1
|
Capasso L, De Masi L, Sirignano C, Maresca V, Basile A, Nebbioso A, Rigano D, Bontempo P. Epigallocatechin Gallate (EGCG): Pharmacological Properties, Biological Activities and Therapeutic Potential. Molecules 2025; 30:654. [PMID: 39942757 PMCID: PMC11821029 DOI: 10.3390/molecules30030654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 01/26/2025] [Accepted: 01/29/2025] [Indexed: 02/16/2025] Open
Abstract
Epigallocatechin gallate (EGCG), the predominant catechin in green tea, comprises approximately 50% of its total polyphenol content and has garnered widespread recognition for its significant therapeutic potential. As the principal bioactive component of Camellia sinensis, EGCG is celebrated for its potent antioxidant, anti-inflammatory, cardioprotective, and antitumor properties. The bioavailability and metabolism of EGCG within the gut microbiota underscore its systemic effects, as it is absorbed in the intestine, metabolized into bioactive compounds, and transported to target organs. This compound has been shown to influence key physiological pathways, particularly those related to lipid metabolism and inflammation, offering protective effects against a variety of diseases. EGCG's ability to modulate cell signaling pathways associated with oxidative stress, apoptosis, and immune regulation highlights its multifaceted role in health promotion. Emerging evidence underscores EGCG's therapeutic potential in preventing and managing a range of chronic conditions, including cancer, cardiovascular diseases, neurodegenerative disorders, and metabolic syndromes. Given the growing prevalence of lifestyle-related diseases and the increasing interest in natural compounds, EGCG presents a promising avenue for novel therapeutic strategies. This review aims to summarize current knowledge on EGCG, emphasizing its critical role as a versatile natural bioactive agent with diverse clinical applications. Further exploration in both experimental and clinical settings is essential to fully unlock its therapeutic potential.
Collapse
Affiliation(s)
- Lucia Capasso
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, Via L. De Crecchio 7, 80138 Naples, Italy; (L.C.); (A.N.)
| | - Luigi De Masi
- National Research Council (CNR), Institute of Biosciences and BioResources (IBBR), Via Università 133, 80055 Portici, Italy;
| | - Carmina Sirignano
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy;
| | - Viviana Maresca
- Department of Life Science, Health, and Health Professions, Link Campus University, 00165 Rome, Italy;
| | - Adriana Basile
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy;
| | - Angela Nebbioso
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, Via L. De Crecchio 7, 80138 Naples, Italy; (L.C.); (A.N.)
| | - Daniela Rigano
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy;
| | - Paola Bontempo
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, Via L. De Crecchio 7, 80138 Naples, Italy; (L.C.); (A.N.)
| |
Collapse
|
2
|
Tachibana H. Future outlook for food function research. Biosci Biotechnol Biochem 2025; 89:201-204. [PMID: 39322238 DOI: 10.1093/bbb/zbae137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 09/20/2024] [Indexed: 09/27/2024]
Abstract
The results of research on food functionality in Japan have been passed on to society in the form of Foods for Specified Health Uses and Foods with Functional Claims. However, it is also true that there are people who do not experience any health benefits even when they consume these foods. To clarify the factors that cause such individual differences in the health benefits of food, research into the following points is important: (1) Elucidation of the molecular mechanisms behind why food factors exert their functionality. (2) Research into the functional interactions between food factors that exert their functionality in multi-component systems. (3) Research into the functionality of food factors that have not been the subject of research until now. We will introduce the results of our research in these areas. We will also discuss our expectations for the application of food functionality research to pharmaceutical development as an extension of this research.
Collapse
Affiliation(s)
- Hirofumi Tachibana
- Division of Applied Biological Chemistry, Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| |
Collapse
|
3
|
Andreazzoli F, Levy Yurkovski I, Ben-Arye E, Bonucci M. Conceptualizing an Integrative Multiple Myeloma Care: The Role of Nutrition, Supplements, and Complementary Modalities. Nutrients 2024; 16:237. [PMID: 38257130 PMCID: PMC10818534 DOI: 10.3390/nu16020237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 01/06/2024] [Accepted: 01/09/2024] [Indexed: 01/24/2024] Open
Abstract
Multiple Myeloma (MM) is the second most prevalent hematologic malignancy, and its incidence has been increasing enormously in recent years. The prognosis of MM has changed radically with the introduction of new drugs that have improved life expectancy; recurrences are a common occurrence during the course of the disease and are characterized by an increase in refractory to treatment. Moreover, MM patients are challenged by quality of life-related concerns while limited conventional therapy may be offered. This includes bone pain and dialysis due to the complications of acute renal failure. We, therefore, believe that it is very important to add new treatment modalities, including supplements, nutritional modifications, acupuncture, and mind-body therapies, with the goal of improving treatment tolerance, effectiveness, and patients' quality of life. Moreover, many patients use some of these supplements on their own, in the hope of reducing the side effects, so it is even more important to know their action and potential. The purpose of this review is to illustrate all these strategies potentially available to enrich our approach to this, to date, incurable disease.
Collapse
Affiliation(s)
- Francesca Andreazzoli
- Department of Hematology, Versilia’s Hospital, Viale Aurelia, 335, 55049 Camaiore, Italy
| | - Ilana Levy Yurkovski
- Hematology Unit, Bnai Zion Medical Center, Haifa 3339419, Israel
- Rappaport Faculty of Medicine, Technion—Israel Institute of Technology, Haifa 3109601, Israel;
- Complementary and Integrative Medicine Service, Bnai Zion Medical Center, Haifa 3339419, Israel
| | - Eran Ben-Arye
- Rappaport Faculty of Medicine, Technion—Israel Institute of Technology, Haifa 3109601, Israel;
- Integrative Oncology Program, The Oncology Service, Lin Carmel, and Zebulun Medical Centers, Clalit Health Services, Haifa 3535152, Israel
| | - Massimo Bonucci
- Artoi Foundation, Via Ludovico Micara, 73, 00165 Rome, Italy;
| |
Collapse
|
4
|
Stannard H, Koszalka P, Deshpande N, Desjardins Y, Baz M. Pre-Clinical Evaluation of the Antiviral Activity of Epigalocatechin-3-Gallate, a Component of Green Tea, against Influenza A(H1N1)pdm Viruses. Viruses 2023; 15:2447. [PMID: 38140688 PMCID: PMC10747412 DOI: 10.3390/v15122447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/10/2023] [Accepted: 12/12/2023] [Indexed: 12/24/2023] Open
Abstract
Influenza antiviral drugs are important tools in our fight against both annual influenza epidemics and pandemics. Polyphenols are a group of compounds found in plants, some of which have demonstrated promising antiviral activity. Previous in vitro and mouse studies have outlined the anti-influenza virus effectiveness of the polyphenol epigallocatechin-3-gallate (EGCG); however, no study has utilised the ferret model, which is considered the gold-standard for influenza antiviral studies. This study aimed to explore the antiviral efficacy of EGCG in vitro and in ferrets. We first performed studies in Madin-Darby Canine Kidney (MDCK) and human lung carcinoma (Calu-3) cells, which demonstrated antiviral activity. In MDCK cells, we observed a selective index (SI, CC50/IC50) of 77 (290 µM/3.8 µM) and 96 (290 µM/3.0 µM) against A/California/07/2009 and A/Victoria/2570/2019 (H1N1)pdm09 influenza virus, respectively. Calu-3 cells demonstrated a SI of 16 (420 µM/26 µM) and 18 (420 µM/24 µM). Ferrets infected with A/California/07/2009 influenza virus and treated with EGCG (500 mg/kg/day for 4 days) had no change in respiratory tissue viral titres, in contrast to oseltamivir treatment, which significantly reduced viral load in the lungs of treated animals. Therefore, we demonstrated that although EGCG showed antiviral activity in vitro against influenza viruses, the drug failed to impair viral replication in the respiratory tract of ferrets.
Collapse
Affiliation(s)
- Harry Stannard
- WHO Collaborating Centre for Reference and Research on Influenza, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia; (H.S.)
| | - Paulina Koszalka
- WHO Collaborating Centre for Reference and Research on Influenza, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia; (H.S.)
| | - Nikita Deshpande
- WHO Collaborating Centre for Reference and Research on Influenza, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia; (H.S.)
| | - Yves Desjardins
- Institute of Nutrition and Functional Foods, Centre Nutrition, Santé et Societé (NUTRISS) Center, Faculté de Sciences de L’agriculture et de L’alimentation (FSAA), Université Laval, Quebec City, QC G1V 4L3, Canada
| | - Mariana Baz
- WHO Collaborating Centre for Reference and Research on Influenza, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia; (H.S.)
- Department of Microbiology and Immunology, at the Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC 3000, Australia
| |
Collapse
|
5
|
Bae J, Kumazoe M, Park S, Fujimura Y, Tachibana H. The anti-cancer effect of epigallocatechin-3-O-gallate against multiple myeloma cells is potentiated by 5,7-dimethoxyflavone. FEBS Open Bio 2023; 13:2147-2156. [PMID: 37730921 PMCID: PMC10626272 DOI: 10.1002/2211-5463.13708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 08/21/2023] [Accepted: 09/19/2023] [Indexed: 09/22/2023] Open
Abstract
(-)-Epigallocatechin-3-O-gallate (EGCG) is one of the major components of green tea polyphenol. Previous studies have shown that EGCG induces cancer-specific cell death in vitro and in vivo without causing severe side effects. However, the anti-cancer effect of EGCG alone is limited. 5,7-dimethoxyflavone (5,7-DMF), one of the principal functional components of black ginger (Kaempferia parviflora), also exerts anti-cancer effects. Here, we show that 5,7-DMF synergistically enhances the anti-cancer effect of EGCG in multiple myeloma cells by potentiating EGCG-induced intracellular cyclic guanosine monophosphate (cGMP) production. Moreover, the combination of EGCG and 5,7-DMF induces apoptotic cell death in multiple myeloma cells, and this is accompanied by activation of the cGMP/acid sphingomyelinase (ASM)/cleaved caspase-3 pathway. In conclusion, we have shown that 5,7-DMF enhances the anti-cancer effect of EGCG by upregulating cGMP in multiple myeloma cells.
Collapse
Affiliation(s)
- Jaehoon Bae
- Division of Applied Biological Chemistry, Department of Bioscience and Biotechnology, Faculty of AgricultureKyushu UniversityFukuokaJapan
- Functional Biomaterial Research CenterKorea Research Institute of Bioscience and BiotechnologyJeongeup‐siKorea
| | - Motofumi Kumazoe
- Division of Applied Biological Chemistry, Department of Bioscience and Biotechnology, Faculty of AgricultureKyushu UniversityFukuokaJapan
| | - Su‐Jin Park
- Functional Biomaterial Research CenterKorea Research Institute of Bioscience and BiotechnologyJeongeup‐siKorea
| | - Yoshinori Fujimura
- Division of Applied Biological Chemistry, Department of Bioscience and Biotechnology, Faculty of AgricultureKyushu UniversityFukuokaJapan
| | - Hirofumi Tachibana
- Division of Applied Biological Chemistry, Department of Bioscience and Biotechnology, Faculty of AgricultureKyushu UniversityFukuokaJapan
| |
Collapse
|
6
|
Bae J, Kumazoe M, Lee KW, Fujimura Y, Tachibana H. 67-kDa laminin receptor mediates oolonghomobisflavan B-induced cell growth inhibition in melanoma. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 118:154970. [PMID: 37516056 DOI: 10.1016/j.phymed.2023.154970] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 06/12/2023] [Accepted: 07/15/2023] [Indexed: 07/31/2023]
Abstract
BACKGROUND Oolonghomobisflavans are unique polyphenols found in oolong teas. Oolonghomobisflavan B (OHBFB), a dimer of (-)-epigallocatechin-3-O-gallate (EGCG), is an active compound found in green tea. PURPOSE OHBFB has been reported to exert an inhibitory effect on lipase enzyme activity. However, little is known regarding its intercellular signaling induction effect. Further, there are no reports describing the anti-cancer effects of OHBFB. METHODS The effect of OFBFB on B16 melanoma cells was evaluated by cell counting, and its mechanisms were determined by western blot analysis with or without protein phosphatase 2A (PP2A) inhibitor treatment. Intracellular cyclic adenosine monophosphate (cAMP) levels were evaluated by time-resolved fluorescence resonance energy transfer analysis. Quartz crystal microbalance (QCM) analysis was performed to assess the binding of OHBFB to 67LR. RESULTS Cell growth assay and western blot analyses showed that OHBFB inhibited melanoma cell growth, followed by myosin phosphatase target subunit 1 (MYPT1) and myosin regulatory light chain (MRLC) dephosphorylation via protein phosphatase 2A (PP2A)-dependent mechanisms. These effects are mediated by intracellular cAMP- and protein kinase A (PKA) A-dependent mechanisms. QCM analysis identified the 67-kDa laminin receptor (67LR) as an OHBFB receptor with a Kd of 3.7 µM. We also demonstrated for the first time that OHBFB intake suppresses tumor growth in vivo. CONCLUSIONS Taken together, these results indicate that the cAMP/PKA/PP2A/MYPT1/MRLC pathway is a key mediator of melanoma cell growth inhibition following OHBFB binding to 67LR and that OHBFB suppresses tumor growth in vivo.
Collapse
Affiliation(s)
- Jaehoon Bae
- Division of Applied Biological Chemistry, Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka 819-0395, Japan; Functional Biomaterial Research Center, Korea Research Institute of Bioscience and Biotechnology, 181 Ipsin-gil, Jeongeup-si, Jeonbuk 580-185, Republic of Korea
| | - Motofumi Kumazoe
- Division of Applied Biological Chemistry, Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka 819-0395, Japan
| | - Kwan-Woo Lee
- Division of Applied Biological Chemistry, Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka 819-0395, Japan
| | - Yoshinori Fujimura
- Division of Applied Biological Chemistry, Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka 819-0395, Japan
| | - Hirofumi Tachibana
- Division of Applied Biological Chemistry, Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka 819-0395, Japan.
| |
Collapse
|
7
|
Andreazzoli F, Bonucci M. Integrative Hematology: State of the Art. Int J Mol Sci 2023; 24:ijms24021732. [PMID: 36675247 PMCID: PMC9864076 DOI: 10.3390/ijms24021732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/06/2023] [Accepted: 01/11/2023] [Indexed: 01/18/2023] Open
Abstract
Blood cancers are a group of diseases with thus far frequently poor prognosis. Although many new drugs, including target therapies, have been developed in recent years, there is still a need to expand our therapeutic armamentarium to better deal with these diseases. Integrative hematology was conceived as a discipline that enriches the patient's therapeutic possibilities with the use of supplements, vitamins and a nutritional approach aiming at improving the response to therapies and the clinical outcome. We will analyze the substances that have proved most useful in preclinical and clinical studies in some of the most frequent blood diseases or in those where these studies are more numerous; the importance of the nutritional approach and the role of the intestinal microbiota will also be emphasized.
Collapse
Affiliation(s)
- Francesca Andreazzoli
- Department of Hematology, Versilia’s Hospital, Viale Aurelia, 335, 55049 Camaiore, Italy
- Correspondence:
| | - Massimo Bonucci
- Association for Research on Integrative Oncology Therapies (ARTOI), Via Ludovico Micara, 73, 00165 Rome, Italy
| |
Collapse
|
8
|
Gresseau L, Roy ME, Duhamel S, Annabi B. A Signaling Crosstalk Links SNAIL to the 37/67 kDa Laminin-1 Receptor Ribosomal Protein SA and Regulates the Acquisition of a Cancer Stem Cell Molecular Signature in U87 Glioblastoma Neurospheres. Cancers (Basel) 2022; 14:5944. [PMID: 36497426 PMCID: PMC9738384 DOI: 10.3390/cancers14235944] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/26/2022] [Accepted: 11/30/2022] [Indexed: 12/03/2022] Open
Abstract
Background: Three-dimensional in vitro neurospheres cultures recapitulate stemness features associated with poor clinical outcome in glioblastoma patients. They are commonly used to address brain cancer stem cell (CSC) signal transducing biology that regulates spheroids formation and stemness phenotype, and to assess the in vitro pharmacological impact of chemotherapeutic drugs. Objective: Here, we addressed the role of a new signaling axis involved in the regulation of in vitro spheroids formation and assessed the chemopreventive ability of diet-derived epigallocatechin gallate (EGCG) to impact the processes that govern the acquisition of spheroids CSC stemness traits. Methods: Neurospheres were generated from adherent human U87 glioblastoma cancer cell cultures under conditions that recapitulate stemness features. Total RNA and protein lysates were isolated for gene expression by RT-qPCR and protein expression by immunoblot. Transcriptomic analysis was performed through RNA-Seq. Results: Compared to their parental adherent cells, tumorspheres expressed increased levels of the CSC markers NANOG, SOX2, PROM1 (CD133), as well as of the epithelial-to-mesenchymal transition (EMT) markers Fibronectin, SNAI1, and 37/67 kDa laminin-1 receptor ribosomal protein SA (RPSA). Increased PROM1, SOX2, Fibronectin, and RPSA transcripts level were also observed in clinical grade IV glioblastoma tissues compared to normal tissue. EGCG treatment reduced dose-dependently tumorspheres size and inhibited the transcriptional regulation of those genes. An apoptotic signature was also found in spheroids with increased signal transducing events involving GSK3α/β, RSK, and CREB. These were repressed upon RPSA gene silencing and partially by SNAI1 silencing. Conclusion: This work highlights a signaling axis linking RPSA upstream of SNAIL in neurospheres genesis and supports the chemopreventive impact that diet-derived EGCG may exert on the acquisition of CSC traits.
Collapse
Affiliation(s)
- Loraine Gresseau
- Laboratoire d’Oncologie Moléculaire, Département de Chimie, and CERMO-FC, Université du Québec à Montréal, Montreal, QC H3C 3J7, Canada; (L.G.); (M.-E.R.)
| | - Marie-Eve Roy
- Laboratoire d’Oncologie Moléculaire, Département de Chimie, and CERMO-FC, Université du Québec à Montréal, Montreal, QC H3C 3J7, Canada; (L.G.); (M.-E.R.)
| | - Stéphanie Duhamel
- Goodman Cancer Institute, McGill University, Montreal, QC H3A 0G4, Canada;
| | - Borhane Annabi
- Laboratoire d’Oncologie Moléculaire, Département de Chimie, and CERMO-FC, Université du Québec à Montréal, Montreal, QC H3C 3J7, Canada; (L.G.); (M.-E.R.)
| |
Collapse
|
9
|
Fujimura Y, Kumazoe M, Tachibana H. 67-kDa Laminin Receptor-Mediated Cellular Sensing System of Green Tea Polyphenol EGCG and Functional Food Pairing. Molecules 2022; 27:molecules27165130. [PMID: 36014370 PMCID: PMC9416087 DOI: 10.3390/molecules27165130] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/07/2022] [Accepted: 08/10/2022] [Indexed: 11/16/2022] Open
Abstract
The body is equipped with a “food factor-sensing system” that senses food factors, such as polyphenols, sulfur-containing compounds, and vitamins, taken into the body, and plays an essential role in manifesting their physiological effects. For example, (–)-epigallocatechin-3-O-gallate (EGCG), the representative catechin in green tea (Camellia sinensi L.), exerts various effects, including anti-cancer, anti-inflammatory, and anti-allergic effects, when sensed by the cell surficial protein 67-kDa laminin receptor (67LR). Here, we focus on three representative effects of EGCG and provide their specific signaling mechanisms, the 67LR-mediated EGCG-sensing systems. Various components present in foods, such as eriodictyol, hesperetin, sulfide, vitamin A, and fatty acids, have been found to act on the food factor-sensing system and affect the functionality of other foods/food factors, such as green tea extract, EGCG, or its O-methylated derivative at different experimental levels, i.e., in vitro, animal models, and/or clinical trials. These phenomena are observed by increasing or decreasing the activity or expression of EGCG-sensing-related molecules. Such functional interaction between food factors is called “functional food pairing”. In this review, we introduce examples of functional food pairings using EGCG.
Collapse
|
10
|
Scott MB, Styring AK, McCullagh JSO. Polyphenols: Bioavailability, Microbiome Interactions and Cellular Effects on Health in Humans and Animals. Pathogens 2022; 11:770. [PMID: 35890016 PMCID: PMC9324685 DOI: 10.3390/pathogens11070770] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 06/26/2022] [Accepted: 07/03/2022] [Indexed: 12/12/2022] Open
Abstract
Polyphenolic compounds have a variety of functions in plants including protecting them from a range of abiotic and biotic stresses such as pathogenic infections, ionising radiation and as signalling molecules. They are common constituents of human and animal diets, undergoing extensive metabolism by gut microbiota in many cases prior to entering circulation. They are linked to a range of positive health effects, including anti-oxidant, anti-inflammatory, antibiotic and disease-specific activities but the relationships between polyphenol bio-transformation products and their interactions in vivo are less well understood. Here we review the state of knowledge in this area, specifically what happens to dietary polyphenols after ingestion and how this is linked to health effects in humans and animals; paying particular attention to farm animals and pigs. We focus on the chemical transformation of polyphenols after ingestion, through microbial transformation, conjugation, absorption, entry into circulation and uptake by cells and tissues, focusing on recent findings in relation to bone. We review what is known about how these processes affect polyphenol bioactivity, highlighting gaps in knowledge. The implications of extending the use of polyphenols to treat specific pathogenic infections and other illnesses is explored.
Collapse
Affiliation(s)
- Michael B. Scott
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3TA, UK;
- School of Archaeology, University of Oxford, Oxford OX1 3TG, UK;
| | - Amy K. Styring
- School of Archaeology, University of Oxford, Oxford OX1 3TG, UK;
| | - James S. O. McCullagh
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3TA, UK;
| |
Collapse
|
11
|
Kumazoe M, Fujimura Y, Yoshitomi R, Shimada Y, Tachibana H. Fustin, a Flavanonol, Synergically Potentiates the Anticancer Effect of Green Tea Catechin Epigallocatechin-3- O-Gallate with Activation of the eNOS/cGMP Axis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:3458-3466. [PMID: 35212538 DOI: 10.1021/acs.jafc.1c07567] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Epigallocatechin-3-O-gallate (EGCG), a catechin present in green tea, selectively elicits apoptosis in multiple myeloma cells by activating the endothelial nitric oxide synthase (eNOS)/cyclic guanosine monophosphate (cGMP) axis. However, the effects of EGCG alone are limited. Herein, we revealed that fustin, a flavanonol, enhances the EGCG-elicited activation of the cGMP/eNOS axis in multiple myeloma cells. Isobologram analysis demonstrated that EGCG/fustin synergistically elicited cell death in multiple myeloma cells. Importantly, this chemical combination significantly promoted cell death without affecting the normal cells. To assess the effects of EGCG and fustin in vivo, female BALB/c mice were inoculated with multiple myeloma MPC11 cells and then treated with each compound. The combination of EGCG/fustin suppressed tumor growth in vivo without affecting alanine aminotransferase/aspartate aminotransferase levels, the dose-limiting toxicity of EGCG. Consistent with in vitro findings, this combination increased eNOS phosphorylation at Ser1177 in the tumor. Collectively, fustin amplified EGCG-induced activation of the eNOS/cGMP axis.
Collapse
Affiliation(s)
- Motofumi Kumazoe
- Division of Applied Biological Chemistry, Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka 819-0395, Japan
| | - Yoshinori Fujimura
- Division of Applied Biological Chemistry, Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka 819-0395, Japan
| | - Ren Yoshitomi
- Division of Applied Biological Chemistry, Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka 819-0395, Japan
| | - Yu Shimada
- Division of Applied Biological Chemistry, Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka 819-0395, Japan
| | - Hirofumi Tachibana
- Division of Applied Biological Chemistry, Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka 819-0395, Japan
| |
Collapse
|
12
|
Experimental and Compassionate Drug Use During the First Wave of the COVID-19 Pandemic: A Retrospective Single-Center Study. Adv Ther 2021; 38:5165-5177. [PMID: 34424502 PMCID: PMC8381349 DOI: 10.1007/s12325-021-01890-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 08/05/2021] [Indexed: 12/15/2022]
Abstract
INTRODUCTION Concomitant experimental/compassionate drug administration has been all-pervasive in the treatment of COVID-19 patients. The objective of this study was to study the relationship between patient severity, the number of experimental/compassionate medications received (main outcome measure), and patient outcomes [survival to hospital discharge and length of hospital stay (LOS)]. METHODS Retrospective analysis of data collected in real time during the first pandemic wave in a tertiary care hospital. Data included patient demographics, comorbidities, admission vital signs, laboratory values, most extreme respiratory intervention during hospitalization, and data regarding treatment with compassionate/experimental drugs during their stay. RESULTS Overall, 292 PCR-confirmed patients with symptoms of COVID-19 were studied (March/April, 2020). Increasing respiratory support correlated with both LOS and mortality. Patients were more likely to receive more than 1 experimental/compassionate drugs as respiratory support escalated, ranging from 3% (n = 4/136) among patients on room air to 77.3% (n = 17/22) of mechanically ventilated/ECMO patients (P < 0.001, linear by linear association). The mean number of experimental/compassionate drugs received also increased with escalating respiratory support (P < 0.001, one-way ANOVA). After adjustment for severity of patient condition, administration of more experimental/compassionate drugs was unrelated to survival (P = 0.24), but was related to increased LOS (P < 0.001). CONCLUSION Patients that were hospitalized in worse condition were more likely to receive more experimental/compassionate drugs. Treatment was unrelated to survival but may have been related to LOS. This finding raises questions regarding the results of studies on medication effects that adjusted for multiple drug administration.
Collapse
|
13
|
Ashry R, Elhussiny M, Abdellatif H, Elkashty O, Abdel-Ghaffar HA, Gaballa ET, Mousa SA. Genetic Interpretation of the Impacts of Honokiol and EGCG on Apoptotic and Self-Renewal Pathways in HEp-2 Human Laryngeal CD44 high Cancer Stem Cells. Nutr Cancer 2021; 74:2152-2173. [PMID: 34590505 DOI: 10.1080/01635581.2021.1981404] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Most current larynx cancer therapies are generally aimed at the global mass of tumor, targeting the non-tumorigenic cells, and unfortunately sparing the tumorigenic cancer stem cells (CSCs) that are responsible for sustained growth, metastasis, and chemo- and radioresistance. Phytochemicals and herbs have recently been introduced as therapeutic sources for eliminating CSCs. Therefore, we assessed the anti-tumor effects of two herbal ingredients, the green tea extract "Epigallocatechin-3-gallate (EGCG)" and Honokiol (HNK), on parental cells or CD44high CSCs of the human laryngeal squamous cell carcinoma cell line HEp-2. Results revealed that EGCG had a preeminent apoptotic potential on HEp-2 laryngeal CSCs. HNK conferred higher cytotoxic impacts on parental cells mostly by necrosis induction, especially with higher doses, but apoptosis induction with lower doses was also observed. The Notch signaling pathway genes were more potently suppressed by EGCG than HNK. However, HNK surpassed EGCG in downregulating the β-catenin and the Sonic Hedgehog signaling pathways genes. On a genetic basis, both agents engaged the BCL-2 family-regulated and caspase-dependent intrinsic apoptotic pathway, but EGCG and HNK triggered apoptosis via p53-independent and p53-dependent pathways, respectively. Taken together, EGCG and HNK eradicated HEp-2 human larynx cancer cells through targeting multiple self-renewal pathways and activating diverse cell death modalities.
Collapse
Affiliation(s)
- Ramy Ashry
- Institute of Toxicology, University Medical Center Mainz, Mainz, Germany.,Oral Pathology Department, Faculty of Dentistry, Mansoura University, Mansoura, Egypt
| | - Mahmoud Elhussiny
- Institute of Global Health and Human Ecology, American University in Cairo (AUC), Cairo, Egypt.,Medical Experimental Research Center (MERC), Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Hussein Abdellatif
- Department of Human and Clinical Anatomy, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Sultanate of Oman.,Anatomy and Embryology Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Osama Elkashty
- Oral Pathology Department, Faculty of Dentistry, Mansoura University, Mansoura, Egypt.,Craniofacial Tissue and Stem Cell Laboratory, Faculty of Dentistry, McGill University, Montreal, Canada
| | - Hassan A Abdel-Ghaffar
- Hematology Laboratory, Oncology Center, Mansoura University, Mansoura, Egypt.,Hematology section, Clinical Pathology Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Essam T Gaballa
- Oral Pathology Department, Faculty of Dentistry, Mansoura University, Mansoura, Egypt.,Oral Pathology Department, Faculty of Dentistry, Delta University, Mansoura, Egypt
| | - Shaker A Mousa
- Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Rensselaer, New York, USA
| |
Collapse
|
14
|
Glucosyl-hesperidin enhances the cyclic guanosine monophosphate-inducing effect of a green tea polyphenol EGCG. J Nat Med 2021; 75:1037-1042. [PMID: 34100197 DOI: 10.1007/s11418-021-01538-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 06/01/2021] [Indexed: 10/21/2022]
Abstract
Animal and clinical studies have revealed that (-)-epigallocatechin-3-O-gallate (EGCG), one of the major bioactive polyphenols in green tea, showed several pharmacological effects including anti-obesity effect and anti-inflammatory effect. We previously reported that the second messenger cyclic guanosine monophosphate (cGMP) mediates its anti-inflammatory and anti-cancer properties. Here we demonstrated that glucosyl-hesperidin, enhances the cGMP-inducing effects of green tea extract in vivo. Moreover, glucosyl-hesperidin intake potentiated the green tea-elicited upregulation of the anti-inflammatory factor, toll-interacting protein.
Collapse
|
15
|
Cotoraci C, Ciceu A, Sasu A, Miutescu E, Hermenean A. Bioactive Compounds from Herbal Medicine Targeting Multiple Myeloma. APPLIED SCIENCES 2021; 11:4451. [DOI: 10.3390/app11104451] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Multiple myeloma (MM) is one of the most widespread hematological cancers. It is characterized by a clonal proliferation of malignant plasma cells in the bone marrow and by the overproduction of monoclonal proteins. In recent years, the survival rate of patients with multiple myeloma has increased significantly due to the use of transplanted stem cells and of the new therapeutic agents that have significantly increased the survival rate, but it still cannot be completely cured and therefore the development of new therapeutic products is needed. Moreover, many patients have various side effects and face the development of drug resistance to current therapies. The purpose of this review is to highlight the bioactive active compounds (flavonoids) and herbal extracts which target dysregulated signaling pathway in MM, assessed by in vitro and in vivo experiments or clinical studies, in order to explore their healing potential targeting multiple myeloma. Mechanistically, they demonstrated the ability to promote cell cycle blockage and apoptosis or autophagy in cancer cells, as well as inhibition of proliferation/migration/tumor progression, inhibition of angiogenesis in the tumor vascular network. Current research provides valuable new information about the ability of flavonoids to enhance the apoptotic effects of antineoplastic drugs, thus providing viable therapeutic options based on combining conventional and non-conventional therapies in MM therapeutic protocols.
Collapse
Affiliation(s)
- Coralia Cotoraci
- Department of Hematology, Faculty of Medicine, Vasile Goldis Western University of Arad, Rebreanu 86, 310414 Arad, Romania
| | - Alina Ciceu
- “Aurel Ardelean” Institute of Life Sciences, Vasile Godis Western University of Arad, Rebreanu 86, 310414 Arad, Romania
| | - Alciona Sasu
- Department of Hematology, Faculty of Medicine, Vasile Goldis Western University of Arad, Rebreanu 86, 310414 Arad, Romania
| | - Eftimie Miutescu
- Department of Gastroenterology, Faculty of Medicine, Vasile Goldis Western University of Arad, Rebreanu 86, 310414 Arad, Romania
| | - Anca Hermenean
- “Aurel Ardelean” Institute of Life Sciences, Vasile Godis Western University of Arad, Rebreanu 86, 310414 Arad, Romania
- Department of Histology, Faculty of Medicine, Vasile Goldis Western University of Arad, Rebreanu 86, 310414 Arad, Romania
| |
Collapse
|
16
|
Assunção R, Twarużek M, Kosicki R, Viegas C, Viegas S. Drinking Green Tea: Despite the Risks Due to Mycotoxins, Is It Possible to Increase the Associated Health Benefits? Toxins (Basel) 2021; 13:119. [PMID: 33562833 PMCID: PMC7914876 DOI: 10.3390/toxins13020119] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/25/2021] [Accepted: 02/02/2021] [Indexed: 12/21/2022] Open
Abstract
Tea has been consumed for thousands of years. Despite the different varieties, particular emphasis has been placed on green tea (GT), considering the associated health benefits following its regular consumption, some of which are due to its polyphenol constituents, such as epigallocatechin-3-gallate (EGCG). Tea is not prone to the growth of microorganisms, except fungus, when proper storage, handling, and packing conditions are compromised. Consequently, mycotoxins, secondary metabolites of fungi, could contaminate tea samples, affecting human health. In the present study, we aimed to assess the balance between risks (due to mycotoxins and high levels of EGCG) and benefits (due to moderate intake of EGCG) associated with the consumption of GT. For this, 20 GT samples (10 in bulk and 10 in bags) available in different markets in Lisbon were analyzed through a LC-MS/MS method, evaluating 38 different mycotoxins. Six samples revealed detectable values of the considered toxins. Current levels of mycotoxins and EGCG intake were not associated with health concerns. Scenarios considering an increasing consumption of GT in Portugal showed that drinking up to seven cups of GT per day should maximize the associated health benefits. The present study contributes to the future establishment of GT consumption recommendations in Portugal.
Collapse
Affiliation(s)
- Ricardo Assunção
- CESAM—Centre for Environmental and Marine Studies, University of Aveiro, 3810-193 Aveiro, Portugal
- Food and Nutrition Department, National Institute of Health Dr. Ricardo Jorge, 1649-016 Lisbon, Portugal
- NOVA National School of Public Health, Public Health Research Centre, Universidade NOVA de Lisboa, 1600-560 Lisbon, Portugal; (C.V.); (S.V.)
| | - Magdalena Twarużek
- Department of Physiology and Toxicology, Faculty of Biological Sciences, Kazimierz Wielki University, Chodkiewicza 30, 85-064 Bydgoszcz, Poland; (M.T.); (R.K.)
| | - Robert Kosicki
- Department of Physiology and Toxicology, Faculty of Biological Sciences, Kazimierz Wielki University, Chodkiewicza 30, 85-064 Bydgoszcz, Poland; (M.T.); (R.K.)
| | - Carla Viegas
- NOVA National School of Public Health, Public Health Research Centre, Universidade NOVA de Lisboa, 1600-560 Lisbon, Portugal; (C.V.); (S.V.)
- H&TRC-Health & Technology Research Center, ESTeSL-Escola Superior de Tecnologia da Saúde, Instituto Politécnico de Lisboa, 1990-096 Lisbon, Portugal
- Comprehensive Health Research Center (CHRC), 1169-056 Lisbon, Portugal
| | - Susana Viegas
- NOVA National School of Public Health, Public Health Research Centre, Universidade NOVA de Lisboa, 1600-560 Lisbon, Portugal; (C.V.); (S.V.)
- H&TRC-Health & Technology Research Center, ESTeSL-Escola Superior de Tecnologia da Saúde, Instituto Politécnico de Lisboa, 1990-096 Lisbon, Portugal
- Comprehensive Health Research Center (CHRC), 1169-056 Lisbon, Portugal
| |
Collapse
|
17
|
Kumazoe M, Kadomatsu M, Bae J, Otsuka Y, Fujimura Y, Tachibana H. Src Mediates Epigallocatechin-3- O-Gallate-Elicited Acid Sphingomyelinase Activation. Molecules 2020; 25:molecules25225481. [PMID: 33238540 PMCID: PMC7700551 DOI: 10.3390/molecules25225481] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 11/14/2020] [Accepted: 11/18/2020] [Indexed: 11/18/2022] Open
Abstract
Epigallocatechin-3-O-gallate (EGCG) is one of the major bioactive compounds known to be present in green tea. We previously reported that EGCG shows selective toxicity through activation of the protein kinase B (Akt)/cyclic guanosine monophosphate (cGMP)/acid sphingomyelinase (ASM) axis via targeting its receptor 67-kDa laminin receptor (67LR), which is overexpressed in cancer. However, little is known about upstream mechanisms of EGCG-elicited ASM activation. In this study we show that the proto-oncogene tyrosine-protein kinase Src, also known as c-src, plays a crucial role in the anticancer effect of EGCG. We showed that EGCG elicits phosphorylation of Src at Tyr 416, a crucial phosphorylation site for its activity, and that the pharmacological inhibition of Src impedes the upstream events in EGCG-induced cell death signaling including upregulation of Akt activity, increase in cGMP levels, and activation of ASM. Moreover, focal adhesion kinase (FAK), which is involved in the phosphorylation of Src, is colocalized with 67LR. EGCG treatment enhanced interaction of FAK and 67LR. Consistent with these findings, pharmacological inhibition of FAK significantly neutralized EGCG-induced upregulation of Akt activity and activation of ASM. Taken together, FAK/Src play crucial roles in the upstream signaling of EGCG.
Collapse
|
18
|
p73: From the p53 shadow to a major pharmacological target in anticancer therapy. Pharmacol Res 2020; 162:105245. [PMID: 33069756 DOI: 10.1016/j.phrs.2020.105245] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 09/30/2020] [Accepted: 10/02/2020] [Indexed: 02/06/2023]
Abstract
p73, along with p53 and p63, belongs to the p53 family of transcription factors. Besides the p53-like tumor suppressive activities, p73 has unique roles, namely in neuronal development and differentiation. In addition, the TP73 gene is rarely mutated in tumors. This makes p73 a highly appealing therapeutic target, particularly towards cancers with a null or disrupted p53 pathway. Distinct isoforms are transcribed from the TP73 locus either with (TAp73) and without (ΔNp73) the N-terminal transactivation domain. Conversely to TA tumor suppressors, ΔN proteins exhibit oncogenic properties by inhibiting p53 and TA protein functions. As such, p73 isoforms compose a puzzled and challenging regulatory pathway. This state-of-the-art review affords an update overview on p73 structure, biological functions and pharmacological regulation. Importantly, it addresses the relevance of p73 isoforms in carcinogenesis, highlighting their potential as drug targets in anticancer therapy. A critical discussion of major pharmacological approaches to promote p73 tumor suppressive activities, with relevant survival outcomes for cancer patients, is also provided.
Collapse
|
19
|
Epigallocatechin-3-gallate mobilizes intracellular Ca 2+ in prostate cancer cells through combined Ca 2+ entry and Ca 2+-induced Ca 2+ release. Life Sci 2020; 258:118232. [PMID: 32781066 DOI: 10.1016/j.lfs.2020.118232] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 07/31/2020] [Accepted: 08/05/2020] [Indexed: 12/28/2022]
Abstract
AIMS To elucidate the mechanism by which (-)-epigallocatechin-3-gallate (EGCG) mediates intracellular Ca2+ increase in androgen-independent prostate cancer (PCa) cells. MAIN METHODS Following exposure to different doses of EGCG, viability of DU145 and PC3 PCa cells was evaluated by MTT assay and the intracellular Ca2+ dynamics by the fluorescent Ca2+ chelator Fura-2. The expression of different channels was investigated by qPCR analysis and sulfhydryl bonds by Ellman's assay. KEY FINDINGS EGCG inhibited DU145 and PC3 proliferation with IC50 = 46 and 56 μM, respectively, and induced dose-dependent peaks of internal Ca2+ that were dependent on extracellular Ca2+. The expression of TRPC4 and TRPC6 channels was revealed by qPCR in PC3 cells, but lack of effect by modulators and blockers ruled out an exclusive role for these, as well as for voltage-dependent T-type Ca2+ channels. Application of dithiothreitol and catalase and sulfhydryl (SH) measurements showed that EGCG-induced Ca2+ rise depends on SH oxidation, while the effect of EGTA, dantrolene, and the PLC inhibitor U73122 suggested that EGCG-induced Ca2+ influx acts as a trigger for Ca2+-induced Ca2+ release, involving both ryanodine and IP3 receptors. Different from EGCG, ATP caused a rapid Ca2+ increase, which was independent of external Ca2+, but sensitive to U73122. SIGNIFICANCE EGCG induces an internal Ca2+ increase in PCa cells by a multi-step mechanism. As dysregulation of cytosolic Ca2+ is directly linked to apoptosis in PCa cells, these data confirm the possibility of using EGCG as a synergistic adjuvant in combined therapies for recalcitrant malignancies like androgen-independent PCa.
Collapse
|
20
|
Zheng M, Wu Y. Piceatannol suppresses proliferation and induces apoptosis by regulation of the microRNA‑21/phosphatase and tensin homolog/protein kinase B signaling pathway in osteosarcoma cells. Mol Med Rep 2020; 22:3985-3993. [PMID: 32901863 PMCID: PMC7533446 DOI: 10.3892/mmr.2020.11484] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 08/22/2019] [Indexed: 12/13/2022] Open
Abstract
Piceatannol (Pice), a natural analog of resveratrol, has been identified as an anticancer agent in various cancers by modulating the expression of microRNAs (miRNAs/miRs). However, the molecular mechanisms underlying the anticancer effects of Pice in osteosarcoma (OS) cells remain unclear. Thus, we hypothesized that Pice exerts anticancer effects on OS cells via the regulation of miRNA expression. Herein, we performed a MTT assay and flow cytometric analysis to determine cell viability and apoptosis in OS cells treated with Pice, respectively. Our results showed that Pice inhibits proliferation in a dose-dependent manner induces the apoptosis of OS cells. More importantly, miRNA microarray analysis identified that Pice alters miRNA expression profiles in human OS cells after treatment with Pice, and miR-21 was the most significantly downregulated. In addition, the therapeutic effects of Pice on OS cells were weakened by restoration of miR-21. In addition, we further verified that phosphatase and tensin homolog (PTEN), a tumor suppressor gene, is the functional target of miR-21 and Pice blocks the PTEN/AKT signaling pathway through inhibiting miR-21 expression in OS cells. Our findings suggested that Pice may exert anticancer effects on OS cells via mediating the miR-21/PTEN/AKT signaling pathway and could be considered to be a potential anticancer agent for treating OS.
Collapse
Affiliation(s)
- Mingyue Zheng
- Department of Acu‑mox and Tuina, The Sixth People's Hospital Affiliated to Shanghai Jiao Tong University, Shanghai 200233, P.R. China
| | - Yaochi Wu
- Department of Acu‑mox and Tuina, The Sixth People's Hospital Affiliated to Shanghai Jiao Tong University, Shanghai 200233, P.R. China
| |
Collapse
|
21
|
Kumazoe M, Fujimura Y, Tachibana H. 67-kDa Laminin Receptor Mediates the Beneficial Effects of Green Tea Polyphenol EGCG. ACTA ACUST UNITED AC 2020. [DOI: 10.1007/s40495-020-00228-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
22
|
Potential Therapeutic Targets of Epigallocatechin Gallate (EGCG), the Most Abundant Catechin in Green Tea, and Its Role in the Therapy of Various Types of Cancer. Molecules 2020; 25:molecules25143146. [PMID: 32660101 PMCID: PMC7397003 DOI: 10.3390/molecules25143146] [Citation(s) in RCA: 193] [Impact Index Per Article: 38.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 07/06/2020] [Accepted: 07/07/2020] [Indexed: 02/07/2023] Open
Abstract
Epigallocatechin-3-gallate (EGCG), an active compound of green tea and its role in diseases cure and prevention has been proven. Its role in diseases management can be attributed to its antioxidant and anti-inflammatory properties. The anti-cancer role of this green tea compound has been confirmed in various types of cancer and is still being under explored. EGCG has been proven to possess a chemopreventive effect through inhibition of carcinogenesis process such as initiation, promotion, and progression. In addition, this catechin has proven its role in cancer management through modulating various cell signaling pathways such as regulating proliferation, apoptosis, angiogenesis and killing of various types of cancer cells. The additive or synergistic effect of epigallocatechin with chemopreventive agents has been verified as it reduces the toxicities and enhances the anti-cancerous effects. Despite its effectiveness and safety, the implications of EGCG in cancer prevention is certainly still discussed due to a poor bioavailability. Several studies have shown the ability to overcome poor bioavailability through nanotechnology-based strategies such as encapsulation, liposome, micelles, nanoparticles and various other formulation. In this review, we encapsulate therapeutic implication of EGCG in cancer management and the mechanisms of action are discussed with an emphasis on human clinical trials.
Collapse
|
23
|
Kumazoe M, Hiroi S, Tanimoto Y, Miyakawa J, Yamanouchi M, Suemasu Y, Yoshitomi R, Murata M, Fujimura Y, Takahashi T, Tanaka H, Tachibana H. Cancer cell selective probe by mimicking EGCG. Biochem Biophys Res Commun 2020; 525:974-981. [DOI: 10.1016/j.bbrc.2020.03.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Accepted: 03/02/2020] [Indexed: 01/28/2023]
|
24
|
Raimondi L, De Luca A, Giavaresi G, Barone A, Tagliaferri P, Tassone P, Amodio N. Impact of Natural Dietary Agents on Multiple Myeloma Prevention and Treatment: Molecular Insights and Potential for Clinical Translation. Curr Med Chem 2020; 27:187-215. [PMID: 29956610 DOI: 10.2174/0929867325666180629153141] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 04/17/2018] [Accepted: 05/08/2018] [Indexed: 01/30/2023]
Abstract
Chemoprevention is based on the use of non-toxic, pharmacologically active agents to prevent tumor progression. In this regard, natural dietary agents have been described by the most recent literature as promising tools for controlling onset and progression of malignancies. Extensive research has been so far performed to shed light on the effects of natural products on tumor growth and survival, disclosing the most relevant signal transduction pathways targeted by such compounds. Overall, anti-inflammatory, anti-oxidant and cytotoxic effects of dietary agents on tumor cells are supported either by results from epidemiological or animal studies and even by clinical trials. Multiple myeloma is a hematologic malignancy characterized by abnormal proliferation of bone marrow plasma cells and subsequent hypercalcemia, renal dysfunction, anemia, or bone disease, which remains incurable despite novel emerging therapeutic strategies. Notably, increasing evidence supports the capability of dietary natural compounds to antagonize multiple myeloma growth in preclinical models of the disease, underscoring their potential as candidate anti-cancer agents. In this review, we aim at summarizing findings on the anti-tumor activity of dietary natural products, focusing on their molecular mechanisms, which include inhibition of oncogenic signal transduction pathways and/or epigenetic modulating effects, along with their potential clinical applications against multiple myeloma and its related bone disease.
Collapse
Affiliation(s)
| | | | | | - Agnese Barone
- Hospice Cascina Brandezzata-Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano, Italy
| | - Pierosandro Tagliaferri
- Department of Experimental and Clinical Medicine Catanzaro, Magna Graecia University of Catanzaro, Catanzaro, Italy
| | - Pierfrancesco Tassone
- Department of Experimental and Clinical Medicine Catanzaro, Magna Graecia University of Catanzaro, Catanzaro, Italy
| | - Nicola Amodio
- Department of Experimental and Clinical Medicine Catanzaro, Magna Graecia University of Catanzaro, Catanzaro, Italy
| |
Collapse
|
25
|
Toleikis A, Trumbeckaite S, Liobikas J, Pauziene N, Kursvietiene L, Kopustinskiene DM. Fatty Acid Oxidation and Mitochondrial Morphology Changes as Key Modulators of the Affinity for ADP in Rat Heart Mitochondria. Cells 2020; 9:E340. [PMID: 32024170 PMCID: PMC7072426 DOI: 10.3390/cells9020340] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 01/26/2020] [Accepted: 01/27/2020] [Indexed: 01/16/2023] Open
Abstract
Fatty acids are the main respiratory substrates important for cardiac function, and their oxidation is altered during various chronic disorders. We investigated the mechanism of fatty acid-oxidation-induced changes and their relations with mitochondrial morphology and ADP/ATP carrier conformation on the kinetics of the regulation of mitochondrial respiration in rat skinned cardiac fibers. Saturated and unsaturated, activated and not activated, long and medium chain, fatty acids similarly decreased the apparent KmADP. Addition of 5% dextran T-70 to mimic the oncotic pressure of the cellular cytoplasm markedly increased the low apparent KmADP value of mitochondria in cardiac fibers respiring on palmitoyl-l-carnitine or octanoyl-l-carnitine, but did not affect the high apparent KmADP of mitochondria respiring on pyruvate and malate. Electron microscopy revealed that palmitoyl-l-carnitine oxidation-induced changes in the mitochondrial ultrastructure (preventable by dextran) are similar to those induced by carboxyatractyloside. Our data suggest that a fatty acid oxidation-induced conformational change of the adenosine diphosphate (ADP)/adenosine triphosphate (ATP) carrier (M-state to C-state, condensed to orthodox mitochondria) may affect the oxidative phosphorylation affinity for ADP.
Collapse
Affiliation(s)
- Adolfas Toleikis
- Neuroscience Institute, Lithuanian University of Health Sciences, Eiveniu 4, LT-50161 Kaunas, Lithuania; (A.T.); (S.T.); (J.L.)
| | - Sonata Trumbeckaite
- Neuroscience Institute, Lithuanian University of Health Sciences, Eiveniu 4, LT-50161 Kaunas, Lithuania; (A.T.); (S.T.); (J.L.)
- Department of Pharmacognosy, Medical Academy, Lithuanian University of Health Sciences, Sukileliu pr. 13, LT-50166 Kaunas, Lithuania
| | - Julius Liobikas
- Neuroscience Institute, Lithuanian University of Health Sciences, Eiveniu 4, LT-50161 Kaunas, Lithuania; (A.T.); (S.T.); (J.L.)
- Department of Biochemistry, Medical Academy, Lithuanian University of Health Sciences, Eiveniu 4, LT-50161 Kaunas, Lithuania;
| | - Neringa Pauziene
- Institute of Anatomy, Lithuanian University of Health Sciences, Mickeviciaus 9, LT-44307 Kaunas, Lithuania;
| | - Lolita Kursvietiene
- Department of Biochemistry, Medical Academy, Lithuanian University of Health Sciences, Eiveniu 4, LT-50161 Kaunas, Lithuania;
| | - Dalia M. Kopustinskiene
- Institute of Pharmaceutical Technologies, Medical Academy, Lithuanian University of Health Sciences, Sukileliu pr. 13, LT-50161 Kaunas, Lithuania
| |
Collapse
|
26
|
MOSTAFA SHADYM, GAMAL-ELDEEN AMIRAM, MAKSOUD NABILAABDEL, FAHMI ABDELGAWADA. Epigallocatechin gallate-capped gold nanoparticles enhanced the tumor suppressors let-7a and miR-34a in hepatocellular carcinoma cells. ACTA ACUST UNITED AC 2020; 92:e20200574. [DOI: 10.1590/0001-3765202020200574] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 06/17/2020] [Indexed: 01/01/2023]
Affiliation(s)
- SHADY M. MOSTAFA
- National Research Centre, Egypt; National Research Centre, Egypt
| | - AMIRA M. GAMAL-ELDEEN
- National Research Centre, Egypt; National Research Centre, Egypt; Taif University, Saudi Arabia
| | | | | |
Collapse
|
27
|
Li X, Xing L, Zhang Y, Xie P, Zhu W, Meng X, Wang Y, Kong L, Zhao H, Yu J. Phase II Trial of Epigallocatechin-3-Gallate in Acute Radiation-Induced Esophagitis for Esophagus Cancer. J Med Food 2019; 23:43-49. [PMID: 31747326 DOI: 10.1089/jmf.2019.4445] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Acute radiation-induced esophagitis (ARIE) is among the most serious form of toxicities associated with definitive radiotherapy or chemoradiotherapy used for treatment of patients with esophageal cancer. Our preliminary phase I and II trials of lung cancer patients who received radiotherapy indicated epigallocatechin-3-gallate (EGCG) as a promising therapeutic option against ARIE. Therefore, we conducted a prospective phase II study to validate the efficacy and safety of EGCG in the treatment of ARIE. The patients who received chemoradiotherapy or definitive radiotherapy for treatment of esophageal cancer in the Shandong Cancer Hospital and Institute in China were enrolled for the present study. EGCG (440 μM) was administered with first onset of ARIE and then at weeks after final radiotherapy. The patients were monitored every week for dysphagia, Radiation Therapy Oncology Group (RTOG) score, and esophagitis-related pain. Moreover, tumor response and the effect on survival following the treatment were also evaluated. Comparison of the RTOG score in the first, second, third, fourth, fifth, and even sixth week after EGCG prescription and the first and second week after radiotherapy with baseline indicates a significant reduction. The tumor response rate was 86.3%. The overall survival rate in 1, 2, and 3 years was found to be 74.5%, 58%, and 40.5%. Oral administration of EGCG solution seems to be feasible for treating ARIE in patients with esophageal cancer who receive radiation therapy. EGCG might be an ARIE-reliever without compromising the efficacy of radiation therapy. A randomized study with a control group is needed for further evaluation.
Collapse
Affiliation(s)
- Xiaoling Li
- School of Medicine, Shandong University, Jinan, China
| | - Ligang Xing
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Yujun Zhang
- Department of Oncology, Yishui People Hospital, Linyi, China
| | - Peng Xie
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Wanqi Zhu
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Xiangjiao Meng
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Yinxia Wang
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Lingling Kong
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Hanxi Zhao
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Jinming Yu
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| |
Collapse
|
28
|
Bae J, Kumazoe M, Takeuchi C, Hidaka S, Fujimura Y, Tachibana H. Epigallocatechin-3-O-gallate induces acid sphingomyelinase activation through activation of phospholipase C. Biochem Biophys Res Commun 2019; 520:186-191. [PMID: 31585731 DOI: 10.1016/j.bbrc.2019.09.102] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 09/24/2019] [Indexed: 02/06/2023]
Abstract
Epigallocatechin-3-O-gallate (EGCG)-induced cyclic guanosine monophosphate (cGMP) plays a crucial role in EGCG-induced cell death in various types of cancer cells. However, little is known regarding the early molecular events after cGMP induction. In this study, we showed that cGMP induction is sufficient to induce the phosphorylation of protein kinase C delta (PKCδ) at Ser664, the crucial kinase for EGCG-induced activation of acid sphingomyelinase (ASM). Using a chemical inhibitor library, we revealed that the inhibitors of the negative regulators of diacylglycerol strongly increase the effect of EGCG. We also showed that EGCG treatment increased phospholipase C (PLC) activity, and the same results were obtained with cGMP inducer treatment. EGCG-induced ASM activation was completely suppressed by pharmacological inhibition of PLC. Collectively, EGCG-induced cGMP activated the cGMP/PLC/PKCδ/ASM signaling axis in multiple myeloma cells.
Collapse
Affiliation(s)
- Jaehoon Bae
- Division of Applied Biological Chemistry, Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka, 819-0395, Japan
| | - Motofumi Kumazoe
- Division of Applied Biological Chemistry, Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka, 819-0395, Japan
| | - Chieri Takeuchi
- Division of Applied Biological Chemistry, Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka, 819-0395, Japan
| | - Shiori Hidaka
- Division of Applied Biological Chemistry, Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka, 819-0395, Japan
| | - Yoshinori Fujimura
- Division of Applied Biological Chemistry, Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka, 819-0395, Japan
| | - Hirofumi Tachibana
- Division of Applied Biological Chemistry, Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka, 819-0395, Japan.
| |
Collapse
|
29
|
Pojero F, Poma P, Spanò V, Montalbano A, Barraja P, Notarbartolo M. Targeting multiple myeloma with natural polyphenols. Eur J Med Chem 2019; 180:465-485. [DOI: 10.1016/j.ejmech.2019.07.041] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 07/11/2019] [Accepted: 07/11/2019] [Indexed: 12/16/2022]
|
30
|
Meng JM, Cao SY, Wei XL, Gan RY, Wang YF, Cai SX, Xu XY, Zhang PZ, Li HB. Effects and Mechanisms of Tea for the Prevention and Management of Diabetes Mellitus and Diabetic Complications: An Updated Review. Antioxidants (Basel) 2019; 8:E170. [PMID: 31185622 PMCID: PMC6617012 DOI: 10.3390/antiox8060170] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 06/04/2019] [Accepted: 06/06/2019] [Indexed: 02/07/2023] Open
Abstract
Diabetes mellitus has become a serious and growing public health concern. It has high morbidity and mortality because of its complications, such as diabetic nephropathy, diabetic cardiovascular complication, diabetic neuropathy, diabetic retinopathy, and diabetic hepatopathy. Epidemiological studies revealed that the consumption of tea was inversely associated with the risk of diabetes mellitus and its complications. Experimental studies demonstrated that tea had protective effects against diabetes mellitus and its complications via several possible mechanisms, including enhancing insulin action, ameliorating insulin resistance, activating insulin signaling pathway, protecting islet β-cells, scavenging free radicals, and decreasing inflammation. Moreover, clinical trials also confirmed that tea intervention is effective in patients with diabetes mellitus and its complications. Therefore, in order to highlight the importance of tea in the prevention and management of diabetes mellitus and its complications, this article summarizes and discusses the effects of tea against diabetes mellitus and its complications based on the findings from epidemiological, experimental, and clinical studies, with the special attention paid to the mechanisms of action.
Collapse
Affiliation(s)
- Jin-Ming Meng
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
| | - Shi-Yu Cao
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
| | - Xin-Lin Wei
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Ren-You Gan
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Yuan-Feng Wang
- College of Life Sciences, Shanghai Normal University, 100 Guilin Road, Shanghai 200234, China.
| | - Shu-Xian Cai
- Key Laboratory of Ministry of Education for Tea Science, Hunan Agricultural University, Changsha 410128, China.
| | - Xiao-Yu Xu
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
| | - Pang-Zhen Zhang
- School of Agriculture and Food, The University of Melbourne, Parkville, Victoria 3010, Australia.
| | - Hua-Bin Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
| |
Collapse
|
31
|
Kang B, Park H, Kim B. Anticancer Activity and Underlying Mechanism of Phytochemicals against Multiple Myeloma. Int J Mol Sci 2019; 20:E2302. [PMID: 31075954 PMCID: PMC6539572 DOI: 10.3390/ijms20092302] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 05/03/2019] [Accepted: 05/04/2019] [Indexed: 12/14/2022] Open
Abstract
Multiple myeloma (MM)-a common hematologic malignancy of plasma cells-accounts for substantial mortality and morbidity rates. Due to the advent of novel therapies such as immunomodulatory drugs (IMiDs), proteasome inhibitors (PIs), and monoclonal antibodies (mAbs), response rates were increased and free survival and overall survival have been elevated. However, adverse events including toxicity, neuropathy or continuous relapse are still problems. Thus, development of novel drugs which have less side effects and more effective is needed. This review aims to recapitulate the pharmacologic anti-MM mechanisms of various phytochemicals, elucidating their molecular targets. Keywords related to MM and natural products were searched in PUBMED/MEDLINE. Phytochemicals have been reported to display a variety of anti-MM activities, including apoptosis, cell cycle arrest, antiangiogenesis, and miRNA modulation. Some phytochemicals sensitize the conventional therapies such as dexamethasone. Also, there are clinical trials with phytochemicals such as agaricus, curcumin, and Neovastat regarding MM treatment. Taken together, this review elucidated and categorized the evidences that natural products and their bioactive compounds could be potent drugs in treating MM.
Collapse
Affiliation(s)
- Beomku Kang
- College of Korean Medicine, Kyung Hee University, Seoul 02453, Korea.
| | - Hyunmin Park
- Department of Pathology, College of Korean Medicine, Graduate School, Kyung Hee University, Seoul 02453, Korea.
| | - Bonglee Kim
- College of Korean Medicine, Kyung Hee University, Seoul 02453, Korea.
- Department of Pathology, College of Korean Medicine, Graduate School, Kyung Hee University, Seoul 02453, Korea.
| |
Collapse
|
32
|
Wu D, Liu Z, Li J, Zhang Q, Zhong P, Teng T, Chen M, Xie Z, Ji A, Li Y. Epigallocatechin-3-gallate inhibits the growth and increases the apoptosis of human thyroid carcinoma cells through suppression of EGFR/RAS/RAF/MEK/ERK signaling pathway. Cancer Cell Int 2019; 19:43. [PMID: 30858760 PMCID: PMC6394055 DOI: 10.1186/s12935-019-0762-9] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Accepted: 02/18/2019] [Indexed: 12/12/2022] Open
Abstract
Background Thyroid cancer is the most common type of endocrine malignancy and the incidence rate is rapidly increasing worldwide. Epigallocatechin-3-gallate (EGCG) could suppress cancer growth and induce apoptosis in many types of cancer cells. However, the mechanism of action of EGCG on the growth of human thyroid carcinoma cells has not been fully illuminated. Methods Cell proliferation and viability were detected by EdU and MTS assays. Cell cycle distribution was measured by flow cytometry. Migration and invasion were evaluated by scratch and transwell assays. Apoptotic levels were detected by TUNEL staining and western blotting. The protein levels of EGFR/RAS/RAF/MEK/ERK signaling pathway were detected by western blotting. The in vivo results were determined by tumor xenografts in nude mice. The in vivo proliferation, tumor microvessel density, and apoptosis were detected by immunohistochemistry. Results EGCG inhibited the proliferation, viability, and cell cycle progression in human thyroid carcinoma cells. EGCG decreased the migration and invasion, but increased the apoptosis of human thyroid carcinoma cells. EGCG reduced the protein levels of phospho (p)-epidermal growth factor receptor (EGFR), H-RAS, p-RAF, p-MEK1/2, and p-extracellular signal-regulated protein kinase 1/2 (ERK1/2) in human thyroid carcinoma cells. EGCG inhibited the growth of human thyroid carcinoma xenografts by inducing apoptosis and down-regulating angiogenesis. Conclusions EGCG could reduce the growth and increase the apoptosis of human thyroid carcinoma cells through suppressing the EGFR/RAS/RAF/MEK/ERK signaling pathway. EGCG can be developed as an effective therapeutic agent for the treatment of thyroid cancer.
Collapse
Affiliation(s)
- Dongdong Wu
- 1School of Basic Medical Sciences, Henan University College of Medicine, Kaifeng, 475004 Henan China.,3Henan International Joint Laboratory for Nuclear Protein Regulation, Henan University, Kaifeng, 475004 Henan China
| | - Zhengguo Liu
- 1School of Basic Medical Sciences, Henan University College of Medicine, Kaifeng, 475004 Henan China.,3Henan International Joint Laboratory for Nuclear Protein Regulation, Henan University, Kaifeng, 475004 Henan China
| | - Jianmei Li
- 1School of Basic Medical Sciences, Henan University College of Medicine, Kaifeng, 475004 Henan China.,3Henan International Joint Laboratory for Nuclear Protein Regulation, Henan University, Kaifeng, 475004 Henan China
| | - Qianqian Zhang
- 1School of Basic Medical Sciences, Henan University College of Medicine, Kaifeng, 475004 Henan China.,3Henan International Joint Laboratory for Nuclear Protein Regulation, Henan University, Kaifeng, 475004 Henan China
| | - Peiyu Zhong
- 1School of Basic Medical Sciences, Henan University College of Medicine, Kaifeng, 475004 Henan China.,3Henan International Joint Laboratory for Nuclear Protein Regulation, Henan University, Kaifeng, 475004 Henan China
| | - Tieshan Teng
- 1School of Basic Medical Sciences, Henan University College of Medicine, Kaifeng, 475004 Henan China.,3Henan International Joint Laboratory for Nuclear Protein Regulation, Henan University, Kaifeng, 475004 Henan China
| | - Mingliang Chen
- 1School of Basic Medical Sciences, Henan University College of Medicine, Kaifeng, 475004 Henan China.,3Henan International Joint Laboratory for Nuclear Protein Regulation, Henan University, Kaifeng, 475004 Henan China
| | - Zhongwen Xie
- 2State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036 Anhui China
| | - Ailing Ji
- 1School of Basic Medical Sciences, Henan University College of Medicine, Kaifeng, 475004 Henan China.,3Henan International Joint Laboratory for Nuclear Protein Regulation, Henan University, Kaifeng, 475004 Henan China
| | - Yanzhang Li
- 1School of Basic Medical Sciences, Henan University College of Medicine, Kaifeng, 475004 Henan China.,3Henan International Joint Laboratory for Nuclear Protein Regulation, Henan University, Kaifeng, 475004 Henan China
| |
Collapse
|
33
|
Henry D, Brumaire S, Hu X. Involvement of pRb-E2F pathway in green tea extract-induced growth inhibition of human myeloid leukemia cells. Leuk Res 2019; 77:34-41. [PMID: 30641474 DOI: 10.1016/j.leukres.2018.12.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Revised: 12/27/2018] [Accepted: 12/31/2018] [Indexed: 10/27/2022]
Abstract
Both inhibitory and stimulatory effect of EGCG on cancer cells have been reported, which often is linked to receptor tyrosine kinase signaling. In this study, we present evidence that green tea extract and its chemical component, Epigallocatechin-3-gallate (EGCG), inhibit growth of human myeloid leukemia cells through the regulation of pRb synthesis and formation of pRb-E2F complexes. Addition of green tea extract to the culture of TF-1a and MV4-11 myeloid leukemia cells significantly inhibited their proliferation with a substantial portion of cell death being observed. The green tea extract and EGCG had no significant effect on the expression of G1 CDKs and the CDK inhibitors but downregulated the formation of pRb-CDKs. Surprisingly, the expression of pRb was markedly upregulated while the phosphorylation of pRb downregulated. The upregulation of pRb was blocked by pre-treatment with cycloheximide, a protein synthesis inhibitor, suggesting a requirement of protein synthesis. In agreement with these results, pRb-E2F complexes were upregulated and E2F DNA binding activity decreased. Since both TF-1a and MV4-11 are factor-independent cell lines, the upregulation of pRb-E2F complexes and inhibition of DNA binding activity by green tea extract is most likely through a receptor tyrosine kinase-independent pathway. We also found that the stem/progenitor cells derived from these two leukemia cell lines are more sensitive to the inhibitory effect of green tea extract. Our result suggests that concentrated green tea extract and EGCG may have potential for clinical investigation as an inducer of cancer cell death.
Collapse
Affiliation(s)
- Darrell Henry
- Department of Biology, College of Arts & Sciences, Barry University, Miami Shores, Florida 33161, USA
| | - Sebastien Brumaire
- Department of Biology, College of Arts & Sciences, Barry University, Miami Shores, Florida 33161, USA
| | - Xiaotang Hu
- Department of Biology, College of Arts & Sciences, Barry University, Miami Shores, Florida 33161, USA.
| |
Collapse
|
34
|
Molecular Targets of Epigallocatechin-Gallate (EGCG): A Special Focus on Signal Transduction and Cancer. Nutrients 2018; 10:nu10121936. [PMID: 30563268 PMCID: PMC6315581 DOI: 10.3390/nu10121936] [Citation(s) in RCA: 182] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 11/30/2018] [Accepted: 12/04/2018] [Indexed: 12/15/2022] Open
Abstract
Green tea is a beverage that is widely consumed worldwide and is believed to exert effects on different diseases, including cancer. The major components of green tea are catechins, a family of polyphenols. Among them, epigallocatechin-gallate (EGCG) is the most abundant and biologically active. EGCG is widely studied for its anti-cancer properties. However, the cellular and molecular mechanisms explaining its action have not been completely understood, yet. EGCG is effective in vivo at micromolar concentrations, suggesting that its action is mediated by interaction with specific targets that are involved in the regulation of crucial steps of cell proliferation, survival, and metastatic spread. Recently, several proteins have been identified as EGCG direct interactors. Among them, the trans-membrane receptor 67LR has been identified as a high affinity EGCG receptor. 67LR is a master regulator of many pathways affecting cell proliferation or apoptosis, also regulating cancer stem cells (CSCs) activity. EGCG was also found to be interacting directly with Pin1, TGFR-II, and metalloproteinases (MMPs) (mainly MMP2 and MMP9), which respectively regulate EGCG-dependent inhibition of NF-kB, epithelial-mesenchimal transaction (EMT) and cellular invasion. EGCG interacts with DNA methyltransferases (DNMTs) and histone deacetylases (HDACs), which modulates epigenetic changes. The bulk of this novel knowledge provides information about the mechanisms of action of EGCG and may explain its onco-suppressive function. The identification of crucial signalling pathways that are related to cancer onset and progression whose master regulators interacts with EGCG may disclose intriguing pharmacological targets, and eventually lead to novel combined treatments in which EGCG acts synergistically with known drugs.
Collapse
|
35
|
Xiao X, Jiang K, Xu Y, Peng H, Wang Z, Liu S, Zhang G. (-)-Epigallocatechin-3-gallate induces cell apoptosis in chronic myeloid leukaemia by regulating Bcr/Abl-mediated p38-MAPK/JNK and JAK2/STAT3/AKT signalling pathways. Clin Exp Pharmacol Physiol 2018; 46:126-136. [PMID: 30251267 DOI: 10.1111/1440-1681.13037] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 09/12/2018] [Accepted: 09/18/2018] [Indexed: 01/03/2023]
Abstract
Epigallocatechin-3-gallate (EGCG), a major polyphenolic constituent of green tea, possesses remarkable chemopreventive and therapeutic potential against various types of cancer, including leukaemia. However, the molecular mechanism involved in chronic myeloid leukaemia (CML), especially imatinib-resistant CML cells, is not completely understood. In the present study, we investigated the effect of EGCG on the growth of Bcr/Abl+ CML cell lines, including imatinib-resistant cell lines and primary CML cells. The results revealed that EGCG could inhibit cell growth and induce apoptosis in CML cells. The mechanisms involved inhibition of the Bcr/Abl oncoprotein and regulation of its downstream p38-MAPK/JNK and JAK2/STAT3/AKT pathways. In conclusion, we documented the anti-CML effects of EGCG in imatinib-sensitive and imatinib-resistant Bcr/Abl+ cells, especially T315I-mutated cells.
Collapse
Affiliation(s)
- Xiang Xiao
- Department of Rehabilitation, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Kaiming Jiang
- Department of Haematology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yunxiao Xu
- Department of Haematology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Hongling Peng
- Department of Haematology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Zhihua Wang
- Department of Haematology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Sufang Liu
- Department of Haematology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Guangsen Zhang
- Department of Haematology, The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
36
|
Lamorte D, Faraone I, Laurenzana I, Milella L, Trino S, De Luca L, Del Vecchio L, Armentano MF, Sinisgalli C, Chiummiento L, Russo D, Bisaccia F, Musto P, Caivano A. Future in the Past: Azorella glabra Wedd. as a Source of New Natural Compounds with Antiproliferative and Cytotoxic Activity on Multiple Myeloma Cells. Int J Mol Sci 2018; 19:E3348. [PMID: 30373165 PMCID: PMC6274758 DOI: 10.3390/ijms19113348] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 10/22/2018] [Accepted: 10/24/2018] [Indexed: 12/27/2022] Open
Abstract
Multiple myeloma (MM) is the second most common hematologic malignancy and, although the development of novel agents has improved survival of patients, to date, it remains incurable. Thus, newer and more effective therapeutic strategies against this malignancy are necessary. Plant extracts play an important role in anti-tumor drug discovery. For this reason, in the investigation of novel natural anti-MM agents, we evaluated the phytochemical profiles, in vitro antioxidant activity, and effects on MM cells of Azorella glabra (AG) Wedd. Total polyphenols (TPC), flavonoids (TFC), and terpenoids (TTeC) contents were different among samples and the richest fractions in polyphenols demonstrated a higher antioxidant activity in in vitro assays. Some fractions showed a dose and time dependent anti-proliferative activity on MM cells. The chloroform fraction (CHCl₃) showed major effects in terms of reduction of cell viability, induction of apoptosis, and cell cycle arrest on MM cells. The apoptosis induction was also confirmed by the activation of caspase-3. Importantly, the CHCl₃ fraction exhibited a negligible effect on the viability of healthy cells. These results encourage further investigations on AG extracts to identify specific bioactive compounds and to define their potential applications in MM.
Collapse
Affiliation(s)
- Daniela Lamorte
- Laboratory of Preclinical and Translational Research, IRCCS "Referral Cancer Center of Basilicata" (CROB), 85028 Rionero in Vulture, PZ, Italy.
| | | | - Ilaria Laurenzana
- Laboratory of Preclinical and Translational Research, IRCCS "Referral Cancer Center of Basilicata" (CROB), 85028 Rionero in Vulture, PZ, Italy.
| | - Luigi Milella
- Department of Science, University of Basilicata, 85100 Potenza, Italy.
| | - Stefania Trino
- Laboratory of Preclinical and Translational Research, IRCCS "Referral Cancer Center of Basilicata" (CROB), 85028 Rionero in Vulture, PZ, Italy.
| | - Luciana De Luca
- Laboratory of Preclinical and Translational Research, IRCCS "Referral Cancer Center of Basilicata" (CROB), 85028 Rionero in Vulture, PZ, Italy.
| | - Luigi Del Vecchio
- Department of Molecular Medicine and Medical Biotechnology, Federico II University, 80131 Naples, Italy.
| | | | - Chiara Sinisgalli
- Department of Science, University of Basilicata, 85100 Potenza, Italy.
| | - Lucia Chiummiento
- Department of Science, University of Basilicata, 85100 Potenza, Italy.
| | - Daniela Russo
- Department of Science, University of Basilicata, 85100 Potenza, Italy.
| | - Faustino Bisaccia
- Department of Science, University of Basilicata, 85100 Potenza, Italy.
| | - Pellegrino Musto
- Hematology and Stem Cell Transplantation Unit, IRCCS "Referral Cancer Center of Basilicata" (CROB), 85028 Rionero in Vulture, PZ, Italy.
| | - Antonella Caivano
- Laboratory of Preclinical and Translational Research, IRCCS "Referral Cancer Center of Basilicata" (CROB), 85028 Rionero in Vulture, PZ, Italy.
| |
Collapse
|
37
|
Role of apurinic/apyrimidinic nucleases in the regulation of homologous recombination in myeloma: mechanisms and translational significance. Blood Cancer J 2018; 8:92. [PMID: 30301882 PMCID: PMC6177467 DOI: 10.1038/s41408-018-0129-9] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 08/21/2018] [Indexed: 12/17/2022] Open
Abstract
We have previously reported that homologous recombination (HR) is dysregulated in multiple myeloma (MM) and contributes to genomic instability and development of drug resistance. We now demonstrate that base excision repair (BER) associated apurinic/apyrimidinic (AP) nucleases (APEX1 and APEX2) contribute to regulation of HR in MM cells. Transgenic as well as chemical inhibition of APEX1 and/or APEX2 inhibits HR activity in MM cells, whereas the overexpression of either nuclease in normal human cells, increases HR activity. Regulation of HR by AP nucleases could be attributed, at least in part, to their ability to regulate recombinase (RAD51) expression. We also show that both nucleases interact with major HR regulators and that APEX1 is involved in P73-mediated regulation of RAD51 expression in MM cells. Consistent with the role in HR, we also show that AP-knockdown or treatment with inhibitor of AP nuclease activity increases sensitivity of MM cells to melphalan and PARP inhibitor. Importantly, although inhibition of AP nuclease activity increases cytotoxicity, it reduces genomic instability caused by melphalan. In summary, we show that APEX1 and APEX2, major BER proteins, also contribute to regulation of HR in MM. These data provide basis for potential use of AP nuclease inhibitors in combination with chemotherapeutics such as melphalan for synergistic cytotoxicity in MM.
Collapse
|
38
|
Tang P, Sun Q, Yang H, Tang B, Pu H, Li H. Honokiol nanoparticles based on epigallocatechin gallate functionalized chitin to enhance therapeutic effects against liver cancer. Int J Pharm 2018; 545:74-83. [DOI: 10.1016/j.ijpharm.2018.04.060] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2017] [Revised: 04/09/2018] [Accepted: 04/27/2018] [Indexed: 12/17/2022]
|
39
|
Avtanski D, Poretsky L. Phyto-polyphenols as potential inhibitors of breast cancer metastasis. Mol Med 2018; 24:29. [PMID: 30134816 PMCID: PMC6016885 DOI: 10.1186/s10020-018-0032-7] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 05/27/2018] [Indexed: 12/31/2022] Open
Abstract
Breast cancer is the most common cancer among women as metastasis is currently the main cause of mortality. Breast cancer cells undergoing metastasis acquire resistance to death signals and increase of cellular motility and invasiveness.Plants are rich in polyphenolic compounds, many of them with known medicinal effects. Various phyto-polyphenols have also been demonstrated to suppress cancer growth. Their mechanism of action is usually pleiotropic as they target multiple signaling pathways regulating key cellular processes such as proliferation, apoptosis and differentiation. Importantly, some phyto- polyphenols show low level of toxicity to untransformed cells, but selective suppressing effects on cancer cells proliferation and differentiation.In this review, we summarize the current information about the mechanism of action of some phyto-polyphenols that have demonstrated anti-carcinogenic activities in vitro and in vivo. Gained knowledge of how these natural polyphenolic compounds work can give us a clue for the development of novel anti-metastatic agents.
Collapse
Affiliation(s)
- Dimiter Avtanski
- Gerald J. Friedman Diabetes Institute at Lenox Hill Hospital, Northwell Health, New York, NY, 10022, USA.
- Division of Endocrinology and Metabolism, Department of Medicine, Friedman Diabetes Institute at Lenox Hill Hospital, Northwell Health, 110 E 59th Street, Suite 8B, Room 837, New York, NY, 10022, USA.
| | - Leonid Poretsky
- Gerald J. Friedman Diabetes Institute at Lenox Hill Hospital, Northwell Health, New York, NY, 10022, USA
| |
Collapse
|
40
|
Bernatoniene J, Kopustinskiene DM. The Role of Catechins in Cellular Responses to Oxidative Stress. Molecules 2018; 23:molecules23040965. [PMID: 29677167 PMCID: PMC6017297 DOI: 10.3390/molecules23040965] [Citation(s) in RCA: 360] [Impact Index Per Article: 51.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 04/17/2018] [Accepted: 04/18/2018] [Indexed: 12/18/2022] Open
Abstract
Catechins are polyphenolic compounds—flavanols of the flavonoid family found in a variety of plants. Green tea, wine and cocoa-based products are the main dietary sources of these flavanols. Catechins have potent antioxidant properties, although in some cases they may act in the cell as pro-oxidants. Catechins are reactive oxygen species (ROS) scavengers and metal ion chelators, whereas their indirect antioxidant activities comprise induction of antioxidant enzymes, inhibition of pro-oxidant enzymes, and production of the phase II detoxification enzymes and antioxidant enzymes. Oxidative stress and ROS are implicated in aging and related dysfunctions, such as neurodegenerative disease, cancer, cardiovascular diseases, and diabetes. Due to their antioxidant properties, catechins may be beneficial in preventing and protecting against diseases caused by oxidative stress. This article reviews the biochemical properties of catechins, their antioxidant activity, and the mechanisms of action involved in the prevention of oxidative stress-caused diseases.
Collapse
Affiliation(s)
- Jurga Bernatoniene
- Department of Drug Technology and Social Pharmacy, Medical Academy, Lithuanian University of Health Sciences, Eiveniu 4, LT-50161 Kaunas, Lithuania.
- Institute of Pharmaceutical Technologies, Medical Academy, Lithuanian University of Health Sciences, Eiveniu 4, LT-50161 Kaunas, Lithuania.
| | - Dalia Marija Kopustinskiene
- Institute of Pharmaceutical Technologies, Medical Academy, Lithuanian University of Health Sciences, Eiveniu 4, LT-50161 Kaunas, Lithuania.
| |
Collapse
|
41
|
Sugiyama I, Kaihatsu K, Soma Y, Kato N, Sadzuka Y. Dual-effect liposomes with increased antitumor effects against 67-kDa laminin receptor-overexpressing tumor cells. Int J Pharm 2018; 541:206-213. [DOI: 10.1016/j.ijpharm.2018.02.041] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 02/13/2018] [Accepted: 02/23/2018] [Indexed: 12/01/2022]
|
42
|
Yan X, Xu W, Chen L, Shao R. Food-grade Water in Oil Microemulsion as a Potential Approach for Tea Polyphenols Encapsulation. TENSIDE SURFACT DET 2018. [DOI: 10.3139/113.110538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Abstract
Food-grade water in oil (W/O) microemulsions were developed and characterized in order to use them as potential tea polyphenols (TP) carriers. The physicochemical characteristics of microemulsions (TP-loaded and blank microemulsions) were investigated by rheological measurements, differential scanning calorimetry (DSC), dynamic light scattering (DLS) and 1H nuclear magnetic resonance (1H NMR). The thermal behavior of the microemulsion system implied that the water molecules were competitively bound. Chemical shift patterns for all samples were not sensitive to the addition of TP. The microscopic images showed that both the non-loaded and the TP-loaded microemulsions had a spherical shape, in particular the TP-loaded microemulsions had a specific core-shell morphology. TP solubilized in the microemulsions was much more stable than that dissolved in water solution. The release process of TP in water solution was faster than that of microemulsions.
Collapse
|
43
|
Liu LK, Li WD, Gao Y, Chen RY, Xie XL, Hong H, Wang KJ, Liu HP. A laminin-receptor-like protein regulates white spot syndrome virus infection by binding to the viral envelope protein VP28 in red claw crayfish Cherax quadricarinatus. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2018; 79:186-194. [PMID: 29102705 DOI: 10.1016/j.dci.2017.10.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 10/20/2017] [Accepted: 10/23/2017] [Indexed: 06/07/2023]
Abstract
White spot syndrome virus (WSSV) is a lethal pathogen of shrimp and many other crustaceans, which has been causing huge economic losses in global aquaculture. Laminin receptor (LR) is a cell surface receptor which participates in the interactions between cells as well as cells and extracellular matrix. Previously, we found that a CqLR-like gene was responsive to WSSV infection in the hematopoietic tissue (Hpt) cells from red claw crayfish Cherax quadricarinatus. To further reveal the role of CqLR-like gene involved in WSSV infection, the full-length cDNA of CqLR-like gene was cloned with 1000 bp, and the open reading frame encoded 308 amino acids with a conserved laminin-binding domain. Importantly, both the WSSV entry and viral replication were strongly reduced in Hpt cells after loss-of-function of CqLR-like gene by gene silencing. Protein interaction assay demonstrated that the recombinant CqLR-like protein could bind to WSSV virion in vitro by enzyme-linked immunosorbent assay and the binding affinity was in a dose-dependent manner. Furthermore, recombinant CqLR-like protein was found to bind to WSSV envelop protein VP28, but not other envelop proteins tested including VP19, VP24, and VP26, by pull down assay in HEK293T cells. In regarding to that LR is mainly localized on many types of cells' membrane, these data together suggested that CqLR-like protein was likely to function as a putative recognition molecule towards WSSV and act in the viral entry into a crustacean host cell, which may benefit the elucidation of the WSSV pathogenesis and further the pharmaceutical target for the possibly effective control of WSSV disease.
Collapse
Affiliation(s)
- Ling-Ke Liu
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361102, Fujian, PR China
| | - Wei-Dong Li
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361102, Fujian, PR China
| | - Yan Gao
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361102, Fujian, PR China
| | - Rong-Yuan Chen
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361102, Fujian, PR China
| | - Xiao-Lu Xie
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361102, Fujian, PR China
| | - Heng Hong
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361102, Fujian, PR China
| | - Ke-Jian Wang
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361102, Fujian, PR China; Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources (Xiamen University), State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, Xiamen 361102, Fujian, PR China
| | - Hai-Peng Liu
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361102, Fujian, PR China; Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources (Xiamen University), State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, Xiamen 361102, Fujian, PR China.
| |
Collapse
|
44
|
Umbaugh CS, Diaz-Quiñones A, Neto MF, Shearer JJ, Figueiredo ML. A dock derived compound against laminin receptor (37 LR) exhibits anti-cancer properties in a prostate cancer cell line model. Oncotarget 2017; 9:5958-5978. [PMID: 29464047 PMCID: PMC5814187 DOI: 10.18632/oncotarget.23236] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 07/16/2017] [Indexed: 11/25/2022] Open
Abstract
Laminin receptor (67 LR) is a 67 kDa protein derived from a 37 kDa precursor (37 LR). 37/67 LR is a strong clinical correlate for progression, aggression, and chemotherapeutic relapse of several cancers including breast, prostate, and colon. The ability of 37/67 LR to promote cancer cell aggressiveness is further increased by its ability to transduce physiochemical and mechanosensing signals in endothelial cells and modulate angiogenesis. Recently, it was demonstrated that 37/67 LR modulates the anti-angiogenic potential of the secreted glycoprotein pigment epithelium-derived factor (PEDF). Restoration of PEDF balance is a desirable therapeutic outcome, and we sought to identify a small molecule that could recapitulate known signaling properties of PEDF but without the additional complications of peptide formulation or gene delivery safety validation. We used an in silico drug discovery approach to target the interaction interface between PEDF and 37 LR. Following cell based counter screening and binding validation, we characterized a hit compound's anti-viability, activation of PEDF signaling-related genes, anti-wound healing, and anti-cancer signaling properties. This hit compound has potential for future development as a lead compound for treating tumor growth and inhibiting angiogenesis.
Collapse
Affiliation(s)
- Charles Samuel Umbaugh
- Department of Basic Medical Sciences, Purdue University College of Veterinary Medicine, West Lafayette, IN 47907, USA
| | - Adriana Diaz-Quiñones
- Department of Basic Medical Sciences, Purdue University College of Veterinary Medicine, West Lafayette, IN 47907, USA
| | - Manoel Figueiredo Neto
- Department of Basic Medical Sciences, Purdue University College of Veterinary Medicine, West Lafayette, IN 47907, USA
| | - Joseph J Shearer
- Department of Basic Medical Sciences, Purdue University College of Veterinary Medicine, West Lafayette, IN 47907, USA
| | - Marxa L Figueiredo
- Department of Basic Medical Sciences, Purdue University College of Veterinary Medicine, West Lafayette, IN 47907, USA
| |
Collapse
|
45
|
Kumazoe M, Takai M, Hiroi S, Takeuchi C, Yamanouchi M, Nojiri T, Onda H, Bae J, Huang Y, Takamatsu K, Yamashita S, Yamada S, Kangawa K, Takahashi T, Tanaka H, Tachibana H. PDE3 inhibitor and EGCG combination treatment suppress cancer stem cell properties in pancreatic ductal adenocarcinoma. Sci Rep 2017; 7:1917. [PMID: 28507327 PMCID: PMC5432527 DOI: 10.1038/s41598-017-02162-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 04/07/2017] [Indexed: 02/06/2023] Open
Abstract
Recurrence following chemotherapy is observed in the majority of patients with pancreatic ductal adenocarcinoma (PDAC). Recent studies suggest that cancer stem cells (CSCs) may be involved in PDAC recurrence and metastasis. However, an efficient approach to targeting pancreatic CSCs remains to be established. Here we show that in cancer cells overexpressing the 67-kDa laminin receptor (67LR)-dependent cyclic GMP (cGMP) inducer, epigallocatechin-3-O-gallate (EGCG) and a phosphodiesterase 3 (PDE3) inhibitor in combination significantly suppressed the Forkhead box O3 and CD44 axis, which is indispensable for the CSC properties of PDAC. We confirmed that the EGCG and PDE3 inhibitor in combination strongly suppressed tumour formation and liver metastasis in vivo. We also found that a synthesized EGCG analog capable of inducing strong cGMP production drastically suppressed the CSC properties of PDAC and extended the survival period in vivo. In conclusion, the combination treatment of EGCG and a PDE3 inhibitor as a strong cGMP inducer could be a potential treatment candidate for the eradication of CSCs of PDAC.
Collapse
Affiliation(s)
- Motofumi Kumazoe
- Division of Applied Biological Chemistry, Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka, 812-8581, Japan
| | - Mika Takai
- Division of Applied Biological Chemistry, Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka, 812-8581, Japan
| | - Shun Hiroi
- Division of Applied Biological Chemistry, Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka, 812-8581, Japan
| | - Chieri Takeuchi
- Division of Applied Biological Chemistry, Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka, 812-8581, Japan
| | - Maasa Yamanouchi
- Department of Applied Chemistry, Graduate School of Science and Engineering, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro, Tokyo, 152-8552, Japan
| | - Takashi Nojiri
- Department of Biochemistry, National Cerebral and Cardiovascular Center Research Institute, 5-7-1 Fujishiro-dai, Suita-City, Osaka, 565-8565, Japan
| | - Hiroaki Onda
- Department of Biochemistry, National Cerebral and Cardiovascular Center Research Institute, 5-7-1 Fujishiro-dai, Suita-City, Osaka, 565-8565, Japan
| | - Jaehoon Bae
- Division of Applied Biological Chemistry, Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka, 812-8581, Japan
| | - Yuhui Huang
- Division of Applied Biological Chemistry, Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka, 812-8581, Japan
| | - Kanako Takamatsu
- Division of Applied Biological Chemistry, Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka, 812-8581, Japan
| | - Shuya Yamashita
- Division of Applied Biological Chemistry, Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka, 812-8581, Japan
| | - Shuhei Yamada
- Division of Applied Biological Chemistry, Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka, 812-8581, Japan
| | - Kenji Kangawa
- Department of Biochemistry, National Cerebral and Cardiovascular Center Research Institute, 5-7-1 Fujishiro-dai, Suita-City, Osaka, 565-8565, Japan
| | - Takashi Takahashi
- Yokohama College of Pharmacy 601, Matana-cho, Totsuka-ku, Yokohama, Kanagawa, 245-0066, Japan
| | - Hiroshi Tanaka
- Department of Applied Chemistry, Graduate School of Science and Engineering, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro, Tokyo, 152-8552, Japan
| | - Hirofumi Tachibana
- Division of Applied Biological Chemistry, Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka, 812-8581, Japan.
| |
Collapse
|
46
|
Peluso I, Palmery M, Vitalone A. Green Tea and Bone Marrow Transplantation: From Antioxidant Activity to Enzymatic and Multidrug-resistance Modulation. Crit Rev Food Sci Nutr 2017; 56:2251-60. [PMID: 26047551 DOI: 10.1080/10408398.2013.826175] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Epigallocatechin-3-gallate (EGCG), the main flavonoid of green tea (GT), could play an active role in the prevention of oxidative-stress-related diseases, such as hematologic malignancies. Some effects of EGCG are not imputable to antioxidant activity, but involve modulation of antioxidant enzymes and uric acid (UA) levels. The latter is the major factor responsible of the plasma non-enzymatic antioxidant capacity (NEAC). However, hyperuricemia is a frequent clinical feature caused by tumor lysis syndrome or cyclosporine side effects, both before and after bone marrow transplantation (BMT). Besides this, food-drug interactions could be associated with GT consumption and could have clinical implications. The molecular mechanisms involved in the redox and drug metabolizing/transporting pathways were discussed, with particular reference to the potential role of GT and EGCG in BMT. Moreover, on reviewing data on NEAC, isoprostanes, uric acid, and various enzymes from human studies on GT, its extract, or EGCG, an increase in NEAC, without effect on isoprostanes, and contrasting results on UA and enzymes were observed. Currently, few and contrasting available evidences suggest caution for GT consumption in BMT patients and more studies are needed to better understand the potential impact of EGCG on oxidative stress and metabolizing/transporting systems.
Collapse
Affiliation(s)
- Ilaria Peluso
- a Department of Physiology and Pharmacology "V. Erspamer" , "Sapienza" University of Rome , Rome , Italy
| | - Maura Palmery
- a Department of Physiology and Pharmacology "V. Erspamer" , "Sapienza" University of Rome , Rome , Italy
| | - Annabella Vitalone
- a Department of Physiology and Pharmacology "V. Erspamer" , "Sapienza" University of Rome , Rome , Italy
| |
Collapse
|
47
|
Guamán-Ortiz LM, Orellana MIR, Ratovitski EA. Natural Compounds As Modulators of Non-apoptotic Cell Death in Cancer Cells. Curr Genomics 2017; 18:132-155. [PMID: 28367073 PMCID: PMC5345338 DOI: 10.2174/1389202917666160803150639] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Revised: 11/24/2015] [Accepted: 11/28/2015] [Indexed: 02/07/2023] Open
Abstract
Cell death is an innate capability of cells to be removed from microenvironment, if and when they are damaged by multiple stresses. Cell death is often regulated by multiple molecular pathways and mechanism, including apoptosis, autophagy, and necroptosis. The molecular network underlying these processes is often intertwined and one pathway can dynamically shift to another one acquiring certain protein components, in particular upon treatment with various drugs. The strategy to treat human cancer ultimately relies on the ability of anticancer therapeutics to induce tumor-specific cell death, while leaving normal adjacent cells undamaged. However, tumor cells often develop the resistance to the drug-induced cell death, thus representing a great challenge for the anticancer approaches. Numerous compounds originated from the natural sources and biopharmaceutical industries are applied today in clinics showing advantageous results. However, some exhibit serious toxic side effects. Thus, novel effective therapeutic approaches in treating cancers are continued to be developed. Natural compounds with anticancer activity have gained a great interest among researchers and clinicians alike since they have shown more favorable safety and efficacy then the synthetic marketed drugs. Numerous studies in vitro and in vivo have found that several natural compounds display promising anticancer potentials. This review underlines certain information regarding the role of natural compounds from plants, microorganisms and sea life forms, which are able to induce non-apoptotic cell death in tumor cells, namely autophagy and necroptosis.
Collapse
Affiliation(s)
- Luis Miguel Guamán-Ortiz
- 1 Departamento de Ciencias de la Salud, Universidad Técnica Particular de Loja, Loja, Ecuador ; 2 Head and Neck Cancer Research Division, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Maria Isabel Ramirez Orellana
- 1 Departamento de Ciencias de la Salud, Universidad Técnica Particular de Loja, Loja, Ecuador ; 2 Head and Neck Cancer Research Division, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Edward A Ratovitski
- 1 Departamento de Ciencias de la Salud, Universidad Técnica Particular de Loja, Loja, Ecuador ; 2 Head and Neck Cancer Research Division, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
48
|
Huang Y, Sumida M, Kumazoe M, Sugihara K, Suemasu Y, Yamada S, Yamashita S, Miyakawa J, Takahashi T, Tanaka H, Fujimura Y, Tachibana H. Oligomer formation of a tea polyphenol, EGCG, on its sensing molecule 67 kDa laminin receptor. Chem Commun (Camb) 2017; 53:1941-1944. [DOI: 10.1039/c6cc09504f] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Green tea polyphenol (−)-epigallocatechin-3-O-gallate (EGCG) has been attributed to the activation of its cell surface sensing receptor 67 kDa laminin receptor (67LR).
Collapse
|
49
|
Kondo T, Uehashi T, Watanabe T, Kawano A, Kurogi K, Fukui K, Suiko M, Sakakibara Y. Evaluation of Multiple Antioxidant Activities in Food Components. J JPN SOC FOOD SCI 2017. [DOI: 10.3136/nskkk.64.457] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Tomomi Kondo
- Miyazaki JA Food Research & Development, Inc
- Interdisciplinary Graduate School of Agriculture and Engineering, University of Miyazaki
| | | | | | | | - Katsuhisa Kurogi
- Interdisciplinary Graduate School of Agriculture and Engineering, University of Miyazaki
| | | | - Masahito Suiko
- Interdisciplinary Graduate School of Agriculture and Engineering, University of Miyazaki
| | - Yoichi Sakakibara
- Interdisciplinary Graduate School of Agriculture and Engineering, University of Miyazaki
| |
Collapse
|
50
|
Meshitsuka S, Shingaki S, Hotta M, Goto M, Kobayashi M, Ukawa Y, Sagesaka YM, Wada Y, Nojima M, Suzuki K. Phase 2 trial of daily, oral epigallocatechin gallate in patients with light-chain amyloidosis. Int J Hematol 2016; 105:295-308. [PMID: 27815860 DOI: 10.1007/s12185-016-2112-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Revised: 10/12/2016] [Accepted: 10/18/2016] [Indexed: 12/26/2022]
Abstract
Previous studies have suggested that an increase in mitochondrial reactive oxygen species may cause organ damage in patients with light-chain (AL) amyloidosis; however, this damage can be decreased by antioxidant-agent treatment. Epigallocatechin gallate (EGCG), the major natural catechin in green tea, has potent antioxidant activity. Because EGCG has recently been reported to have a favorable toxicity profile for treating amyloidosis, we sought to examine the clinical efficacy and toxicity of EGCG in patients with AL amyloidosis. Fifty-seven patients were randomly assigned to the EGCG and observation groups and observed for six months. There were no increases in grade 3-5 adverse events and EGCG therapy was well tolerated. Although a decrease in the urinary albumin level was found in the EGCG group in patients with obvious albuminuria after treatment initiation, its antioxidant activity may not be sufficient to clarify the potential effect of EGCG in patients with AL amyloidosis. Because some of the biological markers responsible for organ damage were well correlated to the level of antioxidant potential in patients' plasma, the status of oxidative stress in the blood may indicate the extent of organ damage in clinical situations.
Collapse
Affiliation(s)
- Sohsuke Meshitsuka
- Department of Hematology, Japanese Red Cross Medical Center, Tokyo, Japan. .,Center for Translational Research, The Institute of Medical Science Hospital, The University of Tokyo, 4-6-1, Shiroganedai, Minato, Tokyo, Japan.
| | - Sumito Shingaki
- Department of Hematology, Japanese Red Cross Medical Center, Tokyo, Japan
| | - Masatoshi Hotta
- Department of Radiology, National Center for Global Health and Medicine, Tokyo, Japan
| | - Miku Goto
- Laboratory for Clinical Nutrition, Department of Food and Nutrition, Faculty of Human Life, Jumonji University, Niiza, Japan
| | | | - Yuuichi Ukawa
- Central Research Institute, ITO EN, Ltd, Makinohara, Japan
| | | | - Yasuyo Wada
- Laboratory for Clinical Nutrition, Department of Food and Nutrition, Faculty of Human Life, Jumonji University, Niiza, Japan
| | - Masanori Nojima
- Center for Translational Research, The Institute of Medical Science Hospital, The University of Tokyo, 4-6-1, Shiroganedai, Minato, Tokyo, Japan
| | - Kenshi Suzuki
- Department of Hematology, Japanese Red Cross Medical Center, Tokyo, Japan
| |
Collapse
|