1
|
Sun J, Yang D, Huang Y, Jiao Z, Yu S, Liu Y, Gong K, Zhao G. The discovery of novel N-heterocyclic-based AKT inhibitors with potential efficacy against prostate cancer. Eur J Med Chem 2025; 289:117435. [PMID: 40020427 DOI: 10.1016/j.ejmech.2025.117435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 02/18/2025] [Accepted: 02/20/2025] [Indexed: 03/03/2025]
Abstract
AKT, a serine/threonine protein kinase that plays a pivotal role in the PI3K/AKT/mTOR pathway, is overexpressed or hyperactivated in various cancers, including prostate, breast, and lung cancers. A series of novel nitrogen-containing aromatic heterocyclic compounds were designed, synthesized, and evaluated for AKT inhibition and anticancer activities. Among these, JL16 and JL18 emerged as potent inhibitors of AKT1 kinase, with IC50 values of 7.1 ± 1.2 nM and 8.8 ± 1.3 nM, respectively. Both compounds also demonstrated significant antiproliferative effects against PC-3 prostate cancer cells, with IC50 values of 2.9 ± 0.7 μM (JL16) and 3.0 ± 0.6 μM (JL18). Mechanistic studies revealed that JL16 and JL18 reduced phosphorylated GSK3β levels, confirming AKT target engagement in cells. Notably, JL18 exhibited favorable pharmacokinetic properties in mice, including rapid oral absorption (Tmax = 0.5 h) and 41 % bioavailability. These findings highlight JL16 and JL18 as promising AKT inhibitors for further preclinical development.
Collapse
Affiliation(s)
- Jinxiao Sun
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, PR China
| | - Dezhi Yang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, PR China
| | - Yongmi Huang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, PR China
| | - Zhihao Jiao
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, PR China
| | - Shangzhe Yu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, PR China
| | - Yiru Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, PR China
| | - Kexin Gong
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, PR China
| | - Guisen Zhao
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, PR China.
| |
Collapse
|
2
|
Xie Q, Liu J, Yu P, Qiu T, Jiang S, Yu R. Unlocking the power of probiotics, postbiotics: targeting apoptosis for the treatment and prevention of digestive diseases. Front Nutr 2025; 12:1570268. [PMID: 40230717 PMCID: PMC11994438 DOI: 10.3389/fnut.2025.1570268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Accepted: 03/17/2025] [Indexed: 04/16/2025] Open
Abstract
Digestive diseases are becoming an increasingly serious health burden, creating an urgent need to develop more effective treatment strategies. Probiotics and postbiotics have been extensively studied for their potential to prevent and treat digestive diseases. Growing evidence suggests that programmed cell death, especially apoptosis, is a critical mechanism influencing the molecular and biological aspects of digestive diseases, contributing to disease progression. Understanding the mechanisms and signaling pathways by which probiotics and postbiotics regulate apoptosis could reveal new therapeutic targets for treating digestive diseases. This review focuses on the beneficial effects of probiotics and postbiotics in regulating apoptosis across a range of liver diseases, including non-alcoholic fatty liver disease, liver injury, cirrhosis, and liver cancer. It also explores their effects on gastrointestinal diseases, such as colorectal cancer, colitis, gastrointestinal injury, and infectious diarrhea. Furthermore, some probiotics help balance the gut microbiota, enhance intestinal barrier function, and regulate the immune system, all of which are closely associated with apoptosis. Moreover, emerging technologies, such as encapsulation methods, have been developed to stabilize probiotics, primarily based on experimental findings from rodent and human studies.
Collapse
Affiliation(s)
- Qiuyan Xie
- Department of Neonatology, Affiliated Women’s Hospital of Jiangnan University, Wuxi Maternity and Child Health Care Hospital, Wuxi, China
| | - Ji Liu
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Ping Yu
- Reproductive Medicine Centre, Affiliated Women’s Hospital of Jiangnan University, Wuxi, China
| | - Ting Qiu
- Department of Child Health Care, Affiliated Women’s Hospital of Jiangnan University, Wuxi, China
| | - Shanyu Jiang
- Department of Neonatology, Affiliated Women’s Hospital of Jiangnan University, Wuxi Maternity and Child Health Care Hospital, Wuxi, China
| | - Renqiang Yu
- Department of Neonatology, Affiliated Women’s Hospital of Jiangnan University, Wuxi Maternity and Child Health Care Hospital, Wuxi, China
| |
Collapse
|
3
|
Zhang P, Wang X, Cen X, Zhang Q, Fu Y, Mei Y, Wang X, Wang R, Wang J, Ouyang H, Liang T, Xia H, Han X, Guo G. A deep learning framework for in silico screening of anticancer drugs at the single-cell level. Natl Sci Rev 2025; 12:nwae451. [PMID: 39872221 PMCID: PMC11771446 DOI: 10.1093/nsr/nwae451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 11/28/2024] [Accepted: 11/28/2024] [Indexed: 01/30/2025] Open
Abstract
Tumor heterogeneity plays a pivotal role in tumor progression and resistance to clinical treatment. Single-cell RNA sequencing (scRNA-seq) enables us to explore heterogeneity within a cell population and identify rare cell types, thereby improving our design of targeted therapeutic strategies. Here, we use a pan-cancer and pan-tissue single-cell transcriptional landscape to reveal heterogeneous expression patterns within malignant cells, precancerous cells, as well as cancer-associated stromal and endothelial cells. We introduce a deep learning framework named Shennong for in silico screening of anticancer drugs for targeting each of the landscape cell clusters. Utilizing Shennong, we could predict individual cell responses to pharmacologic compounds, evaluate drug candidates' tissue damaging effects, and investigate their corresponding action mechanisms. Prioritized compounds in Shennong's prediction results include FDA-approved drugs currently undergoing clinical trials for new indications, as well as drug candidates reporting anti-tumor activity. Furthermore, the tissue damaging effect prediction aligns with documented injuries and terminated discovery events. This robust and explainable framework has the potential to accelerate the drug discovery process and enhance the accuracy and efficiency of drug screening.
Collapse
Affiliation(s)
- Peijing Zhang
- Bone Marrow Transplantation Center of the First Affiliated Hospital, and Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou 310000, China
- Liangzhu Laboratory, Zhejiang University, Hangzhou 311121, China
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, Hangzhou 310058, China
| | - Xueyi Wang
- Bone Marrow Transplantation Center of the First Affiliated Hospital, and Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou 310000, China
| | - Xufeng Cen
- Liangzhu Laboratory, Zhejiang University, Hangzhou 311121, China
- Research Center of Clinical Pharmacy of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Qi Zhang
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
- MOE Joint International Research Laboratory of Pancreatic Diseases, Hangzhou 310003, China
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
- Zhejiang University Cancer Center, Hangzhou 310058, China
| | - Yuting Fu
- Bone Marrow Transplantation Center of the First Affiliated Hospital, and Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou 310000, China
| | - Yuqing Mei
- Bone Marrow Transplantation Center of the First Affiliated Hospital, and Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou 310000, China
| | - Xinru Wang
- Bone Marrow Transplantation Center of the First Affiliated Hospital, and Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou 310000, China
| | - Renying Wang
- Bone Marrow Transplantation Center of the First Affiliated Hospital, and Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou 310000, China
| | - Jingjing Wang
- Bone Marrow Transplantation Center of the First Affiliated Hospital, and Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou 310000, China
- Liangzhu Laboratory, Zhejiang University, Hangzhou 311121, China
| | - Hongwei Ouyang
- Liangzhu Laboratory, Zhejiang University, Hangzhou 311121, China
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, Hangzhou 310058, China
| | - Tingbo Liang
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
- MOE Joint International Research Laboratory of Pancreatic Diseases, Hangzhou 310003, China
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
- Zhejiang University Cancer Center, Hangzhou 310058, China
| | - Hongguang Xia
- Liangzhu Laboratory, Zhejiang University, Hangzhou 311121, China
- Research Center of Clinical Pharmacy of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
- Department of Biochemistry, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Xiaoping Han
- Bone Marrow Transplantation Center of the First Affiliated Hospital, and Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou 310000, China
- Zhejiang Key Laboratory of Multi-omics Precision Diagnosis and Treatment of Liver Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310000, China
| | - Guoji Guo
- Bone Marrow Transplantation Center of the First Affiliated Hospital, and Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou 310000, China
- Liangzhu Laboratory, Zhejiang University, Hangzhou 311121, China
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, Hangzhou 310058, China
- Institute of Hematology, Zhejiang University, Hangzhou 310000, China
| |
Collapse
|
4
|
Feng T, Zhang H, Zhou Y, Zhu Y, Shi S, Li K, Lin P, Chen J. Roles of posttranslational modifications in lipid metabolism and cancer progression. Biomark Res 2024; 12:141. [PMID: 39551780 PMCID: PMC11571667 DOI: 10.1186/s40364-024-00681-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 10/30/2024] [Indexed: 11/19/2024] Open
Abstract
Lipid metabolism reprogramming has emerged as a hallmark of malignant tumors. Lipids represent a complex group of biomolecules that not only compose the essential components of biological membranes and act as an energy source, but also function as messengers to integrate various signaling pathways. In tumor cells, de novo lipogenesis plays a crucial role in acquiring lipids to meet the demands of rapid growth. Increasing evidence has suggested that dysregulated lipid metabolism serves as a driver of cancer progression. Posttranslational modifications (PTMs), which occurs in most eukaryotic proteins throughout their lifetimes, affect the activity, abundance, function, localization, and interactions of target proteins. PTMs of crucial molecules are potential intervention sites and are emerging as promising strategies for the cancer treatment. However, there is limited information available regarding the PTMs that occur in cancer lipid metabolism and the potential treatment strategies associated with these PTMs. Herein, we summarize current knowledge of the roles and regulatory mechanisms of PTMs in lipid metabolism. Understanding the roles of PTMs in lipid metabolism in cancer could provide valuable insights into tumorigenesis and progression. Moreover, targeting PTMs in cancer lipid metabolism might represent a promising novel therapeutic strategy.
Collapse
Affiliation(s)
- Tianyu Feng
- Department of Laboratory Medicine, West China Hospital, Sichuan University, #37, Guo Xue Lane, Chengdu, Sichuan Province, 610041, China
- Sichuan Clinical Research Center for Laboratory Medicine, Chengdu, Sichuan Province, 610041, China
- Clinical Laboratory Medicine Research Center of West China Hospital, #37, Guo Xue Lane, Chengdu, Sichuan Province, 610041, China
| | - He Zhang
- Department of Laboratory Medicine, West China Hospital, Sichuan University, #37, Guo Xue Lane, Chengdu, Sichuan Province, 610041, China
- Sichuan Clinical Research Center for Laboratory Medicine, Chengdu, Sichuan Province, 610041, China
- Clinical Laboratory Medicine Research Center of West China Hospital, #37, Guo Xue Lane, Chengdu, Sichuan Province, 610041, China
| | - Yanjie Zhou
- Department of Laboratory Medicine, West China Hospital, Sichuan University, #37, Guo Xue Lane, Chengdu, Sichuan Province, 610041, China
- Sichuan Clinical Research Center for Laboratory Medicine, Chengdu, Sichuan Province, 610041, China
- Clinical Laboratory Medicine Research Center of West China Hospital, #37, Guo Xue Lane, Chengdu, Sichuan Province, 610041, China
| | - Yalan Zhu
- Department of Laboratory Medicine, West China Hospital, Sichuan University, #37, Guo Xue Lane, Chengdu, Sichuan Province, 610041, China
- Sichuan Clinical Research Center for Laboratory Medicine, Chengdu, Sichuan Province, 610041, China
- Clinical Laboratory Medicine Research Center of West China Hospital, #37, Guo Xue Lane, Chengdu, Sichuan Province, 610041, China
| | - Shiya Shi
- Department of Laboratory Medicine, West China Hospital, Sichuan University, #37, Guo Xue Lane, Chengdu, Sichuan Province, 610041, China
- Sichuan Clinical Research Center for Laboratory Medicine, Chengdu, Sichuan Province, 610041, China
- Clinical Laboratory Medicine Research Center of West China Hospital, #37, Guo Xue Lane, Chengdu, Sichuan Province, 610041, China
| | - Kai Li
- Cancer Center and Lab of Experimental Oncology, State Key Laboratory of Biotherapy, and Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, #37, Guo Xue Lane, Chengdu, Sichuan Province, 610041, China.
| | - Ping Lin
- Cancer Center and Lab of Experimental Oncology, State Key Laboratory of Biotherapy, and Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, #37, Guo Xue Lane, Chengdu, Sichuan Province, 610041, China.
| | - Jie Chen
- Department of Laboratory Medicine, West China Hospital, Sichuan University, #37, Guo Xue Lane, Chengdu, Sichuan Province, 610041, China.
- Sichuan Clinical Research Center for Laboratory Medicine, Chengdu, Sichuan Province, 610041, China.
- Clinical Laboratory Medicine Research Center of West China Hospital, #37, Guo Xue Lane, Chengdu, Sichuan Province, 610041, China.
| |
Collapse
|
5
|
Xu M, Zhu Z, Zhao Y, He K, Huang Q, Zhao Y. RedCDR: Dual Relation Distillation for Cancer Drug Response Prediction. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2024; 21:1468-1479. [PMID: 38776197 DOI: 10.1109/tcbb.2024.3404262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2024]
Abstract
Based on multi-omics data and drug information, predicting the response of cancer cell lines to drugs is a crucial area of research in modern oncology, as it can promote the development of personalized treatments. Despite the promising performance achieved by existing models, most of them overlook the variations among different omics and lack effective integration of multi-omics data. Moreover, the explicit modeling of cell line/drug attribute and cell line-drug association has not been thoroughly investigated in existing approaches. To address these issues, we propose RedCDR, a dual relation distillation model for cancer drug response (CDR) prediction. Specifically, a parallel dual-branch architecture is designed to enable both the independent learning and interactive fusion feasible for cell line/drug attribute and cell line-drug association information. To facilitate the adaptive interacting integration of multi-omics data, the proposed multi-omics encoder introduces the multiple similarity relations between cell lines and takes the importance of different omics data into account. To accomplish knowledge transfer from the two independent attribute and association branches to their fusion, a dual relation distillation mechanism consisting of representation distillation and prediction distillation is presented. Experiments conducted on the GDSC and CCLE datasets show that RedCDR outperforms previous state-of-the-art approaches in CDR prediction.
Collapse
|
6
|
Wang Y, Liu Z, Qi Y, Wu J, Liu B, Cui X. Activin A, a Novel Chemokine, Induces Mouse NK Cell Migration via AKT and Calcium Signaling. Cells 2024; 13:728. [PMID: 38727264 PMCID: PMC11083611 DOI: 10.3390/cells13090728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/17/2024] [Accepted: 04/19/2024] [Indexed: 05/13/2024] Open
Abstract
Natural killer (NK) cells can migrate quickly to the tumor site to exert cytotoxic effects on tumors, and some chemokines, including CXCL8, CXCL10 or and CXCL12, can regulate the migration of NK cells. Activin A, a member of the transforming growth factor β (TGF-β) superfamily, is highly expressed in tumor tissues and involved in tumor development and immune cell activation. In this study, we focus on the effects of activin A on NK cell migration. In vitro, activin A induced NK cell migration and invasion, promoted cell polarization and inhibited cell adhesion. Moreover, activin A increased Ca2+, p-SMAD3 and p-AKT levels in NK cells. An AKT inhibitor and Ca2+ chelator partially blocked activin A-induced NK cell migration. In vivo, exogenous activin A increased tumor-infiltrating NK cells in NS-1 cell solid tumors and inhibited tumor growth, and blocking endogenous activin A with anti-activin A antibody reduced tumor-infiltrating NK cells in 4T-1 cell solid tumors. These results suggest that activin A induces NK cell migration through AKT signaling and calcium signaling and may enhance the antitumor effect of NK cells by increasing tumor-infiltrating NK cells.
Collapse
Affiliation(s)
- Yunfeng Wang
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China; (Y.W.); (Z.L.); (Y.Q.)
- Key Laboratory of Neuroimmunology and Clinical Immunology, Changchun 130021, China
| | - Zhonghui Liu
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China; (Y.W.); (Z.L.); (Y.Q.)
- Key Laboratory of Neuroimmunology and Clinical Immunology, Changchun 130021, China
| | - Yan Qi
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China; (Y.W.); (Z.L.); (Y.Q.)
- Key Laboratory of Neuroimmunology and Clinical Immunology, Changchun 130021, China
| | - Jiandong Wu
- Bionic Sensing and Intelligence Center, Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China;
| | - Boyang Liu
- Department of Genetics, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
- Department of Scientific Research, Jilin Jianzhu University, Changchun 130118, China
| | - Xueling Cui
- Key Laboratory of Neuroimmunology and Clinical Immunology, Changchun 130021, China
- Department of Genetics, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| |
Collapse
|
7
|
Zhong HA, Goodwin DT. Selectivity Studies and Free Energy Calculations of AKT Inhibitors. Molecules 2024; 29:1233. [PMID: 38542870 PMCID: PMC10975562 DOI: 10.3390/molecules29061233] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 03/07/2024] [Accepted: 03/08/2024] [Indexed: 03/03/2025] Open
Abstract
Protein kinase B (PKB) or AKT protein is an important target for cancer treatment. Significant advances have been made in developing ATP-competitive inhibitors and allosteric binders targeting AKT1. However, adverse effects or toxicities have been found, and the cutaneous toxicity was found to be linked to the inhibition of AKT2. Thus, selective inhibition of AKT inhibitors is of significance. Our work, using the Schrödinger Covalent Dock (CovDock) program and the Movable Type (MT)-based free energy calculation (ΔG), yielded small mean errors for the experimentally derived binding free energy (ΔG). The docking data suggested that AKT1 binding may require residues Asn54, Trp80, Tyr272, Asp274, and Asp292, whereas AKT2 binding would expect residues Phe163 and Glu279, and AKT3 binding would favor residues Glu17, Trp79, Phe306, and Glu295. These findings may help guide AKT1-selective or AKT3-selective molecular design while sparing the inhibition of AKT2 to minimize the cutaneous toxicity.
Collapse
Affiliation(s)
- Haizhen A. Zhong
- Department of Chemistry, University of Nebraska at Omaha, Omaha, NE 68182, USA;
| | | |
Collapse
|
8
|
Jiang M, Wu W, Xiong Z, Yu X, Ye Z, Wu Z. Targeting autophagy drug discovery: Targets, indications and development trends. Eur J Med Chem 2024; 267:116117. [PMID: 38295689 DOI: 10.1016/j.ejmech.2023.116117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/30/2023] [Accepted: 12/31/2023] [Indexed: 02/25/2024]
Abstract
Autophagy plays a vital role in sustaining cellular homeostasis and its alterations have been implicated in the etiology of many diseases. Drugs development targeting autophagy began decades ago and hundreds of agents were developed, some of which are licensed for the clinical usage. However, no existing intervention specifically aimed at modulating autophagy is available. The obstacles that prevent drug developments come from the complexity of the actual impact of autophagy regulators in disease scenarios. With the development and application of new technologies, several promising categories of compounds for autophagy-based therapy have emerged in recent years. In this paper, the autophagy-targeted drugs based on their targets at various hierarchical sites of the autophagic signaling network, e.g., the upstream and downstream of the autophagosome and the autophagic components with enzyme activities are reviewed and analyzed respectively, with special attention paid to those at preclinical or clinical trials. The drugs tailored to specific autophagy alone and combination with drugs/adjuvant therapies widely used in clinical for various diseases treatments are also emphasized. The emerging drug design and development targeting selective autophagy receptors (SARs) and their related proteins, which would be expected to arrest or reverse the progression of disease in various cancers, inflammation, neurodegeneration, and metabolic disorders, are critically reviewed. And the challenges and perspective in clinically developing autophagy-targeted drugs and possible combinations with other medicine are considered in the review.
Collapse
Affiliation(s)
- Mengjia Jiang
- Department of Pharmacology and Pharmacy, China Jiliang University, China
| | - Wayne Wu
- College of Osteopathic Medicine, New York Institute of Technology, USA
| | - Zijie Xiong
- Department of Pharmacology and Pharmacy, China Jiliang University, China
| | - Xiaoping Yu
- Department of Biology, China Jiliang University, China
| | - Zihong Ye
- Department of Biology, China Jiliang University, China
| | - Zhiping Wu
- Department of Pharmacology and Pharmacy, China Jiliang University, China.
| |
Collapse
|
9
|
Sabbah DA, Hajjo R, Bardaweel SK, Zhong HA. Targeting the PI3K/AKT signaling pathway in anticancer research: a recent update on inhibitor design and clinical trials (2020-2023). Expert Opin Ther Pat 2024; 34:141-158. [PMID: 38557273 DOI: 10.1080/13543776.2024.2338100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 03/27/2024] [Indexed: 04/04/2024]
Abstract
INTRODUCTION Recent years have witnessed great achievements in drug design and development targeting the phosphatidylinositol 3-kinase/protein kinase-B (PI3K/AKT) signaling pathway, a pathway central to cell growth and proliferation. The nearest neighbor protein-protein interaction networks for PI3K and AKT show the interplays between these target proteins which can be harnessed for drug discovery. In this review, we discuss the drug design and clinical development of inhibitors of PI3K/AKT in the past three years. We review in detail the structures, selectivity, efficacy, and combination therapy of 35 inhibitors targeting these proteins, classified based on the target proteins. Approaches to overcoming drug resistance and to minimizing toxicities are discussed. Future research directions for developing combinational therapy and PROTACs of PI3K and AKT inhibitors are also discussed. AREA COVERED This review covers clinical trial reports and patent literature on inhibitors of PI3K and AKT published between 2020 and 2023. EXPERT OPINION To address drug resistance and drug toxicity of inhibitors of PI3K and AKT, it is highly desirable to design and develop subtype-selective PI3K inhibitors or subtype-selective AKT1 inhibitors to minimize toxicity or to develop allosteric drugs that can form covalent bonds. The development of PROTACs of PI3Kα or AKT helps to reduce off-target toxicities.
Collapse
Affiliation(s)
- Dima A Sabbah
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, Amman, Jordan
| | - Rima Hajjo
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, Amman, Jordan
- Laboratory for Molecular Modeling, Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- National Center for Epidemics and Communicable Disease Control (JCDC), Amman, Jordan
| | - Sanaa K Bardaweel
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Jordan, Amman, Jordan
| | - Haizhen A Zhong
- DSC 309, Department of Chemistry, The University of Nebraska at Omaha, Omaha, NE, USA
| |
Collapse
|
10
|
Liu H, Peng W, Dai W, Lin J, Fu X, Liu L, Liu L, Yu N. Improving anti-cancer drug response prediction using multi-task learning on graph convolutional networks. Methods 2024; 222:41-50. [PMID: 38157919 DOI: 10.1016/j.ymeth.2023.11.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/19/2023] [Accepted: 11/19/2023] [Indexed: 01/03/2024] Open
Abstract
Predicting the therapeutic effect of anti-cancer drugs on tumors based on the characteristics of tumors and patients is one of the important contents of precision oncology. Existing computational methods regard the drug response prediction problem as a classification or regression task. However, few of them consider leveraging the relationship between the two tasks. In this work, we propose a Multi-task Interaction Graph Convolutional Network (MTIGCN) for anti-cancer drug response prediction. MTIGCN first utilizes an graph convolutional network-based model to produce embeddings for both cell lines and drugs. After that, the model employs multi-task learning to predict anti-cancer drug response, which involves training the model on three different tasks simultaneously: the main task of the drug sensitive or resistant classification task and the two auxiliary tasks of regression prediction and similarity network reconstruction. By sharing parameters and optimizing the losses of different tasks simultaneously, MTIGCN enhances the feature representation and reduces overfitting. The results of the experiments on two in vitro datasets demonstrated that MTIGCN outperformed seven state-of-the-art baseline methods. Moreover, the well-trained model on the in vitro dataset GDSC exhibited good performance when applied to predict drug responses in in vivo datasets PDX and TCGA. The case study confirmed the model's ability to discover unknown drug responses in cell lines.
Collapse
Affiliation(s)
- Hancheng Liu
- Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Kunming 650050, China
| | - Wei Peng
- Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Kunming 650050, China; Computer Technology Application Key Lab of Yunnan Province, Kunming University of Science and Technology, Kunming 650050, China.
| | - Wei Dai
- Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Kunming 650050, China; Computer Technology Application Key Lab of Yunnan Province, Kunming University of Science and Technology, Kunming 650050, China.
| | - Jiangzhen Lin
- Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Kunming 650050, China
| | - Xiaodong Fu
- Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Kunming 650050, China; Computer Technology Application Key Lab of Yunnan Province, Kunming University of Science and Technology, Kunming 650050, China
| | - Li Liu
- Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Kunming 650050, China; Computer Technology Application Key Lab of Yunnan Province, Kunming University of Science and Technology, Kunming 650050, China.
| | - Lijun Liu
- Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Kunming 650050, China; Computer Technology Application Key Lab of Yunnan Province, Kunming University of Science and Technology, Kunming 650050, China
| | - Ning Yu
- State University of New York, The College at Brockport, Department of Computing Sciences, 350 New Campus Drive, Brockport NY 14422.
| |
Collapse
|
11
|
Le-Trung N, Kanaori K, Waku T, Dang TTP, Kamei K. Acetylmelodorinol isolated from Sphaerocoryne affinis seeds inhibits cell proliferation and activates apoptosis on HeLa cells. BMC Complement Med Ther 2024; 24:59. [PMID: 38281034 PMCID: PMC10821558 DOI: 10.1186/s12906-024-04357-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 01/14/2024] [Indexed: 01/29/2024] Open
Abstract
BACKGROUND Cervical cancer is a major global health concern with a high prevalence in low- and middle-income countries. Natural products, particularly plant-derived compounds, have shown immense potential for developing anticancer drugs. In this study, we aimed to investigate the anticancer properties of the pericarp and seeds of Sphaerocoryne affinis fruit on human cervical carcinoma cells (HeLa) and isolate the bioactive compound from the active fraction. METHODS We prepared solvent fractions from the ethanol extracts of the pericarp and the seed portion by partitioning and assessing their cytotoxicity on HeLa cells. Subsequently, we collected acetylmelodorinol (AM), an anticancer compound, from the ethyl acetate fraction of seeds and determined its structure using nuclear magnetic resonance. We employed cytotoxicity assay, western blotting, Annexin V apoptosis assay, measurement of intracellular reactive oxygen species (ROS) levels, 4',6-diamidino-2-phenylindole (DAPI) staining, and a terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay, to evaluate the anticancer properties of AM on HeLa. RESULTS The solvent fractions from the seed displayed considerably higher cytotoxic activity against HeLa cells than those of the pericarp. We isolated and identified acetylmelodorinol as an anticancer compound from the ethyl acetate fraction from S. affinis seed extract. Treatment with acetylmelodorinol inhibited HeLa cell proliferation with an IC50 value of 2.62 ± 0.57 µg/mL. Furthermore, this study demonstrated that acetylmelodorinol treatment disrupted cell cycle progression by reducing the expression of cyclin E, CDK1/2, and AKT/mTOR pathways, increasing the intracellular ROS levels, reducing BCL-2/BCL-XL expression, causing DNA fragmentation and nuclear shrinkage, and triggering apoptosis through caspase 3 and 9 activation in a dose-and time-dependent manner. CONCLUSION In contrast to previous reports, this study focuses on the inhibitory effects of AM on the AKT/mTOR pathway, leading to a reduction in cell proliferation in cervical cancer cells. Our findings highlight the promising potential of acetylmelodorinol as an effective treatment for cervical cancer. Additionally, this study establishes a foundation for investigating the molecular mechanisms underlying AM's properties, fostering further exploration into plant-based cancer therapies.
Collapse
Affiliation(s)
- Nghia Le-Trung
- Department of Functional Chemistry, Kyoto Institute of Technology, Kyoto, 606-8585, Japan
| | - Kenji Kanaori
- Department of Functional Chemistry, Kyoto Institute of Technology, Kyoto, 606-8585, Japan
| | - Tomonori Waku
- Department of Functional Chemistry, Kyoto Institute of Technology, Kyoto, 606-8585, Japan
| | - Thao Thi Phuong Dang
- Laboratory of Molecular Biotechnology, Faculty of Biology and Biotechnology, University of Science, Vietnam National University Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | - Kaeko Kamei
- Department of Functional Chemistry, Kyoto Institute of Technology, Kyoto, 606-8585, Japan.
| |
Collapse
|
12
|
Wang H, Wang Z, Zhang Z, Liu J, Hong L. β-Sitosterol as a Promising Anticancer Agent for Chemoprevention and Chemotherapy: Mechanisms of Action and Future Prospects. Adv Nutr 2023; 14:1085-1110. [PMID: 37247842 PMCID: PMC10509430 DOI: 10.1016/j.advnut.2023.05.013] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 05/15/2023] [Accepted: 05/23/2023] [Indexed: 05/31/2023] Open
Abstract
Cancer is one of the primary causes of death worldwide, and its incidence continues to increase yearly. Despite significant advances in research, the search for effective and nontoxic preventive and therapeutic agents remains greatly important. Cancer is a multimodal disease, where various mechanisms play significant roles in its occurrence and progression. This highlights the need for multitargeted approaches that are not only safe and inexpensive but also provide effective alternatives for current therapeutic regimens. β-Sitosterol (SIT), the most abundant phytosterol found in various plant foods, represents such an option. Preclinical evidence over the past few decades has overwhelmingly shown that SIT exhibits multiple anticancer activities against varied cancers, such as liver, cervical, colon, stomach, breast, lung, pancreatic, and prostate cancers, in addition to leukemia, multiple myeloma, melanoma, and fibrosarcoma. In this article, we present the latest advances and perspectives on SIT-systematically summarizing its antitumor mechanisms of action into 7 main sections and combining current challenges and prospects-for its use as a promising agent for cancer prevention and treatment. In particular, SIT plays a role in cancer prevention and treatment mainly by enhancing apoptosis, inducing cell cycle arrest, bidirectionally regulating oxidative stress, improving metabolic reprogramming, inhibiting invasion and metastasis, modulating immunity and inflammation, and combating drug resistance. Although SIT holds such great promise, the poor aqueous solubility and bioavailability coupled with low targeting efficacy limit its therapeutic efficacy and clinical application. Further research on novel drug delivery systems may improve these deficiencies. Overall, through complex and pleiotropic mechanisms, SIT has good potential for tumor chemoprevention and chemotherapy. However, no clinical trials have yet proven this potential. This review provides theoretical basis and rationality for the further design and conduct of clinical trials to confirm the anticancer activity of SIT.
Collapse
Affiliation(s)
- Haoyu Wang
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zhi Wang
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zihui Zhang
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jingchun Liu
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Li Hong
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, China.
| |
Collapse
|
13
|
Chapdelaine AG, Sun G. Challenges and Opportunities in Developing Targeted Therapies for Triple Negative Breast Cancer. Biomolecules 2023; 13:1207. [PMID: 37627272 PMCID: PMC10452226 DOI: 10.3390/biom13081207] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/26/2023] [Accepted: 07/29/2023] [Indexed: 08/27/2023] Open
Abstract
Triple negative breast cancer (TNBC) is a heterogeneous group of breast cancers characterized by their lack of estrogen receptors, progesterone receptors, and the HER2 receptor. They are more aggressive than other breast cancer subtypes, with a higher mean tumor size, higher tumor grade, the worst five-year overall survival, and the highest rates of recurrence and metastasis. Developing targeted therapies for TNBC has been a major challenge due to its heterogeneity, and its treatment still largely relies on surgery, radiation therapy, and chemotherapy. In this review article, we review the efforts in developing targeted therapies for TNBC, discuss insights gained from these efforts, and highlight potential opportunities going forward. Accumulating evidence supports TNBCs as multi-driver cancers, in which multiple oncogenic drivers promote cell proliferation and survival. In such multi-driver cancers, targeted therapies would require drug combinations that simultaneously block multiple oncogenic drivers. A strategy designed to generate mechanism-based combination targeted therapies for TNBC is discussed.
Collapse
Affiliation(s)
| | - Gongqin Sun
- Department of Cell and Molecular Biology, University of Rhode Island, Kingston, RI 02881, USA;
| |
Collapse
|
14
|
Ameliorative effects of Danshensu from the functional food Salvia miltiorrhiza against arsenic trioxide-induced cardiac toxicity in vivo and in vitro: Involvement of inhibiting the AKT/IKK/NF-κB signaling pathway. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
15
|
Tsai PJ, Lai YH, Manne RK, Tsai YS, Sarbassov D, Lin HK. Akt: a key transducer in cancer. J Biomed Sci 2022; 29:76. [PMID: 36180910 PMCID: PMC9526305 DOI: 10.1186/s12929-022-00860-9] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 09/21/2022] [Indexed: 01/27/2023] Open
Abstract
Growth factor signaling plays a pivotal role in diverse biological functions, such as cell growth, apoptosis, senescence, and migration and its deregulation has been linked to various human diseases. Akt kinase is a central player transmitting extracellular clues to various cellular compartments, in turn executing these biological processes. Since the discovery of Akt three decades ago, the tremendous progress towards identifying its upstream regulators and downstream effectors and its roles in cancer has been made, offering novel paradigms and therapeutic strategies for targeting human diseases and cancers with deregulated Akt activation. Unraveling the molecular mechanisms for Akt signaling networks paves the way for developing selective inhibitors targeting Akt and its signaling regulation for the management of human diseases including cancer.
Collapse
Affiliation(s)
- Pei-Jane Tsai
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC, 27157, USA
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yi-Hsin Lai
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Rajesh Kumar Manne
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC, 27157, USA
| | - Yau-Sheng Tsai
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC, 27157, USA
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Clinical Medicine Research Center, National Cheng Kung University Hospital, Tainan, Taiwan
| | - Dos Sarbassov
- Biology Department, School of Sciences and Humanities, and National Laboratory Astana, Nazarbayev University, Nur-Sultan City, 010000, Kazakhstan.
| | - Hui-Kuan Lin
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC, 27157, USA.
| |
Collapse
|
16
|
Peng W, Liu H, Dai W, Yu N, Wang J. Predicting cancer drug response using parallel heterogeneous graph convolutional networks with neighborhood interactions. Bioinformatics 2022; 38:4546-4553. [PMID: 35997568 DOI: 10.1093/bioinformatics/btac574] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/26/2022] [Accepted: 08/22/2022] [Indexed: 12/24/2022] Open
Abstract
MOTIVATION Due to cancer heterogeneity, the therapeutic effect may not be the same when a cohort of patients of the same cancer type receive the same treatment. The anticancer drug response prediction may help develop personalized therapy regimens to increase survival and reduce patients' expenses. Recently, graph neural network-based methods have aroused widespread interest and achieved impressive results on the drug response prediction task. However, most of them apply graph convolution to process cell line-drug bipartite graphs while ignoring the intrinsic differences between cell lines and drug nodes. Moreover, most of these methods aggregate node-wise neighbor features but fail to consider the element-wise interaction between cell lines and drugs. RESULTS This work proposes a neighborhood interaction (NI)-based heterogeneous graph convolution network method, namely NIHGCN, for anticancer drug response prediction in an end-to-end way. Firstly, it constructs a heterogeneous network consisting of drugs, cell lines and the known drug response information. Cell line gene expression and drug molecular fingerprints are linearly transformed and input as node attributes into an interaction model. The interaction module consists of a parallel graph convolution network layer and a NI layer, which aggregates node-level features from their neighbors through graph convolution operation and considers the element-level of interactions with their neighbors in the NI layer. Finally, the drug response predictions are made by calculating the linear correlation coefficients of feature representations of cell lines and drugs. We have conducted extensive experiments to assess the effectiveness of our model on Cancer Drug Sensitivity Data (GDSC) and Cancer Cell Line Encyclopedia (CCLE) datasets. It has achieved the best performance compared with the state-of-the-art algorithms, especially in predicting drug responses for new cell lines, new drugs and targeted drugs. Furthermore, our model that was well trained on the GDSC dataset can be successfully applied to predict samples of PDX and TCGA, which verified the transferability of our model from cell line in vitro to the datasets in vivo. AVAILABILITY AND IMPLEMENTATION The source code can be obtained from https://github.com/weiba/NIHGCN. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Wei Peng
- Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Kunming 650050, P.R. China
| | - Hancheng Liu
- Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Kunming 650050, P.R. China
| | - Wei Dai
- Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Kunming 650050, P.R. China
| | - Ning Yu
- Department of Computing Sciences, The College at Brockport, State University of New York, Brockport, NY 14422, USA
| | - Jianxin Wang
- School of Computer Science and Engineering, Central South University, Changsha 410083, P.R. China.,Hunan Provincial Key Lab on Bioinformatics, Central South University, Changsha 410083, P. R. China
| |
Collapse
|
17
|
Xu F, Zhang X, Chen Z, He S, Guo J, Yu L, Wang Y, Hou C, Ai-Furas H, Zheng Z, Smaill JB, Patterson AV, Zhang ZM, Chen L, Ren X, Ding K. Discovery of Isoform-Selective Akt3 Degraders Overcoming Osimertinib-Induced Resistance in Non-Small Cell Lung Cancer Cells. J Med Chem 2022; 65:14032-14048. [PMID: 36173763 DOI: 10.1021/acs.jmedchem.2c01246] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
EGFR inhibitor therapies have brought significant benefit to NSCLC patients. However, all patients gradually progress to acquired resistance via diverse mechanisms. Akt3 overexpression but not Akt1/2 is one of the found molecular events that mediate osimertinib (1) resistance in NSCLC patients. Here, we report 12l as the first bona fide isoform-selective Akt3 degrader which potently induced proteasomal degradation of the target both in vitro and in vivo, whereas its effects on Akt1/2 were minimal. Using 12l as a tool, non-canonical function of Akt3 was validated to contribute greatly to survival of 1-resistant H1975OR NSCLC cells. Degrader 12l potently suppressed the growth of H1975OR as well as several NSCLC cell lines with low nanomolar IC50 values and demonstrated promising in vivo antitumor efficacy in nude mice bearing H1975OR or PC9 NSCLC xenograft models. Selective degradation of Akt3 may be considered as a novel strategy for human cancer therapy.
Collapse
Affiliation(s)
- Fang Xu
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development, Ministry of Education (MOE) of PR China, College of Pharmacy, Jinan University, Guangzhou 510632, China.,The First Affiliated Hospital (Huaqiao Hospital), Jinan University, Guangzhou 510632, China
| | - Xin Zhang
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development, Ministry of Education (MOE) of PR China, College of Pharmacy, Jinan University, Guangzhou 510632, China.,The First Affiliated Hospital (Huaqiao Hospital), Jinan University, Guangzhou 510632, China
| | - Zhipeng Chen
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Sheng He
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development, Ministry of Education (MOE) of PR China, College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Jing Guo
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development, Ministry of Education (MOE) of PR China, College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Lei Yu
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development, Ministry of Education (MOE) of PR China, College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Yongjin Wang
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development, Ministry of Education (MOE) of PR China, College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Caiyun Hou
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development, Ministry of Education (MOE) of PR China, College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Hawaa Ai-Furas
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development, Ministry of Education (MOE) of PR China, College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Zongyao Zheng
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Jeff B Smaill
- Auckland Cancer Society Research Centre, School of Medical Sciences, University of Auckland, Auckland 1142, New Zealand
| | - Adam V Patterson
- Auckland Cancer Society Research Centre, School of Medical Sciences, University of Auckland, Auckland 1142, New Zealand
| | - Zhi-Min Zhang
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development, Ministry of Education (MOE) of PR China, College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Liang Chen
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Xiaomei Ren
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 210530, China
| | - Ke Ding
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development, Ministry of Education (MOE) of PR China, College of Pharmacy, Jinan University, Guangzhou 510632, China.,The First Affiliated Hospital (Huaqiao Hospital), Jinan University, Guangzhou 510632, China.,State Key Laboratory of Bioorganic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 210530, China
| |
Collapse
|
18
|
Wang L, Dai M, Ge Y, Chen J, Wang C, Yao C, Lin Y. EGCG protects the mouse brain against cerebral ischemia/reperfusion injury by suppressing autophagy via the AKT/AMPK/mTOR phosphorylation pathway. Front Pharmacol 2022; 13:921394. [PMID: 36147330 PMCID: PMC9489224 DOI: 10.3389/fphar.2022.921394] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 08/09/2022] [Indexed: 11/13/2022] Open
Abstract
Stroke remains one of the leading reasons of mortality and physical disability worldwide. The treatment of cerebral ischemic stroke faces challenges, partly due to a lack of effective treatments. In this study, we demonstrated that autophagy was stimulated by transient middle cerebral artery occlusion/reperfusion (MCAO/R) and oxygen-glucose deprivation/reoxygenation (OGD/R). Treatment with (−)-epigallocatechin-3-gallate (EGCG), a bioactive ingredient in green tea, was able to mitigate cerebral ischemia/reperfusion injury (CIRI), given the evidence that EGCG administration could reduce the infarct volume and protect poststroke neuronal loss in MCAO/R mice in vivo and attenuate cell loss in OGD/R-challenged HT22 cells in vitro through suppressing autophagy activity. Mechanistically, EGCG inhibited autophagy via modulating the AKT/AMPK/mTOR phosphorylation pathway both in vivo and in vitro models of stroke, which was further confirmed by the results that the administration of GSK690693, an AKT/AMPK inhibitor, and rapamycin, an inhibitor of mTOR, reversed aforementioned changes in autophagy and AKT/AMPK/mTOR signaling pathway. Overall, the application of EGCG relieved CIRI by suppressing autophagy via the AKT/AMPK/mTOR phosphorylation pathway.
Collapse
Affiliation(s)
- Li Wang
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Maosha Dai
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yangyang Ge
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiayi Chen
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chenchen Wang
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chengye Yao
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Chengye Yao, ; Yun Lin,
| | - Yun Lin
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Chengye Yao, ; Yun Lin,
| |
Collapse
|
19
|
Toson B, Fortes IS, Roesler R, Andrade SF. Targeting Akt/PKB in pediatric tumors: A review from preclinical to clinical trials. Pharmacol Res 2022; 183:106403. [PMID: 35987481 DOI: 10.1016/j.phrs.2022.106403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 08/01/2022] [Accepted: 08/15/2022] [Indexed: 11/25/2022]
Abstract
The serine/threonine kinase Akt is a major player in the phosphoinositide 3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR) signaling pathway, and its modulation impacts multiple cellular processes such as growth, proliferation, and survival. Several abnormalities in this pathway have been documented over the years, and these alterations were shown to have great implications in tumorigenesis and resistance to chemotherapy. Thus, multiple Akt inhibitors have been developed and tested in adult tumors, and some of them are currently undergoing phase I, II, and III clinical trials for distinct cancers that arise during adulthood. Despite that, the impact of these inhibitors is still not fully understood in pediatric tumors, and Akt-specific targeting seems to be a promising approach to treat children affected by cancers. This review summarizes recent available evidence of Akt inhibitors in pediatric cancers, from both preclinical and clinical studies. In short, we demonstrate the impact that Akt inhibition provides in tumorigenesis, and we suggest targeting the PI3K/Akt/mTOR signaling pathway, alone or in combination with other inhibitors, is a feasible tool to achieve better outcomes in pediatric tumors.
Collapse
Affiliation(s)
- Bruno Toson
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Isadora S Fortes
- Pharmaceutical Synthesis Group (PHARSG), College of Pharmacy, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil; Pharmaceutical Sciences Graduate Program, Federal University of Rio Grande do Sul (UFRGS), Av. Ipiranga, 2752, Porto Alegre, RS 90610-000, Brazil
| | - Rafael Roesler
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil; Department of Pharmacology, Institute for Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Saulo F Andrade
- Pharmaceutical Synthesis Group (PHARSG), College of Pharmacy, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil; Pharmaceutical Sciences Graduate Program, Federal University of Rio Grande do Sul (UFRGS), Av. Ipiranga, 2752, Porto Alegre, RS 90610-000, Brazil.
| |
Collapse
|
20
|
Xu Z, Chu M. Advances in Immunosuppressive Agents Based on Signal Pathway. Front Pharmacol 2022; 13:917162. [PMID: 35694243 PMCID: PMC9178660 DOI: 10.3389/fphar.2022.917162] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 05/02/2022] [Indexed: 12/13/2022] Open
Abstract
Immune abnormality involves in various diseases, such as infection, allergic diseases, autoimmune diseases, as well as transplantation. Several signal pathways have been demonstrated to play a central role in the immune response, including JAK/STAT, NF-κB, PI3K/AKT-mTOR, MAPK, and Keap1/Nrf2/ARE pathway, in which multiple targets have been used to develop immunosuppressive agents. In recent years, varieties of immunosuppressive agents have been approved for clinical use, such as the JAK inhibitor tofacitinib and the mTOR inhibitor everolimus, which have shown good therapeutic effects. Additionally, many immunosuppressive agents are still in clinical trials or preclinical studies. In this review, we classified the immunosuppressive agents according to the immunopharmacological mechanisms, and summarized the phase of immunosuppressive agents.
Collapse
Affiliation(s)
- Zhiqing Xu
- Department of Immunology, National Health Commission (NHC) Key Laboratory of Medical Immunology (Peking University), School of Basic Medical Sciences, Peking University, Beijing, China
- Department of Pharmacology, Jilin University, Changchun, China
| | - Ming Chu
- Department of Immunology, National Health Commission (NHC) Key Laboratory of Medical Immunology (Peking University), School of Basic Medical Sciences, Peking University, Beijing, China
| |
Collapse
|
21
|
Cheng X, Xie M, Luo L, Tian Y, Yu G, Wu Q, Fan X, Yang D, Mao X, Gaur U, Yang M. Inhibitor GSK690693 extends Drosophila lifespan via reduce AKT signaling pathway. Mech Ageing Dev 2022; 202:111633. [DOI: 10.1016/j.mad.2022.111633] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 12/26/2021] [Accepted: 01/19/2022] [Indexed: 01/18/2023]
|
22
|
Lim JJ, Li X, Lehmler HJ, Wang D, Gu H, Cui JY. Gut Microbiome Critically Impacts PCB-induced Changes in Metabolic Fingerprints and the Hepatic Transcriptome in Mice. Toxicol Sci 2021; 177:168-187. [PMID: 32544245 DOI: 10.1093/toxsci/kfaa090] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Polychlorinated biphenyls (PCBs) are ubiquitously detected and have been linked to metabolic diseases. Gut microbiome is recognized as a critical regulator of disease susceptibility; however, little is known how PCBs and gut microbiome interact to modulate hepatic xenobiotic and intermediary metabolism. We hypothesized the gut microbiome regulates PCB-mediated changes in the metabolic fingerprints and hepatic transcriptome. Ninety-day-old female conventional and germ-free mice were orally exposed to the Fox River Mixture (synthetic PCB mixture, 6 or 30 mg/kg) or corn oil (vehicle control, 10 ml/kg), once daily for 3 consecutive days. RNA-seq was conducted in liver, and endogenous metabolites were measured in liver and serum by LC-MS. Prototypical target genes of aryl hydrocarbon receptor, pregnane X receptor, and constitutive androstane receptor were more readily upregulated by PCBs in conventional conditions, indicating PCBs, to the hepatic transcriptome, act partly through the gut microbiome. In a gut microbiome-dependent manner, xenobiotic, and steroid metabolism pathways were upregulated, whereas response to misfolded proteins-related pathways was downregulated by PCBs. At the high PCB dose, NADP, and arginine appear to interact with drug-metabolizing enzymes (ie, Cyp1-3 family), which are highly correlated with Ruminiclostridium and Roseburia, providing a novel explanation of gut-liver interaction from PCB-exposure. Utilizing the Library of Integrated Network-based Cellular Signatures L1000 database, therapeutics targeting anti-inflammatory and endoplasmic reticulum stress pathways are predicted to be remedies that can mitigate PCB toxicity. Our findings demonstrate that habitation of the gut microbiota drives PCB-mediated hepatic responses. Our study adds knowledge of physiological response differences from PCB exposure and considerations for further investigations for gut microbiome-dependent therapeutics.
Collapse
Affiliation(s)
- Joe Jongpyo Lim
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington 98195
| | - Xueshu Li
- Department of Occupational and Environmental Health, University of Iowa, Iowa City, Iowa 52242; and
| | - Hans-Joachim Lehmler
- Department of Occupational and Environmental Health, University of Iowa, Iowa City, Iowa 52242; and
| | - Dongfang Wang
- Arizona Metabolomics Laboratory, School of Nutrition and Health Promotion, College of Health Solutions, Arizona State University, Scottsdale, Arizona 85259
| | - Haiwei Gu
- Arizona Metabolomics Laboratory, School of Nutrition and Health Promotion, College of Health Solutions, Arizona State University, Scottsdale, Arizona 85259
| | - Julia Yue Cui
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington 98195
| |
Collapse
|
23
|
Beales ILP, Ogunwobi OO. Leptin activates Akt in oesophageal cancer cells via multiple atorvastatin-sensitive small GTPases. Mol Cell Biochem 2021; 476:2307-2316. [PMID: 33582946 PMCID: PMC8119259 DOI: 10.1007/s11010-021-04067-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 01/12/2021] [Indexed: 12/14/2022]
Abstract
Obesity is a risk factor for Barrett's oesophagus and oesophageal adenocarcinoma. Adipose tissue secretes the hormone leptin. Leptin is a growth factor for several cell types, including Barrett's cells and oesophageal adenocarcinoma cells. Statins are associated with reduced rates of Barrett's oesophagus and oesophageal cancer and exhibit anti-cancer effects in vitro. The mechanisms of these effects are not fully established. We have examined the effects of leptin and the lipid-soluble statin, atorvastatin, on signalling via monomeric GTP-binding proteins and Akt. Proliferation and apoptosis were assessed in OE33 cells. Akt activity was quantified by cell-based ELISA and in vitro kinase assay. Specific small-molecule inhibitors and a dominant-negative construct were used to reduce Akt activity. Small GTPases were inhibited using transfection of dominant-negative plasmids, prenylation inhibitors and pretreatment with atorvastatin. Leptin stimulated Akt activity and cell proliferation and inhibited camptothecin-induced apoptosis in an Akt-sensitive manner. Leptin induced phosphorylation of Bad and FOXO1 in an Akt-sensitive manner. Leptin activated Ras, Rac, RhoA and cdc42. Transfection of dominant-negative plasmids confirmed that leptin-induced Akt activation required Ras, RhoA cdc42 but not Rac. Atorvastatin inhibited leptin-induced activation of Ras, RhoA, cdc42 and Akt. Co-treatment with mevalonate prevented these effects of atorvastatin. The protein kinase Akt is essential to the growth-promoting and anti-apoptotic effects of leptin in oesophageal adenocarcinoma cells. Akt is activated via Ras-, Rho- and cdc42-dependant pathways. Atorvastatin reduces leptin-induced Akt activation by inhibiting prenylation of small GTPases. This may explain the reduced incidence of oesophageal adenocarcinoma in statin-users.
Collapse
Affiliation(s)
- Ian L P Beales
- Department of Gastroenterology, Norfolk and Norwich University Hospital, Norwich, NR4 7UZ, UK.
- Gastrioenterology Research Unit, Norwich Medical School, University of East Anglia, Norwich, NR4 7TJ, UK.
| | - Olorunseun O Ogunwobi
- Gastrioenterology Research Unit, Norwich Medical School, University of East Anglia, Norwich, NR4 7TJ, UK
| |
Collapse
|
24
|
Combined Application of Pan-AKT Inhibitor MK-2206 and BCL-2 Antagonist Venetoclax in B-Cell Precursor Acute Lymphoblastic Leukemia. Int J Mol Sci 2021; 22:ijms22052771. [PMID: 33803402 PMCID: PMC7967241 DOI: 10.3390/ijms22052771] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/05/2021] [Accepted: 03/06/2021] [Indexed: 12/12/2022] Open
Abstract
Aberrant PI3K/AKT signaling is a hallmark of acute B-lymphoblastic leukemia (B-ALL) resulting in increased tumor cell proliferation and apoptosis deficiency. While previous AKT inhibitors struggled with selectivity, MK-2206 promises meticulous pan-AKT targeting with proven anti-tumor activity. We herein, characterize the effect of MK-2206 on B-ALL cell lines and primary samples and investigate potential synergistic effects with BCL-2 inhibitor venetoclax to overcome limitations in apoptosis induction. MK-2206 incubation reduced AKT phosphorylation and influenced downstream signaling activity. Interestingly, after MK-2206 mono application tumor cell proliferation and metabolic activity were diminished significantly independently of basal AKT phosphorylation. Morphological changes but no induction of apoptosis was detected in the observed cell lines. In contrast, primary samples cultivated in a protective microenvironment showed a decrease in vital cells. Combined MK-2206 and venetoclax incubation resulted in partially synergistic anti-proliferative effects independently of application sequence in SEM and RS4;11 cell lines. Venetoclax-mediated apoptosis was not intensified by addition of MK-2206. Functional assessment of BCL-2 inhibition via Bax translocation assay revealed slightly increased pro-apoptotic signaling after combined MK-2206 and venetoclax incubation. In summary, we demonstrate that the pan-AKT inhibitor MK-2206 potently blocks B-ALL cell proliferation and for the first time characterize the synergistic effect of combined MK-2206 and venetoclax treatment in B-ALL.
Collapse
|
25
|
Du JX, Zhu GQ, Cai JL, Wang B, Luo YH, Chen C, Cai CZ, Zhang SJ, Zhou J, Fan J, Zhu W, Dai Z. Splicing factors: Insights into their regulatory network in alternative splicing in cancer. Cancer Lett 2020; 501:83-104. [PMID: 33309781 DOI: 10.1016/j.canlet.2020.11.043] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 11/24/2020] [Accepted: 11/26/2020] [Indexed: 12/18/2022]
Abstract
More than 95% of all human genes are alternatively spliced after transcription, which enriches the diversity of proteins and regulates transcript and/or protein levels. The splicing isoforms produced from the same gene can manifest distinctly, even exerting opposite effects. Mounting evidence indicates that the alternative splicing (AS) mechanism is ubiquitous in various cancers and drives the generation and maintenance of various hallmarks of cancer, such as enhanced proliferation, inhibited apoptosis, invasion and metastasis, and angiogenesis. Splicing factors (SFs) play pivotal roles in the recognition of splice sites and the assembly of spliceosomes during AS. In this review, we mainly discuss the similarities and differences of SF domains, the details of SF function in AS, the effect of SF-driven pathological AS on different hallmarks of cancer, and the main drivers of SF expression level and subcellular localization. In addition, we briefly introduce the application prospects of targeted therapeutic strategies, including small-molecule inhibitors, siRNAs and splice-switching oligonucleotides (SSOs), from three perspectives (drivers, SFs and pathological AS). Finally, we share our insights into the potential direction of research on SF-centric AS-related regulatory networks.
Collapse
Affiliation(s)
- Jun-Xian Du
- Department of General Surgery, Zhongshan Hospital, Fudan University & State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, 200032, China
| | - Gui-Qi Zhu
- Liver Cancer Institute, Zhongshan Hospital, Fudan University & State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, 200032, China; Key Laboratory of Carcinogenesis and Cancer Invasion, Fudan University, Ministry of Education, Shanghai, 200032, China
| | - Jia-Liang Cai
- Liver Cancer Institute, Zhongshan Hospital, Fudan University & State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, 200032, China; Key Laboratory of Carcinogenesis and Cancer Invasion, Fudan University, Ministry of Education, Shanghai, 200032, China
| | - Biao Wang
- Liver Cancer Institute, Zhongshan Hospital, Fudan University & State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, 200032, China; Key Laboratory of Carcinogenesis and Cancer Invasion, Fudan University, Ministry of Education, Shanghai, 200032, China
| | - Yi-Hong Luo
- Department of General Surgery, Zhongshan Hospital, Fudan University & State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, 200032, China
| | - Cong Chen
- Department of General Surgery, Zhongshan Hospital, Fudan University & State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, 200032, China
| | - Cheng-Zhe Cai
- Department of General Surgery, Zhongshan Hospital, Fudan University & State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, 200032, China
| | - Si-Jia Zhang
- Department of General Surgery, Zhongshan Hospital, Fudan University & State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, 200032, China
| | - Jian Zhou
- Liver Cancer Institute, Zhongshan Hospital, Fudan University & State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, 200032, China; Key Laboratory of Carcinogenesis and Cancer Invasion, Fudan University, Ministry of Education, Shanghai, 200032, China
| | - Jia Fan
- Liver Cancer Institute, Zhongshan Hospital, Fudan University & State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, 200032, China; Key Laboratory of Carcinogenesis and Cancer Invasion, Fudan University, Ministry of Education, Shanghai, 200032, China
| | - Wei Zhu
- Department of General Surgery, Zhongshan Hospital, Fudan University & State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, 200032, China.
| | - Zhi Dai
- Liver Cancer Institute, Zhongshan Hospital, Fudan University & State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, 200032, China; Key Laboratory of Carcinogenesis and Cancer Invasion, Fudan University, Ministry of Education, Shanghai, 200032, China.
| |
Collapse
|
26
|
Liu G, Shi A, Wang N, Li M, He X, Yin C, Tu Q, Shen X, Tao Y, Wang Q, Yin H. Polyphenolic Proanthocyanidin-B2 suppresses proliferation of liver cancer cells and hepatocellular carcinogenesis through directly binding and inhibiting AKT activity. Redox Biol 2020; 37:101701. [PMID: 32863234 PMCID: PMC7472926 DOI: 10.1016/j.redox.2020.101701] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 08/18/2020] [Accepted: 08/19/2020] [Indexed: 12/20/2022] Open
Abstract
The well-documented anticarcinogenic properties of natural polyphenolic proanthocyanidins (OPC) have been primarily attributed to their antioxidant and anti-inflammatory potency. Emerging evidence suggests that OPC may target canonical oncogenic pathways, including PI3K/AKT; however, the underlying mechanism and therapeutic potential remain elusive. Here we identify that proanthocyanidin B2 (OPC-B2) directly binds and inhibits AKT activity and downstream signalling, thereby suppressing tumour cell proliferation and metabolism in vitro and in a xenograft and diethyl-nitrosamine (DEN)-induced hepatocellular carcinoma (HCC) mouse models. We further find that OPC-B2 binds to the catalytic and regulatory PH domains to lock the protein in a closed conformation, similar to the well-studied AKT allosteric inhibitor MK-2206. Molecular docking and dynamic simulation suggest that Lys297 and Arg86 are critical sites of OPC-B2 binding; mutation of Lys297 or Arg86 to alanine completely abolishes the antitumor effects of OPC-B2 but not MK-2206. Together, our study reveals that OPC-B2 is a novel allosteric AKT inhibitor with potent anti-tumour efficacy beyond its antioxidant and anti-inflammatory properties.
Collapse
Affiliation(s)
- Guijun Liu
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health (SINH), Chinese Academy of Sciences (CAS), Shanghai, 200031, China; University of the Chinese Academy of Sciences, CAS, Beijing, China
| | - Aimin Shi
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100193, China
| | - Ningning Wang
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health (SINH), Chinese Academy of Sciences (CAS), Shanghai, 200031, China; University of the Chinese Academy of Sciences, CAS, Beijing, China
| | - Min Li
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health (SINH), Chinese Academy of Sciences (CAS), Shanghai, 200031, China; University of the Chinese Academy of Sciences, CAS, Beijing, China
| | - Xuxiao He
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health (SINH), Chinese Academy of Sciences (CAS), Shanghai, 200031, China; University of the Chinese Academy of Sciences, CAS, Beijing, China
| | - Chunzhao Yin
- University of the Chinese Academy of Sciences, CAS, Beijing, China; School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Qiaochu Tu
- University of the Chinese Academy of Sciences, CAS, Beijing, China; School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Xia Shen
- University of the Chinese Academy of Sciences, CAS, Beijing, China; School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Yongzhen Tao
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health (SINH), Chinese Academy of Sciences (CAS), Shanghai, 200031, China.
| | - Qiang Wang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100193, China.
| | - Huiyong Yin
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health (SINH), Chinese Academy of Sciences (CAS), Shanghai, 200031, China; University of the Chinese Academy of Sciences, CAS, Beijing, China; Key Laboratory of Food Safety Risk Assessment, Ministry of Health, Beijing, China; School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China.
| |
Collapse
|
27
|
A phase I study of a dual PI3-kinase/mTOR inhibitor BEZ235 in adult patients with relapsed or refractory acute leukemia. BMC Pharmacol Toxicol 2020; 21:70. [PMID: 32993794 PMCID: PMC7523358 DOI: 10.1186/s40360-020-00446-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 09/06/2020] [Indexed: 01/02/2023] Open
Abstract
Background Combined inhibition of phosphatidylinositol 3-kinase (PI3K) and the mammalian target of rapamycin (mTOR) complexes may be an efficient treatment for acute leukemia. The primary objective of this phase I single center open label study was to determine the maximum tolerated dose (MTD) and recommended phase II dose (RP2D) of the dual pan-class I PI3K and mTOR inhibitor BEZ235 in patients with advanced leukemia. Methods Herein patients > 18 years of age who had relapsed or showed refractory leukemia were treated with BEZ235 (orally at 300–400 mg BID (cohort − 1/1)) to assess safety, tolerability, preliminary efficacy and pharmacokinetic (PK). Adverse events data and serious adverse events were analyzed and haematological and clinical biochemistry toxicities were assessed from laboratory test parameters. Response was assessed for the first time at the end of cycle 1 (day 29) and after every subsequent cycle. Pharmacokinetic and pharmacodynamic analyses of BEZ235 were also included (BEZ235 plasma levels, phosphorylation of AKT, S6 and 4EBP1). On statistics this trial is a multiple ascending dose study in which a following variant of the 3 + 3 rule (“Rolling Six”), a minimum of 6 and a maximum of 12 patients was recruited for the dose escalation and another 5 were planned for the expansion phase. Results Twenty-four patients with ALL (n = 11) or AML (n = 12) or CML-BP (n = 1) were enrolled. All patients had failed one (n = 5) or more lines of therapy (n = 5) and 14 patients were in refractory / refractory relapse. No formal MTD was defined, stomatitis and gastrointestinal toxicity at 400 mg BID dose was considered incompatible with prolonged treatment. The RP2D of BEZ235 was defined as 300 mg BID. Four of 24 patients showed clinical benefit. Twenty-two of 24 patients discontinued because of progression, (median time to progression 27 days (4d-112d). There was no association between PK parameters and efficacy or tolerability. Conclusions Combined inhibition of PI3K and mTOR inhibits a clinically meaningful driver pathway in a small subset of patients with ALL, with no benefit in patients with AML. Trial registration ClinicalTrials.gov, identifier NCT01756118. retrospectively registered 19th December 2012, https://clinicaltrials.gov/ct2/show/NCT01756118.
Collapse
|
28
|
Abstract
For over three decades, a mainstay and goal of clinical oncology has been the development of therapies promoting the effective elimination of cancer cells by apoptosis. This programmed cell death process is mediated by several signalling pathways (referred to as intrinsic and extrinsic) triggered by multiple factors, including cellular stress, DNA damage and immune surveillance. The interaction of apoptosis pathways with other signalling mechanisms can also affect cell death. The clinical translation of effective pro-apoptotic agents involves drug discovery studies (addressing the bioavailability, stability, tumour penetration, toxicity profile in non-malignant tissues, drug interactions and off-target effects) as well as an understanding of tumour biology (including heterogeneity and evolution of resistant clones). While tumour cell death can result in response to therapy, the selection, growth and dissemination of resistant cells can ultimately be fatal. In this Review, we present the main apoptosis pathways and other signalling pathways that interact with them, and discuss actionable molecular targets, therapeutic agents in clinical translation and known mechanisms of resistance to these agents.
Collapse
Affiliation(s)
| | - Wafik S El-Deiry
- The Warren Alpert Medical School, Brown University, Providence, RI, USA.
| |
Collapse
|
29
|
Combined SRPK and AKT pharmacological inhibition is synergistic in T-cell acute lymphoblastic leukemia cells. Toxicol In Vitro 2020; 65:104777. [DOI: 10.1016/j.tiv.2020.104777] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 01/13/2020] [Accepted: 01/17/2020] [Indexed: 12/13/2022]
|
30
|
Shen J, Li L, Howlett NG, Cohen PS, Sun G. Application of a Biphasic Mathematical Model of Cancer Cell Drug Response for Formulating Potent and Synergistic Targeted Drug Combinations to Triple Negative Breast Cancer Cells. Cancers (Basel) 2020; 12:cancers12051087. [PMID: 32349331 PMCID: PMC7281712 DOI: 10.3390/cancers12051087] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 04/20/2020] [Accepted: 04/24/2020] [Indexed: 01/22/2023] Open
Abstract
Triple negative breast cancer is a collection of heterogeneous breast cancers that are immunohistochemically negative for estrogen receptor, progesterone receptor, and ErbB2 (due to deletion or lack of amplification). No dominant proliferative driver has been identified for this type of cancer, and effective targeted therapy is lacking. In this study, we hypothesized that triple negative breast cancer cells are multi-driver cancer cells, and evaluated a biphasic mathematical model for identifying potent and synergistic drug combinations for multi-driver cancer cells. The responses of two triple negative breast cancer cell lines, MDA-MB-231 and MDA-MB-468, to a panel of targeted therapy drugs were determined over a broad range of concentrations. The analyses of the drug responses by the biphasic mathematical model revealed that both cell lines were indeed dependent on multiple drivers, and inhibitors of individual drivers caused a biphasic response: a target-specific partial inhibition at low nM concentrations, and an off-target toxicity at μM concentrations. We further demonstrated that combinations of drugs, targeting each driver, cause potent, synergistic, and cell-specific cell killing. Immunoblotting analysis of the effects of the individual drugs and drug combinations on the signaling pathways supports the above conclusion. These results support a multi-driver proliferation hypothesis for these triple negative breast cancer cells, and demonstrate the applicability of the biphasic mathematical model for identifying effective and synergistic targeted drug combinations for triple negative breast cancer cells.
Collapse
Affiliation(s)
- Jinyan Shen
- Department of Cell and Molecular Biology, University of Rhode Island, Kingston, RI 02881, USA
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan 030001, China
| | - Li Li
- Department of Cell and Molecular Biology, University of Rhode Island, Kingston, RI 02881, USA
- Department of Cell Biology and Medical Genetics, Shanxi Medical University, Taiyuan 030001, China
| | - Niall G. Howlett
- Department of Cell and Molecular Biology, University of Rhode Island, Kingston, RI 02881, USA
| | - Paul S. Cohen
- Department of Cell and Molecular Biology, University of Rhode Island, Kingston, RI 02881, USA
| | - Gongqin Sun
- Department of Cell and Molecular Biology, University of Rhode Island, Kingston, RI 02881, USA
- Correspondence: ; Tel.: +1-401-874-5937
| |
Collapse
|
31
|
Balasubramaniam M, Lakkaniga NR, Dera AA, Fayi MA, Abohashrh M, Ahmad I, Chandramoorthy HC, Nalini G, Rajagopalan P. FCX-146, a potent allosteric inhibitor of Akt kinase in cancer cells: Lead optimization of the second-generation arylidene indanone scaffold. Biotechnol Appl Biochem 2020; 68:82-91. [PMID: 32067263 DOI: 10.1002/bab.1896] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 02/04/2020] [Indexed: 12/16/2022]
Abstract
Akt, a serine-threonine protein kinase, is regulated by class-I PI3K signaling. Akt regulates a wide variety of cell processes including cell proliferation, survival, and angiogenesis through serine/threonine phosphorylation of downstream targets including mTOR and glycogen-synthase-kinase-3-beta (GSK3β). Targeting cancer-specific overexpression of Akt protein could be an efficient way to control cancer-cell proliferation. However, the ATP-competitive inhibitors are challenged by the highly conserved ATP binding site, and by competition with high cellular concentrations of ATP. We previously developed an allosteric inhibitor, 2-arylidene-4, 7-dimethyl indan-1-one (FXY-1) that showed promising activity against several lung cancer models. In this work, we designed a congeneric series of molecules based on FXY-1 and optimized lead based on computational, in vitro assays. Computational screening followed by enzyme-inhibition and cell-proliferation assays identified a derivative (FCX-146) as a new lead molecule with threefold greater potency than the parent compound. FCX-146 increased apoptosis in HL-60 cells, mediated in part through decreased expression of antiapoptotic Bcl-2 protein and increased levels of Bax-2 and Caspase-3. Molecular-dynamic simulations showed stable binding of FCX-146 to an allosteric (i.e., noncatalytic) pocket in Akt. Together, we propose FCX-146 as a potent second-generation arylidene indanone compound that binds to the allosteric pocket of Akt and potently inhibits its activation.
Collapse
Affiliation(s)
| | - Naga Rajiv Lakkaniga
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Ayed A Dera
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
- Central Research Laboratory, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Majed Al Fayi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
- Central Research Laboratory, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Mohammed Abohashrh
- Department of Basic Medical Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Irfan Ahmad
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
- Central Research Laboratory, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Harish C Chandramoorthy
- Center for Stem Cell Research and Department of Microbiology & Clinical Parasitology College of Medicine, King Khalid University, Abha, Saudi Arabia
| | - Ganesan Nalini
- Department of Chemistry, Pachaiyappas College, Chennai, Tamil Nadu, India
| | - Prasanna Rajagopalan
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
- Central Research Laboratory, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| |
Collapse
|
32
|
Liu Y, Zhang Z, Ran F, Guo K, Chen X, Zhao G. Extensive investigation of benzylic N-containing substituents on the pyrrolopyrimidine skeleton as Akt inhibitors with potent anticancer activity. Bioorg Chem 2020; 97:103671. [PMID: 32120074 DOI: 10.1016/j.bioorg.2020.103671] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 02/07/2020] [Accepted: 02/14/2020] [Indexed: 01/07/2023]
Abstract
Continuous optimization of benzylic substituents on 1-(4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)piperazin-1-yl)-2-phenylethan-1-one structure as Akt inhibitors was described in this paper. Particularly, compounds 8 and 14g exhibited high enzymatic potency against all Akt isoforms and antiproliferative effects in mantle cell lymphoma cell lines, as well as favorable cytotoxicities in patient primary cancer cells. Low micromolar doses of both 8 and 14g dose-dependently induced cell apoptosis and G2/M cell cycle arrest, also suppressed the phosphorylation level of Akt downstream targets GSK3β and S6.
Collapse
Affiliation(s)
- Yang Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong 250012, PR China; Department of Lymphoma & Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Zhen Zhang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong 250012, PR China
| | - Fansheng Ran
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong 250012, PR China
| | - Kaiwen Guo
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong 250012, PR China
| | - Xin Chen
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong 250012, PR China
| | - Guisen Zhao
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong 250012, PR China.
| |
Collapse
|
33
|
Shen J, Li L, Yang T, Cohen PS, Sun G. Biphasic Mathematical Model of Cell-Drug Interaction That Separates Target-Specific and Off-Target Inhibition and Suggests Potent Targeted Drug Combinations for Multi-Driver Colorectal Cancer Cells. Cancers (Basel) 2020; 12:cancers12020436. [PMID: 32069833 PMCID: PMC7072552 DOI: 10.3390/cancers12020436] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 02/04/2020] [Accepted: 02/11/2020] [Indexed: 11/25/2022] Open
Abstract
Quantifying the response of cancer cells to a drug, and understanding the mechanistic basis of the response, are the cornerstones for anti-cancer drug discovery. Classical single target-based IC50 measurements are inadequate at describing cancer cell responses to targeted drugs. In this study, based on an analysis of targeted inhibition of colorectal cancer cell lines, we develop a new biphasic mathematical model that accurately describes the cell–drug response. The model describes the drug response using three kinetic parameters: ratio of target-specific inhibition, F1, potency of target-specific inhibition, Kd1, and potency of off-target toxicity, Kd2. Determination of these kinetic parameters also provides a mechanistic basis for predicting effective combination targeted therapy for multi-driver cancer cells. The experiments confirmed that a combination of inhibitors, each blocking a driver pathway and having a distinct target-specific effect, resulted in a potent and synergistic blockade of cell viability, improving potency over mono-agent treatment by one to two orders of magnitude. We further demonstrate that mono-driver cancer cells represent a special scenario in which F1 becomes nearly 100%, and the drug response becomes monophasic. Application of this model to the responses of >400 cell lines to kinase inhibitor dasatinib revealed that the ratio of biphasic versus monophasic responses is about 4:1. This study develops a new mathematical model of quantifying cancer cell response to targeted therapy, and suggests a new framework for developing rational combination targeted therapy for colorectal and other multi-driver cancers.
Collapse
Affiliation(s)
- Jinyan Shen
- Department of Cell and Molecular Biology, University of Rhode Island, Kingston, RI 02881, USA; (J.S.); (L.L.); (T.Y.); (P.S.C.)
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan 030001, China
| | - Li Li
- Department of Cell and Molecular Biology, University of Rhode Island, Kingston, RI 02881, USA; (J.S.); (L.L.); (T.Y.); (P.S.C.)
- Department of Cell Biology and Medical Genetics, Shanxi Medical University, Taiyuan 030001, China
| | - Tao Yang
- Department of Cell and Molecular Biology, University of Rhode Island, Kingston, RI 02881, USA; (J.S.); (L.L.); (T.Y.); (P.S.C.)
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan 030001, China
| | - Paul S. Cohen
- Department of Cell and Molecular Biology, University of Rhode Island, Kingston, RI 02881, USA; (J.S.); (L.L.); (T.Y.); (P.S.C.)
| | - Gongqin Sun
- Department of Cell and Molecular Biology, University of Rhode Island, Kingston, RI 02881, USA; (J.S.); (L.L.); (T.Y.); (P.S.C.)
- Correspondence: ; Tel.: +1-401-874-5937
| |
Collapse
|
34
|
Flip the coin: IL-7 and IL-7R in health and disease. Nat Immunol 2019; 20:1584-1593. [PMID: 31745336 DOI: 10.1038/s41590-019-0479-x] [Citation(s) in RCA: 226] [Impact Index Per Article: 37.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 07/26/2019] [Indexed: 12/14/2022]
Abstract
The cytokine IL-7 and its receptor, IL-7R, are critical for T cell and, in the mouse, B cell development, as well as differentiation and survival of naive T cells, and generation and maintenance of memory T cells. They are also required for innate lymphoid cell (ILC) development and maintenance, and consequently for generation of lymphoid structures and barrier defense. Here we discuss the central role of IL-7 and IL-7R in the lymphoid system and highlight the impact of their deregulation, placing a particular emphasis on their 'dark side' as promoters of cancer development. We also explore therapeutic implications and opportunities associated with either positive or negative modulation of the IL-7-IL-7R signaling axis.
Collapse
|
35
|
Physiological levels of the PTEN-PI3K-AKT axis activity are required for maintenance of Burkitt lymphoma. Leukemia 2019; 34:857-871. [PMID: 31719683 PMCID: PMC7214272 DOI: 10.1038/s41375-019-0628-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 10/01/2019] [Accepted: 11/03/2019] [Indexed: 12/14/2022]
Abstract
In addition to oncogenic MYC translocations, Burkitt lymphoma (BL) depends on the germinal centre (GC) dark zone (DZ) B cell survival and proliferation programme, which is characterized by relatively low PI3K-AKT activity. Paradoxically, PI3K-AKT activation facilitates MYC-driven lymphomagenesis in mice, and it has been proposed that PI3K-AKT activation is essential for BL. Here we show that the PI3K-AKT activity in primary BLs and BL cell lines does not exceed that of human non-neoplastic tonsillar GC DZ B cells. BLs were not sensitive to AKT1 knockdown, which induced massive cell death in pAKThigh DLBCL cell lines. Likewise, BL cell lines show low sensitivity to pan-AKT inhibitors. Moreover, hyper-activation of the PI3K-AKT pathway by overexpression of a constitutively active version of AKT (myrAKT) or knockdown of PTEN repressed the growth of BL cell lines. This was associated with increased AKT phosphorylation, NF-κB activation, and downregulation of DZ genes including the proto-oncogene MYB and the DZ marker CXCR4. In contrast to GCB-DLBCL, PTEN overexpression was tolerated by BL cell lines. We conclude that the molecular mechanisms instrumental to guarantee the survival of normal DZ B cells, including the tight regulation of the PTEN-PI3K-AKT axis, also operate in the survival/proliferation of BL.
Collapse
|
36
|
Hegazy RR, Mansour DF, Salama AA, Abdel-Rahman RF, Hassan AM. Regulation of PKB/Akt-pathway in the chemopreventive effect of lactoferrin against diethylnitrosamine-induced hepatocarcinogenesis in rats. Pharmacol Rep 2019; 71:879-891. [PMID: 31442665 DOI: 10.1016/j.pharep.2019.04.019] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 04/15/2019] [Accepted: 04/24/2019] [Indexed: 12/29/2022]
Abstract
BACKGROUND Abnormal activation of protein kinase B (PKB) is associated with many cancers. This makes inhibition of PKB signaling pathway a promising strategy for cancer therapy. Lactoferrin (Lf) has been reported for its inhibition of tumor growth and metastasis, however, the mechanism is not completely understood. Its anti-hepatocarcinogenic activity has not taken the deserved recognition despite the additional advantages of Lf as an antiviral against hepatitis C virus, the main cause of hepatocellular carcinoma (HCC), and as a targeting ligand for delivering chemotherapeutics to hepatoma cells. METHODS This study evaluated the anti-hepatocarcinogenic effect of Lf, and the role of PKB in this effect using diethylnitrosamine (DENA)-induced HCC rat model, and a primary cell culture prepared from the induced hepatic lesions (DENA-HCC cell culture). RESULTS Up-regulation of activated PKB in the hepatocytes of rats with DENA-induced HCC was observed, as measured biochemically in the liver homogenate, and localized immunohistochemically. This was accompanied by increment of hepatocytes proliferation, and expression of vascular endothelial growth factor and endothelial nitric oxide synthase. Involvement of PKB in DENA-induced HCC was confirmed by the observed decrease in cell proliferation in DENA-HCC cell culture that was treated with PKB inhibitor. In Lf-treated rats, a dose-dependent chemopreventive effect was observed, with decreased expression and activation of PKB, amelioration of the other DENA-induced alterations, and stimulation of apoptosis. In vitro, Lf blocked PKB activator-induced cell proliferation. CONCLUSION These findings support the chemopreventive activity of Lf against HCC, and suggest regulation of PKB-pathway as a potential mechanism underlying this effect.
Collapse
Affiliation(s)
- Rehab R Hegazy
- Department of Pharmacology, Medical Division, National Research Centre, Giza, Egypt.
| | - Dina F Mansour
- Department of Pharmacology, Medical Division, National Research Centre, Giza, Egypt
| | - Abeer A Salama
- Department of Pharmacology, Medical Division, National Research Centre, Giza, Egypt
| | - Rehab F Abdel-Rahman
- Department of Pharmacology, Medical Division, National Research Centre, Giza, Egypt
| | - Azza M Hassan
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| |
Collapse
|
37
|
Lavogina D, Samuel K, Lavrits A, Meltsov A, Sõritsa D, Kadastik Ü, Peters M, Rinken A, Salumets A. Chemosensitivity and chemoresistance in endometriosis – differences for ectopic versus eutopic cells. Reprod Biomed Online 2019; 39:556-568. [DOI: 10.1016/j.rbmo.2019.05.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Revised: 05/22/2019] [Accepted: 05/28/2019] [Indexed: 01/19/2023]
|
38
|
Shen J, Li L, Yang T, Cheng N, Sun G. Drug Sensitivity Screening and Targeted Pathway Analysis Reveal a Multi-Driver Proliferative Mechanism and Suggest a Strategy of Combination Targeted Therapy for Colorectal Cancer Cells. Molecules 2019; 24:molecules24030623. [PMID: 30754629 PMCID: PMC6384902 DOI: 10.3390/molecules24030623] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 02/01/2019] [Accepted: 02/07/2019] [Indexed: 01/25/2023] Open
Abstract
Treatment of colorectal cancer mostly relies on traditional therapeutic approaches, such as surgery and chemotherapy. Limited options of targeted therapy for colorectal cancer narrowly focus on blocking cancer-generic targets VEGFR and EGFR. Identifying the oncogenic drivers, understanding their contribution to proliferation, and finding inhibitors to block such drivers are the keys to developing targeted therapy for colorectal cancer. In this study, ten colorectal cancer cell lines were screened against a panel of protein kinase inhibitors blocking key oncogenic signaling pathways. The results show that four of the 10 cell lines did not respond to any kinase inhibitors significantly, the other six were mildly inhibited by AZD-6244, BMS-754807, and/or dasatinib. Mechanistic analyses demonstrate that these inhibitors independently block the MAP kinase pathway, IR/IGF-1R/AKT pathway, and Src kinases, suggesting a multi-driver nature of proliferative signaling in these cells. Most of these cell lines were potently and synergistically inhibited by pair-wise combinations of these drugs. Furthermore, seven of the 10 cell lines were inhibited by the triple combination of AZD-6244/BMS-754807/dasatinib with IC50’s between 10 and 84 nM. These results suggest that combination targeted therapy may be an effective strategy against colorectal cancer.
Collapse
Affiliation(s)
- Jinyan Shen
- Department of Biochemistry and Molecular Biology; Shanxi Medical University, Taiyuan 030001, Shanxi, China.
- Department of Cell and Molecular Biology, University of Rhode Island, Kingston, RI 02881, USA.
| | - Li Li
- Department of Cell and Molecular Biology, University of Rhode Island, Kingston, RI 02881, USA.
- Department of Cell Biology and Medical Genetics, Shanxi Medical University, Taiyuan 030001, Shanxi, China.
| | - Tao Yang
- Department of Biochemistry and Molecular Biology; Shanxi Medical University, Taiyuan 030001, Shanxi, China.
- Department of Cell and Molecular Biology, University of Rhode Island, Kingston, RI 02881, USA.
| | - Niuliang Cheng
- Department of Biochemistry and Molecular Biology; Shanxi Medical University, Taiyuan 030001, Shanxi, China.
| | - Gongqin Sun
- Department of Biochemistry and Molecular Biology; Shanxi Medical University, Taiyuan 030001, Shanxi, China.
- Department of Cell and Molecular Biology, University of Rhode Island, Kingston, RI 02881, USA.
| |
Collapse
|
39
|
Weissbein U, Peretz M, Plotnik O, Yanuka O, Sagi I, Golan-Lev T, Benvenisty N. Genome-wide Screen for Culture Adaptation and Tumorigenicity-Related Genes in Human Pluripotent Stem Cells. iScience 2019; 11:398-408. [PMID: 30660107 PMCID: PMC6348297 DOI: 10.1016/j.isci.2018.12.031] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 11/19/2018] [Accepted: 12/27/2018] [Indexed: 01/08/2023] Open
Abstract
Human pluripotent stem cells (hPSCs) acquire genetic changes during their propagation in culture that can affect their use in research and future therapies. To identify the key genes involved in selective advantage during culture adaptation and tumorigenicity of hPSCs, we generated a genome-wide screening system for genes and pathways that provide a growth advantage either in vitro or in vivo. We found that hyperactivation of the RAS pathway confers resistance to selection with the hPSC-specific drug PluriSIn-1. We also identified that inactivation of the RHO-ROCK pathway gives growth advantage during culture adaptation. Last, we demonstrated the importance of the PI3K-AKT and HIPPO pathways for the teratoma formation process. Our screen revealed key genes and pathways relevant to the tumorigenicity and survival of hPSCs and should thus assist in understanding and confronting their tumorigenic potential. Large-scale analysis of genes and pathways involved in growth and survival of hPSCs Activation of the RAS pathways confers enhanced resistance to PluriSIn-1 treatment Inactivation of the RHO-ROCK pathway gives selective growth advantage to hPSCs The PI3K-AKT and HIPPO pathways are involved in the process of teratoma formation
Collapse
Affiliation(s)
- Uri Weissbein
- The Azrieli Center for Stem Cells and Genetic Research, Department of Genetics, Silberman Institute of Life Sciences, The Hebrew University, Jerusalem, Israel
| | - Mordecai Peretz
- The Azrieli Center for Stem Cells and Genetic Research, Department of Genetics, Silberman Institute of Life Sciences, The Hebrew University, Jerusalem, Israel
| | - Omer Plotnik
- The Azrieli Center for Stem Cells and Genetic Research, Department of Genetics, Silberman Institute of Life Sciences, The Hebrew University, Jerusalem, Israel
| | - Ofra Yanuka
- The Azrieli Center for Stem Cells and Genetic Research, Department of Genetics, Silberman Institute of Life Sciences, The Hebrew University, Jerusalem, Israel
| | - Ido Sagi
- The Azrieli Center for Stem Cells and Genetic Research, Department of Genetics, Silberman Institute of Life Sciences, The Hebrew University, Jerusalem, Israel
| | - Tamar Golan-Lev
- The Azrieli Center for Stem Cells and Genetic Research, Department of Genetics, Silberman Institute of Life Sciences, The Hebrew University, Jerusalem, Israel
| | - Nissim Benvenisty
- The Azrieli Center for Stem Cells and Genetic Research, Department of Genetics, Silberman Institute of Life Sciences, The Hebrew University, Jerusalem, Israel.
| |
Collapse
|
40
|
Martín MJ, Gigola G, Zwenger A, Carriquiriborde M, Gentil F, Gentili C. Potential therapeutic targets for growth arrest of colorectal cancer cells exposed to PTHrP. Mol Cell Endocrinol 2018; 478:32-44. [PMID: 30009852 DOI: 10.1016/j.mce.2018.07.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 06/25/2018] [Accepted: 07/12/2018] [Indexed: 02/06/2023]
Abstract
Although PTHrP is implicated in several cancers, its role in chemoresistance is not fully elucidated. We found that in CRC cells, PTHrP exerts proliferative and protective effects and induces cell migration. The aim of this work was to further study the effects of PTHrP in CRC cells. Herein we evidenced, for the first time, that PTHrP induces resistance to CPT-11 in Caco-2 and HCT116 cells; although both cell lines responded to the drug through different molecular mechanisms, the chemoresistance by PTHrP in these models is mediated through ERK, which in turn is activated by PCK, Src and Akt. Moreover, continue administration of PTHrP in nude mice xenografts increased the protein levels of this MAPK and of other markers related to tumorigenic events. The understanding of the molecular mechanisms leading to ERK 1/2 activation and the study of ERK targets may facilitate the development of new therapeutic strategies for CRC treatment.
Collapse
Affiliation(s)
- María Julia Martín
- Instituto de Ciencias Biológicas y Biomédicas del Sur (INBIOSUR), Dept. Biología Bioquímica y Farmacia, Universidad Nacional del Sur-CONICET, Bahía Blanca, Argentina
| | - Graciela Gigola
- Dept. Biología Bioquímica y Farmacia, Universidad Nacional del Sur, Bahía Blanca, Argentina
| | - Ariel Zwenger
- Dept. de Oncología, Hospital Provincial de Neuquén, Neuquén, Argentina
| | | | - Florencia Gentil
- Fac. de Cs. Veterinarias, Universidad Nacional de La Plata, La Plata, Argentina
| | - Claudia Gentili
- Instituto de Ciencias Biológicas y Biomédicas del Sur (INBIOSUR), Dept. Biología Bioquímica y Farmacia, Universidad Nacional del Sur-CONICET, Bahía Blanca, Argentina.
| |
Collapse
|
41
|
Babic T, Dinic J, Buric SS, Hadzic S, Pesic M, Radojkovic D, Rankov AD. Comparative toxicity evaluation of targeted anticancer therapeutics in embryonic zebrafish and sea urchin models. ACTA BIOLOGICA HUNGARICA 2018; 69:395-410. [PMID: 30587022 DOI: 10.1556/018.69.2018.4.3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Cancer drug resistance and poor selectivity towards cancer cells demand the constant search for new therapeutics. PI3K-Akt-mTOR and RAS-MAPK-ERK signaling pathways are key mechanisms involved in cell survival, proliferation, differentiation, and metabolism and their deregulation in cancer can promote development of therapy resistance. We investigated the effects of targeted inhibitors (wortmannin, GSK690693, AZD2014 and tipifarnib) towards these two pathways on early zebrafish and sea urchin development to assess their toxicity in normal, fast proliferating cells. PI3K inhibitor wortmannin and RAS inhibitor tipifarnib displayed highest toxicity while GSK690693, a pan-Akt kinase inhibitor, exhibited a less significant impact on embryo survival and development. Moreover, inhibition of the upstream part of the PI3K-Akt-mTOR pathway (wortmannin/GSK690693 co-treatment) produced a synergistic effect and impacted zebrafish embryo survival and development at much lower concentrations. Dual mTORC1/mTORC2 inhibitor AZD2014 showed no considerable effects on embryonic cells of zebrafish in concentrations substantially toxic in cancer cells. AZD2014 also caused the least prominent effects on sea urchin embryo development compared to other inhibitors. Significant toxicity of AZD2014 in human cancer cells, its capacity to sensitize resistant cancers, lower antiproliferative activity against human normal cell lines and fast proliferating embryonic cells could make this agent a promising candidate for anticancer therapy.
Collapse
Affiliation(s)
- Tamara Babic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11010, Belgrade, Serbia
| | - Jelena Dinic
- Institute for Biological Research “Sinisa Stankovic”, Department of Neurobiology, University of Belgrade, Despota Stefana 142, 11060, Belgrade, Serbia
| | - Sonja Stojkovic Buric
- Institute for Biological Research “Sinisa Stankovic”, Department of Neurobiology, University of Belgrade, Despota Stefana 142, 11060, Belgrade, Serbia
| | - Stefan Hadzic
- Institute for Biological Research “Sinisa Stankovic”, Department of Neurobiology, University of Belgrade, Despota Stefana 142, 11060, Belgrade, Serbia
| | - Milica Pesic
- Institute for Biological Research “Sinisa Stankovic”, Department of Neurobiology, University of Belgrade, Despota Stefana 142, 11060, Belgrade, Serbia
| | - Dragica Radojkovic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11010, Belgrade, Serbia
| | - Aleksandra Divac Rankov
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11010, Belgrade, Serbia
| |
Collapse
|
42
|
Uko NE, Güner OF, Barnett LMA, Matesic DF, Bowen JP. Discovery and biological activity of computer-assisted drug designed Akt pathway inhibitors. Bioorg Med Chem Lett 2018; 28:3247-3250. [PMID: 30143420 DOI: 10.1016/j.bmcl.2018.08.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 08/03/2018] [Accepted: 08/04/2018] [Indexed: 10/28/2022]
Abstract
The P13K/Akt pathway is a growth-regulating cellular signaling pathway that is over-activated in numerous human cancers. A novel series of Akt pathway inhibitors were identified using iterative pharmacophore modeling, energy-based calculations, and property predictions of known Akt inhibitors. Inhibitory effects on activation of Akt and growth of human neoplastic cells are reported. Results show variable inhibitory effects of three selected compounds on Akt phosphorylation at a key activation site, and on proliferation of tumorigenic cells. We identify one lead compound with potent inhibitory activity on both human carcinoma cell proliferation and Akt activation.
Collapse
Affiliation(s)
- Nne E Uko
- Department of Pharmaceutical Sciences, College of Pharmacy, Mercer University, Atlanta, GA 30341, USA
| | - Osman F Güner
- Department of Pharmaceutical Sciences, College of Pharmacy, Mercer University, Atlanta, GA 30341, USA
| | - Lillie M A Barnett
- Department of Pharmaceutical Sciences, College of Pharmacy, Mercer University, Atlanta, GA 30341, USA
| | - Diane F Matesic
- Department of Pharmaceutical Sciences, College of Pharmacy, Mercer University, Atlanta, GA 30341, USA.
| | - J Phillip Bowen
- Department of Pharmaceutical Sciences, College of Pharmacy, Mercer University, Atlanta, GA 30341, USA
| |
Collapse
|
43
|
Yang J, Li A, Li Y, Guo X, Wang M. A novel approach for drug response prediction in cancer cell lines via network representation learning. Bioinformatics 2018; 35:1527-1535. [DOI: 10.1093/bioinformatics/bty848] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 09/09/2018] [Accepted: 10/09/2018] [Indexed: 11/13/2022] Open
Affiliation(s)
- Jianghong Yang
- School of Information Science and Technology, University of Science and Technology of China, Hefei AH230037, China
| | - Ao Li
- School of Information Science and Technology, University of Science and Technology of China, Hefei AH230037, China
- Centers for Biomedical Engineering, University of Science and Technology of China, Hefei AH230037, China
| | - Yongqiang Li
- Department of Preventive Medicine, Institute of Biomedical Informatics, Cell Signal Transduction Laboratory, School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Xiangqian Guo
- Department of Preventive Medicine, Institute of Biomedical Informatics, Cell Signal Transduction Laboratory, School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Minghui Wang
- School of Information Science and Technology, University of Science and Technology of China, Hefei AH230037, China
- Centers for Biomedical Engineering, University of Science and Technology of China, Hefei AH230037, China
| |
Collapse
|
44
|
Konno H, Chinn IK, Hong D, Orange JS, Lupski JR, Mendoza A, Pedroza LA, Barber GN. Pro-inflammation Associated with a Gain-of-Function Mutation (R284S) in the Innate Immune Sensor STING. Cell Rep 2018; 23:1112-1123. [PMID: 29694889 PMCID: PMC6092751 DOI: 10.1016/j.celrep.2018.03.115] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 01/30/2018] [Accepted: 03/26/2018] [Indexed: 12/22/2022] Open
Abstract
The cellular sensor stimulator of interferon genes (STING) initiates type I interferon (IFN) and cytokine production following association with cyclic dinucleotides (CDNs) generated from intracellular bacteria or via a cellular synthase, cGAS, after binding microbial or self-DNA. Although essential for protecting the host against infection, unscheduled STING signaling is now known to be responsible for a variety of autoinflammatory disorders. Here, we report a gain-of-function mutation in STING (R284S), isolated from a patient who did not require CDNs to augment activity and who manifested a constitutively active phenotype. Control of the Unc-51-like autophagy activating kinase 1 (ULK1) pathway, which has previously been shown to influence STING function, was potently able to suppress STING (R284S) activity to alleviate cytokine production. Our findings add to the growing list of inflammatory syndromes associated with spontaneous STING signaling and provide a therapeutic strategy for the treatment of STING-induced inflammatory disease.
Collapse
Affiliation(s)
- Hiroyasu Konno
- Department of Cell Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Ivan K Chinn
- Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA; Division of Immunology/Allergy/Rheumatology, Texas Children's Hospital, Houston, TX 77030, USA; Center for Human Immunobiology, Baylor College of Medicine, Texas Children's Hospital, Houston, TX 77030, USA
| | - Diana Hong
- Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA; Division of Immunology/Allergy/Rheumatology, Texas Children's Hospital, Houston, TX 77030, USA; Center for Human Immunobiology, Baylor College of Medicine, Texas Children's Hospital, Houston, TX 77030, USA
| | - Jordan S Orange
- Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA; Division of Immunology/Allergy/Rheumatology, Texas Children's Hospital, Houston, TX 77030, USA; Center for Human Immunobiology, Baylor College of Medicine, Texas Children's Hospital, Houston, TX 77030, USA
| | - James R Lupski
- Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Texas Children's Hospital, Houston, TX 77030, USA; Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Alejandra Mendoza
- Colegio de Ciencias de la Salud-Hospital de los Valles, Universidad San Francisco de Quito, Quito, Ecuador
| | - Luis A Pedroza
- Colegio de Ciencias de la Salud-Hospital de los Valles, Universidad San Francisco de Quito, Quito, Ecuador
| | - Glen N Barber
- Department of Cell Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
| |
Collapse
|
45
|
Simioni C, Martelli AM, Zauli G, Vitale M, McCubrey JA, Capitani S, Neri LM. Targeting the phosphatidylinositol 3-kinase/Akt/mechanistic target of rapamycin signaling pathway in B-lineage acute lymphoblastic leukemia: An update. J Cell Physiol 2018; 233:6440-6454. [PMID: 29667769 DOI: 10.1002/jcp.26539] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 02/12/2018] [Indexed: 12/26/2022]
Abstract
Despite considerable progress in treatment protocols, B-lineage acute lymphoblastic leukemia (B-ALL) displays a poor prognosis in about 15-20% of pediatric cases and about 60% of adult patients. In addition, life-long irreversible late effects from chemo- and radiation therapy, including secondary malignancies, are a growing problem for leukemia survivors. Targeted therapy holds promising perspectives for cancer treatment as it may be more effective and have fewer side effects than conventional therapies. The phosphatidylinositol 3-phosphate kinase (PI3K)/Akt/mechanistic target of rapamycin (mTOR) signaling pathway is a key regulatory cascade which controls proliferation, survival and drug-resistance of cancer cells, and it is frequently upregulated in the different subtypes of B-ALL, where it plays important roles in the pathophysiology, maintenance and progression of the disease. Moreover, activation of this signaling cascade portends a poorer prognosis in both pediatric and adult B-ALL patients. Promising preclinical data on PI3K/Akt/mTOR inhibitors have documented their anticancer activity in B-ALL and some of these novel drugs have entered clinical trials as they could lead to a longer event-free survival and reduce therapy-associated toxicity for patients with B-ALL. This review highlights the current status of PI3K/Akt/mTOR inhibitors in B-ALL, with an emphasis on emerging evidence of the superior efficacy of synergistic combinations involving the use of traditional chemotherapeutics or other novel, targeted agents.
Collapse
Affiliation(s)
- Carolina Simioni
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Alberto M Martelli
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Giorgio Zauli
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Marco Vitale
- Department of Medicine and Surgery, University of Parma, Parma, Italy.,CoreLab, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
| | - James A McCubrey
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, North Carolina
| | - Silvano Capitani
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Luca M Neri
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| |
Collapse
|
46
|
Tight regulation of FOXO1 is essential for maintenance of B-cell precursor acute lymphoblastic leukemia. Blood 2018; 131:2929-2942. [PMID: 29622548 DOI: 10.1182/blood-2017-10-813576] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 03/26/2018] [Indexed: 12/30/2022] Open
Abstract
The FOXO1 transcription factor plays an essential role in the regulation of proliferation and survival programs at early stages of B-cell differentiation. Here, we show that tightly regulated FOXO1 activity is essential for maintenance of B-cell precursor acute lymphoblastic leukemia (BCP-ALL). Genetic and pharmacological inactivation of FOXO1 in BCP-ALL cell lines produced a strong antileukemic effect associated with CCND3 downregulation. Moreover, we demonstrated that CCND3 expression is critical for BCP-ALL survival and that overexpression of CCND3 protected BCP-ALL cell lines from growth arrest and apoptosis induced by FOXO1 inactivation. Most importantly, pharmacological inhibition of FOXO1 showed antileukemia activity on several primary, patient-derived, pediatric ALL xenografts with effective leukemia reduction in the hematopoietic, lymphoid, and central nervous system organ compartments, ultimately leading to prolonged survival without leukemia reoccurrence in a preclinical in vivo model of BCP-ALL. These results suggest that repression of FOXO1 might be a feasible approach for the treatment of BCP-ALL.
Collapse
|
47
|
Co-stimulation Agonists via CD137, OX40, GITR, and CD27 for Immunotherapy of Cancer. Oncoimmunology 2018. [DOI: 10.1007/978-3-319-62431-0_26] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
48
|
Identification of differential PI3K pathway target dependencies in T-cell acute lymphoblastic leukemia through a large cancer cell panel screen. Oncotarget 2017; 7:22128-39. [PMID: 26989080 PMCID: PMC5008349 DOI: 10.18632/oncotarget.8031] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 02/18/2016] [Indexed: 12/31/2022] Open
Abstract
Selective phosphoinositide 3-kinase (PI3K)/AKT/mTOR inhibitors are currently under evaluation in clinical studies. To identify tumor types that are sensitive to PI3K pathway inhibitors we screened compounds targeting PI3Kα/δ (AZD8835), PI3Kβ/δ (AZD8186), AKT (AZD5363) and mTORC1/2 (AZD2014) against a cancer cell line panel (971 cell lines). There was an enrichment of hematological malignancies that were sensitive to AKT and mTOR inhibition, with the greatest degree of sensitivity observed in T-cell acute lymphoblastic leukemia (T-ALL). We found that all NOTCH mutant T-ALL cell lines were sensitive to AKT and mTORC1/2 inhibitors, with only partial sensitivity to agents that target the PI3K α, β or δ isoforms. Induction of apoptosis only occurred following AKTi treatment in cell lines with PTEN protein loss and high levels of active AKT. In summary, we have demonstrated that T-ALL cell lines show differential sensitivity to inhibition at different nodes in the PI3K/AKT/mTOR pathway and inhibiting AKT or mTOR may have a therapeutic benefit in this disease setting.
Collapse
|
49
|
Najafi A, Adutwum E, Yari A, Salehi E, Mikaeili S, Dashtestani F, Abolhassani F, Rashki L, Shiasi S, Asadi E. Melatonin affects membrane integrity, intracellular reactive oxygen species, caspase3 activity and AKT phosphorylation in frozen thawed human sperm. Cell Tissue Res 2017; 372:149-159. [DOI: 10.1007/s00441-017-2743-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 11/06/2017] [Indexed: 01/09/2023]
|
50
|
Protein kinase B: emerging mechanisms of isoform-specific regulation of cellular signaling in cancer. Anticancer Drugs 2017; 28:569-580. [PMID: 28379898 DOI: 10.1097/cad.0000000000000496] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The serine/threonine protein kinase B (PKB), also known as Akt, is one of the multifaceted kinases in the human kinome, existing in three isoforms. PKB plays a vital role in phosphoinositide 3-kinase (PI3K)-mediated oncogenesis in various malignancies and is one of the attractive targets for cancer drug discovery. Recent studies have shown that the functional significance of an individual isoform of PKB is not redundant in cancer. It has been found that PKB isoforms play distinct roles in the regulation of cellular invasion and migration during tumorigenesis. PKB activation plays a central role during epithelial-mesenchymal transition, a cellular program required for the cancer cell invasion and migration. However, the differential behavior of each PKB isoform has been shown in the regulation of epithelial-mesenchymal transition. Recent studies have suggested that PKBα (Akt1) plays a conflicting role in tumorigenesis by acting either as a pro-oncogenic factor by suppressing the apoptotic machinery or by restricting tumor invasion. PKBβ (Akt2) promotes cell migration and invasion and similarly PKBγ (Akt3) has been reported to promote tumor migration. As PKB is known for its pro-oncogenic properties, it needs to be unraveled how three isoforms of PKB compensate during tumor progression. In this review, we attempted to sum up how different isoforms of PKB play a role in cancer progression, metastasis, and drug resistance.
Collapse
|