1
|
Montecino-Garrido H, Trostchansky A, Espinosa-Parrilla Y, Palomo I, Fuentes E. How Protein Depletion Balances Thrombosis and Bleeding Risk in the Context of Platelet's Activatory and Negative Signaling. Int J Mol Sci 2024; 25:10000. [PMID: 39337488 PMCID: PMC11432290 DOI: 10.3390/ijms251810000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/28/2024] [Accepted: 09/02/2024] [Indexed: 09/30/2024] Open
Abstract
Platelets are small cell fragments that play a crucial role in hemostasis, requiring fast response times and fine signaling pathway regulation. For this regulation, platelets require a balance between two pathway types: the activatory and negative signaling pathways. Activatory signaling mediators are positive responses that enhance stimuli initiated by a receptor in the platelet membrane. Negative signaling regulates and controls the responses downstream of the same receptors to roll back or even avoid spontaneous thrombotic events. Several blood-related pathologies can be observed when these processes are unregulated, such as massive bleeding in activatory signaling inhibition or thrombotic events for negative signaling inhibition. The study of each protein and metabolite in isolation does not help to understand the role of the protein or how it can be contrasted; however, understanding the balance between active and negative signaling could help develop effective therapies to prevent thrombotic events and bleeding disorders.
Collapse
Affiliation(s)
- Hector Montecino-Garrido
- Centro de Estudios en Alimentos Procesados (CEAP), ANID-Regional, Gore Maule R0912001, Talca 3480094, Chile
| | - Andrés Trostchansky
- Departamento de Bioquímica and Centro de Investigaciones Biomédicas (CEINBIO), Facultad de Medicina, Universidad de la República, Montevideo 11800, Uruguay
| | - Yolanda Espinosa-Parrilla
- Interuniversity Center for Healthy Aging (CIES), Centro Asistencial, Docente e Investigación-CADI-UMAG, Escuela de Medicina, Universidad de Magallanes, Punta Arenas 6210427, Chile
| | - Iván Palomo
- Thrombosis and Healthy Aging Research Center, Interuniversity Center for Healthy Aging (CIES), Interuniversity Network of Healthy Aging in Latin America and Caribbean (RIES-LAC), Medical Technology School, Department of Clinical Biochemistry and Immunohematology, Faculty of Health Sciences, Universidad de Talca, Talca 3480094, Chile
| | - Eduardo Fuentes
- Thrombosis and Healthy Aging Research Center, Interuniversity Center for Healthy Aging (CIES), Interuniversity Network of Healthy Aging in Latin America and Caribbean (RIES-LAC), Medical Technology School, Department of Clinical Biochemistry and Immunohematology, Faculty of Health Sciences, Universidad de Talca, Talca 3480094, Chile
| |
Collapse
|
2
|
Liu W, Gao T, Li N, Shao S, Liu B. Vesicle fusion and release in neurons under dynamic mechanical equilibrium. iScience 2024; 27:109793. [PMID: 38736547 PMCID: PMC11088343 DOI: 10.1016/j.isci.2024.109793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2024] Open
Abstract
Vesicular fusion plays a pivotal role in cellular processes, involving stages like vesicle trafficking, fusion pore formation, content release, and membrane integration or separation. This dynamic process is regulated by a complex interplay of protein assemblies, osmotic forces, and membrane tension, which together maintain a mechanical equilibrium within the cell. Changes in cellular mechanics or external pressures prompt adjustments in this equilibrium, highlighting the system's adaptability. This review delves into the synergy between intracellular proteins, structural components, and external forces in facilitating vesicular fusion and release. It also explores how cells respond to mechanical stress, maintaining equilibrium and offering insights into vesicle fusion mechanisms and the development of neurological disorders.
Collapse
Affiliation(s)
- Wenhao Liu
- Cancer Hospital of Dalian University of Technology, Shenyang 110042, China
| | - Tianyu Gao
- Cancer Hospital of Dalian University of Technology, Shenyang 110042, China
| | - Na Li
- Cancer Hospital of Dalian University of Technology, Shenyang 110042, China
- Faculty of Medicine, Liaoning Key Lab of Integrated Circuit and Biomedical Electronic System, Dalian University of Technology, Dalian 116024, China
| | - Shuai Shao
- Cancer Hospital of Dalian University of Technology, Shenyang 110042, China
- Faculty of Medicine, Liaoning Key Lab of Integrated Circuit and Biomedical Electronic System, Dalian University of Technology, Dalian 116024, China
| | - Bo Liu
- Cancer Hospital of Dalian University of Technology, Shenyang 110042, China
- Faculty of Medicine, Liaoning Key Lab of Integrated Circuit and Biomedical Electronic System, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
3
|
Drysdale A, Blanco-Lopez M, White SJ, Unsworth AJ, Jones S. Differential Proteoglycan Expression in Atherosclerosis Alters Platelet Adhesion and Activation. Int J Mol Sci 2024; 25:950. [PMID: 38256024 PMCID: PMC10815981 DOI: 10.3390/ijms25020950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/06/2024] [Accepted: 01/09/2024] [Indexed: 01/24/2024] Open
Abstract
Proteoglycans are differentially expressed in different atherosclerotic plaque phenotypes, with biglycan and decorin characteristic of ruptured plaques and versican and hyaluronan more prominent in eroded plaques. Following plaque disruption, the exposure of extracellular matrix (ECM) proteins triggers platelet adhesion and thrombus formation. In this study, the impact of differential plaque composition on platelet function and thrombus formation was investigated. Platelet adhesion, activation and thrombus formation under different shear stress conditions were assessed in response to individual proteoglycans and composites representing different plaque phenotypes. The results demonstrated that all the proteoglycans tested mediated platelet adhesion but not platelet activation, and the extent of adhesion observed was significantly lower than that observed with type I and type III collagens. Thrombus formation upon the rupture and erosion ECM composites was significantly reduced (p < 0.05) compared to relevant collagen alone, indicating that proteoglycans negatively regulate platelet collagen responses. This was supported by results demonstrating that the addition of soluble biglycan or decorin to whole blood markedly reduced thrombus formation on type I collagen (p < 0.05). Interestingly, thrombus formation upon the erosion composite displayed aspirin sensitivity, whereas the rupture composite was intensive to aspirin, having implications for current antiplatelet therapy regimes. In conclusion, differential platelet responses and antiplatelet efficacy are observed on ECM composites phenotypic of plaque rupture and erosion. Proteoglycans inhibit thrombus formation and may offer a novel plaque-specific approach to limit arterial thrombosis.
Collapse
Affiliation(s)
- Amelia Drysdale
- Department of Life Sciences, Manchester Metropolitan University, Manchester M1 5GD, UK; (A.D.); (M.B.-L.); (A.J.U.)
| | - Maria Blanco-Lopez
- Department of Life Sciences, Manchester Metropolitan University, Manchester M1 5GD, UK; (A.D.); (M.B.-L.); (A.J.U.)
| | - Stephen J. White
- Faculty of Medical Sciences, The Medical School, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, UK;
| | - Amanda J. Unsworth
- Department of Life Sciences, Manchester Metropolitan University, Manchester M1 5GD, UK; (A.D.); (M.B.-L.); (A.J.U.)
| | - Sarah Jones
- Department of Life Sciences, Manchester Metropolitan University, Manchester M1 5GD, UK; (A.D.); (M.B.-L.); (A.J.U.)
| |
Collapse
|
4
|
Abstract
PURPOSE OF REVIEW Models of arterial thrombus formation represent a vital experimental tool to investigate platelet function and test novel antithrombotic drugs. This review highlights some of the recent advances in modelling thrombus formation in vitro and suggests potential future directions. RECENT FINDINGS Microfluidic devices and the availability of commercial chips in addition to enhanced accessibility of 3D printing has facilitated a rapid surge in the development of novel in-vitro thrombosis models. These include progression towards more sophisticated, 'vessel on a chip' models which incorporate vascular endothelial cells and smooth muscle cells. Other approaches include the addition of branches to the traditional single channel to yield an occlusive model; and developments in the adhesive coating of microfluidic chambers to better mimic the thrombogenic surface exposed following plaque rupture. Future developments in the drive to create more biologically relevant chambers could see a move towards the use of human placental vessels, perfused ex-vivo. However, further work is required to determine the feasibility and validity of this approach. SUMMARY Recent advances in thrombus formation models have significantly improved the pathophysiological relevance of in-vitro flow chambers to better reflect the in-vivo environment and provide a more translational platform to test novel antithrombotics.
Collapse
Affiliation(s)
- Amelia Drysdale
- Department of Life Sciences, Faculty of Science and Engineering, Manchester Metropolitan University, Manchester, UK
| | | | | |
Collapse
|
5
|
Xin H, Huang J, Song Z, Mao J, Xi X, Shi X. Structure, signal transduction, activation, and inhibition of integrin αIIbβ3. Thromb J 2023; 21:18. [PMID: 36782235 PMCID: PMC9923933 DOI: 10.1186/s12959-023-00463-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Accepted: 02/06/2023] [Indexed: 02/15/2023] Open
Abstract
Integrins are heterodimeric receptors comprising α and β subunits. They are expressed on the cell surface and play key roles in cell adhesion, migration, and growth. Several types of integrins are expressed on the platelets, including αvβ3, αIIbβ3, α2β1, α5β1, and α6β1. Among these, physically αIIbβ3 is exclusively expressed on the platelet surface and their precursor cells, megakaryocytes. αIIbβ3 adopts at least three conformations: i) bent-closed, ii) extended-closed, and iii) extended-open. The transition from conformation i) to iii) occurs when αIIbβ3 is activated by stimulants. Conformation iii) possesses a high ligand affinity, which triggers integrin clustering and platelet aggregation. Platelets are indispensable for maintaining vascular system integrity and preventing bleeding. However, excessive platelet activation can result in myocardial infarction (MI) and stroke. Therefore, finding a novel strategy to stop bleeding without accelerating the risk of thrombosis is important. Regulation of αIIbβ3 activation is vital for this strategy. There are a large number of molecules that facilitate or inhibit αIIbβ3 activation. The interference of these molecules can accurately control the balance between hemostasis and thrombosis. This review describes the structure and signal transduction of αIIbβ3, summarizes the molecules that directly or indirectly affect integrin αIIbβ3 activation, and discusses some novel antiαIIbβ3 drugs. This will advance our understanding of the activation of αIIbβ3 and its essential role in platelet function and tumor development.
Collapse
Affiliation(s)
- Honglei Xin
- grid.452511.6Department of Hematology, Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210003 China
| | - Jiansong Huang
- grid.13402.340000 0004 1759 700XDepartment of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, Hangzhou 310003 China ,grid.412277.50000 0004 1760 6738Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, Collaborative Innovation Center of Hematology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025 China
| | - Zhiqun Song
- grid.412676.00000 0004 1799 0784Jiangsu Province People’s Hospital and Nanjing Medical University First Affiliated Hospital, Nanjing, Jiangsu 210029 China
| | - Jianhua Mao
- grid.412277.50000 0004 1760 6738Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, Collaborative Innovation Center of Hematology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025 China
| | - Xiaodong Xi
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, Collaborative Innovation Center of Hematology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Xiaofeng Shi
- Department of Hematology, Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210003, China. .,Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, Collaborative Innovation Center of Hematology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|
6
|
Lickert S, Kenny M, Selcuk K, Mehl JL, Bender M, Früh SM, Burkhardt MA, Studt JD, Nieswandt B, Schoen I, Vogel V. Platelets drive fibronectin fibrillogenesis using integrin αIIbβ3. SCIENCE ADVANCES 2022; 8:eabj8331. [PMID: 35275711 PMCID: PMC8916723 DOI: 10.1126/sciadv.abj8331] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Platelets interact with multiple adhesion proteins during thrombogenesis, yet little is known about their ability to assemble fibronectin matrix. In vitro three-dimensional superresolution microscopy complemented by biophysical and biochemical methods revealed fundamental insights into how platelet contractility drives fibronectin fibrillogenesis. Platelets adhering to thrombus proteins (fibronectin and fibrin) versus basement membrane components (laminin and collagen IV) pull fibronectin fibrils along their apical membrane versus underneath their basal membrane, respectively. In contrast to other cell types, platelets assemble fibronectin nanofibrils using αIIbβ3 rather than α5β1 integrins. Apical fibrillogenesis correlated with a stronger activation of integrin-linked kinase, higher platelet traction forces, and a larger tension in fibrillar-like adhesions compared to basal fibrillogenesis. Our findings have potential implications for how mechanical thrombus integrity might be maintained during remodeling and vascular repair.
Collapse
Affiliation(s)
- Sebastian Lickert
- Laboratory of Applied Mechanobiology, Department of Health Sciences and Technology, ETH Zurich, Vladimir-Prelog-Weg 4, 8093 Zurich, Switzerland
| | - Martin Kenny
- Irish Centre for Vascular Biology, School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, 123 St Stephen’s Green, Dublin 2, Ireland
| | - Kateryna Selcuk
- Laboratory of Applied Mechanobiology, Department of Health Sciences and Technology, ETH Zurich, Vladimir-Prelog-Weg 4, 8093 Zurich, Switzerland
| | - Johanna L. Mehl
- Laboratory of Applied Mechanobiology, Department of Health Sciences and Technology, ETH Zurich, Vladimir-Prelog-Weg 4, 8093 Zurich, Switzerland
| | - Markus Bender
- Institute of Experimental Biomedicine – Chair I, University Hospital, and Rudolf Virchow Center, Julius Maximilian University of Würzburg, Josef-Schneider-Str. 2, 97080 Würzburg, Germany
| | - Susanna M. Früh
- Hahn-Schickard, Georges-Koehler-Allee 103, 79110 Freiburg, Germany
- Laboratory for MEMS Applications, IMTEK Department of Microsystems Engineering, University of Freiburg, Georges-Koehler-Allee 103, 79110 Freiburg, Germany
| | - Melanie A. Burkhardt
- Laboratory of Applied Mechanobiology, Department of Health Sciences and Technology, ETH Zurich, Vladimir-Prelog-Weg 4, 8093 Zurich, Switzerland
| | - Jan-Dirk Studt
- Division of Hematology, University Hospital Zurich, Rämistrasse 100, 8091 Zurich, Switzerland
| | - Bernhard Nieswandt
- Institute of Experimental Biomedicine – Chair I, University Hospital, and Rudolf Virchow Center, Julius Maximilian University of Würzburg, Josef-Schneider-Str. 2, 97080 Würzburg, Germany
| | - Ingmar Schoen
- Irish Centre for Vascular Biology, School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, 123 St Stephen’s Green, Dublin 2, Ireland
- Corresponding author. (V.V.); (I.S.)
| | - Viola Vogel
- Laboratory of Applied Mechanobiology, Department of Health Sciences and Technology, ETH Zurich, Vladimir-Prelog-Weg 4, 8093 Zurich, Switzerland
- Corresponding author. (V.V.); (I.S.)
| |
Collapse
|
7
|
Su Y, Li Q, Zheng Z, Wei X, Hou P. Identification of genes, pathways and transcription factor-miRNA-target gene networks and experimental verification in venous thromboembolism. Sci Rep 2021; 11:16352. [PMID: 34381164 PMCID: PMC8357955 DOI: 10.1038/s41598-021-95909-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 08/02/2021] [Indexed: 12/17/2022] Open
Abstract
Venous thromboembolism (VTE) is a complex, multifactorial life-threatening disease that involves vascular endothelial cell (VEC) dysfunction. However, the exact pathogenesis and underlying mechanisms of VTE are not completely clear. The aim of this study was to identify the core genes and pathways in VECs that are involved in the development and progression of unprovoked VTE (uVTE). The microarray dataset GSE118259 was downloaded from the Gene Expression Omnibus database, and 341 up-regulated and 8 down-regulated genes were identified in the VTE patients relative to the healthy controls, including CREB1, HIF1α, CBL, ILK, ESM1 and the ribosomal protein family genes. The protein-protein interaction (PPI) network and the transcription factor (TF)-miRNA-target gene network were constructed with these differentially expressed genes (DEGs), and visualized using Cytoscape software 3.6.1. Eighty-nine miRNAs were predicted as the targeting miRNAs of the DEGs, and 197 TFs were predicted as regulators of these miRNAs. In addition, 237 node genes and 4 modules were identified in the PPI network. The significantly enriched pathways included metabolic, cell adhesion, cell proliferation and cellular response to growth factor stimulus pathways. CREB1 was a differentially expressed TF in the TF-miRNA-target gene network, which regulated six miRNA-target gene pairs. The up-regulation of ESM1, HIF1α and CREB1 was confirmed at the mRNA and protein level in the plasma of uVTE patients. Taken together, ESM1, HIF1α and the CREB1-miRNA-target genes axis play potential mechanistic roles in uVTE development.
Collapse
Affiliation(s)
- Yiming Su
- Department of Vascular Surgery, LiuzhouWorker's Hospital, Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, 545005, Guangxi Province, China
| | - Qiyi Li
- Department of Vascular Surgery, LiuzhouWorker's Hospital, Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, 545005, Guangxi Province, China
| | - Zhiyong Zheng
- Department of Vascular Surgery, LiuzhouWorker's Hospital, Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, 545005, Guangxi Province, China
| | - Xiaomin Wei
- Department of Vascular Surgery, LiuzhouWorker's Hospital, Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, 545005, Guangxi Province, China
| | - Peiyong Hou
- Department of Vascular Surgery, LiuzhouWorker's Hospital, Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, 545005, Guangxi Province, China.
| |
Collapse
|
8
|
Hui W, Zhang W, Liu C, Wan S, Sun W, Su L. Alterations of Signaling Pathways in Essential Thrombocythemia with Calreticulin Mutation. Cancer Manag Res 2021; 13:6231-6238. [PMID: 34393515 PMCID: PMC8357313 DOI: 10.2147/cmar.s316919] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 07/26/2021] [Indexed: 12/25/2022] Open
Abstract
Purpose Though mutations of the calreticulin (CALR) gene have been identified in essential thrombocythemia patients, the detailed mechanisms for CALR mutations have not been completely clarified. Our study is aimed at characterizing alteration of protein expression in ET patients with mutated CALRdel52 and further recognizing possible involvement of signaling pathways associated with CALR mutations. Patients and Methods Protein pathway array was performed to analyze the expression levels of proteins involved in various signaling pathways in peripheral blood neutrophils from 18 ET patients with mutated CALRdel52, 20 ET patients with JAK2V617F mutation and 20 controls. Results We found 20 proteins differentially expressed in ET patients with mutated CALRdel52 compared with healthy controls. These proteins were associated with molecular mechanisms of cancer in ingenuity pathways analysis (IPA) network. We identified top ten canonical pathways which including apoptotic pathways and cellular cytokine pathways might participate in pathogenesis of ET with mutated CALRdel52. Additionally, there were 8 proteins found to be dysregulated differently between ET patients with mutated CALRdel52 and those with JAK2V617F mutation. These proteins might be related to the unique signaling pathways activated by CALRdel52 mutation which were different to JAK/STATs pathway by JAK2V617F mutation. Conclusion Our study demonstrated that numerous alterations of signaling proteins and pathways in ET patients with mutated CALRdel52. These findings could help to gain insights into the pathological mechanisms of ET.
Collapse
Affiliation(s)
- Wuhan Hui
- Department of Hematology, Xuan Wu Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Wei Zhang
- Department of Hematology, Xuan Wu Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Congyan Liu
- Department of Hematology, Xuan Wu Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Suigui Wan
- Department of Hematology, Xuan Wu Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Wanling Sun
- Department of Hematology, Xuan Wu Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Li Su
- Department of Hematology, Xuan Wu Hospital, Capital Medical University, Beijing, People's Republic of China
| |
Collapse
|
9
|
Khodadi E. Platelet Function in Cardiovascular Disease: Activation of Molecules and Activation by Molecules. Cardiovasc Toxicol 2020; 20:1-10. [PMID: 31784932 DOI: 10.1007/s12012-019-09555-4] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Globally, one of the major causes of death is the cardiovascular disease (CVD), and platelets play an important role in thrombosis and atherosclerosis that led to death. Platelet activation can be done by different molecules, genes, pathways, and chemokines. Lipids activate platelets by inflammatory factors, and platelets are activated by receptors of peptide hormones, signaling and secreted proteins, microRNAs (miRNAs), and oxidative stress which also affect the platelet activation in older age. In addition, surface molecules on platelets can interact with other cells and chemokines in activated platelets and cause inflammation thrombosis events and CVD. However, these molecules activating platelets or being activated by platelets can be suggested as the markers to predict the clinical outcome of CVD and can be targeted to reduce thrombosis and atherosclerosis. However, hindering these molecules by other factors such as genes and receptors can reduce platelet activation and aggregation and targeting these molecules can control platelet interactions, thrombosis, and CVD. In addition, dual therapy with the receptor blockers and novel drugs results in better management of CVD patients. Overall, our review will emphasize on the molecules involved in the activation of platelets and on the molecules that are activated by platelets in CVD and discuss the molecules that can be blocked or targeted to reduce the thrombosis events and control CVD.
Collapse
Affiliation(s)
- Elahe Khodadi
- Health Research Institute, Research Center of Thalassemia & Hemoglobinopathy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
10
|
Lee SH, Du J, Hwa J, Kim WH. Parkin Coordinates Platelet Stress Response in Diabetes Mellitus: A Big Role in a Small Cell. Int J Mol Sci 2020; 21:E5869. [PMID: 32824240 PMCID: PMC7461561 DOI: 10.3390/ijms21165869] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 08/03/2020] [Accepted: 08/13/2020] [Indexed: 02/07/2023] Open
Abstract
Increased platelet activation and apoptosis are characteristic of diabetic (DM) platelets, where a Parkin-dependent mitophagy serves a major endogenous protective role. We now demonstrate that Parkin is highly expressed in both healthy platelets and diabetic platelets, compared to other mitochondria-enriched tissues such as the heart, muscle, brain, and liver. Abundance of Parkin in a small, short-lived anucleate cell suggest significance in various key processes. Through proteomics we identified 127 Parkin-interacting proteins in DM platelets and compared them to healthy controls. We assessed the 11 highest covered proteins by individual IPs and confirmed seven proteins that interacted with Parkin; VCP/p97, LAMP1, HADHA, FREMT3, PDIA, ILK, and 14-3-3. Upon further STRING analysis using GO and KEGG, interactions were divided into two broad groups: targeting platelet activation through (1) actions on mitochondria and (2) actions on integrin signaling. Parkin plays an important role in mitochondrial protection through mitophagy (VCP/p97), recruiting phagophores, and targeting lysosomes (with LAMP1). Mitochondrial β-oxidation may also be regulated by the Parkin/HADHA interaction. Parkin may regulate platelet aggregation and activation through integrin signaling through interactions with proteins like FREMT3, PDIA, ILK, and 14-3-3. Thus, platelet Parkin may regulate the protection (mitophagy) and stress response (platelet activation) in DM platelets. This study identified new potential therapeutic targets for platelet mitochondrial dysfunction and hyperactivation in diabetes mellitus.
Collapse
Affiliation(s)
- Seung Hee Lee
- Division of Cardiovascular Diseases, Center for Biomedical Sciences, National Institute of Health, Cheongju-si 28159, Chungbuk, Korea;
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06511, USA; (J.D.); (J.H.)
| | - Jing Du
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06511, USA; (J.D.); (J.H.)
| | - John Hwa
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06511, USA; (J.D.); (J.H.)
| | - Won-Ho Kim
- Division of Cardiovascular Diseases, Center for Biomedical Sciences, National Institute of Health, Cheongju-si 28159, Chungbuk, Korea;
| |
Collapse
|
11
|
Millington-Burgess SL, Bonna AM, Rahman T, Harper MT. Ethaninidothioic acid (R5421) is not a selective inhibitor of platelet phospholipid scramblase activity. Br J Pharmacol 2020; 177:4007-4020. [PMID: 32496597 PMCID: PMC7429475 DOI: 10.1111/bph.15152] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 05/22/2020] [Accepted: 05/25/2020] [Indexed: 12/16/2022] Open
Abstract
Background and Purpose Ethaninidothioic acid (R5421) has been used as a scramblase inhibitor to determine the role of phospholipid scrambling across a range of systems including platelet procoagulant activity. The selectivity of R5421 has not been thoroughly studied. Here, we characterised the effects of R5421 on platelet function and its suitability for use as a scramblase inhibitor. Experimental Approach Human platelet activation was measured following pretreatment with R5421 and stimulation with a range of agonists. Phosphatidylserine exposure was measured using annexin V binding. Integrin αIIbβ3 activation and α‐granule release were measured by flow cytometry. Cytosolic Ca2+ signals were measured using Cal520 fluorescence. An in silico ligand‐based screen identified 16 compounds which were tested in these assays. Key Results R5421 inhibited A23187‐induced phosphatidylserine exposure in a time‐ and temperature‐dependent manner. R5421 inhibited Ca2+ signalling from the PAR1, PAR4 and glycoprotein VI receptors as well as platelet αIIbβ3 integrin activation and α‐granule release. R5421 is therefore not a selective inhibitor of platelet scramblase activity. An in silico screen identified the pesticide thiodicarb as similar to R5421. It also inhibited platelet phosphatidylserine exposure, Ca2+ signalling from the PAR1 and glycoprotein VI, αIIbβ3 activation and α‐granule release. Thiodicarb additionally disrupted Ca2+ homeostasis in unstimulated platelets. Conclusion and Implications R5421 is not a selective inhibitor of platelet scramblase activity. We have identified the pesticide thiodicarb, which had similar effects on platelet function to R5421 as well as additional disruption of Ca2+ signalling which may underlie some of thiodicarb's toxicity.
Collapse
Affiliation(s)
| | | | - Taufiq Rahman
- Department of Pharmacology, University of Cambridge, Cambridge, UK
| | | |
Collapse
|
12
|
Subbannayya Y, Pinto SM, Bösl K, Prasad TSK, Kandasamy RK. Dynamics of Dual Specificity Phosphatases and Their Interplay with Protein Kinases in Immune Signaling. Int J Mol Sci 2019; 20:ijms20092086. [PMID: 31035605 PMCID: PMC6539644 DOI: 10.3390/ijms20092086] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 04/23/2019] [Accepted: 04/25/2019] [Indexed: 12/12/2022] Open
Abstract
Dual specificity phosphatases (DUSPs) have a well-known role as regulators of the immune response through the modulation of mitogen-activated protein kinases (MAPKs). Yet the precise interplay between the various members of the DUSP family with protein kinases is not well understood. Recent multi-omics studies characterizing the transcriptomes and proteomes of immune cells have provided snapshots of molecular mechanisms underlying innate immune response in unprecedented detail. In this study, we focus on deciphering the interplay between members of the DUSP family with protein kinases in immune cells using publicly available omics datasets. Our analysis resulted in the identification of potential DUSP-mediated hub proteins including MAPK7, MAPK8, AURKA, and IGF1R. Furthermore, we analyzed the association of DUSP expression with TLR4 signaling and identified VEGF, FGFR, and SCF-KIT pathway modules to be regulated by the activation of TLR4 signaling. Finally, we identified several important kinases including LRRK2, MAPK8, and cyclin-dependent kinases as potential DUSP-mediated hubs in TLR4 signaling. The findings from this study have the potential to aid in the understanding of DUSP signaling in the context of innate immunity. Further, this will promote the development of therapeutic modalities for disorders with aberrant DUSP signaling.
Collapse
Affiliation(s)
- Yashwanth Subbannayya
- Centre of Molecular Inflammation Research (CEMIR), Department of Clinical and Molecular Medicine (IKOM), Norwegian University of Science and Technology, N-7491 Trondheim, Norway.
- Center for Systems Biology and Molecular Medicine, Yenepoya (Deemed to be University), Mangalore 575018, India.
| | - Sneha M Pinto
- Centre of Molecular Inflammation Research (CEMIR), Department of Clinical and Molecular Medicine (IKOM), Norwegian University of Science and Technology, N-7491 Trondheim, Norway.
- Center for Systems Biology and Molecular Medicine, Yenepoya (Deemed to be University), Mangalore 575018, India.
| | - Korbinian Bösl
- Centre of Molecular Inflammation Research (CEMIR), Department of Clinical and Molecular Medicine (IKOM), Norwegian University of Science and Technology, N-7491 Trondheim, Norway.
| | - T S Keshava Prasad
- Center for Systems Biology and Molecular Medicine, Yenepoya (Deemed to be University), Mangalore 575018, India.
| | - Richard K Kandasamy
- Centre of Molecular Inflammation Research (CEMIR), Department of Clinical and Molecular Medicine (IKOM), Norwegian University of Science and Technology, N-7491 Trondheim, Norway.
- Centre for Molecular Medicine Norway (NCMM), Nordic EMBL Partnership, University of Oslo and Oslo University Hospital, N-0349 Oslo, Norway.
| |
Collapse
|
13
|
Huang J, Li X, Shi X, Zhu M, Wang J, Huang S, Huang X, Wang H, Li L, Deng H, Zhou Y, Mao J, Long Z, Ma Z, Ye W, Pan J, Xi X, Jin J. Platelet integrin αIIbβ3: signal transduction, regulation, and its therapeutic targeting. J Hematol Oncol 2019; 12:26. [PMID: 30845955 PMCID: PMC6407232 DOI: 10.1186/s13045-019-0709-6] [Citation(s) in RCA: 234] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Accepted: 02/21/2019] [Indexed: 12/18/2022] Open
Abstract
Integrins are a family of transmembrane glycoprotein signaling receptors that can transmit bioinformation bidirectionally across the plasma membrane. Integrin αIIbβ3 is expressed at a high level in platelets and their progenitors, where it plays a central role in platelet functions, hemostasis, and arterial thrombosis. Integrin αIIbβ3 also participates in cancer progression, such as tumor cell proliferation and metastasis. In resting platelets, integrin αIIbβ3 adopts an inactive conformation. Upon agonist stimulation, the transduction of inside-out signals leads integrin αIIbβ3 to switch from a low- to high-affinity state for fibrinogen and other ligands. Ligand binding causes integrin clustering and subsequently promotes outside-in signaling, which initiates and amplifies a range of cellular events to drive essential platelet functions such as spreading, aggregation, clot retraction, and thrombus consolidation. Regulation of the bidirectional signaling of integrin αIIbβ3 requires the involvement of numerous interacting proteins, which associate with the cytoplasmic tails of αIIbβ3 in particular. Integrin αIIbβ3 and its signaling pathways are considered promising targets for antithrombotic therapy. This review describes the bidirectional signal transduction of integrin αIIbβ3 in platelets, as well as the proteins responsible for its regulation and therapeutic agents that target integrin αIIbβ3 and its signaling pathways.
Collapse
Affiliation(s)
- Jiansong Huang
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Hangzhou, Zhejiang, China.,Institute of Hematology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xia Li
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Hangzhou, Zhejiang, China.,Institute of Hematology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xiaofeng Shi
- Department of Hematology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Mark Zhu
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jinghan Wang
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Hangzhou, Zhejiang, China.,Institute of Hematology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Shujuan Huang
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Hangzhou, Zhejiang, China.,Institute of Hematology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xin Huang
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Hangzhou, Zhejiang, China.,Institute of Hematology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Huafeng Wang
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Hangzhou, Zhejiang, China.,Institute of Hematology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Department of Hematological Malignancies Translational Science, Gehr Family Center for Leukemia Research, Hematologic Malignancies and Stem Cell Transplantation Institute, Beckman Research Institute, City of Hope Medical Center, Duarte, CA, 91010, USA
| | - Ling Li
- Department of Hematological Malignancies Translational Science, Gehr Family Center for Leukemia Research, Hematologic Malignancies and Stem Cell Transplantation Institute, Beckman Research Institute, City of Hope Medical Center, Duarte, CA, 91010, USA
| | - Huan Deng
- Department of Pathology, The Fourth Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Yulan Zhou
- Department of Hematology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Jianhua Mao
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Collaborative Innovation Center of Hematology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Sino-French Research Centre for Life Sciences and Genomics, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhangbiao Long
- Department of Hematology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Zhixin Ma
- Clinical Prenatal Diagnosis Center, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Wenle Ye
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Hangzhou, Zhejiang, China.,Institute of Hematology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jiajia Pan
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Hangzhou, Zhejiang, China.,Institute of Hematology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xiaodong Xi
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Collaborative Innovation Center of Hematology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China. .,Sino-French Research Centre for Life Sciences and Genomics, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Jie Jin
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China. .,Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Hangzhou, Zhejiang, China. .,Institute of Hematology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| |
Collapse
|
14
|
Shang C, Wuren T, Ga Q, Bai Z, Guo L, Eustes AS, McComas KN, Rondina MT, Ge R. The human platelet transcriptome and proteome is altered and pro-thrombotic functional responses are increased during prolonged hypoxia exposure at high altitude. Platelets 2019; 31:33-42. [PMID: 30721642 DOI: 10.1080/09537104.2019.1572876] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Exposure to hypoxia, through ascension to high altitudes (HAs), air travel, or human disease, is associated with an increased incidence of thrombosis in some settings. Mechanisms underpinning this increased thrombosis risk remain incompletely understood, and the effects of more sustained hypoxia on the human platelet molecular signature and associated functional responses have never been examined. We examined the effects of prolonged (≥2 months continuously) hypobaric hypoxia on platelets isolated from subjects residing at HA (3,700 meters) and, for comparison, matched subjects residing under normoxia conditions at sea level (50 meters). Using complementary transcriptomic, proteomic, and functional methods, we identified that the human platelet transcriptome is markedly altered under prolonged exposure to hypobaric hypoxia at HA. Among the significantly, differentially expressed genes (mRNA and protein), were those having canonical roles in platelet activation and thrombosis, including membrane glycoproteins (e.g. GP4, GP6, GP9), integrin subunits (e.g. ITGA2B), and alpha-granule chemokines (e.g. SELP, PF4V1). Platelets from subjects residing at HA were hyperactive, as demonstrated by increased engagement and adhesion to fibrinogen, fewer alpha granules by transmission electron microscopy, increased circulating PF4 and ADP, and significantly enhanced clot retraction. In conclusion, we identify that prolonged hypobaric hypoxia exposure due to HA alters the platelet transcriptome and proteome, triggering increased functional activation responses that may contribute to thrombosis. Our findings may also have relevance across a range of human diseases where chronic hypoxia, platelet activation, and thrombosis are increased.
Collapse
Affiliation(s)
- Chunxiang Shang
- Research Center for High Altitude Medicine, Qinghai University, Xining, Qinghai, China.,Oncology Department, The Fifth Hospital of Qinghai Provinces, Xining, Qinghai, China
| | - Tana Wuren
- Research Center for High Altitude Medicine, Qinghai University, Xining, Qinghai, China.,Departments of Internal Medicine and Pathology, University of Utah, Salt Lake City, UT, USA
| | - Qing Ga
- Research Center for High Altitude Medicine, Qinghai University, Xining, Qinghai, China
| | - Zhenzhong Bai
- Research Center for High Altitude Medicine, Qinghai University, Xining, Qinghai, China
| | - Li Guo
- The University of Utah Molecular Medicine Program, University of Utah, Salt Lake City, UT, USA
| | - Alicia S Eustes
- Departments of Internal Medicine and Pathology, University of Utah, Salt Lake City, UT, USA.,The University of Utah Molecular Medicine Program, University of Utah, Salt Lake City, UT, USA
| | - Kyra N McComas
- Departments of Internal Medicine and Pathology, University of Utah, Salt Lake City, UT, USA
| | - Matthew T Rondina
- Departments of Internal Medicine and Pathology, University of Utah, Salt Lake City, UT, USA.,The University of Utah Molecular Medicine Program, University of Utah, Salt Lake City, UT, USA.,Hematological Department, George E. Wahlen VAMC GRECC, Salt Lake City, UT, USA
| | - Rili Ge
- Research Center for High Altitude Medicine, Qinghai University, Xining, Qinghai, China
| |
Collapse
|
15
|
Rigg RA, McCarty OJT, Aslan JE. Heat Shock Protein 70 (Hsp70) in the Regulation of Platelet Function. REGULATION OF HEAT SHOCK PROTEIN RESPONSES 2018. [DOI: 10.1007/978-3-319-74715-6_14] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
16
|
Nygaard G, Herfindal L, Asrud KS, Bjørnstad R, Kopperud RK, Oveland E, Berven FS, Myhren L, Hoivik EA, Lunde THF, Bakke M, Døskeland SO, Selheim F. Epac1-deficient mice have bleeding phenotype and thrombocytes with decreased GPIbβ expression. Sci Rep 2017; 7:8725. [PMID: 28821815 PMCID: PMC5562764 DOI: 10.1038/s41598-017-08975-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 07/17/2017] [Indexed: 11/16/2022] Open
Abstract
Epac1 (Exchange protein directly activated by cAMP 1) limits fluid loss from the circulation by tightening the endothelial barrier. We show here that Epac1-/- mice, but not Epac2-/- mice, have prolonged bleeding time, suggesting that Epac1 may limit fluid loss also by restraining bleeding. The Epac1-/- mice had deficient in vitro secondary hemostasis. Quantitative comprehensive proteomics analysis revealed that Epac1-/- mouse platelets (thrombocytes) had unbalanced expression of key components of the glycoprotein Ib-IX-V (GPIb-IX-V) complex, with decrease of GP1bβ and no change of GP1bα. This complex is critical for platelet adhesion under arterial shear conditions. Furthermore, Epac1-/- mice have reduced levels of plasma coagulation factors and fibrinogen, increased size of circulating platelets, increased megakaryocytes (the GP1bβ level was decreased also in Epac1-/- bone marrow) and higher abundance of reticulated platelets. Viscoelastic measurement of clotting function revealed Epac1-/- mice with a dysfunction in the clotting process, which corresponds to reduced plasma levels of coagulation factors like factor XIII and fibrinogen. We propose that the observed platelet phenotype is due to deficient Epac1 activity during megakaryopoiesis and thrombopoiesis, and that the defects in blood clotting for Epac1-/- is connected to secondary hemostasis.
Collapse
Affiliation(s)
- Gyrid Nygaard
- Department of Biomedicine, University of Bergen, Bergen, Norway
- The Proteomics Unit at the University of Bergen, Bergen, Norway
| | - Lars Herfindal
- Centre for Pharmacy, Department of Clinical Science, University of Bergen, Bergen, Norway
| | | | - Ronja Bjørnstad
- Centre for Pharmacy, Department of Clinical Science, University of Bergen, Bergen, Norway
- Hospital Pharmacies Enterprise, Western Norway, Bergen, Norway
| | | | - Eystein Oveland
- The Proteomics Unit at the University of Bergen, Bergen, Norway
| | - Frode S Berven
- Department of Biomedicine, University of Bergen, Bergen, Norway
- The Proteomics Unit at the University of Bergen, Bergen, Norway
| | - Lene Myhren
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Erling A Hoivik
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Turid Helen Felli Lunde
- Department of Immunology and Transfusion Medicine, Haukeland University Hospital, Bergen, Norway
| | - Marit Bakke
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | | | - Frode Selheim
- Department of Biomedicine, University of Bergen, Bergen, Norway.
- The Proteomics Unit at the University of Bergen, Bergen, Norway.
| |
Collapse
|
17
|
Abstract
Integrin αIIbβ3 is a highly abundant heterodimeric platelet receptor that can transmit information bidirectionally across the plasma membrane, and plays a critical role in hemostasis and thrombosis. Upon platelet activation, inside-out signaling pathways increase the affinity of αIIbβ3 for fibrinogen and other ligands. Ligand binding and integrin clustering subsequently stimulate outside-in signaling, which initiates and amplifies a range of cellular events driving essential platelet processes such as spreading, thrombus consolidation, and clot retraction. Integrin αIIbβ3 has served as an excellent model for the study of integrin biology, and it has become clear that integrin outside-in signaling is highly complex and involves a vast array of enzymes, signaling adaptors, and cytoskeletal components. In this review, we provide a concise but comprehensive overview of αIIbβ3 outside-in signaling, focusing on the key players involved, and how they cooperate to orchestrate this critical aspect of platelet biology. We also discuss gaps in the current understanding of αIIbβ3 outside-in signaling and highlight avenues for future investigation.
Collapse
|
18
|
Misshapen/NIK-related kinase (MINK1) is involved in platelet function, hemostasis, and thrombus formation. Blood 2015; 127:927-37. [PMID: 26598717 DOI: 10.1182/blood-2015-07-659185] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2015] [Accepted: 11/18/2015] [Indexed: 12/31/2022] Open
Abstract
The sterile-20 kinase misshapen/Nck-interacting kinase (NIK)-related kinase 1 (MINK1) is involved in many important cellular processes such as growth, cytoskeletal rearrangement, and motility. Here, with MINK1-deficient (MINK1(-/-)) mice, we showed that MINK1 plays an important role in hemostasis and thrombosis via the regulation of platelet functions. In the tail-bleeding assay, MINK1(-/-) mice exhibited a longer bleeding time than wild-type (WT) mice (575.2 ± 59.7 seconds vs 419.6 ± 66.9 seconds). In a model of ferric chloride-induced mesenteric arteriolar thrombosis, vessel occlusion times were twice as long in MINK1(-/-) mice as in WT mice. In an in vitro microfluidic whole-blood perfusion assay, thrombus formation on a collagen matrix under arterial shear conditions was significantly reduced in MINK1(-/-) platelets. Moreover, MINK1(-/-) platelets demonstrated impaired aggregation and secretion in response to low doses of thrombin and collagen. Furthermore, platelet spreading on fibrinogen was largely hampered in MINK1(-/-) platelets. The functional differences of MINK1(-/-) platelets could be attributed to impaired adenosine 5'-diphosphate secretion. Signaling events associated with MINK1 appeared to involve extracellular signal-regulated kinase, p38, and Akt. Hence, MINK1 may be an important signaling molecule that mediates mitogen-activated protein kinase signaling and participates in platelet activation and thrombus formation.
Collapse
|
19
|
Kumar A, Baycin-Hizal D, Wolozny D, Pedersen LE, Lewis NE, Heffner K, Chaerkady R, Cole RN, Shiloach J, Zhang H, Bowen MA, Betenbaugh MJ. Elucidation of the CHO Super-Ome (CHO-SO) by Proteoinformatics. J Proteome Res 2015; 14:4687-703. [PMID: 26418914 DOI: 10.1021/acs.jproteome.5b00588] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Chinese hamster ovary (CHO) cells are the preferred host cell line for manufacturing a variety of complex biotherapeutic drugs including monoclonal antibodies. We performed a proteomics and bioinformatics analysis on the spent medium from adherent CHO cells. Supernatant from CHO-K1 culture was collected and subjected to in-solution digestion followed by LC/LC-MS/MS analysis, which allowed the identification of 3281 different host cell proteins (HCPs). To functionally categorize them, we applied multiple bioinformatics tools to the proteins identified in our study including SignalP, TargetP, SecretomeP, TMHMM, WoLF PSORT, and Phobius. This analysis provided information on the presence of signal peptides, transmembrane domains, and cellular localization and showed that both secreted and intracellular proteins were constituents of the supernatant. Identified proteins were shown to be localized to the secretory pathway including ones playing roles in cell growth, proliferation, and folding as well as those involved in protein degradation and removal. After combining proteins predicted to be secreted or having a signal peptide, we identified 1015 proteins, which we termed as CHO supernatant-ome (CHO-SO), or superome. As a part of this effort, we created a publically accessible web-based tool called GO-CHO to functionally categorize proteins found in CHO-SO and identify enriched molecular functions, biological processes, and cellular components. We also used a tool to evaluate the immunogenicity potential of high-abundance HCPs. Among enriched functions were catalytic activity and structural constituents of the cytoskeleton. Various transport related biological processes, such as vesicle mediated transport, were found to be highly enriched. Extracellular space and vesicular exosome associated proteins were found to be the most enriched cellular components. The superome also contained proteins secreted from both classical and nonclassical secretory pathways. The work and database described in our study will enable the CHO community to rapidly identify high-abundance HCPs in their cultures and therefore help assess process and purification methods used in the production of biologic drugs.
Collapse
Affiliation(s)
- Amit Kumar
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University , Baltimore, Maryland 21218, United States.,Biotechnology Core Laboratory, National Institute of Diabetes and Digestive and Kidney Diseases , National Institute of Health, Building 14A, Bethesda, Maryland 20892, United States
| | - Deniz Baycin-Hizal
- Antibody Discovery and Protein Engineering, MedImmune LLC , 1 MedImmune Way, Gaithersburg, Maryland 20878, United States
| | - Daniel Wolozny
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University , Baltimore, Maryland 21218, United States
| | - Lasse Ebdrup Pedersen
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark , DK-2970 Hørsholm, Denmark
| | - Nathan E Lewis
- Department of Biology, Brigham Young University , Provo, Utah 84602, United States.,Department of Pediatrics, University of California , San Diego, California 92093, United States
| | - Kelley Heffner
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University , Baltimore, Maryland 21218, United States
| | - Raghothama Chaerkady
- Institute of Basic Biomedical Sciences, Mass Spectrometry and Proteomics Facility, Johns Hopkins University School of Medicine , 733 North Broadway Street, Baltimore, Maryland 21205, United States
| | - Robert N Cole
- Institute of Basic Biomedical Sciences, Mass Spectrometry and Proteomics Facility, Johns Hopkins University School of Medicine , 733 North Broadway Street, Baltimore, Maryland 21205, United States
| | - Joseph Shiloach
- Biotechnology Core Laboratory, National Institute of Diabetes and Digestive and Kidney Diseases , National Institute of Health, Building 14A, Bethesda, Maryland 20892, United States
| | - Hui Zhang
- Department of Pathology, Johns Hopkins School of Medicine , 400 North Broadway Street, Baltimore, Maryland 21287, United States
| | - Michael A Bowen
- Antibody Discovery and Protein Engineering, MedImmune LLC , 1 MedImmune Way, Gaithersburg, Maryland 20878, United States
| | - Michael J Betenbaugh
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University , Baltimore, Maryland 21218, United States
| |
Collapse
|
20
|
Kim SD, Lee YJ, Baik JS, Han JY, Lee CG, Heo K, Park YS, Kim JS, Ji HD, Park SI, Rhee MH, Yang K. Baicalein inhibits agonist- and tumor cell-induced platelet aggregation while suppressing pulmonary tumor metastasis via cAMP-mediated VASP phosphorylation along with impaired MAPKs and PI3K-Akt activation. Biochem Pharmacol 2014; 92:251-65. [PMID: 25268843 DOI: 10.1016/j.bcp.2014.09.019] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Revised: 09/20/2014] [Accepted: 09/22/2014] [Indexed: 01/09/2023]
Abstract
Recently, the importance of platelet activation in cancer metastasis has become generally accepted. As a result, the development of new platelet inhibitors with minimal adverse effects is now a promising area of targeted cancer therapy. Baicalein is a functional ingredient derived from the root of Scutellaria baicalensis Georgi, a plant used intraditional medicine. The pharmacological effects of this compound including anti-oxidative and anti-inflammatory activities have already been demonstrated. However, its effects on platelet activation are unknown. We therefore investigated the effects of baicalein on ligand-induced platelet aggregation and pulmonary cancer metastasis. In the present study, baicalein inhibited agonist-induced platelet aggregation, granule secretion markers (P-selectin expression and ATP release), [Ca(2+)]i mobilization, and integrin αIIbβ3 expression. Additionally, baicalein attenuated ERK2, p38, and Akt activation, and enhanced VASP phosphorylation. Indeed, baicalein was shown to directly inhibit PI3K kinase activity. Moreover, baicalein attenuated the platelet aggregation induced by C6 rat glioma tumor cells in vitro and suppressed CT26 colon cancer metastasis in mice. These features indicate that baicalein is a potential therapeutic drug for the prevention of cancer metastasis.
Collapse
Affiliation(s)
- Sung Dae Kim
- Research Center, Dongnam Institute of Radiological and Medical Sciences, Busan 619-953, Republic of Korea
| | - Young Ji Lee
- Research Center, Dongnam Institute of Radiological and Medical Sciences, Busan 619-953, Republic of Korea
| | - Ji Sue Baik
- Research Center, Dongnam Institute of Radiological and Medical Sciences, Busan 619-953, Republic of Korea
| | - Joeng Yoon Han
- Research Center, Dongnam Institute of Radiological and Medical Sciences, Busan 619-953, Republic of Korea
| | - Chang Geun Lee
- Research Center, Dongnam Institute of Radiological and Medical Sciences, Busan 619-953, Republic of Korea
| | - Kyu Heo
- Research Center, Dongnam Institute of Radiological and Medical Sciences, Busan 619-953, Republic of Korea
| | - You Soo Park
- Research Center, Dongnam Institute of Radiological and Medical Sciences, Busan 619-953, Republic of Korea
| | - Joong Sun Kim
- Research Center, Dongnam Institute of Radiological and Medical Sciences, Busan 619-953, Republic of Korea
| | - Hyun Dong Ji
- Laboratory of Veterinary Physiology and Cell Signaling, College of Veterinary Medicine, Kyungpook National University, Daegu 702-701, Republic of Korea
| | - Se Il Park
- Cardiovascular Product Evaluation Center, College of Medicine, Yonsei University, Seoul 120-752, Republic of Korea
| | - Man Hee Rhee
- Laboratory of Veterinary Physiology and Cell Signaling, College of Veterinary Medicine, Kyungpook National University, Daegu 702-701, Republic of Korea.
| | - Kwangmo Yang
- Research Center, Dongnam Institute of Radiological and Medical Sciences, Busan 619-953, Republic of Korea; Department of Radiation Oncology, Dongnam Institute of Radiological and Medical Sciences, Busan 619-953, Republic of Korea; Department of Radiaton Oncology, Korea Institute of Radiological and Medical Sciences, Seoul 139-706, Republic of Korea.
| |
Collapse
|
21
|
Fukuda K, Bledzka K, Yang J, Perera HD, Plow EF, Qin J. Molecular basis of kindlin-2 binding to integrin-linked kinase pseudokinase for regulating cell adhesion. J Biol Chem 2014; 289:28363-75. [PMID: 25160619 DOI: 10.1074/jbc.m114.596692] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Integrin-linked kinase (ILK) is a distinct intracellular adaptor essential for integrin-mediated cell-extracellular matrix adhesion, cell spreading, and migration. Acting as a major docking platform in focal adhesions, ILK engages many proteins to dynamically link integrins with the cytoskeleton, but the underlying mechanism remains elusive. Here, we have characterized the interaction of ILK with kindlin-2, a key regulator for integrin bidirectional signaling. We show that human kindlin-2 binds to human ILK with high affinity. Using systematic mapping approaches, we have identified a major ILK binding site involving a 20-residue fragment (residues 339-358) in kindlin-2. NMR-based analysis reveals a helical conformation of this fragment that utilizes its leucine-rich surface to recognize the ILK pseudokinase domain in a mode that is distinct from another ILK pseudokinase domain binding protein, α-parvin. Structure-based mutational experiments further demonstrate that the kindlin-2 binding to ILK is crucial for the kindlin-2 localization to focal adhesions and cell spreading (integrin outside-in signaling) but dispensable for the kindlin-2-mediated integrin activation (integrin inside-out signaling). These data define a specific mode of the kindlin-2/ILK interaction with mechanistic implications as to how it spatiotemporally mediates integrin signaling and cell adhesion.
Collapse
Affiliation(s)
- Koichi Fukuda
- From the Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195
| | - Kamila Bledzka
- From the Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195
| | - Jun Yang
- From the Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195
| | - H Dhanuja Perera
- From the Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195
| | - Edward F Plow
- From the Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195
| | - Jun Qin
- From the Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195
| |
Collapse
|
22
|
Huet-Calderwood C, Brahme NN, Kumar N, Stiegler AL, Raghavan S, Boggon TJ, Calderwood DA. Differences in binding to the ILK complex determines kindlin isoform adhesion localization and integrin activation. J Cell Sci 2014; 127:4308-21. [PMID: 25086068 DOI: 10.1242/jcs.155879] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Kindlins are essential FERM-domain-containing focal adhesion (FA) proteins required for proper integrin activation and signaling. Despite the widely accepted importance of each of the three mammalian kindlins in cell adhesion, the molecular basis for their function has yet to be fully elucidated, and the functional differences between isoforms have generally not been examined. Here, we report functional differences between kindlin-2 and -3 (also known as FERMT2 and FERMT3, respectively); GFP-tagged kindlin-2 localizes to FAs whereas kindlin-3 does not, and kindlin-2, but not kindlin-3, can rescue α5β1 integrin activation defects in kindlin-2-knockdown fibroblasts. Using chimeric kindlins, we show that the relatively uncharacterized kindlin-2 F2 subdomain drives FA targeting and integrin activation. We find that the integrin-linked kinase (ILK)-PINCH-parvin complex binds strongly to the kindlin-2 F2 subdomain but poorly to that of kindlin-3. Using a point-mutated kindlin-2, we establish that efficient kindlin-2-mediated integrin activation and FA targeting require binding to the ILK complex. Thus, ILK-complex binding is crucial for normal kindlin-2 function and differential ILK binding contributes to kindlin isoform specificity.
Collapse
Affiliation(s)
| | - Nina N Brahme
- Department of Cell Biology, Yale University, New Haven, CT 06520, USA
| | - Nikit Kumar
- Department of Cell Biology, Yale University, New Haven, CT 06520, USA
| | - Amy L Stiegler
- Department of Pharmacology, Yale University, New Haven, CT 06520, USA
| | - Srikala Raghavan
- Department of Pharmacology, Yale University, New Haven, CT 06520, USA Institute for Stem Cell Biology and Regenerative Medicine, Bangalore, Karnataka 560065, India
| | - Titus J Boggon
- Department of Pharmacology, Yale University, New Haven, CT 06520, USA
| | - David A Calderwood
- Department of Pharmacology, Yale University, New Haven, CT 06520, USA Department of Cell Biology, Yale University, New Haven, CT 06520, USA
| |
Collapse
|
23
|
Jones CI, Tucker KL, Sasikumar P, Sage T, Kaiser WJ, Moore C, Emerson M, Gibbins JM. Integrin-linked kinase regulates the rate of platelet activation and is essential for the formation of stable thrombi. J Thromb Haemost 2014; 12:1342-52. [PMID: 24888521 DOI: 10.1111/jth.12620] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Accepted: 05/21/2014] [Indexed: 12/18/2022]
Abstract
BACKGROUND Integrin-linked kinase (ILK) and its associated complex of proteins are involved in many cellular activation processes, including cell adhesion and integrin signaling. We have previously demonstrated that mice with induced platelet ILK deficiency show reduced platelet activation and aggregation, but only a minor bleeding defect. Here, we explore this apparent disparity between the cellular and hemostatic phenotypes. METHODS The impact of ILK inhibition on integrin αII b β3 activation and degranulation was assessed with the ILK-specific inhibitor QLT0267, and a conditional ILK-deficient mouse model was used to assess the impact of ILK deficiency on in vivo platelet aggregation and thrombus formation. RESULTS Inhibition of ILK reduced the rate of both fibrinogen binding and α-granule secretion, but was accompanied by only a moderate reduction in the maximum extent of platelet activation or aggregation in vitro. The reduction in the rate of fibrinogen binding occurred prior to degranulation or translocation of αII b β3 to the platelet surface. The change in the rate of platelet activation in the absence of functional ILK led to a reduction in platelet aggregation in vivo, but did not change the size of thrombi formed following laser injury of the cremaster arteriole wall in ILK-deficient mice. It did, however, result in a marked decrease in the stability of thrombi formed in ILK-deficient mice. CONCLUSION Taken together, the findings of this study indicate that, although ILK is not essential for platelet activation, it plays a critical role in facilitating rapid platelet activation, which is essential for stable thrombus formation.
Collapse
Affiliation(s)
- C I Jones
- Institute for Cardiovascular and Metabolic Research, School of Biological Sciences, University of Reading, Reading, UK
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Abstract
Integrins are heterodimeric cell surface adhesion receptors essential for multicellular life. They connect cells to the extracellular environment and transduce chemical and mechanical signals to and from the cell. Intracellular proteins that bind the integrin cytoplasmic tail regulate integrin engagement of extracellular ligands as well as integrin localization and trafficking. Cytoplasmic integrin-binding proteins also function downstream of integrins, mediating links to the cytoskeleton and to signaling cascades that impact cell motility, growth, and survival. Here, we review key integrin-interacting proteins and their roles in regulating integrin activity, localization, and signaling.
Collapse
Affiliation(s)
- Elizabeth M Morse
- Department of Cell Biology and ‡Department of Pharmacology, Yale University School of Medicine , 333 Cedar Street, New Haven, Connecticut 06520, United States
| | | | | |
Collapse
|
25
|
Honda S, Shirotani-Ikejima H, Tadokoro S, Tomiyama Y, Miyata T. The integrin-linked kinase-PINCH-parvin complex supports integrin αIIbβ3 activation. PLoS One 2013; 8:e85498. [PMID: 24376884 PMCID: PMC3871693 DOI: 10.1371/journal.pone.0085498] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2013] [Accepted: 12/05/2013] [Indexed: 12/22/2022] Open
Abstract
Integrin-linked kinase (ILK) is an important signaling regulator that assembles into the heteroternary complex with adaptor proteins PINCH and parvin (termed the IPP complex). We recently reported that ILK is important for integrin activation in a Chinese hamster ovary (CHO) cell system. We previously established parental CHO cells expressing a constitutively active chimeric integrin (αIIbα6Bβ3) and mutant CHO cells expressing inactive αIIbα6Bβ3 due to ILK deficiency. In this study, we further investigated the underlying mechanisms for ILK-dependent integrin activation. ILK-deficient mutant cells had trace levels of PINCH and α-parvin, and transfection of ILK cDNA into the mutant cells increased not only ILK but also PINCH and α-parvin, resulting in the restoration of αIIbα6Bβ3 activation. In the parental cells expressing active αIIbα6Bβ3, ILK, PINCH, and α-parvin were co-immunoprecipitated, indicating the formation of the IPP complex. Moreover, short interfering RNA (siRNA) experiments targeting PINCH-1 or both α- and β-parvin mRNA in the parent cells impaired the αIIbα6Bβ3 activation as well as the expression of the other components of the IPP complex. In addition, ILK mutants possessing defects in either PINCH or parvin binding failed to restore αIIbα6Bβ3 activation in the mutant cells. Kindlin-2 siRNA in the parental cells impaired αIIbα6Bβ3 activation without disturbing the expression of ILK. For CHO cells stably expressing wild-type αIIbβ3 that is an inactive form, overexpression of a talin head domain (THD) induced αIIbβ3 activation and the THD-induced αIIbβ3 activation was impaired by ILK siRNA through a significant reduction in the expression of the IPP complex. In contrast, overexpression of all IPP components in the αIIbβ3-expressing CHO cells further augmented THD-induced αIIbβ3 activation, whereas they did not induce αIIbβ3 activation without THD. These data suggest that the IPP complex rather than ILK plays an important role and supports integrin activation probably through stabilization of the active conformation.
Collapse
Affiliation(s)
- Shigenori Honda
- Department of Molecular Pathogenesis, National Cerebral and Cardiovascular Center, Suita, Japan
- * E-mail:
| | | | - Seiji Tadokoro
- Department of Hematology and Oncology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Yoshiaki Tomiyama
- Department of Hematology and Oncology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
- Department of Blood Transfusion, Osaka University Hospital, Suita, Osaka, Japan
| | - Toshiyuki Miyata
- Department of Molecular Pathogenesis, National Cerebral and Cardiovascular Center, Suita, Japan
| |
Collapse
|
26
|
Ambily A, Kaiser WJ, Pierro C, Chamberlain EV, Li Z, Jones CI, Kassouf N, Gibbins JM, Authi KS. The role of plasma membrane STIM1 and Ca(2+)entry in platelet aggregation. STIM1 binds to novel proteins in human platelets. Cell Signal 2013; 26:502-11. [PMID: 24308967 PMCID: PMC4062937 DOI: 10.1016/j.cellsig.2013.11.025] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Revised: 11/15/2013] [Accepted: 11/26/2013] [Indexed: 12/05/2022]
Abstract
Ca2 + elevation is essential to platelet activation. STIM1 senses Ca2 + in the endoplasmic reticulum and activates Orai channels allowing store-operated Ca2 + entry (SOCE). STIM1 has also been reported to be present in the plasma membrane (PM) with its N-terminal region exposed to the outside medium but its role is not fully understood. We have examined the effects of the antibody GOK/STIM1, which recognises the N-terminal region of STIM1, on SOCE, agonist-stimulated Ca2 + entry, surface exposure, in vitro thrombus formation and aggregation in human platelets. We also determined novel binding partners of STIM1 using proteomics. The dialysed GOK/STIM1 antibody failed to reduced thapsigargin- and agonist-mediated Ca2 + entry in Fura2-labelled cells. Using flow cytometry we detect a portion of STIM1 to be surface-exposed. The dialysed GOK/STIM1 antibody reduced thrombus formation by whole blood on collagen-coated capillaries under flow and platelet aggregation induced by collagen. In immunoprecipitation experiments followed by proteomic analysis, STIM1 was found to extract a number of proteins including myosin, DOCK10, thrombospondin-1 and actin. These studies suggest that PM STIM1 may facilitate platelet activation by collagen through novel interactions at the plasma membrane while the essential Ca2 +-sensing role of STIM1 is served by the protein in the ER. STIM1 promotes collagen induced platelet aggregation and thrombus formation. In human platelets SOCE activates but is not essential for platelet aggregation. Plasma membrane STIM1 may facilitate platelet activation independent of SOCE.
Collapse
Affiliation(s)
- A Ambily
- Cardiovascular Division, BHF Centre for Research Excellence, King's College London, Franklin Wilkins Building, Stamford Street, London SE1 9NH, United Kingdom
| | - W J Kaiser
- Institute of Cardiovascular and Metabolic Research and School of Biological Sciences, University of Reading, Reading, United Kingdom
| | - C Pierro
- Cardiovascular Division, BHF Centre for Research Excellence, King's College London, Franklin Wilkins Building, Stamford Street, London SE1 9NH, United Kingdom
| | - E V Chamberlain
- Cardiovascular Division, BHF Centre for Research Excellence, King's College London, Franklin Wilkins Building, Stamford Street, London SE1 9NH, United Kingdom
| | - Z Li
- Cardiovascular Division, BHF Centre for Research Excellence, King's College London, Franklin Wilkins Building, Stamford Street, London SE1 9NH, United Kingdom
| | - C I Jones
- Institute of Cardiovascular and Metabolic Research and School of Biological Sciences, University of Reading, Reading, United Kingdom
| | - N Kassouf
- Cardiovascular Division, BHF Centre for Research Excellence, King's College London, Franklin Wilkins Building, Stamford Street, London SE1 9NH, United Kingdom
| | - J M Gibbins
- Institute of Cardiovascular and Metabolic Research and School of Biological Sciences, University of Reading, Reading, United Kingdom
| | - K S Authi
- Cardiovascular Division, BHF Centre for Research Excellence, King's College London, Franklin Wilkins Building, Stamford Street, London SE1 9NH, United Kingdom.
| |
Collapse
|
27
|
Endale M, Lee WM, Kamruzzaman SM, Kim SD, Park JY, Park MH, Park TY, Park HJ, Cho JY, Rhee MH. Ginsenoside-Rp1 inhibits platelet activation and thrombus formation via impaired glycoprotein VI signalling pathway, tyrosine phosphorylation and MAPK activation. Br J Pharmacol 2013; 167:109-27. [PMID: 22471932 DOI: 10.1111/j.1476-5381.2012.01967.x] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND AND PURPOSE Ginsenosides are the main constituents for the pharmacological effects of Panax ginseng. Such effects of ginsenosides including cardioprotective and anti-platelet activities have shown stability and bioavailability limitations. However, information on the anti-platelet activity of ginsenoside-Rp1 (G-Rp1), a stable derivative of ginsenoside-Rg3, is scarce. We examined the ability of G-Rp1 to modulate agonist-induced platelet activation. EXPERIMENTAL APPROACH G-Rp1 in vitro and ex vivo effects on agonist-induced platelet-aggregation, granule-secretion, [Ca(2+) ](i) mobilization, integrin-α(IIb) β(3) activation were examined. Vasodilator-stimulated phosphoprotein (VASP) and MAPK expressions and levels of tyrosine phosphorylation of the glycoprotein VI (GPVI) signalling pathway components were also studied. G-Rp1 effects on arteriovenous shunt thrombus formation in rats or tail bleeding time and ex vivo coagulation time in mice were determined. KEY RESULT: G-Rp1 markedly inhibited platelet aggregation induced by collagen, thrombin or ADP. While G-Rp1 elevated cAMP levels, it dose-dependently suppressed collagen-induced ATP-release, thromboxane secretion, p-selectin expression, [Ca(2+) ](i) mobilization and α(IIb) β(3) activation and attenuated p38(MAPK) and ERK2 activation. Furthermore, G-Rp1 inhibited tyrosine phosphorylation of multiple components (Fyn, Lyn, Syk, LAT, PI3K and PLCγ2) of the GPVI signalling pathway. G-Rp1 inhibited in vivo thrombus formation and ex vivo platelet aggregation and ATP secretion without affecting tail bleeding time and coagulation time, respectively. CONCLUSION AND IMPLICATIONS G-Rp1 inhibits collagen-induced platelet activation and thrombus formation through modulation of early GPVI signalling events, and this effect involves VASP stimulation, and ERK2 and p38(-MAPK) inhibition. These data suggest that G-Rp1 may have therapeutic potential for the treatment of cardiovascular diseases involving aberrant platelet activation.
Collapse
Affiliation(s)
- M Endale
- Laboratory of Physiology & Cell Signaling, College of Veterinary Medicine, Kyungpook National University, Daegu, Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
|
29
|
Abstract
Abstract
Platelets from patients with diabetes are hyperreactive and demonstrate increased adhesiveness, aggregation, degranulation, and thrombus formation, processes that contribute to the accelerated development of vascular disease. Part of the problem seems to be dysregulated platelet Ca2+ signaling and the activation of calpains, which are Ca2+-activated proteases that result in the limited proteolysis of substrate proteins and subsequent alterations in signaling. In the present study, we report that the activation of μ- and m-calpain in patients with type 2 diabetes has profound effects on the platelet proteome and have identified septin-5 and the integrin-linked kinase (ILK) as novel calpain substrates. The calpain-dependent cleavage of septin-5 disturbed its association with syntaxin-4 and promoted the secretion of α-granule contents, including TGF-β and CCL5. Calpain was also released by platelets and cleaved CCL5 to generate a variant with enhanced activity. Calpain activation also disrupted the ILK-PINCH-Parvin complex and altered platelet adhesion and spreading. In diabetic mice, calpain inhibition reversed the effects of diabetes on platelet protein cleavage, decreased circulating CCL5 levels, reduced platelet-leukocyte aggregate formation, and improved platelet function. The results of the present study indicate that diabetes-induced platelet dysfunction is mediated largely by calpain activation and suggest that calpain inhibition may be an effective way of preserving platelet function and eventually decelerating atherothrombosis development.
Collapse
|
30
|
Park JY, Oh WJ, Kim MJ, Kim TH, Cho JY, Park HJ, Lee IK, Kim S, Kim GS, Kim SK, Seo GS, Yun BS, Rhee MH. Mechanism of anti-platelet activity of Oligoporus tephroleucus oligoporin A: involvement of extracellular signal-regulated kinase phosphorylation and cyclic nucleotide elevation. Platelets 2012; 23:376-85. [PMID: 22309049 DOI: 10.3109/09537104.2011.629309] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
This study investigated the inhibitory effects of oligoporin A on platelet aggregation and the mechanism of its action on downstream signaling molecules. Oligoporin A was isolated from the fruiting bodies of Oligoporus tephroleucus (Polyporaceae). The anti-platelet activities of oligoporin A were studied using rat platelets. The effects of oligoporin A on intracellular Ca(2+) mobilization, ATP release, production of the cyclic nucleotides cAMP and cGMP, extracellular signal-regulated kinase (ERK) 2 phosphorylation, and fibrinogen binding to active integrin α(II)(b)β(3) were assessed. Oligoporin A, but not oligoporins B and C, inhibited collagen-induced platelet aggregation in a concentration-dependent manner. Interestingly, oligoporin A did not affect ADP- and thrombin-induced platelet aggregations, which act on different types of membrane receptors. Granule secretion analysis demonstrated that oligoporin A significantly and dose-dependently reduced collagen-induced ATP release and intracellular Ca(2+) mobilization. Additionally, oligoporin A induced the dynamic increase in cAMP and cGMP. Increased cGMP production was further confirmed by the simultaneous production of nitric oxide. Pretreatment with oligoporin A significantly blocked collagen-induced ERK2 phosphorylation. Finally, oligoporin A vaguely diminished the binding of fibrinogen to its cognate receptor, integrin α(II)(b)β(3). The results indicate that oligoporin A inhibits only collagen-induced platelet aggregation mediated through the modulation of downstream signaling molecules. Oligoporin A may be beneficial against cardiovascular disease provoked by aberrant platelet activation.
Collapse
Affiliation(s)
- Ji Young Park
- College of Veterinary Medicine, Kyungpook National University, Daegu 702-701, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Goggs R, Poole AW. Platelet signaling-a primer. J Vet Emerg Crit Care (San Antonio) 2012; 22:5-29. [PMID: 22316389 DOI: 10.1111/j.1476-4431.2011.00704.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2011] [Accepted: 11/25/2011] [Indexed: 12/28/2022]
Abstract
OBJECTIVE To review the receptors and signal transduction pathways involved in platelet plug formation and to highlight links between platelets, leukocytes, endothelium, and the coagulation system. DATA SOURCES Original studies, review articles, and book chapters in the human and veterinary medical fields. DATA SYNTHESIS Platelets express numerous surface receptors. Critical among these are glycoprotein VI, the glycoprotein Ib-IX-V complex, integrin α(IIb) β(3) , and the G-protein-coupled receptors for thrombin, ADP, and thromboxane. Activation of these receptors leads to various important functional events, in particular activation of the principal adhesion receptor α(IIb) β(3) . Integrin activation allows binding of ligands such as fibrinogen, mediating platelet-platelet interaction in the process of aggregation. Signals activated by these receptors also couple to 3 other important functional events, secretion of granule contents, change in cell shape through cytoskeletal rearrangement, and procoagulant membrane expression. These processes generate a stable thrombus to limit blood loss and promote restoration of endothelial integrity. CONCLUSIONS Improvements in our understanding of how platelets operate through their signaling networks are critical for diagnosis of unusual primary hemostatic disorders and for rational antithrombotic drug design.
Collapse
Affiliation(s)
- Robert Goggs
- School of Physiology and Pharmacology, Faculty of Medical and Veterinary Sciences, University of Bristol, UK.
| | | |
Collapse
|
32
|
Abstract
Atherothrombosis often underlies coronary artery disease, stroke, and peripheral arterial disease. Antiplatelet drugs have come to the forefront of prophylactic treatment of atherothrombotic disease. Dual antiplatelet therapy of aspirin plus clopidogrel-the current standard-has benefits, but it also has limitations with regard to pharmacologic properties and adverse effects with often severe bleeding complications. For these reasons, within the last decade or so, the investigation of novel antiplatelet targets has prospered. Target identification can be the result of large-scale genomic or proteomic studies, functional genomics in animal models, the genetic analysis of patients with inherited bleeding disorders, or a combination of these techniques.
Collapse
|
33
|
Role of tumor suppressor p53 in megakaryopoiesis and platelet function. Exp Hematol 2011; 40:131-42.e4. [PMID: 22024107 DOI: 10.1016/j.exphem.2011.10.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2011] [Revised: 10/09/2011] [Accepted: 10/11/2011] [Indexed: 11/23/2022]
Abstract
The pathobiological role of p53 has been widely studied, however, its role in normophysiology is relatively unexplored. We previously showed that p53 knock-down increased ploidy in megakaryocytic cultures. This study aims to examine the effect of p53 loss on in vivo megakaryopoiesis, platelet production, and function, and to investigate the basis for greater ploidy in p53(-/-) megakaryocytic cultures. Here, we used flow cytometry to analyze ploidy, DNA synthesis, and apoptosis in murine cultured and bone marrow megakaryocytes following thrombopoietin administration and to analyze fibrinogen binding to platelets in vitro. Culture of p53(-/-) marrow cells for 6 days with thrombopoietin gave rise to 1.7-fold more megakaryocytes, 26.1% ± 3.6% of which reached ploidy classes ≥64 N compared to 8.2% ± 0.9% of p53(+/+) megakaryocytes. This was due to 30% greater DNA synthesis in p53(-/-) megakaryocytes and 31% greater apoptosis in p53(+/+) megakaryocytes by day 4 of culture. Although the bone marrow and spleen steady-state megakaryocytic content and ploidy were similar in p53(+/+) and p53(-/-) mice, thrombopoietin administration resulted in increased megakaryocytic polyploidization in p53(-/-) mice. Although their platelet counts were normal, p53(-/-) mice exhibited significantly longer bleeding times and p53(-/-) platelets were less sensitive than p53(+/+) platelets to agonist-induced fibrinogen binding and P-selectin secretion. In summary, our in vivo and ex vivo studies indicate that p53 loss leads to increased polyploidization during megakaryopoiesis. Our findings also suggest for the first time a direct link between p53 loss and the development of fully functional platelets resulting in hemostatic deficiencies.
Collapse
|
34
|
Abstract
Integrins are cell surface adhesion and signaling receptors important for cell adhesion, survival and migration. Integrins are known to be regulated by signals from inside the cells. Such inside-out regulation modulates affinities of integrins for their extracellular matrix ligand and is critical for thrombosis, haemostasis and immune response. Talin and kindlin, two integrin binding proteins, have been shown to be important regulators of integrin function. In this review, we will focus on the molecular mechanism of integrin regulation that has emerged from recent structural, biochemical and genetic studies.
Collapse
Affiliation(s)
- Feng Ye
- Department of Medicine University of California San Diego
| | - Chungho Kim
- Department of Medicine University of California San Diego
| | | |
Collapse
|
35
|
Abstract
Regulation of cell-cell and cell-matrix interaction is essential for the normal physiology of metazoans and is important in many diseases. Integrin adhesion receptors can rapidly increase their affinity (integrin activation) in response to intracellular signaling events in a process termed inside-out signaling. The transmembrane domains of integrins and their interactions with the membrane are important in inside-out signaling. Moreover, integrin activation is tightly regulated by a complex network of signaling pathways. Here, we review recent progress in understanding how the membrane environment can, in cooperation with integrin-binding proteins, regulate integrin activation.
Collapse
Affiliation(s)
- Chungho Kim
- Department of Medicine, University of California, San Diego, La Jolla, California 92093, USA
| | | | | |
Collapse
|
36
|
The role of β3-integrins in tumor angiogenesis: context is everything. Curr Opin Cell Biol 2011; 23:630-7. [PMID: 21565482 DOI: 10.1016/j.ceb.2011.03.014] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2011] [Accepted: 03/26/2011] [Indexed: 02/07/2023]
Abstract
Integrins are a family of cell-extracellular matrix adhesion molecules that play important roles in tumor angiogenesis. αvβ3-Integrin has received much attention as a potential anti-angiogenic target because it is upregulated in tumor-associated blood vessels. Agents targeting αvβ3-integrin are now showing some success in phase III clinical trails for the treatment of glioblastoma, but the exact function of this integrin in tumor angiogenesis is still relatively unknown. This review highlights some of the recent data illustrating that β3-integrins play both pro-angiogenic and anti-angiogenic roles in tumor angiogenesis depending on the context. Specifically we will discuss how the following differentially influence β3-integrin's role in tumor angiogenesis: first, cell-matrix interactions, second, β3-integrin inhibitor doses, third, cell type, and fourth, other interacting molecules.
Collapse
|
37
|
Wickström SA, Fässler R. Regulation of membrane traffic by integrin signaling. Trends Cell Biol 2011; 21:266-73. [DOI: 10.1016/j.tcb.2011.02.003] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2010] [Revised: 02/20/2011] [Accepted: 02/23/2011] [Indexed: 01/23/2023]
|
38
|
Abstract
Liver X receptors (LXRs) are transcription factors involved in the regulation of cholesterol homeostasis. LXR ligands have athero-protective properties independent of their effects on cholesterol metabolism. Platelets are involved in the initiation of atherosclerosis and despite being anucleate express nuclear receptors. We hypothesized that the athero-protective effects of LXR ligands could be in part mediated through platelets and therefore explored the potential role of LXR in platelets. Our results show that LXR-β is present in human platelets and the LXR ligands, GW3965 and T0901317, modulated nongenomically platelet aggregation stimulated by a range of agonists. GW3965 caused LXR to associate with signaling components proximal to the collagen receptor, GPVI, suggesting a potential mechanism of LXR action in platelets that leads to diminished platelet responses. Activation of platelets at sites of atherosclerotic lesions results in thrombosis preceding myocardial infarction and stroke. Using an in vivo model of thrombosis in mice, we show that GW3965 has antithrombotic effects, reducing the size and the stability of thrombi. The athero-protective effects of GW3965, together with its novel antiplatelet/thrombotic effects, indicate LXR as a potential target for prevention of athero-thrombotic disease.
Collapse
|
39
|
Garraud O, Berthet J, Hamzeh-Cognasse H, Cognasse F. Pathogen sensing, subsequent signalling, and signalosome in human platelets. Thromb Res 2010; 127:283-6. [PMID: 21071069 DOI: 10.1016/j.thromres.2010.10.015] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2010] [Revised: 10/15/2010] [Accepted: 10/17/2010] [Indexed: 12/17/2022]
Abstract
Beyond haemostasis, platelets exert a potent role in innate immunity and particularly in its inflammatory arm. The extent of this action remains however debatable, despite clear - and old - evidence of a link between platelets and infection. Platelets can sense infectious pathogens by pathogen recognition receptors and they can even discriminate between various types of infectious signatures. In reply, they can shape their capacity to respond by activating a signalosome and by producing different profiles of pro-inflammatory cytokines and related products. The links between pathogen sensing, signalosome activation and protein production, and their finely tuned regulation are still under investigation since platelets lack a nucleus and thus, canonical molecular biology and genomics apparati.
Collapse
Affiliation(s)
- Olivier Garraud
- Etablissement Français du Sang Auvergne-Loire & EA 3064, Faculty of Medicine, University of Saint-Etienne, a Member of the University of Lyon, France.
| | | | | | | |
Collapse
|
40
|
Moraes LA, Barrett NE, Jones CI, Holbrook LM, Spyridon M, Sage T, Newman DK, Gibbins JM. Platelet endothelial cell adhesion molecule-1 regulates collagen-stimulated platelet function by modulating the association of phosphatidylinositol 3-kinase with Grb-2-associated binding protein-1 and linker for activation of T cells. J Thromb Haemost 2010; 8:2530-41. [PMID: 20723025 PMCID: PMC3298659 DOI: 10.1111/j.1538-7836.2010.04025.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2010] [Accepted: 08/06/2010] [Indexed: 01/06/2023]
Abstract
BACKGROUND Platelet activation by collagen depends on signals transduced by the glycoprotein (GP)VI-Fc receptor (FcR)γ-chain collagen receptor complex, which involves recruitment of phosphatidylinositol 3-kinase (PI3K) to phosphorylated tyrosines in the linker for activation of T cells (LAT). An interaction between the p85 regulatory subunit of PI3K and the scaffolding molecule Grb-2-associated binding protein-1 (Gab1), which is regulated by binding of the Src homology 2 domain-containing protein tyrosine phosphatase-2 (SHP-2) to Gab1, has been shown in other cell types to sustain PI3K activity to elicit cellular responses. Platelet endothelial cell adhesion molecule-1 (PECAM-1) functions as a negative regulator of platelet reactivity and thrombosis, at least in part by inhibiting GPVI-FcRγ-chain signaling via recruitment of SHP-2 to phosphorylated immunoreceptor tyrosine-based inhibitory motifs in PECAM-1. OBJECTIVE To investigate the possibility that PECAM-1 regulates the formation of the Gab1-p85 signaling complexes, and the potential effect of such interactions on GPVI-mediated platelet activation in platelets. METHODS The ability of PECAM-1 signaling to modulate the LAT signalosome was investigated with immunoblotting assays on human platelets and knockout mouse platelets. RESULTS PECAM-1-associated SHP-2 in collagen-stimulated platelets binds to p85, which results in diminished levels of association with both Gab1 and LAT and reduced collagen-stimulated PI3K signaling. We therefore propose that PECAM-1-mediated inhibition of GPVI-dependent platelet responses result, at least in part, from recruitment of SHP-2-p85 complexes to tyrosine-phosphorylated PECAM-1, which diminishes the association of PI3K with activatory signaling molecules, such as Gab1 and LAT.
Collapse
Affiliation(s)
- L A Moraes
- Institute for Cardiovascular & Metabolic Research, School of Biological Sciences, University of Reading, Reading, UK.
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Fernández Parguiña A, Grigorian-Shamajian L, Agra RM, Teijeira-Fernández E, Rosa I, Alonso J, Viñuela-Roldán JE, Seoane A, González-Juanatey JR, García Á. Proteins involved in platelet signaling are differentially regulated in acute coronary syndrome: a proteomic study. PLoS One 2010; 5:e13404. [PMID: 20976234 PMCID: PMC2954807 DOI: 10.1371/journal.pone.0013404] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2010] [Accepted: 09/22/2010] [Indexed: 01/08/2023] Open
Abstract
Background Platelets play a fundamental role in pathological events underlying acute coronary syndrome (ACS). Because platelets do not have a nucleus, proteomics constitutes an optimal approach to follow platelet molecular events associated with the onset of the acute episode. Methodology/Principal Findings We performed the first high-resolution two-dimensional gel electrophoresis-based proteome analysis of circulating platelets from patients with non-ST segment elevation ACS (NSTE-ACS). Proteins were identified by mass spectrometry and validations were by western blotting. Forty protein features (corresponding to 22 unique genes) were found to be differentially regulated between NSTE-ACS patients and matched controls with chronic ischemic cardiopathy. The number of differences decreased at day 5 (28) and 6 months after the acute event (5). Interestingly, a systems biology approach demonstrated that 16 of the 22 differentially regulated proteins identified are interconnected as part of a common network related to cell assembly and organization and cell morphology, processes very related to platelet activation. Indeed, 14 of those proteins are either signaling or cytoskeletal, and nine of them are known to participate in platelet activation by αIIbβ3 and/or GPVI receptors. Several of the proteins identified participate in platelet activation through post-translational modifications, as shown here for ILK, Src and Talin. Interestingly, the platelet-secreted glycoprotein SPARC was down-regulated in NSTE-ACS patients compared to stable controls, which is consistent with a secretion process from activated platelets. Conclusions/Significance The present study provides novel information on platelet proteome changes associated with platelet activation in NSTE-ACS, highlighting the presence of proteins involved in platelet signaling. This investigation paves the way for future studies in the search for novel platelet-related biomarkers and drug targets in ACS.
Collapse
Affiliation(s)
- Andrés Fernández Parguiña
- Departamento de Farmacoloxía, Facultade de Farmacia, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Lilian Grigorian-Shamajian
- Servicio de Cardiología y Unidad Coronaria, Hospital Clínico Universitario de Santiago, Santiago de Compostela, Spain
- Servicio de Cardiología, Complejo Hospitalario Universitario de Vigo, Vigo, Spain
| | - Rosa M. Agra
- Servicio de Cardiología y Unidad Coronaria, Hospital Clínico Universitario de Santiago, Santiago de Compostela, Spain
| | - Elvis Teijeira-Fernández
- Servicio de Cardiología y Unidad Coronaria, Hospital Clínico Universitario de Santiago, Santiago de Compostela, Spain
| | - Isaac Rosa
- Departamento de Farmacoloxía, Facultade de Farmacia, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Jana Alonso
- Laboratorio de Proteómica, Instituto de Investigaciones Sanitarias, Hospital Clínico Universitario, Santiago de Compostela, Spain
| | - Juan E. Viñuela-Roldán
- Laboratorio de Inmunología, Hospital Clínico Universitario, Santiago de Compostela, Spain
| | - Ana Seoane
- Servicio de Cardiología y Unidad Coronaria, Hospital Clínico Universitario de Santiago, Santiago de Compostela, Spain
| | - José Ramón González-Juanatey
- Servicio de Cardiología y Unidad Coronaria, Hospital Clínico Universitario de Santiago, Santiago de Compostela, Spain
| | - Ángel García
- Departamento de Farmacoloxía, Facultade de Farmacia, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
- * E-mail:
| |
Collapse
|
42
|
Ohmori T, Kashiwakura Y, Ishiwata A, Madoiwa S, Mimuro J, Furukawa Y, Sakata Y. Vinculin is indispensable for repopulation by hematopoietic stem cells, independent of integrin function. J Biol Chem 2010; 285:31763-73. [PMID: 20663867 PMCID: PMC2951248 DOI: 10.1074/jbc.m109.099085] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2009] [Revised: 07/13/2010] [Indexed: 11/06/2022] Open
Abstract
Vinculin is a highly conserved actin-binding protein that is localized in integrin-mediated focal adhesion complexes. Although critical roles have been proposed for integrins in hematopoietic stem cell (HSC) function, little is known about the involvement of intracellular focal adhesion proteins in HSC functions. This study showed that the ability of c-Kit(+)Sca1(+)Lin(-) HSCs to support reconstitution of hematopoiesis after competitive transplantation was severely impaired by lentiviral transduction with short hairpin RNA sequences for vinculin. The potential of these HSCs to differentiate into granulocytic and monocytic lineages, to migrate toward stromal cell-derived factor 1α, and to home to the bone marrow in vivo were not inhibited by the loss of vinculin. However, the capacities to form long term culture-initiating cells and cobblestone-like areas were abolished in vinculin-silenced c-Kit(+)Sca1(+)Lin(-) HSCs. In contrast, adhesion to the extracellular matrix was inhibited by silencing of talin-1, but not of vinculin. Whole body in vivo luminescence analyses to detect transduced HSCs confirmed the role of vinculin in long term HSC reconstitution. Our results suggest that vinculin is an indispensable factor determining HSC repopulation capacity, independent of integrin functions.
Collapse
Affiliation(s)
- Tsukasa Ohmori
- From the Research Division of Cell and Molecular Medicine and
| | | | - Akira Ishiwata
- From the Research Division of Cell and Molecular Medicine and
| | - Seiji Madoiwa
- From the Research Division of Cell and Molecular Medicine and
| | - Jun Mimuro
- From the Research Division of Cell and Molecular Medicine and
| | - Yusuke Furukawa
- the Division of Stem Cell Regulation, Center for Molecular Medicine, Jichi Medical University, Tochigi 329-0498, Japan
| | - Yoichi Sakata
- From the Research Division of Cell and Molecular Medicine and
| |
Collapse
|
43
|
Ohmori T, Kashiwakura Y, Ishiwata A, Madoiwa S, Mimuro J, Honda S, Miyata T, Sakata Y. Vinculin activates inside-out signaling of integrin αIIbβ3 in Chinese hamster ovary cells. Biochem Biophys Res Commun 2010; 400:323-8. [PMID: 20728432 DOI: 10.1016/j.bbrc.2010.08.056] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2010] [Accepted: 08/17/2010] [Indexed: 10/19/2022]
Abstract
Although vinculin is used frequently as a marker for integrin-mediated focal adhesion complexes, how it regulates the activation of integrin is mostly unknown. In this study, we examined whether vinculin would activate integrin in Chinese hamster ovary (CHO) cells expressing human integrin αIIbβ3. Silencing of vinculin by lentiviral transduction with a short hairpin RNA sequence affected the binding of PAC-1 (an antibody recognizing activated human αIIbβ3) to a constitutively active form of αIIbβ3 (α6Bβ3) expressed on CHO cells, while its inhibitory effects were much weaker than those of talin-1. Overexpression of an active form of vinculin without intramolecular interactions, but not the full length one, induced PAC-1 binding to native αIIbβ3 expressed on CHO cells in a manner dependent on talin-1. On the other hand, silencing of talin-1, but not vinculin, failed to induce cell spreading of α6Bβ3-CHO cells on fibrinogen, even in the presence of PT 25-2, a monoclonal antibody that activates αIIbβ3. Thus, an active form of vinculin could induce αIIbβ3 inside-out signaling through the actions of talin-1, while vinculin was dispensable for outside-in signaling.
Collapse
Affiliation(s)
- Tsukasa Ohmori
- Research Division of Cell and Molecular Medicine, Center for Molecular Medicine, Jichi Medical University, Tochigi, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Abstract
The Kindlin family of intracellular proteins has recently emerged as key regulators of cellular functions and cell-matrix interactions. The 3 members of this family, Kindlin-1, -2, and -3, perform an essential role in activation of integrin adhesion receptors, and expression of at least 1 Kindlin paralog is required to enable integrin activation in physiologically relevant settings. In humans, deficiencies in Kindlin-3 lead to a number of abnormalities affecting hemostasis, the immune system, and bone function, whereas the lack of Kindlin-1 causes profound skin defects. The importance of Kindlins is underscored by the results of animal knockout studies, which clearly show the indispensable and nonredundant functions of all 3 Kindlins in development and normal physiology. This review discusses recent progress in the studies of Kindlin protein family, emphasizing newly identified functions and potential mechanisms underlying differential activities of the family members.
Collapse
|
45
|
Moraes LA, Spyridon M, Kaiser WJ, Jones CI, Sage T, Atherton REL, Gibbins JM. Non-genomic effects of PPARgamma ligands: inhibition of GPVI-stimulated platelet activation. J Thromb Haemost 2010; 8:577-87. [PMID: 20040043 PMCID: PMC3298645 DOI: 10.1111/j.1538-7836.2009.03732.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2009] [Accepted: 12/16/2009] [Indexed: 12/19/2022]
Abstract
BACKGROUND Peroxisome proliferator-activated receptor-(gamma) (PPAR(gamma)) is expressed in human platelets although in the absence of genomic regulation in these cells, its functions are unclear. OBJECTIVE In the present study, we aimed to demonstrate the ability of PPAR(gamma) ligands to modulate collagen-stimulated platelet function and suppress activation of the glycoprotein VI (GPVI) signaling pathway. METHODS Washed platelets were stimulated with PPAR(gamma) ligands in the presence and absence of PPAR(gamma) antagonist GW9662 and collagen-induced aggregation was measured using optical aggregometry. Calcium levels were measured by spectrofluorimetry in Fura-2AM-loaded platelets and tyrosine phosphorylation levels of receptor-proximal components of the GPVI signaling pathway were measured using immunoblot analysis. The role of PPAR(gamma) agonists in thrombus formation was assessed using an in vitro model of thrombus formation under arterial flow conditions. RESULTS PPAR(gamma) ligands inhibited collagen-stimulated platelet aggregation that was accompanied by a reduction in intracellular calcium mobilization and P-selectin exposure. PPAR(gamma) ligands inhibited thrombus formation under arterial flow conditions. The incorporation of GW9662 reversed the inhibitory actions of PPAR(gamma) agonists, implicating PPAR(gamma) in the effects observed. Furthermore, PPAR(gamma) ligands were found to inhibit tyrosine phosphorylation levels of multiple components of the GPVI signaling pathway. PPAR(gamma) was found to associate with Syk and LAT after platelet activation. This association was prevented by PPAR(gamma) agonists, indicating a potential mechanism for PPAR(gamma) function in collagen-stimulated platelet activation. CONCLUSIONS PPAR(gamma) agonists inhibit the activation of collagen-stimulation of platelet function through modulation of early GPVI signalling.
Collapse
Affiliation(s)
- L A Moraes
- Institute for Cardiovascular & Metabolic Research, School of Biological Sciences, University of Reading, Reading, UK.
| | | | | | | | | | | | | |
Collapse
|
46
|
The ILK/PINCH/parvin complex: the kinase is dead, long live the pseudokinase! EMBO J 2009; 29:281-91. [PMID: 20033063 DOI: 10.1038/emboj.2009.376] [Citation(s) in RCA: 202] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2009] [Accepted: 11/23/2009] [Indexed: 12/29/2022] Open
Abstract
Dynamic interactions of cells with their environment regulate multiple aspects of tissue morphogenesis and function. Integrins are the major class of cell surface receptors that recognize and bind extracellular matrix proteins, resulting in the engagement and organization of the cytoskeleton as well as activation of signalling pathways to regulate cell behaviour and morphogenetic processes. The ternary complex of integrin-linked kinase (ILK), PINCH, and parvin (IPP complex), which was identified more than a decade ago, interacts with the cytoplasmic tail of beta integrins and couples them to the actin cytoskeleton. In addition, ILK has been shown to act as a serine/threonine kinase and to directly activate several signalling pathways downstream of integrins. However, the kinase activity of ILK and the precise functions of the IPP complex have remained elusive and controversial. This review focuses on the recent advances made towards understanding the specialized roles this complex and its individual components have acquired during evolution.
Collapse
|
47
|
Morgan EA, Schneider JG, Baroni TE, Uluçkan O, Heller E, Hurchla MA, Deng H, Floyd D, Berdy A, Prior JL, Piwnica-Worms D, Teitelbaum SL, Ross FP, Weilbaecher KN. Dissection of platelet and myeloid cell defects by conditional targeting of the beta3-integrin subunit. FASEB J 2009; 24:1117-27. [PMID: 19933310 DOI: 10.1096/fj.09-138420] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The purpose of this work was to determine platelet and myeloid cell-specific requirements for beta3-containing integrins in hemostasis, bone resorption, and tumor growth. LoxP-flanked mice were generated to study the conditional deletion of beta3-integrin in platelets [knockout in platelets (KOP)] and myeloid cells [knockout in myeloid (KOM)]. Using the beta3KOP and beta3KOM strains of mice, we studied the role of beta3-integrin in hemostasis, bone resorption, and subcutaneous tumor growth. Tissue-specific deletion of platelet beta3-integrins in beta3KOP mice did not affect bone mass but resulted in a severe bleeding phenotype. No growth difference of tumor xenografts or in neoangiogenesis were found in beta3KOP mice, in contrast to the defects observed in germline beta3(-/-) mice. Conditional deletion of myeloid beta3-integrins in beta3KOM mice resulted in osteopetrosis but had no effect on hemostasis or mortality. Tumor growth in beta3KOM mice was increased and accompanied by decreased macrophage infiltration, without increase in blood vessel number. Platelet beta3-integrin deficiency was sufficient to disrupt hemostasis but had no effect on bone mass or tumor growth. Myeloid-specific beta3-integrin deletion was sufficient to perturb bone mass and enhance tumor growth due to reduced macrophage infiltration in the tumors. These results suggest that beta3-integrins have cell-specific roles in complex biological processes.-Morgan, E. A., Schneider, J. G., Baroni, T. E., Uluçkan, O., Heller, E., Hurchla, M. A., Deng, H., Floyd, D., Berdy, A., Prior, J. L., Piwnica-Worms, D., Teitelbaum, S. L., Ross, F. P., Weilbaecher, K. N. Dissection of platelet and myeloid cell defects by conditional targeting of the beta3-integrin subunit.
Collapse
Affiliation(s)
- Elizabeth A Morgan
- Department of Medicine, Mallinkrodt Institute of Radiology, St. Louis, Missouri, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
PECAM-1 expression and activity negatively regulate multiple platelet signaling pathways. FEBS Lett 2009; 583:3618-24. [PMID: 19850043 PMCID: PMC2791847 DOI: 10.1016/j.febslet.2009.10.037] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2009] [Revised: 10/07/2009] [Accepted: 10/08/2009] [Indexed: 01/13/2023]
Abstract
Platelet endothelial cell adhesion molecule-1 (PECAM-1) inhibits platelet response to collagen and may also inhibit two other major platelet agonists ADP and thrombin although this has been less well explored. We hypothesized that the combined effect of inhibiting these three platelet activating pathways may act to significantly inhibit thrombus formation. We demonstrate a negative relationship between PECAM-1 surface expression and platelet response to cross-linked collagen related peptide (CRP-XL) and ADP, and an inhibitory effect of PECAM-1 clustering on platelet response to CRP-XL, ADP and thrombin. This combined inhibition of multiple signaling pathways results in a marked reduction in thrombus formation.
Collapse
|
49
|
How ILK and kindlins cooperate to orchestrate integrin signaling. Curr Opin Cell Biol 2009; 21:670-5. [DOI: 10.1016/j.ceb.2009.05.008] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2009] [Revised: 05/28/2009] [Accepted: 05/29/2009] [Indexed: 12/18/2022]
|
50
|
Kaiser WJ, Holbrook LM, Tucker KL, Stanley RG, Gibbins JM. A Functional Proteomic Method for the Enrichment of Peripheral Membrane Proteins Reveals the Collagen Binding Protein Hsp47 Is Exposed on the Surface of Activated Human Platelets. J Proteome Res 2009; 8:2903-14. [DOI: 10.1021/pr900027j] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- William J. Kaiser
- Institute for Cardiovascular and Metabolic Research, School of Biological Sciences, Hopkins Building, The University of Reading, Whiteknights, Reading, United Kingdom RG6 6UB
| | - Lisa-Marie Holbrook
- Institute for Cardiovascular and Metabolic Research, School of Biological Sciences, Hopkins Building, The University of Reading, Whiteknights, Reading, United Kingdom RG6 6UB
| | - Katherine L. Tucker
- Institute for Cardiovascular and Metabolic Research, School of Biological Sciences, Hopkins Building, The University of Reading, Whiteknights, Reading, United Kingdom RG6 6UB
| | - Ronald G. Stanley
- Institute for Cardiovascular and Metabolic Research, School of Biological Sciences, Hopkins Building, The University of Reading, Whiteknights, Reading, United Kingdom RG6 6UB
| | - Jonathan M. Gibbins
- Institute for Cardiovascular and Metabolic Research, School of Biological Sciences, Hopkins Building, The University of Reading, Whiteknights, Reading, United Kingdom RG6 6UB
| |
Collapse
|