1
|
Battafarano G, Lancellotti S, Sacco M, Rossi M, Terreri S, Di Gregorio J, Di Giuseppe L, D'Agostini M, Porzio O, Di Gennaro L, Tardugno M, Pelle S, Minisola S, Toniolo RM, Luciani M, Del Fattore A, De Cristofaro R. Effects of coagulation factors on bone cells and consequences of their absence in haemophilia a patients. Sci Rep 2024; 14:25001. [PMID: 39443571 PMCID: PMC11499919 DOI: 10.1038/s41598-024-75747-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 10/08/2024] [Indexed: 10/25/2024] Open
Abstract
Haemophilia is associated with reduced bone mass and mineral density. Due to the rarity of the disease and the heterogeneity among the studies, the pathogenesis of bone loss is still under investigation. We studied the effects of coagulation factors on bone cells and characterized in a pilot study the osteoclastogenic potential of patients' osteoclast precursors. To evaluate the effect of coagulation factors on osteoclasts, we treated Healthy Donor-Peripheral Blood Mononuclear Cells (HD-PBMC) with Factor VIII (FVIII), von Willebrand Factor (VWF), FVIII/VWF complex, activated Factor IX (FIXa), activated Factor X (FXa) and Thrombin (THB). FVIII, VWF, FVIII/VWF, FXa and THB treatments reduced osteoclast differentiation of HD-PBMC and VWF affected also bone resorption. Interestingly, PBMC isolated from patients with moderate/severe haemophilia showed an increased osteoclastogenic potential due to the alteration of osteoclast precursors. Moreover, increased expression of genes involved in osteoclast differentiation/activity was revealed in osteoclasts of an adult patient with moderate haemophilia. Control osteoblasts treated with the coagulation factors showed that FVIII and VWF reduced ALP positivity; the opposite effect was observed following THB treatment. Moreover, FVIII, VWF and FVIII/VWF reduced mineralization ability. These results could be important to understand how coagulation factors deficiency influences bone remodeling activity in haemophilia.
Collapse
Affiliation(s)
- Giulia Battafarano
- Bone Physiopathology Research Unit, Translational Pediatrics e Clinical Genetics Research Division, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Stefano Lancellotti
- Center for Hemorrhagic and Thrombotic Diseases, Foundation University Hospital "A. Gemelli", IRCCS, Catholic University of the Sacred Heart, Largo Agostino Gemelli 8, 00168, Rome, Italy
| | - Monica Sacco
- Center for Hemorrhagic and Thrombotic Diseases, Foundation University Hospital "A. Gemelli", IRCCS, Catholic University of the Sacred Heart, Largo Agostino Gemelli 8, 00168, Rome, Italy
| | - Michela Rossi
- Bone Physiopathology Research Unit, Translational Pediatrics e Clinical Genetics Research Division, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Sara Terreri
- Bone Physiopathology Research Unit, Translational Pediatrics e Clinical Genetics Research Division, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Jacopo Di Gregorio
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Laura Di Giuseppe
- Department of Clinical, Internal, Anaesthesiological and Cardiovascular Sciences, "Sapienza" University, viale del Policlinico 155, 00161, Rome, Italy
| | - Matteo D'Agostini
- Clinical Laboratory Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Ottavia Porzio
- Clinical Laboratory Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
- Department of Experimental Medicine, Tor Vergata University of Rome, Rome, Italy
| | - Leonardo Di Gennaro
- Center for Hemorrhagic and Thrombotic Diseases, Foundation University Hospital "A. Gemelli", IRCCS, Catholic University of the Sacred Heart, Largo Agostino Gemelli 8, 00168, Rome, Italy
| | - Maira Tardugno
- Center for Hemorrhagic and Thrombotic Diseases, Foundation University Hospital "A. Gemelli", IRCCS, Catholic University of the Sacred Heart, Largo Agostino Gemelli 8, 00168, Rome, Italy
| | - Simone Pelle
- "Polo Sanitario San Feliciano-Villa Aurora" Clinic, Rome, Italy
| | - Salvatore Minisola
- Department of Clinical, Internal, Anaesthesiological and Cardiovascular Sciences, "Sapienza" University, viale del Policlinico 155, 00161, Rome, Italy
| | - Renato Maria Toniolo
- Department of Orthopaedics and Traumatology, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Matteo Luciani
- Pediatric Hematology/Oncology Department, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Andrea Del Fattore
- Bone Physiopathology Research Unit, Translational Pediatrics e Clinical Genetics Research Division, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Raimondo De Cristofaro
- Center for Hemorrhagic and Thrombotic Diseases, Foundation University Hospital "A. Gemelli", IRCCS, Catholic University of the Sacred Heart, Largo Agostino Gemelli 8, 00168, Rome, Italy.
| |
Collapse
|
2
|
Castaman G. Keep it positive: loss of positive charge induced by R1205H von Willebrand factor change accelerates von Willebrand factor clearance through enhanced binding to macrophage clearance receptors LRP1 and SR-A1. J Thromb Haemost 2024; 22:2678-2680. [PMID: 39304225 DOI: 10.1016/j.jtha.2024.07.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 07/21/2024] [Indexed: 09/22/2024]
Affiliation(s)
- Giancarlo Castaman
- Center for Bleeding Disorders and Coagulation, Department of Oncology, Careggi University Hospital, Florence, Italy.
| |
Collapse
|
3
|
Chion A, Byrne C, Atiq F, Doherty D, Aguila S, Fazavana J, Lopes P, Karampini E, Amin A, Preston RJS, Baker RI, McKinnon TAJ, Zhu S, Gilbert JC, Emsley J, Jilma B, O’Donnell JS. The aptamer BT200 blocks interaction of K1405-K1408 in the VWF-A1 domain with macrophage LRP1. Blood 2024; 144:1445-1456. [PMID: 38996211 PMCID: PMC11451302 DOI: 10.1182/blood.2024024055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 07/03/2024] [Accepted: 07/03/2024] [Indexed: 07/14/2024] Open
Abstract
ABSTRACT Rondaptivon pegol (previously BT200) is a pegylated RNA aptamer that binds to the A1 domain of von Willebrand factor (VWF). Recent clinical trials demonstrated that BT200 significantly increased plasma VWF-factor VIII levels by attenuating VWF clearance. The biological mechanism(s) through which BT200 attenuates in vivo clearance of VWF has not been defined. We hypothesized that BT200 interaction with the VWF-A1 domain may increase plasma VWF levels by attenuating macrophage-mediated clearance. We observed that full-length and VWF-A1A2A3 binding to macrophages and VWF-A1 domain binding to lipoprotein receptor-related protein 1 (LRP1) cluster II and cluster IV were concentration-dependently inhibited by BT200. Additionally, full-length VWF binding to LRP1 expressed on HEK293T (HEK-LRP1) cells was also inhibited by BT200. Importantly, BT200 interacts with the VWF-A1 domain in proximity to a conserved cluster of 4 lysine residues (K1405, K1406, K1407, and K1408). Alanine mutagenesis of this K1405-K1408 cluster (VWF-4A) significantly (P < .001) attenuated binding of VWF to both LRP1 clusters II and IV. Furthermore, in vivo clearance of VWF-4A was significantly (P < .001) reduced than that of wild-type VWF. BT200 did not significantly inhibit binding of VWF-4A to LRP1 cluster IV or HEK-LRP1 cells. Finally, BT200 interaction with the VWF-A1 domain also inhibited binding to macrophage galactose lectin and the SR-AI scavenger receptor. Collectively, our findings demonstrate that BT200 prolongs VWF half-life by attenuating macrophage-mediated clearance and specifically the interaction of K1405-K1408 in the VWF-A1 domain with macrophage LRP1. These data support the concept that targeted inhibition of VWF clearance pathways represents a novel therapeutic approach for von Willebrand disease and hemophilia A.
Collapse
Affiliation(s)
- Alain Chion
- Irish Centre for Vascular Biology, School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Ciara Byrne
- Irish Centre for Vascular Biology, School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Ferdows Atiq
- Irish Centre for Vascular Biology, School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Dearbhla Doherty
- Irish Centre for Vascular Biology, School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Sonia Aguila
- Irish Centre for Vascular Biology, School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, Ireland
- Centro Regional de Hemodonación, Hospital Universitario Morales Meseguer, IMIB-Arrixaca, Murcia, Spain
| | - Judicael Fazavana
- Irish Centre for Vascular Biology, School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Patricia Lopes
- Irish Centre for Vascular Biology, School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Ellie Karampini
- Irish Centre for Vascular Biology, School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Aamir Amin
- Irish Centre for Vascular Biology, School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Roger J. S. Preston
- Irish Centre for Vascular Biology, School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Ross I. Baker
- Western Australia Centre for Thrombosis and Haemostasis, Perth Blood Institute, Murdoch University, Perth, WA, Australia
- Irish-Australian Blood Collaborative Network, Dublin, Ireland
| | - Thomas A. J. McKinnon
- Department of Immunology and Inflammation, Centre for Haematology, Imperial College London, United Kingdom
| | | | | | - Jonas Emsley
- Biodiscovery Institute, School of Pharmacy, University of Nottingham, Nottingham, United Kingdom
| | - Bernd Jilma
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
| | - James S. O’Donnell
- Irish Centre for Vascular Biology, School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, Ireland
- Department of Immunology and Inflammation, Centre for Haematology, Imperial College London, United Kingdom
- National Coagulation Centre, St James’s Hospital, Dublin, Ireland
| |
Collapse
|
4
|
Moser MM, Schoergenhofer C, Jilma B. Progress in von Willebrand Disease Treatment: Evolution towards Newer Therapies. Semin Thromb Hemost 2024; 50:720-732. [PMID: 38331000 DOI: 10.1055/s-0044-1779485] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
Abstract
von Willebrand disease (VWD) is a very heterogenous disease, resulting in different phenotypes and different degrees of bleeding severity. Established therapies (i.e., desmopressin, antifibrinolytic agents, hormone therapy for heavy menstrual bleeding, and von Willebrand factor [VWF] concentrates) may work in some subtypes, but not in all patients. In recent years, progress has been made in improving the diagnosis of VWD subtypes, allowing for more specific therapy. The impact of VWD on women's daily lives has also come to the fore in recent years, with hormone therapy, tranexamic acid, or recombinant VWF as treatment options. New treatment approaches, including the replacement of lacking factor VIII (FVIII) function, may work in those subgroups affected by severe FVIII deficiency. Reducing the clearance of VWF is an alternative treatment pathway; for example, rondaptivon pegol is a VWFA1 domain-binding aptamer which not only improves plasma VWF/FVIII levels, but also corrects platelet counts in thrombocytopenic type 2B VWD patients. These approaches are currently in clinical development, which will be the focus of this review. In addition, half-life extension methods are also important for the improvement of patients' quality of life. Targeting specific mutations may further lead to personalized treatments in the future. Finally, a few randomized controlled trials, although relatively small, have been published in recent years, aiming to achieve a higher level of evidence in future guidelines.
Collapse
Affiliation(s)
- Miriam M Moser
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
| | | | - Bernd Jilma
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
5
|
Westwood LJ, Le Couteur DG, Hunt NJ, Cogger VC. Strategies to target and genetically modify the liver sinusoid. SINUSOIDAL CELLS IN LIVER DISEASES 2024:161-189. [DOI: 10.1016/b978-0-323-95262-0.00008-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
6
|
Fogarty H, Ahmad A, Atiq F, Doherty D, Ward S, Karampini E, Rehill A, Leon G, Byrne C, Geoghegan R, Conroy H, Byrne M, Budde U, Schneppenheim S, Sheehan C, Ngwenya N, Baker RI, Preston RJS, Tuohy E, McMahon C, O’Donnell JS. VWF-ADAMTS13 axis dysfunction in children with sickle cell disease treated with hydroxycarbamide vs blood transfusion. Blood Adv 2023; 7:6974-6989. [PMID: 37773926 PMCID: PMC10690561 DOI: 10.1182/bloodadvances.2023010824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 09/17/2023] [Accepted: 09/21/2023] [Indexed: 10/01/2023] Open
Abstract
Previous studies have reported elevated von Willebrand factor (VWF) levels in patients with sickle cell disease (SCD) and demonstrated a key role for the VWF-ADAMTS13 axis in the pathobiology of SCD vaso-occlusion. Although blood transfusion is the gold standard for stroke prevention in SCD, the biological mechanisms underpinning its improved efficacy compared with hydroxycarbamide are not fully understood. We hypothesized that the improved efficacy of blood transfusion might relate to differences in VWF-ADAMTS13 axis dysfunction. In total, 180 children with a confirmed diagnosis of SCD (hemoglobin SS) on hydroxycarbamide (n = 96) or blood transfusion (n = 84) were included. Despite disease-modifying treatment, plasma VWF and VWF propeptide were elevated in a significant proportion of children with SCD (33% and 47%, respectively). Crucially, all VWF parameters were significantly higher in the hydroxycarbamide compared with the blood transfusion cohort (P < .05). Additionally, increased levels of other Weibel-Palade body-stored proteins, including factor VIII (FVIII), angiopoietin-2, and osteoprotegerin were observed, indicated ongoing endothelial cell activation. Children treated with hydroxycarbamide also had higher FVIII activity and enhanced thrombin generation compared with those in the blood transfusion cohort (P < .001). Finally, hemolysis markers strongly correlated with VWF levels (P < .001) and were significantly reduced in the blood transfusion cohort (P < .001). Cumulatively, to our knowledge, our findings demonstrate for the first time that despite treatment, ongoing dysfunction of the VWF-ADAMTS13 axis is present in a significant subgroup of pediatric patients with SCD, especially those treated with hydroxycarbamide.
Collapse
Affiliation(s)
- Helen Fogarty
- Irish Centre for Vascular Biology, School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, Ireland
- Department of Haematology, Children’s Health Ireland at Crumlin, Dublin, Ireland
- National Children’s Research Centre, Children’s Health Ireland at Crumlin, Dublin, Ireland
| | - Azaz Ahmad
- Irish Centre for Vascular Biology, School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Ferdows Atiq
- Irish Centre for Vascular Biology, School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Dearbhla Doherty
- Irish Centre for Vascular Biology, School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Soracha Ward
- Irish Centre for Vascular Biology, School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Ellie Karampini
- Irish Centre for Vascular Biology, School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Aisling Rehill
- Irish Centre for Vascular Biology, School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Gemma Leon
- Irish Centre for Vascular Biology, School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Ciara Byrne
- Irish Centre for Vascular Biology, School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Rosena Geoghegan
- Department of Haematology, Children’s Health Ireland at Crumlin, Dublin, Ireland
| | - Helena Conroy
- Department of Haematology, Children’s Health Ireland at Crumlin, Dublin, Ireland
| | - Mary Byrne
- National Coagulation Centre, St. James’s Hospital, Dublin, Ireland
| | - Ulrich Budde
- Department of Haemostaseology, MVZ Medilys Laborgesellschaft mbH, Hamburg, Germany
| | - Sonja Schneppenheim
- Department of Haemostaseology, MVZ Medilys Laborgesellschaft mbH, Hamburg, Germany
| | - Ciara Sheehan
- Department of Haematology, St. James’s Hospital, Dublin, Ireland
| | - Noel Ngwenya
- Department of Haematology, St. James’s Hospital, Dublin, Ireland
| | - Ross I. Baker
- Western Australia Centre for Thrombosis and Haemostasis, Perth Blood Institute, Murdoch University, Perth, WA, Australia
- Irish-Australian Blood Collaborative Network, Dublin, Ireland and Perth, Australia
| | - Roger J. S. Preston
- Irish Centre for Vascular Biology, School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, Ireland
- National Children’s Research Centre, Children’s Health Ireland at Crumlin, Dublin, Ireland
| | - Emma Tuohy
- Department of Haematology, St. James’s Hospital, Dublin, Ireland
| | - Corrina McMahon
- Department of Haematology, Children’s Health Ireland at Crumlin, Dublin, Ireland
- National Children’s Research Centre, Children’s Health Ireland at Crumlin, Dublin, Ireland
| | - James S. O’Donnell
- Irish Centre for Vascular Biology, School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, Ireland
- National Children’s Research Centre, Children’s Health Ireland at Crumlin, Dublin, Ireland
- National Coagulation Centre, St. James’s Hospital, Dublin, Ireland
- Irish-Australian Blood Collaborative Network, Dublin, Ireland and Perth, Australia
| |
Collapse
|
7
|
Swystun LL, Michels A, Lillicrap D. The contribution of the sinusoidal endothelial cell receptors CLEC4M, stabilin-2, and SCARA5 to VWF-FVIII clearance in thrombosis and hemostasis. J Thromb Haemost 2023; 21:2007-2019. [PMID: 37085036 PMCID: PMC11539076 DOI: 10.1016/j.jtha.2023.04.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 04/11/2023] [Accepted: 04/12/2023] [Indexed: 04/23/2023]
Abstract
Quantitative abnormalities in factor VIII (FVIII) and its binding partner, von Willebrand factor (VWF), are associated with an increased risk of bleeding or thrombosis, and pathways that regulate the clearance of VWF-FVIII can strongly influence their plasma levels. In 2010, the Cohorts for Heart and Aging Research in Genome Epidemiology (CHARGE) on genome-wide association study meta-analysis identified variants in the genes for the sinusoidal endothelial receptors C-type lectin domain family 4 member M (CLEC4M), stabilin-2, and scavenger receptor class A member 5 (SCARA5) as being associated with plasma levels of VWF and/or FVIII in normal individuals. The ability of these receptors to bind, internalize, and clear the VWF-FVIII complex from the circulation has now been reported in a series of studies using in vitro and in vivo models. The receptor stabilin-2 has also been shown to modulate the immune response to infused VWF-FVIII concentrates in a murine model. In addition, the influence of genetic variants in CLEC4M, STAB2, and SCARA5 on type 1 von Willebrand disease/low VWF phenotype, FVIII pharmacokinetics, and the risk of venous thromboembolism has been described in a number of patient-based studies. Understanding the role of these receptors in the regulation of VWF-FVIII clearance has led to significant insights into the genomic architecture that modulates plasma VWF and FVIII levels, improving the understanding of pathways that regulate VWF-FVIII clearance and the mechanistic basis of quantitative VWF-FVIII pathologies.
Collapse
Affiliation(s)
- Laura L Swystun
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, Ontario, Canada
| | - Alison Michels
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, Ontario, Canada. https://twitter.com/michels_alison
| | - David Lillicrap
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, Ontario, Canada.
| |
Collapse
|
8
|
Pratt KP. Factor VIII forges its own path. Blood 2023; 142:217-219. [PMID: 37471109 DOI: 10.1182/blood.2023021021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/21/2023] Open
|
9
|
Swystun LL, Lillicrap D. Current Understanding of Inherited Modifiers of FVIII Pharmacokinetic Variation. Pharmgenomics Pers Med 2023; 16:239-252. [PMID: 36998673 PMCID: PMC10046206 DOI: 10.2147/pgpm.s383221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 03/06/2023] [Indexed: 04/01/2023] Open
Abstract
The inherited bleeding disorder hemophilia A involves the quantitative deficiency of the coagulation cofactor factor VIII (FVIII). Prophylactic treatment of severe hemophilia A patients with FVIII concentrates aims to reduce the frequency of spontaneous joint bleeding and requires personalized tailoring of dosing regimens to account for the substantial inter-individual variability of FVIII pharmacokinetics. The strong reproducibility of FVIII pharmacokinetic (PK) metrics between repeat analyses in the same individual suggests this trait is genetically regulated. While the influence of plasma von Willebrand factor antigen (VWF:Ag) levels, ABO blood group, and patient age on FVIII PK is well established, estimates suggest these factors account for less than 35% of the overall variability in FVIII PK. More recent studies have identified genetic determinants that modify FVIII clearance or half-life including VWF gene variants that impair VWF-FVIII binding resulting in the accelerated clearance of VWF-free FVIII. Additionally, variants in receptors that regulate the clearance of FVIII or the VWF-FVIII complex have been associated with FVIII PK. The characterization of genetic modifiers of FVIII PK will provide mechanistic insight into a subject of clinical significance and support the development of personalized treatment plans for patients with hemophilia A.
Collapse
Affiliation(s)
- Laura L Swystun
- Department of Pathology and Molecular Medicine, Queen’s University, Kingston, ON, Canada
| | - David Lillicrap
- Department of Pathology and Molecular Medicine, Queen’s University, Kingston, ON, Canada
| |
Collapse
|
10
|
Lenting PJ, Texier A, Casari C. von Willebrand factor: from figurant to main character in the scene of inflammation. JOURNAL OF THROMBOSIS AND HAEMOSTASIS : JTH 2023; 21:710-713. [PMID: 36754680 DOI: 10.1016/j.jtha.2023.01.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 01/13/2023] [Accepted: 01/13/2023] [Indexed: 01/22/2023]
Affiliation(s)
- Peter J Lenting
- Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche 1176, Université Paris-Saclay, Le Kremlin-Bicêtre, France.
| | - Alexis Texier
- Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche 1176, Université Paris-Saclay, Le Kremlin-Bicêtre, France
| | - Caterina Casari
- Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche 1176, Université Paris-Saclay, Le Kremlin-Bicêtre, France. https://twitter.com/caterinacasari
| |
Collapse
|
11
|
Seidizadeh O, Baronciani L, Pagliari MT, Cozzi G, Colpani P, Cairo A, Siboni SM, Biguzzi E, Peyvandi F. Genetic determinants of enhanced von Willebrand factor clearance from plasma. JOURNAL OF THROMBOSIS AND HAEMOSTASIS : JTH 2023; 21:1112-1122. [PMID: 36754679 DOI: 10.1016/j.jtha.2023.01.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 01/02/2023] [Accepted: 01/11/2023] [Indexed: 01/21/2023]
Abstract
BACKGROUND Enhanced von Willebrand factor (VWF) clearance from plasma is associated with von Willebrand disease (VWD). However, the genetic background of this disease mechanism is not well defined. OBJECTIVE To determine VWF variants that are associated with reduced VWF survival. METHODS Two hundred fifty-four patients with VWD (type 1 = 50 and type 2 = 204) were investigated, and the results were compared with 120 healthy controls. The patients were comprehensively characterized for phenotypic and genetic features. The ratio of VWF propeptide (VWFpp)/VWF antigen (VWFpp ratio) was used to establish in each patient the VWF clearance state. RESULTS Out of 92 variants associated with type 1 (7 were novel) and type 2 VWD, 19 had a VWFpp ratio ranging from 1.7 to 2.2, 24 had a VWFpp ratio between 2.3 and 2.9, and 24 variants had a ratio of ≥3. The VWFpp median ratio in healthy controls was 0.98 (0.55-1.6) so that a cut-off value of >1.6 was considered an indicator of accelerated VWF clearance from plasma. An enhanced VWF clearance was observed in 34% of type 1 cases, 100% of type 1 Vicenza cases, 81% of 2A cases, 77% of 2B cases, 88% of 2M cases, and 36% of 2N cases. CONCLUSIONS An accelerated VWF clearance was found in most patients with type 2A, 2B, and 2M VWD, with a lower proportion of type 1 and 2N. Sixty-seven different variants alone or in combination with other variants were associated with an increased VWFpp ratio. The variants with the highest VWFpp ratio were mostly located in the D3-A1 VWF domains.
Collapse
Affiliation(s)
- Omid Seidizadeh
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Angelo Bianchi Bonomi Hemophilia and Thrombosis Center, Milan, Italy; Università degli Studi di Milano, Department of Pathophysiology and Transplantation, Milan, Italy
| | - Luciano Baronciani
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Angelo Bianchi Bonomi Hemophilia and Thrombosis Center, Milan, Italy
| | - Maria Teresa Pagliari
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Angelo Bianchi Bonomi Hemophilia and Thrombosis Center, Milan, Italy
| | - Giovanna Cozzi
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Angelo Bianchi Bonomi Hemophilia and Thrombosis Center, Milan, Italy
| | - Paola Colpani
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Angelo Bianchi Bonomi Hemophilia and Thrombosis Center, Milan, Italy
| | - Andrea Cairo
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Angelo Bianchi Bonomi Hemophilia and Thrombosis Center, Milan, Italy
| | - Simona Maria Siboni
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Angelo Bianchi Bonomi Hemophilia and Thrombosis Center, Milan, Italy
| | - Eugenia Biguzzi
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Angelo Bianchi Bonomi Hemophilia and Thrombosis Center, Milan, Italy
| | - Flora Peyvandi
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Angelo Bianchi Bonomi Hemophilia and Thrombosis Center, Milan, Italy; Università degli Studi di Milano, Department of Pathophysiology and Transplantation, Milan, Italy.
| |
Collapse
|
12
|
Varga JFA, Brunner SR, Cheng G, Min D, Aucoin MG, Doxey AC, Dixon B. Identification and characterization of a novel peptide from rainbow trout (Oncorhynchus mykiss) with antimicrobial activity against Streptococcus iniae. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2022; 137:104518. [PMID: 36044968 DOI: 10.1016/j.dci.2022.104518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/11/2022] [Accepted: 08/23/2022] [Indexed: 06/15/2023]
Abstract
The overuse and misuse of antibiotics has led to the emergence of antibiotic-resistant bacterial species which remain a challenge to treat therapeutically. Novel and efficacious drugs are desperately needed to combat pathogens. One method to facilitate these discoveries is the use of in silico methods. Computational biology has the power to scan large data sets and screen for potential molecules with antibacterial function. In the current study, an in silico approach was used to identify an antimicrobial peptide (AMP) derived from rainbow trout von Willebrand Factor. The AMP was tested against a panel of aquatic bacterial pathogens and was found to possess antibacterial activity against Streptococcus iniae (S. iniae). Since S. iniae is a zoonotic pathogen, this may be useful in other species as well. The peptide was non-hemolytic and non-cytotoxic at the concentrations tested in rainbow trout cells. Pre-treatment of rainbow trout cells with the peptide did not result in an upregulation of immune genes but stimulating the rainbow trout macrophage/monocyte-like cell line, RTS11, with heat-killed S. iniae, did result in a significant upregulation of the tumor necrosis factor alpha (tnfa) gene. In this study, a new AMP has been identified but its expression, synthesis and role in vivo remains unknown. Nevertheless, the findings presented improve our understanding of fish gill and macrophage responses towards this important zoonotic pathogen.
Collapse
Affiliation(s)
- Joseph F A Varga
- Department of Biology, University of Waterloo, Waterloo, N2L 3G1, Canada
| | - Sascha R Brunner
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, 9747 AG Groningen, the Netherlands
| | - Grant Cheng
- Department of Biology, University of Waterloo, Waterloo, N2L 3G1, Canada
| | - Daniel Min
- Department of Biology, University of Waterloo, Waterloo, N2L 3G1, Canada; Department of Chemical Engineering, University of Waterloo, Waterloo, N2L 3G1, Canada
| | - Marc G Aucoin
- Department of Chemical Engineering, University of Waterloo, Waterloo, N2L 3G1, Canada
| | - Andrew C Doxey
- Department of Biology, University of Waterloo, Waterloo, N2L 3G1, Canada
| | - Brian Dixon
- Department of Biology, University of Waterloo, Waterloo, N2L 3G1, Canada.
| |
Collapse
|
13
|
von Willebrand factor links primary hemostasis to innate immunity. Nat Commun 2022; 13:6320. [PMID: 36329021 PMCID: PMC9633696 DOI: 10.1038/s41467-022-33796-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 09/30/2022] [Indexed: 11/06/2022] Open
Abstract
The plasma multimeric glycoprotein von Willebrand factor (VWF) plays a critical role in primary hemostasis by tethering platelets to exposed collagen at sites of vascular injury. Recent studies have identified additional biological roles for VWF, and in particular suggest that VWF may play an important role in regulating inflammatory responses. However, the molecular mechanisms through which VWF exerts its immuno-modulatory effects remain poorly understood. In this study, we report that VWF binding to macrophages triggers downstream MAP kinase signaling, NF-κB activation and production of pro-inflammatory cytokines and chemokines. In addition, VWF binding also drives macrophage M1 polarization and shifts macrophage metabolism towards glycolysis in a p38-dependent manner. Cumulatively, our findings define an important biological role for VWF in modulating macrophage function, and thereby establish a novel link between primary hemostasis and innate immunity.
Collapse
|
14
|
Ward SE, O'Sullivan JM, Moran AB, Spencer DIR, Gardner RA, Sharma J, Fazavana J, Monopoli M, McKinnon TAJ, Chion A, Haberichter S, O'Donnell JS. Sialylation on O-linked glycans protects von Willebrand factor from macrophage galactose lectin-mediated clearance. Haematologica 2022; 107:668-679. [PMID: 33763999 PMCID: PMC8883566 DOI: 10.3324/haematol.2020.274720] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 03/12/2021] [Indexed: 11/17/2022] Open
Abstract
Terminal sialylation determines the plasma half-life of von Willebrand factor (VWF). A role for macrophage galactose lectin (MGL) in regulating hyposialylated VWF clearance has recently been proposed. In this study, we showed that MGL influences physiological plasma VWF clearance. MGL inhibition was associated with a significantly extended mean residence time and 3-fold increase in endogenous plasma VWF antigen levels (P<0.05). Using a series of VWF truncations, we further demonstrated that the A1 domain of VWF is predominantly responsible for enabling the MGL interaction. Binding of both full-length and VWF-A1-A2-A3 to MGL was significantly enhanced in the presence of ristocetin (P<0.05), suggesting that the MGL-binding site in A1 is not fully accessible in globular VWF. Additional studies using different VWF glycoforms demonstrated that VWF O-linked glycans, clustered at either end of the A1 domain, play a key role in protecting VWF against MGLmediated clearance. Reduced sialylation has been associated with pathological, increased clearance of VWF in patients with von Willebrand disease. Herein, we demonstrate that specific loss of α2-3 linked sialylation from O-glycans results in markedly increased MGL-binding in vitro, and markedly enhanced MGL-mediated clearance of VWF in vivo. Our data further show that the asialoglycoprotein receptor (ASGPR) does not have a significant role in mediating the increased clearance of VWF following loss of O-sialylation. Conversely however, we observed that loss of N-linked sialylation from VWF drives enhanced circulatory clearance predominantly via the ASGPR. Collectively, our data support the hypothesis that in addition to regulating physiological VWF clearance, the MGL receptor works in tandem with ASGPR to modulate enhanced clearance of aberrantly sialylated VWF in the pathogenesis of von Willebrand disease.
Collapse
Affiliation(s)
- Soracha E Ward
- Irish Centre for Vascular Biology, School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland
| | - Jamie M O'Sullivan
- Irish Centre for Vascular Biology, School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland
| | - Alan B Moran
- Ludger, Ltd., Culham Science Centre, Abingdon, Oxfordshire OX14 3EB, United Kingdom; Leiden University Medical Centre, Centre for Proteomics and Metabolomics, 2300 RC Leiden
| | | | | | - Jyotika Sharma
- Department of Basic Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, North Dakota
| | - Judicael Fazavana
- Irish Centre for Vascular Biology, School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland
| | - Marco Monopoli
- Department of Chemistry, RCSI, 123 St. Stephen's Green, Dublin 2
| | - Thomas A J McKinnon
- Faculty of Medicine, Imperial College, Hammersmith Hospital, Ducane Road, London
| | - Alain Chion
- Irish Centre for Vascular Biology, School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland
| | | | - James S O'Donnell
- Irish Centre for Vascular Biology, School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland; National Children's Research Centre, Our Lady's Children's Hospital, Dublin, Ireland; National Coagulation Centre, St James's Hospital, Dublin.
| |
Collapse
|
15
|
O’Donnell AS, Fazavana J, O’Donnell JS. The von Willebrand factor - ADAMTS-13 axis in malaria. Res Pract Thromb Haemost 2022; 6:e12641. [PMID: 35128300 PMCID: PMC8804941 DOI: 10.1002/rth2.12641] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/16/2021] [Accepted: 11/23/2021] [Indexed: 12/19/2022] Open
Abstract
Cerebral malaria (CM) continues to be associated with major morbidity and mortality, particularly in children aged <5 years in sub-Saharan Africa. Although the biological mechanisms underpinning severe malaria pathophysiology remain incompletely understood, studies have shown that cytoadhesion of malaria-infected erythrocytes to endothelial cells (ECs) within the cerebral microvasculature represents a key step in this process. Furthermore, these studies have also highlighted that marked EC activation, with secretion of Weibel-Palade bodies (WPBs), occurs at a remarkably early stage following malaria infection. As a result, plasma levels of proteins normally stored within WPBs (including high-molecular-weight von Willebrand factor [VWF] multimers, VWF propeptide, and angiopoietin-2) are significantly elevated. In this review, we provide an overview of recent studies that have identified novel roles through which these secreted WPB glycoproteins may directly facilitate malaria pathogenesis through a number of different platelet-dependent and platelet-independent pathways. Collectively, these emerging insights suggest that hemostatic dysfunction, and in particular disruption of the normal VWF-ADAMTS-13 axis, may be of specific importance in triggering cerebral microangiopathy. Defining the molecular mechanisms involved may offer the opportunity to develop novel targeted therapeutic approaches, which are urgently needed as the mortality rate associated with CM remains in the order of 20%.
Collapse
Affiliation(s)
- Andrew S. O’Donnell
- Department of PaediatricsUniversity Maternity Hospital LimerickLimerickIreland
| | - Judicael Fazavana
- Irish Centre for Vascular BiologySchool of Pharmacy & Biomolecular SciencesRoyal College of Surgeons in IrelandDublin 2Ireland
| | - James S. O’Donnell
- Irish Centre for Vascular BiologySchool of Pharmacy & Biomolecular SciencesRoyal College of Surgeons in IrelandDublin 2Ireland
- National Coagulation CentreSt James’s HospitalDublinIreland
- National Children’s Research CentreOur Lady’s Children’s Hospital CrumlinDublinIreland
| |
Collapse
|
16
|
Xu L, Qiu Y, Li Y, Wei Y, Wan Y, Deng W. Tissue dynamics of von Willebrand factor characterized by a novel fluorescent protein-von Willebrand factor chimera. J Thromb Haemost 2022; 20:208-221. [PMID: 34592034 DOI: 10.1111/jth.15542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 09/23/2021] [Accepted: 09/27/2021] [Indexed: 11/29/2022]
Abstract
BACKGROUND Tissue dynamics of von Willebrand factor (VWF) that are vital to its biological function have not been fully characterized. OBJECTIVE To develop a new fluorescent protein--VWF chimera (FP-VWF) that has similar hematologic function to wild-type VWF and use it to monitor the tissue dynamics of VWF distribution. METHODS Genotyping, platelet counting, tail bleeding time assay, agarose gels, western blot, platelet aggregation, proteolytic analysis, and ELISA were applied in characterizing the function of FP-VWF; fluorescence spectrometer and confocal fluorescence microscope were used to monitor the plasma and tissue distribution of FP-VWF. RESULTS The transgenic mice that carry the FP-VWF retain hematologic activity of VWF with plasma levels of FP-VWF reduced by 50% and there are reduced high molecular weight FP-VWF multimers compared to the wild-type mice. The GPIb-binding and ADAMTS-13 (A Disintegrin and Metalloprotease with ThrombSpondin type 1 motif, member 13) proteolytic efficiency of FP-VWF are similar to wild-type VWF. The tissue distribution of FP-VWF was probed directly through its intrinsic fluorescence at normal or stimulated status, which indicated that the medicine-stimulated endogenous FP-VWF seems primarily released from the aorta and cleared in the spleen. Similar results were observed in non-fluorescent mice through a standard immunofluorescence approach. The fluorescence signals of FP-VWF were also similar to the standard dye-based approach in detecting the FeCl3 -induced blood clotting in vivo. CONCLUSIONS Together, these results suggest that this novel FP-VWF chimera is valuable in probing the tissue dynamics of VWF in quite a few biological and pharmaceutical applications.
Collapse
Affiliation(s)
- Linru Xu
- Cyrus Tang Medical Institute and Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, China
| | - Yanyang Qiu
- Cyrus Tang Medical Institute and Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, China
| | - Yanqing Li
- Cyrus Tang Medical Institute and Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, China
| | - Yaxuan Wei
- Cyrus Tang Medical Institute and Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, China
| | - Yan Wan
- Cyrus Tang Medical Institute and Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, China
| | - Wei Deng
- Cyrus Tang Medical Institute and Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, China
| |
Collapse
|
17
|
Reticuloendothelial activation correlates with disease severity and predicts mortality in severe alcoholic hepatitis. Eur J Gastroenterol Hepatol 2021; 33:e329-e334. [PMID: 33470708 DOI: 10.1097/meg.0000000000002056] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
BACKGROUND Overactivation of reticuloendothelial cells lining liver sinusoids - Kupffer cells (macrophages) and sinusoidal endothelial cells - may narrow the sinusoidal lumen, impair perfusion in liver microcirculation and contribute to disease severity in alcoholic hepatitis. AIM The aim of the article was to assess reticuloendothelial activation in patients with severe alcoholic hepatitis (SAH). METHODS In SAH patients, we prospectively studied baseline reticuloendothelial activation markers [serum ferritin, sCD163 and plasma von Willebrand factor (VWF) antigen] and Macrophage Activation Syndrome (MAS) criteria, correlated them with disease severity scores [model for end-stage liver disease (MELD) and Sequential Organ Failure Assessment (SOFA) scores] and analyzed their ability to predict survival over a 90-day follow-up period. RESULTS A total of 50 SAH patients [45 (37-49) years, median (interquartile range), 49 males, discriminant function, 76.2 (54.5-106.6); MELD score, 30 (26.2-36)] were studied. 41 SAH patients (82%) had ferritin >500 ng/mL, and all (100%) had markedly raised sCD163 and VWF levels. The median sCD163 level was 10-fold higher than healthy controls and the median VWF level was 5-fold above the upper limit of normal. In total, 37 SAH patients (74%) met MAS criteria. Reticuloendothelial activation markers correlated with MELD and SOFA scores (P < 0.05). VWF was an independent marker to predict mortality in SAH [adjusted hazard ratio, 1.002 (1.000-1.004)]. CONCLUSIONS The reticuloendothelial system was markedly activated and correlated with disease severity scores in SAH patients.VWF predicted short-term mortality independent of MELD and sCD163. Further larger multicentric studies are needed to validate these findings.
Collapse
|
18
|
Mojzisch A, Brehm MA. The Manifold Cellular Functions of von Willebrand Factor. Cells 2021; 10:2351. [PMID: 34572000 PMCID: PMC8466076 DOI: 10.3390/cells10092351] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 08/26/2021] [Accepted: 09/02/2021] [Indexed: 12/13/2022] Open
Abstract
The plasma glycoprotein von Willebrand factor (VWF) is exclusively synthesized in endothelial cells (ECs) and megakaryocytes, the precursor cells of platelets. Its primary function lies in hemostasis. However, VWF is much more than just a "fishing hook" for platelets and a transporter for coagulation factor VIII. VWF is a true multitasker when it comes to its many roles in cellular processes. In ECs, VWF coordinates the formation of Weibel-Palade bodies and guides several cargo proteins to these storage organelles, which control the release of hemostatic, inflammatory and angiogenic factors. Leukocytes employ VWF to assist their rolling on, adhesion to and passage through the endothelium. Vascular smooth muscle cell proliferation is supported by VWF, and it regulates angiogenesis. The life cycle of platelets is accompanied by VWF from their budding from megakaryocytes to adhesion, activation and aggregation until the end in apoptosis. Some tumor cells acquire the ability to produce VWF to promote metastasis and hide in a shell of VWF and platelets, and even the maturation of osteoclasts is regulated by VWF. This review summarizes the current knowledge on VWF's versatile cellular functions and the resulting pathophysiological consequences of their dysregulation.
Collapse
Affiliation(s)
- Angelika Mojzisch
- Dermatology and Venerology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany;
| | - Maria A. Brehm
- School of Life Sciences, University of Siegen, 57076 Siegen, Germany
| |
Collapse
|
19
|
Becker RC, Sexton T, Smyth S. COVID-19 and biomarkers of thrombosis: focus on von Willebrand factor and extracellular vesicles. J Thromb Thrombolysis 2021; 52:1010-1019. [PMID: 34350541 PMCID: PMC8336902 DOI: 10.1007/s11239-021-02544-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/15/2021] [Indexed: 12/19/2022]
Abstract
COVID-19, caused by the SARS-CoV-2 virus, is responsible for a pandemic of unparalleled portion over the past century. While the acute phase of infection causes significant morbidity and mortality, post-acute sequelae that can affect essentially any organ system is rapidly taking on an equally large part of the overall impact on human health, quality of life, attempts to return to normalcy and the global economy. Herein, we summarize the potential role of von Willebrand Factor and extracellular vesicles toward understanding the pathophysiology, clinical presentation, duration of illness, diagnostic approach and management of COVID-19 and its sequelae.
Collapse
Affiliation(s)
- Richard C Becker
- Heart, Lung and Vascular Institute, University of Cincinnati College of Medicine, 231 Albert Sabin Way, Cincinnati, OH, 45267, USA.
| | - Travis Sexton
- The Gill Heart and Vascular Institute, University of Kentucky, Lexington, KY, USA
| | - Susan Smyth
- University of Arkansas for Medical Sciences, Little Rock, AK, USA
| |
Collapse
|
20
|
Cadé M, Muñoz-Garcia J, Babuty A, Fouassier M, Heymann MF, Monahan PE, Heymann D. FVIII at the crossroad of coagulation, bone and immune biology: Emerging evidence of biological activities beyond hemostasis. Drug Discov Today 2021; 27:102-116. [PMID: 34311113 DOI: 10.1016/j.drudis.2021.07.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 04/27/2021] [Accepted: 07/19/2021] [Indexed: 12/19/2022]
Abstract
Hemophilia A is an X-linked hereditary disorder that results from deficient coagulation factor VIII (FVIII) activity, leading to spontaneous bleeding episodes, particularly in joints and muscles. FVIII deficiency has been associated with altered bone remodeling, dysregulated macrophage polarization, and inflammatory processes that are associated with the neoformation of abnormal blood vessels. Treatment based on FVIII replacement can lead to the development of inhibitors that render FVIII concentrate infusion ineffective. In this context, hemophilia has entered a new therapeutic era with the development of new drugs, such as emicizumab, that seek to restore the hemostatic balance by bypassing pathologically acquired antibodies. We discuss the potential extrahemostatic functions of FVIII that may be crucial for defining future therapies in hemophilia.
Collapse
Affiliation(s)
- Marie Cadé
- Université de Nantes, INSERM, Institut de Cancérologie de l'Ouest, Saint-Herblain 44805, France
| | - Javier Muñoz-Garcia
- Université de Nantes, INSERM, Institut de Cancérologie de l'Ouest, Saint-Herblain 44805, France
| | - Antoine Babuty
- Université de Nantes, INSERM, Institut de Cancérologie de l'Ouest, Saint-Herblain 44805, France; Department of Haemostasis, CHU de Nantes, France
| | | | - Marie-Francoise Heymann
- Université de Nantes, INSERM, Institut de Cancérologie de l'Ouest, Saint-Herblain 44805, France
| | - Paul E Monahan
- Gene Therapy Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
| | - Dominique Heymann
- Université de Nantes, INSERM, Institut de Cancérologie de l'Ouest, Saint-Herblain 44805, France; University of Sheffield, Department of Oncology and Metabolism, Sheffield, UK.
| |
Collapse
|
21
|
Avdonin PP, Tsvetaeva NV, Goncharov NV, Rybakova EY, Trufanov SK, Tsitrina AA, Avdonin PV. Von Willebrand Factor in Health and Disease. BIOCHEMISTRY (MOSCOW), SUPPLEMENT SERIES A: MEMBRANE AND CELL BIOLOGY 2021. [DOI: 10.1134/s1990747821040036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Abstract—
Von Willebrand factor (vWF), the key component of hemostasis, is synthesized in endothelial cells and megakaryocytes and released into the blood as high molecular weight multimeric glycoproteins weighing up to 20 million Daltons. Blood plasma metalloprotease ADAMTS13 cleaves ultra-large vWF multimers to smaller multimeric and oligomeric molecules. The vWF molecules attach to the sites of damage at the surface of arterioles and capillaries and unfold under conditions of shear stress. On the unfolded vWF molecule, the regions interacting with receptors on the platelet membrane are exposed. After binding to the vWF filaments, platelets are activated; platelets circulating in the vessels are additionally attached to them, leading to thrombus formation, blocking of microvessels, and cessation of bleeding. This review describes the history of the discovery of vWF, presents data on the mechanisms of vWF secretion and its structure, and characterizes the processes of vWF metabolism in the body under normal and pathological conditions.
Collapse
|
22
|
Pastuschek J, Bär C, Göhner C, Budde U, Leidenmuehler P, Groten T, Schleußner E, Markert UR. Ex vivo human placental transfer study on recombinant Von Willebrand factor (rVWF). Placenta 2021; 111:69-75. [PMID: 34171523 DOI: 10.1016/j.placenta.2021.05.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 04/29/2021] [Accepted: 05/31/2021] [Indexed: 10/21/2022]
Abstract
Deficiency or mutation of von Willebrand factor (VWF) leads to a coagulation disorder (von Willebrand disease; VWD) which requires a lifelong therapy. For avoiding maternal complications treatment may be necessary also in pregnancy, but placental transfer to the fetus might impact its coagulation system and evoke undesired side effects. As VWF is a very large molecule it may be assumed that it does not pass the placental barrier. To prove this hypothesis the materno-fetal transfer of recombinant VWF (rVWF) has been analyzed ex vivo in a total of 21 valid dual side placenta perfusions. Three groups of five placentas each have been perfused with physiological and up to ten-fold increased concentrations of rVWF for 2 h. Six placentas have been used for control perfusions. A series of different control parameters has been assessed for documentation of intactness and functionality of the placenta and the perfusion system. In not a single analysis, independent of time and concentration, rVWF was detected in the fetal circuit. In the maternal circuit VWF concentration decreased slightly during perfusion. These results demonstrate that recombinant VWF does not pass the human placenta.
Collapse
Affiliation(s)
- J Pastuschek
- Placenta Lab, Department of Obstetrics, University Hospital Jena, Am Klinikum 1, 07747, Jena, Germany
| | - C Bär
- Placenta Lab, Department of Obstetrics, University Hospital Jena, Am Klinikum 1, 07747, Jena, Germany
| | - C Göhner
- Placenta Lab, Department of Obstetrics, University Hospital Jena, Am Klinikum 1, 07747, Jena, Germany
| | - U Budde
- Medilys Laborgesellschaft MbH, Paul-Ehrlich-Str. 1, 22763, Hamburg, Germany
| | | | - T Groten
- Placenta Lab, Department of Obstetrics, University Hospital Jena, Am Klinikum 1, 07747, Jena, Germany
| | - E Schleußner
- Placenta Lab, Department of Obstetrics, University Hospital Jena, Am Klinikum 1, 07747, Jena, Germany
| | - U R Markert
- Placenta Lab, Department of Obstetrics, University Hospital Jena, Am Klinikum 1, 07747, Jena, Germany.
| |
Collapse
|
23
|
Galstyan GM, Maschan AA, Klebanova EE, Kalinina II. [Treatment of thrombotic thrombocytopenic purpura]. TERAPEVT ARKH 2021; 93:736-745. [PMID: 36286842 DOI: 10.26442/00403660.2021.06.200894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Accepted: 07/10/2021] [Indexed: 11/22/2022]
Abstract
The review discusses approaches to treatment of acquired thrombotic thrombocytopenic purpuгa (aTTP). In patients with aTTP plasma exchanges, glucocorticosteroids allow to stop an acute attack of TTP, and use of rituximab allows to achieve remission. In recent years, caplacizumab has been used. Treatment options such as cyclosporin A, bortezomib, splenectomy, N-acetylcysteine, recombinant ADAMTS13 are also described. Separately discussed issues of management of patients with TTP during pregnancy, and pediatric patients with TTP.
Collapse
Affiliation(s)
| | - A A Maschan
- Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology
| | | | - I I Kalinina
- Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology
| |
Collapse
|
24
|
Groeneveld DJ, Poole LG, Luyendyk JP. Targeting von Willebrand factor in liver diseases: A novel therapeutic strategy? J Thromb Haemost 2021; 19:1390-1408. [PMID: 33774926 PMCID: PMC8582603 DOI: 10.1111/jth.15312] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 03/08/2021] [Accepted: 03/22/2021] [Indexed: 12/11/2022]
Abstract
Acute and chronic liver disease are associated with substantial alterations in the hemostatic system. Evidence from both experimental and clinical studies suggests that anticoagulants slow the progression of liver disease. Efficacy of those anticoagulant drugs is, in part, attributed to a reduction of microthrombi formation within the liver. Although anticoagulant drugs show promising results, bleeding risk associated with these drugs is an obvious drawback, particularly in patients with a complex coagulopathy driven by decreased liver function. Identifying therapies that reduce intrahepatic thrombosis with minimal bleeding risk would significantly advance the field. Among the hemostatic alterations observed in patients are substantially increased levels of the platelet-adhesive protein von Willebrand factor (VWF). In contrast, levels of A Disintegrin and Metalloproteinase with Thrombospondin motifs, the enzyme that regulates VWF activity, are significantly reduced in patients with liver disease. Highly elevated VWF levels are proposed to accelerate intrahepatic thrombus formation and thus be a driver of disease progression. Strong clinical evidence suggesting a link between liver disease and changes in VWF is now being matched by emerging mechanistic data showing a detrimental role for VWF in the progression of liver disease. This review focuses on clinical and experimental evidence supporting a connection between VWF function and the progression of acute and chronic liver diseases. Furthermore, with the recent anticipated approval of several novel therapies targeting VWF, we discuss potential strategies and benefits of targeting VWF as an innovative therapy for patients with liver disease.
Collapse
Affiliation(s)
- Dafna J Groeneveld
- Department of Pathobiology & Diagnostic Investigation, Michigan State University, East Lansing, MI, USA
| | - Lauren G Poole
- Department of Pathobiology & Diagnostic Investigation, Michigan State University, East Lansing, MI, USA
| | - James P Luyendyk
- Department of Pathobiology & Diagnostic Investigation, Michigan State University, East Lansing, MI, USA
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, USA
- Department of Pharmacology & Toxicology, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
25
|
The relationship between ABO blood group, von Willebrand factor, and primary hemostasis. Blood 2021; 136:2864-2874. [PMID: 32785650 DOI: 10.1182/blood.2020005843] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 08/03/2020] [Indexed: 12/16/2022] Open
Abstract
Numerous studies have reported significant associations between ABO blood group and risk of cardiovascular disease. These studies have consistently demonstrated that thrombotic risk is significantly reduced in individuals in blood group O. Nevertheless, the biological mechanisms through which ABO influences hemostasis have remained poorly understood. Exciting recent data have provided novel insights into how these ABO effects are modulated and have highlighted that ABO group significantly influences platelet plug formation at sites of vascular injury (primary hemostasis). In particular, ABO affects multiple aspects of von Willebrand factor (VWF) biology. In keeping with their reduced thrombotic risk, plasma VWF levels are ∼25% lower in healthy group O compared with healthy group non-O individuals. In addition, blood group O VWF demonstrates enhanced susceptibility to ADAMTS13 proteolysis. Finally, preliminary findings suggest that the interaction of group O VWF with platelets may also be reduced. Although the molecular mechanisms underlying these ABO effects on VWF have not been fully elucidated, it seems likely that they are mediated in large part by the ABO(H) carbohydrate structures that are carried on both the N- and O-linked glycans of VWF. Interestingly, ABO(H) determinants are also expressed on several different platelet surface glycoprotein receptors. Recent studies support the hypothesis that ABO group not only exerts major quantitative and qualitative effects on VWF, but also affect specific aspects of platelet function. Given the severe morbidity and the mortality associated with thrombotic disorders, defining the mechanisms underlying these ABO effects is not only of scientific interest, but also of direct clinical importance.
Collapse
|
26
|
Pradhan-Sundd T, Gudapati S, Kaminski TW, Ragni MV. Exploring the Complex Role of Coagulation Factor VIII in Chronic Liver Disease. Cell Mol Gastroenterol Hepatol 2021; 12:1061-1072. [PMID: 33705963 PMCID: PMC8342958 DOI: 10.1016/j.jcmgh.2021.02.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 02/25/2021] [Accepted: 02/25/2021] [Indexed: 12/22/2022]
Abstract
Chronic liver disease is one of the leading causes of death in the United States. Coagulopathy is often a sequela of chronic liver disease, however, the role and regulation of coagulation components in chronic liver injury remain poorly understood. Clinical and experimental evidence indicate that misexpression of the procoagulant factor VIII (FVIII) is associated with chronic liver disease. Nevertheless, the molecular mechanism of FVIII-induced chronic liver injury progression remains unknown. This review provides evidence supporting a pathologic role for FVIII in the development of chronic liver disease using both experimental and clinical models.
Collapse
Affiliation(s)
- Tirthadipa Pradhan-Sundd
- Pittsburgh Heart, Lung and Blood Vascular Medicine Institute, Pittsburgh, Pennsylvania; Division of Hematology/Oncology, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania.
| | - Shweta Gudapati
- Pittsburgh Heart, Lung and Blood Vascular Medicine Institute, Pittsburgh, Pennsylvania
| | - Tomasz W Kaminski
- Pittsburgh Heart, Lung and Blood Vascular Medicine Institute, Pittsburgh, Pennsylvania
| | - Margaret V Ragni
- Pittsburgh Heart, Lung and Blood Vascular Medicine Institute, Pittsburgh, Pennsylvania; Division of Hematology/Oncology, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; Hemophilia Center of Western Pennsylvania, Pittsburgh, Pennsylvania
| |
Collapse
|
27
|
Wang S, Griffith BP, Wu ZJ. Device-Induced Hemostatic Disorders in Mechanically Assisted Circulation. Clin Appl Thromb Hemost 2021; 27:1076029620982374. [PMID: 33571008 PMCID: PMC7883139 DOI: 10.1177/1076029620982374] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Mechanically assisted circulation (MAC) sustains the blood circulation in the body of a patients undergoing cardiac surgery with cardiopulmonary bypass (CPB) or on ventricular assistance with a ventricular assist device (VAD) or on extracorporeal membrane oxygenation (ECMO) with a pump-oxygenator system. While MAC provides short-term (days to weeks) support and long-term (months to years) for the heart and/or lungs, the blood is inevitably exposed to non-physiological shear stress (NPSS) due to mechanical pumping action and in contact with artificial surfaces. NPSS is well known to cause blood damage and functional alterations of blood cells. In this review, we discussed shear-induced platelet adhesion, platelet aggregation, platelet receptor shedding, and platelet apoptosis, shear-induced acquired von Willebrand syndrome (AVWS), shear-induced hemolysis and microparticle formation during MAC. These alterations are associated with perioperative bleeding and thrombotic events, morbidity and mortality, and quality of life in MCS patients. Understanding the mechanism of shear-induce hemostatic disorders will help us develop low-shear-stress devices and select more effective treatments for better clinical outcomes.
Collapse
Affiliation(s)
- Shigang Wang
- Department of Surgery, 12264University of Maryland School of Medicine, Baltimore, MD, USA
| | - Bartley P Griffith
- Department of Surgery, 12264University of Maryland School of Medicine, Baltimore, MD, USA
| | - Zhongjun J Wu
- Department of Surgery, 12264University of Maryland School of Medicine, Baltimore, MD, USA.,Fischell Department of Bioengineering, A. James Clark School of Engineering, University of Maryland, College Park, MD, USA
| |
Collapse
|
28
|
Fazavana J, Brophy TM, Chion A, Cooke N, Terraube V, Cohen J, Parng C, Pittman D, Cunningham O, Lambert M, O'Donnell JS, O'Sullivan JM. Investigating the clearance of VWF A-domains using site-directed PEGylation and novel N-linked glycosylation. J Thromb Haemost 2020; 18:1278-1290. [PMID: 32108991 PMCID: PMC7645976 DOI: 10.1111/jth.14785] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 02/18/2020] [Accepted: 02/21/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND Previous studies have demonstrated that the A1A2A3 domains of von Willebrand factor (VWF) play a key role in regulating macrophage-mediated clearance in vivo. In particular, the A1-domain has been shown to modulate interaction with macrophage low-density lipoprotein receptor-related protein-1 (LRP1) clearance receptor. Furthermore, N-linked glycans within the A2-domain have been shown to protect VWF against premature LRP1-mediated clearance. Importantly, however, the specific regions within A1A2A3 that enable macrophage binding have not been defined. OBJECTIVE AND METHODS To address this, we utilized site-directed PEGylation and introduced novel targeted N-linked glycosylation within A1A2A3-VWF and subsequently examined VWF clearance. RESULTS Conjugation with a 40-kDa polyethylene glycol (PEG) moiety significantly extended the half-life of A1A2A3-VWF in VWF-/- mice in a site-specific manner. For example, PEGylation at specific sites within the A1-domain (S1286) and A3-domain (V1803, S1807) attenuated VWF clearance in vivo, compared to wild-type A1A2A3-VWF. Furthermore, PEGylation at these specific sites ablated binding to differentiated THP-1 macrophages and LRP1 cluster II and cluster IV in-vitro. Conversely, PEGylation at other positions (Q1353-A1-domain and M1545-A2-domain) had limited effects on VWF clearance or binding to LRP1.Novel N-linked glycan chains were introduced at N1803 and N1807 in the A3-domain. In contrast to PEGylation at these sites, no significant extension in half-life was observed with these N-glycan variants. CONCLUSIONS These novel data demonstrate that site specific PEGylation but not site specific N-glycosylation modifies LRP1-dependent uptake of the A1A2A3-VWF by macrophages. This suggests that PEGylation, within the A1- and A3-domains in particular, may be used to attenuate LRP1-mediated clearance of VWF.
Collapse
Affiliation(s)
- Judicael Fazavana
- School of Pharmacy and Biomolecular Sciences, Irish Centre for Vascular Biology, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Teresa M Brophy
- School of Pharmacy and Biomolecular Sciences, Irish Centre for Vascular Biology, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Alain Chion
- School of Pharmacy and Biomolecular Sciences, Irish Centre for Vascular Biology, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Niamh Cooke
- BioMedicine Design, Pfizer, Grange Castle, Dublin, Ireland
| | | | | | | | - Debra Pittman
- Rare Disease Research Unit, Pfizer, Cambridge, MA, USA
| | | | | | - James S O'Donnell
- School of Pharmacy and Biomolecular Sciences, Irish Centre for Vascular Biology, Royal College of Surgeons in Ireland, Dublin, Ireland
- National Coagulation Centre, St James Hospital, Dublin, Ireland
| | - Jamie M O'Sullivan
- School of Pharmacy and Biomolecular Sciences, Irish Centre for Vascular Biology, Royal College of Surgeons in Ireland, Dublin, Ireland
| |
Collapse
|
29
|
Matino D, Afraz S, Zhao G, Tieu P, Gargaro M, Fallarino F, Iorio A. Tolerance to FVIII: Role of the Immune Metabolic Enzymes Indoleamine 2,3 Dyoxigenase-1 and Heme Oxygenase-1. Front Immunol 2020; 11:620. [PMID: 32351505 PMCID: PMC7174632 DOI: 10.3389/fimmu.2020.00620] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 03/18/2020] [Indexed: 11/13/2022] Open
Abstract
The occurrence of neutralizing anti-FVIII antibodies is a major complication in the treatment of patients affected by hemophilia A. The immune response to FVIII is a complex, multi-factorial process that has been extensively studied for the past two decades. The reasons why only a proportion of hemophilic patients treated with FVIII concentrates develop a clinically significant immune response is incompletely understood. The "danger theory" has been proposed as a possible explanation to interpret the findings of some observational clinical studies highlighting the possible detrimental impact of inflammatory stimuli at the time of replacement therapy on inhibitor development. The host immune system is often challenged to react to FVIII under steady state or inflammatory conditions (e.g., bleeding, infections) although fine tuning of mechanisms of immune tolerance can control this reactivity and promote long-term unresponsiveness to the therapeutically administered factor. Recent studies have provided evidence that multiple interactions involving central and peripheral mechanisms of tolerance are integrated by the host immune system with the environmental conditions at the time of FVIII exposure and influence the balance between immunity and tolerance to FVIII. Here we review evidences showing the involvement of two key immunoregulatory oxygenase enzymes (IDO1, HO-1) that have been studied in hemophilia patients and pre-clinical models, showing that the ability of the host immune system to induce such regulatory proteins under inflammatory conditions can play important roles in the balance between immunity and tolerance to exogenous FVIII.
Collapse
Affiliation(s)
- Davide Matino
- Department of Medicine, McMaster University, Hamilton, ON, Canada
- Thrombosis and Atherosclerosis Research Institute, Hamilton, ON, Canada
| | - Sajjad Afraz
- Thrombosis and Atherosclerosis Research Institute, Hamilton, ON, Canada
| | - George Zhao
- McMaster Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada
| | - Paul Tieu
- Thrombosis and Atherosclerosis Research Institute, Hamilton, ON, Canada
- McMaster Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada
| | - Marco Gargaro
- Department of Experimental Medicine, University of Perugia, Perugia, Italy
| | | | - Alfonso Iorio
- Department of Health Research Methods, Evidence, and Impact, Hamilton, ON, Canada
| |
Collapse
|
30
|
Cormier M, Batty P, Tarrant J, Lillicrap D. Advances in knowledge of inhibitor formation in severe haemophilia A. Br J Haematol 2020; 189:39-53. [DOI: 10.1111/bjh.16377] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Matthew Cormier
- Department of Pathology and Molecular Medicine Richardson Laboratory Queen’s University Kingston ON Canada
| | - Paul Batty
- Department of Pathology and Molecular Medicine Richardson Laboratory Queen’s University Kingston ON Canada
| | - Julie Tarrant
- Department of Pathology and Molecular Medicine Richardson Laboratory Queen’s University Kingston ON Canada
| | - David Lillicrap
- Department of Pathology and Molecular Medicine Richardson Laboratory Queen’s University Kingston ON Canada
| |
Collapse
|
31
|
Lacroix-Desmazes S, Voorberg J, Lillicrap D, Scott DW, Pratt KP. Tolerating Factor VIII: Recent Progress. Front Immunol 2020; 10:2991. [PMID: 31998296 PMCID: PMC6965068 DOI: 10.3389/fimmu.2019.02991] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Accepted: 12/05/2019] [Indexed: 02/02/2023] Open
Abstract
Development of neutralizing antibodies against biotherapeutic agents administered to prevent or treat various clinical conditions is a longstanding and growing problem faced by patients, medical providers and pharmaceutical companies. The hemophilia A community has deep experience with attempting to manage such deleterious immune responses, as the lifesaving protein drug factor VIII (FVIII) has been in use for decades. Hemophilia A is a bleeding disorder caused by genetic mutations that result in absent or dysfunctional FVIII. Prophylactic treatment consists of regular intravenous FVIII infusions. Unfortunately, 1/4 to 1/3 of patients develop neutralizing anti-FVIII antibodies, referred to clinically as “inhibitors,” which result in a serious bleeding diathesis. Until recently, the only therapeutic option for these patients was “Immune Tolerance Induction,” consisting of intensive FVIII administration, which is extraordinarily expensive and fails in ~30% of cases. There has been tremendous recent progress in developing novel potential clinical alternatives for the treatment of hemophilia A, ranging from encouraging results of gene therapy trials, to use of other hemostatic agents (either promoting coagulation or slowing down anti-coagulant or fibrinolytic pathways) to “bypass” the need for FVIII or supplement FVIII replacement therapy. Although these approaches are promising, there is widespread agreement that preventing or reversing inhibitors remains a high priority. Risk profiles of novel therapies are still unknown or incomplete, and FVIII will likely continue to be considered the optimal hemostatic agent to support surgery and manage trauma, or to combine with other therapies. We describe here recent exciting studies, most still pre-clinical, that address FVIII immunogenicity and suggest novel interventions to prevent or reverse inhibitor development. Studies of FVIII uptake, processing and presentation on antigen-presenting cells, epitope mapping, and the roles of complement, heme, von Willebrand factor, glycans, and the microbiome in FVIII immunogenicity are elucidating mechanisms of primary and secondary immune responses and suggesting additional novel targets. Promising tolerogenic therapies include development of FVIII-Fc fusion proteins, nanoparticle-based therapies, oral tolerance, and engineering of regulatory or cytotoxic T cells to render them FVIII-specific. Importantly, these studies are highly applicable to other scenarios where establishing immune tolerance to a defined antigen is a clinical priority.
Collapse
Affiliation(s)
| | - Jan Voorberg
- Sanquin Research and Landsteiner Laboratory, Department of Molecular and Cellular Hemostasis, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - David Lillicrap
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, ON, Canada
| | - David W Scott
- Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Kathleen P Pratt
- Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| |
Collapse
|
32
|
Abstract
Von Willebrand factor (VWF) and coagulation factor VIII (FVIII) circulate as a complex in plasma and have a major role in the hemostatic system. VWF has a dual role in hemostasis. It promotes platelet adhesion by anchoring the platelets to the subendothelial matrix of damaged vessels and it protects FVIII from proteolytic degradation. Moreover, VWF is an acute phase protein that has multiple roles in vascular inflammation and is massively secreted from Weibel-Palade bodies upon endothelial cell activation. Activated FVIII on the other hand, together with coagulation factor IX forms the tenase complex, an essential feature of the propagation phase of coagulation on the surface of activated platelets. VWF deficiency, either quantitative or qualitative, results in von Willebrand disease (VWD), the most common bleeding disorder. The deficiency of FVIII is responsible for Hemophilia A, an X-linked bleeding disorder. Here, we provide an overview on the role of the VWF-FVIII interaction in vascular physiology.
Collapse
Affiliation(s)
- Klytaimnistra Kiouptsi
- Center for Thrombosis and Hemostasis (CTH), University Medical Center Mainz, Langenbeckstrasse 1, Building 708, 55131, Mainz, Germany
| | - Christoph Reinhardt
- Center for Thrombosis and Hemostasis (CTH), University Medical Center Mainz, Langenbeckstrasse 1, Building 708, 55131, Mainz, Germany.
- German Center for Cardiovascular Research (DZHK), Partner Site RheinMain, Mainz, Germany.
| |
Collapse
|
33
|
Mehta R, Athar M, Girgis S, Hassan A, Becker RC. Acquired Von Willebrand Syndrome (AVWS) in cardiovascular disease: a state of the art review for clinicians. J Thromb Thrombolysis 2019; 48:14-26. [PMID: 31004311 DOI: 10.1007/s11239-019-01849-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Von Willebrand Factor (vWF) is a large glycoprotein with a broad range of physiological and pathological functions in health and disease. While vWF is critical for normal hemostasis, vascular integrity and repair, quantitative and qualitative abnormalities in the molecule can predispose to serious bleeding and thrombosis. The heritable form of von Willebrand Disease was first described nearly a century ago, but more recently, recognition of an acquired condition known as acquired von Willebrand Syndrome (AVWF) has emerged in persons with hematological, endocrine and cardiovascular diseases, disorders and conditions. An in-depth understanding of the causes, diagnostic approach and management of AVWS is important for practicing clinicians.
Collapse
Affiliation(s)
- Radha Mehta
- Division of Cardiovascular Health and Disease, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Muhammad Athar
- Division of Cardiovascular Health and Disease, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Sameh Girgis
- Division of Cardiovascular Health and Disease, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Atif Hassan
- Division of Cardiovascular Health and Disease, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Richard C Becker
- Stonehill Professor of Medicine, University of Cincinnati College of Medicine, 231 Albert Sabin Way, CVC 4th Floor, Room 4936, Cincinnati, 45267, OH, USA.
| |
Collapse
|
34
|
Donat C, Thanei S, Trendelenburg M. Binding of von Willebrand Factor to Complement C1q Decreases the Phagocytosis of Cholesterol Crystals and Subsequent IL-1 Secretion in Macrophages. Front Immunol 2019; 10:2712. [PMID: 31824501 PMCID: PMC6881245 DOI: 10.3389/fimmu.2019.02712] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 11/05/2019] [Indexed: 12/17/2022] Open
Abstract
Complement C1q, the initiation molecule of the classical pathway, exerts various immunomodulatory functions independent of complement activation. Non-classical functions of C1q include the clearance of apoptotic cells and cholesterol crystals (CC), as well as the modulation of cytokine secretion by immune cells such as macrophages. Moreover, C1q has been shown to act as a binding partner for von Willebrand factor (vWF), initiation molecule of primary hemostasis. However, the consequences of this C1q-vWF interaction on the phagocytosis of CC by macrophages has remained elusive until now. Here, we used CC-C1q-vWF complexes to study immunological effects on human monocyte-derived macrophages (HMDMs). HMDMs were investigated by analyzing surface receptor expression, phagocytosis of CC complexes, cytokine secretion, and caspase-1 activity. We found that vWF only bound to CC in a C1q-dependent manner. Exposure of macrophages to CC-C1q-vWF complexes resulted in an upregulated expression of phagocytosis-mediating receptors MerTK, LRP-1, and SR-A1 as well as CD14, LAIR1, and PD-L1 when compared to CC-C1q without vWF, whereas phagocytosis of CC-C1q complexes was hampered in the presence of vWF. In addition, we observed a diminished caspase-1 activation and subsequent reduction in pro-inflammatory IL-1β cytokine secretion, IL-1β/IL-1RA ratio and IL-1α/IL-1RA ratio. In conclusion, our results demonstrate that vWF binding to C1q substantially modulates the effects of C1q on HMDMs. In this way, the C1q-vWF interaction might be beneficial in dampening inflammation, e.g., in the context of atherosclerosis.
Collapse
Affiliation(s)
- Claudia Donat
- Laboratory of Clinical Immunology, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Sophia Thanei
- Laboratory of Clinical Immunology, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Marten Trendelenburg
- Laboratory of Clinical Immunology, Department of Biomedicine, University of Basel, Basel, Switzerland.,Division of Internal Medicine, University Hospital of Basel, Basel, Switzerland
| |
Collapse
|
35
|
Buser TA, Martinez M, Drexler B, Tschan-Plessl A, Heim D, Passweg J, Tsakiris DA. Biological markers of hemostasis and endothelial activation in patients with a hematological malignancy with or without stem cell transplants. Eur J Haematol 2019; 103:472-477. [PMID: 31390488 DOI: 10.1111/ejh.13310] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 07/29/2019] [Accepted: 08/01/2019] [Indexed: 11/27/2022]
Abstract
INTRODUCTION In this study, we analyzed the changes of thrombin generation as marker of coagulation activation and von Willebrand factor (vWF) levels as a marker of endothelial activation in patients undergoing chemotherapy, autologous, or allogeneic HSCT. We studied possible associations to triggering factors, including acute GVHD, thrombosis, time to engraftment, and bleeding complications. METHODS Seventy-six patients treated for hematologic malignancies at the University Hospital Basel between 2005 and 2008 took part in this study. Blood samples were collected before the start of chemotherapy or conditioning regime (median day -2), in an early phase (median day + 12), and at a later point in time (median day + 24). RESULTS Thrombin generation decreased in all three groups to about 50% of the initial value. Patients undergoing autologous or allogeneic HSCT showed significantly (P = .026 and P = .01) higher vWF levels than patients undergoing chemotherapy. Eighteen patients (42%) receiving allogeneic HSCT developed GVHD, vWF levels in patients with GVHD were significantly (P = .008) higher than in patients without GVHD. DISCUSSION Patients receiving autologous or allogeneic HSCT had significantly higher vWF levels in the acute phase after the transplant than patients receiving chemotherapy alone, implicating a persistent stimulation of the endothelium, possibly within the context of GVHD.
Collapse
Affiliation(s)
| | - Maria Martinez
- Department of Haematology, University Hospital Basel, Basel, Switzerland
| | - Beatrice Drexler
- Department of Haematology, University Hospital Basel, Basel, Switzerland
| | | | - Dominik Heim
- Department of Haematology, University Hospital Basel, Basel, Switzerland
| | - Jakob Passweg
- Department of Haematology, University Hospital Basel, Basel, Switzerland
| | | |
Collapse
|
36
|
Swystun LL, Ogiwara K, Lai JD, Ojala JRM, Rawley O, Lassalle F, Notley C, Rengby O, Michels A, Nesbitt K, Tryggvason K, Lillicrap D. The scavenger receptor SCARA5 is an endocytic receptor for von Willebrand factor expressed by littoral cells in the human spleen. J Thromb Haemost 2019; 17:1384-1396. [PMID: 31126000 PMCID: PMC6689151 DOI: 10.1111/jth.14521] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 05/08/2019] [Accepted: 05/20/2019] [Indexed: 12/11/2022]
Abstract
BACKGROUND Scavenger receptors play a significant role in clearing aged proteins from the plasma, including the large glycoprotein coagulation factors von Willebrand factor (VWF) and factor VIII (FVIII). A large genome-wide association study meta-analysis has identified genetic variants in the gene SCARA5, which encodes the class A scavenger receptor SCARA5, as being associated with plasma levels of VWF and FVIII. OBJECTIVES The ability of SCARA5 to regulate the clearance of VWF-FVIII was characterized. METHODS VWF-FVIII interactions with SCARA5 were evaluated by solid phase binding assays and in vitro cell based assays. The influence of SCARA5 deficiency on VWF:Ag and half-life was assessed in a murine model. The expression pattern of SCARA5 and its colocalization with VWF was evaluated in human tissues. RESULTS VWF and the VWF-FVIII complex bound to human recombinant SCARA5 in a dose- and calcium-dependent manner. SCARA5 expressing HEK 293T cells bound and internalized VWF and the VWF-FVIII complex into early endosomes. In vivo, SCARA5 deficiency had a modest influence on the half-life of human VWF. mRNA analysis and immunohistochemistry determined that human SCARA5 is expressed in kidney podocytes and the red pulp, white pulp, and marginal zone of the spleen. VWF was found to colocalize with SCARA5 expressed by littoral cells lining the red pulp of the human spleen. CONCLUSIONS SCARA5 is an adhesive and endocytic receptor for VWF. In human tissues, SCARA5 is expressed by kidney podocytes and splenic littoral endothelial cells. SCARA5 may have a modest influence on VWF clearance in humans.
Collapse
Affiliation(s)
- Laura L. Swystun
- Department of Pathology and Molecular Medicine, Queen’s University, Kingston, ON, Canada
- Indicates co-first authorship
| | - Kenichi Ogiwara
- Department of Pathology and Molecular Medicine, Queen’s University, Kingston, ON, Canada
- Indicates co-first authorship
| | - Jesse D. Lai
- Department of Pathology and Molecular Medicine, Queen’s University, Kingston, ON, Canada
| | - Juha R. M. Ojala
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Orla Rawley
- Department of Pathology and Molecular Medicine, Queen’s University, Kingston, ON, Canada
| | - Fanny Lassalle
- Department of Pathology and Molecular Medicine, Queen’s University, Kingston, ON, Canada
| | - Colleen Notley
- Department of Pathology and Molecular Medicine, Queen’s University, Kingston, ON, Canada
| | - Olle Rengby
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Alison Michels
- Department of Pathology and Molecular Medicine, Queen’s University, Kingston, ON, Canada
| | - Kate Nesbitt
- Department of Pathology and Molecular Medicine, Queen’s University, Kingston, ON, Canada
| | - Karl Tryggvason
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - David Lillicrap
- Department of Pathology and Molecular Medicine, Queen’s University, Kingston, ON, Canada
| |
Collapse
|
37
|
Béguin EP, Przeradzka MA, Janssen EFJ, Meems H, Sedek M, van der Zwaan C, Mertens K, van den Biggelaar M, Meijer AB, Mourik MJ. Endocytosis by macrophages: interplay of macrophage scavenger receptor-1 and LDL receptor-related protein-1. Haematologica 2019; 105:e133-e137. [PMID: 31248969 DOI: 10.3324/haematol.2018.210682] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- Eelke P Béguin
- Department of Molecular and Cellular Hemostasis, Sanquin Research, Amsterdam
| | | | - Esmée F J Janssen
- Department of Molecular and Cellular Hemostasis, Sanquin Research, Amsterdam
| | - Henriët Meems
- Department of Molecular and Cellular Hemostasis, Sanquin Research, Amsterdam
| | - Magdalena Sedek
- Department of Molecular and Cellular Hemostasis, Sanquin Research, Amsterdam
| | | | - Koen Mertens
- Department of Molecular and Cellular Hemostasis, Sanquin Research, Amsterdam.,Department of Pharmaceutical Sciences, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht
| | - Maartje van den Biggelaar
- Department of Molecular and Cellular Hemostasis, Sanquin Research, Amsterdam.,Department of Biomolecular Mass Spectrometry and Proteomics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, the Netherlands
| | - Alexander B Meijer
- Department of Molecular and Cellular Hemostasis, Sanquin Research, Amsterdam .,Department of Biomolecular Mass Spectrometry and Proteomics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, the Netherlands
| | - Marjon J Mourik
- Department of Molecular and Cellular Hemostasis, Sanquin Research, Amsterdam
| |
Collapse
|
38
|
Hayakawa M, Kato S, Matsui T, Sakai K, Fujimura Y, Matsumoto M. Blood group antigen A on von Willebrand factor is more protective against ADAMTS13 cleavage than antigens B and H. J Thromb Haemost 2019; 17:975-983. [PMID: 30929293 DOI: 10.1111/jth.14444] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 02/28/2019] [Accepted: 03/23/2019] [Indexed: 01/10/2023]
Abstract
BACKGROUND ADAMTS13 specifically cleaves the peptide bond between Y1605 and M1606 within the VWF-A2 domain. OBJECTIVE The VWF contains ABO(H) blood group antigens, which may influence the susceptibility of VWF to ADAMTS13. METHODS Using a unique monoclonal antibody recognizing the Y1605 residue, we have developed a sandwich ELISA to analyze the generation of a VWF-DP by ADAMTS13 quantitatively. RESULTS Production of VWF-DP after exposure to four different degrees of high shear stress was validated in comparison to the reduction in high-molecular-weight multimers using VWF multimer analysis. In analysis of plasma from 259 healthy individuals, plasma levels of VWF antigen (VWF:Ag) were significantly lower in blood group O than in the other groups and were significantly correlated with plasma VWF-DP levels. The ratio between VWF-DP and VWF:Ag was significantly higher in blood group O than in blood groups A and AB. The ratio in blood group B was also significantly higher than those in A and AB, but did not differ from blood group O. Finally, to examine whether ABO(H) blood group antigens contributed to VWF cleavage, 82 plasma samples were exposed to high shear stress using a cone-plate shear stress inducer. The difference in the VWF-DP/VWF:Ag ratio before and after high shear stress in blood group O was significantly greater than those in groups A and AB. CONCLUSION These results indicate that blood group antigen A on VWF was more protective against ADAMTS13 cleavage than antigens B and H.
Collapse
Affiliation(s)
- Masaki Hayakawa
- Department of Blood Transfusion Medicine, Nara Medical University, Nara, Japan
| | - Seiji Kato
- Department of Blood Transfusion Medicine, Nara Medical University, Nara, Japan
| | - Taei Matsui
- Clinical Laboratory Medicine, Graduate School of Health Sciences, Fujita Health University School of Health Sciences, Toyoake, Japan
| | - Kazuya Sakai
- Department of Blood Transfusion Medicine, Nara Medical University, Nara, Japan
| | | | - Masanori Matsumoto
- Department of Blood Transfusion Medicine, Nara Medical University, Nara, Japan
| |
Collapse
|
39
|
Kim YJ, Paik SH, Han SK, Lee S, Jeong Y, Kim JY, Kim CW. Quality by Design characterization of the perfusion culture process for recombinant FVIII. Biologicals 2019; 59:37-46. [DOI: 10.1016/j.biologicals.2019.03.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 02/22/2019] [Accepted: 03/06/2019] [Indexed: 11/27/2022] Open
|
40
|
Sargentini-Maier ML, De Decker P, Tersteeg C, Canvin J, Callewaert F, De Winter H. Clinical pharmacology of caplacizumab for the treatment of patients with acquired thrombotic thrombocytopenic purpura. Expert Rev Clin Pharmacol 2019; 12:537-545. [PMID: 30977686 DOI: 10.1080/17512433.2019.1607293] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Introduction: Caplacizumab is a humanized anti-von Willebrand Factor (vWF) Nanobody® for the treatment of acquired Thrombotic Thrombocytopenic Purpura (aTTP). Caplacizumab targets the A1-domain of vWF, inhibiting the interaction between vWF and platelets. Clinical studies conducted in aTTP patients confirmed the rapid and sustained complete suppression of the vWF activity using an initial intravenous dose of 10 mg, and a maintenance subcutaneous 10 mg daily dosing regimen, with corresponding favorable efficacy and safety profiles. Areas covered: The pharmacokinetics of caplacizumab are non-linear, characterized by a target-mediated disposition and the exposure is dependent upon drug and target concentration over time. The pharmacokinetics of caplacizumab are predictable when considering the turn-over of the circulating vWF and its modulation by the drug over time. Renal and hepatic impairment are not expected to influence the exposure to the drug, and no direct or indirect drug-drug pharmacokinetic interactions are anticipated based on the mechanism of action and the specificity of the pharmacodynamic effect of caplacizumab. Expert opinion: Caplacizumab prevents the interaction between vWF and platelets, offering a direct and rapid therapeutic intervention to stop microthrombosis. The combination of caplacizumab with plasma exchange and immunosuppression represents an important, potentially life-saving advance in the treatment of aTTP patients.
Collapse
Affiliation(s)
| | - Philip De Decker
- b Pharmacology , Ablynx, a Sanofi company , Zwijnaarde , Belgium
| | | | - Jan Canvin
- d Medical Safety Evaluation , Sanofi , Guilford , UK
| | | | - Hilde De Winter
- f Formerly Clinical Development , Ablynx NV , Ghent , Belgium
| |
Collapse
|
41
|
O'Sullivan JM, Ward S, Lavin M, O'Donnell JS. von Willebrand factor clearance - biological mechanisms and clinical significance. Br J Haematol 2018; 183:185-195. [DOI: 10.1111/bjh.15565] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Jamie M. O'Sullivan
- Haemostasis Research Group; Irish Centre for Vascular Biology; Royal College of Surgeons in Ireland; Dublin Ireland
| | - Soracha Ward
- Haemostasis Research Group; Irish Centre for Vascular Biology; Royal College of Surgeons in Ireland; Dublin Ireland
| | - Michelle Lavin
- Haemostasis Research Group; Irish Centre for Vascular Biology; Royal College of Surgeons in Ireland; Dublin Ireland
- National Coagulation Centre; St James's Hospital; Dublin Ireland
| | - James S. O'Donnell
- Haemostasis Research Group; Irish Centre for Vascular Biology; Royal College of Surgeons in Ireland; Dublin Ireland
- National Coagulation Centre; St James's Hospital; Dublin Ireland
| |
Collapse
|
42
|
Swystun LL, Lai JD, Notley C, Georgescu I, Paine AS, Mewburn J, Nesbitt K, Schledzewski K, Géraud C, Kzhyshkowska J, Goerdt S, Hopman W, Montgomery RR, James PD, Lillicrap D. The endothelial cell receptor stabilin-2 regulates VWF-FVIII complex half-life and immunogenicity. J Clin Invest 2018; 128:4057-4073. [PMID: 30124466 DOI: 10.1172/jci96400] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 07/03/2018] [Indexed: 11/17/2022] Open
Abstract
Quantitative abnormalities of the von Willebrand factor-factor VIII (VWF-FVIII) complex associate with inherited bleeding or thrombotic disorders. Receptor-mediated interactions between plasma VWF-FVIII and phagocytic or immune cells can influence their hemostatic and immunogenic activities. Genetic association studies have demonstrated that variants in the STAB2 gene, which encodes the scavenger receptor stabilin-2, associate with plasma levels of VWF-FVIII. However, the mechanistic basis and pathophysiological consequences of this association are unknown. We have demonstrated that stabilin-2-expressing cells bind and internalize human VWF and FVIII in a VWF-dependent manner, and stabilin-2-deficient mice displayed prolonged human VWF-FVIII half-life compared with controls. The stabilin-2 variant p.E2377K significantly decreased stabilin-2 expression and impaired VWF endocytosis in a heterologous expression system, and common STAB2 variants associated with plasma VWF levels in type 1 von Willebrand disease patients. STAB2-deficient mice displayed a decreased immunogenic response to human VWF-FVIII complex, while coinfusion of human VWF-FVIII with the stabilin-2 ligand hyaluronic acid attenuated the immune response to exogenous FVIII. Collectively, these data suggest that stabilin-2 functions as both a clearance and an immunoregulatory receptor for VWF-FVIII, making stabilin-2 a novel molecular target for modification of the half-life of VWF-FVIII and the immune response to VWF-FVIII concentrates.
Collapse
Affiliation(s)
| | - Jesse D Lai
- Department of Pathology and Molecular Medicine and
| | | | | | | | - Jeff Mewburn
- Division of Cancer Biology and Genetics, Queen's University, Kingston, Ontario, Canada
| | - Kate Nesbitt
- Department of Pathology and Molecular Medicine and
| | - Kai Schledzewski
- Department of Dermatology, Venereology and Allergology, University Medical Center and Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Cyrill Géraud
- Department of Dermatology, Venereology and Allergology, University Medical Center and Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Julia Kzhyshkowska
- Department of Dermatology, Venereology and Allergology, University Medical Center and Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Sergij Goerdt
- Department of Dermatology, Venereology and Allergology, University Medical Center and Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Wilma Hopman
- Department of Public Health Sciences, Queen's University, Kingston, Ontario, Canada
| | - Robert R Montgomery
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Paula D James
- Department of Medicine, Queen's University, Kingston, Ontario, Canada
| | | |
Collapse
|
43
|
Venous thromboembolism, factor VIII and chronic kidney disease. Thromb Res 2018; 170:10-19. [PMID: 30081388 DOI: 10.1016/j.thromres.2018.07.029] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 07/30/2018] [Indexed: 12/12/2022]
Abstract
Chronic kidney disease (CKD) affects 30 million Americans and is associated with approximately a two-fold increased risk of venous thromboembolism (VTE). There is a graded increased risk of VTE across declining kidney function, as measured by estimated glomerular filtration rate (eGFR) and albuminuria. When patients with end-stage kidney disease (ESKD) experience VTE they are more likely than the general population to be hospitalized and they have a higher mortality. The incidence and consequences of VTE may also differ depending on the cause of kidney disease. In addition, kidney transplant patients with VTE are at a greater risk for death and graft loss than transplant patients without VTE. The reasons that patients with CKD are at increased risk of VTE are not well understood, but recent data suggest that factor VIII is a mediator. Factor VIII is an essential cofactor in the coagulation cascade and a strong risk factor for VTE in general. It is inversely correlated with eGFR and prospective studies demonstrate that factor VIII activity predicts incident CKD and rapid eGFR decline. The etiology of CKD may also influence factor VIII levels. This review summarizes the epidemiology VTE in CKD and reviews the biochemistry of factor VIII and determinants of its levels, including von Willebrand factor and ABO blood group. We explore mechanisms by which the complications of CKD might give rise to higher factor VIII and suggests future research directions to understand how factor VIII and CKD are linked.
Collapse
|
44
|
Anti-Drug Antibodies: Emerging Approaches to Predict, Reduce or Reverse Biotherapeutic Immunogenicity. Antibodies (Basel) 2018; 7:antib7020019. [PMID: 31544871 PMCID: PMC6698869 DOI: 10.3390/antib7020019] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 05/25/2018] [Accepted: 05/29/2018] [Indexed: 12/13/2022] Open
Abstract
The development of anti-drug antibodies (ADAs) following administration of biotherapeutics to patients is a vexing problem that is attracting increasing attention from pharmaceutical and biotechnology companies. This serious clinical problem is also spawning creative research into novel approaches to predict, avoid, and in some cases even reverse such deleterious immune responses. CD4+ T cells are essential players in the development of most ADAs, while memory B-cell and long-lived plasma cells amplify and maintain these responses. This review summarizes methods to predict and experimentally identify T-cell and B-cell epitopes in therapeutic proteins, with a particular focus on blood coagulation factor VIII (FVIII), whose immunogenicity is clinically significant and is the subject of intensive current research. Methods to phenotype ADA responses in humans are described, including T-cell stimulation assays, and both established and novel approaches to determine the titers, epitopes and isotypes of the ADAs themselves. Although rational protein engineering can reduce the immunogenicity of many biotherapeutics, complementary, novel approaches to induce specific tolerance, especially during initial exposures, are expected to play significant roles in future efforts to reduce or reverse these unwanted immune responses.
Collapse
|
45
|
Lai JD, Cartier D, Hartholt RB, Swystun LL, van Velzen AS, den Haan JMM, Hough C, Voorberg J, Lillicrap D. Early cellular interactions and immune transcriptome profiles in human factor VIII-exposed hemophilia A mice. J Thromb Haemost 2018; 16:533-545. [PMID: 29285874 DOI: 10.1111/jth.13936] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Indexed: 12/16/2022]
Abstract
Essentials Initial immune cell interactions leading to factor (F) VIII immunity are not well characterized. We assessed cellular interactions and expression profiles in hemophilia A mice. MARCO+, followed by SIGLEC1+ and SIGNR1+ macrophages co-localize most with human FVIII. The splenic transcriptome highlights potential therapeutic targets to prevent inhibitors. SUMMARY Background Developing factor VIII (FVIII) inhibitory antibodies is the most serious complication in hemophilia A treatment, representing a significant health and economic burden. A better understanding of the early events in an immune response leading to this outcome may provide insight into inhibitor development. Objective To identify early mediators of FVIII immunity and to detail immune expression profiles in the spleen and liver. Methods C57Bl/6 F8 E16 knockout mice were infused with 5-20 μg (2000-8000 IU kg-1 ) of recombinant FVIII. Spleens were frozen at various time-points post-infusion and stained for FVIII and cellular markers. Splenic and liver RNA expression analysis was performed 3 h post-infusion of 0.6 μg (240 IU kg-1 ) FVIII by nCounter technology using a 561-gene immunology panel. Results FVIII localization in the spleen did not change over 2.5 h. We observed significantly higher co-localization of FVIII with MARCO+ cells compared with SIGLEC1+ and SIGNR1+ in the splenic marginal zone. FVIII exhibited little co-localization with CD11c+ dendritic cells and the macrophage mannose receptor, CD206. Following FVIII infusion, the splenic mRNA profiling identified genes such as Tnfaip6 and Il23r, which are implicated in chemotaxis and a proinflammatory Th17 response, respectively. In contrast, an upregulation of Gfi1 in the liver suggests an anti-inflammatory environment. Conclusions FVIII co-localizes predominantly with marginal zone macrophages (MARCO+ ) in the murine spleen following intravenous infusion. Targeting pathways that are implicated in the early FVIII innate immune response in the spleen may lead to therapeutic interventions to prevent inhibitor formation.
Collapse
Affiliation(s)
- J D Lai
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, Ontario, Canada
| | - D Cartier
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, Ontario, Canada
| | - R B Hartholt
- Department of Plasma Proteins, Sanquin-Academic Medical Center Landsteiner Laboratory, Amsterdam, the Netherlands
| | - L L Swystun
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, Ontario, Canada
| | - A S van Velzen
- Pediatrics, Hematology, Academic Medical Centre, University of Amsterdam, Amsterdam, the Netherlands
| | - J M M den Haan
- Molecular Cell Biology and Immunology, VU University Medical Center, Amsterdam, the Netherlands
| | - C Hough
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, Ontario, Canada
| | - J Voorberg
- Department of Plasma Proteins, Sanquin-Academic Medical Center Landsteiner Laboratory, Amsterdam, the Netherlands
| | - D Lillicrap
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, Ontario, Canada
| |
Collapse
|
46
|
Wohner N, Muczynski V, Mohamadi A, Legendre P, Proulle V, Aymé G, Christophe OD, Lenting PJ, Denis CV, Casari C. Macrophage scavenger receptor SR-AI contributes to the clearance of von Willebrand factor. Haematologica 2018; 103:728-737. [PMID: 29326120 PMCID: PMC5865439 DOI: 10.3324/haematol.2017.175216] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2017] [Accepted: 12/27/2017] [Indexed: 12/25/2022] Open
Abstract
Previously, we found that LDL-receptor related protein-1 on macrophages mediated shear stress-dependent clearance of von Willebrand factor. In control experiments, however, we observed that von Willebrand factor also binds to macrophages independently of this receptor under static conditions, suggesting the existence of additional clearance-receptors. In search for such receptors, we focused on the macrophage-specific scavenger-receptor SR-AI. von Willebrand factor displays efficient binding to SR-AI (half-maximum binding 14±5 nM). Binding is calcium-dependent and is inhibited by 72±4% in the combined presence of antibodies against the A1- and D4-domains. Association with SR-AI was confirmed in cell-binding experiments. In addition, binding to bone marrow-derived murine SR-AI-deficient macrophages was strongly reduced compared to binding to wild-type murine macrophages. Following expression via hydrodynamic gene transfer, we determined ratios for von Willebrand factor-propeptide over von Willebrand factor-antigen, a marker of von Willebrand factor clearance. Propeptide/antigen ratios were significantly reduced in SR-AI-deficient mice compared to wild-type mice (0.6±0.2 versus 1.3±0.3; P<0.0001), compatible with a slower clearance of von Willebrand factor in SR-AI-deficient mice. Interestingly, mutants associated with increased clearance (von Willebrand factor/p.R1205H and von Willebrand factor/p.S2179F) had significantly increased binding to purified SR-AI and SR-AI expressed on macrophages. Accordingly, propeptide/antigen ratios for these mutants were reduced in SR-AI-deficient mice. In conclusion, we have identified SR-AI as a novel macrophage-specific receptor for von Willebrand factor. Enhanced binding of von Willebrand factor mutants to SR-AI may contribute to the increased clearance of these mutants.
Collapse
Affiliation(s)
- Nikolett Wohner
- Institut National de la Santé et de la Recherche Médicale, UMR_S 1176, Univ. Paris-Sud, Université Paris-Saclay, 94276 Le Kremlin-Bicêtre, France
| | - Vincent Muczynski
- Institut National de la Santé et de la Recherche Médicale, UMR_S 1176, Univ. Paris-Sud, Université Paris-Saclay, 94276 Le Kremlin-Bicêtre, France
| | - Amel Mohamadi
- Institut National de la Santé et de la Recherche Médicale, UMR_S 1176, Univ. Paris-Sud, Université Paris-Saclay, 94276 Le Kremlin-Bicêtre, France
| | - Paulette Legendre
- Institut National de la Santé et de la Recherche Médicale, UMR_S 1176, Univ. Paris-Sud, Université Paris-Saclay, 94276 Le Kremlin-Bicêtre, France
| | - Valérie Proulle
- Institut National de la Santé et de la Recherche Médicale, UMR_S 1176, Univ. Paris-Sud, Université Paris-Saclay, 94276 Le Kremlin-Bicêtre, France.,Service d'Hématologie Biologique, Centre Hospitalier Universitaire Bicêtre, Assistance Publique-Hôpitaux de Paris, 94276 Le Kremlin-Bicêtre, France
| | - Gabriel Aymé
- Institut National de la Santé et de la Recherche Médicale, UMR_S 1176, Univ. Paris-Sud, Université Paris-Saclay, 94276 Le Kremlin-Bicêtre, France
| | - Olivier D Christophe
- Institut National de la Santé et de la Recherche Médicale, UMR_S 1176, Univ. Paris-Sud, Université Paris-Saclay, 94276 Le Kremlin-Bicêtre, France
| | - Peter J Lenting
- Institut National de la Santé et de la Recherche Médicale, UMR_S 1176, Univ. Paris-Sud, Université Paris-Saclay, 94276 Le Kremlin-Bicêtre, France
| | - Cécile V Denis
- Institut National de la Santé et de la Recherche Médicale, UMR_S 1176, Univ. Paris-Sud, Université Paris-Saclay, 94276 Le Kremlin-Bicêtre, France
| | - Caterina Casari
- Institut National de la Santé et de la Recherche Médicale, UMR_S 1176, Univ. Paris-Sud, Université Paris-Saclay, 94276 Le Kremlin-Bicêtre, France
| |
Collapse
|
47
|
Geys L, Roose E, Scroyen I, Rottensteiner H, Tersteeg C, Hoylaerts MF, Vanhoorelbeke K, Lijnen HR. Platelet rescue by macrophage depletion in obese ADAMTS-13-deficient mice at risk of thrombotic thrombocytopenic purpura. J Thromb Haemost 2018; 16:150-163. [PMID: 29121438 DOI: 10.1111/jth.13901] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Indexed: 11/30/2022]
Abstract
Essentials Obesity is a potential risk factor for development of thrombotic thrombocytopenic purpura (TTP). Obese ADAMTS-13-deficient mice were triggered with von Willebrand factor (VWF). Depletion of hepatic and splenic macrophages protects against thrombocytopenia in this model. VWF enhances phagocytosis of platelets by macrophages, dose-dependently. SUMMARY Background Thrombotic thrombocytopenic purpura (TTP) is caused by the absence of ADAMTS-13 activity. Thrombocytopenia is presumably related to the formation of microthrombi rich in von Willebrand factor (VWF) and platelets. Obesity may be a risk factor for TTP; it is associated with abundance of macrophages that may phagocytose platelets. Objectives To evaluate the role of obesity and ADAMTS-13 deficiency in TTP, and to establish whether macrophages contribute to thrombocytopenia. Methods Lean or obese ADAMTS-13-deficient (Adamts-13-/- ) and wild-type (WT) mice were injected with 250 U kg-1 of recombinant human VWF (rVWF), and TTP characteristics were evaluated 24 h later. In separate experiments, macrophages were depleted in the liver and spleen of lean and obese WT or Adamts-13-/- mice by injection of clodronate-liposomes, 48 h before injection of rVWF. Results Obese Adamts-13-/- mice had a lower platelet count than their lean counterparts, suggesting that they might be more susceptible to TTP development. Lean Adamts-13-/- mice triggered with a threshold dose of rVWF did not develop TTP, whereas typical TTP symptoms developed in obese Adamts-13-/- mice, including severe thrombocytopenia and higher lactate dehydrogenase (LDH) levels. Removal of hepatic and splenic macrophages by clodronate injection in obese Adamts-13-/- mice before treatment with rVWF preserved the platelet counts measured 24 h after the trigger. In vitro experiments with cultured macrophages confirmed a VWF dose-dependent increase of platelet phagocytosis. Conclusions Obese Adamts-13-/- mice are more susceptible to the induction of TTP-related thrombocytopenia than lean mice. Phagocytosis of platelets by macrophages contributes to thrombocytopenia after rVWF injection in this model.
Collapse
Affiliation(s)
- L Geys
- Center for Molecular and Vascular Biology, Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| | - E Roose
- Laboratory for Thrombosis Research, KU Leuven Kulak, Kortrijk, Belgium
| | - I Scroyen
- Center for Molecular and Vascular Biology, Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| | | | - C Tersteeg
- Laboratory for Thrombosis Research, KU Leuven Kulak, Kortrijk, Belgium
| | - M F Hoylaerts
- Center for Molecular and Vascular Biology, Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| | - K Vanhoorelbeke
- Laboratory for Thrombosis Research, KU Leuven Kulak, Kortrijk, Belgium
| | - H R Lijnen
- Center for Molecular and Vascular Biology, Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| |
Collapse
|
48
|
Marginal immunogenicity of factor VIII. Blood 2017; 130:2450-2451. [DOI: 10.1182/blood-2017-10-811109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
49
|
Miller L, Weissmüller S, Ringler E, Crauwels P, van Zandbergen G, Seitz R, Waibler Z. Danger signal-dependent activation of human dendritic cells by plasma-derived factor VIII products. Thromb Haemost 2017; 114:268-76. [DOI: 10.1160/th14-09-0789] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Accepted: 03/16/2015] [Indexed: 12/31/2022]
Abstract
SummaryTreatment of haemophilia A by infusions of the clotting factor VIII (FVIII) results in the development of inhibitors/anti-drug antibodies in up to 25 % of patients. Mechanisms leading to immunogenicity of FVIII products are not yet fully understood. Amongst other factors, danger signals as elicited upon infection or surgery have been proposed to play a role. In the present study, we focused on effects of danger signals on maturation and activation of dendritic cells (DC) in the context of FVIII application. Human monocyte-derived DC were treated with FVIII alone, with a danger signal alone or a combination of both. By testing more than 60 different healthy donors, we show that FVIII and the bacterial danger signal lipopolysaccharide synergise in increasing DC activation, as characterised by increased expression of co-stimulatory molecules and secretion of pro-inflammatory cytokines. The degree and frequency of this synergistic activation correlate with CD86 expression levels on immature DC prior to stimulation. In our assay system, plasma-derived but not recombinant FVIII products activate human DC in a danger signal-dependent manner. Further tested danger signals, such as R848 also induced DC activation in combination with FVIII, albeit not in every tested donor. In our hands, human DC but not human B cells or macrophages could be activated by FVIII in a danger signal-dependent manner. Our results suggest that immunogenicity of FVIII is a result of multiple factors including the presence of danger, predisposition of the patient, and the choice of a FVIII product for treatment.
Collapse
|
50
|
LeVine DN, Cianciolo RE, Linder KE, Bizikova P, Birkenheuer AJ, Brooks MB, Salous AK, Nordone SK, Bellinger DA, Marr H, Jones SL, Fischer TH, Deng Y, Mazepa M, Key NS. Endothelial alterations in a canine model of immune thrombocytopenia. Platelets 2017; 30:88-97. [PMID: 29182425 DOI: 10.1080/09537104.2017.1378807] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Bleeding heterogeneity amongst patients with immune thrombocytopenia (ITP) is poorly understood. Platelets play a role in maintaining endothelial integrity, and variable thrombocytopenia-induced endothelial changes may influence bleeding severity. Platelet-derived endothelial stabilizers and markers of endothelial integrity in ITP are largely underexplored. We hypothesized that, in a canine ITP model, thrombocytopenia would lead to alterations in the endothelial ultrastructure and that the Von Willebrand factor (vWF) would serve as a marker of endothelial injury associated with thrombocytopenia. Thrombocytopenia was induced in healthy dogs with an antiplatelet antibody infusion; control dogs received an isotype control antibody. Cutaneous biopsies were obtained prior to thrombocytopenia induction, at platelet nadir, 24 hours after nadir, and on platelet recovery. Cutaneous capillaries were assessed by electron microscopy for vessel thickness, the number of pinocytotic vesicles, the number of large vacuoles, and the number of gaps between cells. Pinocytotic vesicles are thought to represent an endothelial membrane reserve that can be used for repair of damaged endothelial cells. Plasma samples were assessed for vWF. ITP dogs had significantly decreased pinocytotic vesicle numbers compared to control dogs (P = 0.0357) and the increase in plasma vWF from baseline to 24 hours correlated directly with the endothelial large vacuole score (R = 0.99103; P < 0.0001). This direct correlation between plasma vWF and the number of large vacuoles, representing the vesiculo-vacuolar organelle (VVO), a permeability structure, suggests that circulating vWF could serve as a biomarker for endothelial alterations and potentially a predictor of thrombocytopenic bleeding. Overall, our results indicate that endothelial damage occurs in the canine ITP model and variability in the degree of endothelial damage may account for differences in the bleeding phenotype among patients with ITP.
Collapse
Affiliation(s)
- Dana N LeVine
- a Department of Veterinary Clinical Sciences , Iowa State University , Ames , IA , USA.,b Department of Clinical Sciences , North Carolina State University, College of Veterinary Medicine , Raleigh , NC , USA.,h Department of Pathology and Laboratory Animal Medicine , University of North Carolina , Chapel Hill , NC , USA
| | - Rachel E Cianciolo
- c Department of Veterinary Biosciences , The Ohio State University , Columbus , OH , USA
| | - Keith E Linder
- d Department of Population Health and Pathobiology , North Carolina State University, College of Veterinary Medicine , Raleigh , NC , USA
| | - Petra Bizikova
- b Department of Clinical Sciences , North Carolina State University, College of Veterinary Medicine , Raleigh , NC , USA
| | - Adam J Birkenheuer
- b Department of Clinical Sciences , North Carolina State University, College of Veterinary Medicine , Raleigh , NC , USA
| | - Marjory B Brooks
- e Department of Population Medicine and Diagnostic Sciences , Cornell University, College of Veterinary Medicine , Ithaca , NY , USA
| | - Abdelghaffar K Salous
- f Division of Cardiovascular Medicine , The Gill Heart Institute, University of Kentucky , Lexington , KY , USA
| | - Shila K Nordone
- g Department of Molecular Biomedical Sciences , North Carolina State University, College of Veterinary Medicine , Raleigh , NC , USA
| | - Dwight A Bellinger
- h Department of Pathology and Laboratory Animal Medicine , University of North Carolina , Chapel Hill , NC , USA
| | - Henry Marr
- b Department of Clinical Sciences , North Carolina State University, College of Veterinary Medicine , Raleigh , NC , USA
| | - Sam L Jones
- b Department of Clinical Sciences , North Carolina State University, College of Veterinary Medicine , Raleigh , NC , USA
| | - Thomas H Fischer
- h Department of Pathology and Laboratory Animal Medicine , University of North Carolina , Chapel Hill , NC , USA
| | - Yu Deng
- i Department of Biostatistics , University of North Carolina , Chapel Hill , NC , USA
| | - Marshall Mazepa
- h Department of Pathology and Laboratory Animal Medicine , University of North Carolina , Chapel Hill , NC , USA
| | - Nigel S Key
- h Department of Pathology and Laboratory Animal Medicine , University of North Carolina , Chapel Hill , NC , USA.,j Department of Medicine , University of North Carolina , Chapel Hill , NC , USA
| |
Collapse
|