transcriptomic data were assessed for pre-set time points over the course of 22 days following the inoculation. Briefly, all inoculated sheep responded with clinical signs of infection 3 days post inoculation and onwards with maximum bacterial load observed on day 6, consistent with tick-borne fever. On days, 3-8, the innate immune responses and effector processes such as IFN1 signaling pathways and cytokine mediated signaling pathways were observed. Several pathways associated with the adaptive immune responses, namely T-cell activation, humoral immune responses, B-cell activation, and T- and B-cell differentiation dominated on the days of 8, 10 and 14. Flow-cytometric analysis of the PBMCs showed a reduction in CD4+CD25+ cells on day 10 and 14 post-inoculation and a skewed CD4:CD8 ratio indicating a reduced activation and proliferation of CD4-T-cells. The genes of important co-stimulatory molecules such as CD28 and CD40LG, important in T- and B-cell activation and proliferation, did not significantly change or experienced downregulation throughout the study. The absence of upregulation of several co-stimulatory molecules might be one possible explanation for the low activation and proliferation of CD4-T-cells during A. phagocytophilum infection, indicating a suboptimal CD4-T-cell response. The upregulation of T-BET, EOMES and IFN-γ on days 8-14 post inoculation, indicates a favoured CD4 Th1- and CD8-response. The dynamics and interaction between CD4+CD25+ and co-stimulatory molecules such as CD28, CD80, CD40 and CD40LG during infection with A. phagocytophilum in sheep needs further investigation in the future.
Collapse
Affiliation(s)
- Sveinung Eskeland
- Department of Production Animal Clinical Science, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Elizabeth Stephansens Vei 15, 1433, Ås, Norway.
| | - Erik G Bø-Granquist
- Department of Production Animal Clinical Science, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Elizabeth Stephansens Vei 15, 1433, Ås, Norway
| | - Snorre Stuen
- Department of Production Animal Clinical Science, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Kyrkjevegen 332/334, 4325, Sandnes, Norway
| | - Kari Lybeck
- Norwegian Veterinary Institute, Elizabeth Stephansens Vei 1, 1433, Ås, Norway
| | - Peter Wilhelmsson
- Division of Clinical Microbiology, Laboratory Medicine, National Reference Laboratory for Borrelia and Other Tick-Borne Bacteria, Region Jönköping County, 553 05, Jönköping, Sweden
| | - Per-Eric Lindgren
- Division of Inflammation and Infection, Department of Biomedical and Clinical Sciences, Linköping University, 581 83, Linköping, Sweden
| | | |
Collapse
|
3
|
Shen M, Kang Y. Cancer fitness genes: emerging therapeutic targets for metastasis. Trends Cancer 2023; 9:69-82. [PMID: 36184492 DOI: 10.1016/j.trecan.2022.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/25/2022] [Accepted: 08/30/2022] [Indexed: 12/31/2022]
Abstract
Development of cancer therapeutics has traditionally focused on targeting driver oncogenes. Such an approach is limited by toxicity to normal tissues and treatment resistance. A class of 'cancer fitness genes' with crucial roles in metastasis have been identified. Elevated or altered activities of these genes do not directly cause cancer; instead, they relieve the stresses that tumor cells encounter and help them adapt to a changing microenvironment, thus facilitating tumor progression and metastasis. Importantly, as normal cells do not experience high levels of stress under physiological conditions, targeting cancer fitness genes is less likely to cause toxicity to noncancerous tissues. Here, we summarize the key features and function of cancer fitness genes and discuss their therapeutic potential.
Collapse
Affiliation(s)
- Minhong Shen
- Department of Pharmacology, Wayne State University School of Medicine, Michigan, MI, USA; Department of Oncology, Wayne State University School of Medicine and Tumor Biology and Microenvironment Research Program, Barbara Ann Karmanos Cancer Institute, Michigan, MI, USA.
| | - Yibin Kang
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA; Ludwig Institute for Cancer Research Princeton Branch, Princeton, NJ, USA.
| |
Collapse
|
4
|
Naimi WA, Gumpf JJ, Cockburn CL, Camus S, Chalfant CE, Li PL, Carlyon JA. Functional inhibition or genetic deletion of acid sphingomyelinase bacteriostatically inhibits Anaplasma phagocytophilum infection in vivo. Pathog Dis 2021; 79:ftaa072. [PMID: 33220685 PMCID: PMC7787905 DOI: 10.1093/femspd/ftaa072] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 11/19/2020] [Indexed: 02/06/2023] Open
Abstract
Anaplasma phagocytophilum infects neutrophils to cause granulocytic anaplasmosis. It poorly infects mice deficient in acid sphingomyelinase (ASM), a lysosomal enzyme critical for cholesterol efflux, and wild-type mice treated with desipramine that functionally inhibits ASM. Whether inhibition or genetic deletion of ASM is bacteriostatic or bactericidal for A. phagocytophilum and desipramine's ability to lower pathogen burden requires a competent immune system were unknown. Anaplasma phagocytophilum-infected severe combined immunodeficiency disorder (SCID) mice were administered desipramine or PBS, followed by the transfer of blood to naïve wild-type mice. Next, infected wild-type mice were given desipramine or PBS followed by transfer of blood to naïve SCID mice. Finally, wild-type or ASM-deficient mice were infected and blood transferred to naïve SCID mice. The percentage of infected neutrophils was significantly reduced in all desipramine-treated or ASM-deficient mice and in all recipients of blood from these mice. Infection was markedly lower in ASM-deficient and desipramine-treated wild-type mice versus desipramine-treated SCID mice. Yet, infection was never ablated. Thus, ASM activity contributes to optimal A. phagocytophilum infection in vivo, pharmacologic inhibition or genetic deletion of ASM impairs infection in a bacteriostatic and reversible manner and A. phagocytophilum is capable of co-opting ASM-independent lipid sources.
Collapse
Affiliation(s)
- Waheeda A Naimi
- Department of Microbiology and Immunology, Virginia Commonwealth University (VCU) Medical Center, VCU School of Medicine, Richmond, VA, 23398 USA
| | - Jacob J Gumpf
- Department of Microbiology and Immunology, Virginia Commonwealth University (VCU) Medical Center, VCU School of Medicine, Richmond, VA, 23398 USA
| | - Chelsea L Cockburn
- Department of Microbiology and Immunology, Virginia Commonwealth University (VCU) Medical Center, VCU School of Medicine, Richmond, VA, 23398 USA
| | - Sarah Camus
- Department of Pharmacology and Toxicology, Virginia Commonwealth University (VCU) Medical Center, VCU School of Medicine, Richmond, VA, 23298 USA
| | - Charles E Chalfant
- Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, Tampa, FL,33620 USA
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University (VCU), Richmond, VA 23298, USA
- The Moffitt Cancer Center, Tampa, FL 33620, USA
- Research Service, James A. Haley Veterans' Hospital, Tampa, FL 33612, USA
| | - Pin-Lan Li
- Department of Pharmacology and Toxicology, Virginia Commonwealth University (VCU) Medical Center, VCU School of Medicine, Richmond, VA, 23298 USA
| | - Jason A Carlyon
- Department of Microbiology and Immunology, Virginia Commonwealth University (VCU) Medical Center, VCU School of Medicine, Richmond, VA, 23398 USA
| |
Collapse
|
5
|
Vechtova P, Sterbova J, Sterba J, Vancova M, Rego ROM, Selinger M, Strnad M, Golovchenko M, Rudenko N, Grubhoffer L. A bite so sweet: the glycobiology interface of tick-host-pathogen interactions. Parasit Vectors 2018; 11:594. [PMID: 30428923 PMCID: PMC6236881 DOI: 10.1186/s13071-018-3062-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 08/14/2018] [Indexed: 11/10/2022] Open
Abstract
Vector-borne diseases constitute 17% of all infectious diseases in the world; among the blood-feeding arthropods, ticks transmit the highest number of pathogens. Understanding the interactions between the tick vector, the mammalian host and the pathogens circulating between them is the basis for the successful development of vaccines against ticks or the tick-transmitted pathogens as well as for the development of specific treatments against tick-borne infections. A lot of effort has been put into transcriptomic and proteomic analyses; however, the protein-carbohydrate interactions and the overall glycobiology of ticks and tick-borne pathogens has not been given the importance or priority deserved. Novel (bio)analytical techniques and their availability have immensely increased the possibilities in glycobiology research and thus novel information in the glycobiology of ticks and tick-borne pathogens is being generated at a faster pace each year. This review brings a comprehensive summary of the knowledge on both the glycosylated proteins and the glycan-binding proteins of the ticks as well as the tick-transmitted pathogens, with emphasis on the interactions allowing the infection of both the ticks and the hosts by various bacteria and tick-borne encephalitis virus.
Collapse
Affiliation(s)
- Pavlina Vechtova
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Branišovská 31, CZ-37005, České Budějovice, Czech Republic. .,Faculty of Science, University of South Bohemia, Branišovská 1760, CZ-37005, České Budějovice, Czech Republic.
| | - Jarmila Sterbova
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Branišovská 31, CZ-37005, České Budějovice, Czech Republic.,Faculty of Science, University of South Bohemia, Branišovská 1760, CZ-37005, České Budějovice, Czech Republic
| | - Jan Sterba
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Branišovská 31, CZ-37005, České Budějovice, Czech Republic.,Faculty of Science, University of South Bohemia, Branišovská 1760, CZ-37005, České Budějovice, Czech Republic
| | - Marie Vancova
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Branišovská 31, CZ-37005, České Budějovice, Czech Republic.,Faculty of Science, University of South Bohemia, Branišovská 1760, CZ-37005, České Budějovice, Czech Republic
| | - Ryan O M Rego
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Branišovská 31, CZ-37005, České Budějovice, Czech Republic.,Faculty of Science, University of South Bohemia, Branišovská 1760, CZ-37005, České Budějovice, Czech Republic
| | - Martin Selinger
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Branišovská 31, CZ-37005, České Budějovice, Czech Republic.,Faculty of Science, University of South Bohemia, Branišovská 1760, CZ-37005, České Budějovice, Czech Republic
| | - Martin Strnad
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Branišovská 31, CZ-37005, České Budějovice, Czech Republic.,Faculty of Science, University of South Bohemia, Branišovská 1760, CZ-37005, České Budějovice, Czech Republic
| | - Maryna Golovchenko
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Branišovská 31, CZ-37005, České Budějovice, Czech Republic
| | - Nataliia Rudenko
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Branišovská 31, CZ-37005, České Budějovice, Czech Republic
| | - Libor Grubhoffer
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Branišovská 31, CZ-37005, České Budějovice, Czech Republic.,Faculty of Science, University of South Bohemia, Branišovská 1760, CZ-37005, České Budějovice, Czech Republic
| |
Collapse
|
6
|
Differential Susceptibility of Male Versus Female Laboratory Mice to Anaplasma phagocytophilum Infection. Trop Med Infect Dis 2018; 3:tropicalmed3030078. [PMID: 30274474 PMCID: PMC6161277 DOI: 10.3390/tropicalmed3030078] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 07/07/2018] [Accepted: 07/18/2018] [Indexed: 12/20/2022] Open
Abstract
Human granulocytic anaplasmosis (HGA) is a debilitating, non-specific febrile illness caused by the granulocytotropic obligate intracellular bacterium called Anaplasma phagocytophilum. Surveillance studies indicate a higher prevalence of HGA in male versus female patients. Whether this discrepancy correlates with differential susceptibility of males and females to A. phagocytophilum infection is unknown. Laboratory mice have long been used to study granulocytic anaplasmosis. Yet, sex as a biological variable (SABV) in this model has not been evaluated. In this paper, groups of male and female C57Bl/6 mice that had been infected with A. phagocytophilum were assessed for the bacterial DNA load in the peripheral blood, the percentage of neutrophils harboring bacterial inclusions called morulae, and splenomegaly. Infected male mice exhibited as much as a 1.85-fold increase in the number of infected neutrophils, which is up to a 1.88-fold increase in the A. phagocytophilum DNA load, and a significant increase in spleen size when compared to infected female mice. The propensity of male mice to develop a higher level of A. phagocytophilum infection is relevant for studies utilizing the mouse model. This stresses the importance of including SABV and aligns with the observed higher incidence of infection in male versus female patients.
Collapse
|
7
|
Agbayani G, Gurnani K, Zafer A, Sad S, Krishnan L. Lack of functional selectin-ligand interactions enhances innate immune resistance to systemic Listeria monocytogenes infection. J Leukoc Biol 2017; 103:355-368. [PMID: 29345354 DOI: 10.1002/jlb.4a1216-499r] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 09/29/2017] [Accepted: 10/17/2017] [Indexed: 12/14/2022] Open
Abstract
Selectin-ligand interactions are important for leukocyte homing and functionality. The roles of selectin-ligand interactions in modulating immunity to intracellular infections are not completely understood. Mice lacking the expression of fucosyltransferase-IV and -VII (Fucosyltransferase-IV and -VII double knockout, FtDKO) exhibit deficient functionality of selectin-ligand interactions. We addressed the kinetics of infection and immunity to Listeria monocytogenes (LM), an intracellular pathogen, in FtDKO mice. These mice exhibited enhanced ability to clear infection and increased survival to a lethal dose of LM infection relative to wild-type (WT) C57BL/6J controls. This was associated with increased levels of neutrophils, monocytes, and dendritic cells (DCs) in the blood and/or infected organs. Adoptive transfer of bone marrow (BM) cells from FtDKO mice to WT mice resulted in enhanced neutrophil numbers and improved clearance of LM bacteria in recipients. In vivo depletion of myeloid innate immune cells, particularly neutrophils, monocytes, macrophages, and DCs, using anti-Ly-6G (RB6-8C5) monoclonal antibody, reduced the ability of FtDKO mice to curtail LM infection. Nevertheless, depletion using anti-Ly-6G (1A8) known to exclusively deplete neutrophils did not abrogate increased resistance of FtDKO mice to LM infection, suggesting a role for other myeloid innate immune cells in this model. Examination of BM hematopoietic progenitors through flow cytometry and cell culture colony-forming unit assay showed increased frequencies of granulocyte-macrophage progenitors in FtDKO relative to WT mice, Overall, our results indicate that functional selectin ligand deficiency enhances innate immune-mediated resistance to systemic LM infection despite defective leukocyte migration and lymphocyte homing.
Collapse
Affiliation(s)
- Gerard Agbayani
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada.,Centre of Human Health Therapeutics, Department of Immunobiology, National Research Council Canada, Ottawa, ON, Canada
| | - Komal Gurnani
- Centre of Human Health Therapeutics, Department of Immunobiology, National Research Council Canada, Ottawa, ON, Canada
| | - Ahmed Zafer
- Centre of Human Health Therapeutics, Department of Immunobiology, National Research Council Canada, Ottawa, ON, Canada
| | - Subash Sad
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
| | - Lakshmi Krishnan
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada.,Centre of Human Health Therapeutics, Department of Immunobiology, National Research Council Canada, Ottawa, ON, Canada
| |
Collapse
|
8
|
Colonne PM, Winchell CG, Voth DE. Hijacking Host Cell Highways: Manipulation of the Host Actin Cytoskeleton by Obligate Intracellular Bacterial Pathogens. Front Cell Infect Microbiol 2016; 6:107. [PMID: 27713866 PMCID: PMC5031698 DOI: 10.3389/fcimb.2016.00107] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 09/05/2016] [Indexed: 12/31/2022] Open
Abstract
Intracellular bacterial pathogens replicate within eukaryotic cells and display unique adaptations that support key infection events including invasion, replication, immune evasion, and dissemination. From invasion to dissemination, all stages of the intracellular bacterial life cycle share the same three-dimensional cytosolic space containing the host cytoskeleton. For successful infection and replication, many pathogens hijack the cytoskeleton using effector proteins introduced into the host cytosol by specialized secretion systems. A subset of effectors contains eukaryotic-like motifs that mimic host proteins to exploit signaling and modify specific cytoskeletal components such as actin and microtubules. Cytoskeletal rearrangement promotes numerous events that are beneficial to the pathogen, including internalization of bacteria, structural support for bacteria-containing vacuoles, altered vesicular trafficking, actin-dependent bacterial movement, and pathogen dissemination. This review highlights a diverse group of obligate intracellular bacterial pathogens that manipulate the host cytoskeleton to thrive within eukaryotic cells and discusses underlying molecular mechanisms that promote these dynamic host-pathogen interactions.
Collapse
Affiliation(s)
- Punsiri M Colonne
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences Little Rock, AR, USA
| | - Caylin G Winchell
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences Little Rock, AR, USA
| | - Daniel E Voth
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences Little Rock, AR, USA
| |
Collapse
|
9
|
Essential domains of Anaplasma phagocytophilum invasins utilized to infect mammalian host cells. PLoS Pathog 2015; 11:e1004669. [PMID: 25658707 PMCID: PMC4450072 DOI: 10.1371/journal.ppat.1004669] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Accepted: 01/07/2015] [Indexed: 12/01/2022] Open
Abstract
Anaplasma phagocytophilum causes granulocytic anaplasmosis, an emerging disease of humans and domestic animals. The obligate intracellular bacterium uses its invasins OmpA, Asp14, and AipA to infect myeloid and non-phagocytic cells. Identifying the domains of these proteins that mediate binding and entry, and determining the molecular basis of their interactions with host cell receptors would significantly advance understanding of A. phagocytophilum infection. Here, we identified the OmpA binding domain as residues 59 to 74. Polyclonal antibody generated against a peptide spanning OmpA residues 59 to 74 inhibited A. phagocytophilum infection of host cells and binding to its receptor, sialyl Lewis x (sLex-capped P-selectin glycoprotein ligand 1. Molecular docking analyses predicted that OmpA residues G61 and K64 interact with the two sLex sugars that are important for infection, α2,3-sialic acid and α1,3-fucose. Amino acid substitution analyses demonstrated that K64 was necessary, and G61 was contributory, for recombinant OmpA to bind to host cells and competitively inhibit A. phagocytophilum infection. Adherence of OmpA to RF/6A endothelial cells, which express little to no sLex but express the structurally similar glycan, 6-sulfo-sLex, required α2,3-sialic acid and α1,3-fucose and was antagonized by 6-sulfo-sLex antibody. Binding and uptake of OmpA-coated latex beads by myeloid cells was sensitive to sialidase, fucosidase, and sLex antibody. The Asp14 binding domain was also defined, as antibody specific for residues 113 to 124 inhibited infection. Because OmpA, Asp14, and AipA each contribute to the infection process, it was rationalized that the most effective blocking approach would target all three. An antibody cocktail targeting the OmpA, Asp14, and AipA binding domains neutralized A. phagocytophilum binding and infection of host cells. This study dissects OmpA-receptor interactions and demonstrates the effectiveness of binding domain-specific antibodies for blocking A. phagocytophilum infection. Anaplasma phagocytophilum causes the potentially deadly bacterial disease granulocytic anaplasmosis. The pathogen replicates inside white blood cells and, like all other obligate intracellular organisms, must enter host cells to survive. Multiple A. phagocytophilum surface proteins called invasins cooperatively orchestrate the entry process. Identifying these proteins’ domains that are required for function, and determining the molecular basis of their interaction with host cell receptors would significantly advance understanding of A. phagocytophilum pathogenesis. In this study, the binding domains of two A. phagocytophilum surface proteins, OmpA and Asp14, were identified. The specific OmpA residues that interact with its host cell receptor were also defined. An antibody cocktail generated against the binding domains of OmpA, Asp14, and a third invasin, AipA, blocked the ability of A. phagocytophilum to infect host cells. The data presented within suggest that binding domains of OmpA, Asp14, and AipA could be exploited to develop a vaccine for granulocytic anaplasmosis.
Collapse
|
10
|
Isozaki T, Amin MA, Ruth JH, Campbell PL, Tsou PS, Ha CM, Stinson WA, Domino SE, Koch AE. Fucosyltransferase 1 mediates angiogenesis in rheumatoid arthritis. Arthritis Rheumatol 2014; 66:2047-58. [PMID: 24692243 PMCID: PMC4426876 DOI: 10.1002/art.38648] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Accepted: 03/25/2014] [Indexed: 11/05/2022]
Abstract
OBJECTIVE To determine the role of α(1,2)-linked fucosylation of proteins by fucosyltransferase 1 (FUT1) in rheumatoid arthritis (RA) angiogenesis. METHODS Analysis of α(1,2)-linked fucosylated proteins in synovial tissue (ST) samples was performed by immunohistologic staining. Expression of α(1,2)-linked fucosylated angiogenic chemokine in synovial fluid (SF) was determined by immunoprecipitation and lectin blotting. To determine the angiogenic role of α(1,2)-linked fucosylated proteins in RA, we performed human dermal microvascular endothelial cell (HMVEC) chemotaxis and Matrigel assays using sham-depleted and α(1,2)-linked fucosylated protein-depleted RA SF samples. To examine the production of proangiogenic chemokines by FUT1 in HMVECs, cells were transfected with FUT1 sense or antisense oligonucleotides, and enzyme-linked immunosorbent assay was performed. We then studied mouse lung endothelial cell (EC) chemotaxis using wild-type and FUT1 gene-deficient mouse lung ECs. RESULTS RA ST endothelial cells showed high expression of α(1,2)-linked fucosylated proteins compared to normal ST. The expression of α(1,2)-linked fucosylated monocyte chemoattractant protein 1 (MCP-1)/CCL2 was significantly elevated in RA SF compared with osteoarthritis SF. Depletion of α(1,2)-linked fucosylated proteins in RA SF induced less HMVEC migration and tube formation than occurred in sham-depleted RA SF. We found that blocking FUT1 expression in ECs resulted in decreased MCP-1/CCL2 and RANTES/CCL5 production. Finally, we showed that FUT1 regulates EC migration in response to vascular endothelial cell growth factor. CONCLUSION Our findings indicate that α(1,2)-linked fucosylation by FUT1 may be an important new target for angiogenic diseases such as RA.
Collapse
Affiliation(s)
- Takeo Isozaki
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI
| | - Mohammad A. Amin
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI
| | - Jeffrey H. Ruth
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI
| | | | - Pei-Suen Tsou
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI
| | - Christine M. Ha
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI
| | - W. Alex Stinson
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI
| | - Steven E. Domino
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI
| | - Alisa E. Koch
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI
- VA Medical Service, Department of Veterans Affairs Medical Center, Ann Arbor, MI
| |
Collapse
|
11
|
Seidman D, Ojogun N, Walker NJ, Mastronunzio J, Kahlon A, Hebert KS, Karandashova S, Miller DP, Tegels BK, Marconi RT, Fikrig E, Borjesson DL, Carlyon JA. Anaplasma phagocytophilum surface protein AipA mediates invasion of mammalian host cells. Cell Microbiol 2014; 16:1133-45. [PMID: 24612118 DOI: 10.1111/cmi.12286] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Revised: 02/18/2014] [Accepted: 02/20/2014] [Indexed: 01/11/2023]
Abstract
Anaplasma phagocytophilum, which causes granulocytic anaplasmosis in humans and animals, is a tick-transmitted obligate intracellular bacterium that mediates its own uptake into neutrophils and non-phagocytic cells. Invasins of obligate intracellular pathogens are attractive targets for protecting against or curing infection because blocking the internalization step prevents survival of these organisms. The complement of A. phagocytophilum invasins is incompletely defined. Here, we report the significance of a novel A. phagocytophilum invasion protein, AipA. A. phagocytophilum induced aipA expression during transmission feeding of infected ticks on mice. The bacterium upregulated aipA transcription when it transitioned from its non-infectious reticulate cell morphotype to its infectious dense-cored morphotype during infection of HL-60 cells. AipA localized to the bacterial surface and was expressed during in vivo infection. Of the AipA regions predicted to be surface-exposed, only residues 1 to 87 (AipA1-87 ) were found to be essential for host cell invasion. Recombinant AipA1-87 protein bound to and competitively inhibited A. phagocytophilum infection of mammalian cells. Antiserum specific for AipA1-87 , but not other AipA regions, antagonized infection. Additional blocking experiments using peptide-specific antisera narrowed down the AipA invasion domain to residues 9 to 21. An antisera combination targeting AipA1-87 together with two other A. phagocytophilum invasins, OmpA and Asp14, nearly abolished infection of host cells. This study identifies AipA as an A. phagocytophilum surface protein that is critical for infection, demarcates its invasion domain, and establishes a rationale for targeting multiple invasins to protect against granulocytic anaplasmosis.
Collapse
Affiliation(s)
- David Seidman
- Department of Microbiology and Immunology, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Truchan HK, Seidman D, Carlyon JA. Breaking in and grabbing a meal: Anaplasma phagocytophilum cellular invasion, nutrient acquisition, and promising tools for their study. Microbes Infect 2013; 15:1017-25. [PMID: 24141091 PMCID: PMC3894830 DOI: 10.1016/j.micinf.2013.10.010] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2013] [Accepted: 10/10/2013] [Indexed: 12/19/2022]
Abstract
Anaplasma phagocytophilum invades neutrophils to cause the emerging infection, human granulocytic anaplasmosis. Here, we provide a focused review of the A. phagocytophilum invasin-host cell receptor interactions that promote bacterial entry and the degradative and membrane traffic pathways that the organism exploits to route nutrients to the organelle in which it resides. Because its obligatory intracellular nature hinders knock out-complementation approaches, we also discuss the current methods used to study A. phagocytophilum gene function and the potential benefit of applying novel tools that have advanced studies of other obligate intracellular bacterial pathogens.
Collapse
Affiliation(s)
- Hilary K. Truchan
- Department of Microbiology and Immunology, Virginia Commonwealth University School of Medicine, Richmond, Virginia
| | - David Seidman
- Department of Microbiology and Immunology, Virginia Commonwealth University School of Medicine, Richmond, Virginia
| | - Jason A. Carlyon
- Department of Microbiology and Immunology, Virginia Commonwealth University School of Medicine, Richmond, Virginia
| |
Collapse
|
13
|
Mohan Kumar D, Yamaguchi M, Miura K, Lin M, Los M, Coy JF, Rikihisa Y. Ehrlichia chaffeensis uses its surface protein EtpE to bind GPI-anchored protein DNase X and trigger entry into mammalian cells. PLoS Pathog 2013; 9:e1003666. [PMID: 24098122 PMCID: PMC3789761 DOI: 10.1371/journal.ppat.1003666] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Accepted: 08/12/2013] [Indexed: 11/19/2022] Open
Abstract
Ehrlichia chaffeensis, an obligatory intracellular rickettsial pathogen, enters and replicates in monocytes/macrophages and several non-phagocytic cells. E. chaffeensis entry into mammalian cells is essential not only for causing the emerging zoonosis, human monocytic ehrlichiosis, but also for its survival. It remains unclear if E. chaffeensis has evolved a specific surface protein that functions as an 'invasin' to mediate its entry. We report a novel entry triggering protein of Ehrlichia, EtpE that functions as an invasin. EtpE is an outer membrane protein and an antibody against EtpE (the C-terminal fragment, EtpE-C) greatly inhibited E. chaffeensis binding, entry and infection of both phagocytes and non-phagocytes. EtpE-C-immunization of mice significantly inhibited E. chaffeensis infection. EtpE-C-coated latex beads, used to investigate whether EtpE-C can mediate cell invasion, entered both phagocytes and non-phagocytes and the entry was blocked by compounds that block E. chaffeensis entry. None of these compounds blocked uptake of non-coated beads by phagocytes. Yeast two-hybrid screening revealed that DNase X, a glycosylphosphatidyl inositol-anchored mammalian cell-surface protein binds EtpE-C. This was confirmed by far-Western blotting, affinity pull-down, co-immunoprecipitation, immunofluorescence labeling, and live-cell image analysis. EtpE-C-coated beads entered bone marrow-derived macrophages (BMDMs) from wild-type mice, whereas they neither bound nor entered BMDMs from DNase X(-/-) mice. Antibody against DNase X or DNase X knock-down by small interfering RNA impaired E. chaffeensis binding, entry, and infection. E. chaffeensis entry and infection rates of BMDMs from DNase X(-/-) mice and bacterial load in the peripheral blood in experimentally infected DNase X(-/-) mice, were significantly lower than those from wild-type mice. Thus this obligatory intracellular pathogen evolved a unique protein EtpE that binds DNase X to enter and infect eukaryotic cells. This study is the first to demonstrate the invasin and its mammalian receptor, and their in vivo relevance in any ehrlichial species.
Collapse
Affiliation(s)
- Dipu Mohan Kumar
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, Ohio, United States of America
| | - Mamoru Yamaguchi
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, Ohio, United States of America
| | - Koshiro Miura
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, Ohio, United States of America
| | - Mingqun Lin
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, Ohio, United States of America
| | - Marek Los
- Department of Clinical & Experimental Medicine, Integrative Regenerative Medical Center Linköping University, Linkoping, Sweden
| | | | - Yasuko Rikihisa
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, Ohio, United States of America
- * E-mail:
| |
Collapse
|
14
|
Stuen S, Granquist EG, Silaghi C. Anaplasma phagocytophilum--a widespread multi-host pathogen with highly adaptive strategies. Front Cell Infect Microbiol 2013; 3:31. [PMID: 23885337 PMCID: PMC3717505 DOI: 10.3389/fcimb.2013.00031] [Citation(s) in RCA: 393] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2013] [Accepted: 06/30/2013] [Indexed: 11/21/2022] Open
Abstract
The bacterium Anaplasma phagocytophilum has for decades been known to cause the disease tick-borne fever (TBF) in domestic ruminants in Ixodes ricinus-infested areas in northern Europe. In recent years, the bacterium has been found associated with Ixodes-tick species more or less worldwide on the northern hemisphere. A. phagocytophilum has a broad host range and may cause severe disease in several mammalian species, including humans. However, the clinical symptoms vary from subclinical to fatal conditions, and considerable underreporting of clinical incidents is suspected in both human and veterinary medicine. Several variants of A. phagocytophilum have been genetically characterized. Identification and stratification into phylogenetic subfamilies has been based on cell culturing, experimental infections, PCR, and sequencing techniques. However, few genome sequences have been completed so far, thus observations on biological, ecological, and pathological differences between genotypes of the bacterium, have yet to be elucidated by molecular and experimental infection studies. The natural transmission cycles of various A. phagocytophilum variants, the involvement of their respective hosts and vectors involved, in particular the zoonotic potential, have to be unraveled. A. phagocytophilum is able to persist between seasons of tick activity in several mammalian species and movement of hosts and infected ticks on migrating animals or birds may spread the bacterium. In the present review, we focus on the ecology and epidemiology of A. phagocytophilum, especially the role of wildlife in contribution to the spread and sustainability of the infection in domestic livestock and humans.
Collapse
Affiliation(s)
- Snorre Stuen
- Department of Production Animal Clinical Sciences, Norwegian School of Veterinary Science Sandnes, Norway.
| | | | | |
Collapse
|
15
|
Ojogun N, Kahlon A, Ragland SA, Troese MJ, Mastronunzio JE, Walker NJ, VieBrock L, Thomas RJ, Borjesson DL, Fikrig E, Carlyon JA. Anaplasma phagocytophilum outer membrane protein A interacts with sialylated glycoproteins to promote infection of mammalian host cells. Infect Immun 2012; 80:3748-60. [PMID: 22907813 PMCID: PMC3486060 DOI: 10.1128/iai.00654-12] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Accepted: 07/25/2012] [Indexed: 01/14/2023] Open
Abstract
Anaplasma phagocytophilum is the tick-transmitted obligate intracellular bacterium that causes human granulocytic anaplasmosis (HGA). A. phagocytophilum binding to sialyl Lewis x (sLe(x)) and other sialylated glycans that decorate P selectin glycoprotein 1 (PSGL-1) and other glycoproteins is critical for infection of mammalian host cells. Here, we demonstrate the importance of A. phagocytophilum outer membrane protein A (OmpA) APH_0338 in infection of mammalian host cells. OmpA is transcriptionally induced during transmission feeding of A. phagocytophilum-infected ticks on mice and is upregulated during invasion of HL-60 cells. OmpA is presented on the pathogen's surface. Sera from HGA patients and experimentally infected mice recognize recombinant OmpA. Pretreatment of A. phagocytophilum organisms with OmpA antiserum reduces their abilities to infect HL-60 cells. The OmpA N-terminal region is predicted to contain the protein's extracellular domain. Glutathione S-transferase (GST)-tagged versions of OmpA and OmpA amino acids 19 to 74 (OmpA(19-74)) but not OmpA(75-205) bind to, and competitively inhibit A. phagocytophilum infection of, host cells. Pretreatment of host cells with sialidase or trypsin reduces or nearly eliminates, respectively, GST-OmpA adhesion. Therefore, OmpA interacts with sialylated glycoproteins. This study identifies the first A. phagocytophilum adhesin-receptor pair and delineates the region of OmpA that is critical for infection.
Collapse
Affiliation(s)
- Nore Ojogun
- Department of Microbiology and Immunology, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| | - Amandeep Kahlon
- Department of Microbiology and Immunology, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| | - Stephanie A. Ragland
- Department of Microbiology and Immunology, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| | - Matthew J. Troese
- Department of Microbiology and Immunology, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| | - Juliana E. Mastronunzio
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Naomi J. Walker
- Department of Pathology, Microbiology, and Immunology, University of California School of Veterinary Medicine, Davis, California, USA
| | - Lauren VieBrock
- Department of Microbiology and Immunology, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| | - Rachael J. Thomas
- Department of Microbiology and Immunology, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| | - Dori L. Borjesson
- Department of Pathology, Microbiology, and Immunology, University of California School of Veterinary Medicine, Davis, California, USA
| | - Erol Fikrig
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Jason A. Carlyon
- Department of Microbiology and Immunology, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| |
Collapse
|
16
|
Anaplasma phagocytophilum Asp14 is an invasin that interacts with mammalian host cells via its C terminus to facilitate infection. Infect Immun 2012; 81:65-79. [PMID: 23071137 DOI: 10.1128/iai.00932-12] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Anaplasma phagocytophilum, a member of the family Anaplasmataceae, is the tick-transmitted obligate intracellular bacterium that causes human granulocytic anaplasmosis. The life cycle of A. phagocytophilum is biphasic, transitioning between the noninfectious reticulate cell (RC) and infectious dense-cored (DC) forms. We analyzed the bacterium's DC surface proteome by selective biotinylation of surface proteins, NeutrAvidin affinity purification, and mass spectrometry. Transcriptional profiling of selected outer membrane protein candidates over the course of infection revealed that aph_0248 (designated asp14 [14-kDa A. phagocytophilum surface protein]) expression was upregulated the most during A. phagocytophilum cellular invasion. asp14 transcription was induced during transmission feeding of A. phagocytophilum-infected ticks on mice and was upregulated when the bacterium engaged its receptor, P-selectin glycoprotein ligand 1. Asp14 localized to the A. phagocytophilum surface and was expressed during in vivo infection. Treating DC organisms with Asp14 antiserum or preincubating mammalian host cells with glutathione S-transferase (GST)-Asp14 significantly inhibited infection of host cells. Moreover, preincubating host cells with GST-tagged forms of both Asp14 and outer membrane protein A, another A. phagocytophilum invasin, pronouncedly reduced infection relative to treatment with either protein alone. The Asp14 domain that is sufficient for cellular adherence and invasion lies within the C-terminal 12 to 24 amino acids and is conserved among other Anaplasma and Ehrlichia species. These results identify Asp14 as an A. phagocytophilum surface protein that is critical for infection, delineate its invasion domain, and demonstrate the potential of targeting Asp14 in concert with OmpA for protecting against infection by A. phagocytophilum and other Anaplasmataceae pathogens.
Collapse
|
17
|
Severo MS, Stephens KD, Kotsyfakis M, Pedra JH. Anaplasma phagocytophilum: deceptively simple or simply deceptive? Future Microbiol 2012; 7:719-31. [PMID: 22702526 DOI: 10.2217/fmb.12.45] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Anaplasma phagocytophilum is an obligate intracellular rickettsial pathogen transmitted by ixodid ticks. This bacterium colonizes myeloid and nonmyeloid cells and causes human granulocytic anaplasmosis--an important immunopathological vector-borne disease in the USA, Europe and Asia. Recent studies uncovered novel insights into the mechanisms of A. phagocytophilum pathogenesis and immunity. Here, we provide an overview of the underlying events by which the immune system responds to A. phagocytophilum infection, how this pathogen counteracts host immunity and the contribution of the tick vector for microbial transmission. We also discuss current scientific gaps in the knowledge of A. phagocytophilum biology for the purpose of exchanging research perspectives.
Collapse
Affiliation(s)
- Maiara S Severo
- Department of Entomology & Center for Disease Vector Research, 900 University Avenue, University of California - Riverside, Riverside, CA 92521, USA
| | | | | | | |
Collapse
|
18
|
Chen G, Severo MS, Sakhon OS, Choy A, Herron MJ, Felsheim RF, Wiryawan H, Liao J, Johns JL, Munderloh UG, Sutterwala FS, Kotsyfakis M, Pedra JHF. Anaplasma phagocytophilum dihydrolipoamide dehydrogenase 1 affects host-derived immunopathology during microbial colonization. Infect Immun 2012; 80:3194-205. [PMID: 22753375 PMCID: PMC3418742 DOI: 10.1128/iai.00532-12] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2012] [Accepted: 06/21/2012] [Indexed: 01/06/2023] Open
Abstract
Anaplasma phagocytophilum is a tick-borne rickettsial pathogen that provokes an acute inflammatory response during mammalian infection. The illness caused by A. phagocytophilum, human granulocytic anaplasmosis, occurs irrespective of pathogen load and results instead from host-derived immunopathology. Thus, characterizing A. phagocytophilum genes that affect the inflammatory process is critical for understanding disease etiology. By using an A. phagocytophilum Himar1 transposon mutant library, we showed that a single transposon insertion into the A. phagocytophilum dihydrolipoamide dehydrogenase 1 gene (lpda1 [APH_0065]) affects inflammation during infection. A. phagocytophilum lacking lpda1 revealed enlargement of the spleen, increased splenic extramedullary hematopoiesis, and altered clinicopathological abnormalities during mammalian colonization. Furthermore, LPDA1-derived immunopathology was independent of neutrophil infection and correlated with enhanced reactive oxygen species from NADPH oxidase and nuclear factor (NF)-κB signaling in macrophages. Taken together, these findings suggest the presence of different signaling pathways in neutrophils and macrophages during A. phagocytophilum invasion and highlight the importance of LPDA1 as an immunopathological molecule.
Collapse
Affiliation(s)
- Gang Chen
- Department of Entomology and Center for Disease Vector Research, University of California—Riverside, Riverside, California, USA
| | - Maiara S. Severo
- Department of Entomology and Center for Disease Vector Research, University of California—Riverside, Riverside, California, USA
| | - Olivia S. Sakhon
- Department of Entomology and Center for Disease Vector Research, University of California—Riverside, Riverside, California, USA
| | - Anthony Choy
- Department of Entomology and Center for Disease Vector Research, University of California—Riverside, Riverside, California, USA
| | - Michael J. Herron
- Department of Entomology, University of Minnesota, St. Paul, Minnesota, USA
| | | | - Hilda Wiryawan
- Department of Bioengineering, University of California—Riverside, Riverside, California, USA
| | - Jiayu Liao
- Department of Bioengineering, University of California—Riverside, Riverside, California, USA
| | - Jennifer L. Johns
- Department of Comparative Medicine, Stanford University, Stanford, California, USA
| | | | - Fayyaz S. Sutterwala
- Inflammation Program and Division of Infectious Diseases, Department of Internal Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Michail Kotsyfakis
- Institute of Parasitology, Biology Centre, Academy of Sciences of the Czech Republic, Ceske Budejovice, Czech Republic
| | - Joao H. F. Pedra
- Department of Entomology and Center for Disease Vector Research, University of California—Riverside, Riverside, California, USA
| |
Collapse
|
19
|
Yaxue Z, Hongtao J, Qiuyue W, Zhixin F, Hongwei G, Pengpeng L, Quan L, Lifeng C. Molecular detection of Anaplasma phagocytophilum in Ixodid ticks in Hebei Province, China. Vector Borne Zoonotic Dis 2011; 11:1323-7. [PMID: 21923254 DOI: 10.1089/vbz.2010.0253] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
A total of 3696 Ixodid ticks, collected from Hebei Province, China, were examined by a nested polymerase chain reaction for the presence of Anaplasma phagocytophilum. Forty-three (15.4%) of 280 pools tested, including 39 (14.6%) of 267 Haemaphysalis longicornis and four (30.8%) of 13 Dermacentor nuttalli, were positive, but no significant difference was found between D. nuttalli and H. longicornis (p>0.05). Sequence and phylogenetic analyses of 16S rRNA gene indicated that A. phagocytophilum in China is genetically diverse. To our knowledge, this is the first evidence of A. phagocytophilum in ticks from Hebei Province, China, and the first documentation of Anaplasma infection in D. nuttalli.
Collapse
Affiliation(s)
- Zou Yaxue
- Key Laboratory of Preventive Veterinary Medicine in Hebei Province, Hebei Normal University of Science and Technology, 360 Hebei Street, Qinhuangdao, China
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Mechanisms of obligatory intracellular infection with Anaplasma phagocytophilum. Clin Microbiol Rev 2011; 24:469-89. [PMID: 21734244 PMCID: PMC3131063 DOI: 10.1128/cmr.00064-10] [Citation(s) in RCA: 172] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Anaplasma phagocytophilum persists in nature by cycling between mammals and ticks. Human infection by the bite of an infected tick leads to a potentially fatal emerging disease called human granulocytic anaplasmosis. A. phagocytophilum is an obligatory intracellular bacterium that replicates inside mammalian granulocytes and the salivary gland and midgut cells of ticks. A. phagocytophilum evolved the remarkable ability to hijack the regulatory system of host cells. A. phagocytophilum alters vesicular traffic to create an intracellular membrane-bound compartment that allows replication in seclusion from lysosomes. The bacterium downregulates or actively inhibits a number of innate immune responses of mammalian host cells, and it upregulates cellular cholesterol uptake to acquire cholesterol for survival. It also upregulates several genes critical for the infection of ticks, and it prolongs tick survival at freezing temperatures. Several host factors that exacerbate infection have been identified, including interleukin-8 (IL-8) and cholesterol. Host factors that overcome infection include IL-12 and gamma interferon (IFN-γ). Two bacterial type IV secretion effectors and several bacterial proteins that associate with inclusion membranes have been identified. An understanding of the molecular mechanisms underlying A. phagocytophilum infection will foster the development of creative ideas to prevent or treat this emerging tick-borne disease.
Collapse
|
21
|
Anaplasma phagocytophilum infects mast cells via alpha1,3-fucosylated but not sialylated glycans and inhibits IgE-mediated cytokine production and histamine release. Infect Immun 2011; 79:2717-26. [PMID: 21536789 DOI: 10.1128/iai.00181-11] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Mast cells are sentinels for infection. Upon exposure to pathogens, they release their stores of proinflammatory cytokines, chemokines, and histamine. Mast cells are also important for the control of certain tick-borne infections. Anaplasma phagocytophilum is an obligate intracellular tick-transmitted bacterium that infects neutrophils to cause the emerging disease granulocytic anaplasmosis. A. phagocytophilum adhesion to and infection of neutrophils depend on sialylated and α1,3-fucosylated glycans. We investigated the hypotheses that A. phagocytophilum invades mast cells and inhibits mast cell activation. We demonstrate that A. phagocytophilum binds and/or infects murine bone marrow-derived mast cells (BMMCs), murine peritoneal mast cells, and human skin-derived mast cells. A. phagocytophilum infection of BMMCs depends on α1,3-fucosylated, but not sialylated, glycans. A. phagocytophilum binding to and invasion of BMMCs do not elicit proinflammatory cytokine secretion. Moreover, A. phagocytophilum-infected cells are inhibited in the release of tumor necrosis factor alpha (TNF-α), interleukin 6 (IL-6), IL-13, and histamine following stimulation with IgE or antigen. Thus, A. phagocytophilum mitigates mast cell activation. These findings potentially represent a novel means by which A. phagocytophilum usurps host defense mechanisms and shed light on the interplay between mast cells and vector-borne bacterial pathogens.
Collapse
|
22
|
Pedra JHF, Narasimhan S, Rendić D, DePonte K, Bell-Sakyi L, Wilson IBH, Fikrig E. Fucosylation enhances colonization of ticks by Anaplasma phagocytophilum. Cell Microbiol 2010; 12:1222-34. [PMID: 20331643 PMCID: PMC3250644 DOI: 10.1111/j.1462-5822.2010.01464.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Fucosylated structures participate in a wide range of pathological processes in eukaryotes and prokaryotes. The impact of fucose on microbial pathogenesis, however, has been less appreciated in arthropods of medical relevance. Thus, we used the tick-borne bacterium Anaplasma phagocytophilum- the agent of human granulocytic anaplasmosis to understand these processes. Here we show that A. phagocytophilum uses alpha1,3-fucose to colonize ticks. We demonstrate that A. phagocytophilum modulates the expression of alpha1,3-fucosyltransferases and gene silencing significantly reduces colonization of tick cells. Acquisition but not transmission of A. phagocytophilum was affected when alpha1,3-fucosyltransferases were silenced during tick feeding. Our results uncover a novel mechanism of pathogen colonization in arthropods. Decoding mechanisms of pathogen invasion in ticks might expedite the development of new strategies to interfere with the life cycle of A. phagocytophilum.
Collapse
Affiliation(s)
- Joao H F Pedra
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA.
| | | | | | | | | | | | | |
Collapse
|
23
|
Anaplasma phagocytophilum and Ehrlichia chaffeensis: subversive manipulators of host cells. Nat Rev Microbiol 2010; 8:328-39. [PMID: 20372158 DOI: 10.1038/nrmicro2318] [Citation(s) in RCA: 149] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Anaplasma spp. and Ehrlichia spp. cause several emerging human infectious diseases. Anaplasma phagocytophilum and Ehrlichia chaffeensis are transmitted between mammals by blood-sucking ticks and replicate inside mammalian white blood cells and tick salivary-gland and midgut cells. Adaptation to a life in eukaryotic cells and transmission between hosts has been assisted by the deletion of many genes that are present in the genomes of free-living bacteria (including genes required for the biosynthesis of lipopolysaccharide and peptidoglycan), by the acquisition of a cholesterol uptake pathway and by the expansion of the repertoire of genes encoding the outer-membrane porins and type IV secretion system. Here, I review the specialized properties and other adaptations of these intracellular bacteria.
Collapse
|
24
|
Abstract
Anaplasma phagocytophilum is the recently designated name replacing three species of granulocytic bacteria, Ehrlichia phagocytophila, Ehrlichia equi and the agent of human granulocytic ehrlichiosis, after the recent reorganization of the families Rickettsiaceae and Anaplasmataceae in the order Rickettsiales. Tick-borne fever (TBF), which is caused by the prototype of A. phagocytophilum, was first described in 1932 in Scotland. A similar disease caused by a related granulocytic agent was first described in horses in the USA in 1969; this was followed by the description of two distinct granulocytic agents causing similar diseases in dogs in the USA in 1971 and 1982. Until the discovery of human granulocytic anaplasmosis (HGA) in the USA in 1994, these organisms were thought to be distinct species of bacteria infecting specific domestic animals and free-living reservoirs. It is now widely accepted that the agents affecting different animal hosts are variants of the same Gram-negative obligatory intracellular bacterium, which is transmitted by hard ticks belonging to the Ixodes persulcatus complex. One of its fascinating features is that it infects and actively grows in neutrophils by employing an array of mechanisms to subvert their bactericidal activity. It is also able to survive within an apparently immune host by employing a complex mechanism of antigenic variation. Ruminants with TBF and humans with HGA develop severe febrile reaction, bacteraemia and leukopenia due to neutropenia, lymphocytopenia and thrombocytopenia within a week of exposure to a tick bite. Because of the severe haematological disorders lasting for several days and other adverse effects on the host's immune functions, infected animals and humans are more susceptible to other infections.
Collapse
Affiliation(s)
- Zerai Woldehiwet
- University of Liverpool, Department of Veterinary Pathology, Veterinary Teaching Hospital, Leahurst, Neston, South Wirral CH64 7TE, UK.
| |
Collapse
|
25
|
Rikihisa Y. Molecular events involved in cellular invasion by Ehrlichia chaffeensis and Anaplasma phagocytophilum. Vet Parasitol 2009; 167:155-66. [PMID: 19836896 DOI: 10.1016/j.vetpar.2009.09.017] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Ehrlichia chaffeensis and Anaplasma phagocytophilum are obligatory intracellular bacteria that preferentially replicate inside leukocytes by utilizing biological compounds and processes of these primary host defensive cells. These bacteria incorporate cholesterol from the host for their survival. Upon interaction with host monocytes and granulocytes, respectively, these bacteria usurp the lipid raft domain containing GPI-anchored protein to induce a series of signaling events that result in internalization of the bacteria. Monocytes and neutrophils usually kill invading microorganisms by fusion of the phagosomes containing the bacteria with granules containing both antimicrobial peptides and lysosomal hydrolytic enzymes and/or through sequestering vital nutrients. However, E. chaffeensis and A. phagocytophilum alter vesicular traffic to create a unique intracellular membrane-bound compartment that allows their replication in seclusion from lysosomal killing. These bacteria are quite sensitive to reactive oxygen species (ROS), so in order to survive in host cells that are primary mediators of ROS-induced killing, they inhibit activation of NADPH oxidase and assembly of this enzyme in their inclusion compartments. Moreover, host phagocyte activation and differentiation, apoptosis, and IFN-gamma signaling pathways are inhibited by these bacteria. Through reductive evolution, lipopolysaccharide and peptidoglycan that activate the innate immune response, have been eliminated from these gram-negative bacteria at the genomic level. Upon interaction with new host cells, bacterial genes encoding the Type IV secretion apparatus and the two-component regulatory system are up-regulated to sense and adapt to the host environment. Thus dynamic signal transduction events concurrently proceed both in the host cells and in the invading E. chaffeensis and A. phagocytophilum bacteria for successful establishment of intracellular infection. Several bacterial surface-exposed proteins and porins are recently identified. Further functional studies on Ehrlichia and Anaplasma effector or ligand molecules and cognate host cell receptors will undoubtedly advance our understanding of the complex interplay between obligatory intracellular pathogens and their hosts. Such data can be applied towards treatment, diagnosis, and control of ehrlichiosis and anaplasmosis.
Collapse
Affiliation(s)
- Yasuko Rikihisa
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
26
|
Troese MJ, Carlyon JA. Anaplasma phagocytophilum dense-cored organisms mediate cellular adherence through recognition of human P-selectin glycoprotein ligand 1. Infect Immun 2009; 77:4018-27. [PMID: 19596771 PMCID: PMC2738047 DOI: 10.1128/iai.00527-09] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2009] [Revised: 06/08/2009] [Accepted: 07/07/2009] [Indexed: 01/20/2023] Open
Abstract
Anaplasma phagocytophilum is an obligate intracellular bacterium that infects granulocytes to cause human granulocytic anaplasmosis. The susceptibilities of human neutrophils and promyelocytic HL-60 cells to A. phagocytophilum are linked to bacterial usage of P-selectin glycoprotein ligand 1 (PSGL-1) as a receptor for adhesion and entry. A. phagocytophilum undergoes a biphasic developmental cycle, transitioning between a smaller electron dense-cored cell (DC), which has a dense nucleoid, and a larger, pleomorphic electron lucent reticulate cell (RC), which has a dispersed nucleoid. The pathobiological roles of each form have not been elucidated. To ascertain the role of each form, we used electron microscopy to monitor bacterial binding, entry, and intracellular development within HL-60 cells. Only DCs were observed binding to and inducing uptake by HL-60 cells. By 12 h, internalized DCs had transitioned to RCs, which had initiated replication. By 24 h, large RC numbers were observed within individual inclusions. Reinfection had occurred by 36 h, as individual, vacuole-enclosed DCs and RCs were again observed. The abilities of DC- and RC-enriched A. phagocytophilum populations to bind and/or infect HL-60 cells or Chinese hamster ovary cells transfected to express PSGL-1 (PSGL-1 CHO) were compared. Only DCs bound PSGL-1 CHO cells and did so in a PSGL-1-blocking antibody-inhibitable manner. These results demonstrate that the respective roles of A. phagocytophilum DCs and RCs are consistent with analogous forms of other obligate intracellular pathogens that undergo biphasic development and hint that the PSGL-1-targeting adhesin(s) may be upregulated or optimally posttranslationally modified on DCs.
Collapse
Affiliation(s)
- Matthew J Troese
- Department of Microbiology and Immunology, Virginia Commonwealth University School of Medicine, Richmond, Virginia 23298-0678, USA
| | | |
Collapse
|
27
|
Differential expression and glycosylation of anaplasma phagocytophilum major surface protein 2 paralogs during cultivation in sialyl Lewis x-deficient host cells. Infect Immun 2009; 77:1746-56. [PMID: 19223475 PMCID: PMC2681760 DOI: 10.1128/iai.01530-08] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Many microbial pathogens alter expression and/or posttranslational modifications of their surface proteins in response to dynamics within their host microenvironments to retain optimal interactions with their host cells and/or to evade the humoral immune response. Anaplasma phagocytophilum is an intragranulocytic bacterium that utilizes sialyl Lewis x (sLe(x))-modified P-selectin glycoprotein ligand 1 as a receptor for infecting myeloid cells. Bacterial populations that do not rely on this receptor can be obtained through cultivation in sLe(x)-defective cell lines. A. phagocytophilum major surface protein 2 [Msp2(P44)] is encoded by members of a paralogous gene family and is speculated to play roles in host adaptation. We assessed the complement of Msp2(P44) paralogs expressed by A. phagocytophilum during infection of sLe(x)-competent HL-60 cells and two HL-60 cell lines defective for sLe(x) expression. Multiple Msp2(P44) and N-terminally truncated 25- to 27-kDa isoforms having various isoelectric points and electrophoretic mobilities were expressed in each cell line. The complement of expressed msp2(p44) paralogs and the glycosyl residues modifying Msp2(P44) varied considerably among bacterial populations recovered from sLe(x)-competent and -deficient host cells. Thus, loss of host cell sLe(x) expression coincided with both differential expression and glycosylation of A. phagocytophilum Msp2(P44). This reinforces the hypothesis that this bacterium is able to generate a large variety of surface-exposed molecules that could provide great antigenic diversity and result in multiple binding properties.
Collapse
|
28
|
Reneer DV, Troese MJ, Huang B, Kearns SA, Carlyon JA. Anaplasma phagocytophilum PSGL-1-independent infection does not require Syk and leads to less efficient AnkA delivery. Cell Microbiol 2008; 10:1827-38. [PMID: 18485118 DOI: 10.1111/j.1462-5822.2008.01168.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Anaplasma phagocytophilum is an obligate intracellular bacterium that infects neutrophils to cause granulocytic anaplasmosis in humans and mammals. P-selectin glycoprotein ligand-1 (PSGL-1) and the tetrasaccharide sialyl Lewis x (sLe(x)), which caps the PSGL-1 N-terminus, are confirmed A. phagocytophilum receptors. A. phagocytophilum is capable of sLe(x)-modified PSGL-1-dependent and -independent infection. PSGL-1 N-terminus-mediated entry is dependent on spleen tyrosine kinase (Syk). Here, we determined that PSGL-1-independent entry does not alter bacterial replication and investigated whether it involves Syk using NCH-1A2, an enriched subpopulation of A. phagocytophilum NCH-1 obtained through cultivation in a sLe(x)-deficient HL-60 cell line, HL-60 A2. Pharmacological inhibition of Syk nearly abolishes NCH-1 infection, but does not alter NCH-1A2 invasion and only marginally reduces NCH-1A2 propagation. This phenomenon was confirmed by a competitive infection assay using PSGL-1-dependent and -independent A. phagocytophilum organisms transformed to express mCherry or green fluorescent protein respectively. We also assayed for delivery and tyrosine phosphorylation of the A. phagocytophilum effector, AnkA, following NCH-1or NCH-1A2 incubation with HL-60 or HL-60 A2 cells in the presence of PSGL-1 blocking antibody. PSGL-1 N-terminus recognition promotes optimal AnkA delivery while binding to sLe(x) or the unknown receptor is comparably less important for this process.
Collapse
Affiliation(s)
- Dexter V Reneer
- Department of Microbiology, Immunology, and Molecular Genetics, College of Medicine, University of Kentucky, Lexington, KY, USA
| | | | | | | | | |
Collapse
|
29
|
Sarkar M, Reneer DV, Carlyon JA. Sialyl-Lewis x-independent infection of human myeloid cells by Anaplasma phagocytophilum strains HZ and HGE1. Infect Immun 2007; 75:5720-5. [PMID: 17893131 PMCID: PMC2168341 DOI: 10.1128/iai.00905-07] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2007] [Revised: 08/07/2007] [Accepted: 09/12/2007] [Indexed: 11/20/2022] Open
Abstract
Anaplasma phagocytophilum, the causative agent of human granulocytic anaplasmosis, is an obligate intracellular bacterium that infects neutrophils and neutrophil precursors. Bacterial recognition of P-selectin glycoprotein ligand-1 (PSGL-1) and the alpha2,3-sialylated- and alpha1,3-fucosylated-moiety sialyl-Lewis x (sLe(x)), which modifies the PSGL-1 N terminus, is important for adhesion to and invasion of myeloid cells. We have previously demonstrated that A. phagocytophilum organisms of the NCH-1 strain that utilize an sLe(x)-modified PSGL-1-independent means of entry can be enriched for by cultivation in undersialylated HL-60 cells that are unable to construct sLe(x). Because it was unknown whether other A. phagocytophilum isolates share this ability, we extended our studies to the geographically diverse strains HZ and HGE1. HL-60 A2 is a clonal cell line that is defective for sialylation and alpha1,3-fucosyltransferase. HL-60 A2 cell surfaces, therefore, not only lack sLe(x) but also are virtually devoid of any other sialic acid- and/or alpha1,3-fucose-modified glycan. By cultivating HZ and HGE1 in HL-60 A2 cells, we enriched for bacterial subpopulations (termed HZA2 and HGE1A2) that bind and/or infect myeloid cells in the absence of sialic acid and alpha1,3-fucose and in the presence of antibody that blocks the N terminus of PSGL-1. Thus, multiple A. phagocytophilum isolates share the ability to use sLe(x)-modified PSGL-1-dependent and -independent routes of entry into myeloid cells. HZA2 and HGE1A2 represent enriched bacterial populations that will aid dissection of the complexities of the interactions between A. phagocytophilum and host myeloid cells.
Collapse
Affiliation(s)
- Madhubanti Sarkar
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| | | | | |
Collapse
|
30
|
Pedra JHF, Tao J, Sutterwala FS, Sukumaran B, Berliner N, Bockenstedt LK, Flavell RA, Yin Z, Fikrig E. IL-12/23p40-dependent clearance of Anaplasma phagocytophilum in the murine model of human anaplasmosis. ACTA ACUST UNITED AC 2007; 50:401-10. [PMID: 17521390 DOI: 10.1111/j.1574-695x.2007.00270.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Human anaplasmosis is an emerging infectious disease transmitted by ticks that can be potentially fatal in the immunocompromised and the elderly. The mechanisms of defense against the causative agent, Anaplasma phagocytophilum, are not completely understood; however, interferon (IFN)-gamma plays an important role in pathogen clearance. Here, we show that IFN-gamma is regulated through an early IL-12/23p40-dependent mechanism. Interleukin (IL)-12/23p40 is regulated in macrophages and dendritic cells after activation by microbial agonists and cytokines and constitutes a subunit of IL-12 and IL-23. IL-12/23p40-deficient mice displayed an increased A. phagocytophilum burden, accelerated thrombocytopenia and increased neutrophil numbers in the spleen at day 6 postinfection. Infection of MyD88- and mitogen-activated kinase kinase 3 (MKK3)-deficient mice suggested that the early susceptibility due to IL-12/23p40 deficiency was not dependent on signaling through MyD88 or MKK3. The lack of IL-12/23p40 reduced IFN-gamma production in both CD4(+) and CD8(+) T cells although the effect was more pronounced in CD4(+) T cells. Our data suggest that the immune response against A. phagocytophilum is a multifactorial and cooperative process. The IL-12/23p40 subunit drives the CD4(+) Th1 immune response in the early phase of infection and IL-12/23p40-independent mechanisms ultimately contribute to pathogen elimination from the host.
Collapse
Affiliation(s)
- Joao H F Pedra
- Section of Rheumatology, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Thomas V, Fikrig E. Anaplasma phagocytophilum specifically induces tyrosine phosphorylation of ROCK1 during infection. Cell Microbiol 2007; 9:1730-7. [PMID: 17346310 DOI: 10.1111/j.1462-5822.2007.00908.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Anaplasma phagocytophilum, an obligate intracellular pathogen that persists within polymorphonuclear leucocytes, is the second most common tick-borne agent in North America. We now show that infection of a promyelocytic cell line and neutrophils with A. phagocytophilum results in pathogen-specific tyrosine phosphorylation of ROCK1. Phosphorylation is associated with PSGL-1 and Syk, because PSGL-1 blocking antibodies and siRNA targeting Syk interfere with ROCK1 phosphorylation in A. phagocytophilum-infected cells. Knockdown of either Syk or ROCK1 also markedly impaired A. phagocytophilum infection. These data demonstrate a role for A. phagocytophilum-mediated ROCK1 phosphorylation in infection, and suggests that inhibiting this pathway may lead to new, non-antibiotic strategies to treat human granulocytic anaplasmosis.
Collapse
Affiliation(s)
- Venetta Thomas
- Section of Rheumatology, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA.
| | | |
Collapse
|
32
|
Blas-Machado U, de la Fuente J, Blouin EF, Almazán C, Kocan KM, Mysore JV. Experimental infection of C3H/HeJ mice with the NY18 isolate of Anaplasma phagocytophilum. Vet Pathol 2007; 44:64-73. [PMID: 17197625 DOI: 10.1354/vp.44-1-64] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Human granulocytic anaplasmosis (HGA), an emerging disease of public health concern in many areas of the world, is caused by Anaplasma phagocytophilum. Small animal models of A phagocytophilum in laboratory mice have been developed and used to study the pathogenesis of HGA. In this study, we characterized the pathologic changes in acute infection of C3H/HeJ mice experimentally infected with the NY18 isolate of A phagocytophilum. Although no clinical signs were noted, acute infection was associated with gross splenomegaly, microscopic inflammatory lesions in the lung and liver, hyperplastic lesions on the spleen, and clinical pathology abnormalities including neutropenia and monocytosis. This study emphasizes the use of well-defined animal models as a valuable tool for the study of A phagocytophilum infections.
Collapse
Affiliation(s)
- U Blas-Machado
- Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK, USA.
| | | | | | | | | | | |
Collapse
|
33
|
Woldehiwet Z. Immune evasion and immunosuppression by Anaplasma phagocytophilum, the causative agent of tick-borne fever of ruminants and human granulocytic anaplasmosis. Vet J 2007; 175:37-44. [PMID: 17275372 DOI: 10.1016/j.tvjl.2006.11.019] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2006] [Revised: 11/22/2006] [Accepted: 11/25/2006] [Indexed: 01/02/2023]
Abstract
Anaplasma phagocytophilum, the causative agent of tick-borne fever (TBF) in sheep and cattle and human granulocytic anaplasmosis, has the unique ability to infect and multiply within neutrophils, eosinophils and monocytes, cells at the frontline of the immune system. Infection with A. phagocytophilum is also characterized by severe leukopenia due to lymphocytopenia, neutropenia and thrombocytopenia lasting for several days. By itself TBF does not cause high mortality rates but infected animals are more susceptible to other secondary infections, pregnant animals may abort and there is a severe reduction in milk yield in dairy cattle. The susceptibility to secondary infections can be attributed to the leukopenia that accompanies the disease and the organism's adverse effects on lymphocyte and neutrophil functions. One of its fascinating features is that it infects and actively grows in neutrophils by employing an array of mechanisms to subvert their bactericidal activity. These include its ability to inhibit phagosome-lysosome fusion, to suppress respiratory burst and to delay the apoptotic death of neutrophils. It is also able to survive within an apparently immune host by employing a complex mechanism of antigenic variation.
Collapse
Affiliation(s)
- Zerai Woldehiwet
- University of Liverpool, Department of Veterinary Pathology, Veterinary Teaching Hospital, Leahurst, Neston, Wirral CH64 7TE, UK.
| |
Collapse
|
34
|
Reneer DV, Kearns SA, Yago T, Sims J, Cummings RD, McEver RP, Carlyon JA. Characterization of a sialic acid- and P-selectin glycoprotein ligand-1-independent adhesin activity in the granulocytotropic bacterium Anaplasma phagocytophilum. Cell Microbiol 2006; 8:1972-84. [PMID: 16869829 DOI: 10.1111/j.1462-5822.2006.00764.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Anaplasma phagocytophilum, the aetiologic agent of human granulocytic anaplasmosis, is an obligate intracellular bacterium that colonizes neutrophils and neutrophil precursors. The granulocytotropic bacterium uses multiple adhesins that cooperatively bind to the N-terminal region of P-selectin glycoprotein ligand-1 (PSGL-1) and to sialyl Lewis x (sLe(x)) expressed on myeloid cell surfaces. Recognition of sLe(x) occurs through interactions with alpha2,3-sialic acid and alpha1,3-fucose. It is unknown whether other bacteria-host cell interactions are involved. In this study, we have enriched for A. phagocytophilum organisms that do not rely on sialic acid for cellular adhesion and entry by maintaining strain NCH-1 in HL-60 cells that are severely undersialylated. The selected bacteria, termed NCH-1A, also exhibit lessened dependencies on PSGL-1 and alpha1,3-fucose. Optimal adhesion and invasion by NCH-1A require interactions with the known determinants (sialic acid, PSGL-1 and alpha1,3-fucose), but none of them is absolutely necessary. NCH-1A binding to sLe(x)-modified PSGL-1 requires recognition of the known determinants in the same manners as other A. phagocytophilum strains. These data suggest that A. phagocytophilum expresses a separate adhesin from those targeting sialic acid, alpha1,3-fucose and the N-terminal region of PSGL-1. We propose that NCH-1A upregulates expression of this adhesin.
Collapse
Affiliation(s)
- Dexter V Reneer
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky College of Medicine, Lexington, KY, USA
| | | | | | | | | | | | | |
Collapse
|
35
|
Ju T, Zheng Q, Cummings RD. Identification of core 1 O-glycan T-synthase from Caenorhabditis elegans. Glycobiology 2006; 16:947-58. [PMID: 16762980 DOI: 10.1093/glycob/cwl008] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The common O-glycan core structure in animal glycoproteins is the core 1 disaccharide Galbeta1-3GalNAcalpha1-Ser/Thr, which is generated by the addition of Gal to GalNAcalpha1-Ser/Thr by core 1 UDP-alpha-galactose (UDP-Gal):GalNAcalpha1-Ser/Thr beta1,3-galactosyltransferase (core 1 beta3-Gal-T or T-synthase, EC2.4.1.122). Although O-glycans play important roles in vertebrates, much remains to be learned from model organisms such as the free-living nematode Caenorhabditis elegans, which offer many advantages in exploring O-glycan structure/function. Here, we report the cloning and enzymatic characterization of T-synthase from C. elegans (Ce-T-synthase). A putative C. elegans gene for T-synthase, C38H2.2, was identified in GenBank by a BlastP search using the human T-synthase protein sequence. The full-length cDNA for Ce-T-synthase, which was generated by polymerase chain reaction using a C. elegans cDNA library as the template, contains 1170 bp including the stop TAA. The cDNA encodes a protein of 389 amino acids with typical type II membrane topology and a remarkable 42.7% identity to the human T-synthase. Ce-T-synthase has seven Cys residues in the lumenal domain including six conserved Cys residues in all orthologs. The Ce-T-synthase has four potential N-glycosylation sequons, whereas the mammalian orthologs lack N-glycosylation sequons. Only one gene for Ce-T-synthase was identified in the genome-wide search, and it contains eight exons. Promoter analysis of the Ce-T-synthase using green fluorescent protein (GFP) constructs shows that the gene is expressed at all developmental stages and appears to be in all cells. Unexpectedly, only minimal activity was recovered in the recombinant, soluble Ce-T-synthase secreted from a wide variety of mammalian cell lines, whereas robust enzyme activity was recovered in the soluble Ce-T-synthase expressed in Hi-5 insect cells. Vertebrate T-synthase requires the molecular chaperone Cosmc, but our results show that Ce-T-synthase does not require Cosmc and might require invertebrate-specific factors for the formation of the optimally active enzyme. These results show that the Ce-T-synthase is a functional ortholog to the human T-synthase in generating core 1 O-glycans and open new avenues to explore O-glycan function in this model organism.
Collapse
Affiliation(s)
- Tongzhong Ju
- Department of Biochemistry and Molecular Biology, Oklahoma Center for Medical Glycobiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | | | | |
Collapse
|
36
|
Dinglasan RR, Jacobs-Lorena M. Insight into a conserved lifestyle: protein-carbohydrate adhesion strategies of vector-borne pathogens. Infect Immun 2006; 73:7797-807. [PMID: 16299269 PMCID: PMC1307025 DOI: 10.1128/iai.73.12.7797-7807.2005] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Rhoel R Dinglasan
- Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, 615 N. Wolfe Street, W4008, Baltimore, MD 21205, USA.
| | | |
Collapse
|
37
|
Rikihisa Y. Ehrlichia subversion of host innate responses. Curr Opin Microbiol 2006; 9:95-101. [PMID: 16406779 DOI: 10.1016/j.mib.2005.12.003] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2005] [Accepted: 12/16/2005] [Indexed: 01/15/2023]
Abstract
Anaplasma (formerly Ehrlichia) phagocytophilum and Ehrlichia chaffeensis, upon infection of humans, replicate in host leukocyte granulocytes and monocytes/macrophages, respectively. These unusual Gram-negative bacteria lack genes for biosynthesis of the lipopolysaccharide and peptidoglycan that activate host leukocytes. Caveolae-mediated endocytosis directs A. phagocytophilum and E. chaffeensis to an intracellular compartment secluded from oxygen-dependent and -independent killing. Furthermore, these bacteria orchestrate a remarkable series of events that culminate in suppression of NADPH oxidase, phagocyte activation and differentiation pathways, apoptosis, and interferon-gamma signaling in host leukocytes. They offer a fascinating example of how pathogens employ intricate strategies to usurp and subvert host cell function.
Collapse
Affiliation(s)
- Yasuko Rikihisa
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, 1925 Coffey Road, Columbus, OH 43210, USA.
| |
Collapse
|
38
|
Carlyon JA, Ryan D, Archer K, Fikrig E. Effects of Anaplasma phagocytophilum on host cell ferritin mRNA and protein levels. Infect Immun 2005; 73:7629-36. [PMID: 16239567 PMCID: PMC1273867 DOI: 10.1128/iai.73.11.7629-7636.2005] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Ferritin is a major intracellular iron storage protein and also functions as a cytoprotectant by sequestering iron to minimize the formation of reactive oxygen species. Anaplasma phagocytophilum, the causative agent of human granulocytic anaplasmosis, is an obligate intracellular bacterium that colonizes neutrophils. We have previously reported that human promyelocytic HL-60 cells infected with A. phagocytophilum demonstrate increased transcription of ferritin heavy chain and also that the bacterium stimulates neutrophil NADPH oxidase assembly and degranulation during the initial hours of infection (J. A. Carlyon, W. T. Chan, J. Galan, D. Roos, and E. Fikrig, J. Immunol. 169:7009-7018, 2002, and J. A. Carlyon, D. Abdel-Latif, M. Pypaert, P. Lacy, and E. Fikrig, Infect. Immun. 72:4772-4783, 2004). In this study, we assessed ferritin mRNA and protein levels during A. phagocytophilum infection in vitro using HL-60 cells and neutrophils and in vivo using neutrophils from infected mice. The addition of A. phagocytophilum, as well as Escherichia coli and serum-opsonized zymosan, to neutrophils results in a pronounced increase in ferritin light-chain transcription and a concomitant rise in ferritin protein levels. Neutrophils from A. phagocytophilum-infected mice demonstrate elevated ferritin heavy-chain mRNA expression, a phenomenon consistent with infections by intracellular pathogens. Notably, ferritin protein levels of infected HL-60 cells were markedly diminished in a dose- and time-dependent manner. These studies provide insight into the effects A. phagocytophilum has on the ferritin levels of its host cell.
Collapse
Affiliation(s)
- Jason A Carlyon
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky College of Medicine, Chandler Medical Center, 800 Rose Street, Room MN458A, Lexington, KY 40536-0298, USA.
| | | | | | | |
Collapse
|
39
|
Carlyon JA. Laboratory Maintenance of Anaplasma phagocytophilum. CURRENT PROTOCOLS IN MICROBIOLOGY 2005; Chapter 3:Unit 3A.2. [PMID: 18770564 DOI: 10.1002/9780471729259.mc03a02s00] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Anaplasma phagocytophilum is the etiologic agent of human granulocytic anaplasmosis (formerly human granulocytic ehrlichiosis), an emerging and potentially deadly disease in the United States, Europe, and Asia. A. phagocytophilum is an obligate intracellular bacterium that displays a unique tropism for neutrophils. Studying this fascinating organism not only provides insight into microbial invasion and intracellular survival strategies, but also offers a unique approach to understanding neutrophil biology and host defense mechanisms. This unit describes the inoculation and maintenance of A. phagocytophilum from an infected blood sample into eukaryotic cell culture or laboratory mice. Cytological staining and immunofluorescent methods for assessing A. phagocytophilum infection are also presented. In addition, this unit describes isolation of viable, host cell-free bacterial preparations from infected cells, as well as the cryopreservation of infected cultures. Lastly, fluorescent labeling of live A. phagocytophilum for the purpose of tracking infection is provided.
Collapse
Affiliation(s)
- Jason A Carlyon
- University of Kentucky College of Medicine, Lexington, Kentucky, USA
| |
Collapse
|
40
|
Wang T, Akkoyunlu M, Banerjee R, Fikrig E. Interferon-gamma deficiency reveals that 129Sv mice are inherently more susceptible to Anaplasma phagocytophilum than C57BL/6 mice. ACTA ACUST UNITED AC 2005; 42:299-305. [PMID: 15477043 DOI: 10.1016/j.femsim.2004.06.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2004] [Revised: 05/20/2004] [Accepted: 06/03/2004] [Indexed: 11/29/2022]
Abstract
Immunocompetent mice 129Sv (129) and C57BL/6 (B6) mice are similarly susceptible to Anaplasma phagocytophilum. We now show that 129 mice lacking interferon-gamma (IFN-gamma) develop more severe infection with A. phagocytophilum than IFN-gamma deficient B6 mice. These data demonstrate that there is an inherent increased susceptibility of 129 mice, compared with B6 mice, to A. phagocytophilum that can only be discerned in the absence of IFN-gamma.
Collapse
Affiliation(s)
- Tian Wang
- Section of Rheumatology, Department of Internal Medicine, Yale University of School of Medicine, 300 Cedar Street, New Haven, CT, USA
| | | | | | | |
Collapse
|
41
|
Carlyon JA, Abdel-Latif D, Pypaert M, Lacy P, Fikrig E. Anaplasma phagocytophilum utilizes multiple host evasion mechanisms to thwart NADPH oxidase-mediated killing during neutrophil infection. Infect Immun 2004; 72:4772-83. [PMID: 15271939 PMCID: PMC470610 DOI: 10.1128/iai.72.8.4772-4783.2004] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2004] [Revised: 03/18/2004] [Accepted: 05/04/2004] [Indexed: 01/02/2023] Open
Abstract
Anaplasma phagocytophilum, the etiologic agent of human anaplasmosis, is a bacterial pathogen that specifically colonizes neutrophils. Neutrophils utilize the NADPH oxidase complex to generate superoxide (O(2)(-)) and initiate oxidative killing of microorganisms. A. phagocytophilum's unique tropism for neutrophils, however, indicates that it subverts and/or avoids oxidative killing. We therefore examined the effects of A. phagocytophilum infection on neutrophil NADPH oxidase assembly and reactive oxygen species (ROS) production. Following neutrophil binding, Anaplasma invasion requires at least 240 min. During its prolonged association with the neutrophil plasma membrane, A. phagocytophilum stimulates NADPH oxidase assembly, as indicated by increased cytochrome b(558) mobilization to the membrane, as well as colocalization of Rac and p22(phox). This initial stimulation taxes the host neutrophil's finite oxidase reserves, as demonstrated by time- and bacterial-dose-dependent decreases in secondary activation by N-formyl-methionyl-leucyl-phenylalanine (FMLP) or phorbol myristate acetate (PMA). This stimulation is modest, however, and does not diminish oxidase stores to nearly the extent that Escherichia coli, serum-opsonized zymosan, FMLP, or PMA do. Despite the apparent activation of NADPH oxidase, no change in ROS-dependent chemiluminescence is observed upon the addition of A. phagocytophilum to neutrophils, indicating that the bacterium may scavenge exogenous O(2)(-). Indeed, A. phagocytophilum rapidly detoxifies O(2)(-) in a cell-free system. Once internalized, the bacterium resides within a protective vacuole that excludes p22(phox) and gp91(phox). Thus, A. phagocytophilum employs at least two strategies to protect itself from neutrophil NADPH oxidase-mediated killing.
Collapse
Affiliation(s)
- Jason A Carlyon
- Section of Rheumatology, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
| | | | | | | | | |
Collapse
|
42
|
Scorpio DG, Caspersen K, Ogata H, Park J, Dumler JS. Restricted changes in major surface protein-2 (msp2) transcription after prolonged in vitro passage of Anaplasma phagocytophilum. BMC Microbiol 2004; 4:1. [PMID: 14713314 PMCID: PMC317292 DOI: 10.1186/1471-2180-4-1] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2003] [Accepted: 01/08/2004] [Indexed: 11/27/2022] Open
Abstract
Background Anaplasma phagocytophilum strains often vary in Msp2 expression, a situation assumed to be related to immune evasion. However, Msp2 is also an adhesin, and little is known about the role of endogenous msp2 transcriptional changes in the absence of immune selection. Thus, Msp2 profiles and msp2 transcripts of low passage A. phagocytophilum Webster strain, initially comprised of a single abundant msp2 transcript, were re-examined after ≥ 20 in vitro passages without immune selection. Results Using an Msp2 monoclonal antibody, immunoblots revealed an unchanged dominant band and several weak bands that appeared with passage. Similarly, msp2 transcript diversity changed, with a decrease in the initially abundant low passage transcript and appearance of a newly abundant and several minor msp2 transcripts with high passage. BLASTN search of the A. phagocytophilum HZ strain genome revealed ≥ 52 msp2 paralogs. Conclusions Msp2 expression and msp2 transcription modulate even without immune selective pressures. However, the limited diversity of msp2 transcripts in the absence of immune pressure suggests selection for Msp2 by specific functions beyond that of immune evasion, in spite of a large genomic reservoir for Msp2 diversity.
Collapse
Affiliation(s)
- Diana G Scorpio
- Division of Medical Microbiology, Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore MD, 21205, USA
- Division of Comparative Medicine, The Johns Hopkins University School of Medicine, Baltimore MD, 21205, USA
| | - Karen Caspersen
- Division of Medical Microbiology, Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore MD, 21205, USA
- Division of Comparative Medicine, The Johns Hopkins University School of Medicine, Baltimore MD, 21205, USA
| | - Hiroyuki Ogata
- Information Génomique et Structurale, CNRS UPR 2589, Marseille, France
| | - Jinho Park
- Division of Medical Microbiology, Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore MD, 21205, USA
- Department of Veterinary Internal Medicine, College of Veterinary Medicine, Chonbuk National University, Jeonju Jeonbuk, Korea
| | - J Stephen Dumler
- Division of Medical Microbiology, Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore MD, 21205, USA
| |
Collapse
|
43
|
Abstract
Anaplasma phagocytophilum is an aetiological agent of human granulocytic ehrlichiosis, an emerging tick-borne zoonosis in the United States and Europe. This obligate intracellular bacterium is unique in that it colonizes polymorphonuclear leucocytes (neutrophils). Neutrophils are key players in innate immunity. These short-lived phagocytes ingest invading microorganisms and destroy them by various means, which include fusing the bacteria-containing phagosome with acidic lysosomes as well as directing toxic oxidative and proteolytic compounds into the phagosomal lumen. Its tropism for neutrophils indicates that A. phagocytophilum uses strategies for evading and/or neutralizing these microbicidal activities. This review focuses on some of the mechanisms that A. phagocytophilum uses for neutrophil adhesion, surviving within the hostile intracellular environment of its host neutrophil and for effectively disseminating to naïve host cells.
Collapse
Affiliation(s)
- Jason A Carlyon
- Section of Rheumatology, Department of Internal Medicine, Yale University School of Medicine, Room 525A, 300 Cedar Street, New Haven, CT 06520-8031, USA
| | | |
Collapse
|