1
|
Wu XF, Liu Y, Zhan JS, Huang QL, Li WY. A novel splice variant of goat CPT1a gene and their diverse mRNA expression profiles. Anim Biotechnol 2023; 34:2571-2581. [PMID: 36047452 DOI: 10.1080/10495398.2022.2106573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
The Alternative splicing (AS) of Carnitine palmitoyltransferase 1a (CPT1a) and their expression profiles had never been illuminated in goats until now. Herein, a novel splice transcript in the CPT1a gene that is predicted to result in the skipping of exons 6-19 (CPT1a-sv1) has been isolated in addition to the full-length transcript in goats. The result of RT-PCR showed that CPT1a-sv1 is 606 bp in length and consists of 6 exons. A novel exon 6 was consisted of partial exon 5 and partial exon 19, compared to that in CPT1a. RT-qPCR analysis showed that the expression patterns of CPT1a and CPT1a-sv1 are spatially different. In both kid and adult goats, the CPT1a transcript is strongly expressed in the liver, spleen, lung, kidney, and brain tissues. However, CPT1a-sv1 has a strong tissue-specific expression pattern, with moderate RNA levels in the liver and brain of kids, while highly expressed in the liver and minimally expressed in the brain of adults. We observed two transcripts to be involved in brain development. These findings improve our understanding of the function of the CPT1a gene in goats and provide information on the molecular mechanism of AS events.
Collapse
Affiliation(s)
- Xian-Feng Wu
- Institute of Animal Husbandry and Veterinary, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian, China
| | - Yuan Liu
- Institute of Animal Husbandry and Veterinary, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian, China
| | - Jin-Shun Zhan
- Institute of Animal Husbandry and Veterinary, Jiangxi Academy of Agricultural Sciences, Nanchang, Jiangxi, China
| | - Qin-Lou Huang
- Institute of Animal Husbandry and Veterinary, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian, China
| | - Wen-Yang Li
- Institute of Animal Husbandry and Veterinary, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian, China
| |
Collapse
|
2
|
Singh A, Rajeevan A, Gopalan V, Agrawal P, Day CP, Hannenhalli S. Broad misappropriation of developmental splicing profile by cancer in multiple organs. Nat Commun 2022; 13:7664. [PMID: 36509773 PMCID: PMC9744839 DOI: 10.1038/s41467-022-35322-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 11/29/2022] [Indexed: 12/14/2022] Open
Abstract
Oncogenesis mimics key aspects of embryonic development. However, the underlying mechanisms are incompletely understood. Here, we demonstrate that the splicing events specifically active during human organogenesis, are broadly reactivated in the organ-specific tumor. Such events are associated with key oncogenic processes and predict proliferation rates in cancer cell lines as well as patient survival. Such events preferentially target nitrosylation and transmembrane-region domains, whose coordinated splicing in multiple genes respectively affect intracellular transport and N-linked glycosylation. We infer critical splicing factors potentially regulating embryonic splicing events and show that such factors are potential oncogenic drivers and are upregulated specifically in malignant cells. Multiple complementary analyses point to MYC and FOXM1 as potential transcriptional regulators of critical splicing factors in brain and liver. Our study provides a comprehensive demonstration of a splicing-mediated link between development and cancer, and suggest anti-cancer targets including splicing events, and their upstream splicing and transcriptional regulators.
Collapse
Affiliation(s)
- Arashdeep Singh
- Cancer Data Science Laboratory, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| | - Arati Rajeevan
- Cancer Data Science Laboratory, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Vishaka Gopalan
- Cancer Data Science Laboratory, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Piyush Agrawal
- Cancer Data Science Laboratory, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Chi-Ping Day
- Laboratory of Cancer Biology and Genetics National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Sridhar Hannenhalli
- Cancer Data Science Laboratory, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
3
|
A ligand-insensitive UNC5B splicing isoform regulates angiogenesis by promoting apoptosis. Nat Commun 2021; 12:4872. [PMID: 34381052 PMCID: PMC8358048 DOI: 10.1038/s41467-021-24998-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 07/16/2021] [Indexed: 12/12/2022] Open
Abstract
The Netrin-1 receptor UNC5B is an axon guidance regulator that is also expressed in endothelial cells (ECs), where it finely controls developmental and tumor angiogenesis. In the absence of Netrin-1, UNC5B induces apoptosis that is blocked upon Netrin-1 binding. Here, we identify an UNC5B splicing isoform (called UNC5B-Δ8) expressed exclusively by ECs and generated through exon skipping by NOVA2, an alternative splicing factor regulating vascular development. We show that UNC5B-Δ8 is a constitutively pro-apoptotic splicing isoform insensitive to Netrin-1 and required for specific blood vessel development in an apoptosis-dependent manner. Like NOVA2, UNC5B-Δ8 is aberrantly expressed in colon cancer vasculature where its expression correlates with tumor angiogenesis and poor patient outcome. Collectively, our data identify a mechanism controlling UNC5B’s necessary apoptotic function in ECs and suggest that the NOVA2/UNC5B circuit represents a post-transcriptional pathway regulating angiogenesis. UNC5B is a Netrin-1 receptor expressed in endothelial cells that in the absence of ligand induces apoptosis. Here the authors identify an UNC5B splicing isoform that is insensitive to the pro-survival ligand Netrin-1 and is required for apoptosis-dependent blood vessel development.
Collapse
|
4
|
Biamonti G, Amato A, Belloni E, Di Matteo A, Infantino L, Pradella D, Ghigna C. Alternative splicing in Alzheimer's disease. Aging Clin Exp Res 2021; 33:747-758. [PMID: 31583531 DOI: 10.1007/s40520-019-01360-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Accepted: 09/19/2019] [Indexed: 12/25/2022]
Abstract
Alzheimer's disease (AD) is the most frequent neurodegenerative disorder in the elderly, occurring in approximately 20% of people older than 80. The molecular causes of AD are still poorly understood. However, recent studies have shown that Alternative Splicing (AS) is involved in the gene expression reprogramming associated with the functional changes observed in AD patients. In particular, mutations in cis-acting regulatory sequences as well as alterations in the activity and sub-cellular localization of trans-acting splicing factors and components of the spliceosome machinery are associated with splicing abnormalities in AD tissues, which may influence the onset and progression of the disease. In this review, we discuss the current molecular understanding of how alterations in the AS process contribute to AD pathogenesis. Finally, recent therapeutic approaches targeting aberrant AS regulation in AD are also reviewed.
Collapse
Affiliation(s)
- Giuseppe Biamonti
- Istituto di Genetica Molecolare "Luigi Luca Cavalli-Sforza", Consiglio Nazionale delle Ricerche (IGM-CNR), via Abbiategrasso, 207, 27100, Pavia, Italy.
| | - Angela Amato
- Istituto di Genetica Molecolare "Luigi Luca Cavalli-Sforza", Consiglio Nazionale delle Ricerche (IGM-CNR), via Abbiategrasso, 207, 27100, Pavia, Italy
| | - Elisa Belloni
- Istituto di Genetica Molecolare "Luigi Luca Cavalli-Sforza", Consiglio Nazionale delle Ricerche (IGM-CNR), via Abbiategrasso, 207, 27100, Pavia, Italy
| | - Anna Di Matteo
- Istituto di Genetica Molecolare "Luigi Luca Cavalli-Sforza", Consiglio Nazionale delle Ricerche (IGM-CNR), via Abbiategrasso, 207, 27100, Pavia, Italy
| | - Lucia Infantino
- Istituto di Genetica Molecolare "Luigi Luca Cavalli-Sforza", Consiglio Nazionale delle Ricerche (IGM-CNR), via Abbiategrasso, 207, 27100, Pavia, Italy
| | - Davide Pradella
- Istituto di Genetica Molecolare "Luigi Luca Cavalli-Sforza", Consiglio Nazionale delle Ricerche (IGM-CNR), via Abbiategrasso, 207, 27100, Pavia, Italy
| | - Claudia Ghigna
- Istituto di Genetica Molecolare "Luigi Luca Cavalli-Sforza", Consiglio Nazionale delle Ricerche (IGM-CNR), via Abbiategrasso, 207, 27100, Pavia, Italy
| |
Collapse
|
5
|
Zhang F, Deng CK, Wang M, Deng B, Barber R, Huang G. Identification of novel alternative splicing biomarkers for breast cancer with LC/MS/MS and RNA-Seq. BMC Bioinformatics 2020; 21:541. [PMID: 33272210 PMCID: PMC7713335 DOI: 10.1186/s12859-020-03824-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 10/19/2020] [Indexed: 01/12/2023] Open
Abstract
Background Alternative splicing isoforms have been reported as a new and robust class of diagnostic biomarkers. Over 95% of human genes are estimated to be alternatively spliced as a powerful means of producing functionally diverse proteins from a single gene. The emergence of next-generation sequencing technologies, especially RNA-seq, provides novel insights into large-scale detection and analysis of alternative splicing at the transcriptional level. Advances in Proteomic Technologies such as liquid chromatography coupled tandem mass spectrometry (LC–MS/MS), have shown tremendous power for the parallel characterization of large amount of proteins in biological samples. Although poor correspondence has been generally found from previous qualitative comparative analysis between proteomics and microarray data, significantly higher degrees of correlation have been observed at the level of exon. Combining protein and RNA data by searching LC–MS/MS data against a customized protein database from RNA-Seq may produce a subset of alternatively spliced protein isoform candidates that have higher confidence. Results We developed a bioinformatics workflow to discover alternative splicing biomarkers from LC–MS/MS using RNA-Seq. First, we retrieved high confident, novel alternative splicing biomarkers from the breast cancer RNA-Seq database. Then, we translated these sequences into in silico Isoform Junction Peptides, and created a customized alternative splicing database for MS searching. Lastly, we ran the Open Mass spectrometry Search Algorithm against the customized alternative splicing database with breast cancer plasma proteome. Twenty six alternative splicing biomarker peptides with one single intron event and one exon skipping event were identified. Further interpretation of biological pathways with our Integrated Pathway Analysis Database showed that these 26 peptides are associated with Cancer, Signaling, Metabolism, Regulation, Immune System and Hemostasis pathways, which are consistent with the 256 alternative splicing biomarkers from the RNA-Seq. Conclusions This paper presents a bioinformatics workflow for using RNA-seq data to discover novel alternative splicing biomarkers from the breast cancer proteome. As a complement to synthetic alternative splicing database technique for alternative splicing identification, this method combines the advantages of two platforms: mass spectrometry and next generation sequencing and can help identify potentially highly sample-specific alternative splicing isoform biomarkers at early-stage of cancer.
Collapse
Affiliation(s)
- Fan Zhang
- Vermont Biomedical Research Network and Department of Biology, University of Vermont, Burlington, VT, 05405, USA. .,Institute for Translational Research and Department of Family Medicine, University of North Texas Health Science Center, Fort Worth, TX, 76107, USA.
| | - Chris K Deng
- School of Molecular and Cellular Biology, University of Illinois at Urbana-Champaign, Champaign, IL, 61801, USA
| | - Mu Wang
- Department of Biochemistry and Molecular Biology, IU School of Medicine, Indianapolis, IN, 46202, USA.,Indiana Center for Systems Biology and Personalized Medicine, Indianapolis, IN, 46202, USA
| | - Bin Deng
- Vermont Biomedical Research Network and Department of Biology, University of Vermont, Burlington, VT, 05405, USA.,Institute for Translational Research and Department of Family Medicine, University of North Texas Health Science Center, Fort Worth, TX, 76107, USA
| | - Robert Barber
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Gang Huang
- Shanghai Key Laboratory for Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, People's Republic of China.
| |
Collapse
|
6
|
Sobh A, Loguinov A, Zhou J, Jenkitkasemwong S, Zeidan R, El Ahmadie N, Tagmount A, Knutson M, Fraenkel PG, Vulpe CD. Genetic screens reveal CCDC115 as a modulator of erythroid iron and heme trafficking. Am J Hematol 2020; 95:1085-1098. [PMID: 32510613 DOI: 10.1002/ajh.25899] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 05/27/2020] [Accepted: 05/31/2020] [Indexed: 12/26/2022]
Abstract
Transferrin-bound iron (TBI), the physiological circulating iron form, is acquired by cells through the transferrin receptor (TfR1) by endocytosis. In erythroid cells, most of the acquired iron is incorporated into heme in the mitochondria. Cellular trafficking of heme is indispensable for erythropoiesis and many other essential biological processes. Comprehensive elucidation of molecular pathways governing and regulating cellular iron acquisition and heme trafficking is required to better understand physiological and pathological processes affecting erythropoiesis. Here, we report the first genome-wide clustered regularly interspaced short palindromic repeats (CRISPR) screens in human erythroid cells to identify determinants of iron and heme uptake, as well as heme-mediated erythroid differentiation. We identified several candidate modulators of TBI acquisition including TfR1, indicating that our approach effectively revealed players mechanistically relevant to the process. Interestingly, components of the endocytic pathway were also revealed as potential determinants of transferrin acquisition. We deciphered a role for the vacuolar-type H+ - ATPase (V- ATPase) assembly factor coiled-coil domain containing 115 (CCDC115) in TBI uptake and validated this role in CCDC115 deficient K562 cells. Our screen in hemin-treated cells revealed perturbations leading to cellular adaptation to heme, including those corresponding to trafficking mechanisms and transcription factors potentiating erythroid differentiation. Pathway analysis indicated that endocytosis and vesicle acidification are key processes for heme trafficking in erythroid precursors. Furthermore, we provided evidence that CCDC115, which we identified as required for TBI uptake, is also involved in cellular heme distribution. This work demonstrates a previously unappreciated common intersection in trafficking of transferrin iron and heme in the endocytic pathway of erythroid cells.
Collapse
Affiliation(s)
- Amin Sobh
- Department of Nutritional Sciences & Toxicology, Comparative Biochemistry Program University of California Berkeley Berkeley California
- Department of Physiological Sceinces University of Florida Gainesville Florida
| | - Alex Loguinov
- Department of Physiological Sceinces University of Florida Gainesville Florida
| | - Jie Zhou
- Department of Physiological Sceinces University of Florida Gainesville Florida
- Department of Food Science and Human Nutrition University of Florida Gainesville Florida
| | - Supak Jenkitkasemwong
- Department of Food Science and Human Nutrition University of Florida Gainesville Florida
| | - Rola Zeidan
- Department of Physiological Sceinces University of Florida Gainesville Florida
| | - Nader El Ahmadie
- Department of Physiological Sceinces University of Florida Gainesville Florida
| | | | - Mitchell Knutson
- Department of Food Science and Human Nutrition University of Florida Gainesville Florida
| | - Paula G. Fraenkel
- Division of Hematology/Oncology and Cancer Research Institute Beth Israel Deaconess Medical Center Boston Massachusetts
- Department of Medicine Harvard Medical School Boston Massachusetts
- Oncology Research and Development, Sanofi Cambridge Massachusetts
| | | |
Collapse
|
7
|
Sulakhe D, D'Souza M, Wang S, Balasubramanian S, Athri P, Xie B, Canzar S, Agam G, Gilliam TC, Maltsev N. Exploring the functional impact of alternative splicing on human protein isoforms using available annotation sources. Brief Bioinform 2020; 20:1754-1768. [PMID: 29931155 DOI: 10.1093/bib/bby047] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 05/02/2018] [Indexed: 12/30/2022] Open
Abstract
In recent years, the emphasis of scientific inquiry has shifted from whole-genome analyses to an understanding of cellular responses specific to tissue, developmental stage or environmental conditions. One of the central mechanisms underlying the diversity and adaptability of the contextual responses is alternative splicing (AS). It enables a single gene to encode multiple isoforms with distinct biological functions. However, to date, the functions of the vast majority of differentially spliced protein isoforms are not known. Integration of genomic, proteomic, functional, phenotypic and contextual information is essential for supporting isoform-based modeling and analysis. Such integrative proteogenomics approaches promise to provide insights into the functions of the alternatively spliced protein isoforms and provide high-confidence hypotheses to be validated experimentally. This manuscript provides a survey of the public databases supporting isoform-based biology. It also presents an overview of the potential global impact of AS on the human canonical gene functions, molecular interactions and cellular pathways.
Collapse
Affiliation(s)
- Dinanath Sulakhe
- Department of Human Genetics, University of Chicago, 920 E. 58th Street, Chicago, IL, USA.,Computation Institute, University of Chicago, 5735 S. Ellis Avenue, Chicago, IL, USA
| | - Mark D'Souza
- Department of Human Genetics, University of Chicago, 920 E. 58th Street, Chicago, IL, USA
| | - Sheng Wang
- Department of Human Genetics, University of Chicago, 920 E. 58th Street, Chicago, IL, USA.,Toyota Technological Institute at Chicago, 6045 S. Kenwood Avenue, Chicago, IL, USA
| | - Sandhya Balasubramanian
- Department of Human Genetics, University of Chicago, 920 E. 58th Street, Chicago, IL, USA.,Genentech, Inc. 1 DNA Way, Mail Stop: 35-6J, South San Francisco, CA, USA
| | - Prashanth Athri
- Department of Computer Science and Engineering, Amrita School of Engineering, Bengaluru, Amrita Vishwa Vidyapeetham, Kasavanahalli, Carmelaram P.O., Bengaluru, Karnataka, India
| | - Bingqing Xie
- Department of Human Genetics, University of Chicago, 920 E. 58th Street, Chicago, IL, USA.,Department of Computer Science, Illinois Institute of Technology, Chicago, IL, USA
| | - Stefan Canzar
- Toyota Technological Institute at Chicago, 6045 S. Kenwood Avenue, Chicago, IL, USA.,Gene Center, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Gady Agam
- Department of Computer Science, Illinois Institute of Technology, Chicago, IL, USA
| | - T Conrad Gilliam
- Department of Human Genetics, University of Chicago, 920 E. 58th Street, Chicago, IL, USA.,Computation Institute, University of Chicago, 5735 S. Ellis Avenue, Chicago, IL, USA
| | - Natalia Maltsev
- Department of Human Genetics, University of Chicago, 920 E. 58th Street, Chicago, IL, USA.,Computation Institute, University of Chicago, 5735 S. Ellis Avenue, Chicago, IL, USA
| |
Collapse
|
8
|
Abstract
During erythropoiesis, hematopoietic stem and progenitor cells transition to erythroblasts en route to terminal differentiation into enucleated red blood cells. Transcriptome-wide changes underlie distinct morphological and functional characteristics at each cell division during this process. Many studies of gene expression have historically been carried out in erythroblasts, and the biogenesis of β-globin mRNA—the most highly expressed transcript in erythroblasts—was the focus of many seminal studies on the mechanisms of pre-mRNA splicing. We now understand that pre-mRNA splicing plays an important role in shaping the transcriptome of developing erythroblasts. Recent advances have provided insight into the role of alternative splicing and intron retention as important regulatory mechanisms of erythropoiesis. However, dysregulation of splicing during erythropoiesis is also a cause of several hematological diseases, including β-thalassemia and myelodysplastic syndromes. With a growing understanding of the role that splicing plays in these diseases, we are well poised to develop gene-editing treatments. In this review, we focus on changes in the developing erythroblast transcriptome caused by alternative splicing, the molecular basis of splicing-related blood diseases, and therapeutic advances in disease treatment using CRISPR/Cas9 gene editing.
Collapse
Affiliation(s)
- Kirsten A Reimer
- Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, 06520, USA
| | - Karla M Neugebauer
- Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, 06520, USA
| |
Collapse
|
9
|
Huang Y, Hale J, Wang Y, Li W, Zhang S, Zhang J, Zhao H, Guo X, Liu J, Yan H, Yazdanbakhsh K, Huang G, Hillyer CD, Mohandas N, Chen L, Sun L, An X. SF3B1 deficiency impairs human erythropoiesis via activation of p53 pathway: implications for understanding of ineffective erythropoiesis in MDS. J Hematol Oncol 2018; 11:19. [PMID: 29433555 PMCID: PMC5810112 DOI: 10.1186/s13045-018-0558-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 01/23/2018] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND SF3B1 is a core component of splicing machinery. Mutations in SF3B1 are frequently found in myelodysplastic syndromes (MDS), particularly in patients with refractory anemia with ringed sideroblasts (RARS), characterized by isolated anemia. SF3B1 mutations have been implicated in the pathophysiology of RARS; however, the physiological function of SF3B1 in erythropoiesis remains unknown. METHODS shRNA-mediated approach was used to knockdown SF3B1 in human CD34+ cells. The effects of SF3B1 knockdown on human erythroid cell differentiation, cell cycle, and apoptosis were assessed by flow cytometry. RNA-seq, qRT-PCR, and western blot analyses were used to define the mechanisms of phenotypes following knockdown of SF3B1. RESULTS We document that SF3B1 knockdown in human CD34+ cells leads to increased apoptosis and cell cycle arrest of early-stage erythroid cells and generation of abnormally nucleated late-stage erythroblasts. RNA-seq analysis of SF3B1-knockdown erythroid progenitor CFU-E cells revealed altered splicing of an E3 ligase Makorin Ring Finger Protein 1 (MKRN1) and subsequent activation of p53 pathway. Importantly, ectopic expression of MKRN1 rescued SF3B1-knockdown-induced alterations. Decreased expression of genes involved in mitosis/cytokinesis pathway including polo-like kinase 1 (PLK1) was noted in SF3B1-knockdown polychromatic and orthochromatic erythroblasts comparing to control cells. Pharmacologic inhibition of PLK1 also led to generation of abnormally nucleated erythroblasts. CONCLUSIONS These findings enabled us to identify novel roles for SF3B1 in human erythropoiesis and provided new insights into its role in regulating normal erythropoiesis. Furthermore, these findings have implications for improved understanding of ineffective erythropoiesis in MDS patients with SF3B1 mutations.
Collapse
Affiliation(s)
- Yumin Huang
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000 Henan People’s Republic of China
- Laboratory of Membrane Biology, New York Blood Center, New York, NY 10065 USA
| | - John Hale
- Red Cell Physiology Laboratory, New York Blood Center, New York, NY 10065 USA
| | - Yaomei Wang
- Laboratory of Membrane Biology, New York Blood Center, New York, NY 10065 USA
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan 450001 People’s Republic of China
| | - Wei Li
- Laboratory of Membrane Biology, New York Blood Center, New York, NY 10065 USA
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan 450001 People’s Republic of China
- Department of Immunology, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, 450008 People’s Republic of China
| | - Shijie Zhang
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan 450001 People’s Republic of China
| | - Jieying Zhang
- Laboratory of Membrane Biology, New York Blood Center, New York, NY 10065 USA
- The State Key Laboratory of Medical Genetics and School of Life Sciences, Central South University, Changsha, 410078 People’s Republic of China
| | - Huizhi Zhao
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan 450001 People’s Republic of China
| | - Xinhua Guo
- Laboratory of Membrane Biology, New York Blood Center, New York, NY 10065 USA
| | - Jing Liu
- The State Key Laboratory of Medical Genetics and School of Life Sciences, Central South University, Changsha, 410078 People’s Republic of China
| | - Hongxia Yan
- Red Cell Physiology Laboratory, New York Blood Center, New York, NY 10065 USA
| | - Karina Yazdanbakhsh
- Laboratory of Complement Biology, New York Blood Center, New York, NY 10065 USA
| | - Gang Huang
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229 USA
| | | | - Narla Mohandas
- Red Cell Physiology Laboratory, New York Blood Center, New York, NY 10065 USA
| | - Lixiang Chen
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan 450001 People’s Republic of China
| | - Ling Sun
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000 Henan People’s Republic of China
| | - Xiuli An
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000 Henan People’s Republic of China
- Laboratory of Membrane Biology, New York Blood Center, New York, NY 10065 USA
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan 450001 People’s Republic of China
| |
Collapse
|
10
|
Young ST, Moore JR, Bishop CP. A Rapid, Confirmatory Test for Body Fluid Identification. J Forensic Sci 2017; 63:511-516. [PMID: 28718918 DOI: 10.1111/1556-4029.13544] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 04/11/2017] [Accepted: 04/12/2017] [Indexed: 11/30/2022]
Abstract
We have developed a technique that allows investigators to confirm the presence of blood, semen, and/or saliva in a crime scene sample. It is a confirmatory test where multiple samples can be processed in less than an hour, and it is potentially portable, permitting samples to be processed at the crime scene. Samples at a scene giving a positive result can be further processed while those failing to do so may be ignored. There is a large and growing backlog of DNA evidence in the USA, slowing down the criminal justice system. This backlog has continued to grow despite an increase in the ability to process evidence faster. This technique uses quantum dot molecular beacons to test for tissue-specific RNA species, identifying particular body fluids. We have demonstrated the tissue specificity of molecular beacons for blood, semen, and saliva.
Collapse
Affiliation(s)
- Stephanie T Young
- Department of Biology, West Virginia University, PO Box 6057, Morgantown, WV, 26506-6057
| | - Joshua R Moore
- Department of Biology, West Virginia University, PO Box 6057, Morgantown, WV, 26506-6057
| | - Clifton P Bishop
- Department of Biology, West Virginia University, PO Box 6057, Morgantown, WV, 26506-6057
| |
Collapse
|
11
|
Alternative splicing as a regulator of development and tissue identity. Nat Rev Mol Cell Biol 2017; 18:437-451. [PMID: 28488700 DOI: 10.1038/nrm.2017.27] [Citation(s) in RCA: 868] [Impact Index Per Article: 108.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Alternative splicing of eukaryotic transcripts is a mechanism that enables cells to generate vast protein diversity from a limited number of genes. The mechanisms and outcomes of alternative splicing of individual transcripts are relatively well understood, and recent efforts have been directed towards studying splicing networks. It has become apparent that coordinated splicing networks regulate tissue and organ development, and that alternative splicing has important physiological functions in different developmental processes in humans.
Collapse
|
12
|
Merryweather-Clarke AT, Tipping AJ, Lamikanra AA, Fa R, Abu-Jamous B, Tsang HP, Carpenter L, Robson KJH, Nandi AK, Roberts DJ. Distinct gene expression program dynamics during erythropoiesis from human induced pluripotent stem cells compared with adult and cord blood progenitors. BMC Genomics 2016; 17:817. [PMID: 27769165 PMCID: PMC5073849 DOI: 10.1186/s12864-016-3134-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Accepted: 09/27/2016] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Human-induced pluripotent stem cells (hiPSCs) are a potentially invaluable resource for regenerative medicine, including the in vitro manufacture of blood products. HiPSC-derived red blood cells are an attractive therapeutic option in hematology, yet exhibit unexplained proliferation and enucleation defects that presently preclude such applications. We hypothesised that substantial differential regulation of gene expression during erythroid development accounts for these important differences between hiPSC-derived cells and those from adult or cord-blood progenitors. We thus cultured erythroblasts from each source for transcriptomic analysis to investigate differential gene expression underlying these functional defects. RESULTS Our high resolution transcriptional view of definitive erythropoiesis captures the regulation of genes relevant to cell-cycle control and confers statistical power to deploy novel bioinformatics methods. Whilst the dynamics of erythroid program elaboration from adult and cord blood progenitors were very similar, the emerging erythroid transcriptome in hiPSCs revealed radically different program elaboration compared to adult and cord blood cells. We explored the function of differentially expressed genes in hiPSC-specific clusters defined by our novel tunable clustering algorithms (SMART and Bi-CoPaM). HiPSCs show reduced expression of c-KIT and key erythroid transcription factors SOX6, MYB and BCL11A, strong HBZ-induction, and aberrant expression of genes involved in protein degradation, lysosomal clearance and cell-cycle regulation. CONCLUSIONS Together, these data suggest that hiPSC-derived cells may be specified to a primitive erythroid fate, and implies that definitive specification may more accurately reflect adult development. We have therefore identified, for the first time, distinct gene expression dynamics during erythroblast differentiation from hiPSCs which may cause reduced proliferation and enucleation of hiPSC-derived erythroid cells. The data suggest several mechanistic defects which may partially explain the observed aberrant erythroid differentiation from hiPSCs.
Collapse
Affiliation(s)
- Alison T Merryweather-Clarke
- Radcliffe Department of Medicine, University of Oxford, Headington, Oxford, OX3 9DU, UK.,National Health Service Blood and Transplant, John Radcliffe Hospital, Headington, Oxford, OX3 9BQ, UK
| | - Alex J Tipping
- Radcliffe Department of Medicine, University of Oxford, Headington, Oxford, OX3 9DU, UK.,National Health Service Blood and Transplant, John Radcliffe Hospital, Headington, Oxford, OX3 9BQ, UK
| | - Abigail A Lamikanra
- Radcliffe Department of Medicine, University of Oxford, Headington, Oxford, OX3 9DU, UK. .,National Health Service Blood and Transplant, John Radcliffe Hospital, Headington, Oxford, OX3 9BQ, UK.
| | - Rui Fa
- Department of Electronic and Computer Engineering, Brunel University London, Middlesex, UB8 3PH, UK
| | - Basel Abu-Jamous
- Department of Electronic and Computer Engineering, Brunel University London, Middlesex, UB8 3PH, UK
| | - Hoi Pat Tsang
- Radcliffe Department of Medicine, University of Oxford, Headington, Oxford, OX3 9DU, UK.,National Health Service Blood and Transplant, John Radcliffe Hospital, Headington, Oxford, OX3 9BQ, UK
| | - Lee Carpenter
- Radcliffe Department of Medicine, University of Oxford, Headington, Oxford, OX3 9DU, UK.,National Health Service Blood and Transplant, John Radcliffe Hospital, Headington, Oxford, OX3 9BQ, UK
| | - Kathryn J H Robson
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, Headington, OX3 9DU, Oxford, UK
| | - Asoke K Nandi
- Department of Electronic and Computer Engineering, Brunel University London, Middlesex, UB8 3PH, UK.,Distinguished Visiting Professor, The Key Laboratory of Embedded Systems and Service Computing, College of Electronic and Information Engineering, Tongji University, Shanghai, People's Republic of China
| | - David J Roberts
- Radcliffe Department of Medicine, University of Oxford, Headington, Oxford, OX3 9DU, UK. .,National Health Service Blood and Transplant, John Radcliffe Hospital, Headington, Oxford, OX3 9BQ, UK.
| |
Collapse
|
13
|
De La Garza A, Cameron RC, Nik S, Payne SG, Bowman TV. Spliceosomal component Sf3b1 is essential for hematopoietic differentiation in zebrafish. Exp Hematol 2016; 44:826-837.e4. [PMID: 27260753 DOI: 10.1016/j.exphem.2016.05.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Revised: 04/29/2016] [Accepted: 05/18/2016] [Indexed: 10/21/2022]
Abstract
SF3B1 (Splicing factor 3b, subunit 1) is one of the most commonly mutated factors in myelodysplastic syndrome (MDS). Although the genetic correlation between SF3B1 mutations and MDS etiology are quite strong, no in vivo model currently exists to explore how SF3B1 loss alters blood cell development. Using zebrafish mutants, we show here that proper function of Sf3b1 is required for all hematopoietic lineages. As in MDS patients, zebrafish sf3b1 mutants develop a macrocytic-anemia-like phenotype due to a block in maturation at a late progenitor stage. The mutant embryos also develop neutropenia, because their primitive myeloid cells fail to mature and turn on differentiation markers such as l-plastin and myeloperoxidase. In contrast, production of definitive hematopoietic stem and progenitor cells (HSPCs) from hemogenic endothelial cells within the dorsal aorta is greatly diminished, whereas arterial endothelial cells are correctly fated. Notch signaling, imperative for the endothelial-to-hematopoietic transition, is also normal, indicating that HSPC induction is blocked in sf3b1 mutants downstream or independent of Notch signaling. The data demonstrate that Sf3b1 function is necessary during key differentiation fate decisions in multiple blood cell types. Zebrafish sf3b1 mutants offer a novel animal model with which to explore the role of splicing in hematopoietic development and provide an excellent in vivo system with which to delve into the question of why and how Sf3b1 dysfunction is detrimental to hematopoietic differentiation, which could improve MDS diagnosis and treatment.
Collapse
Affiliation(s)
- Adriana De La Garza
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, USA; Gottesman Institute for Stem Cell Biology and Regenerative Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Rosannah C Cameron
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, USA; Gottesman Institute for Stem Cell Biology and Regenerative Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Sara Nik
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, USA; Gottesman Institute for Stem Cell Biology and Regenerative Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Sara G Payne
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, USA; Gottesman Institute for Stem Cell Biology and Regenerative Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Teresa V Bowman
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, USA; Gottesman Institute for Stem Cell Biology and Regenerative Medicine, Albert Einstein College of Medicine, Bronx, NY, USA; Department of Medicine (Oncology), Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|
14
|
Soupene E, Kao J, Cheng DH, Wang D, Greninger AL, Knudsen GM, DeRisi JL, Kuypers FA. Association of NMT2 with the acyl-CoA carrier ACBD6 protects the N-myristoyltransferase reaction from palmitoyl-CoA. J Lipid Res 2016; 57:288-98. [PMID: 26621918 PMCID: PMC4727424 DOI: 10.1194/jlr.m065003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Indexed: 01/13/2023] Open
Abstract
The covalent attachment of a 14-carbon aliphatic tail on a glycine residue of nascent translated peptide chains is catalyzed in human cells by two N-myristoyltransferase (NMT) enzymes using the rare myristoyl-CoA (C(14)-CoA) molecule as fatty acid donor. Although, NMT enzymes can only transfer a myristate group, they lack specificity for C(14)-CoA and can also bind the far more abundant palmitoyl-CoA (C(16)-CoA) molecule. We determined that the acyl-CoA binding protein, acyl-CoA binding domain (ACBD)6, stimulated the NMT reaction of NMT2. This stimulatory effect required interaction between ACBD6 and NMT2, and was enhanced by binding of ACBD6 to its ligand, C(18:2)-CoA. ACBD6 also interacted with the second human NMT enzyme, NMT1. The presence of ACBD6 prevented competition of the NMT reaction by C(16)-CoA. Mutants of ACBD6 that were either deficient in ligand binding to the N-terminal ACBD or unable to interact with NMT2 did not stimulate activity of NMT2, nor could they protect the enzyme from utilizing the competitor C(16)-CoA. These results indicate that ACBD6 can locally sequester C(16)-CoA and prevent its access to the enzyme binding site via interaction with NMT2. Thus, the ligand binding properties of the NMT/ACBD6 complex can explain how the NMT reaction can proceed in the presence of the very abundant competitive substrate, C(16)-CoA.
Collapse
Affiliation(s)
- Eric Soupene
- Children's Hospital Oakland Research Institute, Oakland, CA
| | - Joseph Kao
- Children's Hospital Oakland Research Institute, Oakland, CA
| | - Daniel H Cheng
- Children's Hospital Oakland Research Institute, Oakland, CA
| | - Derek Wang
- Children's Hospital Oakland Research Institute, Oakland, CA
| | - Alexander L Greninger
- Department of Biochemistry and Biophysics, University of California at San Francisco and Howard Hughes Medical Institute, San Francisco, CA
| | - Giselle M Knudsen
- Department of Pharmaceutical Chemistry, University of California at San Francisco, San Francisco, CA
| | - Joseph L DeRisi
- Department of Biochemistry and Biophysics, University of California at San Francisco and Howard Hughes Medical Institute, San Francisco, CA
| | | |
Collapse
|
15
|
Patil P, Uechi T, Kenmochi N. Incomplete splicing of neutrophil-specific genes affects neutrophil development in a zebrafish model of poikiloderma with neutropenia. RNA Biol 2016; 12:426-34. [PMID: 25849198 DOI: 10.1080/15476286.2015.1017240] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Poikiloderma with neutropenia (PN) is a rare inherited disorder characterized by poikiloderma, facial dysmorphism, pachyonychia, short stature and neutropenia. The molecular testing of PN patients has identified mutations in the C16orf57 gene, which encodes a protein referred to as USB1 (U Six Biogenesis 1). In this study, we developed a zebrafish model of PN by the microinjection of morpholino antisense oligos to suppress usb1 gene function. Severe morphological defects, including a bent tail, thin yolk extension and reduced body length, were predominant in the Usb1-suppressed embryos (morphants). We also observed significantly decreased number of neutrophils in the morphants by Sudan Black staining. Interestingly, the splicing of genes involved in neutrophil differentiation and development, such as mpx, ncf1, ela3l and npsn, was aberrant in the morphants. However, the splicing of haematopoietic precursors and erythroid-specific genes was unaltered. Importantly, the neutrophil defects were almost completely rescued by co-injection of ela3l mRNA, the most markedly affected gene in the morphants. Our study demonstrated a possible role of USB1 in modulating the tissue-specific gene splicing that eventually leads to the impaired development of neutrophils. This zebrafish model could serve as a valuable tool to investigate the causative role of USB1 in PN pathogenesis.
Collapse
Affiliation(s)
- Prakash Patil
- a Frontier Science Research Center; University of Miyazaki; Miyazaki , Japan
| | | | | |
Collapse
|
16
|
Soupene E, Kuypers FA. Ligand binding to the ACBD6 protein regulates the acyl-CoA transferase reactions in membranes. J Lipid Res 2015; 56:1961-71. [PMID: 26290611 PMCID: PMC4583085 DOI: 10.1194/jlr.m061937] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 08/18/2015] [Indexed: 12/17/2022] Open
Abstract
The binding determinants of the human acyl-CoA binding domain-containing protein (ACBD) 6 and its function in lipid renewal of membranes were investigated. ACBD6 binds acyl-CoAs of a chain length of 6 to 20 carbons. The stoichiometry of the association could not be fitted to a 1-to-1 model. Saturation of ACBD6 by C16:0-CoA required higher concentration than less abundant acyl-CoAs. In contrast to ACBD1 and ACBD3, ligand binding did not result in the dimerization of ACBD6. The presence of fatty acids affected the binding of C18:1-CoA to ACBD6, dependent on the length, the degree of unsaturation, and the stereoisomeric conformation of their aliphatic chain. ACBD1 and ACBD6 negatively affected the formation of phosphatidylcholine (PC) and phosphatidylethanolamine in the red blood cell membrane. The acylation rate of lysophosphatidylcholine into PC catalyzed by the red cell lysophosphatidylcholine-acyltransferase 1 protein was limited by the transfer of the acyl-CoA substrate from ACBD6 to the acyltransferase enzyme. These findings provide evidence that the binding properties of ACBD6 are adapted to prevent its constant saturation by the very abundant C16:0-CoA and protect membrane systems from the detergent nature of free acyl-CoAs by controlling their release to acyl-CoA-utilizing enzymes.
Collapse
Affiliation(s)
- Eric Soupene
- Children’s Hospital Oakland Research Institute, Oakland, CA 94609
| | - Frans A. Kuypers
- Children’s Hospital Oakland Research Institute, Oakland, CA 94609
| |
Collapse
|
17
|
Iancu OD, Colville A, Oberbeck D, Darakjian P, McWeeney SK, Hitzemann R. Cosplicing network analysis of mammalian brain RNA-Seq data utilizing WGCNA and Mantel correlations. Front Genet 2015; 6:174. [PMID: 26029240 PMCID: PMC4429622 DOI: 10.3389/fgene.2015.00174] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Accepted: 04/21/2015] [Indexed: 01/06/2023] Open
Abstract
Across species and tissues and especially in the mammalian brain, production of gene isoforms is widespread. While gene expression coordination has been previously described as a scale-free coexpression network, the properties of transcriptome-wide isoform production coordination have been less studied. Here we evaluate the system-level properties of cosplicing in mouse, macaque, and human brain gene expression data using a novel network inference procedure. Genes are represented as vectors/lists of exon counts and distance measures sensitive to exon inclusion rates quantifies differences across samples. For all gene pairs, distance matrices are correlated across samples, resulting in cosplicing or cotranscriptional network matrices. We show that networks including cosplicing information are scale-free and distinct from coexpression. In the networks capturing cosplicing we find a set of novel hubs with unique characteristics distinguishing them from coexpression hubs: heavy representation in neurobiological functional pathways, strong overlap with markers of neurons and neuroglia, long coding lengths, and high number of both exons and annotated transcripts. Further, the cosplicing hubs are enriched in genes associated with autism spectrum disorders. Cosplicing hub homologs across eukaryotes show dramatically increasing intronic lengths but stable coding region lengths. Shared transcription factor binding sites increase coexpression but not cosplicing; the reverse is true for splicing-factor binding sites. Genes with protein-protein interactions have strong coexpression and cosplicing. Additional factors affecting the networks include shared microRNA binding sites, spatial colocalization within the striatum, and sharing a chromosomal folding domain. Cosplicing network patterns remain relatively stable across species.
Collapse
Affiliation(s)
- Ovidiu D Iancu
- Department of Behavioral Neuroscience, Oregon Health & Science University Portland, OR, USA
| | - Alexandre Colville
- Department of Behavioral Neuroscience, Oregon Health & Science University Portland, OR, USA
| | - Denesa Oberbeck
- Department of Behavioral Neuroscience, Oregon Health & Science University Portland, OR, USA
| | - Priscila Darakjian
- Department of Behavioral Neuroscience, Oregon Health & Science University Portland, OR, USA
| | - Shannon K McWeeney
- Division of Biostatistics, Public Health and Preventative Medicine, Oregon Health & Science University Portland, OR, USA
| | - Robert Hitzemann
- Department of Behavioral Neuroscience, Oregon Health & Science University Portland, OR, USA ; Research Service, Veterans Affairs Medical Center Portland, OR, USA
| |
Collapse
|
18
|
Yien YY, Gnanapragasam MN, Gupta R, Rivella S, Bieker JJ. Alternative splicing of EKLF/KLF1 in murine primary erythroid tissues. Exp Hematol 2015; 43:65-70. [PMID: 25283745 PMCID: PMC4268327 DOI: 10.1016/j.exphem.2014.08.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Revised: 07/31/2014] [Accepted: 08/16/2014] [Indexed: 11/16/2022]
Abstract
Alternative splicing has emerged as a vital way to expand the functional repertoire of a set number of mammalian genes. For example, such changes can dramatically alter the function and cellular localization of transcription factors. With this in mind, we addressed whether EKLF/KLF1 mRNA, coding for a transcription factor that plays a critical role in erythropoietic gene regulation, is alternatively spliced. We find that EKLF mRNA undergoes exon skipping only in primary tissues and that this splice variant (SV) remains at a very low level in both embryonic and adult erythroid cells, as well as during terminal differentiation. The resultant protein is truncated and partially encodes a non-erythroid Krüppel-like factor amino acid sequence. Its overexpression can alter full-length erythroid Krüppel-like factor function at selected promoters. We discuss these results in the context of stress and with respect to recent global studies on the role of alternative splicing during terminal erythroid differentiation.
Collapse
Affiliation(s)
- Yvette Y Yien
- Department of Developmental & Regenerative Biology, Mount Sinai School of Medicine, New York, NY, United States
| | - Merlin Nithya Gnanapragasam
- Department of Developmental & Regenerative Biology, Mount Sinai School of Medicine, New York, NY, United States
| | - Ritama Gupta
- Department of Pediatric Hematology-Oncology, Weill Cornell Medical College, New York, NY, United States
| | - Stefano Rivella
- Department of Pediatric Hematology-Oncology, Weill Cornell Medical College, New York, NY, United States
| | - James J Bieker
- Department of Developmental & Regenerative Biology, Mount Sinai School of Medicine, New York, NY, United States; Black Family Stem Cell Institute, Mount Sinai School of Medicine, New York, NY, United States; Tisch Cancer Institute, Mount Sinai School of Medicine, New York, NY, United States.
| |
Collapse
|
19
|
Li B, Ngo S, Wu W, Xu H, Xie Z, Li Q, Pan Z. Identification and characterization of yak (Bos grunniens) b-Boule gene and its alternative splice variants. Gene 2014; 550:193-9. [PMID: 25149018 DOI: 10.1016/j.gene.2014.08.028] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2014] [Revised: 08/11/2014] [Accepted: 08/15/2014] [Indexed: 01/31/2023]
Abstract
Boule is responsible for meiotic arrest of sperms and male sterility during mammalian spermatogenesis. In the present study, we first identified yak b-Boule gene and its two alternative splice variants. The full length coding region of yak b-Boule is 888bp and encodes a 295-amino acid protein with a typical RNA-recognition motif (RRM) and a Deleted in Azoospermia (DAZ) repetitive sequence motif. Two alternative splice variants of yak b-Boule were generated following the consensus "GT-AG" rule and named b-Boule1 (36bp deletion in exon 3) and b-Boule2 (deletion of integral exon 7), respectively. In male yak, b-Boule, b-Boule1 and b-Boule2 were found to be exclusively expressed in the testes at a ratio of 81:0.1:1. Intriguingly, the mRNA expression levels of b-Boule and b-Boule1 in yak testis were significantly higher than those in cattle-yak, although no significant difference was observed for b-Boule2 expression between the yak and cattle-yak. These results suggest that b-Boule gene, which is partially regulated by alternative splicing, may be involved in the process of yak spermatogenesis.
Collapse
Affiliation(s)
- Bojiang Li
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Sherry Ngo
- Liggins Institute, University of Auckland, Auckland 1142, New Zealand
| | - Wangjun Wu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Hongtao Xu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhuang Xie
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Qifa Li
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| | - Zengxiang Pan
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
20
|
Cheng AW, Shi J, Wong P, Luo KL, Trepman P, Wang ET, Choi H, Burge CB, Lodish HF. Muscleblind-like 1 (Mbnl1) regulates pre-mRNA alternative splicing during terminal erythropoiesis. Blood 2014; 124:598-610. [PMID: 24869935 PMCID: PMC4110662 DOI: 10.1182/blood-2013-12-542209] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Accepted: 05/16/2014] [Indexed: 12/18/2022] Open
Abstract
The scope and roles of regulated isoform gene expression during erythroid terminal development are poorly understood. We identified hundreds of differentiation-associated isoform changes during terminal erythropoiesis. Sequences surrounding cassette exons of skipped exon events are enriched for motifs bound by the Muscleblind-like (MBNL) family of splicing factors. Knockdown of Mbnl1 in cultured murine fetal liver erythroid progenitors resulted in a strong block in erythroid differentiation and disrupted the developmentally regulated exon skipping of Ndel1 mRNA, which is bound by MBNL1 and critical for erythroid terminal proliferation. These findings reveal an unanticipated scope of the alternative splicing program and the importance of Mbnl1 during erythroid terminal differentiation.
Collapse
Affiliation(s)
- Albert W Cheng
- Whitehead Institute for Biomedical Research, Cambridge, MA; Computational and Systems Biology Program, and
| | - Jiahai Shi
- Whitehead Institute for Biomedical Research, Cambridge, MA
| | - Piu Wong
- Whitehead Institute for Biomedical Research, Cambridge, MA
| | - Katherine L Luo
- Departments of Biology and Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA; and
| | - Paula Trepman
- Departments of Biology and Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA; and
| | - Eric T Wang
- Departments of Biology and Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA; and Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA
| | - Heejo Choi
- Departments of Biology and Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA; and
| | - Christopher B Burge
- Departments of Biology and Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA; and
| | - Harvey F Lodish
- Whitehead Institute for Biomedical Research, Cambridge, MA; Departments of Biology and Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA; and
| |
Collapse
|
21
|
Shi L, Lin YH, Sierant MC, Zhu F, Cui S, Guan Y, Sartor MA, Tanabe O, Lim KC, Engel JD. Developmental transcriptome analysis of human erythropoiesis. Hum Mol Genet 2014; 23:4528-42. [PMID: 24781209 DOI: 10.1093/hmg/ddu167] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
To globally survey the changes in transcriptional landscape during terminal erythroid differentiation, we performed RNA sequencing (RNA-seq) on primary human CD34(+) cells after ex vivo differentiation from the earliest into the most mature erythroid cell stages. This analysis identified thousands of novel intergenic and intronic transcripts as well as novel alternative transcript isoforms. After rigorous data filtering, 51 (presumptive) novel protein-coding transcripts, 5326 long and 679 small non-coding RNA candidates remained. The analysis also revealed two clear transcriptional trends during terminal erythroid differentiation: first, the complexity of transcript diversity was predominantly achieved by alternative splicing, and second, splicing junctional diversity diminished during erythroid differentiation. Finally, 404 genes that were not known previously to be differentially expressed in erythroid cells were annotated. Analysis of the most extremely differentially expressed transcripts revealed that these gene products were all closely associated with hematopoietic lineage differentiation. Taken together, this study will serve as a comprehensive platform for future in-depth investigation of human erythroid development that, in turn, may reveal new insights into multiple layers of the transcriptional regulatory hierarchy that controls erythropoiesis.
Collapse
Affiliation(s)
- Lihong Shi
- Department of Cell and Developmental Biology and
| | - Yu-Hsuan Lin
- Department of Cell and Developmental Biology and Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - M C Sierant
- Department of Cell and Developmental Biology and
| | - Fan Zhu
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | | | - Yuanfang Guan
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Maureen A Sartor
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Osamu Tanabe
- Department of Cell and Developmental Biology and Department of Integrative Genomics, Tohoku Medical Megabank, Tohoku University, 2-1 Seiryo-machi, Sendai 980-8573, Japan
| | - Kim-Chew Lim
- Department of Cell and Developmental Biology and
| | | |
Collapse
|
22
|
Baines AJ, Lu HC, Bennett PM. The Protein 4.1 family: hub proteins in animals for organizing membrane proteins. BIOCHIMICA ET BIOPHYSICA ACTA 2014; 1838:605-19. [PMID: 23747363 DOI: 10.1016/j.bbamem.2013.05.030] [Citation(s) in RCA: 101] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Revised: 05/22/2013] [Accepted: 05/28/2013] [Indexed: 01/10/2023]
Abstract
Proteins of the 4.1 family are characteristic of eumetazoan organisms. Invertebrates contain single 4.1 genes and the Drosophila model suggests that 4.1 is essential for animal life. Vertebrates have four paralogues, known as 4.1R, 4.1N, 4.1G and 4.1B, which are additionally duplicated in the ray-finned fish. Protein 4.1R was the first to be discovered: it is a major mammalian erythrocyte cytoskeletal protein, essential to the mechanochemical properties of red cell membranes because it promotes the interaction between spectrin and actin in the membrane cytoskeleton. 4.1R also binds certain phospholipids and is required for the stable cell surface accumulation of a number of erythrocyte transmembrane proteins that span multiple functional classes; these include cell adhesion molecules, transporters and a chemokine receptor. The vertebrate 4.1 proteins are expressed in most tissues, and they are required for the correct cell surface accumulation of a very wide variety of membrane proteins including G-Protein coupled receptors, voltage-gated and ligand-gated channels, as well as the classes identified in erythrocytes. Indeed, such large numbers of protein interactions have been mapped for mammalian 4.1 proteins, most especially 4.1R, that it appears that they can act as hubs for membrane protein organization. The range of critical interactions of 4.1 proteins is reflected in disease relationships that include hereditary anaemias, tumour suppression, control of heartbeat and nervous system function. The 4.1 proteins are defined by their domain structure: apart from the spectrin/actin-binding domain they have FERM and FERM-adjacent domains and a unique C-terminal domain. Both the FERM and C-terminal domains can bind transmembrane proteins, thus they have the potential to be cross-linkers for membrane proteins. The activity of the FERM domain is subject to multiple modes of regulation via binding of regulatory ligands, phosphorylation of the FERM associated domain and differential mRNA splicing. Finally, the spectrum of interactions of the 4.1 proteins overlaps with that of another membrane-cytoskeleton linker, ankyrin. Both ankyrin and 4.1 link to the actin cytoskeleton via spectrin, and we hypothesize that differential regulation of 4.1 proteins and ankyrins allows highly selective control of cell surface protein accumulation and, hence, function. This article is part of a Special Issue entitled: Reciprocal influences between cell cytoskeleton and membrane channels, receptors and transporters. Guest Editor: Jean Claude Hervé
Collapse
Affiliation(s)
| | - Hui-Chun Lu
- Randall Division of Cell and Molecular Biophysics, King's College London, UK
| | - Pauline M Bennett
- Randall Division of Cell and Molecular Biophysics, King's College London, UK.
| |
Collapse
|
23
|
Pimentel H, Parra M, Gee S, Ghanem D, An X, Li J, Mohandas N, Pachter L, Conboy JG. A dynamic alternative splicing program regulates gene expression during terminal erythropoiesis. Nucleic Acids Res 2014; 42:4031-42. [PMID: 24442673 PMCID: PMC3973340 DOI: 10.1093/nar/gkt1388] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Alternative pre-messenger RNA splicing remodels the human transcriptome in a spatiotemporal manner during normal development and differentiation. Here we explored the landscape of transcript diversity in the erythroid lineage by RNA-seq analysis of five highly purified populations of morphologically distinct human erythroblasts, representing the last four cell divisions before enucleation. In this unique differentiation system, we found evidence of an extensive and dynamic alternative splicing program encompassing genes with many diverse functions. Alternative splicing was particularly enriched in genes controlling cell cycle, organelle organization, chromatin function and RNA processing. Many alternative exons exhibited differentiation-associated switches in splicing efficiency, mostly in late-stage polychromatophilic and orthochromatophilic erythroblasts, in concert with extensive cellular remodeling that precedes enucleation. A subset of alternative splicing switches introduces premature translation termination codons into selected transcripts in a differentiation stage-specific manner, supporting the hypothesis that alternative splicing-coupled nonsense-mediated decay contributes to regulation of erythroid-expressed genes as a novel part of the overall differentiation program. We conclude that a highly dynamic alternative splicing program in terminally differentiating erythroblasts plays a major role in regulating gene expression to ensure synthesis of appropriate proteome at each stage as the cells remodel in preparation for production of mature red cells.
Collapse
Affiliation(s)
- Harold Pimentel
- Department of Computer Science, University of California, Berkeley, CA 94720, USA, Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA, Red Cell Physiology Laboratory, New York Blood Center, New York, NY 10065, USA, Department of Mathematics, University of California, Berkeley, CA 94720, USA and Department of Molecular & Cell Biology, University of California, Berkeley, CA 94720, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Heinicke LA, Nabet B, Shen S, Jiang P, van Zalen S, Cieply B, Russell JE, Xing Y, Carstens RP. The RNA binding protein RBM38 (RNPC1) regulates splicing during late erythroid differentiation. PLoS One 2013; 8:e78031. [PMID: 24250749 PMCID: PMC3820963 DOI: 10.1371/journal.pone.0078031] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Accepted: 09/07/2013] [Indexed: 12/11/2022] Open
Abstract
Alternative pre-mRNA splicing is a prevalent mechanism in mammals that promotes proteomic diversity, including expression of cell-type specific protein isoforms. We characterized a role for RBM38 (RNPC1) in regulation of alternative splicing during late erythroid differentiation. We used an Affymetrix human exon junction (HJAY) splicing microarray to identify a panel of RBM38-regulated alternatively spliced transcripts. Using microarray databases, we noted high RBM38 expression levels in CD71+ erythroid cells and thus chose to examine RBM38 expression during erythroid differentiation of human hematopoietic stem cells, detecting enhanced RBM38 expression during late erythroid differentiation. In differentiated erythroid cells, we validated a subset of RBM38-regulated splicing events and determined that RBM38 regulates activation of Protein 4.1R (EPB41) exon 16 during late erythroid differentiation. Using Epb41 minigenes, Rbm38 was found to be a robust activator of exon 16 splicing. To further address the mechanism of RBM38-regulated alternative splicing, a novel mammalian protein expression system, followed by SELEX-Seq, was used to identify a GU-rich RBM38 binding motif. Lastly, using a tethering assay, we determined that RBM38 can directly activate splicing when recruited to a downstream intron. Together, our data support the role of RBM38 in regulating alternative splicing during erythroid differentiation.
Collapse
Affiliation(s)
- Laurie A. Heinicke
- Department of Medicine (Hematology-Oncology Division), Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Behnam Nabet
- Department of Medicine (Renal Division), Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Shihao Shen
- Department of Internal Medicine, University of Iowa, Iowa City, Iowa, United States of America
- Department of Microbiology, Immunology, and Molecular Genetics, University of California Los Angeles, Los Angeles, California, United States of America
| | - Peng Jiang
- Department of Internal Medicine, University of Iowa, Iowa City, Iowa, United States of America
| | - Sebastiaan van Zalen
- Department of Medicine (Hematology-Oncology Division), Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Benjamin Cieply
- Department of Medicine (Hematology-Oncology Division), Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - J. Eric Russell
- Department of Medicine (Hematology-Oncology Division), Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Department of Pediatrics (Hematology), Perelman School of Medicine, University of Pennsylvania, and the Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
| | - Yi Xing
- Department of Internal Medicine, University of Iowa, Iowa City, Iowa, United States of America
- Department of Microbiology, Immunology, and Molecular Genetics, University of California Los Angeles, Los Angeles, California, United States of America
| | - Russ P. Carstens
- Department of Medicine (Renal Division), Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Department of Genetics University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
25
|
Keightley MC, Crowhurst MO, Layton JE, Beilharz T, Markmiller S, Varma S, Hogan BM, de Jong-Curtain TA, Heath JK, Lieschke GJ. In vivo mutation of pre-mRNA processing factor 8 (Prpf8) affects transcript splicing, cell survival and myeloid differentiation. FEBS Lett 2013; 587:2150-7. [PMID: 23714367 DOI: 10.1016/j.febslet.2013.05.030] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Revised: 05/15/2013] [Accepted: 05/15/2013] [Indexed: 01/09/2023]
Abstract
Mutated spliceosome components are recurrently being associated with perturbed tissue development and disease pathogenesis. Cephalophŏnus (cph), is a zebrafish mutant carrying an early premature STOP codon in the spliceosome component Prpf8 (pre-mRNA processing factor 8). Cph initially develops normally, but then develops widespread cell death, especially in neurons, and is embryonic lethal. Cph mutants accumulate aberrantly spliced transcripts retaining both U2- and U12-type introns. Within early haematopoiesis, myeloid differentiation is impaired, suggesting Prpf8 is required for haematopoietic development. Cph provides an animal model for zygotic PRPF8 dysfunction diseases and for evaluating therapeutic interventions.
Collapse
Affiliation(s)
- Maria-Cristina Keightley
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria 3800, Australia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Kelemen O, Convertini P, Zhang Z, Wen Y, Shen M, Falaleeva M, Stamm S. Function of alternative splicing. Gene 2013; 514:1-30. [PMID: 22909801 PMCID: PMC5632952 DOI: 10.1016/j.gene.2012.07.083] [Citation(s) in RCA: 548] [Impact Index Per Article: 45.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Revised: 07/21/2012] [Accepted: 07/30/2012] [Indexed: 12/15/2022]
Abstract
Almost all polymerase II transcripts undergo alternative pre-mRNA splicing. Here, we review the functions of alternative splicing events that have been experimentally determined. The overall function of alternative splicing is to increase the diversity of mRNAs expressed from the genome. Alternative splicing changes proteins encoded by mRNAs, which has profound functional effects. Experimental analysis of these protein isoforms showed that alternative splicing regulates binding between proteins, between proteins and nucleic acids as well as between proteins and membranes. Alternative splicing regulates the localization of proteins, their enzymatic properties and their interaction with ligands. In most cases, changes caused by individual splicing isoforms are small. However, cells typically coordinate numerous changes in 'splicing programs', which can have strong effects on cell proliferation, cell survival and properties of the nervous system. Due to its widespread usage and molecular versatility, alternative splicing emerges as a central element in gene regulation that interferes with almost every biological function analyzed.
Collapse
Affiliation(s)
- Olga Kelemen
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, Kentucky, United States of America
| | - Paolo Convertini
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, Kentucky, United States of America
| | - Zhaiyi Zhang
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, Kentucky, United States of America
| | - Yuan Wen
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, Kentucky, United States of America
| | - Manli Shen
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, Kentucky, United States of America
| | - Marina Falaleeva
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, Kentucky, United States of America
| | - Stefan Stamm
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, Kentucky, United States of America
| |
Collapse
|
27
|
Yu Y, Mo Y, Ebenezer D, Bhattacharyya S, Liu H, Sundaravel S, Giricz O, Wontakal S, Cartier J, Caces B, Artz A, Nischal S, Bhagat T, Bathon K, Maqbool S, Gligich O, Suzuki M, Steidl U, Godley L, Skoultchi A, Greally J, Wickrema A, Verma A. High resolution methylome analysis reveals widespread functional hypomethylation during adult human erythropoiesis. J Biol Chem 2013; 288:8805-14. [PMID: 23306203 DOI: 10.1074/jbc.m112.423756] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Differentiation of hematopoietic stem cells to red cells requires coordinated expression of numerous erythroid genes and is characterized by nuclear condensation and extrusion during terminal development. To understand the regulatory mechanisms governing these widespread phenotypic changes, we conducted a high resolution methylomic and transcriptomic analysis of six major stages of human erythroid differentiation. We observed widespread epigenetic differences between early and late stages of erythropoiesis with progressive loss of methylation being the dominant change during differentiation. Gene bodies, intergenic regions, and CpG shores were preferentially demethylated during erythropoiesis. Epigenetic changes at transcription factor binding sites correlated significantly with changes in gene expression and were enriched for binding motifs for SCL, MYB, GATA, and other factors not previously implicated in erythropoiesis. Demethylation at gene promoters was associated with increased expression of genes, whereas epigenetic changes at gene bodies correlated inversely with gene expression. Important gene networks encoding erythrocyte membrane proteins, surface receptors, and heme synthesis proteins were found to be regulated by DNA methylation. Furthermore, integrative analysis enabled us to identify novel, potential regulatory areas of the genome as evident by epigenetic changes in a predicted PU.1 binding site in intron 1 of the GATA1 gene. This intronic site was found to be conserved across species and was validated to be a novel PU.1 binding site by quantitative ChIP in erythroid cells. Altogether, our study provides a comprehensive analysis of methylomic and transcriptomic changes during erythroid differentiation and demonstrates that human terminal erythropoiesis is surprisingly associated with hypomethylation of the genome.
Collapse
Affiliation(s)
- Yiting Yu
- Albert Einstein College of Medicine, Bronx, NY 10467, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
O'Reilly D, Dienstbier M, Cowley SA, Vazquez P, Drozdz M, Taylor S, James WS, Murphy S. Differentially expressed, variant U1 snRNAs regulate gene expression in human cells. Genome Res 2012; 23:281-91. [PMID: 23070852 PMCID: PMC3561869 DOI: 10.1101/gr.142968.112] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Human U1 small nuclear (sn)RNA, required for splicing of pre-mRNA, is encoded by genes on chromosome 1 (1p36). Imperfect copies of these U1 snRNA genes, also located on chromosome 1 (1q12-21), were thought to be pseudogenes. However, many of these "variant" (v)U1 snRNA genes produce fully processed transcripts. Using antisense oligonucleotides to block the activity of a specific vU1 snRNA in HeLa cells, we have identified global transcriptome changes following interrogation of the Affymetrix Human Exon ST 1.0 array. Our results indicate that this vU1 snRNA regulates expression of a subset of target genes at the level of pre-mRNA processing. This is the first indication that variant U1 snRNAs have a biological function in vivo. Furthermore, some vU1 snRNAs are packaged into unique ribonucleoproteins (RNPs), and many vU1 snRNA genes are differentially expressed in human embryonic stem cells (hESCs) and HeLa cells, suggesting developmental control of RNA processing through expression of different sets of vU1 snRNPs.
Collapse
Affiliation(s)
- Dawn O'Reilly
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Cooper-Knock J, Kirby J, Ferraiuolo L, Heath PR, Rattray M, Shaw PJ. Gene expression profiling in human neurodegenerative disease. Nat Rev Neurol 2012; 8:518-30. [PMID: 22890216 DOI: 10.1038/nrneurol.2012.156] [Citation(s) in RCA: 158] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Transcriptome study in neurodegenerative disease has advanced considerably in the past 5 years. Increasing scientific rigour and improved analytical tools have led to more-reproducible data. Many transcriptome analysis platforms assay the expression of the entire genome, enabling a complete biological context to be captured. Gene expression profiling (GEP) is, therefore, uniquely placed to discover pathways of disease pathogenesis, potential therapeutic targets, and biomarkers. This Review summarizes microarray human GEP studies in the common neurodegenerative diseases amyotrophic lateral sclerosis (ALS), Parkinson disease (PD) and Alzheimer disease (AD). Several interesting reports have compared pathological gene expression in different patient groups, disease stages and anatomical areas. In all three diseases, GEP has revealed dysregulation of genes related to neuroinflammation. In ALS and PD, gene expression related to RNA splicing and protein turnover is disrupted, and several studies in ALS support involvement of the cytoskeleton. GEP studies have implicated the ubiquitin-proteasome system in PD pathogenesis, and have provided evidence of mitochondrial dysfunction in PD and AD. Lastly, in AD, a possible role for dysregulation of intracellular signalling pathways, including calcium signalling, has been highlighted. This Review also provides a discussion of methodological considerations in microarray sample preparation and data analysis.
Collapse
Affiliation(s)
- Johnathan Cooper-Knock
- Academic Unit of Neurology, Sheffield Institute for Translational Neuroscience, University of Sheffield, 385A Glossop Road, Sheffield S10 2HQ, UK
| | | | | | | | | | | |
Collapse
|
30
|
Anderson ES, Lin CH, Xiao X, Stoilov P, Burge CB, Black DL. The cardiotonic steroid digitoxin regulates alternative splicing through depletion of the splicing factors SRSF3 and TRA2B. RNA (NEW YORK, N.Y.) 2012; 18:1041-9. [PMID: 22456266 PMCID: PMC3334691 DOI: 10.1261/rna.032912.112] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2012] [Accepted: 02/24/2012] [Indexed: 05/24/2023]
Abstract
Modulation of alternative pre-mRNA splicing is a potential approach to therapeutic targeting for a variety of human diseases. We investigated the mechanism by which digitoxin, a member of the cardiotonic steroid class of drugs, regulates alternative splicing. Transcriptome-wide analysis identified a large set of alternative splicing events that change after digitoxin treatment. Within and adjacent to these regulated exons, we identified enrichment of potential binding sites for the splicing factors SRp20 (SRSF3/SFRS3) and Tra2-β (SFRS10/TRA2B). We further find that both of these proteins are depleted from cells by digitoxin treatment. Characterization of SRp20 and Tra2-β splicing targets revealed that many, but not all, digitoxin-induced splicing changes can be attributed to the depletion of one or both of these factors. Re-expression of SRp20 or Tra2-β after digitoxin treatment restores normal splicing of their targets, indicating that the digitoxin effect is directly due to these factors. These results demonstrate that cardiotonic steroids, long prescribed in the clinical treatment of heart failure, have broad effects on the cellular transcriptome through these and likely other RNA binding proteins. The approach described here can be used to identify targets of other potential therapeutics that act as alternative splicing modulators.
Collapse
Affiliation(s)
- Erik S. Anderson
- Molecular Biology Interdepartmental Graduate Program
- Medical Scientist Training Program
| | - Chia-Ho Lin
- Microbiology, Immunology and Molecular Genetics
- Howard Hughes Medical Institute
| | - Xinshu Xiao
- Department of Integrative Biology and Physiology
- Molecular Biology Institute, University of California, Los Angeles, California 90095, USA
| | - Peter Stoilov
- Department of Biochemistry, West Virginia University, Morgantown, West Virginia 26506, USA
| | - Christopher B. Burge
- Department of Biology, Massachusetts Institute of Technology, Boston, Massachusetts 02139, USA
| | - Douglas L. Black
- Microbiology, Immunology and Molecular Genetics
- Howard Hughes Medical Institute
- Molecular Biology Institute, University of California, Los Angeles, California 90095, USA
| |
Collapse
|
31
|
Laurent B, Randrianarison-Huetz V, Frisan E, Andrieu-Soler C, Soler E, Fontenay M, Dusanter-Fourt I, Duménil D. A short Gfi-1B isoform controls erythroid differentiation by recruiting the LSD1-CoREST complex through the dimethylation of its SNAG domain. J Cell Sci 2012; 125:993-1002. [PMID: 22399799 DOI: 10.1242/jcs.095877] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Gfi-1B is a transcriptional repressor essential for the regulation of erythropoiesis and megakaryopoiesis. Here we identify Gfi-1B p32, a Gfi-1B isoform, as essential for erythroid differentiation. Gfi-1B p32 is generated by alternative splicing and lacks the two first zinc finger domains of the protein. Selective knock down of Gfi-1B p32 compromises erythroid differentiation, whereas its ectopic expression induces erythropoiesis in the absence of erythropoietin. Gfi-1B p32 isoform binds to Gfi-1B target gene promoters and associates with the LSD1-CoREST repressor complex more efficiently than the major Gfi-1B p37 isoform. Furthermore, we show that Gfi-1B includes a KSKK motif in its SNAG domain, which recruits the repressor complex only when dimethylated on lysine 8. Mutation of lysine 8 prevents Gfi-1B p32-induced erythroid development. Our results thus highlight a key role for the alternatively spliced Gfi-1B p32 isoform in erythroid development.
Collapse
Affiliation(s)
- Benoît Laurent
- Institut Cochin, Université Paris Descartes, Paris Sorbonne Cité, CNRS (UMR 8104), Paris, France
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Lu ZX, Jiang P, Xing Y. Genetic variation of pre-mRNA alternative splicing in human populations. WILEY INTERDISCIPLINARY REVIEWS-RNA 2011; 3:581-92. [PMID: 22095823 DOI: 10.1002/wrna.120] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The precise splicing outcome of a transcribed gene is controlled by complex interactions between cis regulatory splicing signals and trans-acting regulators. In higher eukaryotes, alternative splicing is a prevalent mechanism for generating transcriptome and proteome diversity. Alternative splicing can modulate gene function, affect organismal phenotype and cause disease. Common genetic variation that affects splicing regulation can lead to differences in alternative splicing between human individuals and consequently impact expression level or protein function. In several well-documented examples, such natural variation of alternative splicing has indeed been shown to influence disease susceptibility and drug response. With new microarray and sequencing-based genomic technologies that can analyze eukaryotic transcriptomes at the exon or nucleotide level, it has become possible to globally compare the alternative splicing profiles across human individuals in any tissue or cell type of interest. Recent large-scale transcriptome studies using high-density splicing-sensitive microarray and deep RNA sequencing (RNA-Seq) have revealed widespread genetic variation of alternative splicing in humans. In the future, an extensive catalog of alternative splicing variation in human populations will help elucidate the molecular underpinnings of complex traits and human diseases, and shed light on the mechanisms of splicing regulation in human cells.
Collapse
Affiliation(s)
- Zhi-Xiang Lu
- Department of Internal Medicine, University of Iowa, Iowa City, IA, USA
| | | | | |
Collapse
|
33
|
Morera D, MacKenzie SA. Is there a direct role for erythrocytes in the immune response? Vet Res 2011; 42:89. [PMID: 21801407 PMCID: PMC3199785 DOI: 10.1186/1297-9716-42-89] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2010] [Accepted: 07/29/2011] [Indexed: 11/10/2022] Open
Abstract
Erythrocytes are highly abundant circulating cells in the vertebrates, which, with the notable exception of mammals, remain nucleated throughout the entire life cycle. The major function associated with these cells is respiratory gas exchange however other functions including interaction with the immune system have been attributed to these cells. Many viral, prokaryotic and eukaryotic pathogens directly target this cell type and across the vertebrate group a significant number of related pathologies have been reported. Across the primary literature mechanisms of interaction, invasion and replication between viruses and erythrocytes have been well described however the functional response of the erythrocyte has been poorly studied. A fragmented series of reports spanning the vertebrates suggests that these cells are capable of functional responses to viral infection. In contrast, in-depth proteomic studies using human erythrocytes have strongly progressed throughout the past decade providing a rich source of information related to protein expression and potential function. Furthermore information at the gene expression level is becoming available. Here we provide a review of erythrocyte-pathogen interactions, erythrocyte functions in immunity and propose in light of recent -omics research that the nucleated erythrocytes may have a direct role in the immune response.
Collapse
Affiliation(s)
- Davinia Morera
- Institute of Biotechnology and Biomedicine, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain.
| | | |
Collapse
|
34
|
Abstract
Understanding the pattern of gene expression during erythropoiesis is crucial for a synthesis of erythroid developmental biology. Here, we isolated 4 distinct populations at successive erythropoietin-dependent stages of erythropoiesis, including the terminal, pyknotic stage. The transcriptome was determined using Affymetrix arrays. First, we demonstrated the importance of using defined cell populations to identify lineage and temporally specific patterns of gene expression. Cells sorted by surface expression profile not only express significantly fewer genes than unsorted cells but also demonstrate significantly greater differences in the expression levels of particular genes between stages than unsorted cells. Second, using standard software, we identified more than 1000 transcripts not previously observed to be differentially expressed during erythroid maturation, 13 of which are highly significantly terminally regulated, including RFXAP and SMARCA4. Third, using matched filtering, we identified 12 transcripts not previously reported to be continuously up-regulated in maturing human primary erythroblasts. Finally, using transcription factor binding site analysis, we identified potential transcription factors that may regulate gene expression during terminal erythropoiesis. Our stringent lists of differentially regulated and continuously expressed transcripts containing many genes with undiscovered functions in erythroblasts are a resource for future functional studies of erythropoiesis. Our Human Erythroid Maturation database is available at https://cellline.molbiol.ox.ac.uk/eryth/index.html. [corrected].
Collapse
|
35
|
Lenzken SC, Romeo V, Zolezzi F, Cordero F, Lamorte G, Bonanno D, Biancolini D, Cozzolino M, Pesaresi MG, Maracchioni A, Sanges R, Achsel T, Carrì MT, Calogero RA, Barabino SM. Mutant SOD1 and mitochondrial damage alter expression and splicing of genes controlling neuritogenesis in models of neurodegeneration. Hum Mutat 2011; 32:168-82. [DOI: 10.1002/humu.21394] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2010] [Accepted: 09/24/2010] [Indexed: 12/13/2022]
|
36
|
Abstract
Mutations affecting genes encoding ribosomal proteins cause Diamond Blackfan anemia (DBA), a rare congenital syndrome associated with physical anomalies, short stature, red cell aplasia, and an increased risk of malignancy. p53 activation has been identified as a key component in the pathophysiology of DBA after cellular and molecular studies of knockdown cellular and animal models of DBA and other disorders affecting ribosomal assembly or function. Other potential mechanisms that warrant further investigation include impaired translation as the result of ribosomal insufficiency, which may be ameliorated by leucine supplementation, and alternative splicing leading to reduced expression of a cytoplasmic heme exporter, the human homolog of the receptor for feline leukemia virus C (FVLCR). However, the molecular basis for the characteristic steroid responsiveness of the erythroid failure in DBA remains unknown. This review explores the clinical and therapeutic implications of the current state of knowledge and delineates important but as-yet-unanswered questions.
Collapse
Affiliation(s)
- Sarah Ball
- St George's University of London, London, United Kingdom.
| |
Collapse
|
37
|
Parra MK, Gee S, Mohandas N, Conboy JG. Efficient in vivo manipulation of alternative pre-mRNA splicing events using antisense morpholinos in mice. J Biol Chem 2010; 286:6033-9. [PMID: 21156798 DOI: 10.1074/jbc.m110.158154] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Mammalian pre-mRNA alternative splicing mechanisms are typically studied using artificial minigenes in cultured cells, conditions that may not accurately reflect the physiological context of either the pre-mRNA or the splicing machinery. Here, we describe a strategy to investigate splicing of normal endogenous full-length pre-mRNAs under physiological conditions in live mice. This approach employs antisense vivo-morpholinos (vMOs) to mask cis-regulatory sequences or to disrupt splicing factor expression, allowing functional evaluation of splicing regulation in vivo. We applied this strategy to gain mechanistic insight into alternative splicing events involving exons 2 and 16 (E2 and E16) that control the structure and function of cytoskeletal protein 4.1R. In several mouse tissues, inclusion of E16 was substantially inhibited by interfering with a splicing enhancer mechanism using a target protector morpholino that blocked Fox2-dependent splicing enhancers in intron 16 or a splice-blocking morpholino that disrupted Fox2 expression directly. For E2, alternative 3'-splice site choice is coordinated with upstream promoter use across a long 5'-intron such that E1A splices almost exclusively to the distal acceptor (E2dis). vMOs were used to test the in vivo relevance of a deep intron element previously proposed to determine use of E2dis via a two-step intrasplicing model. Two independent vMOs designed against this intronic regulatory element inhibited intrasplicing, robustly switching E1A splicing to the proximal acceptor (E2prox). This finding strongly supports the in vivo physiological relevance of intrasplicing. vMOs represent a powerful tool for alternative splicing studies in vivo and may facilitate exploration of alternative splicing networks in vivo.
Collapse
Affiliation(s)
- Marilyn K Parra
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | | | | | | |
Collapse
|
38
|
Liu S, Lin L, Jiang P, Wang D, Xing Y. A comparison of RNA-Seq and high-density exon array for detecting differential gene expression between closely related species. Nucleic Acids Res 2010; 39:578-88. [PMID: 20864445 PMCID: PMC3025565 DOI: 10.1093/nar/gkq817] [Citation(s) in RCA: 112] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
RNA-Seq has emerged as a revolutionary technology for transcriptome analysis. In this article, we report a systematic comparison of RNA-Seq and high-density exon array for detecting differential gene expression between closely related species. On a panel of human/chimpanzee/rhesus cerebellum RNA samples previously examined by the high-density human exon junction array (HJAY) and real-time qPCR, we generated 48.68 million RNA-Seq reads. Our results indicate that RNA-Seq has significantly improved gene coverage and increased sensitivity for differentially expressed genes compared with the high-density HJAY array. Meanwhile, we observed a systematic increase in the RNA-Seq error rate for lowly expressed genes. Specifically, between-species DEGs detected by array/qPCR but missed by RNA-Seq were characterized by relatively low expression levels, as indicated by lower RNA-Seq read counts, lower HJAY array expression indices and higher qPCR raw cycle threshold values. Furthermore, this issue was not unique to between-species comparisons of gene expression. In the RNA-Seq analysis of MicroArray Quality Control human reference RNA samples with extensive qPCR data, we also observed an increase in both the false-negative rate and the false-positive rate for lowly expressed genes. These findings have important implications for the design and data interpretation of RNA-Seq studies on gene expression differences between and within species.
Collapse
Affiliation(s)
- Song Liu
- Department of Biostatistics, Roswell Park Cancer Institute, The State University of New York at Buffalo, Buffalo, NY 14203, USA
| | | | | | | | | |
Collapse
|
39
|
Llorian M, Schwartz S, Clark TA, Hollander D, Tan LY, Spellman R, Gordon A, Schweitzer AC, de la Grange P, Ast G, Smith CWJ. Position-dependent alternative splicing activity revealed by global profiling of alternative splicing events regulated by PTB. Nat Struct Mol Biol 2010; 17:1114-23. [PMID: 20711188 PMCID: PMC2933513 DOI: 10.1038/nsmb.1881] [Citation(s) in RCA: 209] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2010] [Accepted: 06/25/2010] [Indexed: 12/22/2022]
Abstract
To gain global insights into the role of the well-known repressive splicing regulator PTB, we analyzed the consequences of PTB knockdown in HeLa cells using high-density oligonucleotide splice-sensitive microarrays. The major class of identified PTB-regulated splicing event was PTB-repressed cassette exons, but there was also a substantial number of PTB-activated splicing events. PTB-repressed and PTB-activated exons showed a distinct arrangement of motifs with pyrimidine-rich motif enrichment within and upstream of repressed exons but downstream of activated exons. The N-terminal half of PTB was sufficient to activate splicing when recruited downstream of a PTB-activated exon. Moreover, insertion of an upstream pyrimidine tract was sufficient to convert a PTB-activated exon to a PTB-repressed exon. Our results show that PTB, an archetypal splicing repressor, has variable splicing activity that predictably depends upon its binding location with respect to target exons.
Collapse
Affiliation(s)
- Miriam Llorian
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Lapuk A, Marr H, Jakkula L, Pedro H, Bhattacharya S, Purdom E, Hu Z, Simpson K, Pachter L, Durinck S, Wang N, Parvin B, Fontenay G, Speed T, Garbe J, Stampfer M, Bayandorian H, Dorton S, Clark TA, Schweitzer A, Wyrobek A, Feiler H, Spellman P, Conboy J, Gray JW. Exon-level microarray analyses identify alternative splicing programs in breast cancer. Mol Cancer Res 2010; 8:961-74. [PMID: 20605923 DOI: 10.1158/1541-7786.mcr-09-0528] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Protein isoforms produced by alternative splicing (AS) of many genes have been implicated in several aspects of cancer genesis and progression. These observations motivated a genome-wide assessment of AS in breast cancer. We accomplished this by measuring exon level expression in 31 breast cancer and nonmalignant immortalized cell lines representing luminal, basal, and claudin-low breast cancer subtypes using Affymetrix Human Junction Arrays. We analyzed these data using a computational pipeline specifically designed to detect AS with a low false-positive rate. This identified 181 splice events representing 156 genes as candidates for AS. Reverse transcription-PCR validation of a subset of predicted AS events confirmed 90%. Approximately half of the AS events were associated with basal, luminal, or claudin-low breast cancer subtypes. Exons involved in claudin-low subtype-specific AS were significantly associated with the presence of evolutionarily conserved binding motifs for the tissue-specific Fox2 splicing factor. Small interfering RNA knockdown of Fox2 confirmed the involvement of this splicing factor in subtype-specific AS. The subtype-specific AS detected in this study likely reflects the splicing pattern in the breast cancer progenitor cells in which the tumor arose and suggests the utility of assays for Fox-mediated AS in cancer subtype definition and early detection. These data also suggest the possibility of reducing the toxicity of protein-targeted breast cancer treatments by targeting protein isoforms that are not present in limiting normal tissues.
Collapse
Affiliation(s)
- Anna Lapuk
- Life Sciences Division, Lawrence Berkeley National Laboratory, University of California at Berkeley, Berkeley, California 94720, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Papapetrou EP, Korkola JE, Sadelain M. A genetic strategy for single and combinatorial analysis of miRNA function in mammalian hematopoietic stem cells. Stem Cells 2010; 28:287-96. [PMID: 19911427 DOI: 10.1002/stem.257] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The regulatory role of micro-RNAs (miRNAs) in hematopoietic development is increasingly appreciated. Reverse genetics strategies based on the targeted disruption of miRNAs offer a powerful tool to study miRNA functions in mammalian hematopoiesis. The miR-144/451 cluster comprises two miRNAs coexpressed from a common precursor transcript in an erythroid-specific manner. To decipher the contribution of each miRNA of the cluster in mammalian erythropoiesis, we developed a strategy for stable in vivo individual and combinatorial miRNA inhibition. We developed decoy target sequences for each miRNA expressed by lentiviral vectors marked with distinct fluorescent proteins and used them to probe the functions of miR-144 and miR-451 in the murine hematopoietic system in a competitive repopulation setting. Murine hematopoietic chimeras expressing lentiviral-encoded inhibitory sequences specific for miR-144 or miR-451 exhibited markedly reduced Ter119(+) erythroblast counts, with the combined knockdown showing additive effect. These chimeras showed abnormal patterns of erythroid differentiation primarily affecting the proerythroblast to basophilic erythroblast transition, coinciding with the stage where expression of the miRNA cluster is dramatically induced and posttranscriptional gene regulation becomes prominent. These results reveal a role for the miR-144/451 locus in mammalian erythropoiesis and provide the first evidence of functional cooperativity between clustered miRNAs in the hematopoietic system. The strategy described herein will prove useful in functional miRNA studies in mammalian hematopoietic stem cells.
Collapse
Affiliation(s)
- Eirini P Papapetrou
- Center for Cell Engineering Memorial Sloan-Kettering Cancer Center, New York, New York 10065, USA.
| | | | | |
Collapse
|
42
|
Lin L, Shen S, Jiang P, Sato S, Davidson BL, Xing Y. Evolution of alternative splicing in primate brain transcriptomes. Hum Mol Genet 2010; 19:2958-73. [PMID: 20460271 DOI: 10.1093/hmg/ddq201] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Alternative splicing is a predominant form of gene regulation in higher eukaryotes. The evolution of alternative splicing provides an important mechanism for the acquisition of novel gene functions. In this work, we carried out a genome-wide phylogenetic survey of lineage-specific splicing patterns in the primate brain, via high-density exon junction array profiling of brain transcriptomes of humans, chimpanzees and rhesus macaques. We identified 509 genes showing splicing differences among these species. RT-PCR analysis of 40 exons confirmed the predicted splicing evolution of 33 exons. Of these 33 exons, outgroup analysis using rhesus macaques confirmed 13 exons with human-specific increase or decrease in transcript inclusion levels after humans diverged from chimpanzees. Some of the human-specific brain splicing patterns disrupt domains critical for protein-protein interactions, and some modulate translational efficiency of their host genes. Strikingly, for exons showing splicing differences across species, we observed a significant increase in the rate of silent substitutions within exons, coupled with accelerated sequence divergence in flanking introns. This indicates that evolution of cis-regulatory signals is a major contributor to the emergence of human-specific splicing patterns. In one gene (MAGOH), using minigene reporter assays, we demonstrated that the combination of two human-specific cis-sequence changes created its human-specific splicing pattern. Together, our data reveal widespread human-specific changes of alternative splicing in the brain and suggest an important role of splicing in the evolution of neuronal gene regulation and functions.
Collapse
Affiliation(s)
- Lan Lin
- Department of Internal Medicine, University of Iowa, Iowa City, IA 52242, USA
| | | | | | | | | | | |
Collapse
|
43
|
Abstract
Following the original reports of pre-mRNA splicing in 1977, it was quickly realized that splicing together of different combinations of splice sites--alternative splicing--allows individual genes to generate more than one mRNA isoform. The full extent of alternative splicing only began to be revealed once large-scale genome and transcriptome sequencing projects began, rapidly revealing that alternative splicing is the rule rather than the exception. Recent technical innovations have facilitated the investigation of alternative splicing at a global scale. Splice-sensitive microarray platforms and deep sequencing allow quantitative profiling of very large numbers of alternative splicing events, whereas global analysis of the targets of RNA binding proteins reveals the regulatory networks involved in post-transcriptional gene control. Combined with sophisticated computational analysis, these new approaches are beginning to reveal the so-called 'RNA code' that underlies tissue and developmentally regulated alternative splicing, and that can be disrupted by disease-causing mutations.
Collapse
|
44
|
Shen S, Warzecha CC, Carstens RP, Xing Y. MADS+: discovery of differential splicing events from Affymetrix exon junction array data. Bioinformatics 2009; 26:268-9. [PMID: 19933160 PMCID: PMC2804303 DOI: 10.1093/bioinformatics/btp643] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Motivation: The Affymetrix Human Exon Junction Array is a newly designed high-density exon-sensitive microarray for global analysis of alternative splicing. Contrary to the Affymetrix exon 1.0 array, which only contains four probes per exon and no probes for exon–exon junctions, this new junction array averages eight probes per probeset targeting all exons and exon–exon junctions observed in the human mRNA/EST transcripts, representing a significant increase in the probe density for alternative splicing events. Here, we present MADS+, a computational pipeline to detect differential splicing events from the Affymetrix exon junction array data. For each alternative splicing event, MADS+ evaluates the signals of probes targeting competing transcript isoforms to identify exons or splice sites with different levels of transcript inclusion between two sample groups. MADS+ is used routinely in our analysis of Affymetrix exon junction arrays and has a high accuracy in detecting differential splicing events. For example, in a study of the novel epithelial-specific splicing regulator ESRP1, MADS+ detects hundreds of exons whose inclusion levels are dependent on ESRP1, with a RT-PCR validation rate of 88.5% (153 validated out of 173 tested). Availability: MADS+ scripts, documentations and annotation files are available at http://www.medicine.uiowa.edu/Labs/Xing/MADSplus/. Contact:yi-xing@uiowa.edu
Collapse
Affiliation(s)
- Shihao Shen
- Department of Biostatistics, University of Iowa, Iowa City, IA, USA
| | | | | | | |
Collapse
|
45
|
Chromatin architecture and transcription factor binding regulate expression of erythrocyte membrane protein genes. Mol Cell Biol 2009; 29:5399-412. [PMID: 19687298 DOI: 10.1128/mcb.00777-09] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Erythrocyte membrane protein genes serve as excellent models of complex gene locus structure and function, but their study has been complicated by both their large size and their complexity. To begin to understand the intricate interplay of transcription, dynamic chromatin architecture, transcription factor binding, and genomic organization in regulation of erythrocyte membrane protein genes, we performed chromatin immunoprecipitation (ChIP) coupled with microarray analysis and ChIP coupled with massively parallel DNA sequencing in both erythroid and nonerythroid cells. Unexpectedly, most regions of GATA-1 and NF-E2 binding were remote from gene promoters and transcriptional start sites, located primarily in introns. Cooccupancy with FOG-1, SCL, and MTA-2 was found at all regions of GATA-1 binding, with cooccupancy of SCL and MTA-2 also found at regions of NF-E2 binding. Cooccupancy of GATA-1 and NF-E2 was found frequently. A common signature of histone H3 trimethylation at lysine 4, GATA-1, NF-E2, FOG-1, SCL, and MTA-2 binding and consensus GATA-1-E-box binding motifs located 34 to 90 bp away from NF-E2 binding motifs was found frequently in erythroid cell-expressed genes. These results provide insights into our understanding of membrane protein gene regulation in erythropoiesis and the regulation of complex genetic loci in erythroid and nonerythroid cells and identify numerous candidate regions for mutations associated with membrane-linked hemolytic anemia.
Collapse
|
46
|
Lin L, Liu S, Brockway H, Seok J, Jiang P, Wong WH, Xing Y. Using high-density exon arrays to profile gene expression in closely related species. Nucleic Acids Res 2009; 37:e90. [PMID: 19474342 PMCID: PMC2709591 DOI: 10.1093/nar/gkp420] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Global comparisons of gene expression profiles between species provide significant insight into gene regulation, evolutionary processes and disease mechanisms. In this work, we describe a flexible and intuitive approach for global expression profiling of closely related species, using high-density exon arrays designed for a single reference genome. The high-density probe coverage of exon arrays allows us to select identical sets of perfect-match probes to measure expression levels of orthologous genes. This eliminates a serious confounding factor in probe affinity effects of species-specific microarray probes, and enables direct comparisons of estimated expression indexes across species. Using a newly designed Affymetrix exon array, with eight probes per exon for approximately 315 000 exons in the human genome, we conducted expression profiling in corresponding tissues from humans, chimpanzees and rhesus macaques. Quantitative real-time PCR analysis of differentially expressed candidate genes is highly concordant with microarray data, yielding a validation rate of 21/22 for human versus chimpanzee differences, and 11/11 for human versus rhesus differences. This method has the potential to greatly facilitate biomedical and evolutionary studies of gene expression in nonhuman primates and can be easily extended to expression array design and comparative analysis of other animals and plants.
Collapse
Affiliation(s)
- Lan Lin
- Department of Internal Medicine, University of Iowa, Iowa City, IA 52242, USA
| | | | | | | | | | | | | |
Collapse
|