1
|
Tian C, Du H, Sha W, Wu L, Yu Z, Song H, Shen Z, Dai Y, Li S, Mei W, Zhao Z, Diao Y, Jiang H, Li H, Chen Z. Design, Synthesis, and Biological Evaluation of Pyrrolo[1,2- a]quinoxalin-4(5 H)-one Derivatives as Potent and Orally Available Noncovalent Bruton's Tyrosine Kinase (BTK) Inhibitors. J Med Chem 2025; 68:8841-8860. [PMID: 40191988 DOI: 10.1021/acs.jmedchem.5c00439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2025]
Abstract
Bruton's tyrosine kinase (BTK) is a therapeutic target for B-cell-driven malignancies. Most of the approved covalent BTK inhibitors are associated with treatment limitations due to off-target toxicity and drug resistance. Developing noncovalent BTK inhibitors is a promising strategy to address unmet clinical needs. Here, a novel series of pyrrolo[1,2-a]quinoxalin-4(5H)-one derivatives were designed and synthesized as noncovalent BTK inhibitors. Among them, representative compound 9 exhibited potent BTK inhibitory activity (IC50 = 21.6 nM) and excellent selectivity against a panel of 468 kinases. Moreover, the oral exposure property of compound 9 was improved, and the antitumor efficacy of compound 9 (TGI = 64.4%) was superior to the lead S2 (TGI = 28.7%) and Ibrutinib (TGI = 41.1%) in the U-937 xenograft models at an oral dosage of 50 mg/kg. All these results suggest that compound 9 is a potent, selective, and orally available noncovalent BTK inhibitor worthy of further development.
Collapse
Affiliation(s)
- Chaoquan Tian
- School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Husheng Du
- School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Wenjie Sha
- School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Lingkang Wu
- School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Zhixiao Yu
- School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Haoming Song
- School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Zihao Shen
- School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Yan Dai
- School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Shuhui Li
- School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Wenyi Mei
- School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Zhenjiang Zhao
- School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Yanyan Diao
- Innovation Center for AI and Drug Discovery, School of Pharmacy, East China Normal University, Shanghai 200062, China
| | - Hualiang Jiang
- School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
| | - Honglin Li
- School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
- Innovation Center for AI and Drug Discovery, School of Pharmacy, East China Normal University, Shanghai 200062, China
| | - Zhuo Chen
- School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
2
|
Ghanim HY, Porteus MH. Gene regulation in inborn errors of immunity: Implications for gene therapy design and efficacy. Immunol Rev 2024; 322:157-177. [PMID: 38233996 DOI: 10.1111/imr.13305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 12/28/2023] [Accepted: 01/02/2024] [Indexed: 01/19/2024]
Abstract
Inborn errors of immunity (IEI) present a unique paradigm in the realm of gene therapy, emphasizing the need for precision in therapeutic design. As gene therapy transitions from broad-spectrum gene addition to careful modification of specific genes, the enduring safety and effectiveness of these therapies in clinical settings have become crucial. This review discusses the significance of IEIs as foundational models for pioneering and refining precision medicine. We explore the capabilities of gene addition and gene correction platforms in modifying the DNA sequence of primary cells tailored for IEIs. The review uses four specific IEIs to highlight key issues in gene therapy strategies: X-linked agammaglobulinemia (XLA), X-linked chronic granulomatous disease (X-CGD), X-linked hyper IgM syndrome (XHIGM), and immune dysregulation, polyendocrinopathy, enteropathy, X-linked (IPEX). We detail the regulatory intricacies and therapeutic innovations for each disorder, incorporating insights from relevant clinical trials. For most IEIs, regulated expression is a vital aspect of the underlying biology, and we discuss the importance of endogenous regulation in developing gene therapy strategies.
Collapse
Affiliation(s)
- Hana Y Ghanim
- Division of Pediatrics, Division of Oncology, Hematology, Stem Cell Transplantation, Stanford University, Stanford, California, USA
- Institute for Stem Cell Biology & Regenerative Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Matthew H Porteus
- Division of Pediatrics, Division of Oncology, Hematology, Stem Cell Transplantation, Stanford University, Stanford, California, USA
- Institute for Stem Cell Biology & Regenerative Medicine, Stanford University School of Medicine, Stanford, California, USA
- Center for Definitive and Curative Medicine, Stanford University School of Medicine, Stanford, California, USA
| |
Collapse
|
3
|
Hernandez-Trujillo V, Zhou C, Scalchunes C, Ochs HD, Sullivan KE, Cunningham-Rundles C, Fuleihan RL, Bonilla FA, Petrovic A, Rawlings DJ, de la Morena MT. A Registry Study of 240 Patients with X-Linked Agammaglobulinemia Living in the USA. J Clin Immunol 2023:10.1007/s10875-023-01502-x. [PMID: 37219739 DOI: 10.1007/s10875-023-01502-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 04/26/2023] [Indexed: 05/24/2023]
Abstract
PURPOSE To understand the natural history and clinical outcomes for patients with X-linked agammaglobulinemia (XLA) in the United States utilizing the United States Immunodeficiency Network (USIDNET) patient registry. METHODS The USIDNET registry was queried for data from XLA patients collected from 1981 to 2019. Data fields included demographics, clinical features before and after diagnosis of XLA, family history, genetic mutation in Bruton's tyrosine kinase (BTK), laboratory findings, treatment modalities, and mortality. RESULTS Data compiled through the USIDNET registry on 240 patients were analyzed. Patient year of birth ranged from 1945 to 2017. Living status was available for 178 patients; 158/178 (88.8%) were alive. Race was reported for 204 patients as follows: White, 148 (72.5%); Black/African American, 23 (11.2%); Hispanic, 20 (9.8%); Asian or Pacific Islander, 6 (2.9%), and other or more than one race, 7 (3.4%). The median age at last entry, age at disease onset, age at diagnosis, and length of time with XLA diagnosis was 15 [range (r) = 1-52 years], 0.8 [r = birth-22.3 years], 2 [r = birth-29 years], and 10 [r = 1-56 years] years respectively. One hundred and forty-one patients (58.7%) were < 18 years of age. Two hundred and twenty-one (92%) patients were receiving IgG replacement (IgGR), 58 (24%) were on prophylactic antibiotics, and 19 (7.9%) were on immunomodulatory drugs. Eighty-six (35.9%) patients had undergone surgical procedures, two had undergone hematopoietic cell transplantation, and two required liver transplantation. The respiratory tract was the most affected organ system (51.2% of patients) followed by gastrointestinal (40%), neurological (35.4%), and musculoskeletal (28.3%). Infections were common both before and after diagnosis, despite IgGR therapy. Bacteremia/sepsis and meningitis were reported more frequently before XLA diagnosis while encephalitis was more commonly reported after diagnosis. Twenty patients had died (11.2%). The median age of death was 21 years (range = 3-56.7 years). Neurologic condition was the most common underlying co-morbidity for those XLA patients who died. CONCLUSIONS Current therapies for XLA patients reduce early mortality, but patients continue to experience complications that impact organ function. With improved life expectancy, more efforts will be required to improve post-diagnosis organ dysfunction and quality of life. Neurologic manifestations are an important co-morbidity associated with mortality and not yet clearly fully understood.
Collapse
Affiliation(s)
- Vivian Hernandez-Trujillo
- Division of Allergy and Immunology, Nicklaus Children's Hospital, Miami, FL, USA
- Allergy and Immunology Care Center of South Florida, Miami Lakes, FL, USA
| | - Chuan Zhou
- Division of General Pediatrics, School of Medicine, Center for Child Health, University of Washington, Behavior, and Development, Seattle Children's Research Institute, Seattle, WA, 98145, USA
| | - Christopher Scalchunes
- Immune Deficiency Foundation. Immune Deficiency Foundation | (primaryimmune.org), Hanover, USA
| | - Hans D Ochs
- Division of Immunology, Department of Pediatrics, University of Washington, Seattle, WA, 98101, USA
- Center for Immunity and Immunotherapies and the Program for Cell and Gene Therapy, Seattle Children's Research Institute, Seattle, WA, 98101, USA
| | - Kathleen E Sullivan
- Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, USA
| | - Charlotte Cunningham-Rundles
- Division of Allergy and Clinical Immunology, Departments of Medicine and Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ramsay L Fuleihan
- Division of Pediatric Allergy, Immunology and Rheumatology, Columbia University Medical Center, New York, NY, USA
| | | | - Aleksandra Petrovic
- Division of Immunology, Department of Pediatrics, University of Washington, Seattle, WA, 98101, USA
- Center for Immunity and Immunotherapies and the Program for Cell and Gene Therapy, Seattle Children's Research Institute, Seattle, WA, 98101, USA
| | - David J Rawlings
- Division of Immunology, Department of Pediatrics, University of Washington, Seattle, WA, 98101, USA
- Center for Immunity and Immunotherapies and the Program for Cell and Gene Therapy, Seattle Children's Research Institute, Seattle, WA, 98101, USA
- Department of Immunology, University of Washington, Seattle, WA, 98101, USA
| | - M Teresa de la Morena
- Division of Immunology, Department of Pediatrics, University of Washington, Seattle, WA, 98101, USA.
| |
Collapse
|
4
|
Fang X, Liu C, Zhang K, Yang W, Wu Z, Shen S, Ma Y, Lu X, Chen Y, Lu T, Hu Q, Jiang Y. Discovery of orally active 1,4,5,6,8-pentaazaacenaphthylens as novel, selective, and potent covalent BTK inhibitors for the treatment of rheumatoid arthritis. Eur J Med Chem 2023; 246:114940. [PMID: 36462441 DOI: 10.1016/j.ejmech.2022.114940] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 11/16/2022] [Accepted: 11/16/2022] [Indexed: 11/27/2022]
Abstract
Bruton's tyrosine kinase (BTK) plays a crucial role in adaptive and immune responses by modulating B-cell, Fc, toll-like, and chemokine receptor signaling pathways. BTK inhibition is a promising therapeutic approach for the treatment of inflammatory and autoimmune diseases. The development of novel, highly selective, and less toxic BTK inhibitors may be beneficial for the treatment of autoimmune diseases with unmet medical needs. In this study, structure-based drug design was used to discover a series of novel, potent, and selective covalent BTK inhibitors with a 1,4,5,6,8-pentaazaacenaphthylen scaffold. Among them, compound 36R exhibited high kinase selectivity, long target occupancy time, appropriate pharmacokinetic properties, and dose-dependent efficacy in a rat model of collagen-induced arthritis. Therefore, 36R is a novel BTK inhibitor requiring further development for the treatment of autoimmune diseases.
Collapse
Affiliation(s)
- Xiaobao Fang
- School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, 211198, PR China
| | - Chunxiao Liu
- School of Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, 211198, PR China
| | - Kun Zhang
- School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, 211198, PR China
| | - Wanping Yang
- School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, 211198, PR China
| | - Zewen Wu
- School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, 211198, PR China
| | - Shige Shen
- School of Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, 211198, PR China
| | - Yule Ma
- School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, 211198, PR China
| | - Xun Lu
- School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, 211198, PR China
| | - Yadong Chen
- School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, 211198, PR China; State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, PR China.
| | - Tao Lu
- School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, 211198, PR China; State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, PR China.
| | - Qinghua Hu
- School of Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, 211198, PR China.
| | - Yulei Jiang
- School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, 211198, PR China.
| |
Collapse
|
5
|
Long JD, Trope EC, Yang J, Rector K, Kuo CY. Genes as Medicine: The Development of Gene Therapies for Inborn Errors of Immunity. Hematol Oncol Clin North Am 2022; 36:829-851. [PMID: 35778331 DOI: 10.1016/j.hoc.2022.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The field of gene therapy has experienced tremendous growth in the last decade ranging from improvements in the design of viral vectors for gene addition of therapeutic gene cassettes to the discovery of site-specific nucleases targeting transgenes to desired locations in the genome. Such advancements have not only enabled the development of disease models but also created opportunities for the development of tailored therapeutic approaches. There are 3 main methods of gene modification that can be used for the prevention or treatment of disease. This includes viral vector-mediated gene therapy to supply or bypass a missing/defective gene, gene editing enabled by programmable nucleases to create sequence-specific alterations in the genome, and gene silencing to reduce the expression of a gene or genes. These gene-modification platforms can be delivered either in vivo, for which the therapy is injected directed into a patient's body, or ex vivo, in which cells are harvested from a patient and modified in a laboratory setting, and then returned to the patient.
Collapse
Affiliation(s)
- Joseph D Long
- Division of Allergy & Immunology, Department of Pediatrics, David Geffen School of Medicine at the University of California, Los Angeles, 10833 Le Conte, MDCC 12-430, Los Angeles, CA 90095, USA
| | - Edward C Trope
- Division of Allergy & Immunology, Department of Pediatrics, David Geffen School of Medicine at the University of California, Los Angeles, 10833 Le Conte, MDCC 12-430, Los Angeles, CA 90095, USA
| | - Jennifer Yang
- Department of Psychology, University of California, Los Angeles, 1285 Psychology Building, Box 951563, Los Angeles, CA 90095, USA
| | | | - Caroline Y Kuo
- Division of Allergy & Immunology, Department of Pediatrics, David Geffen School of Medicine at the University of California, Los Angeles, 10833 Le Conte, MDCC 12-430, Los Angeles, CA 90095, USA.
| |
Collapse
|
6
|
Shen P, Wang Y, Jia X, Xu P, Qin L, Feng X, Li Z, Qiu Z. Dual-target Janus kinase (JAK) inhibitors: Comprehensive review on the JAK-based strategies for treating solid or hematological malignancies and immune-related diseases. Eur J Med Chem 2022; 239:114551. [PMID: 35749986 DOI: 10.1016/j.ejmech.2022.114551] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/14/2022] [Accepted: 06/15/2022] [Indexed: 11/19/2022]
Abstract
Janus kinases (JAKs) are the non-receptor tyrosine kinases covering JAK1, JAK2, JAK3, and TYK2 which regulate signal transductions of hematopoietic cytokines and growth factors to play essential roles in cell growth, survival, and development. Dysregulated JAK activity leading to a constitutively activated signal transducers and activators of transcription (STAT) is strongly associated with immune-related diseases and cancers. Targeting JAK to interfere the signaling of JAK/STAT pathway has achieved quite success in the treatment of these diseases. However, inadequate clinical response and serious adverse events come along by the treatment of monotherapy of JAK inhibitors. With better and deeper understanding of JAK/STAT pathway in the pathogenesis of diseases, researchers start to show huge interest in combining inhibition of JAK and other oncogenic targets to realize a broader regulation on pathological processes to block disease development and progression, which has hastened extensive research of dual JAK inhibitors over the past decades. Until now, studies of dual JAK inhibitors have added BTK, SYK, FLT3, HDAC, Src, and Aurora kinases to the overall inhibitory profile and demonstrated significant advantage and superiority over single-target inhibitors. In this review, we elucidated the possible mechanism of synergic effects caused by dual JAK inhibitors and briefly describe the development of these agents.
Collapse
Affiliation(s)
- Pei Shen
- Department of Medicinal Chemistry, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, PR China
| | - Yezhi Wang
- Department of Medicinal Chemistry, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, PR China
| | - Xiangxiang Jia
- Department of Medicinal Chemistry, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, PR China
| | - Pengfei Xu
- Department of Medicinal Chemistry, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, PR China
| | - Lian Qin
- Department of Medicinal Chemistry, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, PR China
| | - Xi Feng
- Department of Medicinal Chemistry, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, PR China
| | - Zhiyu Li
- Department of Medicinal Chemistry, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, PR China; Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 21009, PR China.
| | - Zhixia Qiu
- Department of Medicinal Chemistry, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, PR China; Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 21009, PR China.
| |
Collapse
|
7
|
Dou D, Diao Y, Sha W, Su R, Tong L, Li W, Leng L, Xie L, Yu Z, Song H, Shen Z, Zhu L, Zhao Z, Xie H, Chen Z, Li H, Xu Y. Discovery of Pteridine-7(8 H)-one Derivatives as Potent and Selective Inhibitors of Bruton's Tyrosine Kinase (BTK). J Med Chem 2022; 65:2694-2709. [PMID: 35099969 DOI: 10.1021/acs.jmedchem.1c02208] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Bruton's tyrosine kinase (BTK) is an attractive therapeutic target in the treatment of cancer, inflammation, and autoimmune diseases. Covalent and noncovalent BTK inhibitors have been developed, among which covalent BTK inhibitors have shown great clinical efficacy. However, some of them could produce adverse effects, such as diarrhea, rash, and platelet dysfunction, which are associated with the off-target inhibition of ITK and EGFR. In this study, we disclosed a series of pteridine-7(8H)-one derivatives as potent and selective covalent BTK inhibitors, which were optimized from 3z, an EGFR inhibitor previously reported by our group. Among them, compound 24a exhibited great BTK inhibition activity (IC50 = 4.0 nM) and high selectivity in both enzymatic (ITK >250-fold, EGFR >2500-fold) and cellular levels (ITK >227-fold, EGFR 27-fold). In U-937 xenograft models, 24a significantly inhibited tumor growth (TGI = 57.85%) at a 50 mg/kg dosage. Accordingly, 24a is a new BTK inhibitor worthy of further development.
Collapse
Affiliation(s)
- Dou Dou
- Shanghai Key Laboratory of New Drug Design, State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Yanyan Diao
- Shanghai Key Laboratory of New Drug Design, State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Wenjie Sha
- Shanghai Key Laboratory of New Drug Design, State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Rongrong Su
- Shanghai Key Laboratory of New Drug Design, State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Linjiang Tong
- Division of Anti-tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Wenjie Li
- Shanghai Key Laboratory of New Drug Design, State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Limin Leng
- Shanghai Key Laboratory of New Drug Design, State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Lijuan Xie
- Shanghai Key Laboratory of New Drug Design, State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Zhixiao Yu
- Shanghai Key Laboratory of New Drug Design, State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Haoming Song
- Shanghai Key Laboratory of New Drug Design, State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Zihao Shen
- Shanghai Key Laboratory of New Drug Design, State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Lili Zhu
- Shanghai Key Laboratory of New Drug Design, State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Zhenjiang Zhao
- Shanghai Key Laboratory of New Drug Design, State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Hua Xie
- Division of Anti-tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Zhuo Chen
- Shanghai Key Laboratory of New Drug Design, State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Honglin Li
- Shanghai Key Laboratory of New Drug Design, State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Yufang Xu
- Shanghai Key Laboratory of New Drug Design, State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
8
|
Seymour BJ, Singh S, Certo HM, Sommer K, Sather BD, Khim S, Clough C, Hale M, Pangallo J, Ryu BY, Khan IF, Adair JE, Rawlings DJ. Effective, safe, and sustained correction of murine XLA using a UCOE-BTK promoter-based lentiviral vector. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2021; 20:635-651. [PMID: 33718514 PMCID: PMC7907679 DOI: 10.1016/j.omtm.2021.01.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 01/14/2021] [Indexed: 02/06/2023]
Abstract
X-linked agammaglobulinemia (XLA) is an immune disorder caused by mutations in Bruton’s tyrosine kinase (BTK). BTK is expressed in B and myeloid cells, and its deficiency results in a lack of mature B cells and protective antibodies. We previously reported a lentivirus (LV) BTK replacement therapy that restored B cell development and function in Btk and Tec double knockout mice (a phenocopy of human XLA). In this study, with the goal of optimizing both the level and lineage specificity of BTK expression, we generated LV incorporating the proximal human BTK promoter. Hematopoietic stem cells from Btk−/−Tec−/− mice transduced with this vector rescued lineage-specific expression and restored B cell function in Btk−/−Tec−/− recipients. Next, we tested addition of candidate enhancers and/or ubiquitous chromatin opening elements (UCOEs), as well as codon optimization to improve BTK expression. An Eμ enhancer improved B cell rescue, but increased immunoglobulin G (IgG) autoantibodies. Addition of the UCOE avoided autoantibody generation while improving B cell development and function and reducing vector silencing. An optimized vector containing a truncated UCOE upstream of the BTK promoter and codon-optimized BTK cDNA resulted in stable, lineage-regulated BTK expression that mirrored endogenous BTK, making it a strong candidate for XLA therapy.
Collapse
Affiliation(s)
- Brenda J Seymour
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA 98101, USA
| | - Swati Singh
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA 98101, USA
| | - Hannah M Certo
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA 98101, USA
| | - Karen Sommer
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA 98101, USA
| | - Blythe D Sather
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA 98101, USA
| | - Socheath Khim
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA 98101, USA
| | - Courtnee Clough
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA 98101, USA
| | - Malika Hale
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA 98101, USA
| | - Joseph Pangallo
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA 98101, USA
| | - Byoung Y Ryu
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA 98101, USA
| | - Iram F Khan
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA 98101, USA
| | - Jennifer E Adair
- Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.,Department of Medical Oncology, University of Washington, Seattle, WA 98195, USA
| | - David J Rawlings
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA 98101, USA.,Departments of Pediatrics and Immunology, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
9
|
Houghton BC, Booth C. Gene Therapy for Primary Immunodeficiency. Hemasphere 2021; 5:e509. [PMID: 33403354 PMCID: PMC7773329 DOI: 10.1097/hs9.0000000000000509] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 10/21/2020] [Indexed: 12/27/2022] Open
Abstract
Over the past 3 decades, there has been significant progress in refining gene therapy technologies and procedures. Transduction of hematopoietic stem cells ex vivo using lentiviral vectors can now create a highly effective therapeutic product, capable of reconstituting many different immune system dysfunctions when reinfused into patients. Here, we review the key developments in the gene therapy landscape for primary immune deficiency, from an experimental therapy where clinical efficacy was marred by adverse events, to a commercialized product with enhanced safety and efficacy. We also discuss progress being made in preclinical studies for challenging disease targets and emerging gene editing technologies that are showing promising results, particularly for conditions where gene regulation is important for efficacy.
Collapse
Affiliation(s)
- Benjamin C. Houghton
- Molecular and Cellular Immunology, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Claire Booth
- Molecular and Cellular Immunology, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
- Department of Paediatric Immunology, Great Ormond Street NHS Foundation Trust, London, United Kingdom
| |
Collapse
|
10
|
Caldwell RD, Qiu H, Askew BC, Bender AT, Brugger N, Camps M, Dhanabal M, Dutt V, Eichhorn T, Gardberg AS, Goutopoulos A, Grenningloh R, Head J, Healey B, Hodous BL, Huck BR, Johnson TL, Jones C, Jones RC, Mochalkin I, Morandi F, Nguyen N, Meyring M, Potnick JR, Santos DC, Schmidt R, Sherer B, Shutes A, Urbahns K, Follis AV, Wegener AA, Zimmerli SC, Liu-Bujalski L. Discovery of Evobrutinib: An Oral, Potent, and Highly Selective, Covalent Bruton’s Tyrosine Kinase (BTK) Inhibitor for the Treatment of Immunological Diseases. J Med Chem 2019; 62:7643-7655. [DOI: 10.1021/acs.jmedchem.9b00794] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Richard D. Caldwell
- EMD Serono Research & Development Institute, Inc. (a Business of Merck KGaA, Darmstadt, Germany), 45 A Middlesex Turnpike, Billerica, Massachusetts 01821, United States
| | - Hui Qiu
- EMD Serono Research & Development Institute, Inc. (a Business of Merck KGaA, Darmstadt, Germany), 45 A Middlesex Turnpike, Billerica, Massachusetts 01821, United States
| | - Ben C. Askew
- EMD Serono Research & Development Institute, Inc. (a Business of Merck KGaA, Darmstadt, Germany), 45 A Middlesex Turnpike, Billerica, Massachusetts 01821, United States
| | - Andrew T. Bender
- EMD Serono Research & Development Institute, Inc. (a Business of Merck KGaA, Darmstadt, Germany), 45 A Middlesex Turnpike, Billerica, Massachusetts 01821, United States
| | - Nadia Brugger
- EMD Serono Research & Development Institute, Inc. (a Business of Merck KGaA, Darmstadt, Germany), 45 A Middlesex Turnpike, Billerica, Massachusetts 01821, United States
| | - Montserrat Camps
- EMD Serono Research & Development Institute, Inc. (a Business of Merck KGaA, Darmstadt, Germany), 45 A Middlesex Turnpike, Billerica, Massachusetts 01821, United States
| | - Mohanraj Dhanabal
- EMD Serono Research & Development Institute, Inc. (a Business of Merck KGaA, Darmstadt, Germany), 45 A Middlesex Turnpike, Billerica, Massachusetts 01821, United States
| | - Vikram Dutt
- EMD Serono Research & Development Institute, Inc. (a Business of Merck KGaA, Darmstadt, Germany), 45 A Middlesex Turnpike, Billerica, Massachusetts 01821, United States
| | - Thomas Eichhorn
- EMD Serono Research & Development Institute, Inc. (a Business of Merck KGaA, Darmstadt, Germany), 45 A Middlesex Turnpike, Billerica, Massachusetts 01821, United States
| | - Anna S. Gardberg
- EMD Serono Research & Development Institute, Inc. (a Business of Merck KGaA, Darmstadt, Germany), 45 A Middlesex Turnpike, Billerica, Massachusetts 01821, United States
| | - Andreas Goutopoulos
- EMD Serono Research & Development Institute, Inc. (a Business of Merck KGaA, Darmstadt, Germany), 45 A Middlesex Turnpike, Billerica, Massachusetts 01821, United States
| | - Roland Grenningloh
- EMD Serono Research & Development Institute, Inc. (a Business of Merck KGaA, Darmstadt, Germany), 45 A Middlesex Turnpike, Billerica, Massachusetts 01821, United States
| | - Jared Head
- EMD Serono Research & Development Institute, Inc. (a Business of Merck KGaA, Darmstadt, Germany), 45 A Middlesex Turnpike, Billerica, Massachusetts 01821, United States
| | - Brian Healey
- EMD Serono Research & Development Institute, Inc. (a Business of Merck KGaA, Darmstadt, Germany), 45 A Middlesex Turnpike, Billerica, Massachusetts 01821, United States
| | - Brian L. Hodous
- EMD Serono Research & Development Institute, Inc. (a Business of Merck KGaA, Darmstadt, Germany), 45 A Middlesex Turnpike, Billerica, Massachusetts 01821, United States
| | - Bayard R. Huck
- EMD Serono Research & Development Institute, Inc. (a Business of Merck KGaA, Darmstadt, Germany), 45 A Middlesex Turnpike, Billerica, Massachusetts 01821, United States
| | - Theresa L. Johnson
- EMD Serono Research & Development Institute, Inc. (a Business of Merck KGaA, Darmstadt, Germany), 45 A Middlesex Turnpike, Billerica, Massachusetts 01821, United States
| | - Christopher Jones
- EMD Serono Research & Development Institute, Inc. (a Business of Merck KGaA, Darmstadt, Germany), 45 A Middlesex Turnpike, Billerica, Massachusetts 01821, United States
| | - Reinaldo C. Jones
- EMD Serono Research & Development Institute, Inc. (a Business of Merck KGaA, Darmstadt, Germany), 45 A Middlesex Turnpike, Billerica, Massachusetts 01821, United States
| | - Igor Mochalkin
- EMD Serono Research & Development Institute, Inc. (a Business of Merck KGaA, Darmstadt, Germany), 45 A Middlesex Turnpike, Billerica, Massachusetts 01821, United States
| | - Federica Morandi
- EMD Serono Research & Development Institute, Inc. (a Business of Merck KGaA, Darmstadt, Germany), 45 A Middlesex Turnpike, Billerica, Massachusetts 01821, United States
| | - Ngan Nguyen
- EMD Serono Research & Development Institute, Inc. (a Business of Merck KGaA, Darmstadt, Germany), 45 A Middlesex Turnpike, Billerica, Massachusetts 01821, United States
| | - Michael Meyring
- EMD Serono Research & Development Institute, Inc. (a Business of Merck KGaA, Darmstadt, Germany), 45 A Middlesex Turnpike, Billerica, Massachusetts 01821, United States
| | - Justin R. Potnick
- EMD Serono Research & Development Institute, Inc. (a Business of Merck KGaA, Darmstadt, Germany), 45 A Middlesex Turnpike, Billerica, Massachusetts 01821, United States
| | - Dusica Cvetinovic Santos
- EMD Serono Research & Development Institute, Inc. (a Business of Merck KGaA, Darmstadt, Germany), 45 A Middlesex Turnpike, Billerica, Massachusetts 01821, United States
| | - Ralf Schmidt
- EMD Serono Research & Development Institute, Inc. (a Business of Merck KGaA, Darmstadt, Germany), 45 A Middlesex Turnpike, Billerica, Massachusetts 01821, United States
| | - Brian Sherer
- EMD Serono Research & Development Institute, Inc. (a Business of Merck KGaA, Darmstadt, Germany), 45 A Middlesex Turnpike, Billerica, Massachusetts 01821, United States
| | - Adam Shutes
- EMD Serono Research & Development Institute, Inc. (a Business of Merck KGaA, Darmstadt, Germany), 45 A Middlesex Turnpike, Billerica, Massachusetts 01821, United States
| | - Klaus Urbahns
- EMD Serono Research & Development Institute, Inc. (a Business of Merck KGaA, Darmstadt, Germany), 45 A Middlesex Turnpike, Billerica, Massachusetts 01821, United States
| | - Ariele Viacava Follis
- EMD Serono Research & Development Institute, Inc. (a Business of Merck KGaA, Darmstadt, Germany), 45 A Middlesex Turnpike, Billerica, Massachusetts 01821, United States
| | - Ansgar A. Wegener
- EMD Serono Research & Development Institute, Inc. (a Business of Merck KGaA, Darmstadt, Germany), 45 A Middlesex Turnpike, Billerica, Massachusetts 01821, United States
| | - Simone C. Zimmerli
- EMD Serono Research & Development Institute, Inc. (a Business of Merck KGaA, Darmstadt, Germany), 45 A Middlesex Turnpike, Billerica, Massachusetts 01821, United States
| | - Lesley Liu-Bujalski
- EMD Serono Research & Development Institute, Inc. (a Business of Merck KGaA, Darmstadt, Germany), 45 A Middlesex Turnpike, Billerica, Massachusetts 01821, United States
| |
Collapse
|
11
|
Advances in site-specific gene editing for primary immune deficiencies. Curr Opin Allergy Clin Immunol 2019; 18:453-458. [PMID: 30299399 DOI: 10.1097/aci.0000000000000483] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
PURPOSE OF REVIEW Conventional gene therapy has been a successful, curative treatment modality for many primary immune deficiencies with significant improvements in the last decade. However, the risk of leukemic transformation with viral-mediated gene addition still remains, and unregulated gene addition is not an option for certain diseases in which the target gene is closely controlled. The recent bloom in genome modification platforms has created the opportunity to site-specifically correct mutated DNA base pairs or insert a corrective cDNA minigene while maintaining gene expression under control of endogenous regulatory elements. RECENT FINDINGS There is an abundance of ongoing research utilizing programmable nucleases to facilitate site-specific gene correction of many primary immune deficiencies including X-linked severe combined immune deficiency, X-linked chronic granulomatous disease, Wiskott-Aldrich syndrome, X-linked hyper-IgM syndrome, X-linked agammaglobulinemia, and immune dysregulation, polyendocrinopathy, enteropathy, X-linked. In all, these studies have demonstrated the ability to integrate corrective DNA sequences at a precise location in the genome at rates likely to either cure or ameliorate disease. SUMMARY Gene editing for primary immune deficiency (PID) has advanced to the point to that translation to clinical trials is likely to occur in the next several years. At the current pace of research in DNA repair mechanisms, stem cell biology, and genome-editing technology, targeted genome modification represents the next chapter of gene therapy for PID.
Collapse
|
12
|
X-Linked Agammaglobulinaemia: Outcomes in the modern era. Clin Immunol 2017; 183:54-62. [DOI: 10.1016/j.clim.2017.07.008] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 07/03/2017] [Accepted: 07/15/2017] [Indexed: 12/31/2022]
|
13
|
Thrasher AJ, Williams DA. Evolving Gene Therapy in Primary Immunodeficiency. Mol Ther 2017; 25:1132-1141. [PMID: 28366768 DOI: 10.1016/j.ymthe.2017.03.018] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 03/10/2017] [Accepted: 03/10/2017] [Indexed: 12/29/2022] Open
Abstract
Prior to the first successful bone marrow transplant in 1968, patients born with severe combined immunodeficiency (SCID) invariably died. Today, with a widening availability of newborn screening, major improvements in the application of allogeneic procedures, and the emergence of successful hematopoietic stem and progenitor cell (HSC/P) gene therapy, the majority of these children can be identified and cured. Here, we trace key steps in the development of clinical gene therapy for SCID and other primary immunodeficiencies (PIDs), and review the prospects for adoption of new targets and technologies.
Collapse
Affiliation(s)
- Adrian J Thrasher
- Great Ormond Street Hospital for Children NHS Foundation Trust, London WC1N 3JH, UK; University College London Great Ormond Street Institute of Child Health, London WC1N 1EH, UK.
| | - David A Williams
- Boston Children's Hospital and Dana-Farber Cancer Institute, Harvard Medical School and Harvard Stem Cell Institute, 300 Longwood Avenue, Boston, MA 02115, USA.
| |
Collapse
|
14
|
Abstract
In the recent past, the gene therapy field has witnessed a remarkable series of
successes, many of which have involved primary immunodeficiency diseases, such
as X-linked severe combined immunodeficiency, adenosine deaminase deficiency,
chronic granulomatous disease, and Wiskott-Aldrich syndrome. While such progress
has widened the choice of therapeutic options in some specific cases of primary
immunodeficiency, much remains to be done to extend the geographical
availability of such an advanced approach and to increase the number of diseases
that can be targeted. At the same time, emerging technologies are stimulating
intensive investigations that may lead to the application of precise genetic
editing as the next form of gene therapy for these and other human genetic
diseases.
Collapse
Affiliation(s)
- Fabio Candotti
- Division of Immunology and Allergy, University Hospital of Lausanne, Lausanne, Switzerland
| |
Collapse
|
15
|
Corneth OBJ, Klein Wolterink RGJ, Hendriks RW. BTK Signaling in B Cell Differentiation and Autoimmunity. Curr Top Microbiol Immunol 2015; 393:67-105. [PMID: 26341110 DOI: 10.1007/82_2015_478] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Since the original identification of Bruton's tyrosine kinase (BTK) as the gene defective in the primary immunodeficiency X-linked agammaglobulinemia (XLA) in 1993, our knowledge on the physiological function of BTK has expanded impressively. In this review, we focus on the role of BTK during B cell differentiation in vivo, both in the regulation of expansion and in the developmental progression of pre-B cells in the bone marrow and as a crucial signal transducer of signals downstream of the IgM or IgG B cell antigen receptor (BCR) in mature B cells governing proliferation, survival, and differentiation. In particular, we highlight BTK function in B cells in the context of host defense and autoimmunity. Small-molecule inhibitors of BTK have very recently shown impressive anti-tumor activity in clinical studies in patients with various B cell malignancies. Since promising effects of BTK inhibition were also seen in experimental animal models for lupus and rheumatoid arthritis, BTK may be a good target for controlling autoreactive B cells in patients with systemic autoimmune disease.
Collapse
Affiliation(s)
- Odilia B J Corneth
- Department of Pulmonary Medicine, Erasmus MC Rotterdam, Room Ee2251a, PO Box 2040, NL 3000, CA, Rotterdam, The Netherlands
| | - Roel G J Klein Wolterink
- Department of Pulmonary Medicine, Erasmus MC Rotterdam, Room Ee2251a, PO Box 2040, NL 3000, CA, Rotterdam, The Netherlands
| | - Rudi W Hendriks
- Department of Pulmonary Medicine, Erasmus MC Rotterdam, Room Ee2251a, PO Box 2040, NL 3000, CA, Rotterdam, The Netherlands.
| |
Collapse
|
16
|
Wang Y, Khan IF, Boissel S, Jarjour J, Pangallo J, Thyme S, Baker D, Scharenberg AM, Rawlings DJ. Progressive engineering of a homing endonuclease genome editing reagent for the murine X-linked immunodeficiency locus. Nucleic Acids Res 2014; 42:6463-75. [PMID: 24682825 PMCID: PMC4041414 DOI: 10.1093/nar/gku224] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
LAGLIDADG homing endonucleases (LHEs) are compact endonucleases with 20–22 bp recognition sites, and thus are ideal scaffolds for engineering site-specific DNA cleavage enzymes for genome editing applications. Here, we describe a general approach to LHE engineering that combines rational design with directed evolution, using a yeast surface display high-throughput cleavage selection. This approach was employed to alter the binding and cleavage specificity of the I-Anil LHE to recognize a mutation in the mouse Bruton tyrosine kinase (Btk) gene causative for mouse X-linked immunodeficiency (XID)—a model of human X-linked agammaglobulinemia (XLA). The required re-targeting of I-AniI involved progressive resculpting of the DNA contact interface to accommodate nine base differences from the native cleavage sequence. The enzyme emerging from the progressive engineering process was specific for the XID mutant allele versus the wild-type (WT) allele, and exhibited activity equivalent to WT I-AniI in vitro and in cellulo reporter assays. Fusion of the enzyme to a site-specific DNA binding domain of transcription activator-like effector (TALE) resulted in a further enhancement of gene editing efficiency. These results illustrate the potential of LHE enzymes as specific and efficient tools for therapeutic genome engineering.
Collapse
Affiliation(s)
- Yupeng Wang
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA 98101, USA
| | - Iram F Khan
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA 98101, USA
| | - Sandrine Boissel
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA 98101, USA Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | | | - Joseph Pangallo
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA 98101, USA
| | - Summer Thyme
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - David Baker
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Andrew M Scharenberg
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA 98101, USA Departments of Pediatrics and Immunology, University of Washington, Seattle, WA 98195, USA
| | - David J Rawlings
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA 98101, USA Departments of Pediatrics and Immunology, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
17
|
Candotti F. Gene transfer into hematopoietic stem cells as treatment for primary immunodeficiency diseases. Int J Hematol 2014; 99:383-92. [DOI: 10.1007/s12185-014-1524-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2014] [Accepted: 01/13/2014] [Indexed: 01/20/2023]
|
18
|
Berglöf A, Turunen JJ, Gissberg O, Bestas B, Blomberg KEM, Smith CIE. Agammaglobulinemia: causative mutations and their implications for novel therapies. Expert Rev Clin Immunol 2014; 9:1205-21. [DOI: 10.1586/1744666x.2013.850030] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
19
|
Rivat C, Santilli G, Gaspar HB, Thrasher AJ. Gene therapy for primary immunodeficiencies. Hum Gene Ther 2012; 23:668-75. [PMID: 22691036 DOI: 10.1089/hum.2012.116] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
For over 40 years, primary immunodeficiencies (PIDs) have featured prominently in the development and refinement of human allogeneic hematopoietic stem cell transplantation. More recently, ex vivo somatic gene therapy using autologous cells has provided remarkable evidence of clinical efficacy in patients without HLA-matched stem cell donors and in whom toxicity of allogeneic procedures is likely to be high. Together with improved preclinical models, a wealth of information has accumulated that has allowed development of safer, more sophisticated technologies and protocols that are applicable to a much broader range of diseases. In this review we summarize the status of these gene therapy trials and discuss the emerging application of similar strategies to other PIDs.
Collapse
Affiliation(s)
- Christine Rivat
- UCL Institute of Child Health, Centre for Immunodeficiency, London WCIN 1EH, United Kingdom
| | | | | | | |
Collapse
|
20
|
Aghamohammadi A, Abolhassani H, Eibl MM, Espanol T, Kanegane H, Miyawaki T, Mohammadinejad P, Pourhamdi S, Wolf HM, Parvaneh N, Al-Herz W, Durandy A, Stiehm ER, Plebani A. Predominantly Antibody Deficiency. CLINICAL CASES IN PRIMARY IMMUNODEFICIENCY DISEASES 2012:113-192. [DOI: 10.1007/978-3-642-31785-9_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
21
|
Hendriks RW, Bredius RG, Pike-Overzet K, Staal FJ. Biology and novel treatment options for XLA, the most common monogenetic immunodeficiency in man. Expert Opin Ther Targets 2011; 15:1003-21. [PMID: 21635151 DOI: 10.1517/14728222.2011.585971] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION X-linked agammaglobulinemia (XLA) is the most common primary immunodeficiency in man, and is caused by a single genetic defect. Inactivating mutations in the Bruton's tyrosine kinase (BTK) gene are invariably the cause of XLA,. XLA is characterized by a differentiation arrest at the pre-B cell stage, the absence of immunoglobulins and recurrent bacterial infections, making it an insidious disease that gradually disables the patient, and can result in death due to chronic lung disease. Current treatment involves prophylactic antibiotics and immunoglobulin infusions, which are non-curative. This disease is a good candidate for curative hematopoietic stem cell (HSC)-based gene therapy, which could correct the B cell and myeloid deficiencies. AREAS COVERED This paper reviews the basic biology of BTK in B cell development, the clinical features of XLA, and the possibilities of gene therapy for XLA, covering the literature from 1995 to 2010. EXPERT OPINION Work from various laboratories demonstrates the feasibility of using gene-corrected HSCs to complement the immune defects of Btk-deficiency in mice. We propose that it is timely to start clinical programs to develop stem cell based therapy for XLA, using gene-corrected autologous HSC.
Collapse
Affiliation(s)
- Rudi W Hendriks
- Department of Pulmonary Medicine, Erasmus MC, Rotterdam, The Netherlands
| | | | | | | |
Collapse
|
22
|
Sather BD, Ryu BY, Stirling BV, Garibov M, Kerns HM, Humblet-Baron S, Astrakhan A, Rawlings DJ. Development of B-lineage predominant lentiviral vectors for use in genetic therapies for B cell disorders. Mol Ther 2010; 19:515-25. [PMID: 21139568 DOI: 10.1038/mt.2010.259] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Sustained, targeted, high-level transgene expression in primary B lymphocytes may be useful for gene therapy in B cell disorders. We developed several candidate B-lineage predominant self-inactivating lentiviral vectors (LV) containing alternative enhancer/promoter elements including: the immunoglobulin β (Igβ) (B29) promoter combined with the immunoglobulin µ enhancer (EµB29); and the endogenous BTK promoter with or without Eµ (EµBtkp or Btkp). LV-driven enhanced green fluorescent protein (eGFP) reporter expression was evaluated in cell lines and primary cells derived from human or murine hematopoietic stem cells (HSC). In murine primary cells, EµB29 and EµBtkp LV-mediated high-level expression in immature and mature B cells compared with all other lineages. Expression increased with B cell maturation and was maintained in peripheral subsets. Expression in T and myeloid cells was much lower in percentage and intensity. Similarly, both EµB29 and EµBtkp LV exhibited high-level activity in human primary B cells. In contrast to EµB29, Btkp and EµBtkp LV also exhibited modest activity in myeloid cells, consistent with the expression profile of endogenous Bruton's tyrosine kinase (Btk). Notably, EµB29 and EµBtkp activity was superior in all expression models to an alternative, B-lineage targeted vector containing the EµS.CD19 enhancer/promoter. In summary, EµB29 and EµBtkp LV comprise efficient delivery platforms for gene expression in B-lineage cells.
Collapse
Affiliation(s)
- Blythe D Sather
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, Washington 98101, USA
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Ng YY, Baert MRM, Pike-Overzet K, Rodijk M, Brugman MH, Schambach A, Baum C, Hendriks RW, van Dongen JJM, Staal FJT. Correction of B-cell development in Btk-deficient mice using lentiviral vectors with codon-optimized human BTK. Leukemia 2010; 24:1617-30. [PMID: 20574453 DOI: 10.1038/leu.2010.140] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
X-linked agammaglobulinemia (XLA) is the most common primary immunodeficiency (PID) in man and caused by mutations in the Bruton's tyrosine kinase (BTK) gene. XLA is characterized by a B-cell differentiation arrest in bone marrow, absence of mature B cells and immunoglobulins (Igs), and recurrent bacterial infections. We used self-inactivating lentiviral vectors expressing codon-optimized human BTK under the control of three different ubiquitous or B cell-specific promoters. Btk-/- mice engrafted with transduced cells showed correction of both precursor B-cell and peripheral B-cell development. Lentiviral vectors containing the wildtype BTK sequence did not correct the phenotype. All treated mice with codon-optimized BTK exhibited the recovery of B1 cells in the peritoneal cavity, and of serum IgM and IgG3 levels. Calcium mobilization responses upon B-cell receptor stimulation as well as in vivo responses to T cell-independent antigens were restored. Viral promoters overexpressing BTK >100-fold above normal resulted in erythro-myeloid proliferations independent of insertional mutagenesis. However, transplantation into secondary Btk-/- recipients using cellular promoters resulted in functional restoration of peripheral B cells and IgM levels, without any adverse effects. In conclusion, transduction of human BTK corrects B-cell development and antigen-specific antibody responses in Btk-/- mice, thus indicating the feasibility of lentiviral gene therapy for XLA, provided that BTK expression does not vastly exceed normal levels.
Collapse
Affiliation(s)
- Y Y Ng
- Department of Immunology, Erasmus MC, Rotterdam, The Netherlands
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
B cell-specific lentiviral gene therapy leads to sustained B-cell functional recovery in a murine model of X-linked agammaglobulinemia. Blood 2010; 115:2146-55. [PMID: 20093406 DOI: 10.1182/blood-2009-09-241869] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The immunodeficiency disorder, X-linked agammaglobulinemia (XLA), results from mutations in the gene encoding Bruton tyrosine kinase (Btk). Btk is required for pre-B cell clonal expansion and B-cell antigen receptor signaling. XLA patients lack mature B cells and immunoglobulin and experience recurrent bacterial infections only partially mitigated by life-long antibody replacement therapy. In pursuit of definitive therapy for XLA, we tested ex vivo gene therapy using a lentiviral vector (LV) containing the immunoglobulin enhancer (Emu) and Igbeta (B29) minimal promoter to drive B lineage-specific human Btk expression in Btk/Tec(-/-) mice, a strain that reproduces the features of human XLA. After transplantation of EmuB29-Btk-LV-transduced stem cells, treated mice showed significant, albeit incomplete, rescue of mature B cells in the bone marrow, peripheral blood, spleen, and peritoneal cavity, and improved responses to T-independent and T-dependent antigens. LV-treated B cells exhibited enhanced B-cell antigen receptor signaling and an in vivo selective advantage in the peripheral versus central B-cell compartment. Secondary transplantation showed sustained Btk expression, viral integration, and partial functional responses, consistent with long-term stem cell marking; and serial transplantation revealed no evidence for cellular or systemic toxicity. These findings strongly support pursuit of B lineage-targeted LV gene therapy in human XLA.
Collapse
|
25
|
Moreau T, Bardin F, Barlogis V, Le Deist F, Chabannon C, Tonnelle C. Hematopoietic engraftment of XLA bone marrow CD34(+) cells in NOG/SCID mice. Cytotherapy 2009; 11:198-205. [PMID: 19235603 DOI: 10.1080/14653240802716616] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
BACKGROUND AIMS X-linked agammaglobulinemia (XLA) is a rare primary immunodeficiency associated with mutations of the BTK (Bruton agammaglobulinemia tyrosine kinase) gene. Non-functional BTK leads to a severe decline in peripheral B cells and profound pan-hypogammaglobulinemia. Substitutive immunoglobulin replacement therapy improves long-term survival but remains a symptomatic rather than curative treatment that does not provide an optimal quality of life. Hematopoietic stem cell gene therapy represents a potentially curative treatment. Thorough pre-clinical testing of innovative therapies requires that adequate disease models are available. Invalidation of the murine btk gene produces a phenotype that is less severe than the human disease; alternatively, xenotransplantation of human hematopoietic progenitors obtained from XLA patients may provide a model for testing new treatment procedures. METHODS The standard of care for XLA patients rarely offers an opportunity to collect peripheral blood or bone marrow (BM) hematopoietic progenitors; however, we had access to two BM samples obtained from such individuals. We analyzed hematopoietic engraftment of immunoselected CD34(+) cells from these samples in NOD/SCID/ gammac(null) (NOG) mice. RESULTS In both cases, human hematopoietic cells were readily detected in BM and thymus, and at low levels in spleen and peripheral blood. Unexpectedly, the early defect in B-lymphoid differentiation associated with XLA was not accurately reproduced in NOG mice, as large amounts of pre-B cells were found in BM. CONCLUSIONS These results support the existence of differences in environmental regulation of B-cell ontogeny between mice and humans. This questions the relevance of the NOG xenograft model for pre-clinical study of XLA gene therapy.
Collapse
Affiliation(s)
- Thomas Moreau
- Institut Paoli-Calmettes, Centre de Thérapie Cellulaire et Génique, Marseille, France
| | | | | | | | | | | |
Collapse
|
26
|
Joseph RE, Andreotti AH. Bacterial expression and purification of interleukin-2 tyrosine kinase: single step separation of the chaperonin impurity. Protein Expr Purif 2008; 60:194-7. [PMID: 18495488 DOI: 10.1016/j.pep.2008.04.001] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2008] [Revised: 03/28/2008] [Accepted: 04/03/2008] [Indexed: 11/16/2022]
Abstract
Biochemical and biophysical characterization of kinases requires large quantities of purified protein. Here, we report the bacterial expression and purification of active Itk kinase domain (a Tec family kinase) using ArcticExpress cells that co-express the chaperonin system Cpn60/10 from Oleispira antarctica. We describe a simple one step MgCl2/ATP/KCl incubation procedure to remove the co-purifying chaperonin impurity. Chaperonin co-purification is a common problem encountered during protein purification and the simple incubation step described here completely overcomes this problem. The approach targets the chaperonin system rather than the protein of interest and is therefore widely applicable to other protein targets.
Collapse
Affiliation(s)
- Raji E Joseph
- Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, 4208 MBB, Ames, IA 50011, USA
| | | |
Collapse
|
27
|
Pérez de Diego R, López-Granados E, Rivera J, Ferreira A, Fontán G, Bravo J, García Rodríguez MC, Bolland S. Naturally occurring Bruton's tyrosine kinase mutations have no dominant negative effect in an X-linked agammaglobulinaemia cellular model. Clin Exp Immunol 2008; 152:33-8. [PMID: 18241233 PMCID: PMC2384054 DOI: 10.1111/j.1365-2249.2008.03589.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/05/2007] [Indexed: 12/19/2022] Open
Abstract
X-linked agammaglobulinaemia (XLA) is characterized by absence of mature B cells because of mutations in the Bruton's tyrosine kinase (Btk) gene. Btk-deficient early B cell precursors experience a block in their differentiation potentially reversible by the addition of an intact Btk gene. Btk expression was measured in 69 XLA patients with 47 different mutations and normal expression was detected in seven. We characterized these Btk mutant forms functionally by transfection into a lymphoma cell line that lacks endogenous Btk expression (Btk-/- DT40 cells) and analysed the calcium flux in response to B cell receptor stimulation. To test whether co-expression of a mutated form could compromise the function of the intact Btk transfection, studies in wild-type (WT) DT40 cells were also performed. Study reveals that none of the seven Btk mutants analysed was able to revert the absence of calcium mobilization upon IgM engagement in Btk-/- DT40 cells, as does intact Btk. In addition, calcium mobilization by anti-IgM stimulation in DT40 Btk+/+ cells was unaffected by co-expression with Btk mutants. These results suggest that gene addition would be feasible not only for patients with XLA and mutations that prevent Btk expression, but for those with expression of a mutant Btk.
Collapse
Affiliation(s)
- R Pérez de Diego
- Signal Transduction Group, Spanish National Cancer Research Centre (CNIO), Madrid, and Immunology Unit, Unviersity Hospital La Paz, Madrid, Spain.
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Development of an enhanced B-specific lentiviral vector expressing BTK: a tool for gene therapy of XLA. Gene Ther 2008; 15:942-52. [PMID: 18323795 DOI: 10.1038/gt.2008.17] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Further development of haematopoietic stem cell (HSC) gene therapy will depend on enhancement of gene transfer safety: ad hoc improvement of vector design relating to each particular disease is thus a crucial issue for HSC gene therapy. We modified a previously described lentiviral vector by adding the Emumar B-specific enhancer to a human CD19 promoter-derived sequence (Mol Ther 2004;10:45-56). We thus significantly improved the level of expression of the green fluorescent protein (GFP) reporter gene while retaining the specificity of expression in B-cell progeny of transduced human CD34+ progenitor cells obtained from cord blood or adult bone marrow. Indeed, GFP was strongly expressed from early medullary pro-B cells to splenic mature B cells whereas transgene expression remained low in transduced immature progenitors as in myeloid and T-lymphoid progeny retrieved from xenografted NOD/SCID/gammac(null) mice. Using this lentiviral vector, we further demonstrated the possibility to express a functional human BTK protein in long-term human CD34+ cell B-lymphoid progeny. This newly designed lentiviral vector fulfils one of the pre-requisites for the development of efficient and safe gene therapy for X-linked agammaglobulinaemia, the most common primary humoral immunodeficiency disorder.
Collapse
|
29
|
Notarangelo LD, Rawlings DJ, Sullivan KE. An exemplum of XLA. Clin Immunol 2008; 126:137-9. [DOI: 10.1016/j.clim.2007.09.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2007] [Revised: 09/17/2007] [Accepted: 09/17/2007] [Indexed: 11/25/2022]
|
30
|
Alugupalli KR. A distinct role for B1b lymphocytes in T cell-independent immunity. Curr Top Microbiol Immunol 2008; 319:105-30. [PMID: 18080416 DOI: 10.1007/978-3-540-73900-5_5] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Pathogenesis of infectious disease is not only determined by the virulence of the microbe but also by the immune status of the host. Vaccination is the most effective means to control infectious diseases. A hallmark of the adaptive immune system is the generation of B cell memory, which provides a long-lasting protective antibody response that is central to the concept of vaccination. Recent studies revealed a distinct function for B1b lymphocytes, a minor subset of mature B cells that closely resembles that of memory B cells in a number of aspects. In contrast to the development of conventional B cell memory, which requires the formation of germinal centers and T cells, the development of B1b cell-mediated long-lasting antibody responses occurs independent of T cell help. T cell-independent (TI) antigens are important virulence factors expressed by a number of bacterial pathogens, including those associated with biological threats. TI antigens cannot be processed and presented to T cells and therefore are known to possess restricted T cell-dependent (TD) immunogenicity. Nevertheless, specific recognition of TI antigens by B1b cells and the highly protective antibody responses mounted by them clearly indicate a crucial role for this subset of B cells. Understanding the mechanisms of long-term immunity conferred by B1b cells may lead to improved vaccine efficacy for a variety of TI antigens.
Collapse
Affiliation(s)
- K R Alugupalli
- Department of Microbiology and Immunology, Kimmel Cancer Center, Thomas Jefferson University, 233 South 10th Street, BLSB 726, Philadelphia, PA 19107, USA.
| |
Collapse
|
31
|
Chinen J, Candotti F. Gene transfer therapy of immunologic diseases. Clin Immunol 2008. [DOI: 10.1016/b978-0-323-04404-2.10086-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
32
|
Scharenberg AM, Humphries LA, Rawlings DJ. Calcium signalling and cell-fate choice in B cells. Nat Rev Immunol 2007; 7:778-89. [PMID: 17853903 PMCID: PMC2743935 DOI: 10.1038/nri2172] [Citation(s) in RCA: 164] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Alterations in the cytosolic concentration of calcium ions (Ca2+) transmit information that is crucial for the development and function of B cells. Cytosolic Ca2+ concentration is determined by a balance of active transport and gradient-driven Ca2+ fluxes, both of which are subject to the influence of multiple receptors and environmental sensing pathways. Recent advances in genomics have allowed for the compilation of an increasingly comprehensive list of Ca2+ transporters and channels expressed by B cells. The increasing understanding of the function and regulation of these proteins has begun to shift the frontier of Ca2+ physiology in B cells from molecular analysis to determining how diverse inputs to cytosolic Ca2+ concentration are integrated in specific immunological contexts.
Collapse
Affiliation(s)
- Andrew M. Scharenberg
- Departments of Pediatrics and Immunology, University of Washington School of Medicine and, Children's Hospital and Regional Medical Center, Suite 300, 307 Westlake Ave, Seattle, WA 98109, USA
| | - Lisa A. Humphries
- Departments of Pediatrics and Immunology, University of Washington School of Medicine and, Children's Hospital and Regional Medical Center, Suite 300, 307 Westlake Ave, Seattle, WA 98109, USA
| | - David J. Rawlings
- Departments of Pediatrics and Immunology, University of Washington School of Medicine and, Children's Hospital and Regional Medical Center, Suite 300, 307 Westlake Ave, Seattle, WA 98109, USA
| |
Collapse
|
33
|
Conley ME, Broides A, Hernandez-Trujillo V, Howard V, Kanegane H, Miyawaki T, Shurtleff SA. Genetic analysis of patients with defects in early B-cell development. Immunol Rev 2005; 203:216-34. [PMID: 15661032 DOI: 10.1111/j.0105-2896.2005.00233.x] [Citation(s) in RCA: 125] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Approximately 85% of patients with defects in early B-cell development have X-linked agammaglobulinemia (XLA), a disorder caused by mutations in the cytoplasmic Bruton's tyrosine kinase (Btk). Although Btk is activated by cross-linking of a variety of cell-surface receptors, the most critical signal transduction pathway is the one initiated by the pre-B cell and B-cell antigen receptor complex. Mutations in Btk are highly diverse, and no single mutation accounts for more than 3% of patients. Although there is no strong genotype/phenotype correlation in XLA, the specific mutation in Btk is one of the factors that influences the severity of disease. Mutations in the components of the pre-B cell and B-cell antigen receptor complex account for an additional 5-7% of patients with defects in early B-cell development. Patients with defects in these proteins are clinically indistinguishable from those with XLA. However, they tend to be younger at the time of diagnosis, and whereas most patients with XLA have a small number of B cells in the peripheral circulation, these cells are not found in patients with defects in micro heavy chain or Igalpha. Polymorphic variants in the components of the pre-B cell and B-cell receptor complex, particularly micro heavy chain and lambda5, may contribute to the severity of XLA.
Collapse
Affiliation(s)
- Mary Ellen Conley
- Department of Pediatrics, University of Tennessee College of Medicine, Memphis, TN 38105, USA.
| | | | | | | | | | | | | |
Collapse
|
34
|
Tanabe H, Miyake K, Shimada T. HIV-mediated Expression of Btk in Hematopoietic Stem Cells is not Sufficient to Restore B Cell Function in X-linked Immunodeficient Mice. J NIPPON MED SCH 2005; 72:203-12. [PMID: 16113490 DOI: 10.1272/jnms.72.203] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Mutations of Bruton's tyrosine kinase (Btk), which is critical for B cell development and function, cause X-linked agammaglobulinemia (XLA) in humans and X-linked immunodeficiency (xid) in mice. Although the severity of the clinical phenotype differs between the two species, xid mice are considered useful for evaluating treatment strategies for XLA patients. Hematopoietic stem cells (HSCs; 1 approximately 3 x 10(5))from xid mice were transduced with an HIV vector containing the human Btk (hBtk) gene under the control of the internal murine stem cell virus (MSCV) promoter and injected into 4-week-old xid mice. Thirty weeks later, the copy number of the integrated HIV vector was over 0.2 per cell in both bone marrow and spleen, but serum concentrations of IgM and IgG3 and the antibody response to nitrophenol (NP)-Ficoll challenge were not restored. The number of differentiated B cells (IgM(low)IgD(high)) was increased, while the peritoneal B1 cell count remained low. These results indicate that HIV-mediated expression of hBtk in bone marrow stem cells partially promotes B cell development, but is not sufficient for the restoration of B cell function in xid mice.
Collapse
Affiliation(s)
- Hiroko Tanabe
- Department of Biochemistry and Molecular Biology, Nippon Medical School, Tokyo, Japan
| | | | | |
Collapse
|
35
|
Abstract
Recent advances in molecular genetics have allowed identification of at least seven genes involved in X-linked immunodeficiencies. This has resulted not only in improved diagnostic possibilities but also in a better understanding of the pathophysiology of these disorders. In some cases, mutations in the same gene have been shown to cause distinct clinical and immunologic phenotypes, demonstrating a strong genotype-phenotype correlation. Identification of the molecular basis of these diseases has permitted creation of disease-specific registries, with a better characterization of the clinical and immunologic features associated with the various forms of X-linked immunodeficiencies. Additionally, gene therapy has been attempted in X-linked severe combined immune deficiency (XSCID), with clear evidence of successful correction of the pathology, and the appearance of severe adverse effects.
Collapse
Affiliation(s)
- Hans D Ochs
- Department of Pediatrics, University of Washington, Children's Hospital and Regional Medical Center, 4800 Sand Point Way NE, Seattle, WA 98105, USA.
| | | |
Collapse
|
36
|
Guo S, Ferl GZ, Deora R, Riedinger M, Yin S, Kerwin JL, Loo JA, Witte ON. A phosphorylation site in Bruton's tyrosine kinase selectively regulates B cell calcium signaling efficiency by altering phospholipase C-gamma activation. Proc Natl Acad Sci U S A 2004; 101:14180-5. [PMID: 15375214 PMCID: PMC521099 DOI: 10.1073/pnas.0405878101] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Loss of function of Bruton's tyrosine kinase (Btk) causes X-linked agammaglobulinemia (XLA) in humans and X-linked immunodeficiency in mice (xid). By using MS analysis and phosphopeptide-specific antibodies, we identified a tyrosine phosphorylation site (Y617) near the carboxyl terminus of the Btk domain from Btk expressed in 293T as well as DT-40 cells. Y617 is conserved in all Tec family kinases except murine Tec. Replacement of Y617 with a negatively charged glutamic acid (E) suppressed Btk-mediated phospholipase Cgamma2 activation and calcium response in DT-40 cells, whereas Akt activation was not affected. The Btk Y617E mutant could partially restore conventional B cell development and proliferation in Btk(-)/Tec(-) mice but failed to rescue CD5(+) B-1 cell development and the TI-II immune response to 2,4,6,-trinitrophenyl-Ficoll. These data suggest that Y617 phosphorylation or a negative charge at this site may down-regulate the function of Btk by selectively suppressing the B cell calcium signaling pathway.
Collapse
Affiliation(s)
- Shuling Guo
- Department of Microbiology, Immunology, and Molecular Genetics and Howard Hughes Medical Institute, University of California, Los Angeles, CA 90095, USA
| | | | | | | | | | | | | | | |
Collapse
|