1
|
Nuan-Aliman S, Bordereaux D, Thieblemont C, Baud V. The Alternative RelB NF-kB Subunit Exerts a Critical Survival Function upon Metabolic Stress in Diffuse Large B-Cell Lymphoma-Derived Cells. Biomedicines 2022; 10:biomedicines10020348. [PMID: 35203557 PMCID: PMC8961793 DOI: 10.3390/biomedicines10020348] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 12/22/2021] [Accepted: 12/23/2021] [Indexed: 12/15/2022] Open
Abstract
Diffuse large B-cell lymphoma (DLBCL) is the most common non-Hodgkin lymphoma in adults and reveals distinct genetic and metabolic signatures. NF-κB transcription factor family is involved in diverse biological processes enabling tumor development and resistance to anticancer-therapy through activation of its two main pathways, the canonical and the alternative NF-κB pathways, the main actor of the latter being the RelB NF-kB subunit. RelB DNA binding activity is frequently activated in DLBCL patients and cell lines. RelB activation defines a new DLBCL subgroup with dismal outcome upon immunochemotherapy, and RelB confers DLBCL cell resistance to DNA damage. However, whether RelB can impact on DLBCL cell metabolism and survival upon metabolic stress is unknown. Here, we reveal that RelB controls DLBCL oxidative energetic metabolism. Accordingly, RelB inhibition reduce DLBCL mitochondrial ATP production, and sensitizes DLBCL cells to apoptosis induced by Metformin and L-asparaginase (®Kidrolase), two FDA approved antimetabolic drugs targeting mitochondrial metabolism. RelB also confers DLBCL cell resistance to glutamine deprivation, an essential amino acid that feeds the TCA cycle. Taken together, our findings uncover a new role for RelB in the regulation of DLBCL cell metabolism and DLBCL cell survival upon metabolic stress.
Collapse
Affiliation(s)
- Stéphanie Nuan-Aliman
- NF-kappaB, Différenciation et Cancer, Université de Paris, 75006 Paris, France; (S.N.-A.); (D.B.); (C.T.)
| | - Didier Bordereaux
- NF-kappaB, Différenciation et Cancer, Université de Paris, 75006 Paris, France; (S.N.-A.); (D.B.); (C.T.)
| | - Catherine Thieblemont
- NF-kappaB, Différenciation et Cancer, Université de Paris, 75006 Paris, France; (S.N.-A.); (D.B.); (C.T.)
- Hémato-Oncologie, APHP Hôpital Saint-Louis, 75010 Paris, France
| | - Véronique Baud
- NF-kappaB, Différenciation et Cancer, Université de Paris, 75006 Paris, France; (S.N.-A.); (D.B.); (C.T.)
- Correspondence:
| |
Collapse
|
2
|
The alternative RelB NF-κB subunit is a novel critical player in diffuse large B-cell lymphoma. Blood 2021; 139:384-398. [PMID: 34232979 DOI: 10.1182/blood.2020010039] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 06/15/2021] [Indexed: 11/20/2022] Open
Abstract
Diffuse large B-cell lymphoma (DLBCL) is the most frequent lymphoid malignancy affecting adults. NF-kB transcription factor family is activated by two main pathways, the canonical and the alternative NF-kB activation pathways with different functions. The alternative NF-kB pathway leads to the activation of the transcriptionally active RelB NF-kB subunit. Alternative NF-kB activation status and its role in DLBCL pathogenesis remain undefined. Here, we reveal a frequent activation of RelB in a large cohort of DLBCL patients and cell lines, independently of their ABC or GCB subtypes. RelB activity defines a new subset of DLBCL patients with a peculiar gene expression profile and mutational pattern. Importantly, RelB activation does not correlate with the MCD genetic subtype, enriched for ABC tumors carrying MYD88L265P and CD79B mutations that cooperatively activate canonical NF-kB, thus indicating that current genetic tools to evaluate NF-kB activity in DLBCL do not provide information on the alternative NF-kB activation. Further, the newly defined RelB-positive subgroup of DLBCL patients exhibits a dismal outcome following immunochemotherapy. Functional studies revealed that RelB confers DLBCL cell resistance to DNA-damage induced apoptosis in response to doxorubicin, a genotoxic agent used in front-line treatment for DLBCL. We also show that RelB positivity is associated with high expression of cIAP2. Altogether, RelB activation can be used to refine the prognostic stratification of DLBCL and may contribute to subvert the therapeutic DNA damage response in a segment of DLBCL patients.
Collapse
|
3
|
Tran TQ, Kioussi C. Pitx genes in development and disease. Cell Mol Life Sci 2021; 78:4921-4938. [PMID: 33844046 PMCID: PMC11073205 DOI: 10.1007/s00018-021-03833-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 03/05/2021] [Accepted: 03/31/2021] [Indexed: 12/17/2022]
Abstract
Homeobox genes encode sequence-specific transcription factors (SSTFs) that recognize specific DNA sequences and regulate organogenesis in all eukaryotes. They are essential in specifying spatial and temporal cell identity and as a result, their mutations often cause severe developmental defects. Pitx genes belong to the PRD class of the highly evolutionary conserved homeobox genes in all animals. Vertebrates possess three Pitx paralogs, Pitx1, Pitx2, and Pitx3 while non-vertebrates have only one Pitx gene. The ancient role of regulating left-right (LR) asymmetry is conserved while new functions emerge to afford more complex body plan and functionalities. In mouse, Pitx1 regulates hindlimb tissue patterning and pituitary development. Pitx2 is essential for the development of the oral cavity and abdominal wall while regulates the formation and symmetry of other organs including pituitary, heart, gut, lung among others by controlling growth control genes upon activation of the Wnt/ß-catenin signaling pathway. Pitx3 is essential for lens development and migration and survival of the dopaminergic neurons of the substantia nigra. Pitx gene mutations are linked to various congenital defects and cancers in humans. Pitx gene family has the potential to offer a new approach in regenerative medicine and aid in identifying new drug targets.
Collapse
Affiliation(s)
- Thai Q Tran
- Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, OR, 97331, USA
| | - Chrissa Kioussi
- Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, OR, 97331, USA.
| |
Collapse
|
4
|
Identification of Novel Hemangioblast Genes in the Early Chick Embryo. Cells 2018; 7:cells7020009. [PMID: 29385069 PMCID: PMC5850097 DOI: 10.3390/cells7020009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2017] [Revised: 01/17/2018] [Accepted: 01/27/2018] [Indexed: 12/20/2022] Open
Abstract
During early vertebrate embryogenesis, both hematopoietic and endothelial lineages derive from a common progenitor known as the hemangioblast. Hemangioblasts derive from mesodermal cells that migrate from the posterior primitive streak into the extraembryonic yolk sac. In addition to primitive hematopoietic cells, recent evidence revealed that yolk sac hemangioblasts also give rise to tissue-resident macrophages and to definitive hematopoietic stem/progenitor cells. In our previous work, we used a novel hemangioblast-specific reporter to isolate the population of chick yolk sac hemangioblasts and characterize its gene expression profile using microarrays. Here we report the microarray profile analysis and the identification of upregulated genes not yet described in hemangioblasts. These include the solute carrier transporters SLC15A1 and SCL32A1, the cytoskeletal protein RhoGap6, the serine protease CTSG, the transmembrane receptor MRC1, the transcription factors LHX8, CITED4 and PITX1, and the previously uncharacterized gene DIA1R. Expression analysis by in situ hybridization showed that chick DIA1R is expressed not only in yolk sac hemangioblasts but also in particular intraembryonic populations of hemogenic endothelial cells, suggesting a potential role in the hemangioblast-derived hemogenic lineage. Future research into the function of these newly identified genes may reveal novel important regulators of hemangioblast development.
Collapse
|
5
|
Chen F, Yao H, Wang M, Yu B, Liu Q, Li J, He Z, Hu YP. Suppressing Pitx2 inhibits proliferation and promotes differentiation of iHepSCs. Int J Biochem Cell Biol 2016; 80:154-162. [PMID: 27697592 DOI: 10.1016/j.biocel.2016.09.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 09/18/2016] [Accepted: 09/29/2016] [Indexed: 01/05/2023]
Abstract
Induced hepatic stem cells (iHepSCs) have great potential as donors for liver cell therapy due to their abilities for self-renewal and bi-potential differentiation. However, the molecular mechanism regulating proliferation and differentiation of iHepSCs is poorly understood. In this study, we provide evidence that the homeodomain transcription factor, Pitx2, is essential to maintain iHepSCs stem cell characteristics. Suppressing Pitx2 expression in iHepSCs by lentivirus mediated specific shRNA markedly reduced the expression of the hepatic stem cell-associated genes (Lgr5, EpCAM, and Sox9) with concomitant inhibition of proliferation by blocking the G1/S phase transition, and these phenotypic changes were reversed upon re-expression of Pitx2. Pitx2 knockdown also resulted in up-regulation of the p53-induced Cdk inhibitor p21, and down-regulation of its downstream effector CDK2-Cyclin E kinase complex. Furthermore, we observed that iHepSCs were more efficiently induced to differentiate into both hepatocytes and cholangiocytes when Pitx2 expression was suppressed, as compared to unmanipulated iHepSCs. These findings reveal that Pitx2 expression may be leveraged to control the status of iHepSCs during expansion in vitro to provide a strategy for further application of iHepSCs in liver cell therapy.
Collapse
Affiliation(s)
- Fei Chen
- Department of Cell Biology, Center for Stem Cell and Medicine, Second Military Medical University, PR China
| | - Hao Yao
- Department of Cell Biology, Center for Stem Cell and Medicine, Second Military Medical University, PR China
| | - Minjun Wang
- Department of Cell Biology, Center for Stem Cell and Medicine, Second Military Medical University, PR China
| | - Bing Yu
- Department of Cell Biology, Center for Stem Cell and Medicine, Second Military Medical University, PR China
| | - Qinggui Liu
- Department of Cell Biology, Center for Stem Cell and Medicine, Second Military Medical University, PR China
| | - Jianxiu Li
- Department of Cell Biology, Center for Stem Cell and Medicine, Second Military Medical University, PR China
| | - Zhiying He
- Department of Cell Biology, Center for Stem Cell and Medicine, Second Military Medical University, PR China
| | - Yi-Ping Hu
- Department of Cell Biology, Center for Stem Cell and Medicine, Second Military Medical University, PR China.
| |
Collapse
|
6
|
Waite MR, Martin DM. Axial level-specific regulation of neuronal development: lessons from PITX2. J Neurosci Res 2015; 93:195-8. [PMID: 25124216 DOI: 10.1002/jnr.23471] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2014] [Revised: 06/09/2014] [Accepted: 07/16/2014] [Indexed: 12/19/2022]
Abstract
Transcriptional regulation of gene expression is vital for proper control of proliferation, migration, differentiation, and survival of developing neurons. Pitx2 encodes a homeodomain transcription factor that is highly expressed in the developing and adult mammalian brain. In humans, mutations in PITX2 result in Rieger syndrome, characterized by defects in the development of the eyes, umbilicus, and teeth and variable abnormalities in the brain, including hydrocephalus and cerebellar hypoplasia. Alternative splicing of Pitx2 in the mouse results in three isoforms, Pitx2a, Pitx2b, and Pitx2c, each of which is expressed symmetrically along the left-right axis of the brain throughout development. Here, we review recent evidence for axial and brain region-specific requirements for Pitx2 during neuronal migration and differentiation, highlighting known isoform contributions.
Collapse
Affiliation(s)
- Mindy R Waite
- Cellular and Molecular Biology Graduate Program, University of Michigan, Ann Arbor, Michigan
| | | |
Collapse
|
7
|
Comparing the gene expression profile of stromal cells from human cord blood and bone marrow: lack of the typical "bone" signature in cord blood cells. Stem Cells Int 2013; 2013:631984. [PMID: 24163699 PMCID: PMC3791663 DOI: 10.1155/2013/631984] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2013] [Accepted: 07/22/2013] [Indexed: 01/27/2023] Open
Abstract
With regard to the bone-regenerative capacity, bone marrow stromal cells (BMSC) can still be termed the "gold standard." Nevertheless, neonatal stromal cells from cord blood (CB) feature advantages concerning availability, immaturity, and proliferation potential. The detailed gene expression analysis and overexpression of genes expressed differentially provide insight into the inherent capacity of stromal cells. Microarray and qRT-PCR analyses revealed closely related gene expression patterns of two stromal cell populations derived from CB. In contrast to the CB-derived cell types, BMSC displayed high expression levels of BSP, OSX, BMP4, OC, and PITX2. Lentiviral overexpression of BSP but not of OSX in CB-cells increased the capacity to form a mineralized matrix. BMP4 induced the secretion of proteoglycans during chondrogenic pellet culture and extended the osteogenic but reduced the adipogenic differentiation potential. BMSC revealed the typical osteogenic gene expression signature. In contrast, the CB-derived cell types exhibited a more immature gene expression profile and no predisposition towards skeletal development. The absence of BSP and BMP4-which were defined as potential key players affecting the differentiation potential-in neonatal stromal cells should be taken into consideration when choosing a cell source for tissue regeneration approaches.
Collapse
|
8
|
Abstract
Liver is a prime organ responsible for synthesis, metabolism, and detoxification. The organ is endodermal in origin and its development is regulated by temporal, complex, and finely balanced cellular and molecular interactions that dictate its origin, growth, and maturation. We discuss the relevance of endoderm patterning, which truly is the first step toward mapping of domains that will give rise to specific organs. Once foregut patterning is completed, certain cells within the foregut endoderm gain competence in the form of expression of certain transcription factors that allow them to respond to certain inductive signals. Hepatic specification is then a result of such inductive signals, which often emanate from the surrounding mesenchyme. During hepatic specification bipotential hepatic stem cells or hepatoblasts become apparent and undergo expansion, which results in a visible liver primordium during the stage of hepatic morphogenesis. Hepatoblasts next differentiate into either hepatocytes or cholangiocytes. The expansion and differentiation is regulated by cellular and molecular interactions between hepatoblasts and mesenchymal cells including sinusoidal endothelial cells, stellate cells, and also innate hematopoietic elements. Further maturation of hepatocytes and cholangiocytes continues during late hepatic development as a function of various growth factors. At this time, liver gains architectural novelty in the form of zonality and at cellular level acquires polarity. A comprehensive elucidation of such finely tuned developmental cues have been the basis of transdifferentiation of various types of stem cells to hepatocyte-like cells for purposes of understanding health and disease and for therapeutic applications.
Collapse
Affiliation(s)
- Donghun Shin
- Department of Developmental Biology, University of Pittsburgh, School of Medicine, Pittsburgh, Pennsylvania, USA.
| | | |
Collapse
|
9
|
Cormier F, Monjanel H, Fabre C, Billot K, Sapharikas E, Chereau F, Bordereaux D, Molina TJ, Avet-Loiseau H, Baud V. Frequent engagement of RelB activation is critical for cell survival in multiple myeloma. PLoS One 2013; 8:e59127. [PMID: 23555623 PMCID: PMC3610937 DOI: 10.1371/journal.pone.0059127] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Accepted: 02/11/2013] [Indexed: 12/17/2022] Open
Abstract
The NF-κB family of transcription factors has emerged as a key player in the pathogenesis of multiple myeloma (MM). NF-κB is activated by at least two major signaling pathways. The classical pathway results in the activation of mainly RelA containing dimers, whereas the alternative pathway leads to the activation of RelB/p52 and RelB/p50 heterodimers. Activating mutations in regulators of the alternative pathway have been identified in 17% of MM patients. However, the status of RelB activation per se and its role in the regulation of cell survival in MM has not been investigated. Here, we reveal that 40% of newly diagnosed MM patients have a constitutive RelB DNA-binding activity in CD138(+) tumor cells, and we show an association with increased expression of a subset of anti-apoptotic NF-κB target genes, such as cIAP2. Furthermore, we demonstrate that RelB exerts a crucial anti-apoptotic activity in MM cells. Our findings indicate that RelB activation is key for promoting MM cell survival through the upregulation of anti-apoptotic proteins. Altogether, our study provides the framework for the development of new molecules targeting RelB in the treatment of MM.
Collapse
|
10
|
Waite MR, Skidmore JM, Micucci JA, Shiratori H, Hamada H, Martin JF, Martin DM. Pleiotropic and isoform-specific functions for Pitx2 in superior colliculus and hypothalamic neuronal development. Mol Cell Neurosci 2013; 52:128-39. [PMID: 23147109 PMCID: PMC3540135 DOI: 10.1016/j.mcn.2012.11.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Revised: 10/01/2012] [Accepted: 11/02/2012] [Indexed: 02/01/2023] Open
Abstract
Transcriptional regulation of gene expression during development is critical for proper neuronal differentiation and migration. Alternative splicing and differential isoform expression have been demonstrated for most mammalian genes, but their specific contributions to gene function are not well understood. In mice, the transcription factor gene Pitx2 is expressed as three different isoforms (PITX2A, PITX2B, and PITX2C) which have unique amino termini and common DNA binding homeodomains and carboxyl termini. The specific roles of these isoforms in neuronal development are not known. Here we report the onset of Pitx2ab and Pitx2c isoform-specific expression by E9.5 in the developing mouse brain. Using isoform-specific Pitx2 deletion mouse strains, we show that collicular neuron migration requires PITX2AB and that collicular GABAergic differentiation and targeting of hypothalamic projections require unique Pitx2 isoform dosage. These results provide insights into Pitx2 dosage and isoform-specific requirements underlying midbrain and hypothalamic development.
Collapse
Affiliation(s)
- Mindy R Waite
- Cellular and Molecular Biology Graduate Program, 2966 Taubman Medical Library, University of Michigan, Ann Arbor, MI 48109-0619, USA.
| | | | | | | | | | | | | |
Collapse
|
11
|
Alkorta-Aranburu G, Beall CM, Witonsky DB, Gebremedhin A, Pritchard JK, Di Rienzo A. The genetic architecture of adaptations to high altitude in Ethiopia. PLoS Genet 2012; 8:e1003110. [PMID: 23236293 PMCID: PMC3516565 DOI: 10.1371/journal.pgen.1003110] [Citation(s) in RCA: 144] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2012] [Accepted: 10/06/2012] [Indexed: 11/21/2022] Open
Abstract
Although hypoxia is a major stress on physiological processes, several human populations have survived for millennia at high altitudes, suggesting that they have adapted to hypoxic conditions. This hypothesis was recently corroborated by studies of Tibetan highlanders, which showed that polymorphisms in candidate genes show signatures of natural selection as well as well-replicated association signals for variation in hemoglobin levels. We extended genomic analysis to two Ethiopian ethnic groups: Amhara and Oromo. For each ethnic group, we sampled low and high altitude residents, thus allowing genetic and phenotypic comparisons across altitudes and across ethnic groups. Genome-wide SNP genotype data were collected in these samples by using Illumina arrays. We find that variants associated with hemoglobin variation among Tibetans or other variants at the same loci do not influence the trait in Ethiopians. However, in the Amhara, SNP rs10803083 is associated with hemoglobin levels at genome-wide levels of significance. No significant genotype association was observed for oxygen saturation levels in either ethnic group. Approaches based on allele frequency divergence did not detect outliers in candidate hypoxia genes, but the most differentiated variants between high- and lowlanders have a clear role in pathogen defense. Interestingly, a significant excess of allele frequency divergence was consistently detected for genes involved in cell cycle control and DNA damage and repair, thus pointing to new pathways for high altitude adaptations. Finally, a comparison of CpG methylation levels between high- and lowlanders found several significant signals at individual genes in the Oromo. Although hypoxia is a major stress on physiological processes, several human populations have survived for millennia at high altitudes, suggesting that they have adapted to hypoxic conditions. Consistent with this idea, previous studies have identified genetic variants in Tibetan highlanders associated with reduction in hemoglobin levels, an advantageous phenotype at high altitude. To compare the genetic bases of adaptations to high altitude, we collected genetic and epigenetic data in Ethiopians living at high and low altitude, respectively. We find that variants associated with hemoglobin variation among Tibetans or other variants at the same loci do not influence the trait in Ethiopians. However, we find a different variant that is significantly associated with hemoglobin levels in Ethiopians. Approaches based on the difference in allele frequency between high- and lowlanders detected strong signals in genes with a clear role in defense from pathogens, consistent with known differences in pathogens between altitudes. Finally, we found a few genome-wide significant epigenetic differences between altitudes. These results taken together imply that Ethiopian and Tibetan highlanders adapted to the same environmental stress through different variants and genetic loci.
Collapse
Affiliation(s)
- Gorka Alkorta-Aranburu
- Department of Human Genetics, University of Chicago, Chicago, Illinois, United States of America
| | - Cynthia M. Beall
- Department of Anthropology, Case Western Research University, Cleveland, Ohio, United States of America
- * E-mail: (CMB); (ADR)
| | - David B. Witonsky
- Department of Human Genetics, University of Chicago, Chicago, Illinois, United States of America
| | - Amha Gebremedhin
- Department of Internal Medicine, Faculty of Medicine, Addis Ababa University, Addis Ababa, Ethiopia
| | - Jonathan K. Pritchard
- Department of Human Genetics, University of Chicago, Chicago, Illinois, United States of America
- Howard Hughes Medical Institute, Chevy Chase, Maryland, United States of America
| | - Anna Di Rienzo
- Department of Human Genetics, University of Chicago, Chicago, Illinois, United States of America
- * E-mail: (CMB); (ADR)
| |
Collapse
|
12
|
Jacque E, Billot K, Authier H, Bordereaux D, Baud V. RelB inhibits cell proliferation and tumor growth through p53 transcriptional activation. Oncogene 2012; 32:2661-9. [DOI: 10.1038/onc.2012.282] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
13
|
Fung FKC, Chan DW, Liu VWS, Leung THY, Cheung ANY, Ngan HYS. Increased expression of PITX2 transcription factor contributes to ovarian cancer progression. PLoS One 2012; 7:e37076. [PMID: 22615897 PMCID: PMC3352869 DOI: 10.1371/journal.pone.0037076] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2012] [Accepted: 04/13/2012] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Paired-like homeodomain 2 (PITX2) is a bicoid homeodomain transcription factor which plays an essential role in maintaining embryonic left-right asymmetry during vertebrate embryogenesis. However, emerging evidence suggests that the aberrant upregulation of PITX2 may be associated with tumor progression, yet the functional role that PITX2 plays in tumorigenesis remains unknown. PRINCIPAL FINDINGS Using real-time quantitative RT-PCR (Q-PCR), Western blot and immunohistochemical (IHC) analyses, we demonstrated that PITX2 was frequently overexpressed in ovarian cancer samples and cell lines. Clinicopathological correlation showed that the upregulated PITX2 was significantly associated with high-grade (P = 0.023) and clear cell subtype (P = 0.011) using Q-PCR and high-grade (P<0.001) ovarian cancer by IHC analysis. Functionally, enforced expression of PITX2 could promote ovarian cancer cell proliferation, anchorage-independent growth ability, migration/invasion and tumor growth in xenograft model mice. Moreover, enforced expression of PITX2 elevated the cell cycle regulatory proteins such as Cyclin-D1 and C-myc. Conversely, RNAi mediated knockdown of PITX2 in PITX2-high expressing ovarian cancer cells had the opposite effect. CONCLUSION Our findings suggest that the increased expression PITX2 is involved in ovarian cancer progression through promoting cell growth and cell migration/invasion. Thus, targeting PITX2 may serve as a potential therapeutic modality in the management of high-grade ovarian tumor.
Collapse
Affiliation(s)
- Frederic K. C. Fung
- Department of Obstetrics and Gynaecology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, Special Administrative Region, People's Republic of China
| | - David W. Chan
- Department of Obstetrics and Gynaecology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, Special Administrative Region, People's Republic of China
| | - Vincent W. S. Liu
- Department of Obstetrics and Gynaecology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, Special Administrative Region, People's Republic of China
| | - Thomas H. Y. Leung
- Department of Obstetrics and Gynaecology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, Special Administrative Region, People's Republic of China
| | - Annie N. Y. Cheung
- Department of Pathology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, Special Administrative Region, People's Republic of China
| | - Hextan Y. S. Ngan
- Department of Obstetrics and Gynaecology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, Special Administrative Region, People's Republic of China
| |
Collapse
|
14
|
A Novel Cellular Model to Study Angiotensin II AT2 Receptor Function in Breast Cancer Cells. INTERNATIONAL JOURNAL OF PEPTIDES 2011; 2012:745027. [PMID: 22187571 PMCID: PMC3236472 DOI: 10.1155/2012/745027] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2011] [Revised: 09/06/2011] [Accepted: 09/06/2011] [Indexed: 01/05/2023]
Abstract
Recent studies have highlighted the AT1 receptor as a potential therapeutic target in breast cancer, while the role of the AT2 subtype in this disease has remained largely neglected. The present study describes the generation and characterization of a new cellular model of human invasive breast cancer cells (D3H2LN-AT2) stably expressing high levels of Flag-tagged human AT2 receptor (Flag-hAT2). These cells exhibit high-affinity binding sites for AngII, and total binding can be displaced by the AT2-selective antagonist PD123319 but not by the AT1-selective antagonist losartan. Of interest, high levels of expression of luciferase and green fluorescent protein make these cells suitable for bioluminescence and fluorescence studies in vitro and in vivo. We provide here a novel tool to investigate the AT2 receptor functions in breast cancer cells, independently of AT1 receptor activation.
Collapse
|
15
|
Wang LD, Wagers AJ. Dynamic niches in the origination and differentiation of haematopoietic stem cells. Nat Rev Mol Cell Biol 2011; 12:643-55. [PMID: 21886187 DOI: 10.1038/nrm3184] [Citation(s) in RCA: 239] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Haematopoietic stem cells (HSCs) are multipotent, self-renewing progenitors that generate all mature blood cells. HSC function is tightly controlled to maintain haematopoietic homeostasis, and this regulation relies on specialized cells and factors that constitute the haematopoietic 'niche', or microenvironment. Recent discoveries, aided in part by technological advances in in vivo imaging, have engendered a new appreciation for the dynamic nature of the niche, identifying novel cellular and acellular niche components and uncovering fluctuations in the relative importance of these components over time. These new insights significantly improve our understanding of haematopoiesis and raise fundamental questions about what truly constitutes a stem cell niche.
Collapse
Affiliation(s)
- Leo D Wang
- Department of Stem Cell and Regenerative Biology, Harvard University, Harvard Stem Cell Institute, 7 Divinity Ave., Cambridge, Massachusetts 02138, USA. Leo.Wang@ childrens.harvard.edu
| | | |
Collapse
|
16
|
Leotoing L, Chereau F, Baron S, Hube F, Valencia HJ, Bordereaux D, Demmers JA, Strouboulis J, Baud V. A20-binding inhibitor of nuclear factor-kappaB (NF-kappaB)-2 (ABIN-2) is an activator of inhibitor of NF-kappaB (IkappaB) kinase alpha (IKKalpha)-mediated NF-kappaB transcriptional activity. J Biol Chem 2011; 286:32277-88. [PMID: 21784860 DOI: 10.1074/jbc.m111.236448] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
NF-κB transcription factors are pivotal players in controlling inflammatory and immune responses, as well as cell proliferation and apoptosis. Aberrant regulation of NF-κB and the signaling pathways that regulate its activity have been involved in various pathologies, particularly cancers, as well as inflammatory and autoimmune diseases. NF-κB activation is tightly regulated by the IκB kinase (IKK) complex, which is composed of two catalytic subunits IKKα and IKKβ, and a regulatory subunit IKKγ/NEMO. Although IKKα and IKKβ share structural similarities, IKKα has been shown to have distinct biological functions. However, the molecular mechanisms that modulate IKKα activity have not yet been fully elucidated. To understand better the regulation of IKKα activity, we purified IKKα-associated proteins and identified ABIN-2. Here, we demonstrate that IKKα and IKKβ both interact with ABIN-2 and impair its constitutive degradation by the proteasome. Nonetheless, ABIN-2 enhances IKKα- but not IKKβ-mediated NF-κB activation by specifically inducing IKKα autophosphorylation and kinase activity. Furthermore, we found that ABIN-2 serine 146 is critical for the ABIN-2-dependent IKKα transcriptional up-regulation of specific NF-κB target genes. These results imply that ABIN-2 acts as a positive regulator of NF-κB-dependent transcription by activating IKKα.
Collapse
|
17
|
Perrot-Applanat M, Vacher S, Toullec A, Pelaez I, Velasco G, Cormier F, Saad HES, Lidereau R, Baud V, Bièche I. Similar NF-κB gene signatures in TNF-α treated human endothelial cells and breast tumor biopsies. PLoS One 2011; 6:e21589. [PMID: 21754991 PMCID: PMC3130773 DOI: 10.1371/journal.pone.0021589] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2010] [Accepted: 06/06/2011] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Endothelial dysfunction has been implicated in the pathogenesis of diverse pathologies ranging from vascular and immune diseases to cancer. TNF-α is one of the mediators of endothelial dysfunction through the activation of transcription factors, including NF-κB. While HUVEC (macrovascular cells) have been largely used in the past, here, we documented an NF-κB gene signature in TNFα-stimulated microvascular endothelial cells HMEC often used in tumor angiogenesis studies. METHODOLOGY/PRINCIPAL FINDINGS We measured mRNA expression of 55 NF-κB related genes using quantitative RT-PCR in HUVEC and HMEC. Our study identified twenty genes markedly up-regulated in response to TNFα, including adhesion molecules, cytokines, chemokines, and apoptosis regulators, some of them being identified as TNF-α-inducible genes for the first time in endothelial cells (two apoptosis regulators, TNFAIP3 and TNFRSF10B/Trail R2 (DR5), the chemokines GM-CSF/CSF2 and MCF/CSF1, and CD40 and TNF-α itself, as well as NF-κB components (RELB, NFKB1 or 50/p105 and NFKB2 or p52/p100). For eight genes, the fold induction was much higher in HMEC, as compared to HUVEC. Most importantly, our study described for the first time a connection between NF-κB activation and the induction of most, if not all, of these genes in HMEC as evaluated by pharmacological inhibition and RelA expression knock-down by RNA interference. Moreover, since TNF-α is highly expressed in tumors, we further applied the NF-κB gene signature documented in TNFα-stimulated endothelial cells to human breast tumors. We found a significant positive correlation between TNF and the majority (85 %) of the identified endothelial TNF-induced genes in a well-defined series of 96 (48 ERα positive and 48 ERα negative) breast tumors. CONCLUSION/SIGNIFICANCE Taken together these data suggest the potential use of this NF-κB gene signature in analyzing the role of TNF-α in the endothelial dysfunction, as well as in breast tumors independently of the presence of ERα.
Collapse
|
18
|
Shi G, Sohn KC, Choi TY, Choi DK, Lee SS, Ou BS, Kim S, Lee YH, Yoon TJ, Kim SJ, Lee Y, Seo YJ, Lee JH, Kim CD. Expression of paired-like homeodomain transcription factor 2c (PITX2c) in epidermal keratinocytes. Exp Cell Res 2010; 316:3263-71. [PMID: 20875405 DOI: 10.1016/j.yexcr.2010.09.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2010] [Revised: 08/23/2010] [Accepted: 09/20/2010] [Indexed: 01/26/2023]
Abstract
Paired-like homeodomain transcription factor 2 (PITX2) has been implicated as one of the genes responsible for Rieger syndrome. It has been also shown to play a central role during development. In this study, we investigated the functional role of PITX2 in keratinocyte differentiation. RT-PCR analysis showed that PITX2c isoform was predominantly expressed in a differentiation-dependent manner. Consistent with, immunohistochemical staining showed that PITX2 expression was increased in the upper layer of epidermis. When PITX2c was overexpressed in cultured keratinocytes by a recombinant adenovirus, the differentiation markers such as involucrin and loricrin were significantly increased at both mRNA and protein levels. In addition, PITX2c overexpression led to the decrease of cell growth, concomitantly with the upregulation of cell cycle-related genes p21. To investigate the effect of PITX2c in vivo, we microinjected PITX2c expression vector into zebrafish embryo. Interestingly, overexpression of PITX2c in zebrafish embryo led to the formation of horn-like structure and thickening of epidermis, together with the increase of keratin 8 (K8) expression. These results suggest that PITX2c has a role in proliferation and differentiation of epidermal keratinocytes.
Collapse
Affiliation(s)
- Ge Shi
- Department of Dermatology, School of Medicine, Chungnam National University, Daejeon, 301-747, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Marquet J, Lasoudris F, Cousin C, Puiffe ML, Martin-Garcia N, Baud V, Chereau F, Farcet JP, Molinier-Frenkel V, Castellano F. Dichotomy between factors inducing the immunosuppressive enzyme IL-4-induced gene 1 (IL4I1) in B lymphocytes and mononuclear phagocytes. Eur J Immunol 2010; 40:2557-68. [PMID: 20683900 DOI: 10.1002/eji.201040428] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
MPhi and DC are key elements in the control of tissue homeostasis and response to insult. In this work, we demonstrate that MPhi and DC are the major producers of the phenylalanine catabolizing enzyme IL-4-induced gene 1 (IL4I1) under inflammatory conditions. IL4I1 was first described in B cells, which indeed can produce IL4I1 in vitro, although at much lower levels. In vivo, IL4I1 is highly expressed by MPhi and DC of Th1 granulomas (sarcoidosis, tuberculosis) but poorly detected in Th2 granulomas (schistosomiasis). In vitro, expression of the enzyme is induced in mononuclear phagocytes by various pro-inflammatory stimuli through the activation of the transcription factors NF-kappaB and/or STAT1. B cells also express IL4I1 in response to NF-kappaB-activating stimuli such as CD40L; however, in contrast to myeloid cells, B cells are insensitive to IFN-gamma but respond to stimulation of the IL-4/STAT6 axis. As we show that the expression of IL4I1 by a monocytic cell line inhibits T-cell proliferation and production of IFN-gamma and inflammatory cytokines, we propose that IL4I1 participates in the downregulation of Th1 inflammation in vivo.
Collapse
|
20
|
A mutant allele of the Swi/Snf member BAF250a determines the pool size of fetal liver hemopoietic stem cell populations. Blood 2010; 116:1678-84. [PMID: 20522713 DOI: 10.1182/blood-2010-03-273862] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
It is believed that hemopoietic stem cells (HSC), which colonize the fetal liver (FL) rapidly, expand to establish a supply of HSCs adequate for maintenance of hemopoiesis throughout life. Accordingly, FL HSCs are actively cycling as opposed to their predominantly quiescent bone marrow counterparts, suggesting that the FL microenvironment provides unique signals that support HSC proliferation and self-renewal. We now report the generation and characterization of mice with a mutant allele of Baf250a lacking exons 2 and 3. Baf250a(E2E3/E2E3) mice are viable until E19.5, but do not survive beyond birth. Most interestingly, FL HSC numbers are markedly higher in these mice than in control littermates, thus raising the possibility that Baf250a determines the HSC pool size in vivo. Limit dilution experiments indicate that the activity of Baf250a(E2E3/E2E3) HSC is equivalent to that of the wild-type counterparts. The Baf250a(E2E3/E2E3) FL-derived stroma, in contrast, exhibits a hemopoiesis-supporting potential superior to the developmentally matched controls. To our knowledge, this demonstration is the first that a mechanism operating in a cell nonautonomous manner canexpand the pool size of the fetal HSC populations.
Collapse
|
21
|
Berg T, DeLanghe S, Al Alam D, Utley S, Estrada J, Wang KS. β-catenin regulates mesenchymal progenitor cell differentiation during hepatogenesis. J Surg Res 2009; 164:276-85. [PMID: 20381814 DOI: 10.1016/j.jss.2009.10.033] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2009] [Revised: 10/07/2009] [Accepted: 10/22/2009] [Indexed: 12/30/2022]
Abstract
BACKGROUND Understanding the pathways regulating mesenchymal progenitor cell fate during hepatogenesis may provide insight into postnatal liver injury or liver bioengineering. While β-Catenin has been implicated in the proliferation of fetal hepatic epithelial progenitor cells, its role in mesenchymal precursors during hepatogenesis has not been established. MATERIALS AND METHODS We used a murine model of conditional deletion of β-Catenin in mesenchyme using the Dermo1 locus (β-Catenin(Dermo1)) to characterize the role of β-Catenin in liver mesenchyme during hepatogenesis. RESULTS Lineage tracing using a LacZ reporter indicates that both hepatic stellate cells and pericytes derive from mesenchymal Dermo1 expressing precursor cells. Compared to control littermate livers, β-Catenin(Dermo1) embryonic livers are smaller and filled with dilated sinusoids. While the fraction of mesenchymally-derived cells in β-Catenin(Dermo1) embryos is unchanged compared to littermate controls, there is an increase in the expression of the mesenchymal markers, DESMIN, α-SMA, and extracellular deposition of COLLAGEN type I, particularly concentrated around dilated sinusoids. Analysis of the endothelial cell compartment in β-Catenin(Dermo1)/Flk1(lacZ) embryos revealed a marked reorganization of the intrahepatic vasculature. Analysis of various markers for the endodermally-derived hepatoblast population revealed marked alterations in the spatial expression pattern of pan-cytokeratin but not E-cadherin, or albumin. β-Catenin(Dermo1) phenocopies mesenchymal deletion of Pitx2, a known regulator of hepatic mesenchymal differentiation both during both organogenesis and postnatal injury. CONCLUSIONS Our data implicate mesenchymal β-Catenin signaling pathway in the differentiation of liver mesenchymal progenitor cells during organogenesis, possibly via Pitx2. Hepatic mesenchymal β-Catenin signaling, in turn, modulates the development of both endothelium and endodermally-derived hepatoblasts, presumably via other downstream paracrine pathways.
Collapse
Affiliation(s)
- Tove Berg
- Saban Research Institute, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, California 90027, USA
| | | | | | | | | | | |
Collapse
|
22
|
Loss of the Rho GTPase activating protein p190-B enhances hematopoietic stem cell engraftment potential. Blood 2009; 114:3557-66. [PMID: 19713466 DOI: 10.1182/blood-2009-02-205815] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Hematopoietic stem cell (HSC) engraftment is a multistep process involving HSC homing to bone marrow, self-renewal, proliferation, and differentiation to mature blood cells. Here, we show that loss of p190-B RhoGTPase activating protein, a negative regulator of Rho GTPases, results in enhanced long-term engraftment during serial transplantation. This effect is associated with maintenance of functional HSC-enriched cells. Furthermore, loss of p190-B led to marked improvement of HSC in vivo repopulation capacity during ex vivo culture without altering proliferation and multilineage differentiation of HSC and progeny. Transcriptional analysis revealed that p190-B deficiency represses the up-regulation of p16(Ink4a) in HSCs in primary and secondary transplantation recipients, providing a possible mechanism of p190-B-mediated HSC functions. Our study defines p190-B as a critical transducer element of HSC self-renewal activity and long-term engraftment, thus suggesting that p190-B is a target for HSC-based therapies requiring maintenance of engraftment phenotype.
Collapse
|
23
|
Tiozzo S, De Tomaso AW. Functional analysis of Pitx during asexual regeneration in a basal chordate. Evol Dev 2009; 11:152-62. [PMID: 19245547 DOI: 10.1111/j.1525-142x.2009.00316.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Embryogenesis in ascidians is the classic example of mosaic development, yet within this phyla a number of colonial species exist which as adults can reproduce entire bodies asexually. The colonial ascidian Botryllus schlosseri is an excellent model to study this process: on a weekly basis it regenerates all somatic and germline tissues, and while these processes have been characterized morphologically at high-resolution over the last 70 years, almost nothing is known regarding the genetic basis of asexual development and its relationship to embryogenesis. In this study, we functionally characterized the role of the paired-related homeobox transcription factor, Pitx, during this regenerative process. During ascidian embryogenesis Pitx seems to be multifunctional and involved in the formation of multiple tissues, including the stomodeum, pituitary gland, and determination of left-right asymmetry, similar to other deuterostomes. Previous spatial-temporal expression studies during asexual regeneration in Botryllus adults suggest the same roles in this developmental program. Here, we analyzed Pitx function using RNA interference at distinct stages of asexual development. Pitx phenotypes were described focusing on each developmental stage both in vivo, and via histological analysis, and were found to correspond to expression patterns; with the exception that normal asymmetries in the gut were not affected by knockdown. As mRNA destruction is not instantaneous, we found that by tailoring our short interfering double-stranded RNA delivery different developmental processes could be studied independently. This allows a reverse genetic approach to dissect asexual developmental pathways, even in cases involving multifunctional, ubiquitously expressed genes like Pitx.
Collapse
Affiliation(s)
- Stefano Tiozzo
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA.
| | | |
Collapse
|
24
|
Nagel S, Meyer C, Quentmeier H, Kaufmann M, Drexler HG, MacLeod RAF. MEF2C is activated by multiple mechanisms in a subset of T-acute lymphoblastic leukemia cell lines. Leukemia 2007; 22:600-7. [PMID: 18079734 DOI: 10.1038/sj.leu.2405067] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In T-cell acute lymphoblastic leukemia (T-ALL) the cardiac homeobox gene NKX2-5 (at 5q35) is variously deregulated by regulatory elements coordinating with BCL11B (at 14q32.2), or the T-cell receptor gene TRD (at 14q11.2), respectively. NKX2-5 is normally expressed in developing spleen and heart, regulating fundamental processes, including differentiation and survival. In this study we investigated whether NKX2-5 expression in T-ALL cell lines reactivates these embryonal pathways contributing to leukemogenesis. Among 18 known targets analyzed, we identified three genes regulated by NKX2-5 in T-ALL cells, including myocyte enhancer factor 2C (MEF2C). Knockdown and overexpression assays confirmed MEF2C activation by NKX2-5 at both the RNA and protein levels. Direct interactions between NKX2-5 and GATA3 as indicated by co-immunoprecipitation data may contribute to MEF2C regulation. In T-ALL cell lines LOUCY and RPMI-8402 MEF2C expression was correlated with a 5q14 deletion, encompassing noncoding proximal gene regions. Fusion constructs with green fluorescent protein permitted subcellular detection of MEF2C protein in nuclear speckles interpretable as repression complexes. MEF2C consistently inhibits expression of NR4A1/NUR77, which regulates apoptosis via BCL2 transformation. Taken together, our data identify distinct mechanisms underlying ectopic MEF2C expression in T-ALL, either as a downstream target of NKX2-5, or via chromosomal aberrations deleting proximal gene regions.
Collapse
Affiliation(s)
- S Nagel
- Human and Animal Cell Cultures, DSMZ, Braunschweig, Germany.
| | | | | | | | | | | |
Collapse
|
25
|
Yap DYL, Smith DK, Zhang XW, Hill J. Using biomarker signature patterns for an mRNA molecular diagnostic of mouse embryonic stem cell differentiation state. BMC Genomics 2007; 8:210. [PMID: 17605829 PMCID: PMC1931595 DOI: 10.1186/1471-2164-8-210] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2006] [Accepted: 07/03/2007] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND The pluripotency and self-renewal capabilities, which define the "stemness" state, of mouse embryonic stem (ES) cells, are usually investigated by functional assays or quantitative measurements of the expression levels of known ES cell markers. Strong correlations between these expression levels and functional assays, particularly at the early stage of cell differentiation, have usually not been observed. An effective molecular diagnostic to properly identify the differentiation state of mouse ES cells, prior to further experimentation, is needed. RESULTS A novel molecular pattern recognition procedure has been developed to diagnose the differentiation state of ES cells. This is based on mRNA transcript levels of genes differentially expressed between ES cells and their differentiating progeny. Large publicly available ES cell data sets from various platforms were used to develop and test the diagnostic model. Signature patterns consisting of five gene expression levels achieved high accuracy at determining the cell state (sensitivity and specificity > 97%). CONCLUSION The effective ES cell state diagnostic scheme described here can be implemented easily to assist researchers in identifying the differentiation state of their cultures. It also provides a step towards standardization of experiments relying on cells being in the stem cell or differentiating state.
Collapse
Affiliation(s)
- Daniel YL Yap
- Bioinformatics Institute, 30 Biopolis Street, #07-01, Matrix, 138671, Singapore
| | - David K Smith
- Department of Biochemistry, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong SAR, China
| | - Xue W Zhang
- College of Light Industry and Food Sciences, South China University of Technology, Guangzhou, Guangdong, China
| | - Jeffrey Hill
- Bioinformatics Institute, 30 Biopolis Street, #07-01, Matrix, 138671, Singapore
| |
Collapse
|
26
|
Mandal L, Martinez-Agosto JA, Evans CJ, Hartenstein V, Banerjee U. A Hedgehog- and Antennapedia-dependent niche maintains Drosophila haematopoietic precursors. Nature 2007; 446:320-4. [PMID: 17361183 PMCID: PMC2807630 DOI: 10.1038/nature05585] [Citation(s) in RCA: 222] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2006] [Accepted: 01/08/2007] [Indexed: 01/15/2023]
Abstract
The Drosophila melanogaster lymph gland is a haematopoietic organ in which pluripotent blood cell progenitors proliferate and mature into differentiated haemocytes. Previous work has defined three domains, the medullary zone, the cortical zone and the posterior signalling centre (PSC), within the developing third-instar lymph gland. The medullary zone is populated by a core of undifferentiated, slowly cycling progenitor cells, whereas mature haemocytes comprising plasmatocytes, crystal cells and lamellocytes are peripherally located in the cortical zone. The PSC comprises a third region that was first defined as a small group of cells expressing the Notch ligand Serrate. Here we show that the PSC is specified early in the embryo by the homeotic gene Antennapedia (Antp) and expresses the signalling molecule Hedgehog. In the absence of the PSC or the Hedgehog signal, the precursor population of the medullary zone is lost because cells differentiate prematurely. We conclude that the PSC functions as a haematopoietic niche that is essential for the maintenance of blood cell precursors in Drosophila. Identification of this system allows the opportunity for genetic manipulation and direct in vivo imaging of a haematopoietic niche interacting with blood precursors.
Collapse
Affiliation(s)
- Lolitika Mandal
- Department of Molecular, Cell and Developmental Biology, Molecular Biology Institute, Mattel Children's Hospital at UCLA, University of California, Los Angeles, Los Angeles, California 90095, USA
| | | | | | | | | |
Collapse
|
27
|
Lagergren A, Månsson R, Zetterblad J, Smith E, Basta B, Bryder D, Akerblad P, Sigvardsson M. The Cxcl12, periostin, and Ccl9 genes are direct targets for early B-cell factor in OP-9 stroma cells. J Biol Chem 2007; 282:14454-62. [PMID: 17374609 DOI: 10.1074/jbc.m610263200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The development of blood cells from hematopoietic stem cells in the bone marrow is dependent on communication with bone marrow stroma cells, making these cells central for the appropriate regulation of hematopoiesis. To identify transcription factors that may play a role in gene regulation in stroma cells, we performed comparative gene expression analysis of fibroblastic NIH3T3 cells, unable to support hematopoiesis in vitro, and OP-9 stroma cells, highly efficient in this regard. These experiments revealed that transcription factors of the early B cell factor (EBF) family were highly expressed in OP-9 cells as compared with the NIH3T3 cells. To identify potential targets genes for EBF proteins in stroma cells, we overexpressed EBF in fibroblasts and analyzed the pattern of induced genes by microarray analysis. This revealed that EBF was able to up-regulate expression of among others the Cxcl12, Ccl9, and Periostin genes. The identification of relevant promoters revealed that they all contained functional EBF binding sites able to interact with EBF in OP-9 cells. Furthermore, ectopic expression of a dominant negative EBF protein or antisense EBF-1 RNA in OP-9 stroma cells resulted in reduced expression of these target genes. These data suggest that EBF proteins might have dual roles in hematopoiesis acting both as intrinsic regulators of B-lymphopoiesis and as regulators of genes in bone marrow stroma cells.
Collapse
Affiliation(s)
- Anna Lagergren
- Department for Hematopoetic Stem Cell Biology, Lund Stemcell Center, Lund University BMC B12, S-221 84 Lund, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Keller MA, Addya S, Vadigepalli R, Banini B, Delgrosso K, Huang H, Surrey S. Transcriptional regulatory network analysis of developing human erythroid progenitors reveals patterns of coregulation and potential transcriptional regulators. Physiol Genomics 2006; 28:114-28. [PMID: 16940433 DOI: 10.1152/physiolgenomics.00055.2006] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Deciphering the molecular basis for human erythropoiesis should yield information benefiting studies of the hemoglobinopathies and other erythroid disorders. We used an in vitro erythroid differentiation system to study the developing red blood cell transcriptome derived from adult CD34+ hematopoietic progenitor cells. mRNA expression profiling was used to characterize developing erythroid cells at six time points during differentiation (days 1, 3, 5, 7, 9, and 11). Eleven thousand seven hundred sixty-three genes (20,963 Affymetrix probe sets) were expressed on day 1, and 1,504 genes, represented by 1,953 probe sets, were differentially expressed (DE) with 537 upregulated and 969 downregulated. A subset of the DE genes was validated using real-time RT-PCR. The DE probe sets were subjected to a cluster metric and could be divided into two, three, four, five, or six clusters of genes with different expression patterns in each cluster. Genes in these clusters were examined for shared transcription factor binding sites (TFBS) in their promoters by comparing enrichment of each TFBS relative to a reference set using transcriptional regulatory network analysis. The sets of TFBS enriched in genes up- and downregulated during erythropoiesis were distinct. This analysis identified transcriptional regulators critical to erythroid development, factors recently found to play a role, as well as a new list of potential candidates, including Evi-1, a potential silencer of genes upregulated during erythropoiesis. Thus this transcriptional regulatory network analysis has yielded a focused set of factors and their target genes whose role in differentiation of the hematopoietic stem cell into distinct blood cell lineages can be elucidated.
Collapse
Affiliation(s)
- M A Keller
- Cardeza Foundation of Hematologic Research, Jefferson Medical College, Philadelphia, Pennsylvania 19107, USA
| | | | | | | | | | | | | |
Collapse
|
29
|
Zhang HZ, Degar BA, Rogoulina S, Resor C, Booth CJ, Sinning J, Gage PJ, Forget BG. Hematopoiesis following disruption of the Pitx2 homeodomain gene. Exp Hematol 2006; 34:167-78. [PMID: 16459185 DOI: 10.1016/j.exphem.2005.11.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2005] [Revised: 10/14/2005] [Accepted: 11/03/2005] [Indexed: 10/25/2022]
Abstract
OBJECTIVE Study the effect of loss of expression of Pitx2, a homeodomain gene preferentially expressed in murine hematopoietic stem/progenitor cells, on hematopoietic stem cells (HSCs). METHODS We examined the fetal livers of mouse embryos with homozygous disruption of the Pitx2 gene, using flow cytometry immunophenotyping analysis, as well as immunohistochemistry techniques. We further investigated the role of Pitx2 in HSCs using a chimeric mouse model system. Pitx2 null embryonic stem (ES) cell clones were generated from embryonic day 3.5 blastocysts of Pitx2 null embryos. The Pitx2 null donor ES cell contribution to the adult hematopoietic system was confirmed by identifying donor-specific glucose-phosphate isomerase isotype in the erythrocytes using cellulose acetate eletrophoresis, and by demonstrating donor-specific major histocompatibility complex antigen allotype on the granulocytes/monocytes and T and B lymphocytes of the chimeric mice using flow cytometry analysis. RESULTS Pitx2 homozygous null fetal livers are decreased in size and overall cellularity. The erythroid cell component of these livers is further reduced as compared to that of their wild-type and heterozygous littermates. Detailed quantitative analysis of the chimeric mice revealed contribution of Pitx2 null ES cells to erythroid, myeloid, lymphoid, and megakaryocytic lineages. The quantitative level of ES cell contribution to the peripheral hematopoietic cells was proportional to the level of general chimerism as determined by coat color. CONCLUSION Although the fetal livers of Pitx2 null embryos displayed signs of impaired erythropoiesis, Pitx2 gene disrupted HSCs can contribute to hematopoiesis under physiological conditions.
Collapse
Affiliation(s)
- Hui Z Zhang
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut 06520-8021, USA
| | | | | | | | | | | | | | | |
Collapse
|